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Abstract

In this thesis, two topics will be studied. In the first part, we investigate the geomet-
ric quantization of the Weil-Petersson metric on the moduli space of Fano Kéhler-
Einstein manifolds. In the second part, we investigate the (weak) pseudo-convexity
of the Teichmiiller space of Kahler-Einstein manifolds of general type.

In Chapter 1, we review the (infinitesimal) deformation theory of complex struc-
tures on compact complex manifolds. Based on Hodge theory, the existence of (in-
finitesimal) deformations will be discussed in detail. In Chapter 2, we explore the
deformation theory of complex structures on compact Fano Kéahler-Einstein mani-
folds with respect to the Kuranishi-divergence gauge. We also give the construction
of local canonical sections of the relative tangent bundle. Based on these works, we
show that the Weil-Petersson metric can be approximated by the curvatures of the
natural L? metrics on the direct image of the tensor powers of relative anti-canonical
bundles after normalization. In Chapter 3, we look at the Teichmiiller space T of
Kahler-Einstein manifolds of general type whose complex structure is unobstructed.
Let N be a Riemannian manifold with nonpositive sectional curvature. We prove

that the harmonic energy from 7 to N is pluri-subharmonic.



Chapter 1

Deformation Theory of Complex

Structures

In this chapter, we first review the original idea of Kodaira and Spencer’s deforma-
tion theory of complex structures on a compact complex manifold. In particular, we
take a detailed look at how the Kuranishi gauge is used in the proof of the existence
of an analytic family of complex structures. We will also mention the completeness

theorem of the analytic family.

Definition 1.0.1 (Complex Manifold). Suppose X is a second countable, Hausdorff
topological space. It is a complex manifold if the following properties are satisfied:
1 X = |J U, 24), where for all a € A, U, is open in X, and z, : U, —

acA
20(Us) C C™ is homeomorphism.

2 fap = 20025 1 23(Us NUg) = 2o(Us NUp) is biholomorphic.

From now on, we only focus on compact complex manifolds. In this case, we can
cover X by only finitely many coordinate charts. The complex structure is deter-
mined by the holomorphicity of the transition functions. Heuristically, on a given

compact complex manifold X = { |J (Ua; 2a), fag}, we fix the underlying smooth
acA
structure. If there is another complex structure on it, i.e. X' = { {J (U, 2,), fos},
aEN



we expect that new complex structure could be obtained by shifting coordinate
patchs of the previous one; from the viewpoint of sheaf theory, the deformation lies
in the sheaf cohomology H'(X, O(T'°X)).

If we consider the complexified tangent bundle TX® = TX ® C, the complex
structure is equivalent to the existence of a J € End(TX) such that J? = —1 and
J satisfies integrability condition, i.e. Nijenhuis tensor vanishes. This J yields to
the splitting T,X¢ = THX & TO1X for all p € X, with prj’ = 1(1d — v/=1J)
and prg’l = %(I d ++/—1J) the component projections with respect to the complex
structure J. Holomorphicity is equivalent to the condition of pry' [pr' 0 X, pro'Y] =
0, for X, Y € TMC® where [X, Y] is the Lie bracket for vector fields on TX. Moreover,
the complex structure J defines the operators 0 = prtlj’od and 0 = prg’ld with 9 = 0.
(Here, we abuse notation by applying pr}]’o and prg’l on the cotangent bundles in
the natural way.)

Suppose J' is another complex structure sufficiently close to J such that TX® =
TYOX @ T X', Then pr?,’l is an isomorphism between 7% X’ and T%'X. We have
ape AM(X, THOX), a vector valued (0,1)—form on X which represents the map

pri¥o (]m“o’l)_1 70X 5 70X 5 THOX
In the next section, we will explain how this vector valued one form arises.

Definition 1.0.2 (Analytic family of compact complex manifolds). We say 2~ =
{Xi|t € B} is an analytic family of compact complex manifolds if

e B is a complex manifold which parametrizes complex structures on the given

underlying smooth manifold.
e there exists holomorphic map © : 2 — B such that

— for all t, 771(t) = X3,

— rank ™ = dimB.

Remark 1. 1. 7 : X — B is holomorphic, so the total space is a complex

manifold.



2. For rank ™ = dimB, this means forp € Uy C X, if 2za(p,t) = (2L, -+ 2"ty - - t,)
are suitable local coordinates, then w(p) = (t1 - -t,). On the other hand, if p €
U Us C 2 and zo(p,t) = (24,20t tm) , 23(D 1) = (25, -+~ 25t tm),
then, the transation function fas(t) = za(p,t) 0 z5'(p,t) depends on t. Hence
different t <= different transition function <= different complex structure.

3. For a given complex manifold (Xo, Jo), if there exists such an analytic family
{Xi|t € B} such that 7° = (X, Jo) we call (Xy,J;) is the deformation of
(Xo, Jo)-

Question: For a given compact complex manifold (X, Jy), does there exist an
analytic family, at least for B = {t : |[t| < ¢} C C"? If such an analytic family exsits

, we call the total space to be an (infinitesimal) deformation family of (X, Jp).

1.1 Basic idea of analytic deformation theory

Let X be a compact complex manifold of dimcX = n. Suppose X = |J (Ua, 2a),
a€A

and transition function is f,5 = zaozﬁ_l : 28(UaNUp) = 24(UsNUg). From Kodaira-
Spencer’s viewpoint, deforming the complex structure on a given compact complex
manifold is equivalent to deforming the transition functions holomorphically, which

they describes as

X0 — g = [.5], where 0.5 = > Jes20) 0 iy, O(TM0X,)).

dat y ot 0z%,
=1

Remark 2. [0,5] is well-defined, moreover

Ous + 05 + 000 = 0
SR (1.1.1)

O = —0pa.



Proof. 1t suffices to check 0,5 = 0oy + 0.5.

& af(i,@(’zﬁat) 0
i = ) ot 0zl

=1

B Z afgW 02k af;ﬂ)
dzf Ot ot "ozt
N O0fon(2t) 0 N O0Lap 0 D
ot 0z, = 0t 0z,02

=1

= ecw + Qvﬁ
]

At t = 0, the Dolbeault theorem tells us that H'(X,, O(T*°X,)) = Hg’l(Xo, T X).

Moreover, Kodaira-Spencer show that for sufficiently small ¢ € B, we can express
the deformation by an element p(t) € A% (X,, T"°X,).

Theorem 1.1.1. On a given compact compler manifold Xy , if there is an ana-
lytic family # : & = {X4|t € B C C",|t| < €} — B such that 77*(0) = X
and Xy = ©=(t), then the complex structure on X; is determined by some o(t) €
A% X, TH0X,) satisfying:

B = e,

# =3l (1.1.2)
©(0) = 0.

The O operator is with respect to the complex structure on (Xo, Jo).

Remark 3. If we take local holomorphic coordinates (z1,--- ,z,) on X, and let

o= wa®ymw’ZWW&%MMMM:ZW%WM%%WM

ikl
dz' @ 52
Proof. On 2, consider the coordinate charts {%,, (wa,t)}, such that on %, N %3,
wWa(t) = fap(ws(t),t), and f,s is holomorphic in ¢.

B
At t = 0, on the central fiber Xy, there are two differentiable coordinate systems:
one is inherited from the holomorphic structure, locally, say on U,, we write it to
be (z},---,2"); another is from the total space 27, i.e. (wl(z,0),---,w"(2,0)). So

) Eage%

5



the Jacobian det (=57~ our DY 20 on U,. If |¢] is sufficiently small, then det( Ou’ =1y £

823
on U,. We let F/ = (awd—fjt)) 1 and

0
8zi ’

Y= ZF—d_k@)

i,9,k
Then it can be checked that ¢ is well-defined and does not depend on the local coordi-
nates, so it is a global section of A% (X, T19X). Let us write ¢ = > @%(t)dzj ® 6%1-’
27]

then the holomorphic coordinates (w!,--- ,w™) on X; satisfies:
ow; ; Ow;
oz, - “ 0z’

foralli=1,--- ,nandk=1,---,n
Under the new complex structure on X;, a smooth function f is holomorphic if
and only if (0 — Z ©'(t)9;) f(2) = 0 on the central fiber, where ¢'(t) = Z o(t )%d?ﬂ

When t =0, by the holomorphic structure on X, it is easy to see that ©(0) = 0.
To show the first equation in 1.1.2, we use dw’ = 3 ¢9;w’, where 0 = %d?
j i

Z goJ dz*®. Applying 0 on both sides,

0="> " [0:0;w'eL + Ouw'Oppl] dz¥ A dz*

Dksj
- Z (03 (50" ) + O Dpipy] A2 A dz*
S 1900 (1.1.3)
p,k,j, l
= 05l — Oupleph] 0w dz A dZF
p,k.j
It ¢ is small enough is invertible. We obtain dp = 1[¢, ¢]. .

However, not every element in A%'(Xy, T'°X,) can express the deformation.
The obstruction of deformation lies in H?( Xy, O(T"X))).

Theorem 1.1.2. If (X, Jy) is a compact complex manifold, and p € H'(Xy, O(T*° X))

is an infinitesimal deformation, then [p, p| = 0.



1.2 Existence of infinitesimal deformations

Theorem 1.2.1 (Kodaira, Kuranishi, Nirenberg, Spencer). If X, is a compact com-
plex manifold, and H?*( Xy, O(T*°Xy)) = 0, then for every n € H'(Xy, O(T*°X,)),
there ezists an analytic family 7 : " = {Xi|t € B, |t| < e} — B C C™ such that

L] X() = 7T_1(0),
. %hzo =1, i.e. the Kodaira-Spencer map KS: Ty(B.) — H*(X,, O(T'°Xy))
1S surjective.

We sketch the proof of the following existence theorem by using Hodge Theory
to construct the formal power series solution to the deformation equation (1.1.2).

To guarantee uniqueness of the solution, we fix Kuranishi Gauge i.e. 5*@ = 0.

Theorem 1.2.2 (Kodaira, Kuranishi, Nirenberg, Spencer). Let (Xo, go) be a com-
pact complex manifold, and gy be Hermitian metric. Suppose H?*( Xy, O(T'Xy)) =
0, then

dp = 3[p, ]
dp=0 (1.2.1)
¢(0) =0

has a unique power series solution @(t) = > ¢;(t).
=1

Proof. Step 1: Construction of the power series
By Hodge theory, if 5*g0 = 0, then
o(t) = H(p) + 00 Go + 0 0Gy

1. (1.2.2)
= H(yp) + 59 Glp, @),

where G @ A% (X, TH0X,) — A% (X, THOX)) is the Green operator associated to
the Hodge Laplacian [J = 90 +0°0.

Let o(t) = > @4(t), where ¢;(t) = > tlp, where I is multi-index.
i=1 =



Let H' (X, O(T*° Xy)) = span{Bi,- -+, Br}. Then o1 (t) = H(p) € H(X,, O(T°Xy))
k
and there exists t,- -, t; such that ¢1(t) = ) t;5;.
=1

Comparing the power of ¢ in (1.2.2), we get a power series solution to the defor-

mation equation as follows:

P2 = %E*G[%, 901]
Pz = %E*G([%, pa] + 02, ¢1])
(1.2.3)
. n—1
on =30 G 3 [0), Pn—]
j=1
\I
Step 2: Convergence
First, we show the power series is convergent in C*** norm || - [|x1a-
Lemma 1.2.1 (A priori estimate).
[ellera < CUIOCN k=240 + ll#llo)-
Lemma 1.2.2.
Ile; ¥lllera < Cllelleratrlellrrasr:
Lemma 1.2.3.
1Gollr+a < Cllollr-2+a-
Let ¢"(t) = > ¢;(t), then by (1.2.3),
i=1
-
#"(t) = 50 Gle" (1), 9" (O)]mod (")
We consider a power series
() = 3 41
16y
m=1 (1.2.4)
-y
111



with 3, v are positive constants, I is multi-index. When || < 1, A(t) is convergent.

Our goal is to find proper 3, v, such that [[¢(t)|[x+a < A(t), ie. ||ojlita < A
k

t;53;, so we can choose 3, 7y such that ||o!|xra < A(t).
i=1

Assume || 71 (t)||pra < A(t), then

Whenn =1, ot = p; =

Lo N n- n— n—

159" Gle™ (1), 2" Olllere < CLIGLE™ (1), " (O] s
< CraCillle™ (), " () lktar (1.2.5)
< CraCiCll9" " O llita

By the induction hypothesis, we get
" () |[ea < CA).

But we also have A(t)? < gA(t). Now we can further choose /3, v such that C’(%) <1,
then for all n, ||"(t)||lkra < A(t).

Therefore, () is convergent in C*t® norm.

Step 3: We show that under the assumption H?*(Xy, O(T*°X,)) = 0, the
power series constructed in step 1 and 2 is the solution to 5@ = %[(p, o).
Proposition 1. If p(t) = H(p) + %E*G[go,go], then Op = L[, @] if and only if
H[p, ¢] = 0.

Proof. If 9 = 3[p, ¢], then H[p, ¢| = 2HIp = 0.
Conversely, if H[yp, ] = 0, we will show dp = %[gp, ©].
Let 1) = 0p — %[gp, ¢, by Hodge decompositon, we get



¥ =0p — l[wp]

2
= %%*G[% ¢l - %[% @] = —%E*EG[% ¢]
= —%5*6’([5%@0] — [, ) (1.26)
= 9 G[op, ¢
= -T°G([ + 5l 0] 6]
= -9 Gl ¢]
By lemma 1.2.1-1.2.3,
[l sa = 10" Gl, @Ik o
< Gl|G[Y, @lllk+a+ (1.2.7)

< Co||[, @l kta—1
< Csl|@llksall¥llrta-

We can choose sufficiently small ¢ such that Cs||¢||x+a < 1, which is possible since
©(0) = 0. Therefore, ||¥||+o =0 and ¢ = 0. O

Step 4: Regularity of ¢
Proposition 2. ¢(z,t) is C* in (2,t) and holomorphic in t.
Proof. By the construction, ¢ is a power series in ¢, so it’s holomorphic in ¢ and

%o _
ot;0t;
1

1=

On the other hand, we know ¢ satisfies:

0 = Lo, ] (1.28)
5*<p = 0.

We get, Uy = %*go + 5*&0 = %5*[907 ©].

10



Since as ¢ satisfies the quasi-linear elliptic equation

" 82@ 1—x
— + [y — =0 [p,p] =0,
; dior 0P~ 50 el
we have C'*° regularity is for small ¢. ]

Step 5: {X;|t € B.} is a complex analytic family.

The last step follows from Nirenberg-Newlander theorem.

Theorem 1.2.3 (Nirenberg-Newlander). Locally, let L; = (%) - gog(%), suppose

L; and L; are complex linearly independent, Op = %[gp,gp]. Then there are n C'*

solutions wy - --w, to L; =0, such that

8(11)1,"' 7wn7w_17"' 7w_7’b)

det( )7&0.

a(Zl,"‘ 7Zn72_17"' 7Z_n>

1.3 Completeness of the analytic family

In this section, we prove Kuranishi’s theorem which can be viewed as the complete-

ness of an analytic family of complex structures.

Definition 1.3.1. Let 7 : 2" = {Xi|t € B,|t| <e} — B C C™ be a complezx ana-
lytic family of compact complex manifolds. The family (2", B, m) is called complete
at to € B, if for any complex analytic family (AN, D,w) containing 0 and so that
7 (tg) = w™(0), there are a sufficiently small domain E with 0 € E C D, and
a holomorphic map h such that (Ng, E,w) is the complex analytic family induced
from (2, B,w) by h, where N/ = w™(E).

Theorem 1.3.1. (Kuranishi)

(a) Let X be a given compact complex manifold. Let {n,}™, be a base for H' =
HY (X, O(T°X)). Suppose ¢(t) is the solution to the Kuranishi equation

plt) = (1) + 57 Gliol®), (1) (131)

11



where n(t) = > t,n,, for sufficiently small |t| < €. Let B = {t € C"||t| <
v=1

e, Hlp(t), o(t)] = 0}. Then for allt € B, p(t) determines a complex structure

on X;.

(b) Letp € A% (X, TY0X) such that O = L[, ¢)]. Then ¢ determines a complex
structure on Xy. If the sobolev norm ||[¢||wre is small enough, then there
exists a holomorphic vector field € € H°(X, O(T* X))+, and a diffeomorphism
fe: X — X depending on &, such that ¢(t) = 1o fe for somet € B and Xy, is
biholomorphic to X;, where H°(X, O(T*° X))t is the orthogonal complement
of H*(X, O(T'"Y X)) with respect to the L* norm.

Remark 4. 1. In the Kuranishi theorem, one is not assuming H*(X, O(T*°X)) =

0, i.e. the deformation of the complex structure may have obstructions.

2. In the previous section, to show the existence of the solution to the deformation
equation, we fized the Kuranishi Gauge, i.e. 5*g0 = 0. However, in general,
the Kuranishi gauge may not be fized. In the following of proof of statement
(b), we will see that based on the assumption of sufficiently small solution to
the deformation equation, we can find a diffeomorphism to adjust the gauge

such that Kuranishi gauge can be achieved.
3. Statement (b) can be viewed as a completeness theorem of the analytic family.

Proof. (a) follows immediately from Proposition 1.

For (b), we need to show for X, with |[¢|lykx2 < § for some § < 1, Xy is
biholomorphic to X, for some ¢ € B. We divide the proof into the following three
propositions.

Proposition 3. For fized n(t) € H'(X,T'°X), the Kuranishi equation p(t) =
n(t) + %E*G[gp(t), ©(t)] has only one solution with ||¢||x = ||¢||lwr:2 < 0.

Proof. Assume ¢ and v are two solutions to the Kuranishi equation with Hyp =

12



Hyp = n(t), and [[][x, [[¢[[x < 9. Then,

T=p =1
Z%E*G[% o] — %5*6’[1#,@/)] (1.3.2)

=57 C([r, 7]+ 2lr,9))

Hence, ||7||x < C||7|le(||7|lx + [|¥||x), and this inequality is true if and only if

[|7]|x = 0 due to the fact that |||k, |||k < 9. O

According to this proposition, the small enough solution to the Kuranishi equa-
tion is uniquely determined by its harmonic part.

The next proposition tells that with respect to Kuranishi gauge, any complex
manifold X, with [[¢||x < § can be obtained by the solution to the Kuranishi

equation.

Proposition 4. For X, with |[¢|| < 8, if 9 ¢ = 0, then there exists a solution (t)
satisfying the Kuranishi equation o(t) = n(t) + %E*G[gp(t),ga(t)] such that X, =
Xow- (Acutally, 1 = (1) ).

Proof. Assume the complex structure on Xy, is determined by 1. Then ) satisfies

the deformation equation

0 = 3[¢,v] (1.3.3)
dY=0.

Let n = H(v), then ¢ = n + %E*G[@D,zﬁ] with ||¢]|z < d. By the previous
propostion, we know ¢ = ¢(t) for some |t| < e. O

However, in general, the Kuranishi gauge may not hold. The following propo-
sition shows that we can always find a diffeomorphism to adjust the gauge to the

Kuranishi gauge.

Proposition 5. If ¢ # 0, then for |Y||x < 0, there exists a diffeomorphism
fe: X = X determined by a vector € € H°(Xo, T"°X)*, such that 8 (¢ o f¢) = 0.

13



Proof. Claim: For sufficiently small ||1)||, a diffeomorphism f: X — X, ¢ = o f
also determines a complex structure on X.
Proof of the Claim: Assume X, C (J(Ua,(*(2)), where (*(z) is the local

1-holomorphic coordinate. Suppose f : X — X is a diffeomorphism and X C

U(f(Ua), ¢*(f(2))). Then

«

3¢ (2) = P97 ()

(1.3.4)
9¢(f(2)) = ¢705¢*(f(2))-
From the second equation,
¢ ofr o of s loccaf N oc>of’
of 025 | gp 028 T°|0f 0P gF 028 |
Using the first equation, we get
0O | (g0 O | 0600 ) 0C° OF
afr 0z° TOfP 07 S 1Ofr 028 TOfM o8|
Then we obtain
Df + 307" = P10a 7 + 0057, (1.3.5)

There exists some § < 1, such that when ||¢]|; < 0, the gauge matrix [05f7 +
(08 8/3?77] is invertible, and the new complex structure ¢ is determined by ¢ and the
diffeomorphism f.

Next, we will use geodesics to construct such a diffeomorphism.

Recall that if z(t) = (z'(¢),-- -, 2"(¢)) is the geodesic which starts from z, with

initial velocity &, then it satisfies the equation

d?2%(t) , Az d2P

dt? Prar dr
2(0) = 2o (1.3.6)
dz(t) B
dt }tzo - 5

where I'g. corresponds to the Chern connection of the Hermitian metric.

14



z(t) smoothly depends on the initial data z%(t) = 2°(t,20,&). Now we let
fz0,&) = 2%(1,20,&). We want to find the Taylor expansion of f with respect
to &. Notice that

f(20,t&) = 2%(1, 20, t&) = 2°(t, 20, &), (1.3.7)
take derivative on ¢, we get

of ,  0f°zs 020
9ea’ Tt T

S0,
fa<20a O) =25
8 (20,0) = g (1.3.8)
%(zo, 0) = 0.
Thus, we obtain the expansion
F*(20,6) = 2§ + &+ O(IE]) = = + & + h*.
For a given vector £, we define the diffeomorphism f¢ : 2* — f*(z, ), which satisfies
equation (1.3.5), i.e.
IE* + Oh* + Y§[dz" + 98 + 1’| = ¢* [65 + 0p€™ + Osh® + 12 (974 + 05€" + Ogh")),

and

o’ =09¢" + 47 + R, ), (1.3.9)
where R(&,1)) smoothly depends on &, 1 and their first order derivatives.
We are looking for ¢ that the modified complex structure satisfies & p = 8 (o
fe) =0, where fe is the diffeomorphism generated by &.
Now, take £ € HY(X, O(T*°X))*, ie. foralln € HY (X, O(T°X)), < &,n >12=
0. By the Hodge decomposition, & = 9 0GE, and by equation (1.3.9),
=009+ ¢+0 R(EY) =0,

and
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E+GI Y+ G R(E, ) = 0. (1.3.10)

By the implicit function theorem, equation (1.3.10) has solution £ = g(v) for
|¥]|x < 6. Since the equation

0 +0 R(E W)+ Y =0

is of second order elliptic, & is C.
Therefore, with such §, the diffeomorphism fe will adjust the gauge into the
Kuranishi gauge. O]

We finish the proof of Theorem 1.3.1. ]
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Chapter 2

Complex Deformation on Fano
Kahler-Einstein Manifolds

In this chapter, we study the analytic family of Fano Kahler-Einstein manifolds. For
a Fano Kahler-Einstein manifold, we know that the deformation of complex struc-
ture has no obstruction, so the deformation equation with respect to the Kuranishi
gauge can be solved and the solution is uniquely determined by its harmonic part. In
the following computation, instead of using the Kuranishi gauge, we will use the di-
vergence gauge. In section 1, we show that these two gauges are equivalent on a Fano
Kahler-Einstein manifold. As a matter of fact, we prove a more general result. We
consider a Fano Kahler manfold with the Ricci potential given by a smooth function
f. If we replace the Kuranishi gauge and the divergence gauge by the f—Kuranishi
gauge and the f—divergence gauge, then we conclude that the f—Kuranishi gauge
is equivalent to the f—divergence gauge. This equivalence guarantees that the de-
formation equation of the complex structure on the Fano manifold is solvable under
the f—divergence gauge. In particular, on the Kéhler-Einstein manifold, the defor-
mation equation of the complex structure is solvable under divergence gauge. In
section 2, based on the assumption that the automorphism group is discrete, we
compute the Taylor expansion of the Kahler form and volume form on the deformed

Fano Kéhler-Einstein manifolds. This expansion will be used in the study of the L?
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metric on the direct image sheaf in later sections. In section 3, we investigate the
deformation of pluri-anticanonical sections. We establish the deformation equation
of these sections and use the Hodge theory to show that the deformation equation is
solvable under the Kuranishi-divergence gauge. Furthermore, starting from a pluri-
anticanonical section on the central fiber, we can explicitly construct the solution to
the deformation equation in terms of the power series. In section 4, by studying the
Taylor expansion of L? metric on the direct image sheaf, we obtain the quantiza-
tion of the Weil-Petersson metric on the moduli space. In section 5, we explore the
deformation of the holomorphic vector field. Especially, we discuss the solution to
the deformation equation of the holomorphic vector field under the assumption that
the dimension of the space of holomorphic vector fields is a constant. The results

obtained in this chapter is in paper [5].

2.1 Deformation of complex structures on Fano

manifolds and gauge equivalence

Definition 2.1.1. Let (X, J) be a compact complex manifold. X is called Fano if
the anticanonical line bundle K)_(1 = AT X is ample; equivalently, the first Chern
class ¢1(X) > 0.

Definition 2.1.2. Let (X, J,w) be a Kdhler manifold with the Kdhler form w. It
is called Kahler-Einstein manifold if the Ricci form satisfies Rz = pw, where p is a
constant. In particular, if p > 0, X is called the Fano Kahler-FEinstein manifold; if
p =0, X is called the Calabi- Yau manifold; and if p < 0, X is called Kdahler-Einstein
manifold of general type.

Lemma 2.1.1. Let (Xo, Jo,wo) be a compact Fano Kdihler manifold with canonical
line bundle Ko. Then
H*(Xo, O(T** X)) = 0.
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Proof. By Serre duality,

H*(Xo, O(T° X)) =2 H"*(X,, O(TH° X)* ® Ky))
>~ [1"2(Xo, QM (K)).

But on Fano manifold, ¢;(Ky) = —c;1(Xy) < 0. By the Kodaira vanishing theorem,
we know

H*(Xo, O(T** X)) = 0.
O

Hence, there is no obstruction to the deformation of complex structure on Fano
manifolds, and in particular, this is true on compact Fano Kahler-Einstein mani-
folds. According to Kodaira, Kuranishi, Nirenberg and Spencer’s work (see Theroem
1.2.1), there exists an (infinitesimal) analytic family 7 : 2" — B ={t = (t;--- , 1) €
C*¥||t| < €} of Fano manifolds. Here k = dimH'(X,, T"%Xy). In addition, the de-

formation equation
Ip(t) = 3e(t), (1))
9 o(t) =0 (2.1.1)

has a unique power series solution p(t) = Y ¢;(t) with ¢ (t) = H(p) € H'(Xo, T Xy),
i=1

and pi(t) = > 4" %% Qo). Recall that the condition 8 (t) = 0 is ref-
a1t ap=1

ered to be the Kuranishi Gauge.

If (Xo, Jo,wo) is a compact Fano Kihler manifold, then by d0—Lemma, there
is a smooth complex valued function f on Xy such that Ricy — wy = @@5 f. Let
(E,h) = Xy be a complex vector bundle, and AP?(X,, E) is the space of smooth
E-valued (p,q)-forms. With f, we can define the L%—norm on APY(X,, E). For
o € AP Xy, F), .

el

<(P7¢>f:/x(907¢)h6 .

n!
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Moreover, we define 5; =9 — i, Where Vfisa (0,1)—vector. The f—Laplacian
is defined to be O; = %; + 5;5 We mention that U is a second order el-
liptic self-adjoint operator with respect to the volume form ef O:T(? The E-valued
(p, q) ;—harmonic form « is defined to be Oy = 0, and

HY(X) = {a € AP(X,, E)|0sa = 0},

On a Fano manifold, we know the deformation equation (2.1.1) can be solved
under the Kuranishi gauge. In fact, applying the method in the proof of proposition
5, we can adjust the Kuranishi gauge by finding a diffeomorphism o : X — X, such
that ¢ = ¢ o o solves 5;21) = 0.

Proposition 6. Let (Xo,wo) be a compact Fano Kdhler manifold. Suppose there is
0 < 1 such that o(t) solves equation (2.1.1) with ||p(t)||x < 9, fort € B. Then there
exists a vector field & in the L3 orthogonal complement of H}(Xo, T"°Xy), such that
o¢ : Xo — Xo is a diffeomorphism of X, generated by &, and ¢ = ¢ oo satisfies the

following equations

o = 5[v(t), (1))

i (2.1.2)
9y = 0.

Proof. For a diffeomorphism o : Xg — X, if 0 and do are close to the identity map,
and if ||| < J, then ¢ o o also determines a complex structure ¢ on Xj.

Take a vector field £ in the L} orhtogonal complement of H}(Xo, 7"%Xy), and
consider the geodesic z(t) = (z1(), ..., z,(t)) starting from zy with initial velocity &
where z,(t) = za(t, 20,€). Let 04(20,&) = 2a(1, 20,&), and we define the diffeomor-
phism o¢ : 2z, — 04(2,€). Then by Taylor expansion of o¢, by (1.3.9) we get

=06+ ¢+ R(E p),

where R(&, @) smoothly depends on &, ¢ and their derivatives. By the equation
E;w = 0, we let Gy be the Green operator associated to the f-Laplacian Uy, then
we see £ satisfies

£+ Gpdsp+ GO R(E, 9) = 0. (2.1.3)
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Notice that E*cp = 0, so the above equation reads as
£ — GV o+ GrIR(E, ) = 0. (2.1.4)

Define an operator F from a neighborhood where R(§, @) is defined to the L7
orthogonal complement of H}(Xo, 7" X) by F(£, @) = é—Gfo_mp—i—Gfg;R. Then
%—§|(0’0) = Id, by the implicit function theorem, such a & to equation (2.1.4) exists.
Moreover, £ also satisfies

Os& — Vs +0;R(E ¢) =0, (2.1.5)

which is a second order elliptic equation, so £ is of class C*°.

With such a vector field &, the new complex structure ¥ = ¢ o o¢ satisfies
I =0. O
Remark 5. On a Fano Kdahler manifold, we refer to the condition 5;1# =0 as the

f—Kuranishi gauge.

Now, we introduce the divergence gauge and the f—divergence gauge. The
divergence gauge was introduced by X. Sun in his paper [15], where he studied
the complex deformation of Kahler-Einstein manifolds of general type. Later, in
the paper [16], Sun and Yau also used it to study the complex deformation of the
Calabi-Yau manifolds. In the following, we use the notation 9; = a%- and we use
Einstein convention from now on i.e. repeated indices mean taking the sum of them.

Definition 2.1.3. Let (L, h) — (Xo,wo) be a Hermitian line bundle over a complex

manifold. The divergence operator is
div=TrovV:A"(X,, T X, ® L) — A®'(X,, L)

Locally, if (z1 . .., zn) are local holomorphic coordinates on Xy and e is a holomorphic
frame of L, for n = n%dzj ® & ®e € A% (X, TYX, ® L),

divny = (51-77;% + 77%@ log(goh))dz; @ e,
where gy s the determinant of the metric on Xj.
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Definition 2.1.4 (X. Sun[15]). For ¢ € A%Y(Xy, T"°Xy), divep = 0 is called the

divergence gauge.

If the underlying manifold is a compact Fano Kahler manifold with the volume

density ef %, we can also define divy.
Definition 2.1.5. Forn = n;édzj ® a% ®e € A% (Xy, TY X, ® L),
divn = (8107;% + T}%@Z log(gohe!))dz; @ e;
and for ¢ € A% Xo, T’ Xy), divyp = 0 is called the f—divergence gauge.
Remark 6. (1.) divyp = divp + ¢o0f.

(2.) In terms of local holomorphic coordinates (21, . .. z,) on Xy, forw, = ggﬁdzi/\
dz?, ¢ = go?d?j ® %, we have

— - _ _ 9

Oy = [~(0ph)g"” + 509" — g 01 f] o, 10
9PNk ki 112 o
= [F0le5e,)97 9™ — i7"l 15—

and
divyp = (0 + 20, log g + 20, f)d7’

= [0k(29,1) 9" + L0, f1dZ.

(2.1.7)

Next, we will show that on a compact Fano Kéhler manifold with volume den-
sity e/ %, the f—Kuranishi gauge is equivalent to the f—divergence gauge. Con-
sequently, under either one of these gauges, the deformation equation of complex
structures can be solved, and we still have the analytic family of compact Fano
Kahler manifolds.

Firstly, we show the f—divergence gauge implies the f—Kuranishi gauge.

Lemma 2.1.2. If (Xo,wy) is a Fano Kdhler manifold with volume density ef%, for
¢ € A% Xy, T X)), we have

(1.) 0divsp = div(dp) — 2¢/ 1w
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(2.) Ldivep, @] = po0(divye).

Proof. For the first identity, let wy = @ gﬁdzi AdZ and let p = go%d?j ® 8%1-‘ Then
divep = (@go;% + go%ai(logg + f))dz’. And
Adivyp) = (010% + O 0,(log g + f) + @-0i0,(log g + f))dz' A dZ’
= (0:(0) + (Oreh)di(log g + f) — @Ry — f))dZ N dZ 218)
— (D(0) + () Oh(log g + F) — Phga)d= A d
= div () — 2v/ =1 _wy.
From the second step to the third step, we use the equation R; — fz = g;5.
For the second equation, we note
Lol = dhongiazt nazi @ 2
o T EYUES 82/
SO
L. i i j
5divsle, o] = [0:(47075) + p01e50i(log g + f)]d=" A dZ
= [(@‘P%)(aﬂﬂg) + W%aial@% + ‘P%alﬁpéf@;(logg + f)]dz" A d7 (2.1.9)
= 00,016+ Diptdi(log g + f))dz" A d
= pJ0(divyy).
O
Based on lemma 2.1.2, we can prove the f—divergence gauge implies the f—Kuranishi
gauge.

Proposition 7. Let (Xo,wo) be a compact Fano Kdhler manifold with volume den-

sity effl—?. Let @ be the Beltrami differential satisfying Op = %[(p, ¢] and divip = 0.

Then powy =0 and 5;@ = 0.
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Proof.

0 = J(divyy)
= div(dyp) — 2v/— 1wy
— %divf[%go] — 2v/—1pwy (2.1.10)
= pu0(divsyp) — 2v/ = 1wy
= —2v/— 1wy,

Thus, pwo = 0, L.e, phg,; = 97,5

— i gm0
Moreover, for ¢ = go%.dzj ® 7

Tpp=—g"Vipt — oV f
=Vi(gMeh) — oV f
= — Vi(g7et) — oV f
= —g" [Vigh + a0 f] =0,

(2.1.11)

which leads to 5%0 = 0. [
Remark 7. Under the symmetry ¢uwy = 0, we have divsp = 2\/—18;¢4w0.

Before we show the Kuranishi gauge implies the divergence gauge, we need the

following lemmas.
Lemma 2.1.3. Let (Xo,wo) be a compact Kihler manifold.
(1) If(P S A0’1<X0,T1’0X0>, ¢ S Al’l(Xo), then

(o)) = Do) + @ ).

(2) If p € A% (Xo, T X,), Dy = 0, then

V=T

5;(@JWQ) = dinQD.
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(3) If O(ipwp) = 0, Oy = 0, then

2

Of(pawg) = div(0p) + @a(Ric(wy) — VV f),

where Uy = %; + 5;5 is the f-Hodge Laplacian.
(4) For ¢, 1 € A% (X, THOXy), we have
[0, ] awo = @a0(th o) + Pa0(pwp).
Proof. (1) Let ¢ = gp%d?j ® a%i, Y = 1p;d2* A dz'. Then
) = s A dZ,
and

o) = [y + P50 |dz0 N dZ N dZ' = Dpp + 90y

(2) We adopt the convention of the wedge product as n A~y = \%(77 RY—70n),
then

a* vV —1 m m s m m D —i
O (pwo) ==5—{OU(PF G = ¥F 9m3)9"719" 91 + (5 Guus — 25 9p)g 7O }d

v —1 m m ki m m 7 17
A0 G5 = 05 920)9" + (95 G — #7' 9mp) 0979”91

+ (05 Gy — 5 gup) 9T OLf }dZ'
V —1 m j m m 5 m 5
=5 {07 905)9" + 7 Om S = 0P 9i) 9" — &5 9uig” O f

+ 05 0ng" P g + 05 0rgmpg 9" g1z y d7'
VI
2

din(p,
(2.1.12)

where the last equality comes from 5;@ = 0.
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(3)
Oy (pwo) = (90} + 8;9) (p-1w0)

. _ V-1,
= 00 (pawo) = I( 5 divep)
v—1— , , , 4
= —5 (05 + 50ilog g + 950, f)d=']
N

— Y [0p(0) + (Op)Oullog g + f) + ¢ (Opdilog g + Opdif )z A d

div(9¢) + pa(Ric(wy) — VV£).

(2.1.13)
(4) Let p = gp%.d?j ® 05, ¥ = Prdz' ® O, wo = @gsgdzs A dzt, then
[0, 0] = [£%0:(47) + 020 (0])]dZ A dZ' @ B, (2.1.14)
So,
V-1, i j — —
[, Y] awy = T[@;ai(@blk) + ¢38i(¢%)]gkgd2] A dZ A dZ
V-1, k i,k i k ik —j l —t
=~ 150000 ) gkt + 0597 0i(gxa) + U501 i) + V57 0l gip)]dz N dZ A dz
= p10(¢ awo) + Y 10(pwp).
(2.1.15)
O]

Lemma 2.1.4. Let (Xo,wy) be a compact Fano manifold. If u € A%*(X,) satisfies
Op =0 and Upp = p, then p = 0.
Proof. Let pu = pzdz' Adz’. Then the norm of p is [u|* = ,uifju_m(gkzgﬁ —g*igih). Let
the twisted Hodge Laplacian be (; = (0 —do igr— iy 00 and the (1,0) connection
Laplacian Ay = A + Vf 40. Since Op = 0, the twisted Weitzenbock formula for
(0,2)-form p reads as:

O+ App = Rico p+ po Ric— (VVfou+puoVVf)

(2.1.16)
= Wo © b+ O Wo.
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By U¢u = p, we have
Appr = —p+wp o p+ 1o wp. (2.1.17)

We also have

—/ |V[L|26de:/ < App,p>efdv
X X

:/ < —pAwoopu+ powy, u>eldv (2.1.18)
X

~ [ luperav
X

Hence p = 0.
[

In particular, on a Fano Kahler-Einstein manifold, we also have the following

vanishing result.

Corollary 2.1.1. On a compact Fano Kdhler-Einstein manifold (Xo,wo), if 1 €
A%2(X,) satisfies Ou = i, then u = 0.

Proof. For the (0,2) form p = pzdz* A dz!, by the Weitzenbock identity and the

Kahler-Einstein condition,
Ou+Ap=>_ R(e;, epp

=D Rl — Ripgdz" A d7
4,p

(2.1.19)
= (Rgttg + Ryppigy)dz* A dz'
p,k,l
= (Gprtty + Guitiy)dZ* A dZ.
p,k,l
Therefore,
2
+ < Apyp>= < UOp+ Ap, >
|l [y fh o+ Ap, (2.1.20)

= (Grtto + Gty 9™ 9" = 2|pf>.
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and

o R ATV T (2.121)
Xo Xo Xo

we conclude that = 0. O

In the following computation, for the sake of simplifying notations, we assume
B C C. For the case of B C C*, the computation can be carried out similarly.
Next, we will use induction to show that the f—Kuranishi gauge implies f—Divergence

gauge.

Proposition 8. Let (Xy,wy) be a compact Fano Kdahler manifold, p(t) = > tip; €
i=1

A%( X, T Xy) is a family of Beltrami differentials satisfying

B =Ll

°r 2 izl fimd (2.1.22)
dppi =0

for alli > 2, and ¢, is harmonic with respect to Ug-Laplacian. Then divsp; = 0

and p;awy =0 for alli > 1.

Proof. When i =1, Osp; = 0 implies Op1 = 0, and 5;01 =0.
By Lemma 2.1.3, 0(p11w) = @1 1wy + @110wy = 0, and

V-1
2

By Lemma 2.1.4, ¢ 1wy = 0, locally, gozé.gﬂ = g@%gﬁ.

Df(clewo) = lef(ggﬁl) + QOlJ(RiC(WQ) — va) = P14Wo.

Hence,

divyp = 2v/=19;pwy = 0. (2.1.23)
Now assume for £ < ¢ — 1, we have ¢ wp = 0 and divyp, = 0.
Then,

(i awp) = Op; o

—_

11—

[(pﬁ sz‘—j} JWo

N7

1

[HR
Il

(2.1.24)

.
I

©j10(pi—jwo)
1

.
Il

I
e



Therefore, we get

V=T

O (wiawo) = 5 div(0y;) + @ia(Ric(wy) — VV f)
i—1
= \/__1diV( [pj, Pi-j]) + Piawo
= (2.1.25)
= g Z i—;20(dive;) + @iawg
j=1
= Pio-
By Lemma 2.1.4, p; 1wy = 0 and divsp; = 2\/—_15;g0i4w0 =0. ]

By proposition 7 and 8, we have proved

Theorem 2.1.1. On a compact Fano Kdhler manifold (Xg,wy), if the Beltrami
differential ¢ € A (Xo, T™0X,) satisfies Op = 1[0, ], then

g;go = 0 15 equivalent to divyp = 0.
Furthermore, ¢iwy = 0 when either one of these conditions is imposed.
On a Fano Kahler-Einstein manifold, we simply take f = 0 to obtain

Corollary 2.1.2. On a Fano Kdahler-Einstein manifolds (Xo,wo), if the Beltrami
differential € A" (X, T"'Xy) satisfies Op = L[p, ¢] then

5*@ = 0 is equivalent to divyp = 0.
Furthermore, @iwy = 0 when either one of these conditions is imposed.

Remark 8. In the paper [13], G. Schumacher used the method of harmonic lift
to obtain 1wy = 0 on the Kahler-Finstein manifold. We point out that in the
paper [14], Siu gave the proof of the existence of harmonic lifting vector fields on
the total space of the family of the Kahler-Einstein manifolds of general types. Siu’s
harmonic lift method has the following properties: Let w : 2 — B be an analytic

family of complex manifolds. Take a local holomorphic coordinate (t*,--- t") at a
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regular point t € B, and let (z',--- ,2") be holomorphic coordinates on X; = w1(t).
For the holomorphic vector fields {%, R 8%}, there exist vector fields on the total

space {vy, -+ ,v,}, such that
1. 71'(’UZ‘) == aitl
2. Oyv; is harmonic respectively on the fiber manifold.

Having a harmonic lift is the same as having a canonical smooth trivialization on

the total space of the family of deformation manifolds.

2.2 Deformation of the volume form and the Kahler-

Einstein form

In this section, we will study the (infinitesimal) deformation of Kéahler-Einstein
metrics and its volume form under the deformation of the complex structures on

the Fano Kéhler-Einstein manifold (X, wp). Our main result is

Theorem 2.2.1. Let m: 2" — B ={t € C: |t| < e} be an analytic family of Fano
Kihler-FEinstein manifolds. Suppose HY(Xy, O(T1° X)) = 0. Then the volume form
on the nearby fiber X; = m=1(t) is given by

4V, = [1 = [{PA(A + 1) @) + O(lt)] v,

and the deformed Kdhler form is

=1 _
wn = wo = [t (L=00(A + 1) i) + O(1t"),

where A is the Beltrami-Laplacian on Xy, 0, 0 are operators on X,, where @1 =
H(p) € H"(Xo, T*°X,). The Beltrami differential ¢ satisfies

dp = o, ¢l
dive =0 (2.2.1)
©(0) = 0.
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According to Futaki’s result, on a Fano Kéahler manifold, the space of holomor-
phic vector fields is isomorphic to the 1-eigenspace of the twisted Laplacian. This

is precisely stated as follows.

Proposition 9. (Futaki [7]) Let (Xo,wo) be a Fano Kdhler manifold, such that
Rz} = gﬁ + Vlv;f Let Afu = Au+ vau. Let Tl = {u - COO(XO)|Afu +u = ()}’
T2 = HO(X(), O(Tl’oXo)). Then T1 = TQ.

For completeness, we include the proof here.

Proof. For all u € Ty,
/ IVVul?e!dV = /(vjv uV;Vu)e dV
Xo X

/ ViuV;( V V;ue )dV

Xo

/ Vau(V;V5Viu + VYV, f)el dv

0

»

Vu(V;V;Viu+ R;Viu + V;V;uvjf)efdv

\

Xo

V,u(ViV,;Viu + (g5 + V,;Vif)Viu + V5VuV, f)el dv

Xo

[(Aju)zu; + | Vul*lefdV

\

Xo
_ —/ (—[Vul2 + [VuP)efdv = o.
Xo
(2.2.2)

Therefore, Vu is a holomorphic vector field; i.e. Vu € T,. And V : T} — T3 is a
well-defined operator.

Conversely, let W € T;. Locally, W = I/VZ 8 . W is holomorphic; i.e. V5 Wi=0
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forall j =1, ---,n, divW = ViW' and diviW = divW + WiV;f.

Ap(diviW) =A(divW + W'Vif)+ < V£, V(divW + W'Vf) >

=AW+ W'V, f) + Vi f V5V + W'V, f)
=V, V-V W+ V, V(W f) + V V5V W+ Y fV(WV f)
=V;(V;V;W' = RzW') + WV, V5V, f + V;WIVEY, f

+ Vi f(ViVsW' = RsW') + V, V5V, fW!
==V, (g5 + V5V )W + WV, V5V, f + VWYV, f

= Vil (95 + V3Vl )W + Vi V5V f W
=— VW' — W'V, f
= —div;W.

(2.2.3)

Hence, div : Ty — T3 is a well-defined operator.
Now, suppose W = W2, is a holomorphic vector field. Then V;W* = 0 for

0z
k=1 n.

ngiva == VE(VZWZ + lezf)
= VeVW' + W'V:V, f (2.2.4)

We conclude Vdiv is injective.
On the other hand, if u satisfies Aju 4+ u = 0, then

div(Vu) = du’ + u'd;logdet g + u'0; f = Apu = —f.

So div;V is also injective.
Therefore, T7 = T5. [l

Taking f = 0, and the above argument gives

Corollary 2.2.1. Let (Xo,wo) be a Fano Kdhler-Einstein manifold, let T) = {u €
OOO(X())|AU +u = O}, and T2 = HO(X(), Tl’OX()). Then T1 = TQ.
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By this corollary, we know if there are no holomorphic vector fields on the Fano
Kahler-Einstein manifold, then the operator A + 1 is invertible.

Next we give the proof of the main result of this section.

Proof. (of Theorem 2.2.1)
Let (z1, -, 2,) be local holomorphic coordinates on the central fiber (X, wy).
Then
QM(Xo) = span{dzt,--- ,d="}.
Let {e¢!,---,e"} be local holomorphic frames on (X;,w;) obtained by the defor-

mation of complex structure. Then by the Kodaira-Spencer’s theory, ¢! = dz"—l—gozéd%j

and
OYO(X,) = span{el,--- e}
Let (wy, -+ ,w,) be local holomorphic coordinates on (X, w;). Then
0w, , , 0wy .,
d a Oéd 7 ad—l
w oz, Z + o7, Z
0wy , ; Owy
= —d2' + I —d7 2.2.
aZiZ+ZGZjZ (2.2.5)
ow, , , ; P ow,
Let A = (Gai)mxn = (222),0n, |A] = det A, ¢, = (=1)"5 7 (L), and if gy is
the Kéahler metric on the central fiber X,. Then
dVy = ¢ det godz' A -~ Ad2Z" ANdZP A - A dE" (2.2.6)

Let
dV, = cndet goe A A" ANB A NEY
= det(I — ¢p)dVj.
There is a unique function f = f(z,%,¢,t) € C*(Xy x B) with f(z,%,0) = 0 such
that the volume form on the deformed manifold X; is given by
AV, = el dv, = e/ det(I — ¢pp)dVy
= el det go| Al 2dwt A - Adw™ A dwt - A dT" (2.2.8)
= ¢, det g dw' A - Adw™ Adw' - A dw”,

(2.2.7)
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where ¢; is the Kéahler metric on the deformed manifold X;. Hence,
detg, = el det go| A| 2. (2.2.9)

On the other hand, as we can see, all terms related to ¢ in the deformed volume form
are contained in e/ det(I — ). The expansion of ¢ about t comes from the power
series solution to the deformation equation of the complex structure. To figure out
the expansion of e/ about t, we study the deformed Monge — Ampére equation:

2

— log dV;)" = dV,. 2.2.1
( P, 8 Vi) Vi (2.2.10)
Since 5 0. o I
Zi Zi
= — 2.2.11
ow, Owy,0z  Ow, 0z ( )
and

Owa Owa _ 0z; 0z,
Oz Oz dwa  OWa ’
MW  OWa 0z, 0z,
0zi __ (Owa\—1 —\1j 0z __ dwa \—1 —\kj i
So (52=)' (I — ¢p)¥, and = — (G211 — gpgp)’”(p% We get

7 Qwa N\ Oz 0z;

0 _ Owa 4., ;0 — 0
= (527 = 98) (5 = W), (2:212)

ow,

Now, let a;o = %“;:‘, bl = (%"Z’j)*l, we define the operator

T =T, :C®(Xy) — A" (Xy)

n

by T(f) = 0f — @(t)20f. Locally, T is given by T(f) = S Ti(f)dz* and T,f =

i=1
ohf — @%ajf
From (2.2.9),
logdet g, = f +log gy — log A — log A.

Using divp = 0, we compute,
Tilog A = b (I — Pp)udjai, + g?fgo%al log go. (2.2.13)

And

T;log A = —@?8,@ log go. (2.2.14)
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Then

- 0z;
Ti(f +1og go) — V0" *0;jara — o = [ty log go — Eog log go)

(2.2.15)

0z;
logdet ¢y = ——
ow, OB det g: 0w,

Now, we compute

0 0z 0z , 0z;
— log det g;) = pT 1 VOV 0;a50—
0w, (8wa ogde gt) B {Qwa i(f+log go)— Ojay, Do,
(2.2.16)
Firstly, using Kéahler-Einstein condition, we obtain
Tp(5 - Ti(f +1oggo)) =Tp(b"*)(I — @)V T;(f) + b T(I — vP) " Ti(f)
p(awa ) =T 7 (2.2.17)
+ V(I = 02) [~ gip — Pt gz + TpTif].
Secondly,
To(b"V*0;ja14) = 0. (2.2.18)
Thirdly,

05 — - 0% — —
Tﬁ[awa ((piﬁ@%@l log go — wroylog 9)] = ~Bu. [gpif(p%glﬁ + gp%go?ggg]. (2.2.19)

Finally, we obtain

2 —

Zp g
log det —Lp 0, I — ¢p)*T; Tol(I — 92)“T,(£)]].
g et = Gt o+ (AN~ PV ~ T~ 7 T
(2.2.20)
We define a local matrix B = (Bjp)nxn to be
Bip = gip + (0;0m) (I — 02)* T;(f) — To[(I — @) Ti(f)). (2.2.21)
Then the deformed Monge — Ampére equation can be written as
det Bj; = ef det go det(I — ) (2.2.22)
Notice that Bjz(0) = gjp, f(0) =0, and ¢(0) = 0, so
0B; of
a;p|t =0 8385( |t 0) (2'2'23)
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By equation (2.2.22),
of
(A+1) ( \t ,) =0.
By corollary 2.2.1, the operator A + 1 has trivial kernel, which yields

Similarly, %—J; o = 0, and all the first order terms vanish.

For the second order, first we have

0?B.~ an
atsz |t=0 - &( 12 }t 0)
and oy
(A+ 1)(8152 ‘t o) =0
Hence, %h:o = 0. Similarly, %hzo = 0.
For the mixed derivative term, we have
= = —0;05
otot |t:0 (atat‘t 0)
and
*f Oy )
(A+ 1)(8t8t}t 0) - E‘t:e@h;o = |1 ]”.
A + 1 is invertible, so
o*f
(925(9tlt 0 =(A+1)" 1‘90 |2

Up to the second order, we obtain the expansion for f:
f=1tPA+1) e +O(t),

and
ef =1+ [t (A+ 1) + O(Jt).

(2.2.24)

g—ﬂt:o =0.

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

On the other hand, by the deformation equation of the complex structures,

det(I — ¢P) = 1 — [t|*|o1|* + O(|t]).

(2.2.32)

Hence, the expansion of the volume form can be written as (up to the second order),

AV, = (1= [tPAA + 1) e[ + O(|t]) dVe.
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Finally, we calculate the Taylor expansion of the Kahler form.

m

= Ric(w) = — 0,0, log dV;,
— (2.2.34)
= 5 8wfﬁ_5 (f +logdet(I — pp) + logdet go)dw™ A dw”.
Using the above Taylor expansion of f and det(/ — ¢p) and
dw® = 94 (dz" + pldzl
o a ;DJ ) | (2.2.35)
gox = 5 Ti = (52) 7 (I — @)™ (821 - 90’6,23)
we obtain -
wr = wo — (P08 + 1)) + O (2.2.36)
Where A, 9, 0 are operators on the central fiber (Xo,wp).
O]

2.3 Deformation of plurianticanonical sections

We assume that the analytic family of Fano Kéahler-Einstein manifolds is given by

m: Z - BCC, and o K;( B Z is the relative anticanonical line bundle on

the total space. For any t € B, KZ/B’t = . For each m > 1, the direct image

sheaf is R'm.(K ") — B. Let E = |J E; X {t} where E, = H(X,, Ky™). It is
teB

well-known that R, (K 2'/p) 1s isomorphic to E.

In this section, our goal is to establish an L*-metric on RO, (K’ f "s). But, first of
all, we will study the holomorphic sections of Ky — X in terms of the deformation
of the complex structure.

On the central fiber 771(0) = (X, wp) of an analytic family of Fano Kéhler-

Einstein manifolds 7 : 2~ — B, let (21, -, 2,) be local holomorphic coordinates.
Then locally Q'°(X,) = span{dz', - ,dz"} and T X, = spcm{%, e 9.1, By
the deformation theory, Q'9(X;) = span{e',--- ,e"} where ¢! = dz' + goj.dzﬂ, and

TYWX, = span{ei,--- ,e,} where ¢; = (I — cpgo) (BZk - gpkaZl). Furthermore, if
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(wy, -+ ,w,) are local holomorphic coordinates on X;, by the formula (2.2.5) and

dw® = 8“’”‘ (dz +g0’d—]) 8“’“6

aga = 8% T (8wa>_ (I — @@)Zk(a SOJ&) (azla>_1€i'

(2.3.1)

Let s € A%( Xy, K x,') be a smooth section of the plurianticanonical line bundle

6‘21 A - n)m Let the deformed section

on Ky be given by s(t) = n(z)(er A--- Aep)™ = n(z )|A[m(6w1 oA %)m where
|A| = det(%%j).

on the central manlfold locally, s = n(z)(

Lemma 2.3.1. C’hoosing the divergence gauge, i.e. divep = 0 for o € A% (X, T X)),
we have s(t) € H*(X;, K{™) if and only if

0s = ¢Vs. (2.3.2)

Here, V is the connection on K" — X and 0 is the operator on the central fiber
(X(), WO) .

Proof. Let 0, = % ® dw,. Then s(t) € H(X,, Ky") if and only if d,s(t) = 0 i.e.
ZiTis(t) = 0. If 22Tis(t) = 0, then

0 =Tis(t) = (9; — ¢39;)s(t) = (5 — 20;) [n(2)|A"]

= (Om(2) — P20 (2))|AI™ + n(2) [m] A|"0:log | A| — m| A" L0, log | Al]. (239
Because of divg = 0, we have
0= (d(2) — Jﬁﬂ?(Z)) + map(2) [0 Oyt — VL0001
= (Bm(2) — @L0m(2)) + m(2) DO (Plan;) — B 020;00]
= (Om(=z) — ﬂ@n(z)) + mip(2)d] (2.3.4)
= 0m

2) = @Lom(z) — n(2)¢ld; log gi'
)

Hence, 0s — ¢ Vs = 0. Conversely, if we trace back the above identities, we can see
that 0s — Vs = 0 implies 9;s(t) = 0.
]
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Equation (2.3.2) is the obstruction equation of deformations of holomorphic sec-

tions. Next, we will show equation (2.3.2) is solvable based on Hodge theory.

Lemma 2.3.2. Let (X,w,) be a compact Hermitian manifold. For a € AP4(X),
B € ArTH(X), Do = 3 is solvable if and only if 8 = 0 and H(B) = 0.

Proof. If 0a = f3, then 08 = 9’ =0 and H(B) = Hoa = 0.
Conversely, by Hodge decomposition, if H3 = 0 and 95 = 0, we have

B=HE+ 99 GB+ 08 0GB =D Gp, (2.3.5)
and o = 5*Gﬁ is such a solution. ]

Lemma 2.3.3. If (Xo,wy) is a Fano manifold, then for ¢ € A®Y( Xy, TH°Xy) and
s € A%(Xo, K", we have H(pVs) =0

Proof. (Xo,wp) is Fano, so K" — Xo is ample. By the Kodaira vanishing theorem,
HY(Xo, Ky™) = H (X0, Ky ' @ Kx,) =0 (2.3.6)
for all ¢ > 1. This yields to H(¢_Vs) = 0. O

Next, we will show 9(¢1Vs) = 0 by the iteration method. First, we have

Lemma 2.3.4. On a Kdihler manifold (Xo,wy), for ¢ € A% (X, T Xy) and s €
AY(Xo, K{™), we have

(1) 9(paVs) = 0piVs + pi0(Vs).
(2) O(Vs) = =V (0s) — 2v/—1 mRicy ® s.

Proof. For (1), let ¢ = go%d?j ® %, and s = n(z)e™ where e = aizl AR %. Then,
Vs = (0pn + 1ok log git)dz* @ ™,

paVs = (i + nd; log g dz’ @ €™,
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and
A(Vs) = —[0;0km + Omoy log gy + nd;0) log gi'ldz" A dZ' @ e™.
So,

ApaVs) = [85%(m + ndilog gi") + ¢5(F50m + Fgndy log 95" + ndg0; log gg)ldz" A dz @ e

= EQO_IVS + 90_15(V8).
For (2),
A(Vs) = (0;0km + Omdy. log gy + nd:0 log g )dZ" N d2* @ ™. (2.3.7)
V(0s) = (0x0m + 0m0Oy log g )dz" N dZ' @ ™ 238)
= — (840 + 800y log gM)dZ A dzF @ €™, -
Therefore,
0(Vs) = =V (0s) — 2¢/—1mRicy ® s.
O
Now let ¢ = > tip; with o1 € HY (X, T'°Xy), and let s = > t's; with sy
i=1 =0

o0

holomorphic. Then ¢ Vs = > t*(¢.Vs)y, where (9oVs), = > 0;uVs,_;. We
k=1 =1

point out there is no zeroth order term.

For the first order term,

Lemma 2.3.5. On a Fano Kahler-FEinstein manifold, with divip = 0, we have

J(p14Vsg) = 0. (2.3.9)
Proof. ¢1 is harmonic, sg is holomorphic and divyp = 0, so
(12V80) = 011V s + p110(Vsg) = p10(Vsg)
= 012(=Vdsy — 2v/—1 mRicy ® s))
= —901_1(2\/—_1 mwo ® So)
= —2vV—1m(p1wo) ® so = 0.

The last equality is from ¢_wy = 0 on a Fano Kéahler-Einstein manifold by Corollary
2.1.2. O]

(2.3.10)
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To compute higher order terms, firstly, we note the following Lemma.

Lemma 2.3.6. On a Kdhler manifold (Xo,wq), for o, ¥ € A%(Xy, T°Xy), s €
AY(Xo, KX™), we have

0V (YiVs) +1Yu(paVs) = [p, ] Vs. (2.3.11)

Proof. Locally, ¢ = w%dfj ® 2, P = Prdzt @ %@-’ s =n(z)e™, so that

Vs = (0,n + n0d,log g5 )dzF @ e™

$oVs = ¥ (On + 1oy log gi')dz' @ ™

V(¢aVs) = [0, (Okn +ndklog gi)] + v7 (Bxn + 1ok log i) 0, log g5 | =P A dz' @ €™
PV ($aVs) =[050,(¢f (O + ndk log gi")) + @507 (Okn + 1y log g5 D log gi' |z A dz' @ ™
=[p%(0:0F) (Oen + 10y log g5")) + @5 (00 + Omdy log g7')
+ @;*-1/1% (8w + 10k log g5 9; log g | dz7 A dZ' @ €™
(2.3.12)

and
DV (paVs) =[1:0;(0f (Okn + 1k log g5")) + Vpf (Ohn + ndy log g5"); log g™ dz A dZ' @ e™
=[4ie7) (O + ndk log g5")) + V5t (0i0kn + Oimdy log i)
+ w;écp%(f)kn + Oy log g5")0; log gg*|dz' A dzh @ €™
(2.3.13)
Therefore,
0V (YiVs) + 1V (paVs)
=[H(07) + VH0:0)] (Bkn + N log g )dZ A dZ' @ €™
+ [p57 (0mdy log gy — Oknd;log gi") + @iy (Fkndi log gg* — Bindy log gg"))d=" A dz' @ e™
=[ip, ] aVs.
(2.3.14)
O
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_ ok
Lemma 2.3.7. When k > 2, for the k-th order term, we have 0(>_ p; sV sk_;) = 0.

i=1
Proof.

k

k
5(2 Qpivak—i) = ZE(SOl_IVSk_Z)
=1

(9iaVsp—i + 0i20(Vsp_))

k—i
(OpiaVsp—i — %JV(Z ©;aVsk_i—j))
j=1

— 1
(a%‘ D) Z[%‘a SOi—j])JVSk—i =0.

i—1 j=1

z;l
)
i=1
k
= Z (ggoiJVsk,i — goiJV(gsk,i) — ;2 —1 mwy ® sk,i)
lzl
>
=1
k
>

(2.3.15)

The last equality is from the deformation equation. O
Based on Lemma 2.3.5 and Lemma 2.3.7, we have proved

Lemma 2.3.8. On the Fano Kdhler-Einstein manifold, for ¢ € A»(Xy, T°X,),
s € A%(Xo, Ky™) and dive = 0, we have 0(p2Vs) = 0.

Proposition 10. The obstruction equation 0s = @iVs for s € D(X;, Ky") s

solvable.
Proof. This follows from lemma 2.3.2, lemma 2.3.3 and lemma 2.3.8. ]
Next, we construct the power series solution to Os = piVs.

Theorem 2.3.1. Let so € H(Xo, K"). For |t| small enough, there exists a unique

convergent power series s(t) = Y t's; € A%(Xo, K") such that, s(0) = so, H(s;) =
i=0

0 fori > 1 and s(t) satisfies Os = @.Vs.
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Proof. Let G be the Green’s operator on K" — X associate to the Hodge Lapla-
cian [J. We will construct s; for i > 1 so that s(t) = so + i t's; is the solution to
0s = @.Vs. -
By Hodge theory,
s =89+ 00 Gs+ 0 0Gs
= 50+ 0 0Gs (2.3.16)
= 50+ 0 G(p,Vs).

Comparing coefficients up to t*, we obtain a formal power series solution as follows:

( S1 ZE*G(QlJVSO)
So :5*G(¢14V31 + QOQ_IVS())

{ (2.3.17)
k
Sk zg*G(Z ©iaVSk_;)

=1

\

Next, we show the formal power series is convergent in the Hélder Space CF« if |t|
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is sufficiently small.
Isillita = 10" GO @iaVsij)lkta
j=1
<CIG Y (9jaVsioj)lkras
j=1
<O (#9V5i)lkrat
- (2.3.18)
<Y lpiaVsijlliran
j=1
< O lslira-tlVsizillkra
j=1
<O llesllirallsizjllira-
j=1

There exist C; > 0 and 0 < ¢; < ¢, such that e{H@HHa < (. Then,

Isillira < CCL(CCL+ 1) e

Therefore, s(t) converges if [t| < 57

2.4 L?-metric on the direct image sheaf

Let m : & — B be an analytic family of Fano Kahler-Einstein manifolds, and
o: K gyl/ g — X is the relative anticanonical line bundle over the total space. For any
t € B, KI/B|t = . For each m > 1, the direct image sheaf is R’ m (K s) = B.
Let E = |J E; x {t}, where E; = H°(X;, Ki™). It is known that R’ T (K, ) 18

teB
isomorphic to F.

Take a basis {5, -, S0} € H(Xo, Kx™), where N,, = dimH"(X,, Ki™).
Let S%(t) = S§ + Z '8¢ € A(Xo, Ky™) satisfying 5°(t) = ¢V .S*(t), where
SS‘GHO(XO,KO),CM—I,...N . Define o; : A°(X,, K )—)A(Xt, x.") to be
ar(S(1)) = [det(I — ¢p) e (S(t))%] .

44



Then, oy is a well-defined linear isomorphism. Locally, if S(t) = n(z )(i/\- : -/\i)m,
then 0,(S(t)) = n(z)(ex A --- A e,)™. Moreover, 0,(5%(t)) € H(X,, Ky") for
a=1,...N,,. The pointwise L?-metric on ROW*(KT/B) — B is defined by

< 04(5%(t)), 0¢(SP(t)) >gm, where g, is the determinant of the metric on X;.

Definition 2.4.1. The L*-metric on E, = H°(X;, KY™) is defined to be

s (1) = /X < 0(S%(8)), 0u(SP(2)) > V. (2.4.1)

Firstly, we will derive the Taylor expansion of the L? metric about ¢, from which

the curvature tensor follows immediately.

Lemma 2.4.1.
hog(t) = / < S5(t), SP(t) >gp ™V det(I — )dVi. (2.4.2)
Xo
Proof. Let 5% = 1 (2)(G A+ A )™, 8 = () A+ A £2)™, 0(S(1)) =
' (2)(er A=+ Aep)™ with e; = (I — pp)’ (8% - gpk(?%) Then
0 o 0 0
ELA- - AE, = det(I — o)L (—— I NZ 7y, (243
ey ANe, Ney A+ ANe, = det(I —¢p) (8z1/\ Aan/\&zl/\ /\azn) ( )
and
AV, = el dV, = ! det(I — ¢p)dVj. (2.4.4)
So,
< 0y (8%(t)), 01(SP(t)) >gm= €™ < 5(t), S (t) >gp . (2.4.5)
And,
has(t) = / < S%(t), S (t) >gp M det(I — ) dV. (2.4.6)
Xo
[
Lemma 2.4.2. For pe A% (X, T'"X,), s € A%(Xo, K"), we have
div(p ® s) = (divy) @ s + ¢ Vs. (2.4.7)
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Proof. Locally, ¢ = cp%d?j ® 0;, s = n(z)e™. So Vs = (Opn + 0oy log git)dzF @ e™

and

piVs = cp]@(@kn + 10 log gi")d7z @ e™

= [Ok(¢5m) — N5 + 1@ty log gp'1d7 @ ™ (248)
= [Ok(hn) + 1ty log g7 — nkdy log go — ndkph]dz @ €™
=div(p ®s) — (divyp) ® s.
]
Lemma 2.4.3. If n = n;; dz" @ e™ € A% (X, K{") satisfies on =0, then
div'y = —95(1:g™)dz" ® 9, ® ™ (2.4.9)

and 9(div*n) = 0.

Proof. div : A% (X,, THX, @ Ky — AO1 (Xo, Kxp") and div" : Ao’l(XO,K;(;n) —
A% (X, THXy @ K). First, we find a local expression for div*.

Let ¢ = wid? ® 0; ® e™ and n = npdzF ® e™. Then,
divep = (0 Z@DZ + @DZ@ log g™ Hdz’ ® e™. Let div'n = ALdzb @ 0 @ ™.

By definition,

/ < divy, > dVy = / < n,dive) > dVj, (2.4.10)
Xo Xo

LHS. = / <ALZ" © 9 @ e YidZ © 0; @ " > dV
Xo

/ w’g kg dVy,
RHS. = < npdz" @™, ( O + Y20, log gy ) dF @ €™ > dVj
Xo

= | mp(Ot + ¢i0;log g5 ) g g Vi,
Xo
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So,
/ ARG grgy dVo = | mg(Ot + ¢10;log g5 ) g g dVy
XO XO
== / Or(neg™ g ) gy 0EdVo + / (9:log g5 ") ™" g5 mp Vs
Xo

Xo

(2.4.11)

It follows that

Arg" 9595 = mr(FFlog g5 g™ g5" — Or(neg’ g5 o
=g’ g5 O log 9o — Orlngg’™) gy — g™ 0505 oo™ gyt (2412)

= —0(nzg’") 90"

By dn = 0, we have dy1; = 0:5. So,

Abg*g; = —0:(npg™)
A%gl% = —0p — %gjﬁa?gﬂ
AL = —g" 05 — 9" 15900:9™
= —9"Opm; + 159" 05939
= —g" 0 — M0y = —0p(mig®),

and we get
div'y = —05(n:9")dz" ® 9, ® €™, (2.4.13)
and,
9(div'y) = [~ 0505 (mg™)dz' N dz* @ 0, @ €™ (2414
= [0;0 (9" d=' N dZ* @ 9, @ €™ h
The symmetry leads to d(div*n) = 0. O
Lemma 2.4.4. Forne A% (Xo, Ky™) and 9n = 0, we have
Odiv'ny — div'0On = —(m + 1)div*n. (2.4.15)
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Proof. Let n = f;dz' ® e™. Then
9'n=—[g"0;f; + ¢’ f:0; log gi’"le™,
and
99" = —0lg"0; f; + 9" f:0; log g’ dz* @ €™
Because on = 0,
On =90 n = —lg"0; f; + g f0;log gi'1dZ" @ €™

And

div*(On) = 95 [0(¢7°0; f; + ¢° 150, log gy ¢'P ] dZ" © 0; @ e™ (2.4.16)
On the other hand,

div'n = —0y(f;97)dZ" © 9, ® e™ 1= Pl @ 0, ® ™ (2.4.17)

And 9(div*n) = 0.

9" (div'n) = [~0upbg™ + L0, — 190 log g5)0; ® €™, (2.4.18)
O(divn) = 0 [0105(£:97) 9" — 95(f597)8,g™ + Ol f597) 970 log g7 | dZ* @ 0; @ e™.
(2.4.19)

Hence,

O(div*n) — div*(On)
I{@E[azaﬁ(fjg”)glp — 35(£597)049™ + 05(f59 g™ 01 log g
%[(g '0; i fi + fig?’ 8 log 95")59" ] }d7k ®0; ®e™

=0:[0105(f597) 9" — Op(£:9")Dug™ + 35(f597 )0 log g5
— 05("01f5) 9™ — 95(f39"7) g™y log g — (f597) g7,y log gi'|dZF @ 8; @ ™
zaz[az%;gﬁ)glﬁ — 35(4"0,f5) g + m(fz97)]dZ* @ 0, ® €™

(2.4.20)
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Lemma 2.4.5. Forn = n;édzj ® 0 ®e™ e A% (Xo, T X @ K™), if On =0, then
div*div(n) = On.

Proof.

Un = %*n

= -y ’“@kni 4 W’fakgﬁ _ T)igﬁ@k log ggn]dil 0, ® "

[~ 9" 0:0km; + nEOOg” — 1tg" Oy og gl dE' @ 0; @ €™
[ — (010 (12g"™) — 000k (9")] + nEDOk(g7) + mnf]dZ' @ O, @ €™ (2.4.21)
[ — [00:(kg") — 100k(g™)] + nE00k(g7) + mnf] d7' © 0; @ €™
[=0:0emt + (m + 1)ni]dz' ® 0; @ €™
= div*divn.

Based on above lemmas, we obtain

Proposition 11. Up to the second order, the expansion of the L? metric about t at

0 s given by

baalt) =hagO) + [t [ (mot 1A+ ) < 55,55 )V

Xo
1t [ m 1) < (O mor 1) o 9 5), 00 @ 5] > +O(H)
Xo
(2.4.22)
Proof. The 0" order term is given by h5(0) = on <S5, Sg >gm dVp.

For the 1%* order term:

We first note that f(0) = 0, and by the volume form expansion,
of

20 =70 =
Also, by the deformation equation,
0 _
at‘t odet (I —¢p) = ag‘t:odet (I —pp) =0.
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Let 28%(t)];—o = S¢ for a =1,..., Ny,. Then,

0 0
Silioahaa) = [ Sl < 57080 >y avy

— [ <5150 > dte

Xo

_ / <0 G(1252), 50 >y dVi
Xo

— / < G(1585),0S) >gp dVo = 0.
Xo

Similarly, Z| _ h.5(t) = 0.
So all first order terms vanish.

For the 2"¢ order terms, we have

0% f 52

(2.4.23)

by the volume form expansion, 54 (0) = 0 and 2| —odet(I —¢p) = 0, it follows

S—;Lo [t < §(t), SP(t) >y det(I — wP)dVp)
:%Lo[(m + 1)6(m+1)f?9—{ < S9(), 8P (t) > g det(I — ip)dVy
+ em+Df % < S%(t), S7(t) > det(I — pP)dVy
+ M < 82(8), SP(t) >gm %det([ — op)dVy]
zg—;\to < 8*(1), SP(t) >gp det(I — p)dVp

=< 55,5y >g dVp
= < 0 G(p1aVS + 2.VSG), S5 >gp dVy =0

where g—;|t:08a(t) =59 forany a = 1,..., Ny,.
Similarly,
82

-2

- |, o[ < 5(1), SP(t) > g det(I — ¢@)dVy] = 0.
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For the mixed derivative term, recall equation (2.2.30) and (2.2.31), we have

0? _
@’t:o [e(m+1)f < S(t), Sﬂ(t) >gm det(I — gpgp)d%]

) mi1)f 9 ca >
= Filizollm + DV 0 < 5°(0), 5°(1) >gp detl — pP)aVs

e oy g8 > det(I — 07)dVo

ot
+ M < 82(1), SP(t) >gm gdet(f — ¢P)dV;]
2f s 82 3
=(m + )atat‘t 0 <56, Sh >gm dVo+ 8t8t| < 8%(1), S7(t) >gp dVp
82
a B —
+ < 85,8y >gp ﬁ}tzo det(I — pp)dVj

=(m+ 1)(A+ 1) (|gu|*) < S5, Sy >gp dVot < ST, > g dVo— < S§, S5 >g |01?dVy
=(m — A)(A+ 1) (lg1]Y) < S5, Sy > dVot < 87,57 >y dVi.
(2.4.25)

Hence, up to second order, the L?-metric about ¢ can be written as

< Ut Ut(sﬁ<t)) >glﬂ d‘/;g
X

hag(0) + |t|2/ (< 87,87 >gp +(m = D)((A+ 1)@ *) < 55,55 >gp)dVo + O(|t]?).

(2.4.26)

B

Next, we will explore further the term on < ST, Sf >gm dVy. By H' (X, K" =
0, we know [JG = Id. Thus we have,

< 88,87 >4 =< I G(p12VSE), 0 G(p12VSy) >
=< G(1V8Y),09 G012V SE) >
=< G(p12VS), (0 — 9 0)G(p12VSE) >
=< G(p12VS9),0G(912VSy) >gn — < G(p12VS5),0 9G(012VSy) >
(2.4.27)
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Moreover,

3 0G(1.VSS) = 8 GO(p10VSY)
= 0 G(Dp1 1V Sy + ¢120(VSY)) (2.4.28)
= 8 G(12(=V(DS)) + 1.2V =1 mSS @ wy) = 0.

We get < 59,57 >gm=< G(p12VSS), (p12VSy) > -
Based on Lemma 2.4.2 to Lemma 2.4.5, choosing the divergence gauge, we notice

that the operator (O 4+ m + 1) has no kernel, we have
/X < G(p12VSY), 01VS8E > dVj

'

:/X < Gdiv(py @ S2), div(er @ S) > dVi

:/ < div*Gdiv(g; ® S9), o1 ® S > dVj

:/ < (@ +m+1)" O +m+ Ddiv:Gdiv(pr @ S2), 01 ® SE > dV

:/ < (O +m+1)"'div'OGdiv(pr ® S2), 01 ® SE > dV

:/ < (O +m+ 1) dividivie: ® S2), o1 © S > dVp

— [ <@+m+1) 0@ @500 5 > i

— [ <emSsp- DO +m+ 1) e 050 0 8 > i

:/X < ®S o ® S > dVO—/ (m+1) < (@ +m+1)" (o1 ©55),1© 55 > dVi
!

Xo

/ ol < S5, SE > dvi —/ (m+1) < (@+m+1) " (01055, 10 S > dVi.
Xo

Xo
(2.4.29)
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Therefore,

hog(t) =ha5(0) + |t|2/ (m— A)(A+ 1) i |* < S5, S5 >gp)dVi
Xo

FIEP | eP < 85,88 mgp —(m+1) < (O+m+1)" 1 ®S5), 01 Sy > dVy + O(|t[*)

Xo

—h5(0) + 17 [ mr D+ 1) Ml < 5] )l

Xo
1t [ 1) < (@t 1) o 55), 00 © 5] > Ve + O,
Xo

(2.4.30)
O

Now, we are ready to show

Theorem 2.4.1. Let 7 : 2" — B C C be an analytic family of Fano Kdhler-Finstein
manifolds, such that on the central fiber 7=1(0) = (Xo,wp), we have H*(Xo, T Xj).
Let KZV/B — B be the relative anticanonical line bundle. Then the Ricci curvature
of the L? metric on the direct image sheaf ROW*(K;?-/B) has the following asymptotic
behavior

lim Rm = — |<P1|2dvo7

m—oo ™" Xo

where on |o1|2dVy is the Weil-Peterson metric on the Moduli space.

Nm

Proof. Let 7,, = ) < 5§, 5§ >gm be the Bergman Kernel function on the central
a=1

fiber (Xo,wp). By Proposition 12,

NTYL

Phag(t)
Rm=—Y )
L oo =0
_ / T+ DA + 1)1 PV, (2.4.31)
X
’ Nm,
+/ (m+1)) < (@+m+1)" (1 ®55),01© 55 > dV.
Xo a=1

Let (O+m+1)f = Af. Then we see

/ 2= fO+m+1)f = fOf+m+Df2>m+1) [ f* (24.32)
Xo Xo Xo

Xo
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so, the eigenvalue of the operator [J+ m + 1 is at least m + 1.
By Tain-Yau-Zelditch’s Bergman kernel expansion formula [6] [17] [20],

n n—1

m nm

Tm = — — +0(m"?).
mn 2mn
Then,
0< / <([@O+m+1)" 1 ®55), 01 ® S§ > dVj
Xo
1 (6% (6%
§m+1/xo<gol®50,sol®so>d% (2.4.33)
1 2
= — Sg, Sg > dVy.
m+1/){()’¢1‘<070> 0
So,
1
RE< D[ [ mlel = [ na@anaPan). @4y
m+1 Jx, Xo
On the other hand,
R™ > —(m+ 1)/ (D + 1) [2dVi. (2.4.35)
Xo
As m — oo, we get,
. " mo_ -1 2 _ 2
lim TR == [ @) P = - [ JePa (2.4.36)
m—oo 1M, Xo Xo

2.5 Deformation of holomorphic vector fields

On a general Fano Kahler-Einstein manifold, there may exist holomorphic vector
fields which are nontrivial. In this section, we will investigate the deformation theory
of such vector fields. More specifically, we establish the deformation equation and
show that the solution to the deformation equation exists under the assumption that

the dimension of the space of holomorphic vector fields is a constant.
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Let 7 : & — B C C be an analytic family of Fano Kéahler-Einstein manifolds,
(X0, wp) is the central fiber. Let Vi € H( Xy, TV Xy), V € A%( Xy, TH° X)) such that
H(V) = Vy. Let ¢ be the Beltrami differential. We define o : A%(X,, T X,) —
AYX,, THO(X,, THOX,)) as follows. If (21, .. ., 2,) are local holomorphic coordinates
on Xo, V = Vi(z)%, then o (V) = V¥(2)e;, where ¢; = (I — cp@)“‘“(a%k — @’E%) We

know ¢ is an isormorphism. Then,

Proposition 12. o(V) € H)(X,.T"°X,) if and only if OV = [p, V].

Proof. Let 5
V=V— e A%(X,, T""X,).

(9zz-
For {ey,--- ,e,} the deformed holomorphic frame, where

T R—
€i=(1—<ﬁ¢)k(a—zk—9@%%)a
J

the deformed holomorphic coordinate vector field on X, is given by

0 . Owe |4 ik i__Ji
—(8%) (I —¥P) (8zk SOgaz_j)

Owa, (2.5.1)

= bm([ - @@)ikT’w

Owa
0z; °

Now, o(V) = V(t) = Vie; = Vidiaz—, let 8, = z2-dw®. Then V(t) €
HO(X,;, T X,), if and only if 9,V () = 0, if and only if T5(V (t)) = (&i—gpgc?j)(\/kaka) =
0. By

where (0)nxn = (Gia)pen and G, =

Ow, A .
Oiara) = 0(0kwa) = O(Owa) = Du(¢] =) = 4iadhf] + Phtiar  (25.2)
J
we get
(05 — ©20;)(ara) = ajaOrp?,
and

7

(05 — £10;) (VFara) = (0:VF — @20,VF + V30,08 ) aja.
Therefore, 9,V (t) = 0, if and only if OV = ¢.0V — V 1dyp, if and only if 0V =
[0, V1. O
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Lemma 2.5.1. If W € A%(X,, T'°X,)/H®(X,, T"°X,), we have (O — 1)divGW =
divW where G 1is the Green operator, and L1 is the Hodge Laplacian.

Proof. For a vector U € A(Xy, T X,) we have

OdivU — divdU =0 odivU — divd oU

| | (2.5.3)
VL (ViVU' — VoV,U)
—Vi(RzUP) = g2V U7 = divU.
Take W € A(Xo, T Xo)/H®(Xo, TOX,),
O(divGW — GdivW) =0divGW — diviV/
—divOGW + divGW — divIV (2.5.4)
=divGW
ie. (0= DAivGW = divIV. 0
Lemma 2.5.2. For V =1V, + Z:lti‘/; € A% X,, T Xy) satisfying
oV =[p,V]
Hlp, V] =0

VE) € HO(X(), TI’OX())

and Vy is a holomorphic vector field with real potential function. Then divV; =0 for
all 1> 1.

Remark 9. On a compact Fano Kahler-Einstein manifold, there always exists a
holomorphic wvector field with a real potential. The reason is: taking any V €
H°( Xy, T*°X,), the Fano condition tells us V. = VYOf for some complex val-
ued smooth function f and divV = —0Of. Let f = u + /—1v, then divV =
—Ou—+/—10v. By Matsushima’s theorem, OdivV = divV, so O(0u)++/—1(0v) =
Ou++/—10(0v). Since O is a real operator on Kdhler manifold, O(Clu) = Cu and
O(Cw) = Ov, again, by Matsushima’s theorem, V°(Cu) is such a holomorphic
vector field with real potential Cu.
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Proof. (of the lemma 2.5.2)
For ¢ = ¢%d7 ® 2 e A%N(Xo,T"X,), V = Vka% € A%(Xy, T'°X,), we have

. . , 0
_ 7 k 1 k
[p, V] = (50,V" = V'0ip7)d7 @ 92r
a* _ (. ATk _ 11, k) O
so 0 [p, V] = —V](QOE@V 1% &cp;)a%.
By Hodge decomposition,
V=Vo+d0GV =V, +9 G, V],

then V; = Z 9" Glp;, Vi_y], fori > 1.
By Lenfl;rlla 2.5.1, (O — 1)divGd [p, V] = divd [, V]. Hence,
(O — 1)divV; =(0 — 1)divd Gy, Vo] = divd [py, V]
- Vkvj(%jaivok - Voiai@’f;) (2.5.5)
= — ¢0;0,(divVp) = —tr(p1 2V divlp) =0
The last equality holds because divVj is real and Vy € H°(Xo, T°X,). Now,
Vi & H°(X,, TLOXO)A implies the operator (OJ — 1) is invertible, so, divV; = 0.
Fori>2,V; = ig*G[%aVi—jL
=

(O - DdivV; =) (O - 1)divd Glg;, Vi_j]
j—1

= 3" diel i, Vi (256)
j=1
2 = 2
= —tr(p;aV divlj) — Ztr(apﬂv divV,_;) =0
j=1
Consequently, divV; = 0 for all ¢ > 1. O

Proposition 13. Suppose h°(X,, T'°X,) = h%(X;, T*°X,) = k = constant for

|t| < €. Then there exists a unique solution to

oV = [p,V]
div(V — H(V)) = 0.
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Proof. For each sufficiently small ¢, h%(X;, T*°X;) = k, it’s known that H°(X,, T1°X;)
is a vector bundle. Take a holomorphic basis { E*(t), ..., E*(t)}, such that H(X;, T'°X,) =
span{E(t), - E*(t)}. In particular, H(Xo, T*°X,) = span{E*(0),... E*(0)}.

Since

o(t): A% X, T X)) — A (X, T X,)

) N R—
| J— _— ) Z] _— E
55 € (I — @) ( o, pE—).

J 0z

is a linear isomorphism, o~ '(E'(t)) = Ei(t) € A%(Xy, T"°X,) and E'(t) satisfies
OE'(t) = [p, E'(t)]. For each E'(t), we let Ei(t) = H(E'(t)) + 3 t*E' (t) where

a>1

H(E'(t)) € H%(Xo, T"X,). By H°(Xo,T"°Xo) = span{E'(0),--- ,E*(0)} =

span{H(E(t),--- , E*(t))}, there exists a nondegenerate linear map Ay(t) : H%(Xo, T"°X,) —

H°(Xy, T’ X,) such that

E(0) H(E' (1))
: = Ay(t) :
Ek( ) H(E*(t))
Now, assume {e’ (¢ ek (t)} is the solution to
de'(t) = [0, €'(1)]
Hle'(t)] = £7(0)
div(e'(t) — E'(0)) =0,

ie. a(e'(t)) € H'(X;, T'°X;). Then there is A(t,t) such that,

el(t) E'(t)

However, by the implicit function theorem, for |¢| < ¢, such a linear transforma-
tion A(t,t) always exists.
]
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Chapter 3

Pluri-subharmonicity of Harmonic

Energy

It is well known that the Teichmiiller spaces of hyperbolic Riemann surfaces are
contractible. However, little is known about the Teichmiiller spaces of higher di-
mensional Kahler-Einstein manifolds of general type. In this chapter, we will take
the first step in studying the (weak) pseudo-convexity of such Teichmiiller spaces.
Our approach to the problem is in the framework of deformation theory. In partic-
ular, based on the deformation theory of Kéhler-Einstein manifolds of general type
estabilished by X. Sun [15], we compute the first and second variation of harmonic
energy. It turns out the first variation of the energy function admits a simple for-
mula depending on the harmonic projection of the Beltrami differential. Based on
the second variation, we conclude that with the assumption that the target manifold
has Hermitian nonpositive curvature, the energy function is pluri-subharmonic.

In section 1, we review the deformation theory of Kahler-Einstein manifolds of
general type, the discussion of which follows from X. Sun’s paper [15]. In section 2,
we compute the first variation of the energy function and express it in terms of the
harmonic Beltrami differentials and Hopf differentials. In section 3, we investigate

the second variation and obtain the pluri-subharmonicity of the energy functional.
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3.1 Deformation of Kahler-Einstein manifolds of

general type

Let My be a compact Kahler manifold with ¢;(M) < 0. By Yau’s famous work
[19], M, admits a unique Ké&hler-Einstein metric wy, such that Ric(wy) = —wy.
Suppose H?(My, T'*OM,) = 0, i.e. the deformations of complex structures on Mj
have no obstructions. Let 7 : 2 — B = {t = (t;---,t;) € C*[|t| < €} be
an analytic family of compact Kéahler-Einstein manifolds of general types with the
central fiber (Mp,wy), and for each t € B, M; = 7 !(t) is also a Kéhler-Einstein
manifold such that Ric(w;) = —w;. The complex structrure on M, is represented by
o(t) € A% ( My, TOMy), where p(t) satisfies

dp(t) = 3le(t), (t)]

- (3.1.1)
d p(t) =0,

where 9 is on the central fiber (M, w), and @ depends on the Kéhler-Einstein
metric wy. Let the div operator be defined as in Chapter 2. We first recall the

following theorem.

Theorem 3.1.1. (X. Sun) On a compact Kdhler-FEinstein manifold of general type
(Mo, wo), if a Beltrami differential ¢ € A% (Mo, T*OM,) satisfies Dp = L[p, ¢, then

5*<p =0 of and only if divp = 0.
Furthermore, ¢wy = 0 when either one of these conditions is imposed.

Therefore, the deformation equation of complex structures on Kéhler-Einstein
manifolds of general type is solvable under either the Kuranisi gauge 5*g0 =0 or
the divergence gauge divy = 0. In the following discussion, instead of using the
Kuranishi gauge, we will take the divergence gauge in the computation. To simplify
the notation, we let B C C.

For the analytic family 7 : 2~ — B of Kéhler-Einstein manifolds of general type,
the complex structure on each fiber M; = () is determined by ¢(t) = @1+ t'¢;,

i>2
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where ¢ € H%Y(My, T*°My), and for i > 2, ¢; satisfies

_ i—1
Dp; = % 21[9% %’—j]-
j:

(3.1.2)
divy; = 0.
Let (z1,...,2,) be local holomorphic coordinates on (Mjy, wy), locally
QY0 (My) = span{dz',--- ,d="}.
Let {e!, -, e"} be local holomorphic coframes on (M;,w;) obtained by the de-
formation of the complex structure, i.e. €' = dz* + ga%.dfj . Then,
QYO(M;) = span{et, ... e"}.
Let (wq,---,w,) be local holomorphic coordinates on (M, w;), let aj, = %‘;’?‘,
(") sn = (@) pxn, and T; = (0; — gp_é“ﬁ,;) Then
dw® = Wael = q. (dz7 + HLdz*
AL 313)
gL = b (I — )T, = V(I — )" (0; — Pk ).
Now, let A = (api)nxn = (222),n, |A] = det A, ¢, = (1) % (51)", and let
go be the Kéhler metric on the central fiber M, then
dVy = cpdet go dzP Ao - Ad2" ANdZEA - A dZE (3.1.4)
Let
dV, = c,det gy ' A~ Ae" AB A+ A"
(3.1.5)

= det(I — pp) dVp.

There is a unique function f = f(z,z,t,t) € C°(My x B) with f(2,%,0,0) =0
such that the volume form on the deformed manifold M; is given by
dV, = el dV, = e/ det(I — ¢p) dVy
= c el det go |A|2dw' A+ Adw™ Adwt - - A dw" (3.1.6)
=c,det g dw' A Adw Adw' - A dw”.
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Hence,
det g, = e/ det go|A| 2. (3.1.7)

Define the matrix B = (Bjp)nxn to be

By = gjp — (0505)(I = 02)*Ti(f) + Tp[(I = ¢2)" Ti(f)]- (3.1.8)

Then the deformed Monge — Ampére equation

0? n
——logdV;) = dV, 3.1.9
(Gunam, 05 V) = (3.1.9)
turns out to be
det Bj; = e/ det go det(I — ), (3.1.10)
then
logdet B = f + logdet gy + logdet(I — ¢p). (3.1.11)

On the Kéahler-Einstein manifolds of general type, the operator A — 1 is auto-
matically invertible for the Beltrami Laplacian A. From equation 3.1.8 and 3.1.11,

We can derive the Taylor expansion of f; that is
=1t =2)" (o) + O(|tf). (3.1.12)
Also, by the deformation equation of the complex structures,
det(I — @) = 1 — [t|*|a|* + O(Jt]). (3.1.13)
We conclude the following theorem.

Theorem 3.1.2. (X. Sun) Let m: 2 — B = {t € C: |t| < &} be an analytic family
of Kdahler-Einstein manifolds of general type with central fiber 7=1(0) = (My,wy).
Then the volume form on the nearby fiber My = n=1(t) is given by

AV = [1+[tPA((1 = A) ") + O(t)|dVa,

and the Kdhler form is

/o

-1 _
=+ HH(=00(L = 8) ) + Ot
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where A is the Beltrami-Laplacian on My, O, O are operators on My, and ¢, = H(y)

15 the harmonic projection of the Beltramu differential ¢, satisfying

oo = Lo, ]
dive =0 (3.1.14)
©(0) = 0.

3.2 First variation of harmonic energy

Let (N, h) be a Riemannian manifold of dimension dimg N = m with nonpositive
sectional curvature. Let (M, w,) be a compact Kéhler-Einstein manifold of general
type with dimension dim¢ My = n and let T be its Teichmiiller space. We assume
that the deformation of the complex structures on M, is unobstructed. Let k =
hO:1t (MO, Tj/}g) = dim¢ 7 and let M be the background smooth manifold of M,. Let
A be a fixed homotopy class of maps from M to N.

We consider the functional £ : 7 — R. For each point p € T, we let (M, g,)
be the Kahler-Einstein manifold corresponding p. Let u : M, — N be a harmonic

map in the class A. We let E(p) be the energy of w.

Now let 21, - - - , 2, be local holomorphic coordinates on Mj and let w, = @ gizdzi/\
dz;. Let uy,--- ,u, be any local coordinates on NV and let h = hapdus @ dup. Let

ug : My — N be a harmonic map in the class A.

The energy of ug is

E(0) = E(up) :/ gﬁhAB(uo)@ugl@;ug dVy

Mo

and the Euler-Lagrange of E(0) is the harmonic map equation
Aoug + T4 (uo) &-uOB@;ugg’; =0

for each A, here 0; = a%'

Remark 10. The Hopf differential H (ug) € S*Q° M, is defined as
H (uw) = hABaiug‘(()kué?dzi ® dzy,.
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When My is a Riemann surface we know that H(ug) is a holomorphic quadratic

differential.

Now, assume 7w : 2" — B = {t € C : |t| < €} is an analytic family of compact
Kéhler-Einstein manifolds of general type with the central fiber (M, wy) and for each
t € B, M; = 7~%(t) is also a Kahler-Einstein manifold such that Ric(w;) = —w;.
The target manifold is still (N, h) as above. We define the energy £ on the total
space 2, and €|, = E;, where E; = E(t,t) = E(u), and

i 8UA 8u
E(u) :/m 9 hap(uw) 552 dVi.

By the deformation equation of the complex structures, let ¢, € H®' (M, T4 M).

We consider the convergent power series ¢(t) = to; + > t'p; where t € B C C such

i>2
that
80@( ) = 3le(t), (1))
o) =0
H (¢;) = 0 for i > 2.
Theorem 3.2.1. The first variation of £ in the direction @1 is given by
o€
Sl =] AeHo)m,
Mo

where A (¢1.H (ug)) = g”cpk H(uo) k= g”haggpl Dul b
Proof. On (My,wy), locally,

QY0 (My) = span{dz',--- ,d="}.
Let {e',...,e"} be local holomorphic frames on (M;,w,,), then

OMO(M;) = span{e’, - "}, where €' = d2' + p=d.

Let {wy,---,wy,} be local holomorphic coordinates on M;, let a, = %Lz; and
(V) xn = (a’ja);}«rw T = (0; — ‘P_?&E)a then
dw® = Wael = . (d2d + QLdz*
02 !+ =) (3.2.1)

= V(I — )T, = b (I — ¢P)(0; — k).

ﬁwa
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Since the domain is a Kahler-Einstein manifold, as in the previous section in this

chapter, we let

By = gip — 0i(ep)(I — 0@) KTi(f) + Tp[(I — ) " T;(f)].

Then
9ap = _RaB
82
——— logdet 3.2.2
= wa0w; 2 (32:2)
— T = B,
and Sul DB
of T8 TN _ pik(] — BV T T 2
8wa 8w5 ( ©P) ' Txu (3.2.3)

For the B matrix, we have
Bz(0) = gz, and %hzOBzE =0,
By the power series of ¢(t),
%|t:0(1 — ¢@)i; =0,
and since ¢ is holomorphic in ¢, we have

at‘t ol = 3t|t 0(5’5 - 90%81‘) = —Wﬁai, and %’t:on = 0.

Hence,
0 = Ou? ou® -0
_ af _ jk
ot t:()(g BN a—ﬁ) 9" =0Ty Tu®)
o O0ult ; ouP
=g" [@-(W(O))@Eug’ — Qyuy Oud ol + ajuéqaﬁ(ﬁ(o))]-

(3.2.4)

Now, E(u) = [y, 5484 hydV; and 4 |i—odV; = 0. Thus
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9 0 = ou? OuP — OuA OuB oh
o E — — |, 06,3 - aﬂ - AB -
at|,_, (u) /Mo (hap at|t_0(9 D, 8@5) + (g D, 8@5)|t_0 5 li=0] dV5
= Ou? ouB
:/ hABng[aj(_at (0))35%9—1—8]»146‘3%(_& (0))] dVi
Mo

. = Oudt OuB Ohap Ous
— [ 0ol pilhag dVi / A - AV,
/Mo[ o Oitly 901k] AB Vo + Mog 0z; 0z; Ouc Ot 0

jka B 8“64 —1 jka . A au{f 1
=- 0i(¢""Opug hapg)—=,9  dVo — O (¢’ 0jug hapg)—,—9  dVj
M,

ot e ot

jk ' —0udt Oul Ohsp Ous
gjk[ajuéaiuBSOZlg]hAB dVO—i—/ ng Uy Uy INaB Ol v

M, Oz 0z Ouc Ot

7. aUA T aUA 8hAB ahAC 8th
— 2 jka& Bh 0 ]k& Ba‘ C 0 .
(29700510 ap ot 97 Orto Oty ot (6’uc + Jup Ouy

g0 O pilhap dVy

gﬁ[ajug‘(?iuggoﬁ]hAB dVy = —/ A (p13H (ug)) dVp.

My

(3.2.5)

]

Corollary 3.2.1. If0 € T is a critical point of E then fMo A (p13H (ug))dVy =0
for any oy € HY (Mo, TV My). In particular, if My is a Riemann surface and 0 is
a critical point of E, then H(ug) = 0.

3.3 Second variation of harmonic energy

Now we look at the second variation of £ along the base direction. We let v =

% € I'(ufT'N). To fix the notation, for any function p € C®(M;) we let

t=0 _
Ap = g70;0;p. Now we let K = (1 — A) " (Jp1]?). To state the second variation
formula we need some notation. We let 'Sz be the Christoffel symbol of the metric

h on N. Let V% and V%! be the connection on u3T'N induced by the Levi-Civita
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connection on N. Precisely, for any section s = s*52 € I' (u§jT'N) we have
YA

VLOS = (@8‘4 + SBaiugFgc) dZi X % el (QLOMO X USTN) ,
A

and

_ 0 \
VOls = (055" + sP0uf The) dz; ® o € I (Q"' My ® ugTN).

Lemma 3.3.1. Let Ragcp be the curvature tensor of the metric h on N, the complex
Hessian of E is given by
0’E
otot

:/ hAB&-ué&juoBgﬁAK dVy
t=0 My
—/ hAB(?Z-uéa;u(?giqujap%K dVi
Mo (3.3.1)
—2/ g"jRABCD&ug‘a;-uOCUBEDd%
My
+2/ |VH%% — B, 20uol|2dVh.
Mo

Proof. Let GAB = goB vl 0u” _ pik([ _ ,5)im T, uATru? | then

Ows Owg

3

= ou Ou®
E(u) = / gaﬁa 8:hABOlV = / GABhapdV;.
My Wq OWp My

Since %|t:oth = (%\t:od\/} =0, we see

92 E(u o2 02
= a(z) | = /M [(@]tZOGAB)hAB(O) + GV (0) 5 _han + GAP(0)has(0)

0 ) 9 9
" /]\/IO lahzoGABﬁ}t:OhAB T E‘t:oGABahzohAB} dv;.

82
St =0 | Ve

(3.3.2)

out _ A oul _ A 9%uf — oA
Now, let “~|i—o = v*, %|i=0 = V" and T4 |—o = w”, we also let

Sout ouB .
O = PRI B g T T, (339
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0 0
aGAB (atB]k)(I 0P " Tu Tru®
b B (1~ T T 334
B — P O (T Teu®),
Thus, we see
0 T
g GAP = g9, Opug + Djup (F5v” — @1p0mug )], (3.3.5)
=
and,
0 Tz A T _
§|t:0GAB = ¢/ [Oguf (00" — l-Ouy) + Ojuf 0", (3.3.6)
and
5?2
otot 1= 8t8t (B)05u s +9Jkataz|t=0([ — )" O Oy
= 82
* gjkatazh o Tt Tiu")
— ¢ 9" 0,0 [(1 = A) Mo P10jug Ogug’ + 97 @0t Dmug O]
+gjk[(c9 aw? — gpl oMol + (0z0” — Q20mT BYo,uq
+ AT + (0,7 — o) 0" — ¢idmul)],
(3.3.7)
and
62 8 8hAB au 82hAB C—D 8hAB C
otor|,_, 5 ue ot o Oucdup duc (3:38)
Let K = (1 — A) Y12 The volume expansion is written as
0 1y, |2
| avi = A((1 = A) i P) = AK. (3.3.9)
a1t |,_,
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Thus,

O?E(u)
otot

:/ [hABgﬁajug‘agugAK - hABgﬂgpgajuS‘@Eué;ap&lK] + hABnggollgol O Opul
Mo

t=0

+ hAngE[((ajw - <P1 &U )awg + (%w — PpOmU >8J'U0A>
+ ajUAaEEB + (ajv - 9013871‘0 )(aﬁvﬁ wlkamuo )]

0?h h
A AB c—-D |, '""AB_ C
[8 ug Oy (8 aUDv v+ aucw )]

) Oh
+ g’k [3ij3Euo + Ojuf (Opv” — P10mg 0)] 8uAcB "
) _ oh
+ g [05ug 05" + O (ug)) (90" — 50y O o
(e

:/M [hABg k. U &ug’)AK hABg]lgpka u{)“&u{f@ &K]dVD

0

/M [hAngk(‘? wloul + hABngéLwBa uy + gjka ug Opul a(“) ACB wC]dVq

+ /M [hABg 9011901 amug‘&uo hAngEgo_lg&lvAaguoB - hAngkgolkﬁmvBﬁ uo}dVo
/,

has¢g’ [(9 UA&U + (8 w_lf(?lqu)(agU — O EOmug )}d%

o [ Pl opd 2an_oqn | g o dias e

Mo 40 By 8uD O due
Dult (00" — ©™0,,u ¢ + 9.ul 0" ¢
+ Ojugp (05 PiE o) (9uc + Ojug Ogv Dt v

— oh
o+ g (07" = ¢i00ui) =5 =0 dVe,

(3.3.10)

By the harmonic map equation and integration by parts, the second integral in

the last equality becomes

/ (hang™ 0w Opug + hapg™ Opw® 0jui + g7 Oy Opug = 2w dVy = 0. (3.3.11)
My
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Using the symmetry ¢_w, = 0, the third integral in the last equality is
/ [hapg’™ PP - Onug opud — hAngESO_lg&zUAazuoB — hapg™ 720,07 0uf)dVy
Mo
—/ hAngE[(é?Ev - golkamuo)(a P — 901 &uo) &v 0; vBhABg ]dVO
Mo
= [ 11915 ~ 5Bl — 00,0 hang Vi
Mo
(3.3.12)

and the fourth integral in the last equality is,

| hang"lo0” + (05 - 0u0p ~ il Ve

Mo ] ) (3.3.13)

_ / (V195 — Gdug|[2 + 8;04058 hapg ™ dVo.
Mo

For the last intergral in the last equality, using integration by parts, for two

terms of it, we get

% oh -
/ [ k. UA&UOB 8UACB50 —i—gjkaju(?@,;UB
% h - h
MO UC Ouc Oup

0*h 0%h
gka A& B BC 2P ]ka A& AD TPV
/]\40 iU Ug ou AauD +g U0 OgUq aUBaUC ] 0-

(3.3.14)
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Thus,

O?E(u)
otot

:/ [hABgﬂajug‘@EuégAK — hABgﬂngajug‘@Euff)palLK]d%
Mo

t=0
2/ |V — ZLdu| 2dV;
Mo
" / (hapg™ 0,0 050" — hapg 0,5 0pu™)dVy
Mo

0*hap _ O*hpe B 0*hap
OucOup OusOup  Ougduc

+/ ]kﬁ ué‘({%uB CED[ 1dVq
M

h h
_/ (20T A | 0o A L o gl v
My 8u a ou UL

+ [ 0o + 0ot — O ot — Oyl oI
Mo

(3.3.15)
Performing integration by parts twice on the term [, (hag g* AP dVy, we get
/ hapg’F ;v 007 AV,
Mo
e ——
My

Ohpc h h
A B—C jka —A B, C AC jka A B-—C''BC
+/0 [Auiv —8u,4 0 Opug v B B up Opv P aUA}dVO

O*hpe

o
DD + hapg’ o007 ] dV; (3.3.16)

Thus we obtain

O*E(u)
otot

_ / has [gP OO AK — hapg P 0,ul 0l 8,0,K] Vi
Mo

t=0

2 / VY% — Baduo|[*dVy — | RapopOiuy ozu§vPoPdvy.
My My
(3.3.17)

]

Repeatedly applying integration by parts for the first two terms, we obtain the

pluri-subharmonicity of the energy.
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Theorem 3.3.1. The second variation of E s

0*E
otot

=— RABcvpﬁiu64&jugﬁpugaquoljgijgmf( A
t=0 Mo

+/ | VE00u, |2 K dVy
Mo

) (3.3.18)
- 2/ ginABCD@ug‘@juochﬁDd%
Mo

+2/ V1T — B, 20ug||*d V.
Mo

In particular, if we assume that the curvature of (N, h) is Hermitian nonpositive,
namely

R(X,Y,X,Y) <0

for all X,Y € TCN. (For example when (N, h) is a Kdihler manifold of nonpositive
Riemannian sectional curvature.) Then E is a pluri-subharmonic function on the

Teichmiiller space T .

Proof. In the following proof, we use notation d;uy = u;, and so on. We analyze

term by term in equation (3.3.17),
/ hABgﬁuquAKdVo
u j
:/MhABg"ju?ufgqupquo
=— / 8p(hABgﬁufu;§)ngqd%
M ) (3.3.19)

_ / 1050, (hapg i) K dVy

M

= [ 00y B g + g han0n0y g K
M

:/ 8Dach,43ugquufufgijgqu+/ hAB%ﬁp(ggufu?)ngdVO.
M M
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/M hABgﬂgpguiAufﬁp&leVo

= / Op(hapu;’ ufgﬂ)gpgKidVo

M
= [ o hasuta g glicq vy
M (3.3.20)

= / 010y (hapuu? g") g K + 0, (hapuu? g")dy (997 g~ KdVy
M

:/ [8DachABuf‘u;§uguiDgﬂgp7K + hABajﬁp(ufu;—.Bgﬂ)g”}K
M
+ hapdy(uu? g") (997 g~ KdVs.

Therefore, the first integral in the equation (3.3.17) is
/ hap [gﬁﬁjuAE)EuBAK — hABgﬂngE)juAaguBﬁp((}lK]d%
M

:/ 8D80hABu;4ufu$u§(gﬁgm — g9 KAV,
M

- (3.3.21)
+/ [hABaﬁﬁp(gijufU?)ng} dVo
M
~ [ handi@,(utu g g)g K] dvi
M
Now, we compute the first term in equation (3.3.21),

/M OpOchapu; uPulu? (979" — g'"g"™ ) KdV,

J

:/ (6D8(;h,43u;4u;§uguggﬁgm — 8DachABu;4u?u§u§gﬁgp7)KdVO
M

:/@wﬁw—%%mw%%mwmﬁﬁﬁ%mmw
M

1 P
5 / (81)80]1,43 + 83(9AhCD — 8380hAD — 8A8DhBC)uiAu§3ugugg”gqud%
M

A B.C. D ij pq
:/ Racppu; u; uyug g7 g" KdVy
M

A, C. B, D ij pq
=_ Rapepu; us Uy ug g7 g? K dVj.

: (3.3.22)
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The second term in equation (3.3.21) is
/ [hAB&a (g it u; B qu}dVo
_Z/ VoV, (ufu) K dVy (3.3.23)
=Y /M (VoV,ViutVaul + [VVul | + |[VVut | + VVpVaut ) KdVy,
A
and the last integral in equation (3.3.21) is
/ 1 asdi(9y(u'uf g")g" 9)g~ K ]dVy

—Z/VVuu VK dV,

(3.3.24)
=> / (V;V, Vi Vout + |VVu? 2 KdV,
M
= Z /(VPVZ'VPUAVZ-UA + |VVut ) K)dV.
A
Hence, by above Lemma 3.3.1,
92E
875875 ’t 0= Z / RABCDUAUJCUB Dgwgpq + QRABCDUAUCUBUDQH)KCZVO
ABCD
+ Z/ IVVu?PKdV + 2/ VY00 — Bra0ul|[2dV,
+ JMm M
(3.3.25)

K = (1—-A)Yei1|? so AK = K — |p1]*>. By the maximum principal, we know
K > 0. Combining with the curvature assumption on the target manifold, we

conclude that E(u;) is pluri-subharmonic on the Teichmiiller space T . O
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