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Abstract

Iwahori-Hecke algebras are deformations of Coxeter group algebras. Their origins

lie in the theory of automorphic forms but they arise in the representation theory

of Coxeter groups and Lie algebras and in quantum group theory. The Kazhdan-

Lusztig bases of these algebras, originally introduced in the late 1970s in connection

with representation-theoretic concerns, has turned out to have deep connections to

Schubert varieties, intersection cohomology, and related topics.

Matrix immanants were originally introduced by Littlewood as a generalization

of determinants and permanants. They remained obscure until the 1980s when

their connections to symmetric function and representation theory as well as their

surprising algebraic and combinatorial properties came to light. In particular, it

was discovered that they have a fruitful connection to the theory of total positivity.

More recently, a theory of quantum immamants was developed, providing a bridge

to the quantum group theory.

In this paper we develop the theory of certain planar networks, which provide

a unified combinatorial setting for these fields of study. In particular, we use these

networks to evaluate certain characters of the symmetric group algebra. We give new

combinatorial interpretations of the quantum induced sign and trivial characters of

the type A Iwahori-Hecke algebras.
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Introduction

The main topic of this paper is the representation theory of Iwahori-Hecke algebras,

which are deformations of Coxeter group algebras. Their origins lie in the theory

of automorphic forms but they arise in the representation theory of Coxeter groups

and Lie algebras and in quantum group theory. From the latter point of view,

they can be viewed as a quantization of the Weyl group of a Lie algebra; in par-

ticular, there is a quantum Schur-Weyl duality between the representation theory

of certain Hecke algebras and the representation theory of corresponding quantum

groups. In particular, Jimbo (see [32], [31]) showed that their representation theory

could be used to generate solutions to the Yang-Baxter equation. The study of the

representation theory of Hecke algebras led to the development of Kazhdan-Lusztig

polynomials, introduced by Kazdhan and Lustig in [36], [37]. These polynomials

arose as the structure constants for certain Hecke algebra bases. The coefficients

of these polynomials encode a great deal of geometric and representation theoretic

information, and their study has become a field of its own. For example, see [5], [6],

[13], [8], [14], [12], [19], or [22]. An important recent result is the general interpreta-

tion of Kazhdan-Lustig coefficients, valid in all Coxeter systems, given by Elias and

Williamson in [17], settling the 1979 positivity conjecture of Kazhdan and Lusztig.

Matrix immanants were originally introduced by Littlewood in [40]. They can

be viewed as a family of matrix functions that interpolates between the permanent

and the determinant. They remained mostly ignored until the 1985 paper of Merris

and Watkins [42]. The combinatorial theory of matrix imminants was subsequently

developed by Goulden-Jackson [25], Greene [26], Stembridge [51], [52], and Haiman
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[28], among others. In particular, it was discovered that they have a fruitful con-

nection to the theory of total positivity, whose connections with Lie theory were

being developed around the same time (cf. [41]). An overview of the combinatorial

study of positivity is given in [7]. It should be mentioned that a major source of

motivation for the work in this dissertation was the conjectures given by Stembridge

in [52].

The heart of this paper is the study of planar networks, which provide a unified

combinatorial setting for these fields. Totally positive matrices arise as the path

matrices of planar networks, and their immanants can be combinatorially evaluated

using them. Many of the positivity phenomena regarding immanants (see for exam-

ple [52], [26], [51]) can therefore be understood in this light. Planar networks are

also closely connected to Kazhdan-Lusztig theory, where they give a combinatorial

model for certain Kazhdan-Lusztig basis elements (cf. [46], [2]).

In the first chapter, we introduce the basic definitions that we will need from the

representation theory of the symmetric group.

In the second chapter, we introduce two families of planar networks, the de-

scending star networks and the zig-zag networks. We give some of their combina-

torial properties and introduce their connection to the symmetric group. We then

introduce F -tableaux, which are a generalization of Young tableaux to the planar

network setting. These tableaux are the main tool which is used to obtain the results

in this paper.

In the third chapter we will give combinatorial interpretations of the η, χ and φ

characters evaluated at the combinatorial C[Sn] elements introduced in Chapter 2.

None of these interpretations are wholly new, although the χ and φ interpretations

are expressed in different terms than have appeared in the past. The main purpose

of the section is to unify these results using the combinatorics of F -tableaux. In

particular, we hope that the work on the combinatorics of the φ character will aid

efforts to prove Stanley’s e-positivity conjecture (see [47] and [28]). Recent work of

Morales, Guay-Paquet, and Rowland [27] shows descending star networks are the

only networks needed in this context.

3



In the fourth chapter we introduce quantizations of the algebraic and combina-

torial constructions from Chapters 1 and 2. In particular, we define the Iwahori-

Hecke algebras, quantum matrix algebras, Kazhdan-Lusztig bases, and quantum

immanants. Finally, we give the two main results of this thesis, combinatorial inter-

pretations of the quantum induced trivial and induced sign characters of the type

A Iwahori-Hecke algbera.
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Chapter 1

Representation theory of the

symmetric group

1.1 The symmetric group

Probably the most fundamental realization of the symmetric group is as the group of

automorphisms of the set [n] := {1, . . . , n}. This is often referred to in the literature

as the “group of permutations” of [n] - a description that elides some ambiguity.

Further ambiguity is introduced in the identification of this group with the abstract

Coxeter group of type An−1. To avoid confusion, I will start by carefully defining

the conventions that this document will use. An account of the symmetric group

from a point of view similar to ours is given in [43]. A thorough treatment of the

symmetric group from the point of view of permutations is given in [4].

We define the symmetric group Sn to be the group of automorphisms of [n], with

group operation given by composition of functions. We define a permutation of [n]

to be a sequence p = [p1, . . . , pn] so that each element of [n] appears exactly once

in p. We will sometimes omit the commas and/or braces in this notation. Sn acts

from the left on permutations of [n] by w[p1, . . . , pn] = [w(p1), . . . , w(pn)], and from

the right by [p1, . . . , pn]w = [pw(1), . . . , pw(n)]. These actions agree on the identity
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permutation [1, . . . , n]. For a symmetric group element w ∈ Sn, we define its one-

line notation to be the permutation w[1, . . . , n] = [1, . . . , n]w = [w(1), . . . , w(n)].

Clearly, this is a bijection between automorphisms and permutations of [n]; we will

often conflate the permutation and its one line notation. Sometimes, we will use the

notation [w1, . . . , wn] to refer to the one line notation of w.

Formally, the Coxeter group of type An is defined to be the group generated by

elements s1, . . . , sn with relations:

s2
i = e

sisj = sjsi |i− j| > 1

sisjsi = sjsisj |i− j| = 1

Note that here and throught this manuscript e refers to the identity element of

the group under discussion. We will identify the Coxeter group of type An with

the symmetric group Sn+1 by associating each generator si to the transposition

[1, . . . , i+1, i, . . . , n+1] (notice that we have begun to conflate words and symmetric

group elements, as promised). It is a standard fact that this identification is an

isomorphism; we will often use it to conflate Coxeter groups with the corresponding

symmetric groups.

It should be noted that expressions w = si1 · · · sin are not unique (with respect to

w). Define the length l(w) of a Coxeter group element w to be the smallest number

l so that there is an expression w = si1 · · · sil . We call such an expression reduced;

reduced expressions still, in general, fail to be unique.

Given a permutation p = [p1, . . . , pn] we say that a pair pi = a, pj = b is an

inversion in p if i < j and a > b. Define inv(p) to be the number of inversions in p.

Then, conflating all our notions of the symmetric group, we have that l(w) = inv(w)

for w ∈ Sn.

The Coxeter group structure also induces a poset structure on Sn known as

the Bruhat order. This order is defined by u < v if there is a reduced expression

si1 · · · sil for v with a subexpression six1 · · · sixm that is a reduced expression for u.

Note that length is a grading of Sn with respect to this poset structure; that is, we

have u < v =⇒ l(u) < l(v).
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We conclude our definition of the symmetric group by introducing cycle notation.

We define the cycle (x1, . . . , xk) to be the Sn element w satisfying w(xi) = xi+1

for i < k, w(xk) = x1, and w(j) = j for j /∈ {x1, . . . , xk}. We can the write

any Sn element as a product of disjoint cycles; eg: [5 2 4 1 3 7 6] = (1 5 3 4)(2)(6 7).

Regarding two cycles as being identical if they represent the same permutation, such

an expression is unique up to the order of the cycles. Let λ1, λ2, . . . be the lengths

of the cycles in the disjoint cycle expression of w written in weakly decreasing order;

then λ = [λ1, λ2, . . . ] is called the cycle type of w. We say that a disjoint product of

cycles is canonical if each cycle is written with its largest entry first, and the cycles

are ordered from left to right by their largest elements, from smallest to largest.

We will illustrate our various conventions by completely working out the simplest

nontrivial case, S3, in Figure 1.1.

1.2 Representation theory of C[Sn]

We will briefly review the neccesary concepts from representation theory; for more

information, [43], [30], [20], or [18] are good references. In particular, [11] provides a

comprehensive treatment which also introduces Iwahori-Hecke algebras, which will

be a major topic of this paper. A representation (V, ρ) of an algebra A over a field k

is a vector space V over k together with an algebra homomorphism ρ : A→ EndkV .

If we have such a map we say that V is an A-module with the action given

by av = ρ(a)v. We will often refer to representations by simply referencing either

the space or the map; it is understood that both exist. All representations will

be assumed to be finite-dimensional (that is, the underlying vector space is finite

dimensional).

The choice of any basis for V gives a homomorphism A→ Matdxd(k), where d is

the dimension of V and Matdxd(k) denotes the algebra of d by d matrices over k. We

will also refer to such a homomorphism as a representation. A morphism between

two representations (V, ρ) and (W,σ) is a vector space morphism f : V → W that

commutes with the representation maps; ie, f(ρ(x)v) = σ(x)f(v) for all x ∈ A, v ∈

7



w as a . . .

function permutation reduced expression Π of cycles

1 7→ 1 [1 2 3] e (1)(2)(3)

2 7→ 2

3 7→ 3

1 7→ 2 [2 1 3] s1 (2 1)(3)

2 7→ 1

3 7→ 3

1 7→ 1 [1 3 2] s2 (1)(3 2)

2 7→ 3

3 7→ 2

1 7→ 2 [2 3 1] s1s2 (3 1 2)

2 7→ 3

3 7→ 1

1 7→ 3 [3 1 2] s2s1 (3 2 1)

2 7→ 1

3 7→ 2

1 7→ 3 [3 2 1] s1s2s1 = s2s1s2 (2)(3 1)

2 7→ 2

3 7→ 1

Figure 1.1: Realizations of S3

V . If f is a vector space isomorphism, then it is an isomorphism of representations.

In matrix terms, an isomorphism between representations ρ, σ : A→ Matdxd(k) is an

algebra automorphism f of Matdxd(k) satisfying f(ρ(x)) = σ(x). Up to isomorphism,

the two definitions of a representation are equivalent, justifying our abuse of the

terminology.

A direct sum of representations V ⊕W of A is a representation of A under the

map ρ ⊕ σ, the tensor product V ⊗k W is a representation under ρ ⊗ σ. These

8



operations give the (isomorphism classes of) representations of A a ring. A repre-

sentation is indecomposable if it is not isomorphic (as a representation) to a direct

sum of nontrivial representations and irreducible if it contains no nontrivial subspace

that is closed under the action of A. Clearly, an irreducible representation is inde-

composable. We say that A is semisimple (cf. [18, Prop. 2.16]) if these conditions

are equivalent for all its representations; all of the algebras that we work with are

semisimple.

1.2.1 Characters

Given a representation ρ of A, we can define a map τ : A → k by taking its trace;

that is, by setting τ(x) = Tr(ρ(x)). This map is called the character of ρ. For

representations ρ, σ of A, we have Tr(ρ ⊕ σ) = Tr(ρ) + Tr(σ) and Tr(ρ ⊗ σ) =

Tr(ρ)Tr(σ). Thus, positive Z-linear combinations of A-characters are themselves

A-characters. Call a function f : A → k a trace if it satisfies f(xy) = f(yx) for

all x, y ∈ A. Since the ordinary matrix trace (note that we will always use the

trace to mean the ordinary trace, and a trace in the sense just defined) satisfies this

condition, characters are a subset of traces.

1.2.2 Representations of C[Sn]

Let C[Sn] be the group algebra of Sn, that is, the C algebra of formal C-linear

combinations of Sn elements. It is well known that the representation theory of

C[Sn] (as an associative algebra) is equivalent to the representation theory of Sn

as a group (this is true for group algebras generally). The fundamental result in

the representation theory of C[Sn] is that it is semisimple and a complete list of its

(isomorphism classes of) irreducible representations is given by the Schur modules.

These are indexed by partitions of n. A partition λ of n is a sequence λ1 ≥ λ2 ≥
· · · ≥ λd > 0 with

∑
i λi = n. We will use the notation λ ` n to mean that lambda

is a partition of n. Then let {Sλ | λ ` n} be the set of irreducible representations of

C[Sn]. In fact there is a canonical association between partititions and irreducible

Sn representations, which we will give shortly.

9



Let λ = λ1, . . . , λd be a partition of n and set ci = λ1 + · · · + λi for 0 < i < d,

and c0 = 0. Let Sλ ⊂ Sn be the subgroup defined by requiring, for all w ∈ Sλ,

that w(x) ∈ [ci, ci+1] for any x ∈ [ci, ci+1]. Then Sλ is naturally isomorphic to

Sλ1 × · · · × Sλd . (In fact Sλ is a “parabolic subgroup” of Sn. For a more complete

discussion of these subgroups see eg. [3, Section 2.4])

There are two important operations on group representations; induction and

restriction. For a group G, given a C[G] representation (ρ, V ) and a subgroup

H ⊂ G, the restriction ρ ↓H is simply the restriction of the function ρ to the

subalgebra C[H]. Induction is the adjoint operation to restriction, and can be

defined by V ↑GH := C[G]⊕C[H] V .

Denote the C[Sn] traces by Rn, and let R := ⊕iRi. Rn has a natural vector

space structure given by pointwise addition of traces. Let σ, τ be the characters of

representations V,W of Sm and Sn respectively. Then we can define a product by

σ · τ := Tr((V ⊗W ) ↑Sm+n

Sm×sn). This product is compatible with addition and with

the grading of R. Since the characters are a spanning set for R, the product can be

extended to give R the structure of a graded algebra, which we will call the trace

algebra. A natural inner product on Rn is given by

〈τ, σ〉 :=
1

n!

∑
w∈Sn

τ(w)σ(w) .

We can now specify the association between partitions and irreducible represen-

tations. There are two one dimensional representations of Sn: the sign representa-

tion sgn which acts by w 7→ [(−1)l(w)], and the trivial representation 1 which acts by

w 7→ [1]. Since these representations are one dimensional, we can conflate them with

their characters. It turns out that for each λ ` n, there is a unique irreducible repre-

sentation, which we will denote Sλ, whose character χλ satisfies both 〈χλ, 1 ↑SnSλ 〉 6= 0

and 〈χλ, sgn ↑SnSλt 〉 6= 0 (here λt denotes the transpose of λ, see (2.2) for a precise

definition). These representations can be explicitly realized using Young tableaux

and are called the Specht modules.

Any C[Sn] representation is determined by its character. Let χλ denote the

character of Sλ and call the set {χλ | λ ` n} the irreducible characters of C[Sn].

10



It turns out that this set forms a basis of the space of C[Sn] traces. In fact, it

is an orthonormal basis. We will obtain several other natural bases by exploiting

a connection between the character theory of C[Sn] and the theory of symmetric

functions.

1.2.3 Symmetric functions

Let x = {x1, x2, . . . }. Let Λ(x) (or simply Λ if there is no ambiguity) denote the

ring of symmetric polynomials, that is, polynomials in C[x] that are invariant (for

all n) under the Sn-action given by w(xi) := xw(i). Let Λn denote the symmetric

polynomials of homogenous degree n; then we have Λ = ⊕iΛi. The most natural

basis for Λn is the monomial basis {mλ | λ ` n} defined by setting, for λ = λ1, . . . , λd,

mλ =
∑

i1 6=···6=id

xλ1i1 · · ·x
λd
id
.

where the sum is over sequences which yield distinct monomials of the given form.

To be precise, we can take the sum over all choices of i1, . . . , id such that if λa = λb

and a < b, we have ia < ib.

We will use several other bases for Λn. Let

ed :=
∑

i1<···<id

xi1 · · ·xid ,

hd :=
∑

i1≤···≤id

xi1 · · ·xid , and

pd :=
∑
i

xdi .

Then the elementary, complete, and power sum symmetric functions, denoted eλ,

hλ, and pλ, respectively, are defined by eλ := eλ1 · · · eλd , hλ := hλ1 · · ·hλd , and

pλ := pλ1 · · · pλd . Finally, we define the Schur function sλ by

sλ := det(H) = det(E)

11



where H is the d by d matrix whose i, j entry is hλi−i+j and E is the λ1 by λ1 matrix

whose i, j entry is eλti−i+j. Here we define hi = ei = 0 for i < 0, and λt to be the

partition λt := #{i | λi ≥ λ1},#{i | λi ≥ λ1− 1} . . . ,#{i | λi ≥ 1}. That these two

determinants are equal is a theorem due to Jacobi and Trudi. Each of these sets

forms a basis for Λn. This can be seen explicitly therough the combinatorial study

of the transition matrices between them, which are treated thoroughly in [1]. A

more complete discussion of the basic combinatorial theory of symmetric functions

can be found in [49, Ch. 7].

1.2.4 The characteristic map

For a vector space V , C[Sn] naturally acts on V ⊗n by

w(v1 ⊗ · · · ⊗ vn) := w(v1)⊗ · · · ⊗ w(vn) ,

and GL(V ) acts by

X(v1 ⊗ · · · ⊗ vn) := Xv1 ⊗ · · · ⊗Xvn .

It turns out that there is a decomposition

V ⊗n = ⊕λ`nVλ ⊗Gλ ,

where Gλ are distinct irreducible representations of GL(V ). Furthermore, the char-

acters of the representations Gλ are given, for GL(V ), by polynomials in the eigen-

values of the elements of GL(V ). These polynomials are clearly symmetric, as the

constructions are coordinate free. This gives a map from C[Sn] characters to sym-

metric polynomials called the characteristic map. We will explicitly define this map

and give its important properties.

We also have the Hall inner product on Λn, which can be defined by setting

〈hλ,mµ〉 := δλµ .

Then Schur functions are an orthonormal basis with respect to this inner product.

We can then define the characteristic map ch from C[Sn] traces to symmetric poly-

nomials by ch(χλ) := (sλ). In addition to preserving the inner product, this map

gives an algebra isomorphism between the trace algebra R and Λ.
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Using ch, we obtain bases for the space Rn of C[Sn] traces corresponding to the

bases eλ, hλ, pλ, and mλ. We denote these bases by ελ, ηλ, ψλ, and φλ, respectively.

It turns out that we have

ηλ = 1 ↑SnSλ ,

ελ = sgn ↑SnSλ , and

ψλ(w) = zwδsh(w),λ ,

where sh(w) is the cycle type of w, zλ is the order of the centralizer of w, and δ is

the Kronecker delta. In general, neither φλ nor ψλ are characters.

13



Chapter 2

Planar Networks

2.1 Positivity and planar networks

For a matrix A ∈ Matnxn given by A = [ai,j], I, J ⊂ [n], let AI,J denote the subma-

trix consisting of all entries ai,j such that i ∈ I, j ∈ J . A matrix is said to be totally

positive (respectively, totally nonnegative) if det(AI,J) is positive (nonnegative) for

all I, J ⊂ [n] with |I| = |J |. In this section we will introduce the notion of a planar

network and outline the basic connection between planar networks and positivity

theory. This theory has far reaching applications and generalizations. A survey of

the history of total positivity with emphasis on its applications in Lie theory can be

found in [41]. An overview of the combinatorial study of positivity is given in [7].

A planar network F of order n is an acyclic weighted directed planar graph

embedded in a disk, with 2n boundry vertices labelled (in order) s1, . . . , sn, t1, . . . , tn.

We call the vertices s1, . . . , sn sources and t1, . . . , tn sinks. By convention we require

that all sources have indegree 0 and all sinks have outdegree 0. We can therefore

infer the direction of the edges from context. We will also assume all edge weights

are 1 unless otherwise indicated. An example of a planar network is given in Figure

2.1

The weight wt(π) of a path π is the product of the weights of its edges. The path
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s1

s2

s3 t1

t2

t3

Figure 2.1: Example of a planar network

matrix A(F ) of a planar network F is the n by n matrix defined by

A(F ) = [ai,j], ai,j =
∑
π

wt(π)

where the sum is over all paths from si to tj for each ai,j. A path family Π =

{π1, . . . , πn} is a collection of source to sink paths satisfying that each source lies in

exactly one path in Π, and each sink lies in exactly one path in Π. If π is a source

to sink path in a planar network, we will use the notation s(π) to denote the index

of its source and t(π) to denote the index of its sink. The weight of a path family,

denoted wt(Π), is defined to be the product of the weights of its paths. The type

w(Π) of a path family Π is the permutation w ∈ Sn so that Π contains a path from

si to tw(i) for each i ∈ [n]. We say that Π is nonintersecting if the paths {π1, . . . , πn}
are pairwise nonintersecting. A basic result in the theory of total positivity is the

following theorem, discovered by Karlin and MacGregor [34] and Lindstrom [39].

Theorem 1. (Lindstrom’s Lemma) Let the weights of F lie in a commutative ring.

Then we have

det(A(F )) =
∑

Π

wt(Π)

where the sum is over nonintersecting path families on F with type identity.

Lindstrom’s Lemma gives one direction of the following result.

Theorem 2. A matrix is totally nonnegative if and only if it is the path matrix of

a planar network with nonnegative real weights.
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Figure 2.2: Desending star networks, n = 4

Proof. ( ⇐= ) Any submatrix AI,J of the path matrix A of a planar network F is

the path matrix of the planar network obtained from F by deleting vertices si, tj

for all i /∈ I, j /∈ J (along with their incident edges). By Lindstrom’s Lemma, the

determinant of this matrix is nonnegative if F has nonnegative weights.

2.2 Descending star networks

An important combinatorial class of planar networks is the class of descending star

networks. A star F ∗[i,j] of order n is a planar network of order n consisting of a single

internal vertex (call it v), an edge from sl to v for i ≤ l ≤ j, an edge from v to tl

for i ≤ l ≤ j, and an edge from sl to tl for l /∈ [i, j]. Throughout this paper, we will

assume the left vertices of each planar network are the sources and the right vertices

are the sinks, always labelled in ascending order from bottom to top. All edges will

therefore be directed from left to right.

Define the composition F ◦ G of planar networks F and G to be the planar

network given by the union of F and G, with the sinks of F identified with the

corresponding sources of G and then unlabelled, so that the sources of F ◦G are the

sources of F , and the sinks of F ◦G are the sinks of G. A descending star network

is a composition F ∗[i1,j1] ◦ · · · ◦ F ∗[im,jm], satisfying i1 < · · · < im and j1 < · · · < jm,

with redundant paths deleted so that there is at most one path between any two

vertices. The composition and deletion processes are illustrated in Figure 2.3, and
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s1
s2
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s4
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s6
s7

t1
t2
t3
t4
t5
t6
t7

◦

s1
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s3
s4
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s7

t1
t2
t3
t4
t5
t6
t7

◦

s1
s2
s3
s4
s5
s6
s7

t1
t2
t3
t4
t5
t6
t7

−→

s1
s2
s3
s4
s5
s6
s7

t1
t2
t3
t4
t5
t6
t7

−→

s1
s2
s3
s4
s5
s6
s7

t1
t2
t3
t4
t5
t6
t7

Figure 2.3: Descending star network construction

the descending star networks of order 4 are given in Figure 2.2. This gives us a

planar network that is acyclic as an undirected graph. We call such planar networks

totally acyclic.

In a totally acyclic planar network, there is at most one path from si to tj. We

will often denote this path πi,j; this notation can always be assumed to refer to the

unique si to tj path in a totally acyclic network. The si to ti paths have particular

importance; we will sometimes shorten their label to πi. Note in particular that in

a descending star network, we always have paths πi for 1 ≤ i ≤ n.

There are Cn descending star networks of order n, where Cn := 1
n+1

(
2n
n

)
is the

nth Catalan number. We will show this by exhibiting a bijection between certain

permutations and descending star networks.

In the following section we will require a couple of basic notions from the theory

of posets. An ideal in a poset P is a set I ⊂ P satisfying that for all y ∈ P , we have

x < y =⇒ x ∈ P . An ideal is a principal ideal if it is of the form {x | x ≤ t} for

some t ∈ P . We say I is the ideal generated by t.

For a totally acyclic planar network F , let Q(F ) denote the set {w(Π)} where

Π runs over all path families on F . Then we can we associate to F an element

β(F ) ∈ C[Sn] by

β(F ) :=
∑

w∈Q(F )

w .

For any matrix [ai,j] and v, w ∈ Sn, let av,w denote the product av1,w1 · · · avn,wn ,

where v1, . . . , vn and w1, . . . , wn are the one line notations of v and w respectively..

We record the following simple observation.
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−→

Figure 2.4: Replacing paths from si, sj to tw(i), tw(j) by paths from si, sj to tv(i), tv(j)

Lemma 1. For a totally acyclic planar network F with path matrix A(F ) = [ai,j]

we have:

ae,w =

1 if w ∈ Q(F )

0 otherwise
. (2.1)

Now we will give an important property of totally acyclic networks.

Lemma 2. For a totally acyclic planar network F , Q(F ) is an ideal.

Proof. Suppose that v < w for some w ∈ Q(F ), and further that there is no z

satisfying v < z < w (in the language of posets, we say that w covers v). Then we

have (cf. [4, Ch. 7]), for some i < j, wi > wj and vi < vj. Since w ∈ Q(F ), there is

a path family Πw of type w on F ; in particular, we have paths πi,w(i), πj,w(j) ∈ Πw.

By the construction of F , πi,w(i) separates the disc of support of F , with j and w(j)

in different components. Thus, the πj,w(j) must intersect πi,w(i). Let x be the final

vertex in πj,w(j) ∩ πi,w(i) Set πi,x, πx,w(i) to be the sections of πi,w(i) from si to x and

from x to tw(i), respectively. Set πj,x, πx,w(j) to be the sections of πj,w(j) from sj to x

and from x to tw(j), respectively. Then pi,j = πi,x∪πx,w(j) and pj,i = πj,x∪πx,w(i) are

paths from si to tj and ti to sj, respectively. Replacing πi,w(i) and πj,w(j) by pi,j and

pj,i does not change the union of the paths in Πw, so Πw−{πi,w(i), πj,w(j)}+{pi,j, pj,i}
is a path family on F of type v and we have v ∈ Q(F ). For an illustration of this

procedure, see Figure 2.4.

Since the poset in question is finite, it suffices to establish inclusion in the case

of covering relations and thus we have the result.
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◦ ◦ ◦ ◦ −→

Figure 2.5: Zig-zag network example

2.3 Enumeration of networks

A zig-zag network is constructed in the same manner as a descending star network,

except that instead of requiring our stars be chosen so that i1 < · · · < im and

j1 < · · · < jm, we impose the condition that for any indices a < b < c, if [ia, ja] ∩
[ib, jb] ∩ [ic, jc] 6= ∅, we have either ia < ib < ic and ja < jb < jc, or ia > ib > ic and

ja > jb > jc. An example of such a network is given in Figure 2.5. Like descending

star networks, zig-zag networks are totally acyclic and thus have paths uniquely

determined by source and sink indices.

Lemma 3. Any zig-zag network is totally acyclic.

Proof. Let F be a zig-zag network. Let P and Q be a minimal-length pair of

paths forming the bottom and top components of a cycle in F . Say that P and

Q begin in the central vertex of star S1 = F ∗[i1,j1], and end at the central vertex of

star S2 = F ∗[i2,j2]. Then by construction, at least one of P or Q must have passed

through at least one other star in between stars S1 and S2; say that it was path P

(the argument is essentially identical either way). By the minimal-length property

of the cycle, then, the intermediate star S3 = F ∗[i3,j3] must satisfy that j3 < j1 and

that Q passes above S3. But then by the defining property of a zig-zag network, all

subsequent stars that P passes through must lie below S3; in particular, they can

never intersect Q, which is a contradiction

Given permutations w = [w1, . . . , wn], v = [v1, . . . , vm], we say that w avoids v
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if no subsequence wi1 , · · · , wim satisfies wia < wib ⇐⇒ va < vb for all a, b. In [46],

Skandera proved the following result for zig-zag networks.

Lemma 4. Let F be a zig-zag network. Then Q(F ) is the principal ideal generated

by a 3142, 4231 avoiding permutation w. This correpondence is a bijection between

zig-zag networks and 3142, 4231 permutations, up to reordering the stars in the zig-

zag network.

For any 3142, 4231 avoiding permutation w, we will denote by Fw the correspond-

ing zig-zag network. For descending star networks, we have the following refinement

of the correspondence. Note that since 312 avoiding permutations are known to be

counted by Catalan numbers (as noted in [50]), this proves the above enumeration

of descending star networks.

Lemma 5. Let Fw be a zig-zag network. Then Fw is a descending star network if

and only if the permutation w is 312 avoiding.

Proof. (⇐= )

Let Fv = F = F ∗[c1,d1] ◦ · · · ◦ F ∗[ck,dk] be a zig-zag network indexed by the permu-

tation v = v1 . . . vn. Suppose that [ci, di], [cj, dj] is the first pair with ci < cj and

cj < di. (If such a pair does not exist, then F is a descending star network.) Note

that by rearranging the stars, we can assume j = i+ 1.

Define the “straight line” paths in F to be the (unique) paths that connect si

to tvi for some i. Let P ′,Q′, and R′ be the “straight line” source to sink paths in

F which enter F ∗[ci,di] in position ci, enter F ∗[ci,di] in position di, and leave F ∗[cj ,dj ] in

position cj, respectively. Let P , Q, and R be the images of these paths in G and let

s(X) and t(X) denote the source and sink of a path X.

Note that immediately to the left of F ∗[ci,di], P is below Q which is below R.

Immediately to the right of F ∗[cj ,dj ], P is above R which is above Q. Since P has

intersected Q and R, none of these paths can have any other intersections (since

a zig-zag network has no undirected cycles). Thus, s(P ) < s(Q) < s(R) and

t(P ) > t(R) > t(Q). So vs(P ), vs(Q), vs(R) is an occurrence of 312 in v.

( =⇒ )
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(a) λ = 5411 (b) λt = 42221

Figure 2.6: A Young diagram and its transpose

Set Fv = F . Suppose that vi, vj, vk is an occurrence of 312 in v. Let P , Q, and

R be images in F of the “straight line” paths in F starting at vi, vj, and vk. P

has to cross both Q and R. Since vj < vK , the three paths do not all intersect in a

common star. Since F is a zig-zag, the two crossings must be the only intersections

between the three paths. In particular, P intersects Q to the left of its intersection

with R. This means that the star in which P intersects R is above, overlapping,

and to the right of the star in which P intersects Q. So, Fv is not a descending star

network.

2.4 F-tableaux

A Young diagram of shape λ ` n is simply an arrangement of “cells” into left-

justified rows, with row i consisting of λi cells. Following the French convention, we

will display our diagrams by placing each row above the previous one. An example

of a Young diagram is given in Figure 2.6.

For a partition λ, we can define its transpose λt to be the shape of the transpose

of the Young diagram. To be precise, we have

λt := [#{λi | λi ≥ 1},#{λi | λi ≥ 2}, . . . ,#{λi | λi ≥ λ1}] . (2.2)
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F = Π =

π1,2 = π2,1 =

π3,3 = π4,4 =

(a) A path family

π1,2 π2,1 π3,3 π4,4 π1,2 π2,1 π4,4 π3,3 π2,1 π1,2 π4,4 π3,3 · · ·

(b) Tableaux of shape 4, content Π

π1,2

π2,1 π3,3 π4,4

π1,2

π2,1 π4,4 π3,3

π2,1

π1,2 π4,4 π3,3

· · ·

(c) Tableaux of shape 31, content Π

Figure 2.7: Examples of F -tableaux

In general, a “tableau” usually means a filling of a Young diagram with elements

of some poset (that is, an assignment of one such element to each cell of the diagram).

The best studied and most important of these are the Young tableaux. A Young

tableaux (or [n]-tableaux) is a filling of a Young diagram with the letters [n]. We

define the shape of a tableau to be the shape of the underlying diagram.

The development of Young tableaux was originally stimulated by their impor-

tance in the representation theory of Sn and GLn. Subsequently, there has been

extensive research in Young tableaux combinatorics as well as their applications.

An overview of the theory of Young tableaux is given by Fulton in [21]. We will

label the elements of a tableau by row, column indices. Note that although this is

almost the same convention as is used for matrix entries, the rows appear in the

opposite order as is generally used with matrices. For example, in Figure 2.7, the

last tableau T has entries t1,1 = π1,2, t1,2 = π4,4, t1,3 = π3,3, t2,1 = π2,1.
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A tableau T = [ti,j] of shape λ is row-semistrict if ti,j 6> ti,j+1 for all i, j < λi.

It is row-strict if ti,j < ti,j+1 for all i, j < λi. It is column-strict if its transpose is

row-strict, and column-semistrict if its transpose is row-semistrict.

Given a planar network F of order n, we will define an F -tableau of shape λ ` n
to be a filling of a Young diagram of shape λ by the paths in a path family on F .

Here we define a partial ordering on the set of source to sink paths in F by p < q if

p does not intersect q and s(p) < s(q) (it is easy to see that we could equivalently

require t(p) < t(q)). For a planar network F , we will call the set of F -tableaux

T (F ). Figure 2.7 gives some examples of F tableaux. We define the type of an

F -tableau to be the type of the path family that it contains. (See Section 2.1 for

the definition of the type of a path family.)

Call the multiset of elements contained by a tableau its content. It is natu-

ral to associate to any F -tableau T = Ti,j of shape λ two Young tableaux, the

source tableau s(T ) defined by s(T )i,j = s(Ti,j) and the sink tableau t(T ) defined

by t(T )i,j = t(Ti,j). Because the content of F is a path family, s(T ) and t(T ) both

have content [n].
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Chapter 3

Combinatorics of classical

characters

In this section we give a useful map on F -tableaux, the drop map. This map gives

a bijective proof of the equivalence of different combinatorial interpretations of the

classical (q = 1) characters for the algebra elements associated to descending star

networks. This is an important special case. In particular, there is a connection be-

tween these character evaluations and Stanley’s e-positivity conjecture (see [47] and

[28]). Recent work of Morales, Guay-Paquet, and Rowland [27] shows descending

star networks are the only networks needed in this context.

3.1 The drop map

We say that an F-tableau T is row-closed if each row of t(T ) is a rearrangement

of the corresponding row of s(T ). We say that an F tableau T is canonical if

s(T ) is row strict. Let Tλ(F ) be the set of canonical row-closed F -tableaux, and

T ◦λ (F ) ⊂ Tλ(F ) be the subset of those that are row-strict. These sets provide

combinatorial interpretations of the induced trivial and sign characters:

ηλ(β(F )) = |Tλ(F )| , (3.1)

ελ(β(F )) = |T ◦λ (F )| . (3.2)
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These are proved in full generality later in this paper (Theorems 4, 5) with the

above formulas being obtained by setting q = 1. Note that all tableaux in the set

T ◦λ (F ) have type e. From this point of view we can characterize it as the set of all

row-strict F -tableaux of shape λ and type e, an interpretation which is more natural

from the point of view of chromatic symmetric functions (cf. [44], [10], [47], [23]).

We can give a similar interpretation of the induced trivial character by means of a

“parentheses dropping” bijection.

U = π1,1 π2,5 π3,3 π4,2 π5,4

w(U) = [1, 4, 3, 5, 2]

= (1)(2, 5, 4)(3)

w−1 = (1)(4, 5, 2)(3)

= (1)(3)(5, 2, 4)

drop(U) = π1 π3 π5 π2 π4

Figure 3.1: Example of drop

Let F be a descending star network, and let RSSTλ(F ) denote the row-semistrict

F tableaux of type e and shape λ. Our goal is to define a bijection Tλ(F ) →
RSSTλ(F ). We will begin with the case where λ = [m]. Let U be a row-closed F

tableau of shape [m]. Then the content of U forms a path family of type w for some

w. We define drop(U) to be the tableau obtained by writing the permutation w in

canonical cycle notation, dropping the parentheses, and recording the type-e paths

corresponding to the word. An example is given in Figure 3.1.

To see that the map drop : Tm(F )→ RSSTm(F ) is a bijection, we construct its

inverse. Given a tableau V = [ρx1 , . . . , ρxm ] of type e in Tm(F ), let w ∈ Sm be the
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permutation given in cycle notation by

w = (x1, . . . , xi1−1)(xi1 , . . . , xi2−1) · · · (xik , . . . , xm)

where i1, . . . , ik are the positions of the records of the word x1, . . . , xr. Then write

w−1 = w−1
1 , . . . , w−1

r in one line notation. Finally, let V ′ ∈ Tm(F ) be the tableau

whose ith entry is the unique path in Fu from i to w−1
i . To show that the map

V 7→ V ′ is well defined we need to verify that there actually are such paths for all i.

To do this, consider any cycle (xj, . . . , xj+l) of w. We want to verify that there

is a path from xj+s+1 to xj+s for each s, and a path from xj to xj+l. There must be

paths from xj+1 to xj and from xj to xj+1 as otherwise, we would have ρxj > ρxj+1
.

Now assume that there is a path from xj to xj+s. If xj+s+1 < xj+s, then there must

be a path from xj+s+1 to xj+s by the same reasoning as for xj and xj+1; otherwise,

such a path exists because xj > xj+s+1 > xj+s and there is a path from xj to xj+s.

This implies that there is also a path from xj to xj+s+1 and we can therefore proceed

inductively to get paths from each xj+s+1 to each xj+s as well as paths from xj to

all the others. In particular there is a path from xj to xj+l and so we have verified

that all the neccesary paths exist.

It is clear that this map is inverse to drop, so they are bijections.

We can then extend this map to all row-closed tableaux by applying it row by row.

For I ⊂ [n], let Tλ(F |I) denote the canonical row bijective shape-λ F -tableaux with

source and sink index set I, and let RSSTλ(F |I) be the row-semistrict shape-λ F -

tableaux of type e with source and sink index set I. By the same argument as above,

drop gives a bijection from T[|I|](F |I) to RSST[|I|](F |I) for any I. For T ∈ Tλ(F ),

T = [r1, · · · , rk], define drop(T ) to be the tableau [drop(r1), · · · , drop(rk)]. Then

since tableaux in Tλ(F ) and RSSTλ(F ) are both determined by an arbitrary choice

of an index set I for each row together with rows using the given indices, drop is a

bijection Tλ(F )→ RSSTλ(F ). An example of this bijection is given in Figure 3.2

We can now give another interpretation of ηλ. Equation (3.1) gives a formula for

ηλ in terms of the canonical row-bijetive F tableaux. By applying the drop bijection

to this formula, we obtain the following.
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F =

U drop(U)

π1,1

π2,2 π3,3

π1

π2 π3

π1,1

π2,3 π3,2

π1

π3 π2

π3,3

π1,1 π2,2

π3

π1 π2

π3,3

π1,2 π2,1

π3

π2 π1

U drop(U)

π1,1 π2,2 π3,3 π1 π2 π3

π1,1 π2,3 π3,2 π1 π3 π2

π1,2 π2,1 π3,3 π2 π1 π3

π1,2 π2,3 π3,1 π3 π2 π1

Figure 3.2: Bijection for F[231], λ = [2, 1] and λ = [3]

Theorem 3. Let F be a descending star network, and λ ` n. Then we have

ηλ(β(F )) = |RSSTλ(F )| .
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Chapter 4

Combinatorics of quantum

characters

4.1 q-Analogs

The use of “q-analogs” in the study of special functions goes back almost a century,

and their importance in algebraic combinatorics is pervasive. Roughly speaking,

there are many situations in which replacing integers with formal expressions in a

variable q that evaluate to the original numerical formula at q = 1 turns out to

be fruitful, and many of these situations are combinatorially connected with each

other. An excellent account of the combinatorial study of these phenomena can be

found in [48, Ch. 1].

Recently the theory of quantum groups has provided a unified viewpoint on many

of these phenomena; in particular, all of the q-analogs that we use in this paper can

be understood in this context (See, e.g., [35]). We will use this theory to introduce

quantum analogs of the classical representation-theoretic and combinatorial objects

the we treated in previous sections.
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4.1.1 Hecke algebras

Hecke algebras have appeared over the last 60 years in many fields of mathematics,

having been studied in the context of automorphic forms (cf. [9]), representation

theory (cf. [15], [16]), knot theory (cf. [33]), and quantum groups (cf. [32], [31])

to name a few settings. From the latter point of view, they can be viewed as a

quantization of the Weyl group of a Lie algebra; in particular, [31] establishes a

quantum Schur-Weyl duality between the representation theory of certain Hecke

algebras and the representation theory of corresponding quantum groups.

The combinatorial study of Hecke algebras led to the development of Kazhdan-

Lusztig polynomials, introduced by Kazdhan and Lustig in [36]. These polynomials

arose as the structure constants for certain Hecke algebra bases. The coefficients

of these polynomials encode a great deal of geometric and representation theo-

retic information, and their study has become a field of its own. Introductions to

Kazhdan-Lusztig theory can be found in [3, Ch. 5-6], or [29, Ch. 7]. For more

information on the combinatorial theory, a good place to start is [13]. An important

recent result is the general interpretation of Kazhdan-Lustig coefficients, valid in all

Coxeter systems given by Elias and Williamson in [17], settling the 1979 positivity

conjecture given by Kazhdan and Lusztig in [36].

Our results concern the combinatorial theory of Hecke algebra characters. We

will give the basic definitions and facts that will be required for our results. For a

more thorough discussion of the material, our standard reference is [24].

Let R = C[q
1
2 , q−

1
2 ]. Then we define a quantum analog Hn of the symmetric

group algebra, called the generic 1-parameter Iwahori-Hecke Algebra, to be the

algebra generated over R by elements T1, . . . , Tn−1 subject to the relations:

T 2
i = q + (q − 1)Ti

TiTj = TjTi |i− j| > 1

TiTjTi = TjTiTj |i− j| = 1

For w ∈ Sn, set Tw = Ti1 · · ·Til where si1 . . . sil = w is any reduced expression.

It is a fact (a proof is found in [24, Thm. 4.4.6]) that this gives a well defined map
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w 7→ Tw. It turns out that the set {Tw | w ∈ Sn} is a basis for Hn, called the natural

basis.

There is related basis of Hn that turns out to be useful, sometimes called the

modified natural basis. It can be defined by T̃i := q
−1
2 Ti. We then have the following

relations:

T̃ 2
i = 1 + (q

1
2 − q

−1
2 )T̃i

T̃iT̃j = T̃jT̃i |i− j| > 1

T̃iT̃jT̃i = T̃jT̃iT̃j |i− j| = 1

Hn is a q-analog of C[Sn] in the sense that setting q = 1 recovers the classical

algebra. (This can be seen from the presentations of Hn and Sn, which are identical

except for the first relation. This relation, in turn, becomes identical when we set

q = 1.) It should be noted that the parameter q is often taken to be a unit in

some ring, typically in connection with the theory of p-adic groups. The q = 0

specialization is also important in applications and has a rich combinatorial theory

of its own. On the other hand, a generic choice of q gives a representation theory

isomorphic to the q = 1 case (cf. [24, Thm. 8.1.5]). For our purposes, however, q

will simply be an indeterminate.

As a result, the character theory of Hn is closely related to the character theory

of C[Sn]. In particular, it can be shown using Tits’s deformation theorem that the

irreducible characters of Hn are in bijection with those of C[Sn] (cf. [24, Thm.

8.1.7]). We can thus carry over the eλ, hλ, pλ,mλ, and sλ bases of the space of C[Sn]

traces to bases of the space of Hn traces. We label the corresponding Hn traces ελq ,

ηλq , ψλq , φλq , and χλq . The matrices relating these bases to one another are identical

to the matrices relating the C[Sn] traces to one another, and thus to the matrices

relating various bases of Λ.

The quantum matrix algebra An arises in quantum group theory in the construc-

tion of the coordinate ring of quantum SLn(C). It is a quantization of the polyno-

mial algebra C[x1,1, . . . , xn,n] in the entries of a matrix (and thus the coordinate ring

of quantum SLn can be obtained by localizing it at the “quantum determinant”).

Abstractly, it is possible to view Hn and An as arising from the same quantization
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process, in which affine space is replaced by quantum affine space (for a detailed

exposition see [35, Ch. 4]), groups are replaced by Hopf algebras, and so forth (here

Hn enters the picture via quantum Schur-Weyl duality, as explained in [32]). Thus

we can expect classical relationships between the two algebras that are sufficiently

abstract (essentially, those that can be expressed in terms of commutative diagrams)

to carry though to the quantum setting. From our point of view, though, the main

point of An is that by using certain canonical bases, we can satisfactorily quantize

the classical immanants, as developed in [38].

In this section we will define the quantum matrix algebra, and give the basic

constructions that we will use it for.

For convenience, we will set ∆q := q
1
2 − q− 1

2 . Define the quantum matrix algebra

An to be the R-algebra generated by n2 elements {xi,j | i, j ∈ [n]} subject to the

relations:

xi,lxi,k = q
1
2xi,kxi,l , (4.1)

xj,kxi,k = q
1
2xi,kxj,k , (4.2)

xj,kxi,l = xi,lxj,k , (4.3)

xj,lxi,k = xi,kxj,l + (∆q)xi,lxj,k (4.4)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n. Note that by applying the relations

1-4, we can sort any monomial in An into lexicographic order on the subscripts

(possibly we will end up with a sum of sorted monomials, by relation 4). We

call such a monomial, that is, a monomial xi1,j1 · · ·xil,jl satisfying that ia ≤ ib for

a < b and ja ≤ jb for a < b, ia = ib, standard. Then we have (restating the above

discussion) that the standard monomials form a basis for An.

For permutations u, v, define xu,v := xu1,v1 · · ·xun,vn . Let A◦n ⊂ An be the

span of the elements {xu,v | u, v ∈ Sn}. This subspace is sometimes called the

“immanant space” and from this point on, essentially all our computations will take

place inside it. Notice that since, for any monomial xi1,j1 · · ·xil,jl the sets {i1, . . . , il}
and {j1, . . . , jl} are preserved by relations 1-4, a basis for A◦n is given by the standard

monomials in A◦n, that is, by the set {xe,w | w ∈ Sn}.
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4.1.2 Quantum Immanants

Matrix immanants were originally introduced by Littlewood in [40]. They can be

viewed as a family of matrix functions that interpolates between the permanent

and the determinant. They remained mostly ignored until the 1985 paper of Merris

and Watkins [42]. The combinatorial theory of matrix imminants was subsequently

developed by Goulden-Jackson [25], Greene [26], Stembridge [51], [52], and Haiman

[28], among others. In particular, much of the work in this dissertation was moti-

vated by conjectures given by Stembridge in [52].

The classical immanants can be defined as follows. Given a C[Sn] trace f , define

the f-immanant Immf (x) to be the element of C[x1,1, . . . , xn,n] given by

Immf (x) =
∑
w∈Sn

f(w)xe,w

(here C[x1,1, . . . , xn,n] is an ordinary ring of commutative polynomials in n2 vari-

ables.) Note that the imminant was originally defined to be, in our terminology,

Immχλ . Also note that the imminant does indeed interpolate between the perma-

nent and the determinant in the sense that Immχ1n (x) = Immsgn(x) = det(x) and

Immχn(x) = Imm1(x) = perm(x)

Of course we usually think of the ring C[x1,1, . . . , xn,n] as the ring of polynomials

in the entries of an n by n matrix, and we have the natural evaluation map given

by xi,j(A) = ai,j where A = [ai,j].

Let qu,v := q
1
2

(l(v)−l(u)). Given an Hn trace f , define the quantum f-immanant

Immf (x) to be the element of An given by the formula

Immf (x) =
∑
w∈Sn

f(T̃w)xe,w =
∑
w∈Sn

(qe,w)−1f(Tw)xe,w . (4.5)

In the classical case, we clearly can recover a trace f from its immanant Immf (x)

by evaluating Immf (x) on permutation matrices: f(w) = Immf (P (w)), where

P (w) = [δ(i, wj)] is the permutation matrix corresponding to w. This is also true in

the quantum case, provided that we appropriately define what it means to apply a

quantum polynomial to a matrix. We define the following evaluation of A◦n-elements
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on matrices. For p(x) ∈ A◦n, let {pw | w ∈ Sn} ⊂ R be the coefficients of p with

respect to the standard basis; i.e., the coefficients so that we have p =
∑

w∈Sn pwx
e,w.

Given an n by n matrix A = [ai,j], let

σA,e(p) :=
∑
w∈Sn

qe,wpwa
e,w .

We can then recover character evaluation with the formula

f(T̃w) = σP (w),e(Immf(x)) . (4.6)

4.1.3 Planar networks and Kazhdan-Lusztig elements

We need to generalize our planar network machinery to the quantum setting. For a

planar network F , βq(F ) is defined to be the Hecke algebra element
∑

w∈Q(F ) Tw.

These elements are closely connected to the so-called signless Kazhdan-Lusztig basis

{C ′w(q) | w ∈ Sn} for Hn.

In particular, recall that a permutation w = w1, . . . , wn is v-avoiding for a permu-

tation v = v1, . . . , vm if there is no substring wi1 , . . . , wim satisfying that wij < wik

if and only if vij < vik . Call a permutation w smooth if it is 3412-avoiding and

4231-avoiding. Then for smooth permutations w, it is known that

C ′w(q) = q−l(w)/2
∑
v≤w

Tv .

Moreover, using so-called “reversal factorizations”, Skandera constructed [46,

Lem. 5.3] for each smooth w a totally acyclic planar network F satisfying

βq(F ) =
∑
v≤w

Tv = ql(w)/2C ′w(q) .

Therefore, for an Hn trace f and w smooth, evaluating f on C ′w(q) is equivalent

to evaluating f on βq(F ) for some totally acyclic planar network F .

It should be noted that additional Kazhdan-Lusztig basis elements have been

shown to be combinatorially realizable by Billey and Warrington in [2]. However

certain combintorial difficulties prevent the proofs in this paper from carrying over
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directly to these elements. Another more general family of planar networks that

would be interesting to consider would be those that correspond to the extremal

rays of the cone C(Π) defined by Stembridge in [52, Sec. 5].

4.2 Interpretations of q-characters

In this section we will give two of the main results of this dissertation: combinatorial

interpretations of the quantum induced trivial and sign characters on the Hn ele-

ments corresponding to zig-zag networks. The interpretation of the induced trivial

character is novel, while the interpretation of the induced sign character was origi-

nally proposed by B. Shelton in [45]. The proof given here is original. We begin by

proving some combinatorial facts.

4.2.1 Combinatorial lemmas

To prove our main results, we will need to establish several facts concerning the

combinatorics of planar networks.

Claim 1. Given a planar network F with paths π of type (i → j) and π′ of type

(i′ → j′), if π ∩ π′ 6= ∅, there exist paths ρ, ρ′ in F of types (i→ j′) and (i′ → j).

Proof. Choose a vertex v in the intersection of π and π′. Then ρ can be constructed

by taking the union of the segment of π joining i and v and the segment of π′ joining

v and j′. We can construct ρ′ similarly.

Claim 2. Let F be totally acyclic. Then for i < j and k < l, if F contains paths of

types (i→ k), (j → l), (i→ l), and (j → k), the paths πi,k of type (i→ k) and πj,l

of type (j → l) intersect.

Proof. Since i < j and k < l, the paths πi,l and πj,k cross and thus intersect.

Applying the construction in the proof of the previous claim, we get paths of type

(i→ k) and (j → l) which also intersect. Since this F is totally acyclic, those must

be the unique paths πi,k and πj,l.
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Claim 3. Let F be totally acyclic with intersecting paths p of type (i → j) and p′

of type (i′ → j′), with i < i′. Then for any path q of type (k → l) with i < k < i′, q

intersects p′ if and only if q intersects the path πi′,j of type (i′ → j).

Proof. Let v be the leftmost vertex in p∩ p′. If q intersects the path joining si′ and

v (including v), we are done (since p′ and πi′,j both contain this path).

Otherwise, since i < k < i′, q has to intersect the path joining si and v, say at

v′. Suppose q intersects p′ and let w be a vertex in p′ ∩ q. Then there is a path

joining v′ and w given by the portion of p connecting v′ and v, and the portion of

p′ connecting v and w. Since q also contains both of these vertices, and F is totally

acyclic, q must contain this path. In particular, q contains v and thus intersects

πi′,j.

By exactly the same reasoning, if q intersects πi′,j, we again have that q contains

v and thus intersects p′.

4.2.2 Interpretation of σA,e(qu,vx
u,v)

The heart of the proofs of our formulas for the evaluation of the quantum charac-

ters is the combinatorial interpretation of expressions of the form σA,e(qu,vx
u,v). In

this section we give this interpretation, which we will later apply to the character

evaluations (by making use of some algebraic techniques).

We will begin by establishing some notation. Let F be a zig-zag network. Given

an integer tableau T , the row word rw(T ) is the permutation which consists of the

entries of T read left to right, first row to last row. For a permutation u, set T (u)

to be the Young tableau with a single row and row word u. For permutations u, v

set T (u, v) to be the F -tableau with source and sink tableaux T (u) and T (v),

respectively, if such a tableau exists. The existence of the tableau depends on

whether a certain permutation lies in Q(F ).

Claim 4. For permutations u, v, T (u, v) is well defined if and only if vu−1 ∈ Q(F ).

Proof. The tableau exists if and only if there is an appropriate path for each of

its cells. Denoting the one-line notations of u and v by u1 · · ·un and v1 · · · vn,
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respectively, the ith entry in T (u, v) is a path from source ui to sink vi, in other

words, a path from source ui to sink (vu−1)(ui). So the tableau exists if and only

if there are paths from source ui to sink (vu−1)(ui) for all i ∈ [n], or equivalently

from source j to sink (vu−1)(j) for all j ∈ [n]. This is precisely the statement that

vu−1 ∈ Q(F ).

Call a pair of paths π, π′ in a tableau T an inversion if π appears to the left of

π′ in T , π has a greater sink than π′, and π ∩ π′ 6= ∅. Set inv(T ) to be the number

of inversions in T .

We can now state the main combinatorial formula that we will prove. Let F be

a totally acyclic planar network with path matrix A = [ai,j] and fix this notation

through Claim 9. We want to establish the following formula for w < v ∈ Sn.

σA,e(qw,vx
w,v) =

qinv(T (w,v)) if vw−1 ∈ Q(F )

0 otherwise
. (4.7)

First, we show that it holds when w = e.

Claim 5. For v ∈ Sn, we have

σA,e(qe,vx
e,v) =

qinv(T (e,v)) if v ∈ Q(F )

0 otherwise
.

Proof. Recall that Equation (2.1) states that ae,v = 1 if v ∈ Q(F ) and 0 otherwise.

If v ∈ Q(F ), then T (e, v) is well defined and for every pair of indices appearing

out of order in t(T (e, v)), the corresponding paths in F cross and thus certainly

intersect. These pairs are the inversions of v so we have ql(v) = qinv(T (e,v)). Thus, we
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have

σA,e(qe,vx
e,v) = q

1
2
l(v)σA,e(x

e,v)

= q
1
2
l(v)q

1
2
l(v)ae,v

= ql(v)ae,v

= qinv(T (e,v))ae,v

=

qinv(T (e,v)) if v ∈ Q(F )

0 otherwise
.

Now we show the general case. We will proceed by induction on the length of

w, but first we will prove two lemmas that constitute the core of the argument.

Claim 6. Fix u, v, sk ∈ Sn so that 0 < l(u) < l(v), usk < u, and vsk > v. If

Equation (4.7) holds when (w, v) is replaced by (usk, vsk) then it also holds with

(w, v) replaced by (u, v).

Proof. By the defining equation (4.3) of the quantum matrix bialgebra, we have

σA,e(qu,vx
u,v) = σA,e(qu,vx

usk,vsk). Also, note that we have

qusk,vsk = q
1
2

(l(vsk)−l(usk))

= q
1
2

((l(v)+1−(l(usk)+1))

= q
1
2

((l(v)−l(usk)+2)

= (q)qu,v .

We have vsk(usk)
−1 = vsks

−1
k u−1 = vu−1, so if vu−1 ∈ Q(F ), then the tableaux

T (u, v) and T (usk, vsk) are well defined and contain the same sets of paths. In

fact they are identical except for the pair of paths πuk,vk and πuk+1,vk+1
. This pair

appears in order with respect to sinks in T (u, v) and out of order in T (usk, vsk);

since the paths cross they certainly form an inversion in the latter tableau. Thus,

37



q−1qinv(T (usk,vsk)) = qinv(T (u,v)) and we have

σA,e(qu,vx
u,v) = σA,e(qu,vx

usk,vsk)

= σA,e(q
−1qusk,vskx

usk,vsk)

= q−1

qinv(T (usk,vsk)) if vsk(usk)
−1 ∈ Q(F )

0 otherwise

=

q−1qinv(T (usk,vsk)) if vu−1 ∈ Q(F )

0 otherwise

=

qinv(T (u,v)) if vu−1 ∈ Q(F )

0 otherwise
.

Claim 7. Fix u, v, sk ∈ Sn so that 0 < l(u) < l(v), usk < u, and vsk < v. If

Equation (4.7) holds with (w, v) replaced by (usk, vsk) and with (w, v) replaced by

(usk, v) then it also holds with (w, v) replaced by (u, v).

Proof. By arguments almost identical to the ones above, in this case we have

qusk,vsk = qu,v ,

qusk,v = (q
1
2 )qu,v .

(4.8)

Again by the defining relations of the quantum matrix bialgebra, we have

σA,e(qu,vx
u,v) = σA,e(qu,vx

usk,vsk) + σA,e((∆q)qu,vx
usk,v) . (4.9)

As before, T (u, v) is well defined if and only if T (usk, vsk) is well defined,

equivalently, if and only if vu−1 ∈ Q(F ). Furthermore, Claim 1 implies that if

v(usk)
−1 /∈ Q(F ), (implying that there is no tableau T (usk, v)), then the pair

of paths πuk,vk and πuk+1,vk+1
do not intersect. Since the order in which these

paths appear is the only difference between T (usk, vsk) and T (u, v), we have that if

v(usk)
−1 /∈ Q(F ), then

inv(T (usk, vsk)) = inv(T (u, v)) . (4.10)
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On the other hand if v(usk)
−1 ∈ Q(F ) (meaning that T (usk, v) is well defined),

then Claim 2 implies that πuk,vk and πuk+1,vk+1
do intersect. Thus, these paths are

an inversion in T (u, v). Also, πuk+1,vk and πuk,vk+1
cross and are thus an inversion

in T (usk, v). Finally, πuk,vk and πuk+1,vk+1
appear in order in T (usk, vsk), and so

cannot be an inversion. Since these three tableaux are all identical everywhere else,

we have, if v(usk)
−1 ∈ Q(F )

inv(T (usk, v)) = inv(T (u, v)) = inv(T (usk, vsk)) + 1 . (4.11)

Now we will establish the claim. By Equation (4.9), we have

σA,e(qu,vx
u,v) = σA,e(qu,vx

usk,vsk) + σA,e((∆q)qu,vx
usk,v) . (4.12)

Applying Equation (4.8) to the right hand side of Equation (4.12), we obtain

σA,e(qu,vx
u,v) = σA,e(qusk,vskx

usk,vsk) + σA,e((∆q)(q
− 1

2 )qusk,vx
usk,v)

= σA,e(qusk,vskx
usk,vsk) + σA,e(1− q−1)qusk,vx

usk,v) .
(4.13)

Appling Equation (4.7) to the right hand side of Equation (4.13) gives

σA,e(qu,vx
u,v) =


qinv(T (usk,vsk)) + (1− q−1)qinv(T (usk,v)) if vu−1, v(usk)

−1 ∈ Q(F )

qinv(T (usk,vsk)) if vu−1 ∈ Q(F ), v(usk)
−1 /∈ Q(F )

0 otherwise

.

(4.14)

Applying Equation (4.10) to the first case in Equation (4.14) and Equation (4.11)
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to the second case gives

σA,e(qu,vx
u,v) =


(q−1)qinv(T (u,v)) + (1− q−1)qinv(T (u,v)) if vu−1, v(usk)

−1 ∈ Q(F )

qinv(T (u,v)) if vu−1 ∈ Q(F ), v(usk)
−1 /∈ Q(F )

0 otherwise

=


qinv(T (u,v)) if vu−1, v(usk)

−1 ∈ Q(F )

qinv(T (u,v)) if vu−1 ∈ Q(F ), v(usk)
−1 /∈ Q(F )

0 otherwise

=

qinv(T (u,v)) if vu−1 ∈ Q(F )

0 otherwise
.

This completes the proof.

Claim 8. Fix u ∈ Sn and suppose that for each w ∈ Sn with l(w) < l(u), Equation

(4.7) holds for all v ∈ Sn with l(v) > l(w). Then it holds for w = u, for all v ∈ Sn
with l(v) > l(u).

Proof. We have already checked u = e (Claim 5); assume l(v) > l(u) > 0. We

can therefore choose k so that usk < u. This implies that l(vsk) and l(v) are both

greater than l(usk) (cf. [3, Prop. 2.2.7]), so by the hypotheses of the claim, we have

that Equation (4.7) holds for both w = usk, v = v and w = usk, v = vsk. Thus, if

vsk > v the claim is given by Claim 6, and if vsk < v it is given by Claim 7.

We are now ready to prove the section’s main claim.

Claim 9. Given w, v ∈ Sn, with w < v, we have

σA,e(qw,vx
w,v) =

qinv(T (w,v)) if vw−1 ∈ Q(F )

0 otherwise
.

Proof. By Claim 8, if the equation holds for all pairs w′, v with l(w′) < l(w), l(v) >

l(w′), then it holds for all v ∈ Sn with l(v) > l(w). By Claim 5, the equation holds

for w = e and all v. Thus, by induction on l(w), the claim holds in general.
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4.2.3 Interpretation of ηλq (βq(F ))

For any subset X = {x1, . . . , xm} of the positive integers, labelled so that

x1 < · · · < xm ,

we denote by SX the group of automorphisms of X. As with Sn, we can represent

elements of SX as linear orderings of the letters {x1, . . . , xm}. In particular, the one-

line notation of an automorphism w ∈ SX is given by [w(x1), . . . , w(xm)]. Much of

our discussion of permutation notation carries over to this situation and will be used

without further comment. In particular, the length l(w) of a permutation w ∈ SX
is the number of pairs 0 < i < j ≤ m satisfying w(xi) > w(xj).

Given X ⊂ Y , w ∈ SX , v ∈ SY , we say that w is the restriction of v to X, and

write v|X = w, if w is the restriction of v as functions. For X1, . . . , Xk disjoint with

X =
⋃
iXi, there is a natural embedding SX1 ×· · ·×SXk ↪→ SX which associates to

a tuple [w1×· · ·×wk] ∈ SX1×· · ·×SXk the unique automorphism w ∈ SX satisfying

w|Xi = wi for 0 < i ≤ k. We will use this embedding to regard SX1 × · · · × SXk as a

subgroup of SX , and write SX1 × · · · × SXk ⊂ SX .

If λ is a partition of n, we say that an ordered set partition I = I1, . . . , Ik of [n]

has shape λ if |Ij| = λj for all j ∈ [k]. Define SI ⊂ Sn by SI = SI1 × · · · × SIj . Let

wIj denote the identity element of SIj . Let wI be the permutation whose one-line

notation is given by the concatenation wI1 · · ·wIk of the one-line notations of the

identity elements of the blocks, in order. For example, if

I = [{1, 4, 7}, {2, 6}, {3, 5}]

then wI is the permutation given in one-line notation by

wI = [1 4 7 2 6 3 5] .

For an ordered set partition I of [n], and a permutation w ∈ SI , the number of

inversions in the Sn-element wwI can be related to the number of inversions in the

restrictions of w to each block of I.
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Claim 10. Given an ordered set partition I = I1, . . . , Ik of [n], permutations w1, . . . , wk

with wj ∈ SIj for all j, and w ∈ SI satisfying that w restricts to wj on each Ij, we

have ∑
j∈[k]

l(wj) = l(wwI)− l(wI) .

Proof. In one-line notation, wwI is just the concatenation of the one-line notations

of the wi’s. The inversions within each block are counted by the sum on the left

hand side, and the inversions among blocks are counted by l(wI) (since the one-line

notation of wI consists of the same blocks, each written in increasing order). Since

this is all the inversions of wwI we have the claim.

Using Claim 10, we can simplify certain expressions in An that will appear in

the expansions of our immanants.

Claim 11. Fix an ordered set partition I = I1, . . . , Ik of [n]. Then we have∏
j≤k

∑
u∈SIj

ql(u)xwIj ,u =
∑
w∈SI

ql(wwI)−l(wI)xwI ,wwI . (4.15)

Proof. Expanding the left hand side, we see that each term in the sum is determined

by choosing uj ∈ SIj for each j. Applying Claim 10 we have∏
j≤k

∑
u∈SIj

ql(u)xwIj ,u =
∑

u1,...,uk∈SI1 ,...,SIk

ql(u1) · · · ql(uk)xwI1 ,u1 · · ·xwIk ,uk

=
∑
w∈SI

ql(wwI)−l(wI)xwI1 ,w|I1 · · ·xwIk ,w|Ik

=
∑
w∈SI

ql(wwI)−l(wI)xwI ,wwI .

Recall that an F -tableau T is row-closed if each row of t(T ) is a rearrangement

of the corresponding row of s(T ), and canonical if it satisfies s(T ) is row strict. Let

flat(T ) be the single row tableau obtained from T by composing the rows of T , first

to last.
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We are now in a position to give a combinatorial formula for certain evaluations

of ηλq .

Fix a partition λ of n. Let O(λ) denote the set of ordered set partitions of [n]

with shape λ. Let F be a totally acyclic planar network of order n with path matrix

A = [ai,j]. Let Tλ(F ) denote the set of canonical row-closed F -tableaux of shape λ.

Theorem 4. Let v ∈ Sn be a 3412, 4231-avoiding permutation with planar network

Fv, and λ ` n. Then we have

ηλq (βq(F )) =
∑

T∈Tλ(F )

qinv(flat(T )) .

Proof. By a result of Konvalinka and Skandera [38, Thm. 5.4], we have

Immηλq
(x) =

∑
I∈O(λ)

perq(xI1,I1) · · · perq(xIk,Ik) . (4.16)

We can use this result to apply our previous combinatorial formula to the evalu-

ation of ηλq (βq(F )). First, we apply the definition of βq and perform a couple simple

algebraic manipulations. This gives us

ηλq (βq(F )) = ηλq (
∑

w∈Q(F )

Tw)

=
∑

w∈Q(F )

ηλq (Tw)

=
∑

w∈Q(F )

qe,w(qe,w)−1ηλq (Tw) .

(4.17)

By Equation (2.1) we can take the sum in the last expression of Equation (4.17) to

be over all of Sn, using the path matrix of F to cancel the extra terms. This gives

ηλq (βq(F )) =
∑
w∈Sn

qe,w(qe,w)−1ηλq (Tw)ae,w

= σA,e(
∑
w∈Sn

(qe,w)−1ηλq (Tw)xe,w) .
(4.18)

Applying Equation (4.5) to the final expression of Equation (4.18), we obtain

ηλq (βq(F )) = σA,e(Immηλq
(x)) . (4.19)
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Now we can use Konvalinka and Skandera’s formula. Applying Equation (4.16)

to the right hand side of Equation (4.19) yields

ηλq (βq(F )) = σA,e(
∑

I∈O(λ)

perq(xI1,I1) · · · perq(xIk,Ik)) . (4.20)

Applying the definition of the quantum permanant and Claim 11, with the sub-

stitution of q
1
2 for q in Equation (4.15), gives the following transformation of the

right hand side of Equation (4.20)∑
I∈O(λ)

σA,e(perq(xI1,I1) · · · perq(xIk,Ik)) = σA,e(
∑

I∈O(λ)

∏
j≤k

∑
u∈SIj

q
1
2
l(u)xwIj ,u)

=
∑

I∈O(λ)

∑
w∈SI

σA,e(qwI ,wwIx
wI ,wwI ) .

(4.21)

Finally, we apply Equation (4.7) to the right hand side of Equation (4.21) to get

ηλq (βq(F )) =
∑

I∈O(λ)

∑
w∈SI∩Q(F )

qinv(T (wI ,wwI)) .

A canonical row-closed tableau T of shape λ is determined by a choice of an

ordered set partition of [n] of shape λ to be the source/sink set of each row, and

a choice of paths using the given sources and sinks in each row. The row word of

s(T ) is then wI , and the type of T is an element of SI . This correspondence can be

reversed, and furthermore flat(T ) = T (wI , wwI), so we have the claim.

An example of this formula in action is given in Figure 4.1. A planar network F

is given Figure 4.1a, and its eight source to sink paths are illustrated and labelled.

For the given network, we have βq(F ) = Te + T[213] + T[132] + T[231]. Thus, we can

calculate character evaluations of this Hecke algebra element using F -tableaux.

Figure 4.1b gives such an evaluation. There are four canonical row-closed F -

tableaux of shape 3; these are pictured. Note that flattening a one-row tableau is

trivial so for each tableau T of shape 3 we have inv(flat(T )) = inv(T ). In this case

the tableaux have 0, 1, 1, and 2 inversions (these inversion numbers are given in the

figure). Thus, we have

η3
q (Te + T[213] + T[132] + T[231]) = q0 + q1 + q1 + q2

= q2 + 2q + 1 .
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F =

π1,1 = π2,2 = π3,3 = π1,2 =

π2,3 = π2,1 = π3,2 = π3,1 =

βq(F ) = Te + T[213] + T[132] + T[231]

(a) F and its paths

T : π1,1 π2,2 π3,3 π1,1 π2,3 π3,2 π1,2 π2,1 π3,3 π1,2 π2,3 π3,1

inv(flat(T )): 0 1 1 2

η3
q (βq(F )) = q2 + 2q + 1

(b) λ = 3

T :
π1,1

π2,2 π3,3

π1,1

π2,3 π3,2

π2,2

π1,1 π3,3

π3,3

π1,1 π2,2

π3,3

π1,2 π2,1

inv(flat(T )): 1 2 1 0 1

η21
q (βq(F )) = q2 + 3q + 1

(c) λ = 21

Figure 4.1: Example computations of ηλq

Similarly, Figure 4.1c gives the evaluation of η21
q (βq(F )) for the given network

F . In this case there are five F -tableau of shape 21, which are pictured. For each

tableau T , inv(flat(T )) is given; note that here the flattening is not vaccuous. The

tableaux have 0, 1, 1, 1, and 2 inversions and thus we have η21
q (βq(F )) = q2 + 3q+ 1

for the given F .
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4.2.4 Interpretation of ελq (βq(F ))

In this subsection, we extend our interpretation of the induced trivial characters to

the induced sign characters. We will do this by means of the tools we have developed

in previous sections, with the main new ingredient being a certain involution on F -

tableau. We will begin by developing the combinatorics neccesary to obtain our

result.

Let F be a zig-zag network. It will be useful to consider a slightly modified

inversion statistic on tableaux. For an F -tableau T , call a pair of paths π, π′ in T

a strict inversion if π and π′ appear in the same row of T , π appears to the left of

π′ in T , π has a greater sink than π′, and π ∩ π′ 6= ∅. Set inv−(T ) to be the number

of strict inversions in T .

Similarly, let a strict inversion in an integer tableau U be a pair i < j appearing

in the same row of U with i to the right of j, and set inv−(U) to be the number of

strict inversions in U .

We state a simple identity involving strict inversions.

Claim 12. For any F -tableau T , we have inv(flat(T )) = inv−(T ) + inv(T>).

Proof. The first term is the number of inversions within each row of T , the second

is the number of inversions among the rows.

In order to obtain the desired interpretation of ελq , we will slightly modify Equa-

tion (4.7). For w ∈ SI , let T (I, w) be the unique F -tableau with shape λ and type

w satisfying that the row word of s(T (I, w)) is wI , if such a tableau exists. While

this notation is very similar to T (u, v), introduced in Subsection 4.2.2, the type of

the first parameter can be used to distinguish the two.

Note that T (wI , wwI) = flat(T (I, w)), and so it follows from Claim 4 that both

T (wI , wwI), T (I, w) are well defined if and only if w ∈ Q(F ).

Claim 13. Let F be a descending star network with path matrix A = [ai,j]. Let I

be an ordered set partition of shape λ. Then for w ∈ SI , we have

σA,e((qwI ,wwI )
−1xwI ,wwI ) =

qinv(T (I,w)>) if w ∈ Q(F )

0 otherwise
. (4.22)
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Proof. We begin by trivially reorganizing the left hand side of (Equation 4.22) to

obtain

σA,e((qwI ,wwI )
−1xwI ,wwI ) = (qwI ,wwI )

−2σA,e(qwI ,wwIx
wI ,wwI ) . (4.23)

To improve this expression, we will examine the strict inversions of T (I, w). Since

there are no inversions within the rows of s(T (I, w)), any potential strict inversion

- a pair of paths whose sinks are out of order - must be a pair of crossing paths, and

thus a pair of intersecting paths. Therefore, we have

inv−(T (I, w)) = inv−(t(T (I, w))) .

By the construction of T (I, w) and Claim 10, we can rewrite the right hand side of

this equation to obtain

inv−(T (I, w)) = l(wwI)− l(wI) .

Applying this identity to the right hand side of Equation (4.23) gives us

σA,e((qwI ,wwI )
−1xwI ,wwI ) = q−inv−(T (I,w))σA,e(qwI ,wwIx

wI ,wwI ) . (4.24)

Now we can apply Equation (4.7) to the right hand side of Equation (4.24) to

obtain

σA,e((qwI ,wwI )
−1xwI ,wwI ) =

q−inv−(T (I,w))qinv(T (wI ,wwI)) if wwI(wI)
−1 ∈ Q(F )

0 otherwise

=

qinv(T (wI ,wwI))−inv−(T (I,w)) if w ∈ Q(F )

0 otherwise
.

(4.25)

Using the fact that T (wI , wwI) = flat(T (I, w)) and applying Claim 12 to the

last expression of Equation (4.25) we have

σA,e((qwI ,wwI )
−1xwI ,wwI ) =

qinv(T (I,w)>) if w ∈ Q(F )

0 otherwise
.

47



Fix a partition λ of n, and let F be a zig-zag network of order n. As we have

already seen in the proof of Theorem 4, the set Tλ consists entirely of tableaux of

the form T (I, w).

Claim 14. Tλ = {T (I, w) | I ∈ O(λ), w ∈ SI ∩Q(F )}.

Now, let T ◦λ ⊂ Tλ denote the set of canonical row-closed row-strict F -tableaux of

shape λ. As with η, we have an expression for the ε immanant, which is similar to

Equation (4.16) except with determinants rather than permanants. This, of course,

introduces signs; to get a combinatorial interpretation of ε, we will need a sign

reversing involution (in a sense we will soon define) on Tλ \ T ◦λ that preserves inv

(again, in a particular sense). Such a map is easy to construct.

Given an F -tableau T = ti,j, let (i, j′) and (i, j) (for j < j′) be the maximal

pair of indices such that ti,j intersects ti,j′ . By maximal we mean that (i, j′, j) is the

(left to right) lexicographically maximal triple such that ti,j intersects ti,j′ . Suppose

ti,j has type (m → n) and ti,j′ has type (m′ → n′). Then by Claim 1, and the

uniqueness of paths in a descending star network, there is an F -tableau U that is

identical to T except that ui,j has type (m → n′) and ui,j′ has type (m′ → n). Let

ι : Tλ → Tλ be the map that assigns to each tableau T that has a pair of intersecting

paths in some row this unique U , and fixes all other tableaux.

As an example, consider again the descending star network given in Figure 4.1.

Figure 4.2a shows the four F -tableaux of shape 3, and Figure 4.2b shows the five

F -tableaux of shape 21. The number of inversions in these tableaux’s transposes is

also given, along with arrows indicating the action of the map ι. It can be seen that

for this choice of F , ι is an involution that fixes the inversion number. This is in

fact true in general.

Claim 15. Fix λ ` n. The map ι is an involution on Tλ which fixes T ◦λ .

Proof. Let T be a tableau in Tλ. If there are no intersecting paths in any row of T ,

then we have ι(ι(T )) = ι(T ) = T . Otherwise, let paths p of type (m → n) and p′

of type (m′ → n′) be the unique pair of paths in T that are modified by ι. Suppose

they are in positions (i, j) and (i, j′), respectively, with j′ > j. Then m′ > m (since
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F =

T = π1,1 π2,2 π3,3 ↔ π1,1 π2,3 π3,2

inv(T>) = 0 0

T = π1,2 π2,1 π3,3 ↔ π1,2 π2,3 π3,1

inv(T>) = 0 0

(a) λ = 3

T =
π1,1

π2,2 π3,3

↔
π1,1

π2,3 π3,2

inv(T>) = 1 1

T =
π3,3

π1,1 π2,2

↔
π3,3

π1,2 π2,1

inv(T>) = 0 0

T =
π2,2

π1,1 π3,3

	

inv(T>) = 1

(b) λ = 21

Figure 4.2: Example of ι involution. The paths in F are illustrated in Figure 4.1.
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T is canonical). By our choice of j and j′, no path to the right of p′ in T intersects

either p or p′, and thus, no such path intersects πm,n′ or πm′,n. Again by our choice

of j and j′, no path lying between p and p′ in T intersects p′, and thus by Claim 3

(which applies since T is canonical) no such path intersects πm′,n. Since all other

cells in ι(T ) are identical to those of T , we have that (i, j′, j) is the lexicographically

maximal triple of indices for which (ι(T ))i,j and (ι(T ))i,j′ intersect. So, applying ι

again will switch back the same pair of paths, and we have ι(ι(T )) = T .

The tableaux which are fixed by ι are precisely those which have no intersecting

paths in any row. In particular, for such a tableau T , no adjacent pair of paths in

a row of T intersects. Since T is canonical, this is equivalent to the condition that

T is row-strict, i.e., T ∈ T ◦λ .

We will now show that the map ι preserves the number of inversions in the

transpose of a tableau.

Claim 16. For any T ∈ Tλ, we have inv(ι(T )>) = inv(T>).

Proof. If T ∈ T ◦λ , the claim is trivial. Otherwise, let (i, j) and (i, j′) be the indices

of the paths that get switched by ι. Let ι(p) and ι(p′) be the paths in positions (i, j)

and (i, j′) of ι(T ), respectively. Let v1 and v2 be the the leftmost and rightmost

vertices, respectively, in the intersection of p and p′. Let A, B, C, D, and E be the

paths connecting m to v1, m′ to v1, v2 to n, v2 to n′, and v1 to v2, respectively. Let

q = πa,b be a path that forms a weak inversion with p or p′ in T>. Then (by the

definition of a weak inversion) q is in a different column of T> than that occupied

by both p and p′ and therefore a different row of T from both p and p′; in particular,

q is unchanged by ι.

If q intersects E, then it intersects p, p′, ι(p), and ι(p′). So (q, p) is an inversion

if and only if (q, ι(p′)) is, and likewise for (q, p′) and (q, ι(p)). Thus, the number of

weak inversions in the transpose involving q is unchanged if q intersects E

If q does not intersect E, then since F is acyclic as an undirected graph, q can

intersect at most one of A, B, C, and D. Suppose that q intersects only A. Then

q does not intersect either p′ or ι(p′). The only possible arrangement of sinks is
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b < n < n′, so q forms an inversion with p if and only if it does with ι(p). The

analysis of the other three cases (q intersects B, C, or D) is almost identical. Thus,

the number of weak inversions in the transpose involving q is unchanged if q does

not intersect E.

Since the number of inversions in the transpose involving any particular path is

unchanged by ι, we have the claim.

The purpose of the ι map is to associate tableaux that contribute negatively in

certain expressions (which will we see later) for the evaluation of ελq with tableaux

that contribute positively in these expressions. The following claim will provide this

property.

Claim 17. For T ∈ Tλ \ T ◦λ , we have (−1)l(rw(t(T ))) = −(−1)l(rw(t(ι(T ))))

Proof. Sign, i.e., the map w 7→ (−1)l(w), is a homomorphism. Applying ι to a tableau

T amounts to multiplying rw(t(T )) by a (not necessarily adjacent) transposition,

all of which have sign −1.

Finally, we have that ι is an involution.

Claim 18. ι(ι(T )) = ι(T )

Proof. This is by the definition of ι.

We have everything we need to prove the following formula, originally proposed

by B. Shelton.

Theorem 5. Let v ∈ Sn be a 3412, 4231-avoiding permutation with planar network

Fv, and λ ` n, and let T ◦λ be the set of canonical row-closed row-strict Fv tableaux.

Then we have

ελq (βq(Fv)) =
∑
T∈T ◦λ

qinv(T>) . (4.26)

Proof. Again by a result of Konvalinka and Skandera [38, Thm. 5.4], we have

ελq (βq(F )) =
∑

I∈O(λ)

σA,e(detq(xI1,I1) · · · detq(xIk,Ik) .
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Applying the definition of the quantum determinant and Claim 11, with the

substitution of q
1
2 for q in Equation (4.15), we obtain∑

I∈O(λ)

σA,e(detq(xI1,I1) · · · detq(xIk,Ik)

= σA,e(
∑

I∈O(λ)

∏
j≤k

∑
u∈SIj

(−1)l(u)q−
1
2
l(u)xwIj ,u)

=
∑

I∈O(λ)

∑
w∈SI

σA,e((−1)l(wwI)−l(wI)(qwI ,wwI )
−1xwI ,wwI ) .

(4.27)

Applying Equation (4.22) to the final expression in Equation (4.27) gives∑
I∈O(λ)

σA,e(detq(xI1,I1) · · · detq(xIk,Ik) =
∑

I∈O(λ)

∑
w∈SI∩Q(F )

(−1)l(wwI)−l(wI)qinv(T (I,w)>) .

(4.28)

Transforming the right hand side of Equation (4.28) using the construction of T (I, w)

and then applying Claim 14, gives∑
I∈O(λ)

σA,e(detq(xI1,I1) · · · detq(xIk,Ik)

=
∑

I∈O(λ)

∑
w∈SI∩Q(F )

(−1)l(rw(t(T (I,w))))−l(rw(s(T (I,w))))qinv(T (I,w)>)

=
∑
T∈Tλ

(−1)l(rw(t(T )))−l(rw(s(T )))qinv(T>) .

Let us examine the terms of this sum. For any T ∈ Tλ \ T ◦λ , we have by Claims 15,

16, 17, and 18 that

(−1)l(rw(t(T )))−l(rw(s(T )))qinv(T>) = (−1)(−1)l(rw(t(ι(T ))))(−1)l(rw(s(ι(T ))))qinv(ι(T )>) .

Thus, the ι involution pairs all the terms of the sum into canceling pairs ex-

cept those that come from T ◦λ . Now, for T ∈ T ◦λ , we have t(T ) = s(T ) so

(−1)l(rw(t(T )))−l(rw(s(T ))) = 1 and each of these terms contribute positively. The de-

sired formula follows.

Consider again the planar network F illustrated in Figure 4.1. Figure 4.3 gives

the full computation of ελq (βq(F )) for this network for λ = 3 and λ = 21. Note that

52



F =

T ◦3 = ∅
ε3q(βq(F )) = 0

T ◦21 = {T =
π2,2

π1,1 π3,3

}, inv(T>) = 1

βq(F ) = Te + T[213] + T[132] + T[231]

ε21
q (βq(F )) = q

Figure 4.3: Example computations of εq.

in the case λ = 3, there are no canonical row-bijective row-semistrict F -tableaux

so in this case, the right hand side of Equation (4.26) is an empty sum and is thus

equal to 0.
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