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Abstract

Combinatorial interpretations have been used to show the total nonnegativity

of induced trivial character and induced sign character immanants. The irreducible

character immanants are known to be totally nonnegative as well, however, providing

a combinatorial interpretation remains an open problem. To find such combinatorial

interpretations we explore the quantum analogs of the symmetric group characters

associated to the above mentioned immanants. In this paper, a combinatorial inter-

pretation for the quantum induced sign characters on certain elements of the Hecke

algebra is provided. This interpretation is then related to the quantum chromatic

symmetric function introduced by Shareshian and Wachs. These interpretations

involve a certain class of posets and associated planar networks. Lastly, for a re-

stricted subset of these planar networks, properties of the sequence of coefficients of

the induced sign characters of the Hecke algebra are discussed.
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Introduction

A real matrix is called totally nonnegative (TNN) if each of its square submatrices

has a nonnegative determinant. A polynomial p(x) in n2 variables is called totally

nonnegative if p(A) is nonnegative for every totally nonnegative matrix A. Applica-

tions of total nonnegativity span from its origin of oscillation in mechanical systems

to stochastic processes and approximation theory to the theory of immanants [5].

The study of total nonnegativity involves answering the questions “What properties

do totally nonnegative matrices have?” and “What properties do they transfer to

related objects, such as polynomials and planar networks?”

The total nonnegativity of a polynomial in n2 variables can be shown by provid-

ing a combinatorial or graph-theoretic interpretation for the nonnegative numbers

p(A) as A varies over all TNN matrices. The determinant, det(x), is a familiar

example of a totally nonnegative polynomial with a graph-theoretic interpretation

which was proven by Karlin and MacGregor [10] and Lindström [13].

A generating function that lies in the complex span of {x1,v1 , . . . , xn,vn | v ∈ Sn}

can be associated to each function on the symmetric group, Sn. Such generating

functions are called immanants, Immf (x). Some such immanants are conjectured

and others are known to be TNN polynomials, but only for very special class func-

tions f is there a known graph-theoretic interpretation for the nonnegative numbers

Immf (A) as A varies over all TNN matrices.

The special class functions of interest are Sn-character, which form bases of the

space of class functions on Sn. The induced sign character immanants and induced

trivial character immanants can be written as sums of products of matrix minors

and sums of products of permanents [15], respectively. These characters can further
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be combinatorially interpreted as the number of Young tableaux with particular

properties, thus proving their total nonnegativity. Stembridge [22] proved the total

nonnegativity of the irreducible character immanants, but the problem of strength-

ening this result to include a graph-theoretic interpretation remains open. He con-

jectured the total nonnegativity of the monomial virtual character immanants. All

TNN class immanants are known to be nonnegative linear combinations of monomial

immanants. Thus if Stembridge’s conjecture is true, the TNN class functions can

be characterized as those which are nonnegative linear combinations of monomial

immanants. The interest in advancing the study of these Sn-character immanants

has led to the study of their quantum analogs, defined on the Hecke algebra, Hn(q).

The total nonnegativity of these characters has applications to graph theory.

For any graph G, the chromatic polynomial in k, χG(k), counts the number of

proper colorings of the graph that use k colors. Stanley [21] defined a chromatic

symmetric function in the variables x = (x1, x2, . . . ). The specialization of this

symmetric function at x1 = x2 = · · · = 1 yields the chromatic polynomial. Stanley’s

chromatic symmetric function can be stated in terms of the monomial, elementary,

and Shur symmetric functions. In general, the chromatic symmetric function is not

elementary nonnegative. However, for certain graphs G, the chromatic symmetric

function has been shown to be elementary nonnegative and Shur nonnegative [21].

In Chapter 1, the symmetric group, Sn, and some of its properties are reviewed.

Special attention is payed to a particular reduced expression for each element of

Sn. A family of maps defined on Sn are introduced in order to discuss properties

of permutations in the symmetric group as well as to introduce a new family of

polynomials. These new polynomials are then used to generalize transition matrices

between bases of the quantum matrix bialgebra.

The combinatorial objects used to interpret Sn-characters and their associated

immanants are introduced in Chapter 2. The Sn-characters mentioned above are

defined and the known results are summarized. Section 2.4 aims to present a com-

binatorial interpretation of the induced sign characters of the Hecke algebra. This

interpretation is then related to the irreducible characters of the Hecke algebra and

the quantum chromatic symmetric function.
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Lastly, Chapter 3 introduces a conjectured generalization of the evaluation of

the family of maps {σA,u : A[n],[n](n; q) → Z[q
1
2 − q¯

1
2 ]|u ∈ Sn}, introduced in Section

2.4, on certain elements of A[n],[n](n; q). In the last section, a combinatorial proof

that the sequence of coefficients in Immǫλq
(x) is symmetric is provided for specific

variables x.
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Chapter 1

The Symmetric group and the

Quantum Matrix Bialgebra

An overview of the symmetric group and some of its properties is provided first.

A particular reduced expression for each element of the group will be developed

for use throughout the first two chapters. The Bruhat order, a partial ordering

of the symmetric group, is summarized. Next a family of maps is defined on the

the symmetric group and results about these maps are used to state properties of

the class of reduced expressions of permutations in the symmetric group. Lastly,

the quantum matrix bialgebra is summarized and a previous result on transition

matrices between bases is generalized using a new family of polynomials.

1.1 The Symmetric group Sn

The symmetric group, Sn, is the group of all permutations of the letters 1, . . . , n.

Let s1, . . . , sn−1 be the generators of Sn, which satisfy the conditions

si
2 = e for i = 1, . . . , n− 1,

sisjsi = sjsisj if |i− j| = 1,

sisj = sjsi if |i− j| ≥ 2.

(1.1.1)
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Let Sn act on the rearrangements of the letters [n] = {1, . . . , n} by

si ◦ u1 · · · un = u1 · · · ui−1ui+1uiui+2 · · · un. (1.1.2)

Each permutation w = si1si2 · · · sil can be represented in one-line notation as

w1w2 · · ·wn = si1 ◦ (· · · (sil ◦ (1 · · ·n)) · · · ). (1.1.3)

A pair of letters wi and wj in the one-line notation of w form an inversion if wi > wj

and i < j. Let inv(w) = ℓ be the total number of inversions in w and say w has

length ℓ = ℓ(w). Any expression for w consisting of ℓ generators is called a reduced

expression. For example, s2s1s3 in S4 is a reduced expression for the permutation

w = 2413 in one-line notation and ℓ(w) = 3. A reduced expression for a permutation

is not unique. In fact, s2s3s1 is also a reduced expression for 2413. However, the

length of a permutation is unique. That is, every reduced expression for w will be

a product of ℓ(w) generators. A permutation is called even (odd) if every reduced

expression is a product of an even (odd) number of generators.

Define the map ⊕ : Sn ×Sm → Sn+m by

si1 · · · sik ⊕ sj1 · · · sjℓ = si1 · · · siksj1+n · · · sjℓ+n.

A permutation w is said to be ⊕-indecomposable if it cannot be decomposed as

w = u⊕v. The following observation about the ⊕-decomposability of a permutation

is due to Rhoades and Skandera [16].

Observation 1.1.1. A permutation w ∈ Sn+m decomposes as w(1) ⊕ w(2) with

w(1) ∈ Sn, w
(2) ∈ Sm if and only if no reduced expression for w contains the

transposition sn.

One subgroup of the symmetric group that is of interest is the Young subgroup.

Fix λ = (λ1, · · · , λr) a partition of n and define the Young subgroup, Sλ, of Sn to

be

Sλ = S{1,...,λ1} ×S{λ1+1,...,λ1+λ2} × · · · ×S{n−λr+1,...,n}.

Observe that Sλ is isomorphic to Sλ1 ×Sλ2 × · · · ×Sλr
.
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The Bruhat order is a partial order of Sn defined by u ≤ v if some subword of a

reduced expression for v is a reduced expression for u. See [2] for more information.

A generator si is said to be a left ascent (descent) of a permutation u if siu > u

(siu < u) in the Bruhat order. For example, if si1 · · · sik is a reduced expression

for u, then si1 is a left descent of u. Results by Björner and Brenti [1] imply the

following lemma about intervals in the Bruhat order.

Lemma 1.1.2. In any interval [v, w] of the Bruhat order where v < w, there are

equally many even and odd permutations.

For consistency it will be useful to specify a particular reduced expression for

each permutation. Given a permutation u ∈ Sn with one-line notation u1u2 · · · un

construct an expression si1 · · · siℓ for u in the following way:

1. If letter 1 is in position j+1 of u, then let si1 , si2 , . . . , sij record the adjacent

transpositions required to move letter 1 from the j + 1 position of u to the

first position of sijsij−1
· · · si1(u1u2 · · · un). That is,

si1 = sj,

si2 = sj−1,

...

sij = s1.

Define A1 = sjsj−1 · · · s1.

2. If letter 2 is now in position k + 1 of s1 · · · sj(u1u2 · · · un), then let sij+1
,

sij+2
, . . . , sij+k

record the adjacent transpositions required to move letter

2 from the k + 1 position of s1 · · · sj(u1u2 · · · un) to the second position of

sij+k
· · · sij+1

s1 · · · sj(u1u2 · · · un). That is,

sij+1
= sk,

sij+2
= sk−1,

...

sij+k−1
= s2.
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Define A2 = sksk−1 · · · s2.

3. For each letter l < n, in increasing order, continue this process of moving

letter l into the lth position and recording the adjacent transpositions required

to do so with Al. If l is already in the lth position then it does not need to be

moved and so Al = e.

Observe that once letters 1, . . . , n−1 are put into positions 1, . . . , n−1 respectively

then letter n must be in position n. This algorithm produces an expression

si1si2 · · · siℓ = A1A2 · · ·An−1 (1.1.4)

for u where Ai is a suffix of sn−1sn−2 · · · si for each i < n.

For example, consider the permutation u = 341625 in one-line notation. Since 1

is in the third position let si1 = s2, si2 = s1, and A1 = s2s1. Now 2 is in the fifth

position of

s1s2(341625) = 134625. (1.1.5)

Thus we have si3 = s4, si4 = s3, si5 = s2, and A2 = s4s3s2. Next, see that 3 is in

the third position and 4 is in the fourth position of

s2s3s4s1s2(341625) = 123465, (1.1.6)

so these letters do not need to be moved; A3 = e and A4 = e. Now letter 5 is in the

sixth position. Thus si6 = s5 and A5 = s5. This puts 5 in the fifth position and 6

in the sixth position of

s5s2s3s4s1s2(341625) = 123456. (1.1.7)

Therefore s2s1s4s3s2s5(123456) = 341625 and s2s1s4s3s2s5 is an expression for the

permutation 341625.

The following are observations about the structure of expressions produced by

the above algorithm.

Observation 1.1.3. Let si1 · · · siℓ = A1 · · ·An−1 be the expression for u ∈ Sn

determined by the above algorithm, then for every index j, the generator sj does not

appear in Ak for any k ≥ j + 1.
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Observation 1.1.4. Let si1 · · · siℓ be the expression for u ∈ Sn determined by the

above algorithm. For a fixed k ∈ [ℓ], either ik = i(k−1) − 1 or ik ≥ i(k−1) + 1.

The next three propositions state properties of the permutation

Ai · · ·An−1(1 · · ·n)

for a fixed i, where A1 · · ·An−1(1 · · ·n) is an expression produced by the above

algorithm.

Proposition 1.1.5. Let A1 · · ·An−1 be an expression generated by the algorithm.

Then for a fixed i, every letter j ≤ i is in position j of Ai+1Ai+2 · · ·An−1(12 · · ·n)

and consequently all letters to the right of letter i, in the one-line notation, are

greater than i.

Proof. Since Ai is a suffix of sn−1sn−2 · · · si, applying An−1 to the identity permuta-

tion acts on positions n− 1 and n. Similarly, applying An−2 to An−1(12 · · ·n) acts

on positions n− 2, n− 1, and n. In general, applying Ak to Ak+1 · · ·An−1(12 · · ·n)

acts on positions k through n. Thus since every letter j is in position j of the

identity, every letter j ≤ i is in position j of Ai+1Ai+2 · · ·An−1(12 · · ·n). Because

all the letters less than i are in positions to the left of i in the one-line notation of

Ai+1Ai+2 · · ·An−1(12 · · ·n), it follows that the letters to the right of i are all greater

than i.

Since A1 · · ·An−1(1 · · ·n) = u it follows that

Ai+1 · · ·An−1(1 · · ·n) = A
−1
i · · ·A −1

1 (u).

Therefore, the above proposition implies that letters j ≤ i are in positions j ≤ i

respectively of A
−1
i · · ·A −1

1 (u). The next two propositions follow from the above.

Proposition 1.1.6. Let A1 · · ·An−1 be an expression generated by the algorithm.

If Ai 6= e then applying Ai to Ai+1Ai+2 · · ·An−1(12 · · ·n) moves the letter i to the

right in the one-line notation while moving greater letters to the left.
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Proof. Since letter i is in position i of Ai+1Ai+2 · · ·An−1(12 · · ·n) by Proposition

1.1.5 applying si swaps i and the letter to its right, then applying si+1 swaps i with

the new letter to its right, and so on. (i.e. applying Ai moves i to the right.) Again

by Proposition 1.1.5 these letters being swapped with i are greater than i.

Proposition 1.1.7. Let A1 · · ·An−1 be an expression generated by the algorithm. If

Ai = sj · · · si for some j > i then i is in position j + 1 of AiAi+1 · · ·An−1(12 · · ·n).

Proof. By Proposition 1.1.5, letter i is in position i of Ai+1 · · ·An−1(12 · · ·n). Thus

letter i is in position i + 1 of siAi+1 · · ·An−1(12 · · ·n). Letter i is then in position

i+2 of si+1siAi+1 · · ·An−1(12 · · ·n). Continuing in this fashion, letter i is in position

j + 1 of sj · · · siAi+1 · · ·An−1(12 · · ·n) = AiAi+1 · · ·An−1(12 · · ·n).

The following example illustrates the properties stated in the above propositions.

Returning to the permutation u = 341625 we see that applying the expression

A1A2A3A4A5 = (s2s1)(s4s3s2)(e)(e)(s5) (1.1.8)

for u to the identity permutation,

A5(123456) = 123465 (1.1.9)

A4(A5(123456)) = 123465

A3(A4(A5(123456))) = 123465

A2(A3(A4(A5(123456)))) = 134625

A1(A2(A3(A4(A5(123456))))) = 341625,

A5 swaps the pair of letters (5, 6), A4 and A3 leave the permutation unchanged, A2

swaps the pairs of letters (2, 3), (2, 4), then (2, 6), and lastly A1 swaps the pair (1, 3)

and then (1, 4).

The expression for u ∈ Sn produced by the algorithm is a unique reduced

expression. Using the next proposition, this fact will be show in Theorem 1.1.9.

Proposition 1.1.8. Let A1 · · ·An−1 be the expression for u ∈ Sn generated by the

algorithm. For fixed i ∈ [n − 1], the length of Ai is equal to the number of letters

j > i which appear before i in u = u1 · · · un.
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Proof. Suppose j > i and j appears before i in u1 . . . un. Then in the ith step of the

algorithm i and j must get swapped. That is, some adjacent transposition sk in Ai

swaps i and j. Thus the length of Ai is at least the number of letters j > i which

appear before i in u.

By Proposition 1.1.6 the adjacent transpositions in Ai swap i with letters greater

than i. Thus each sk in Ai corresponds to a letter j > i such that j appears before

i in u.

Theorem 1.1.9. For each permutation u ∈ Sn, there exists a unique reduced ex-

pression of the form A1A2 · · ·An−1 where for each i, Ai is a suffix of the word

sn−1 · · · si+1si.

Proof. By the algorithm above, such an expression exists. It remains to be shown

that this is a reduced expression and that it is unique. A reduced expression for

u has ℓ(u) generators where ℓ(u) is the number of inversions in u. By Proposition

1.1.8, for a fixed i the length of Ai is the number of j > i such that (i, j) is an

inversion in u. Thus the length of A1A2 · · ·An−1 is the total number of inversions

in u and therefore A1A2 · · ·An−1 is a reduced expression for u.

Suppose two such expressions, A1A2 · · ·An−1 and B1B2 · · ·Bn−1, for u ex-

ist. Let i be the largest index such that Ai 6= Bi and suppose Ai = sj · · · si

and Bi = sk · · · sj+1sj · · · si. Then by Proposition 1.1.7, i is in position j + 1 of

AiAi+1 · · ·An−1(1 · · ·n) and in position j + 2 of sj+1AiAi+1 · · ·An−1(1 · · ·n). If

m is in position j + 2 of AiAi+1 · · ·An−1(1 · · ·n) then m is in position j + 1 of

sj+1AiAi+1 · · ·An−1(1 · · ·n). By Proposition 1.1.6 we have m > i. Furthermore, by

Proposition 1.1.8 each of sk, sk−1, . . . , sj+2 inverts letter i and a larger letter. Thus,

since i and m are inverted in sj+1AiAi+1 · · ·An−1(1 · · ·n), they will be inverted in

sk · · · sj+1AiAi+1 · · ·An−1(1 · · ·n) = Bi · · ·Bn−1(1 · · ·n).

Now by Proposition 1.1.6 the adjacent transpositions in Al and Bl invert the letter

l and some other greater letter. Thus applying B1B2 . . .Bi−1 to Bi · · ·Bn−1(1 · · ·n)

will not affect the order of i andm and so i andm are inverted in B1 · · ·Bn−1(1 · · ·n).

Similarly, A1, A2, . . . , Ai−1 will not invert i and m. And so these letters will not

11



be inverted in A1 · · ·An−1(1 · · ·n) since they are not inverted in Ai · · ·An−1(1 · · ·n).

This contradicts A1 · · ·An−1 and B1 · · ·Bn−1 both being reduced expressions for

the same permutation.

It is known that the unique reduced expression described in Theorem 1.1.9 is

the right-to-left lexicographically greatest reduced expression [4]. To see another

example, consider the longest word w0 = n(n − 1) · · · 21 in Sn. The right-to-left

lexicographically greatest reduced expression for w0 is

(sn−1sn−2 · · · s1) · (sn−1sn−2 · · · s2) · (sn−1sn−2 · · · s3) · · · (sn−1sn−2) · (sn−1), (1.1.10)

where

A1 = sn−1sn−2 · · · s1,

A2 = sn−1sn−2 · · · s2,

...

An−2 = sn−1sn−2

An−1 = sn−1.

If n = 6 then w0 = 654321 has right-to-left lexicographically greatest reduced ex-

pression

(s5s4s3s2s1)(s5s4s3s2)(s5s4s3)(s5s4)(s5). (1.1.11)

Proposition 1.1.10 and Corollary 1.1.11 give a way to determine the right-to-left

lexicographically greatest reduced expression for special permutations less than u in

the Bruhat order.

Proposition 1.1.10. If si1 · · · siℓ is the right-to-left lexicographically greatest reduced

expression for u ∈ Sn then si2 · · · siℓ is the right-to-left lexicographically greatest

reduced expression for si1u.

Proof. Let si1 · · · siℓ be the right-to-left lexicographically greatest reduced expression

for u and sj1 · · · sjℓ−1
the right-to-left lexicographically greatest reduced expression

for si1u. Observe that the 2nd through ℓth iterations of the algorithm for finding the

12



right-to-left lexicographically greatest reduced expression for u are the first through

(ℓ− 1)th iterations of the algorithm for finding the right-to-left lexicographically

greatest reduced expression for si1u. Thus, sjm = sim+1 for each 1 ≤ m ≤ ℓ − 1

and so si2 · · · siℓ is the right-to-left lexicographically greatest reduced expression for

si1u.

Corollary 1.1.11. If si1 · · · siℓ is the right-to-left lexicographically greatest reduced

expression for u ∈ Sn then sik · · · siℓ is the right-to-left lexicographically greatest

reduced expression for sik−1
· · · si1u.

The next proposition discusses the ⊕-decomposability of a subword of the right-

to-left lexicographically greatest reduced expression for a permutation.

Proposition 1.1.12. Let si1 · · · sik be the right-to-left lexicographically greatest re-

duced expression for a permutation w ∈ Sn and define the permutation z = wsik .

If ik is a fixed point of z then z is ⊕-decomposable into z(1) ⊕ z(2) with z(1) ∈ Sik−1

and z(2) ∈ Sn−(ik−1).

Proof. Suppose z is not ⊕-decomposable exactly as above. Then ik − 1 is among

the indices {i1, . . . , i(k−1)} by Observation 1.1.1.

Since si1 · · · sik is the right-to-left lexicographically greatest reduced expression

for w ∈ Sn, by Theorem 1.1.9, w can be factored as A1A2 · · ·Ah+1, where each Ai

is a suffix of sn−1 · · · si. Therefore, z can be factored as

A1A2 · · ·Ahsik+j · · · sik+2sik+1

where sik+j · · · sik is a subword of Ah+1 for some 0 ≤ j ≤ k− 1. Let g be the largest

index such that sik−1 appears in Ag. Since sik−1 does not appear in Ag+1, . . . , Ah it

follows that sik does not appear in Ag+1, . . . , Ah because Ai is a suffix of sn−1 · · · si.

Thus ik is a fixed point of

Ag+1 · · ·Ahsik+j · · · sik+1.

Furthermore, sik−1 appearing in Ag implies ik appears in position ik − 1 of the

one-line notation of

Ag · · ·Ahsik+j · · · sik+1.
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In particular, ik is not a fixed point.

Now let f be the smallest positive integer such that Ag−f contains sik−1 = sim ,

then necessarily si(m+1)
= sik−2 because Ai is a suffix of sn−1 · · · si. Thus ik is not a

fixed point of

Ag−f · · ·Ag · · ·Ahsi(k−j)
· · · si(k−1)

.

In fact, letter ik is in position ik − 2. Furthermore, any index i1, . . . , i(m−1) equal

to ik − 2 is followed by the index ik − 3. Therefore, no generator si1 , . . . , si(m−1)

will return letter ik to position ik. Thus ik is not a fixed point of si1 · · · si(k−1)
,

a contradiction. Hence ik − 1 is not among {i1, . . . , i(k−1)} as assumed. Thus by

Observation 1.1.1 z must be ⊕-decomposable into z(1) ⊕ z(2) with z(1) ∈ Sik−1 and

z(2) ∈ Sn−(ik−1).

Given an expression si1 · · · siℓ of a permutation w ∈ Sn, define a subexpression

p1 · · · pℓ of si1 · · · siℓ to be an expression such that pj ∈ {e, sij} for every j ∈ [ℓ]. The

following propositions show that the use of a right-to-left lexicographically greatest

reduced expression for w allows one to deduce that certain letters appear in certain

positions of the one-line notations of subwords of w.

Proposition 1.1.13. Let si1 · · · sik be the right-to-left lexicographically greatest re-

duced expression for w ∈ Sn. Define the permutation z = wsik . If ik is a fixed point

of z, then ik is a fixed point of p1 · · · pk−1, where p1 · · · pk−1 is a subexpression of

si1 · · · sik−1
.

Proof. By Proposition 1.1.12 since ik is a fixed point of z, it follows that z is ⊕-

decomposable into z(1) ⊕ z(2) with z(1) ∈ Sik−1 and z(2) ∈ Sn−(ik−1). Thus, for

some index 1 ≤ j ≤ k, z(1) = si1 · · · sij and z(2) = sij+1−(ik−1) · · · si(k−1)−(ik−1).

Since z(1) ∈ Sik−1, the indices i1, . . . , ij are all less than ik − 1. Since z(2) =

sij+1−(ik−1) · · · sik−1−(ik−1) is in Sn−(ik−1) the indices ij+1, . . . , ik−1 are all greater

than ik − 1. Thus ik − 1 is not among the indices {i1, . . . , i(k−1)}. Recall that since

si1 · · · sik is the right-to-left lexicographically greatest reduced expression for w it can

be expressed as A1 · · ·Aik where each Ai is a suffix of sn−1 · · · si. Observe that for

any i < ik, if Ai contains sik as a subword then it also contains sik−1 as a subword.
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Therefore ik − 1 /∈ {i1, . . . , i(k−1)} implies ik /∈ {i1, . . . , i(k−1)}. Now since sil 6= sik

and sil 6= sik−1 for any 1 ≤ l ≤ k − 1 it follows that pl 6= sik and pl 6= sik−1 for any

1 ≤ l ≤ k − 1. Therefore, ik is a fixed point of p1 · · · pk−1.

Proposition 1.1.14. Let si1 · · · sik be the right-to-left lexicographically greatest re-

duced expression for a permutation w ∈ Sn, and p1 · · · pk−1 a subexpression of

si1 · · · sik−1
. If (si(k−1)

· · · si1)ik = d and (pk−1 · · · p1)ik 6= d, then d < ik.

Proof. Assume (si(k−1)
· · · si1)ik = d and (pk−1 · · · p1)ik 6= d, then by Proposition

1.1.13, d 6= ik. Observe that since si1 · · · sik is a right-to-left lexicographically great-

est reduced expression, by Theorem 1.1.9, w can be factored as A1 · · ·Aik , where

each Ai is a suffix of sn−1 · · · si. Therefore, si1 · · · si(k−1)
can be factored as

A1 · · ·Aik−1sik+j · · · sik+1

for some 1 ≤ j. Suppose d > ik. Then for some h, s(d−1)s(d−2) · · · sik is a subword of

Ah. Let h be the smallest such index. Then d is in position ik of

sik · · · s(d−2)s(d−1)A
−1
h−1 · · ·A

−1
1 .

Furthermore, d is in position h of

sh · · · sik · · · s(d−2)s(d−1)A
−1
h−1 · · ·A

−1
1 .

Now since sh does not appear in Ah+1, Ah+2, . . . , Aik it follows that d is in position

h of

sik+1 · · · sik+jA
−1
ik−1 · · ·A

−1
1 = si(k−1)

· · · si1 .

This is a contradiction because d is in position ik of si(k−1)
· · · si1 . Thus d < ik.

Proposition 1.1.15. Let si1 · · · sik be the right-to-left lexicographically greatest re-

duced expression for a permutation w ∈ Sn, and p1 · · · pk−1 a subexpression of

si1 · · · sik−1
. If (si(k−1)

· · · si1)ik = d and (p(k−1) · · · p1)ik 6= d, then there exists some

index η < k such that d is in position iη of pη · · · p1 and position iη + 1 of siη · · · si1.
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Proof. By Proposition 1.1.14, letter d < ik. This implies sds(d+1) · · · sik−1 is a sub-

word of si1si2 · · · si(k−1)
. But since d is not in position ik of pk−1 · · · p1 it follows that

for at least one of these sd = siγ , s(d+1) = siδ , · · · , sik−1 = siρ the corresponding pγ,

pδ, · · · , or pρ is the identity permutation. Let η be the smallest such index. That

is, pη = e, d is in position iη of si(η−1)
· · · si1 and p(η−1) · · · p1. Thus d is in position

iη + 1 of siηsiη−1 · · · si1 and in position iη of pηpη−1 · · · p1.

Corollary 1.1.16. Let si1 · · · siℓ be the right-to-left lexicographically greatest reduced

expression for a permutation u ∈ Sn. Fix k ∈ [ℓ] and let p1 · · · pk−1 be a subexpres-

sion of si1 · · · sik−1
. For z ∈ Sn, define w = si(k−1)

· · · si1z and v = p(k−1) · · · p1z. If

wik = d and vik 6= d, then there exists some index η < k such that d is in position

iη of pη · · · p1z and position iη + 1 of siη · · · si1z.

1.2 Defining a map on Sn

The following map onSn will be used to develop notation to discuss different bases of

the immanant space, which will be introduced in Section 1.3. For a fixed u ∈ Sn with

right-to-left lexicographically greatest reduced expression si1 · · · siℓ and a number

k ∈ [ℓ+ 1], define the function φk,u : Sn → Sn by

w 7→ sik−1
· · · si1w (1.2.1)

That is, φk,u(w) is equal to the inverse of the product of the first k − 1 generators

in the given expression of u times w. Observe that

φk,u(u) = sik−1
· · · si1u = siksik+1

· · · siℓ . (1.2.2)

Continuing with the example u = 341625, with right-to-left lexicographically

greatest reduced expression s2s1s4s3s2s5, and considering w = 431652 we have the

following.
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φ1,u(u) = u = 341625 φ1,u(w) = w = 431652

φ2,u(u) = s2u = 314625 φ2,u(w) = s2w = 413652

φ3,u(u) = s1s2u = 134625 φ3,u(w) = s1s2w = 143652

φ4,u(u) = s4s1s2u = 134265 φ4,u(w) = s4s1s2w = 143562

φ5,u(u) = s3s4s1s2u = 132465 φ5,u(w) = s3s4s1s2w = 145362

φ6,u(u) = s2s3s4s1s2u = 123465 φ6,u(w) = s2s3s4s1s2w = 154362

φ7,u(u) = s5s2s3s4s1s2u = 123456 φ7,u(w) = s5s2s3s4s1s2w = 154326

Observe that for all w ∈ Sn, φℓ+1,u(w) = u−1w, φ1,u(w) = w, and sikφk,u(w) =

φk+1,u(w). Thus φℓ+1,u(u) = e. Furthermore, it follows directly from Proposition

1.1.5 that if φk,u(u) = sik · · · sjAj+1 · · ·An−1 then φk,u(u) has letters 1 through j−1

in positions 1 through j−1 respectively. The following lemma relates the map φk,si1u

and the map φk+1,u.

Proposition 1.2.1. Fix u, w ∈ Sn with u having right-to-left lexicographically

greatest reduced expression si1 · · · siℓ and an index k ∈ [ℓ]. Then

φk,si1u
(si1w) = φk+1,u(w). (1.2.3)

Proof. By Proposition 1.1.10 the right-to-left lexicographically greatest reduced ex-

pression for si1u is si2 · · · siℓ . The first (k − 1)-letter subword of this is si2 · · · sik .

Thus

φk,si1u
(si1w) = sik · · · si2(si1w) = φk+1,u(w) (1.2.4)

The following lemma by Björner and Brenti [2, Lemma 2.2.10] will allow us to

state a nice relationship between the maps φk,u(w) and φk−1,si1u
(w).

Lemma 1.2.2. Suppose that x < xt and y < ty, for x,y in a Coxeter group W and

t in the reflection set of W . Then xy < xty.

Proposition 1.2.3. Fix u, w ∈ Sn with u having right-to-left lexicographically

greatest reduced expression si1 · · · siℓ and an index k in the interval [2, ℓ + 1]. If

si1w < w then

φk,u(w) < φk−1,si1u
(w) (1.2.5)
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in the Bruhat order.

Proof. Observe that sik−1
· · · si2 < sik−1

· · · si2si1 in the Bruhat order and by assump-

tion si1w < w in the Bruhat order. Thus applying Lemma 1.2.2 with x = sik−1
· · · si2 ,

y = si1w, and t = si1 yields

(sik−1
· · · si2)(si1w) < (sik−1

· · · si2)(si1)(si1w) = sik−1
· · · si2w. (1.2.6)

as claimed.

The following observation states a recursive way of finding the length of the

permutation φk+1,u(u).

Observation 1.2.4. If si1 · · · siℓ is the right-to-left lexicographically greatest reduced

expression for u, then for a fixed k ∈ [ℓ + 1], sik is a left descent of φk,u(u). Fur-

thermore, ℓ(φk+1,u(u)) = ℓ(φk,u(u))− 1.

Since sik is a left descent of φk,u(u), it follows that the letter in position ik + 1

of φk,u(u) is less than the letter in position ik of φk,u(u). Moreover, it will be shown

that the letter in position ik + 1 of φk,u(u) is the least letter with a greater letter to

its left in φk,u(u), but first some new terminology needs to be introduced.

Writing the right-to-left lexicographically greatest reduced expression for u as

A1 · · ·An−1 = si1 · · · siℓ , (1.2.7)

it follows that

φk,u(u) = sik · · · sjAj+1 · · ·An−1 (1.2.8)

for some index j. For fixed k, let αk(u) denote this index. Thus for the factorization

in Equation (1.1.8), we have

(α1(u), . . . , α6(u)) = (1, 1, 2, 2, 2, 5).

Observation 1.2.5. For all u ∈ Sn of length ℓ,

1 ≤ α1(u) ≤ α2(u) ≤ · · · ≤ αℓ(u) ≤ n− 1.
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With this notation, αk(u) can be interpreted as the least letter having a greater

letter to its left. This letter also has two important properties which are stated in

the following propositions.

Proposition 1.2.6. For u ∈ Sn with right-to-left lexicographically greatest reduced

expression si1 · · · siℓ and 1 ≤ k ≤ ℓ(u) the least letter in [n − 1] having a greater

letter to its left in φk,u(u) is αk(u).

Proof. By Proposition 1.1.5 the letters 1 through j are in positions 1 through j

of Aj+1 · · ·An−1(1 · · ·n), respectively. By Proposition 1.1.6, applying sik · · · sj to

Aj+1 · · ·An−1(1 · · ·n) swaps letter j with greater letters. Thus j is the smallest

letter with a larger letter to its left in φk,u(u) = sik · · · sijAj+1 · · ·An−1 and by

definition αk(u) = j.

Proposition 1.2.7. For u ∈ Sn with right-to-left lexicographically greatest reduced

expression si1 · · · siℓ and 1 ≤ k ≤ ℓ(u), the letter moving to the right when sik is

applied to sik+1
· · · siℓ(1 · · ·n) is αk(u).

Proof. Since A1 · · ·An−1 = si1 · · · siℓ it follows that for some index j,

siksik+1
· · · siℓ = sik · · · sjAj+1 · · ·An−1.

Letter j is in position j of Aj+1 · · ·An−1(12 · · ·n) by Proposition 1.1.5. Thus, ap-

plying siksik+1
· · · sj to Aj+1 · · ·An−1(12 · · ·n) moves j to its right. By definition,

αk(u) = j and the claim holds.

Proposition 1.2.8. Let si1 · · · siℓ be the right-to-left lexicographically greatest re-

duced expression for u and let φk,u(u) have one-line notation w1 · · ·wn. Then for

each k ∈ [ℓ], αk(u) = wik+1.

Proof. Let si1 · · · siℓ be the right-to-left lexicographically greatest reduced expres-

sion for u. Then si1 · · · siℓ can be written as A1A2 · · ·An−1 where Ai is a suffix

of sn−1 · · · si+1si. By Proposition 1.2.7 αk(u) is moved right when sik is applied

to sik+1
· · · siℓ . We know that sik swaps the letters in positions ik and ik + 1 of

sik+1
· · · siℓ . Thus αk(u) is in position ik of sik+1

· · · siℓ and in position ik + 1 of

siksik+1
· · · siℓ = φk,u(u). That is, αk(u) = wik+1.
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1.3 The Quantum Matrix Bialgebra A(n; q)

The quantum matrix bialgebra, A(n; q), is the noncommutative C[q
1
2 , q¯

1
2 ]-algebra

generated by the n2 variables x = (x1,1, . . . , xn,n) subject to the relations

xi,ℓxi,k = q
1
2xi,kxi,ℓ, (1.3.1)

xj,kxi,k = q
1
2xi,kxj,k,

xj,kxi,ℓ = xi,ℓxj,k,

xj,ℓxi,k = xi,kxj,ℓ + (q
1
2 − q¯

1
2 )xi,ℓxj,k,

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n. The relations (1.3.1) allow one

to express every monomial as a linear combination of monomials xℓ1,m1 · · · xℓr,mr
in

which the index pairs appear in lexicographic order. For example, the monomial

x13x23x12 is not in lexicographic order. However, using the relations it can be written

as q
1
2x12x13x23 + (q

1
2 − q¯

1
2 )x13x13x22, where the indices are in lexicographic order.

Thus, as a C[q
1
2 , q¯

1
2 ]-module, A(n; q) has a basis of monomials xℓ1,m1 · · · xℓr,mr

in

which index pairs appear in lexicographic order. This basis is called the natural

basis of A(n; q).

The (n× n) quantum determinant,

detq(x) =
def

∑

w∈Sn

(
−q¯

1
2

)inv(w)

x1,w1 · · · xn,wn
, (1.3.2)

a central element of A(n; q), relates A(n; q) to the class of algebras called quantum

groups. In particular, the quotient A(n; q)/(detq(x)− 1) is a quantum group called

the quantum coordinate ring of the special linear group SL(n,C). Other important

elements of A(n; q) are the quantum minors detq(xI,J) and the quantum permanent

of x

perq(x) =
def

∑

w∈Sn

(
q

1
2

)inv(w)

x1,w1 · · · xn,wn
. (1.3.3)

Specializing A(n; q), detq(x), and perq(x) at q
1
2 = 1 yields the commutative poly-

nomial ring C[x], the classical determinant det(x), and classical permanent per(x),

respectively.
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The quantum polynomial ring, A(n; q), has a natural grading by degree,

A(n; q) = ⊕r≥0Ar(n; q). (1.3.4)

The immanant space, A[n],[n](n; q), is the C[q
1
2 , q¯

1
2 ]-submodule of A(n; q) spanned

by

{x1,w1 · · · xn,wn
|w ∈ Sn}. (1.3.5)

Defining the notation xu,w = xu1,w1 · · · xun,wn
, the natural basis for the immanant

space can be expressed as {xe,w|w ∈ Sn}. It is straightforward to express a monomial

xu,w in terms of {xy,v|v ∈ Sn} when u covers y in the weak order.

Lemma 1.3.1. Given permutations u, w ∈ Sn, for each left descent s of u we have

xu,w =




xsu,sw if sw > w,

xsu,sw + (q
1
2 − q¯

1
2 )xsu,w if sw < w.

(1.3.6)

Proof. Since s is a left descent of u and w ∈ Sn the claim follows directly from the

third and fourth relations (1.3.1) in the presentation of A(n; q).

There is a similar formula for s a left ascent of u. Thus it is just as straightforward

to express a monomial xu,w in terms of {xy,v|v ∈ Sn} when y covers u in the weak

order. It follows that for any fixed y ∈ Sn the set {xy,v|v ∈ Sn} forms a basis for

A[n],[n](n; q). However, there is no known general formula which gives the coordinate

vector of a monomial xu,w with respect to such a basis, unless y = e. Lambright

[12, Prop 1.4.2] showed that for fixed u ∈ Sn, x
u,w can be expressed in the basis

{xφℓ+1,u(u),v|v ∈ Sn} = {xe,v|v ∈ Sn} of A[n],[n](n; q) as follows.

Proposition 1.3.2. For all u, w ∈ Sn,

xu,w =
∑

v≥u−1w

pu,w,v(q
1
2 − q¯

1
2 )xe,v. (1.3.7)

Extending this result, for a fixed u ∈ Sn of length ℓ and an index k ∈ [ℓ + 1]

a formula for the coordinate vector of xu,w with respect to a basis of the form

{xφk,u(u),v|v ∈ Sn} is provided.
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Definition 1.3.3. For a fixed u ∈ Sn with right-to-left lexicographically greatest

reduced expression si1si2 · · · siℓ, a number k ∈ [ℓ+ 1], and any permutation w ∈ Sn,

define the polynomials

{tku,w,v(q1) =
∑

b

cbq
b
1 | v ∈ Sn} ⊂ N[q1] (1.3.8)

by interpreting cb as the number of sequences π = (π(0), π(1), . . . , π(k−1)) satisfying

1. π(0) = w, π(k−1) = v

2. π(j) ∈ {sijπ
(j−1), π(j−1)} for j = 1, . . . , k − 1

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1)

4. π(j) = π(j−1) for exactly b values of j.

When k = ℓ+1 this definition reduces to the definition of the (Laurent) polyno-

mials pu,w,v studied by Lambright [12]. Note that necessarily 0 ≤ b ≤ k− 1 because

j ≤ k − 1. Observe that for k = 1 the only sequence π = (π(0)) satisfying the four

conditions of Definition 1.3.3 is π(0) = w. Thus t1u,w,v(q1) = δv,w. Similarly, if u = e

then necessarily k = 1 and so t1e,w,v(q1) = δv,w.

For example, let u = 3412, w = 4321, and k = 3. The right-to-left lexicographi-

cally greatest reduced expression for u is s2s1s3s2 and the sequences (π(0), π(1), π(2))

satisfying the conditions of Definition 1.3.3 are the vertices of maximal paths in the

tree

4321

s2

4231 2431s1

4231e

4321
e

3421s1

4321e

Recording repetitions and final components in these sequences we have
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(π(0), π(1), π(2)) # of repetitions t3u,w,v(q1)

(4321, 4231, 2431) 0 t33412,4321,2431(q1) = q01 = 1

(4321, 4231, 4231) 1 t33412,4321,4231(q1) = q11

(4321, 4321, 3421) 1 t33412,4321,3421(q1) = q11

(4321, 4321, 4321) 2 t33412,4321,4321(q1) = q21

Alternatively the sequences (π(0), . . . , π(k−1)) may be encoded by (k − 1)-letter

words pk−1 . . . p1 in the alphabet {e, s1, . . . , sn−1} where

pj = π(j)(π(j−1))−1 =




sij if π(j) = sijπ

(j−1)

e if π(j) = π(j−1).

In the previous example, words corresponding to the sequences (π(0), π(1), π(2)) are

given by the edges in the tree,

s1s2 es2 s1e ee.

Observe that if π is a path from w to v and the word pk−1 · · · p1 encodes this path,

then v = pk−1 · · · p1w.

For fixed u, the polynomials {tku,w,v|w, v ∈ Sn, 1 ≤ k ≤ ℓ + 1} satisfy a nice

recurrence relation.

Proposition 1.3.4. Fix u ∈ Sn with right-to-left lexicographically greatest reduced

expressions si1 · · · siℓ, w ∈ Sn, and k ∈ [ℓ+ 1]. Then

tku,w,v(q1) =




tk−1
si1u,si1w,v(q1) if si1w > w,

tk−1
si1u,si1w,v(q1) + q1t

k−1
si1u,w,v(q1) if si1w < w.

(1.3.9)

Proof. Let Ck,b
u,w,v be the set of sequences counted by the coefficient cb in Definition

1.3.3, and consider a sequence π ∈ Ck,b
u,w,v.

Suppose first that si1w > w. Then π satisfies π(1) = si1w and we have b ≤

k− 2. It follows that for b = k− 2, . . . , 0, the sequence (π(1), . . . , π(k−1)) satisfies the

conditions

(1′) π(1) = si1w, π
(k−1) = v
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(2′) π(j) ∈ {sijπ
(j−1), π(j−1)} for j = 2, . . . , k − 1

(3′) π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1)

(4′) π(j) = π(j−1) for exactly b values of j.

Thus the map

(π(0), π(1), . . . , π(k−1)) 7→ (π(1), . . . , π(k−1)) (1.3.10)

is a bijection from Ck,b
u,w,v to Ck−1,b

si1u,si1w,v.

Now suppose si1w < w. Then π satisfies π(1) = si1w or π(1) = w. If π(1) = si1w,

then for b = k−2, . . . , 0 the sequence (π(1), . . . , π(k−1)) satisfies conditions (1′)− (4′)

above. Otherwise it satisfies conditions (2′)− (3′) and

(1′′) π(1) = w, π(k−1) = v,

(4′′) π(j) = π(j−1) for exactly b− 1 values of j = 2, . . . , k − 1.

Thus the map (1.3.10) is a bijection from Ck,b
u,w,v to Ck−1,b

si1u,si1w,v ∪ C
k−1,b−1
si1u,w,v .

Exploiting this recurrence relation, a formula for the coordinate vector of xu,w

with respect to a basis of the form {xφk,u(u),v|v ∈ Sn} for a fixed u ∈ Sn of length

ℓ and an index k ∈ [ℓ+ 1] is constructed.

Theorem 1.3.5. Fix permutations u, w ∈ Sn, choose an integer k ∈ [ℓ(u) + 1],

and define the permutation u′ = φk,u(u). Then in A[n],[n](n; q) we have

xu,w =
∑

v∈Sn

tku,w,v(q
1
2 − q¯

1
2 )xu

′,v. (1.3.11)

Proof. First consider the case of k = 1. Then u′ = u and the expression for xu,w in

terms of the basis {xu
′,v|v ∈ Sn} can be written as

xu,w =
∑

v∈Sn

δw,vx
u′,v. (1.3.12)

On the other hand, by the observation following Definition 1.3.3, we have t1u,w,v =

δw,v, and this polynomial evaluates at q1 = q
1
2 − q¯

1
2 to δw,v. Now consider the case

that u = e. In this case it must be that k = 1 and again the claimed equality holds.

Now let u be a permutation with right-to-left lexicographically greatest reduced

expression si1 · · · siℓ , let k − 1 be an integer in [ℓ], and assume the equality (1.3.11)
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holds when u and k are replaced by a permutation of length ℓ − 1 and the integer

k − 1, respectively. Writing s = si1 , use Lemma 1.3.1 to express xu,w in terms of

xsu,sw and xsu,w, and induction to express these monomials in terms of the basis

{xφk−1,su(su),v|v ∈ Sn}. Letting ∆q = q
1
2 − q¯

1
2 , we have that xu,w is equal to





∑

v∈Sn

tk−1
su,sw,v(∆q)x

φk−1,su(su),v if sw > w,

∑

v∈Sn

tk−1
su,sw,v(∆q)x

φk−1,su(su),v + (∆q)
∑

v∈Sn

tk−1
su,w,v(∆q)x

φk−1,su(su),v if sw < w.

By Proposition 1.2.1, it follows that

xu,w =





∑

v∈Sn

tk−1
su,sw,v(q

1
2 − q¯

1
2 )xu

′,v if sw > w,

∑

v∈Sn

(
tk−1
su,sw,v(q

1
2 − q¯

1
2 ) + (q

1
2 − q¯

1
2 )tk−1

su,w,v(q
1
2 − q¯

1
2 )
)
xu

′,v if sw < w.

Finally, by Proposition 1.3.4, (1.3.11) is obtained.

The above theorem gives us a way of expanding xu, w in ℓ(u) bases. However,

more can be said about this expansion. Not every permutation v ∈ Sn yields a

nonzero polynomial tku,w,v(q
1
2 − q¯

1
2 ). In fact, the permutations v ∈ Sn for which

tku,w,v(q
1
2 − q¯

1
2 ) 6= 0 satisfy v ≥ φk,u(w), as shown in the next result.

Theorem 1.3.6. Fix u, w ∈ Sn and choose an integer k ∈ [ℓ(u) + 1]. It follows

that, in A[n],[n](n; q), if t
k
u,w,v(q

1
2 − q¯

1
2 ) 6= 0, then v ≥ φk,u(w).

Proof. First consider the case of k = 1. Then φ1,u(u) = u, φ1,u(w) = w, and

xu,w =
∑

v∈Sn

t1u,w,v(q
1
2 − q¯

1
2 )xφ1,u(u),v =

∑

v∈Sn

δw,vx
φ1,u(u),v. (1.3.13)

Thus t1u,w,v(q
1
2 − q¯

1
2 ) 6= 0 if and only if v = w and the claim holds. Now consider the

case u = e. Then necessarily k = 1 and again the claim holds.

Now let u be a permutation with right-to-left lexicographically greatest reduced

expression si1 · · · siℓ , let k−1 be an integer in [ℓ], and assume the claim holds when u
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and k are replaced by a permutation of length ℓ−1 and the integer k−1, respectively.

By Proposition 1.3.4,

tku,w,v(q
1
2 − q¯

1
2 ) =




tk−1
si1u,si1w,v(q

1
2 − q¯

1
2 ) if si1w > w,

tk−1
si1u,si1w,v(q

1
2 − q¯

1
2 ) + (q

1
2 − q¯

1
2 )tk−1

si1u,w,v(q
1
2 − q¯

1
2 ) if si1w < w.

(1.3.14)

Suppose first that si1w > w and tku,w,v(q
1
2 − q¯

1
2 ) 6= 0. Then tku,w,v(q

1
2 − q¯

1
2 ) =

tk−1
si1u,si1w,v(q

1
2 − q¯

1
2 ) 6= 0 implies by induction and Proposition 1.2.1 that

v ≥ φk−1,si1u
(si1w) = φk,u(w).

Now suppose si1w < w and tku,w,v(q
1
2 −q¯

1
2 ) 6= 0. Then either tk−1

si1u,si1w,v(q
1
2 −q¯

1
2 ) 6=

0, which implies v ≥ φk−1,si1u
(si1w) = φk,u(w) or t

k−1
si1u,w,v(q

1
2 −q¯

1
2 ) 6= 0, which implies

v ≥ φk−1,si1u
(w), or both. Since by Proposition 1.2.3, φk,u(w) < φk−1,si1u

(w) it

follows that tk−1
si1u,w,v(q

1
2 − q¯

1
2 ) 6= 0 implies v ≥ φk,u(w) too.

Observe that the previous two theorems imply that xu,w can be expressed in the

basis {xφk,u(u),v|v ∈ Sn} of A[n],[n](n; q) as

xu,w =
∑

v≥φk,u(w)

tku,w,v(q
1
2 − q¯

1
2 )xφk,u(u),v. (1.3.15)
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Chapter 2

Combinatorial interpretations of

characters

A degree-d matrix representation of a group G is a homomorphism from G to the

group of all d×d invertible matrices. It is known that every finite group is isomorphic

to a subgroup of the symmetric group, Sn, for some n ∈ N. A homomorphism on

G restricted to a subgroup of G is another homomorphism. Thus representations of

Sn are studied in order to learn about representation of all finite groups.

The combinatorial interpretations of Sn-characters and Hn(q)-characters involve

a partial ordering on paths in a planar network and a variation of Young tableaux.

These combinatorial objects will be defined and some of their well known properties

will be discussed. Interpretations for several classes of Sn-characters, which can be

found in the literature, will be stated. After building some necessary preliminary

results, a combinatorial interpretation for the induced sign characters of the Hecke

algebra will be proved.

2.1 Planar networks, posets and Young tableaux

A planar network of order n is an acyclic planar directed multigraph G = (V,E)

with 2n boundary vertices. These vertices are labeled counterclockwise as source 1,
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. . . , source n, sink n, . . . , sink 1 and the edges are directed from the sources, which

have indegree 0, to the sinks, which have outdegree 0. A sequence π = (π1, . . . , πk)

of paths in G such that each path πi connects a distinct source to a distinct sink

is called a path family. Path families consisting of n paths are called bijective. A

path family is said to be of type w = w1 · · ·wn if path πi originates at source i and

terminates at sink wi for each 1 ≤ i ≤ n. A path family is of type 1 if w is the

identity permutation in Sn. For example, consider the following planar network and

bijective path family of type 1.

3

Sources

2

Sinks

1

3

2

1

π3

π2

π1

The source-to-sink paths of a planar network of order n have a natural partial

order Q defined by πi <Q ρj if i < j and πi and ρj never intersect. Observe that there

may be multiple paths from source i to sink i, thus the poset Q may have more than

n elements. However, a bijective path family of type 1 forms an n-element subposet

P of Q. The following figure shows the poset P associated to the bijective path

family of type 1 in the above example.

1

3
2

Given an n-element poset P , define a P -tableau to be a Young diagram filled

with the elements of P such that every element appears exactly once. A P -tableau

is said to be of shape λ for some partition λ = (λ1, . . . , λr) of n, denoted λ ⊢ n, if

row i contains λi boxes for every i ∈ [r]. Similarly, a P -tableau is of shape λ⊤ if

column i contains λi boxes for every i ∈ [r]. Classify a P -tableau as column-strict

if whenever elements i1, . . . , ir appear from top to bottom in a column, it follows

that i1 <P · · · <P ir. A row-semistrict P -tableau is one such that for each pair
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ij, ij+1 appearing consecutively in a row it follows that either ij <P ij+1 or ij is

incomparable to ij+1 in P . A P -tableau is semistandard if it is both column-strict

and row-semistrict. Continuing with our example poset P , the following are two

P -tableaux of shape λ = 21.

T1 = 1

3

2 T2 = 2

3

1

Observe that since 1 is incomparable to 2 in P it follows that T1 is row-semistrict.

Furthermore, since 1 <P 3 this tableau is also column-strict. Thus T1 is semis-

tandard. Similarly, 1 incomparable to 2 implies that T2 is row-semistrict and 2

incomparable to 3 implies that it is not column-strict.

The following statistic on P -tableaux is introduced in anticipation of its use in

combinatorial interpretations. Given a P -tableau T , define an inversion in T to be

a pair (i, j) of incomparable elements in P satisfying i < j in Z and i appearing in a

column to the right of that containing j in T . Denote the number of inversions in T

by inv(T ). Observe that for the P -tableaux in the above example, (2, 3) is the only

inversion in T1 so inv(T1) = 1 and (1, 2) is the only inversion in T2 so inv(T2) = 1.

P -tableaux are one type of combinatorial object that can be associated to a

poset P . The following 0-1 matrix is another object associated to a labeled poset.

Define the antiadjacency matrix A = (ai,j) associated to a labeling of a poset P by

ai,j =




0 if i <P j

1 otherwise.
(2.1.1)

The antiadjacency matrices associated to two different labellings of P are conjugate

by some permutation matrix. Returning to the example poset, the antiadjacency

matrix is

A =




1 1 0

1 1 1

1 1 1


 .

Certain posets yield antiadjacency matrices with a nice property, which aids in

the formulation of combinatorial interpretations. Denote an a-element chain by a
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and the disjoint union of posets P and Q by P + Q. Then a + b is the disjoint

union of an a-element chain and a b-element chain. If no induced subposet of P is

isomorphic to a+b, then P is said to be (a+b)-free. The class of posets of interest

to us are interval orders and unit interval orders. A poset P is an interval order if

it is (2+ 2)-free. Adding the condition of being (3+ 1)-free as well as (2+ 2)-free

defines a unit interval order.

Let P be an n-element poset with labels 1, . . . , n. If P is labeled such that

i <P j implies i < j as integers, then P is called naturally labeled. Every poset

has at least one natural labeling. Define the altitude of a poset element i to be

α(i) = #{x|x <P i}−#{x|x >P i}. We say a labeling is altitude respecting if i < j

whenever α(i) < α(j). Such a labeling is called an ar-labeling. The zero entries of

the antiadjacency matrix associated to an ar-labeling of an n-element unit interval

order form a right justified Young diagram of shape µ such that µi ≤ n − i for

i ∈ [n − 1] (See [24]). For example, consider the following planar network and

associated ar-labeled unit interval order.

1

2

3

4

1

2

3

4 1

3

4

2

The antiadjacency matrix associated to this labeled poset is

A =




1 1 0 0

1 1 0 0

1 1 1 0

1 1 1 1



.

Observe that the zero entries form a right justified Young diagram of shape (2, 2, 1).

Note that this property implies that all entries to the right of any zero entry are

also zero and all entries above a zero entry are also zero entries in the antiadjacency

matrix.

It is known that the antiadjacency matrix of a poset P can be used to count

column-strict P -tableaux in the following way [19, Prop. 2.1].
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Proposition 2.1.1. Let P be a labeled poset with antiadjacency matrix A and let λ

be a partition of n = |P |. Then the number of column-strict P -tableaux is given by

∑

(I1,...,Ir)

det(AI1,I1) · · · det(AIr,Ir), (2.1.2)

where the sum is over all ordered set partitions of [n] of type λ and AI,I is the |I|×|I|

submatrix (ai,j)i,j∈I of A.

This relationship between the antiadjacency matrix and P -tableaux will provide

a combinatorial interpretation of the induced sign characters of Sn. It will be of

use to focus attention on certain elements of the symmetric group algebra, C[Sn].

Associate to each labeled poset P the element β(P ) of C[Sn] defined β(P ) =
∑

v

v

where the sum is over all permutations v ∈ Sn satisfying i ≮P vi for all i.

A permutation w is said to avoid the pattern 312 if no subword of w has the

relative order 312. The following result in [20] provides an alternate way of writing

β(P ).

Lemma 2.1.2. There is a bijection between unit interval orders P and 312-avoiding

permutations w such that if P corresponds to w and A is the antiadjacency matrix

of P with respect to an ar-labeling, then the set {v ∈ Sn | a
e,v = 1} is precisely the

interval [e, w] in the Bruhat order on Sn.

Recall that β(P ) =
∑

v

v, where the sum is over all permutations v ∈ Sn such

that i ≮P vi for every i ∈ [n]. By the definition of the antiadjacency matrix A,

i ≮P vi implies ai,vi = 1. That is, ae,v = 1 when i ≮P vi for every index i ∈ [n].

Thus by Lemma 2.1.2, for an ar-labeled unit interval order P , β(P ) can be defined

as β(P ) =
∑

v≤w

v for some 312-avoiding permutation w.
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2.2 Symmetric group algebra and Hecke algebra

characters

The Hecke algebra, Hn(q), is the noncommutative C[q
1
2 , q¯

1
2 ]-algebra with multiplica-

tive identity T̃e = 1 generated by {T̃si |1 ≤ i ≤ n− 1} subject to the relations

T̃ 2
si
= (q

1
2 − q¯

1
2 )T̃si + T̃e, for i = 1, . . . , n− 1,

T̃siT̃sj T̃si = T̃sj T̃siT̃sj , if |i− j| = 1,

T̃siT̃sj = T̃sj T̃si , if |i− j| ≥ 2.

(2.2.1)

Observe that Hn(q) is the quantum analog of the classical group algebra C[Sn],

with T̃v mapping to v when we specialize at q = 1. Hn(q) has the natural basis

{T̃w|w ∈ Sn} where T̃ = T̃si1 · · · T̃siℓ whenever si1 · · · siℓ is a reduced expression for

w ∈ Sn. This is analogous to the natural basis {w|w ∈ Sn} of C[Sn].

For every matrix representation of Sn there is an associated class function map-

ping each element in Sn to the trace of its matrix representation. Such class func-

tions are called Sn-characters. (See [17] for definitions.) Sn-characters extend

linearly to the group algebra, C[Sn]. Much of the information about a representa-

tion is encoded in its character. Thus representations are often studied in terms of

characters.

The complex span of the Sn-characters is the space of all class functions on

Sn, which has dimension equal to the number of integer partitions of n. One well-

studied basis is the induced sign character basis, {ǫλ|λ ⊢ n}. These are also called

the elementary characters, due to the Frobenius characteristic map, by which ǫλ cor-

responds to the elementary symmetric function eλ. The induced trivial characters

{ηλ|λ ⊢ n} are also known as the homogeneous characters because by the Frobe-

nius characteristic map, ηλ corresponds to the homogeneous symmetric function

hλ. A third well-studied basis is the irreducible character basis, {χλ|λ ⊢ n}, which

corresponds by the Frobenius characteristic map to the Schur functions sλ. These

are the most important characters because all other characters can be expressed

as nonnegative, integer linear combinations of these. The space has a fourth basis,
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{φλ|λ ⊢ n}, of monomial class functions. Analogous to the space of Sn-class func-

tions is the space of Hn(q)-traces, the C[q
1
2 , q¯

1
2 ]-span of the Hn(q)-characters. This

space has character bases {ǫλq |λ ⊢ n}, {ηλq |λ ⊢ n}, and {χλ
q |λ ⊢ n}, which specialize

at q = 1 to the Sn-character bases. The traces {φλ
q |λ ⊢ n} form another basis of

the Hn(q)-traces which correspond to the monomial character basis.

In each space, these bases are related to one another just as are the Schur,

elementary, and (complete) homogeneous bases of the space of homogeneous degree

n symmetric functions. Specifically,

hλ =
∑

µ

Kµ,λsµ, eλ =
∑

µ

Kµ⊤,λsµ, sλ =
∑

µ

Kλ,µmµ,

ηλ =
∑

µ

Kµ,λχ
µ, ǫλ =

∑

µ

Kµ⊤,λχ
µ, χλ =

∑

µ

Kλ,µφ
µ,

ηλq =
∑

µ

Kµ,λχ
µ
q , ǫλq =

∑

µ

Kµ⊤,λχ
µ
q , χλ

q =
∑

µ

Kλ,µφ
µ
q ,

(2.2.2)

where K = (Kλ,µ) is the invertible matrix of Kostka numbers. (See [17]).

2.3 Known combinatorial interpretations

One way to understand ǫλ(w), ηλ(w), χλ(w) and φλ(w) for permutations w ∈ Sn is

to define generating functions in the polynomial ring C(x) = C[x1,1, . . . xn,n]. Call

such generating functions immanants and define them by

Immf (x) =
def

∑

w∈Sn

f(w)x1,w1 · · · xn,wn

for each f ∈ {ǫλ, ηλ, χλ}. Nice formulas are known for the ǫλ-immanants and ηλ-

immanants, but not for χλ-immanants.

The Littlewood-Merris-Watkins [14],[15] identities express ǫλ-immanants and ηλ-

immanants as

Immǫλ(x) =
∑

(I1,...,Ir)

det(xI1,I1) · · · det(xIr,Ir), (2.3.1)

and

Immηλ(x) =
∑

(I1,...,Ir)

per(xI1,I1) · · · per(xIr,Ir), (2.3.2)
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where the sums are over all ordered set partitions of [n] satisfying |Ij| = λj.

The above identities can be used to state combinatorial interpretations for in-

duced sign and induced trivial characters evaluated at β(P ). Combining Proposition

2.1.1 and the Littlewood-Merris-Watkins identity for ǫλ-immanants yields the fol-

lowing theorem which is proved in [19, Thm 2.2].

Theorem 2.3.1. Let P be a labeled poset and let λ be a partition of |P |. Then

ǫλ(β(P )) equals the number of column-strict P -tableaux of shape λ⊤.

There is a similar result [19, Thm 2.3] for ηλ-immanants.

Theorem 2.3.2. Let P be a labeled poset and let λ be a partition of |P |. Then

ηλ(β(P )) equals the number of row-strict P -tableaux of shape λ.

Let λ = (λ1, . . . , λr) be a partition of l +m = n. Given a weak composition µ′

of l into r parts and a weak composition ν ′ of m into r parts, we say µ′ + ν ′ = λ

if µ′
i + ν ′i = λi for every i ∈ [r]. Define the partition µ corresponding to the weak

composition µ′ to be the rearrangement of the positive parts of µ into nonincreasing

order.

For fixed posets P and Q, define P ⊕Q to be the (|P |+ |Q|)-element poset with

every element of P being less than every element of Q. The following proposition

provides a decomposition of the induced sign characters of Sn evaluated on the

special elements of C[Sn] associated to such posets.

Proposition 2.3.3. Let P1 be an l-element poset and P2 an m-element poset with

l +m = n. Then for a fixed λ ⊢ n,

ǫλ(β(P1 ⊕ P2)) =
∑

µ′+ν′=λ

ǫµ(β(P1))ǫ
ν(β(P2)) (2.3.3)

where µ′ and ν ′ are weak compositions of l and m respectively and µ and ν are their

corresponding partitions.

Proof. Fix λ = (λ1, . . . , λr) a partition of n. By Theorem 2.3.1, ǫλ(β(P1 ⊕ P2)) is

equal to the number of column-strict (P1 ⊕ P2)-tableaux of shape λ⊤. Let T be one
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such tableau. It will be shown that T is counted by the right hand side of (2.3.3).

Decompose T into two (skew) tableau T1 and T2 where T1 consists of the cells

containing 1, . . . , l and T2 consists of the cells containing l + 1, . . . , l +m. Observe

that since T is column-strict, both T1 and T2 are column-strict. Letting µ′
i equal

the number of cells in column i of T1, define the weak composition µ′ of l. Similarly,

letting ν ′i equal the number of cells in column i of T2, define the weak composition

ν ′ of m. Note that µ′ + ν ′ = λ. Let µ and ν be the partitions corresponding to µ′

and ν ′ respectively. Rearranging the columns of T1 by nonincreasing size forms a

column-strict P1-tableau of shape µ⊤. Similarly, rearranging the columns of T2 forms

a column-strict P2-tableau of shape ν⊤. Thus T is counted by ǫµ(β(P1))ǫ
ν(β(P2)).

Again fix λ = (λ1, . . . , λr) a partition of n. Now consider a pair of weak compo-

sitions µ′ of l into r parts and ν ′ of m into r parts such that µ′ + ν ′ = λ. Let µ and

ν be the partitions corresponding to µ′ and ν ′. Construct a Young diagram of shape

µ⊤. There are ǫµ(β(P1)) ways to fill it with elements of P1 so that it is column-strict.

Pick one such filling and rearrange the columns of the P1-tableau to form a (skew)

tableau T1 with µ′
i cells in column i. Now choose one of the ǫν(β(P2)) ways to fill a

Young diagram of shape ν⊤ to be column-strict and rearrange the columns to form a

(skew) tableaux T2 with ν
′
i cells in column i. Combine T1 and T2 by placing column

i of T2 below column i of T1 for each i ∈ [r]. Call this tableau T and observe that

it is a column-strict (P1 ⊕ P2)-tableau of shape µ′ + ν ′ = λ. Thus T is counted by

ǫλ(β(P1 ⊕ P2)).

Though a nice formula for φλ-immanants is not known in general, Stembridge

[23] has provided the following formula in the case when λ1 = · · · = λr = k,

Immφkr (x) =
∑

(I1,...,Ik)

det(xI1,I2)det(xI2,I3) · · · det(xIk,I1),

where the sum is over all sequences of pairwise disjoint subsets of [n] = [kr] satisfying

|Ij| = r for every j ∈ [k].

Since no formulas such as (2.3.1), (2.3.2) are known for χλ-immanants or φλ-

immanants, work by Goulden and Jackson [7] and Greene [8] has led to focusing

the study on a subset of planar networks. In particular, interpretations are known
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for χλ(β(P )) and φλ(β(P )) when P is one of a restricted set of labeled posets. Due

to results by Stanley [21], Gasharov restricted attention to (3 + 1)-free posets and

formulated the following combinatorial interpretation.

Proposition 2.3.4. [6, Thm. 2] Let P be a labeled (3 + 1)-free poset and λ a

partition of |P |. Then χλ(β(P )) equals the number of semistandard P -tableaux of

shape λ.

Further restricting the type of poset considered as well as the shape of the par-

tition λ has led to the following combinatorial interpretations for φλ(β(P )).

Proposition 2.3.5. [3, Thm. 5.7] Let P be a unit interval order and let λ be a

partition of |P |. If λ1 ≤ 2, then φλ(β(P )) is equal to zero if there exists a column-

strict P -tableaux of shape µ ≺ λ in dominance order and it equals the number of

column-strict P -tableaux of shape λ otherwise.

Stembridge [23] further conjectured that for any unit interval order P and λ ⊢

|P |, φλ(β(P )) ≥ 0. However, no combinatorial interpretation for these characters

has been conjectured.

Generating functions for Hn(q)-traces on Hecke algebra basis elements can be

defined analogously to those for Sn-characters. That is, a generating function for

{fq(T̃w)|w ∈ Sn} where fq ∈ {ǫλq , η
λ
q , χ

λ
q} is defined by

Immfq(x) =
def

∑

w∈Sn

fq(T̃w)x1,w1 · · · xn,wn
,

where x = (xi,j) is an element of the quantum matrix bialgebra, A(n; q), discussed in

Section 1.3. There are nice formulas for ǫλq -immanants and ηλq -immanants analogous

to the Littlewood-Merris-Watkins identities in (2.3.1). The following are due to

Konvalinka and Skandera, [11]

Immǫλq
(x) =

∑

(I1,...,Ir)

detq(xI1,I1) · · · detq(xIr,Ir), (2.3.4)

and

Immηλq
(x) =

∑

(I1,...,Ir)

perq(xI1,I1) · · · perq(xIr,Ir), (2.3.5)
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where the sums are over all ordered set partitions of [n] satisfying |Ij| = λj.

Less is known about the Hn(q)-characters than is known for Sn-characters. De-

fine the q-analog of β(P ) for a poset P to be βq(P ) =
∑

v

qe,vT̃v where the sum is

over all permutations v ∈ Sn satisfying i ≮P vi for all i. Haiman [9] proved that

ηλq (βq(P )), ǫ
λ
q (βq(P )), and χλ

q (βq(P )) are in N[q
1
2 , q¯

1
2 ]. However, no combinatorial

interpretations for ηλq (βq(P )) or χ
λ
q (βq(P )) have been shown. In the next section a

combinatorial interpretation is provided for the quantum induced sign characters,

ǫλq (βq(P )).

2.4 Hn(q) Induced Sign Characters

This section provides a combinatorial interpretation for the polynomial ǫλq (βq(P ))

where P is an ar-labeled unit interval order.

Let A be the antiadjacency matrix of an n-element unit interval order P with

respect to an ar-labeling. Evaluating the left side of Equation (2.3.4) at x = A does

not allow us to compute the desired polynomial as it did in the non-quantum case

because the noncommuting variables satisfy nontrivial relations. Thus the sum of

quantum determinants must first be expressed in terms of the natural basis. To do

this, a map that takes the product of noncommuting variables xu1,v1 · · · xun,vn to the

product of commuting matrix entries au1,v1 · · · aun,vn will be constructed.

Define the family {σA,u : A[n],[n](n; q) → Z[q
1
2 − q¯

1
2 ]|u ∈ Sn} of linear maps by

σA,u(xu1,v1 · · · xun,vn) = au1,v1 · · · aun,vnqu,v (2.4.1)

where qu,v = q
ℓ(v)−ℓ(u)

2 . These maps aid in formulating an interpretation for the poly-

nomials ǫλq (βq(P )) = σA,e

(
Immǫλq

(x)
)
. Returning to the nice formula for Immǫλq

(x),
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the expression can be written as a sum of products of quantum determinants. Ex-

panding each quantum determinant yields

σA,e

(
Immǫλq

(x)
)
= σA,e



∑

(I1,...,Ir)

detq(xI1,I1) · · · detq(xIr,Ir)




= σA,e



∑

(I1,...,Ir)

∑

y∈Sλ

(−1)ℓ(y)q−1
e,yx

u, yu




=
∑

(I1,...,Ir)

∑

y∈Sλ

(−1)ℓ(y)q−1
e,yσA,e(x

u,yu), (2.4.2)

where the first sum is over all ordered set partitions (I1, . . . , Ir) of [n] which satisfy

|Ij| = λj for j = 1, . . . , r. To evaluate σA,e(x
u,yu), the monomial xu,yu must be

examined more closely. Fix u ∈ Sn with si1 · · · siℓ its right-to-left lexicographically

greatest reduced expression and y ∈ Sλ for some λ ⊢ n. Observe that by Theorems

1.3.5 and 1.3.6 for a fixed integer k ∈ [ℓ+ 1],

xu,yu =
∑

v≥φk,u(yu)

tku,yu,v(q
1
2 − q¯

1
2 )xφk,u(u), v (2.4.3)

recalling from Section 1.2 that φk,u(w) = si(k−1)
· · · si1w. Regroup the terms of this

sum by considering those permutations v for which sik is a left ascent or descent.

Then,

xu,yu =
∑

v≥φk,u(yu)
sikv>v

tku,yu,v(q
1
2 −q¯

1
2 )xφk,u(u), v+

∑

v≥φk,u(yu)
sikv<v

tku,yu,v(q
1
2 −q¯

1
2 )xφk,u(u), v. (2.4.4)

Recall by Lemma 1.3.1, replacing u with φk,u(u) and s with sik , it follows that

xφk,u(u), v =




xφk+1,u(u), sikv if sikv > v,

xφk+1,u(u), sikv + (q
1
2 − q¯

1
2 )xφk+1,u(u), v if sikv < v.

(2.4.5)
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Now using (2.4.5) we may rewrite the sum (2.4.4) as

xu,yu =
∑

v≥φk,u(yu)
sikv>v

tku,yu,v(q
1
2 − q¯

1
2 )xφk+1,u(u), sikv (2.4.6)

+
∑

v≥φk,u(yu)
sikv<v

tku,yu,v(q
1
2 − q¯

1
2 )
[
xφk+1,u(u), sikv + (q

1
2 − q¯

1
2 )xφk+1,u(u), v

]
.

Recall that the goal is to evaluate σA,e(x
u,yu). In working toward this goal, a

recursive relationship will be stated, in Theorem 2.4.7, for the family of maps

{σA,u|u ∈ Sn}. The next few results are necessary for developing this relation-

ship. Given certain conditions, one can identify particular variables in the monomial

xφk,u(u),v. The next two lemmas demonstrate this.

Lemma 2.4.1. Let si1 · · · siℓ be the right-to-left lexicographically greatest reduced

expression for a permutation u ∈ Sn. Fix k ∈ [ℓ], z ∈ Sn, and let p1 · · · pk−1 be a

subexpression of si1 · · · sik−1
such that if sijp(j−1) · · · p1z > p(j−1) · · · p1z then pj = sij .

Define w = sik−1
· · · si1z and v = pk−1 · · · p1z. Let wik = d, vik 6= d, and η be the

smallest index such that (pη · · · p1z)iη = d and (siη · · · si1z)iη+1 = d. If letter b is in

position iη of φη+1,u(u) then the variable xb,β with β ≥ d appears in the monomial

xφk,u(u),v.

Proof. Since by assumption the letter d is in position iη of pη · · · p1z and the letter

b is in position iη of φη+1,u(u) it follows that the variable xb,d appears in the mono-

mial xφη+1,u(u),pη ···p1z. Observe that if pη+1 = siη+1 then the variables appearing in

xφη+2,u(u),pη+1pη ···p1z are the same variables that appear in xφη+1,u(u),pη ···p1z, just in a

different order.

Now, suppose pη+1 = e. Then the (iη+1)th and (iη+1 + 1)st variables of the

monomial xφη+2,u(u),pη+1pη ···p1z are different than those of xφη+1,u(u),pη ···p1z and all other

variables in the monomials agree. However, if iη+1 + 1 6= iη then xb,d appears in

xφη+2,u(u),pη+1pη ···p1z as well. If iη+1 + 1 = iη and xa,cxb,d, for some a and c, are the

(iη+1)th and (iη+1 + 1)st variables of xφη+1,u(u),pη ···p1z, then xb,cxa,d are the (iη+1)th

and (iη+1 + 1)st variables of xφη+2,u(u),pη+1pη ···p1z. Since pη+1 = e then

si(η+1)
pη · · · p1z < pη · · · p1z,
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which implies

(pη · · · p1z)i(η+1)
> (pη · · · p1z)i(η+1)+1.

That is, c > d. Thus xb,γ with γ ≥ d appears in the monomial xφη+2,u(u),pη+1···p1z.

Repeating the above argument implies xb,β with β ≥ d appears in the monomial

xφk,u(u),v.

Lemma 2.4.2. Let si1 · · · siℓ be the right-to-left lexicographically greatest reduced

expression for a permutation u ∈ Sn. Fix k ∈ [ℓ] and let p1 · · · pk−1 be a subex-

pression of si1 · · · sik−1
. For z ∈ Sn, define w = sik−1

· · · si1z and v = pk−1 · · · p1z.

Let wik = d, vik 6= d, and η be the smallest index such that (pη · · · p1z)iη = d and

(siη · · · si1z)iη+1 = d. If letter b is in position iη of φη+1,u(u) then the variable xb,β

with β ≥ d is not the (ik)th variable in the monomial xφk,u(u),v.

Proof. By Lemma 2.4.1 we know xb,β, where β ≥ d, appears in the monomial

xφk,u(u),v. Since siη swaps the letters in positions iη and iη + 1, we have

[φη+1,u(u)]iη = [φη,u(u)]iη+1.

By Proposition 1.2.8, [φη,u(u)]iη+1 = αη(u) and [φk,u(u)]ik+1 = αk(u). By Observa-

tion 1.2.5, αη(u) ≤ αk(u) since η < k. Therefore,

[φη+1,u(u)]iη ≤ [φk,u(u)]ik+1.

By Observation 1.2.4, sik is a left descent of φk,u(u), which implies

[φk,u(u)]ik > [φk,u(u)]ik+1.

Thus b = [φη+1,u(u)]iη 6= [φk,u(u)]ik and so xb,β is not the (ik)th variable in the

monomial xφk,u(u),v.

Given an entry in the antiadjacency matrix A = (ai,j), knowing the position of

certain letters in the one-line notations of permutations allows one to deduce the

value of other entries in the antiadjacency matrix A = (ai,j). The following lemmas

state several of these relationships.
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Lemma 2.4.3. Let A = (ai,j) be the antiadjacency matrix of an n-element unit in-

terval order P with respect to an ar-labeling, si1 · · · siℓ be the right-to-left lexicograph-

ically greatest reduced expression for a permutation u ∈ Sn. Fix k ∈ [ℓ], z ∈ Sn,

and let p1 · · · pk−1 be a subexpression of si1 · · · sik−1
such that if sijp(j−1) · · · p1z >

p(j−1) · · · p1z then pj = sij . Define w = sik−1
· · · si1z and v = pk−1 · · · p1z. Then we

have,

(1) If wik = d, vik 6= d, and a[φk,u(u)]ik+1,wik
= 0, then aφk,u(u),v = 0.

(2) If wik = vik , sikv > v, and a[φk,u(u)]ik+1,wik
= 0, then aφk,u(u),v = 0.

(3) If wik = d, vik 6= d, sikv < v, and a[φk,u(u)]ik+1,wik
= 0, then aφk+1,u(u),v = 0.

(4) If wik = vik and a[φk,u(u)]ik+1,wik
= 0, then aφk+1,u(u),v = 0.

Proof. (1): Let η be the smallest index, guaranteed to exits by Corollary 1.1.16,

such that (pη · · · p1z)iη = d and (siη · · · si1z)iη+1 = d . Then by Proposition 1.2.8,

[φη+1,u(u)]iη = [φη,u(u)]iη+1 = αη(u)

and

[φk,u(u)]ik+1 = αk(u)

By Observation 1.2.5 αη(u) ≤ αk(u), that is [φη+1,u(u)]iη ≤ [φk,u(u)]ik+1. Thus

a[φη+1,u(u)]iη ,β
where β ≥ wik , is above and to the right of a[φk,u(u)]ik+1,wik

in the

matrix A. Therefore,

a[φk,u(u)]ik+1,wik
= 0 implies a[φη+1,u(u)]iη ,β

= 0.

By Lemma 2.4.1, x[φη+1,u(u)]iη ,β
where β ≥ wik appears in the monomial xφk,u(u),v.

Thus a[φη+1,u(u)]iη ,β
appears in aφk,u(u),v and so aφk,u(u),v = 0.

(2): Since sikv > v, it follows that vik+1 > vik . By assumption

a[φk,u(u)]ik+1,wik
= a[φk,u(u)]ik+1, vik

= 0.

This implies a[φk,u(u)]ik+1, vik+1
= 0 because the entries to the right of a 0 in A are

also 0. Thus a[φk,u(u)], v = 0 because it has a[φk,u(u)]ik+1,vik+1
as a factor.

(3): By Lemma 2.4.1, x[φη+1,u(u)]iη ,β
appears as a term in the monomial xφk,u(u),v.

If x[φη+1,u(u)]iη ,β
is not the (ik)th or (ik +1)st variable in xφk,u(u),v, then x[φη+1,u(u)]iη ,β
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also appears in the monomial xφk+1,u(u),v. Since siη swaps the letters in positions iη

and iη + 1, we have

[φη+1,u(u)]iη = [φη,u(u)]iη+1.

By Proposition 1.2.8, [φη,u(u)]iη+1 = αη(u) and [φk,u(u)]ik+1 = αk(u). By Observa-

tion 1.2.5, αη(u) ≤ αk(u) since η < k. Therefore,

[φη+1,u(u)]iη ≤ [φk,u(u)]ik+1.

Since β ≥ wik and a[φk,u(u)]ik+1,wik
= 0 by assumption, it follows that a[φη+1,u(u)]iη ,β

=

0. Since x[φη+1,u(u)]iη ,β
appears in the monomial xφk+1,u(u),v, then a[φη+1,u(u)]iη ,β

is a

factor of aφk+1,u(u),v. Thus aφk+1,u(u),v = 0.

By Lemma 2.4.2, x[φη+1,u(u)]iη ,β
is not the (ik)th variable in xφk,u(u),v. Thus we

need now consider the case were x[φη+1,u(u)]iη ,β
is the (ik + 1)st variable in xφk,u(u),v.

In this case, [φη+1,u(u)]iη = [φk,u(u)]ik+1 and β = vik+1. Therefore, x[φη+1,u(u)]iη ,β

can be rewritten as x[φk,u(u)]ik+1,vik+1
. Now since φk+1,u(u) = sik [φk,u(u)] we have

[φk,u(u)]ik+1 = [φk+1,u(u)]ik . That is, the letter [φk,u(u)]ik+1 is in position ik of

φk+1,u(u). Thus x[φk+1,u(u)]ik ,vik
= x[φk,u(u)]ik+1,vik

is a variable in the monomial

xφk+1,u(u),v. Since β ≥ wik and a[φk,u(u)]ik+1,wik
= 0, it follows that a[φk,u(u)]ik+1,β =

0. By assumption, sikv < v which implies vik > vik+1. Thus a[φk,u(u)]ik+1,β =

a[φk,u(u)]ik+1,vik+1
= 0 implies a[φk,u(u)]ik+1,vik

= 0. Furthermore, since a[φk,u(u)]ik+1,vik
is

a factor of aφk+1,u(u),v, then aφk+1,u(u),v = 0.

(4): Observe that since φk+1,u(u) = sik [φk,u(u)], it follows that [φk+1,u(u)]ik =

[φk,u(u)]ik+1. By assumption vik = wik , thus the product aφk+1,u(u), v has

a[φk+1,u(u)]ik ,vik
= a[φk,u(u)]ik+1,vik

= a[φk,u(u)]ik+1,wik

as a factor. By assumption this factor is zero, thus aφk+1,u(u), v = 0.

Lemma 2.4.4. Let u, z ∈ Sn with si1 · · · siℓ the right-to-left lexicographically great-

est reduced expression for u. Let p1 · · · pk−1 be a subexpression of si1 · · · sik−1
such

that if sijp(j−1) · · · p1z > p(j−1) · · · p1z in the Bruhat order then pj = sij . Fix k ∈ [ℓ],

then

(si(k−1)
· · · si1z)ik ≥ (pk−1 · · · p1z)ik .
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Proof. We will provide a proof by induction. If k = 1, then zi1 = zi1 and the claim

holds trivially.

Consider the case where k = 2. If p1 = si1 then (si1z)i2 = (p1z)i2 . If p1 = e then

by Observation 1.1.4 there are three cases we need to consider. Namely, i2 > i1 +1,

i2 = i1−1, and i2 = i1+1. First suppose i2 > i1+1. Then (si1z)i2 = zi2 because si1

swaps positions i1 and i1+1 of z leaving position i2 > i1+1 unchanged. Furthermore,

(p1z)i2 = zi2 because p1 = e. Thus (si1z)i2 = (p1z)i2 . Next suppose i2 = i1 − 1.

Then (si1z)i2 = zi2 because si1 leaves position i2 = i1 − 1 unchanged. Again p1 = e

implies (p1z)i2 = zi2 . Thus (si1z)i2 = (p1z)i2 . Lastly, suppose i2 = i1 + 1. Then

(si1z)i2 = (si1z)i1+1 = zi1 ,

because si1 moves the letter in position i1 of z to position i1 + 1 of si1z. We also

have

(p1z)i2 = (p1z)i1+1 = zi1+1

because p1 = e. Furthermore, since p1 = e, we have si1z < z which implies zi1 >

zi1+1. Therefore, (si1z)i2 > (p1z)i2 .

Now suppose (si(m−1)
· · · si1z)im ≥ (pm−1 · · · p1z)im for each m ∈ [k − 1]. By

Observation 1.1.4, either ik = i(k−1) + 1, ik = i(k−1) − 1, or ik > i(k−1) + 1. First

consider the case where ik = i(k−1) + 1. If pk−1 = si(k−1)
then

(pk−1 · · · p1z)i(k−1)+1 = (pk−2 · · · p1z)i(k−1)
.

We know (si(k−1)
· · · si1z)i(k−1)+1 = (si(k−2)

· · · si1z)i(k−1)
because applying si(k−1)

moves

the letter in position i(k−1) to position i(k−1)+1. By induction (si(k−2)
· · · si1z)i(k−1)

≥

(pk−2 · · · p1z)i(k−1)
. Therefore, we have

(si(k−1)
· · · si1z)i(k−1)+1 ≥ (pk−1 · · · p1z)i(k−1)+1.

If pk−1 = e, then (pk−1 · · · p1z)i(k−1)+1 = (pk−2 · · · p1z)i(k−1)+1. By assumption, since

pk−1 = e, we have

si(k−1)
pk−2 · · · p1z < pk−2 · · · p1z,
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which implies

(pk−2 · · · p1z)i(k−1)
> (pk−2 · · · p1z)i(k−1)+1.

Again we know (si(k−1)
· · · si1z)i(k−1)+1 = (si(k−2)

· · · si1z)i(k−1)
. By induction

(si(k−2)
· · · si1z)i(k−1)

≥ (pk−2 · · · p1z)i(k−1)
.

Therefore, we have

(si(k−1)
· · · si1z)i(k−1)+1 > (pk−1 · · · p1z)i(k−1)+1.

Next suppose ik 6= i(k−1)+1 and let j < k be the largest index such that ik = ij +1.

By the above, (sij · · · si1z)ij+1 ≥ (pj · · · p1z)ij+1. By the maximality of the index j,

necessarily si(j+1)
, si(j+2)

, . . . , si(k−1)
do not affect position ik = ij + 1. Thus

(si(k−1)
· · · si1z)ij+1 = (sij · · · si1z)ij+1 ≥ (pj · · · p1z)ij+1 = (pk−1 · · · p1z)ij+1.

That is, (si(k−1)
· · · si1z)ik ≥ (pk−1 · · · p1z)ik .

Lemma 2.4.5. Let A = (ai,j) be the antiadjacency matrix of an n-element unit

interval order P with respect to an ar-labeling and si1 · · · siℓ the right-to-left lexico-

graphically greatest reduced expression for a permutation u ∈ Sn. Fix k ∈ [ℓ], z ∈

Sn, and let p1 · · · pk−1 be a subexpression of si1 · · · sik−1
such that if sijp(j−1) · · · p1z >

p(j−1) · · · p1z then pj = sij . Define the permutations u′ = si(k−1)
· · · si1u, u

′′ =

sik · · · si1u, w = sik−1
· · · si1z, and v = pk−1 · · · p1z. If au′

ik+1,wik
= 1 and sikv < v,

then au
′′, v = au

′, v.

Proof. Observe that u′′ik = u′ik+1 and u′′ik+1 = u′ik . The product

au′

ik
, vik

au′

ik+1,vik+1
(2.4.7)

is a factor of au
′, v and the product

au′′

ik
, vik

au′′

ik+1,vik+1
= au′

ik+1, vik
au′

ik
, vik+1

(2.4.8)

is a factor of au
′′, v. By Lemma 2.4.4, wik ≥ vik . By assumption sikv < v which

implies vik > vik+1. Recall that the zero entries in A form a right justified Young
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diagram. Therefore any entry equal to 1 has only 1’s to the left and below it. Thus

the assumption au′

ik+1,wik
= 1 implies

au′

ik+1,vik
= 1 and au′

ik+1,vik+1
= 1. (2.4.9)

By Observation 1.2.4 sik is a left descent of u′ and so u′ik > u′ik+1. Therefore, (2.4.9)

implies

au′

ik
, vik

= 1 and au′

ik
, vik+1

= 1.

Since all other factors of au
′′, v and au

′, v agree, the two are equal.

Lemma 2.4.6. Let A be the antiadjacency matrix of an n-element unit interval

order P with respect to an ar-labeling. Fix permutations u, v ∈ Sn and let si1 · · · siℓ

be the right-to-left lexicographically greatest reduced expression for u. Fix k ∈ [ℓ]

and define the permutations u′ = φk,u(u) = si(k−1)
· · · si1u and u′′ = φk+1,u(u) =

sik · · · si1u. Then

(1) au
′′,sikv = au

′,v,

(2) If sikv > v, then qu′′,sikv
= qu′,v · q,

(3) If sikv < v, then qu′′,sikv
= qu′,v.

Proof. (1): By definition u′ = si(k−1)
· · · si1u and u′′ = sik · · · si1u, thus u

′′ = siku
′.

Therefore, we can write au
′′,sikv = asiku

′,sikv = au
′,v, where the last equality holds

because the factors commute.

(2): By definition,

qu′′,sikv
= (q

1
2 )ℓ(sikv)−ℓ(u′′).

The condition sikv > v implies ℓ(sikv) = ℓ(v) + 1. By Observation 1.2.4, ℓ(u′′) =

ℓ(u′)− 1. Therefore, qu′′,sikv
can be written as

(q
1
2 )[ℓ(v)+1]−[ℓ(u′)−1] = (q

1
2 )ℓ(v)−ℓ(u′)+2 = qu′,v · q.

(3): Again, by definition,

qu′′,sikv
= (q

1
2 )ℓ(sikv)−ℓ(u′′).
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The condition sikv < v implies ℓ(sikv) = ℓ(v) − 1. By Observation 1.2.4, ℓ(u′′) =

ℓ(u′)− 1. Therefore, qu′′,sikv
can be written as

(q
1
2 )[ℓ(v)−1]−[ℓ(u′)−1] = (q

1
2 )ℓ(v)−ℓ(u′) = qu′,v.

We can write a recursive relation for σA,u′′(xu, z) by replacing yu with z in Equa-

tion (2.4.6), applying σA,u′′ , and using the above lemmas. This recursive relation is

given by the following theorem.

Theorem 2.4.7. Let A be the antiadjacency matrix of an n-element unit interval

order P with respect to an ar-labeling. Fix permutations u, z ∈ Sn and let si1 · · · siℓ

be the right-to-left lexicographically greatest reduced expression for u. Fix k ∈ [ℓ] and

define the permutations u′ = φk,u(u) = si(k−1)
· · · si1u, u

′′ = φk+1,u(u) = sik · · · si1u,

and w = φk,u(z) = si(k−1)
· · · si1z. Then,

σA,u′′(xu,z) =




σA,u′(xu,z) if u′ik+1 <P wik

qσA,u′(xu,z) otherwise.

Proof. Applying σA,u′′ to Equation (2.4.6) yields

σA,u′′(xu,z) =
∑

v≥w
sikv>v

tku,z,v(q
1
2 − q¯

1
2 )au

′′,sikvqu′′,sikv
(2.4.10)

+
∑

v≥w
sikv<v

tku,z,v(q
1
2 − q¯

1
2 )
[
au

′′, sikvqu′′, sikv
+ (q

1
2 − q¯

1
2 )au

′′, vqu′′, v

]
.

By Lemma 2.4.6 this is equal to

∑

v≥w
sikv>v

tku,z,v(q
1
2 − q¯

1
2 )au

′, vqu′,v · q+
∑

v≥w
sikv<v

tku,z,v(q
1
2 − q¯

1
2 )
[
au

′, vqu′,v + (q − 1)au
′′, vqu′,v

]
.

(2.4.11)

Assume first that u′ik+1 <P wik and thus au′

ik+1,wik
= 0. Lemma 2.4.3 (1) states

that if wik 6= vik and au′

ik+1,wik
= 0, then au

′,v = 0. Lemma 2.4.3 (2) states that if
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wik = vik , sikv > v, and au′

ik+1,wik
= 0, then au

′,v = 0. Thus together, Lemma 2.4.3

(1) and 2.4.3(2) imply that the first sum in (2.4.11) is zero. Now Lemma 2.4.3 (3)

states that if wik 6= vik , sikv < v and au′

ik+1,wik
= 0, then au

′′,v = 0. Lemma 2.4.3(4)

states that if wik = vik and au′

ik+1,wik
= 0, then au

′′,v = 0. Thus together, Lemma

2.4.3 (3) and 2.4.3 (4) imply that the second sum in (2.4.11) is

∑

v≥w
sikv<v

tku,z,v(q
1
2 − q¯

1
2 )au

′, vqu′,v.

By Equation (1.3.15) and the definition of σA,u′ , this is just σA,u′(xu,z).

Now assume that u′ik+1 ≮P wik and thus au′

ik+1,wik
= 1. Lemma 2.4.5 states that

if au′

ik+1,wik
= 1 and sikv < v, then au

′′, v = au
′, v. Thus (2.4.11) can be written as

∑

v≥w
sikv>v

tku,z,v(q
1
2 −q¯

1
2 )au

′, vqu′,v ·q+
∑

v≥w
sikv<v

tku,z,v(q
1
2 −q¯

1
2 )
[
au

′, vqu′,v + (q − 1)au
′, vqu′,v

]

=
∑

v≥w
sikv>v

tku,z,v(q
1
2 − q¯

1
2 )au

′, vqu′,v · q +
∑

v≥w
sikv<v

tku,z,v(q
1
2 − q¯

1
2 )au

′, vqu′,v · q

=
∑

v≥w

tku,z,v(q
1
2 − q¯

1
2 )au

′,vqu′,vq. (2.4.12)

By Equation (1.3.15) and the definition of σA,u′ , this is just q · σA,u′(xu,z). And so

the claim holds.

Observation 2.4.8. Given an ordered set partition (I1, ..., Ir) of [n] of shape λ =

(λ1, ..., λr), let u be the permutation whose one-line notation is I1 · · · Ir, where Ij

is the increasing rearrangement of Ij. Let T be the P -tableau whose jth column

contains Ij in order of increasing labels. If (i, j) is an inversion in T , then (i, j) is

an inversion in u. More specifically,

inv(u) = inv(T ) + #{inversions in u that are not inversions in T}

More can be said about the positions of certain letters in permutations u of this

form.
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Lemma 2.4.9. Let (I1, ..., Ir) be an ordered set partition of type λ = (λ1, ..., λr)

of [n] and let u be the permutation whose one-line notation is I1 · · · Ir, where Ij is

the increasing rearrangement of Ij. Let si1 · · · siℓ be the right-to-left lexicographically

greatest reduced expression for u. Fix a permutation y ∈ Sλ and an integer k ∈

[ℓ + 1]. Recall the definition φk,u(w) = si(k−1)
· · · si1w. Then the letter [φk,u(yu)]ik

appears in a position of u to the left of the letter [φk,u(u)]ik+1.

Proof. By Observation 1.2.4, sik is a left descent of φk,u(u) and thus

[φk,u(u)]ik > [φk,u(u)]ik+1.

By the algorithm for determining the right-to-left lexicographically greatest reduced

expression for u, applying sij to si(j−1)
· · · si1u moves a greater letter to the right.

Thus, since the letter [φk,u(u)]ik is greater than and appears to the left of the let-

ter [φk,u(u)]ik+1 in φk,u(u), the letter [φk,u(u)]ik appears to the left of the letter

[φk,u(u)]ik+1 in u. More specifically, for some indices g < h, the letters [φk,u(u)]ik

and [φk,u(u)]ik+1 are in sets Ig and Ih respectively.

Observe that applying the sequence si(k−1)
· · · si1 of generators to both u and

yu yields the permutations φk,u(u) = si(k−1)
· · · si1u and φk,u(yu) = si(k−1)

· · · si1yu.

Thus letters [φk,u(u)]ik = (si(k−1)
· · · si1u)ik and [φk,u(yu)]ik = (si(k−1)

· · · si1yu)ik both

being in position ik of their respective permutations implies that for some j ∈ [ℓ]

these letters are in position j of u and yu respectively. Above we said uj = [φk,u(u)]ik

is in the set Ig. Since y ∈ Sλ and I is a set partition of shape λ, it follow that

(yu)j = [φk,u(yu)]ik is also in the set Ig. Recalling that the one-line notation for u

is I1 · · · Ir, then [φk,u(yu)]ik ∈ Ig and [φk,u(u)]ik+1 ∈ Ih with g < h implies that the

letter [φk,u(yu)]ik appears to the left of the letter [φk,u(u)]ik+1 in u.

For certain permutations z and permutations u of the form in Observation 2.4.8,

the poset relation u′ik+1 <P wik in Theorem 2.4.7 can be rewritten in terms of

inversions in P -tableaux. The next theorem explains this translation from partial

order relations to inversions.

Theorem 2.4.10. Let A be the antiadjacency matrix of an n-element unit interval

order P with respect to an ar-labeling. Let (I1, ..., Ir) be an ordered set partition of
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[n] of type λ = (λ1, ..., λr). Let T be the P -tableau whose jth column contains Ij in

order of increasing labels. Fix a permutation y ∈ Sλ and let u be the permutation

whose one-line notation is I1 · · · Ir, where Ij is the increasing rearrangement of Ij.

Recall the definition φk,u(w) = si(k−1)
· · · si1w. Then,

σA,φk+1,u(u)(x
u,yu) =





σA,φk,u(u)(x
u,yu) if ([φk,u(u)]ik+1, [φk,u(yu)]ik) is an

inversion in u and not in T ,

qσA,φk,u(u)(x
u,yu) otherwise,

(2.4.13)

where “otherwise” means that either ([φk,u(u)]ik+1, [φk,u(yu)]ik) is not an inversion

in u or the pair is an inversion in T .

Proof. By Theorem 2.4.7, we have

σA,φk+1,u(u)(x
u,yu) =




σA,φk,u(u)(x

u,yu) if [φk,u(u)]ik+1 <P [φk,u(yu)]ik

qσA,φk,u(u)(x
u,yu) otherwise.

(2.4.14)

Suppose first that [φk,u(u)]ik+1 <P [φk,u(yu)]ik . Since P is naturally labeled, we

must have [φk,u(u)]ik+1 < [φk,u(yu)]ik in Z. By Lemma 2.4.9, the letter [φk,u(yu)]ik

appears in a position to the left of the letter [φk,u(u)]ik+1 in u. Therefore, the pair

([φk,u(u)]ik+1, [φk,u(yu)]ik) is an inversion in u. On the other hand, since [φk,u(u)]ik+1

and [φk,u(yu)]ik are comparable in P , the pair ([φk,u(u)]ik+1, [φk,u(yu)]ik) cannot be

an inversion in the P -tableau T .

Now suppose the pair ([φk,u(u)]ik+1, [φk,u(yu)]ik) is an inversion in u and is not

an inversion in T . Then by Lemma 2.4.9, the letter [φk,u(yu)]ik appears before

the letter [φk,u(u)]ik+1 in u, and we therefore have [φk,u(u)]ik+1 < [φk,u(yu)]ik in

Z. Since the pair is not an inversion in T , then the pair must be comparable.

Specifically, we have [φk,u(u)]ik+1 <P [φk,u(yu)]ik because P is naturally labeled and

[φk,u(u)]ik+1 < [φk,u(yu)]ik in Z.

The following example illustrates this recursive relationship. Let u ∈ S4 be the

permutation with one-line notation 2413 and right-to-left lexicographically greatest

reduced expression s2s1s3. Let y = s1s3, then yu is the permutation 4231. Observe
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that using the second and third relations in (1.3.1) the monomial xu,yu inA[n],[n](n; q)

can be expressed as follows.

xu,yu = x2,4x4,2x1,3x3,1 (2.4.15)

= x2,4x1,3x4,2x3,1 (2.4.16)

= x1,3x2,4x4,2x3,1 + (q
1
2 − q¯

1
2 )x1,4x2,3x4,2x3,1 (2.4.17)

= x1,3x2,4x3,1x4,2 + (q
1
2 − q¯

1
2 )x1,3x2,4x3,2x4,1 (2.4.18)

+ (q
1
2 − q¯

1
2 )x1,4x2,3x3,1x4,2 + (q

1
2 − q¯

1
2 )2x1,4x2,3x3,2x4,1 (2.4.19)

Let A be the antiadjacency matrix associated to a unit interval order P with respect

to an ar-labeling. Consider the expressions,

σA,u(x
u,yu) = a2,4a4,2a1,3a3,1q, (2.4.20)

σA,s2u(x
u,yu) = a2,4a1,3a4,2a3,1q

2, (2.4.21)

σA,s1s2u(x
u,yu) = a1,3a2,4a4,2a3,1q

2 + a1,4a2,3a4,2a3,1(q
3 − q2), (2.4.22)

σA,s3s1s2u(x
u,yu) = a1,3a2,4a3,1a4,2q

2 + a1,3a2,4a3,2a4,1(q
3 − q2)+ (2.4.23)

a1,4a2,3a3,1a4,2(q
3 − q2) + a1,4a2,3a3,2a4,1(q

4 − 2q3 + q2).

Observe that Equation (2.4.22) is equal to Equation (2.4.21) if a1,4 = 0. By the

definition of A, ai,j = 0 implies i <p j. Thus the condition a1,4 = 0 is equivalent

to 1 <p 4, which by the proof of Theorem 2.4.10 is equivalent to (1, 4) being an

inversion in u and not an inversion in T . Furthermore, Equation (2.4.22) is q times

Equation (2.4.21) if a1,4 = 1. By the definition of A, ai,j = 1 implies either i > j

or i is incomparable to j. Thus since 1 < 4, then a1,4 = 1 is equivalent to 1 being

incomparable to 4.

Now observe that the pair ([φk,u(u)]ik+1, [φk,u(yu)]ik) is not necessarily an in-

version in u. For example, consider Equation (2.4.22) where [φ3,u(u)]i3+1 = 3 and

[φ3,u(yu)]i3 = 2 are not inverted in u. By Theorem 2.4.10, Equation (2.4.23) is equal

to q times Equation (2.4.22). We can see that this is true because a3,2 is necessarily

equal to 1.

With the results from Theorem 2.4.10 for u ∈ Sn of a certain form, σA,e(x
u,yu)
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can be evaluated recursively by evaluating σA,u(x
u,yu), σA,si1u

(xu,yu), . . . , σA,e(x
u,yu).

This is done in the next result.

Theorem 2.4.11. Let A be the antiadjacency matrix of an n-element unit interval

order P with respect to an ar-labeling. Let (I1, ..., Ir) be an ordered set partition of

[n] of type λ = (λ1, ..., λr). Let T be the P -tableau whose jth column contains Ij in

order of increasing labels. Fix a permutation y ∈ Sλ and let u be the permutation

whose one-line notation is I1 · · · Ir, where Ij is the increasing rearrangement of Ij.

Then we have σA,e(x
u, yu) = au, yuqe, yq

inv(T ).

Proof. By definition, we have σA,u(x
u,yu) = au,yuqu,yu = au,yuqe,y. Let si1 · · · siℓ

be the right-to-left lexicographically greatest reduced expression for u, recall the

definition φk,u(u) = sik−1
· · · si1u, and consider the expressions

σA,φ1,u(u)(x
u,yu) = σA,u(x

u,yu), σA,φ2,u(u)(x
u,yu), . . . , σA,φℓ+1,u(u)(x

u,yu) = σA,e(x
u,yu).

By Theorem 2.4.10, we have

σA,φk+1,u(u)(x
u,yu) =





σA,φk,u(u)(x
u,yu) if ([φk,u(u)]ik+1, [φk,u(yu)]ik) is an

inversion in u and not in T ,

qσA,φk,u(u)(x
u,yu) otherwise,

(2.4.24)

where “otherwise” means that either ([φk,u(u)]ik+1, [φk,u(yu)]ik) is not an inversion

in u or the pair is an inversion in both u and T . Thus, by Observation 2.4.8 we have

σA,e(x
u,yu) = au,yuqe,yq

ℓ(u)−#{inversions in u that are not inversions in T}

= au,yuqe,yq
inv(T ).

(2.4.25)

This result allows us to replace σA,e(x
u,yu) in the expansion (2.4.2) of the product

of quantum determinants with a simpler expression.

Corollary 2.4.12. Let A be the antiadjacency matrix of an n-element unit interval

order P with respect to an ar-labeling. For each ordered set partition (I1, . . . , Ir)
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of [n] of type λ = (λ1, . . . , λr), let T = T (I1, . . . , Ir) be the P -tableau whose jth

column contains Ij in order of increasing labels. Fix a permutation y ∈ Sλ and let

u = u(I1, . . . , Ir) be the permutation whose one-line notation is I1 · · · Ir, where Ij is

the increasing rearrangement of Ij. Then,

σA,e

(
Immǫλq

(x)
)
=

∑

(I1,...,Ir)

∑

y∈Sλ

(−1)ℓ(y)q−1
e,ya

u, yuqe, yq
inv(T )

=
∑

(I1,...,Ir)

qinv(T )
∑

y∈Sλ

(−1)ℓ(y)au, yu. (2.4.26)

We can discuss a property of the set of permutations y ∈ Sλ which yield nonzero

products of entries in the antiadjacency matrix A of a poset P . This result will allow

Equation (2.4.26) to be simplified further.

Lemma 2.4.13. Every permutation y ∈ Sλ can be factored as a product of permu-

tations in Sλ1, Sλ2, . . . , Sλr
and the sign of y is equal to the product of the signs

of these factors.

Proof. Recall that for an integer partition λ = (λ1, . . . , λr),

Sλ
∼= Sλ1 ×Sλ2 × · · · ×Sλr

Thus for y ∈ Sλ, y can be factored as y(1)y(2) · · · y(r) where y(i) ∈ Sλi
.

Furthermore, every expression for a fixed permutation has the same parity. Thus

sgn(y) = (−1)ℓ(y)

= (−1)ℓ(y
(1))+ℓ(y(2))+···+ℓ(y(r))

= (−1)ℓ(y
(1))(−1)ℓ(y

(2)) · · · (−1)ℓ(y
(r))

as claimed.

Given the above lemma, now consider the parity of elements in the set {y ∈

Sλ|a
u,yu = 1}, where A = (ai,j) is the antiadjacency matrix for some poset P . If u

is the permutation with one-line notation I1 · · · Ir, where Ij and T is the P -tableau

whose jth column contains Ij, then there are two cases one must consider; either T

is column-strict or not. The following two propositions consider these cases.
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Proposition 2.4.14. Let A be the antiadjacency matrix of an n-element unit inter-

val order P with an ar-labeling. Fix (I1, . . . , Ir) an ordered set partition of [n] of type

λ = (λ1, . . . , λr). Let u be the permutation whose one-line notation is I1 · · · Ir and

let T be the P -tableau whose jth column contains Ij, in order of increasing labels.

If T is not column-strict then the set {y ∈ Sλ|a
u, yu = 1} contains the same number

of even permutations as odd permutations.

Proof. Choose one column which is not a chain, say the kth column. Let the ele-

ments in this column be t = (t1, . . . , tλk
). By Lemma 1.1.2, the permutations v of

these elements for which

at1,v1at2,v2 · · · atλk ,vλk = 1 (2.4.27)

are precisely the interval [e, w] in the Bruhat order for some 312-avoiding permuta-

tion w. By Lemma 2.1.2, this interval consists of the same number of even permu-

tations as odd permutations.

Let p = (p1, . . . , pλl
) be the elements in column l of T and fix z a permutation

of these elements satisfying

ap1,z1ap2,z2 · · · apλl ,zλl = 1.

By Lemma 2.4.13, sgn(zv) = sgn(z)sgn(v). Thus for a fixed z ∈ Sλl
, the set

{zv ∈ Sλl
×Sλk

| ap1,z1 · · · apλl ,zλlat1,v1 · · · atλk ,vλk = 1, v ∈ Sλk
}

consists of half even permutations and half odd permutations. Furthermore, letting

z vary over permutations in Sλl
, the set

{zv ∈ Sλl
×Sλk

| ap1,z1 · · · apλl ,zλlat1,v1 · · · atλk ,vλk = 1, v ∈ Sλk
}

consists of half even permutations and half odd permutations. This extends to a

product of any number of factors.

Each element of y ∈ Sλ factors as y
(1)×y(2)×· · ·×y(r) with y(i) ∈ Sλi

. Therefore,

by the above, the set

{y ∈ Sλ | a
u,yu = 1}

consists of half even permutations and half odd permutations.
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For an example to illustrate the above proposition, consider u = 1346257 with

right-to-left lexicographically greatest reduced expression s4s3s2s5 and λ = (4, 3).

If 1 and 4 are incomparable and 2 and 5 are incomparable, then the set {y ∈

Sλ|a
u, yu = 1} is

{e, s1, s2, s1s2, s2s1, s1s2s1, s5, s5s1, s5s2, s5s1s2, s5s2s1, s5s1s2s1}. (2.4.28)

Proposition 2.4.15. Let A be the antiadjacency matrix of an n-element unit inter-

val order P with an ar-labeling. Fix (I1, . . . , Ir) an ordered set partition of [n] of type

λ = (λ1, . . . , λr). Let u be the permutation whose one-line notation is I1 · · · Ir and

let T be the P -tableau whose jth column contains Ij, in order of increasing labels.

If T is column-strict, then

{y ∈ Sλ|a
u,yu = 1} = {e}.

Proof. Assume T is the P -tableau defined above and suppose T is column-strict.

Then for each j ∈ [r], the elements in column j form a chain

i1 <P i2 <P · · · <P iλj
.

Thus by definition of A, aik,il = 0 for every pair (k, l) with k < l ≤ λj. Since y ∈ Sλ,

applying y to u permutes the letters i1, i2, . . . , iλj
among themselves. Thus if y is

not the identity permutation, then for some pair (k, l) with k < l ≤ λj we have that

aik,il is a factor of au,yu. Hence if y is not the identity permutation, then au,yu = 0.

Furthermore, au,u = 1 by the definition of A. Thus if T is column-strict then

{y ∈ Sλ|a
u,yu = 1} = {e}.

Combining the evaluation of σA,e on the monomial xu,yu with the results con-

cerning the parity of elements in the set {y ∈ Sλ|a
u,yu = 1}, a combinatorial

interpretation of the image of ǫλq -immanants under σA,e can be stated.
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Theorem 2.4.16. Let A be the antiadjacency matrix of an n-element unit interval

order P with respect to an ar-labeling. Fix λ a partition of n. Then

σA,e

(
Immǫλq

(x)
)
=
∑

T

qinv(T ) (2.4.29)

where the sum is over all column-strict P -tableaux T of shape λ⊤.

Proof. By Equation (2.4.26), the left hand side of Equation (2.4.29) is

∑

(I1,...,Ir)

qinv(T )
∑

y∈Sλ

(−1)ℓ(y)au, yu, (2.4.30)

where the first sum is over all ordered set partitions (I1, . . . , Ir) of [n] of type λ, u

is the permutation whose one-line notation is I1 · · · Ir, and T = T (I1, . . . , Ir) is the

P -tableau whose jth column contains Ij, in order of increasing labels.

Observe that the terms in
∑

y∈Sλ

(−1)ℓ(y)au, yu can be regrouped by considering the

parity of the permutation y ∈ Sλ. Let Eλ be the alternating subgroup of Sλ, that

is, all even permutations on Sλ. Then

∑

y∈Sλ

(−1)ℓ(y)au, yu =
∑

y∈Eλ

au, yu +
∑

y∈Sλ\Eλ

−au, yu (2.4.31)

= #{y ∈ Eλ|a
u,yu = 1} −#{y ∈ Sλ\Eλ|a

u,yu = 1}. (2.4.32)

By Proposition 2.4.14, if T is not a column-strict P -tableau then the two sets in

(2.4.32) have the same size and so the sum is zero. Thus when T is not column-strict,

qinv(T )
∑

y∈Sλ

(−1)ℓ(y)au, yu = 0.

Hence, (2.4.30) is ∑

T

qinv(T )
∑

y∈Sλ

(−1)ℓ(y)au, yu, (2.4.33)

where the sum is over column-strict P -tableaux T of shape λ⊤.

Observe further that if T is column-strict then by Proposition 2.4.15, {y ∈

Sλ|a
u,yu = 1} = {e}. This implies,

∑

y∈Sλ

(−1)ℓ(y)au, yu = 1.
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Therefore (2.4.33) can be written as

∑

T

qinv(T )

where the sum is over all column-strict P -tableaux T of shape λ⊤, as claimed.

This leads to an expression for the induced sign characters of Hn(q) applied to

special elements, βq(P ), of the group algebra C[Sn]. Recall that the ǫλq -immanants

are defined as

Immǫλq
(x) =

def

∑

v∈Sn

ǫλq (T̃v)x
e,v.

Observe that for the antiadjacency matrix A of a unit interval order P ,

σA,e

(
∑

v∈Sn

ǫλq (T̃v)x
e,v

)
=
∑

v∈Sn

ǫλq (T̃v)σA,e(x
e,v) (2.4.34)

=
∑

v∈Sn

ǫλq (T̃v)a
e,vqe,v (2.4.35)

= ǫλq

(
∑

v∈Sn

T̃va
e,vqe,v

)
. (2.4.36)

Recall that the elements βq(P ) of C[Sn] are defined as

βq(P ) =
∑

v

qe,vT̃v,

where the sum is over all permutations v ∈ Sn such that i ≮P vi for all i. Note that

by definition of the antiadjacency matrix A, i ≮P vi implies ai,vi = 1. Furthermore,

i ≮P vi for all i implies ae,v = 1. Thus Equation (2.4.34) can be written as

σA,e

(
∑

v∈Sn

ǫλq (T̃v)x
e,v

)
= ǫλq (βq(P )).

Therefore Theorem 2.4.16 implies

ǫλq (βq(P )) =
∑

T

qinv(T ), (2.4.37)

where the sum is over all column-strict P -tableau T of shape λ⊤.
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This interpretation of the induced sign characters of the Hecke algebra can be

used to show the total nonnegativity of certain symmetric functions. Stanley’s

chromatic symmetric function [21], which associates a symmetric function XP with

a poset P , can be expressed as

XP =
∑

λ⊢n

cλmλ

where cλ is the number of ways to partition P into a sequence of r chains of size

(λ1, . . . , λr) respectively and to assign color κ to the kth chain. Alternately, Sn

class functions can be used to express XP since cλ = ǫλ(β(P )). Specifically,

XP =
∑

λ⊢n

ǫλ(β(P ))mλ =
∑

λ⊢n

χλ⊤(β(P ))sλ =
∑

λ⊢n

φλ(β(P ))eλ. (2.4.38)

Shareshian and Wachs [18] defined a quantum analog of XP that is symmetric when

P is an ar-labeled unit interval order. This q-analog can be expressed as

XP,q =
∑

λ⊢n

cλ,qmλ,

where cλ,q =
∑

T

qinv(T ) for all column-strict P -tableaux T of shape λ⊤. Now Equa-

tions (2.4.37) and (2.2.2) imply that XP,q can be written as

XP,q =
∑

λ⊢n

ǫλq (βq(P ))mλ =
∑

λ⊢n

χλ⊤

q (βq(P ))sλ =
∑

λ⊢n

φλ
q (βq(P ))eλ,

when P is an ar-labeled unit interval order. The combinatorial interpretation of the

coefficients of mλ in XP,q shows that this quantum chromatic symmetric function is

monomial nonnegative when P is an ar-labeled unit interval order.
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Chapter 3

F -tableau

In this chapter, three more types of Young tableaux are introduced. These objects

are then used to provide a conjectured combinatorial interpretation for the family of

maps, σA,u, introduced in Section 2.4 applied to a more general product of quantum

determinants. Lastly, for a special class of planar networks, a bijection between path

tableaux with certain inversions is stated. This bijection provides a combinatorial

proof that the the sequence of coefficients in ǫλq (βq(P )) is symmetric.

3.1 F -tableau and σA,e(detq(xI1,J1) · · · detq(xIr,Jr))

The evaluation of the family of maps {σA,u : A[n],[n](n; q) → Z[q
1
2 − q¯

1
2 ]|u ∈ Sn},

introduced in Section 2.4, on elements of A[n],[n](n; q) can be facilitated by certain

edge multisets called skeletons. Define the skeleton of a path family to be the

multiset F = ek11 · · · ekmm of edges ei where kj paths in the path family contain the

edge ej. Call the multiset F a bijective skeleton if it is the skeleton of a bijective

path family.

In the previous chapter, Young diagrams were filled with elements of a poset

P and called P -tableaux. Alternately, Young diagrams can be filled with paths of

a path family covering a skeleton F . Call these F -tableaux. If the path family is

of type w, then the F -tableau is said to be of type w as well. Recall the natural

poset Q on the set of source-to-sink paths of a planar network and the subposet P
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on the set of paths in a bijective path family, defined in Section 2.1. A P -tableau

associated to the subposet P on the set of paths in a bijective path family can be

interpreted as an F -tableau of type 1 by replacing the element i in the P -tableau

with the source-i-to-sink-i path. For example, consider the bijective path family π

and associated P -tableau T1 from Section 2.1. Then the tableau U below is the

F -tableau associated to the P -tableau T1.

T1 =
1

3

2
U =

π1

π3

π2

Path tableaux associated to bijective skeletons can be classified in the same way

poset tableaux were classified. For example, an F -tableau containing a path family

ρ = (ρ1, . . . , ρn) is classified as column-strict if the paths in a column, ρi1 , . . . , ρiλj
appearing from top to bottom, form a chain ρi1 <P ρi2 <P · · · <P ρiλj . F -tableaux

are row-semistrict if paths ρij and ρik appearing consecutively in a row satisfy either

ρij <P ρik or ρij is incomparable to ρik . A column-strict and row-semistrict F -

tableau is called semistandard.

Consider a bijective path family, ρ = (ρ1, . . . , ρn), of type w with bijective skele-

ton F . Fix λ ⊢ n and let U be an F -tableau of shape λ⊤ containing ρ. Define L(U)

and R(U) to be the Young tableaux of integers obtained by replacing the paths

in U with their sources and sinks respectively. For example, consider the bijective

path family ρ = (ρ1, ρ2, ρ3, ρ4) of type 2143 covering the following skeleton F . The

tableau U is one example of an F -tableau of shape λ = 31 containing ρ.

F =

4

3

2

1

4

3

2

1

U =
ρ2 ρ4 ρ1

ρ3

The associated tableaux L(U) and R(U) are as follows.

L(U) =
2 4 1

3
R(U) =

1 3 2

4
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Let I = (I1, . . . , Ir) be the ordered set partition of [n] such that Ij is the set of

integers in the jth column of L(U). Similarly, let J = (J1, . . . , Jr) be the ordered

set partition of [n] such that Ji is the set of integers in the ith column of R(U).

To state a conjectured interpretation for the family of maps σA,e, two new statistics

on an F -tableau for a bijective skeleton F need to be defined. A pair (ρi, ρj) of

intersecting paths in F with ρi appearing in a column to the right of the column

containing ρj in U is a left inversion in U if j > i and a right inversion in U if wj > wi.

Let linv(U) denote the number of left inversions and rinv(U) the number of right

inversions. Returning to the above example, the left inversions in U are (ρ1, ρ2) and

(ρ1, ρ4). The right inversions in U are (ρ1, ρ4) and (ρ4, ρ3). Thus linv(U) = 2 and

rinv(U) = 2 in this example. Observe that if P is the natural poset on the paths

of a bijective path family with skeleton F , then inv(T ) = linv(U) where T is the

P -tableau and U is the corresponding F -tableau.

For an interval [i, j], a subset of [n], let F[i,j] be the bijective skeleton consisting

of a star of j − (i − 1) edges from sources i, . . . , j to an intermediate vertex and

j− (i− 1) edges from this vertex to sinks i, . . . , j, and horizontal edges from source

k to sink k for each k < i and each k > j. For n = 4 there are seven such skeletons.

Concatenate two bijective skeletons, F[i,j] and F[k,l], of order n by identifying sink

m of F[i,j] to source m of F[k,l] and collapsing any set of edges between the same two

vertices to form a single edge. Denote the concatenation by F[i,j] ◦ F[k,l]. Consider

subintervals [i1, j1], [i2, j2], . . . , [ir, jr] such that i1 > i2 > · · · > ir and j1 > j2 >

· · · > jr. Call the concatenation F[i1,j1]◦F[i2,j2]◦· · ·◦F[ir ,jr] an ascending star network.

Certain skeletons are in one-to-one correspondence with unit interval orders. Let

P be an n-element unit interval order and A the antiadjacency matrix associated

to P with respect to an ar-labeling. Consider the sequence of subintervals, [i1, j1],

[i2, j2], . . . , [ir, jr] such that
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• aik,jk is the rightmost 1 in row ik and the first 1 in column jk, and

• 1 = i1 < i2 < · · · < ir ≤ n− 1.

Let F = F[ir ,jr] ◦ · · · ◦ F[i1,j1] be the bijective skeleton F associated to the unit

interval order P . Call such skeletons unit interval networks [20]. Observe that

necessarily j1 < j2 < · · · < jr and therefore the bijective skeleton F associated to

the unit interval order P is an ascending star network. By Lemma 2.1.2 we can

associate to each n-element unit interval order P a 312-avoiding permutation w.

Thus we denote the unit interval network associated to the unit interval order P

by Fw. We can now define the elements βq(P ) in terms of unit interval networks

instead of unit interval orders. Let P be a unit interval order with respect to an

ar-labeling and Fw the corresponding unit interval network. Then,

βq(P ) =
∑

v≤w

T̃vqe,v = βq(Fw).

In Section 2.4, we applied the family of maps {σA,u : A[n],[n](n; q) → Z[q
1
2 −

q¯
1
2 ]|u ∈ Sn} to a specific product of matrix minors. The following is a conjectured

interpretation of these maps applied to a more general product of matrix minors.

Conjecture 3.1.1. Let A = A(P ) be the antiadjacency matrix associated to an ar-

labeling of a unit interval order P . Let F be the associated unit interval network and

π the bijective path family of type 1 covering F . Fix ρ = (ρ1, . . . ρn), a bijective path

family of type v covering F . Fix λ = (λ1, . . . , λr), a partition of n and let U be the

F -tableau of shape λ⊤ containing ρ. Define the ordered set partitions I = (I1, . . . , Ir)

and J = (J1, . . . , Jr) to be the sets such that Ii contains the integers in column i of

L(U) and Ji contains the integers in column i of R(U), where L(U) and R(U) are

defined as above. Then,

σA,e(detq(xI1,J1) · · · detq(xIr,Jr)) =




(q

1
2 )linv(U)+rinv(U) if U is column-strict,

0 otherwise.

(3.1.1)
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Consider the special case of the above conjecture where I = J , ρ is a path family

of type 1, (i.e. L(U) = R(U)), and the path tableau U is interpreted as a poset

tableau.

Theorem 3.1.2. Let A = A(P ) be the antiadjacency matrix associated to an ar-

labeling of a unit interval order P . Let F be the associated unit interval network and

π the bijective path family of type 1 covering F . Fix λ = (λ1, . . . , λr), a partition of

n, let U be the P -tableau of shape λ⊤ containing π. Define the ordered set partition

I = (I1, . . . , Ir) to be the sets such that Ii contains the integers in column i of U .

Then,

σA,e(detq(xI1,I1) · · · detq(xIr,Ir)) =




qinv(U) if U is column-strict,

0 otherwise.
(3.1.2)

Proof. Define u to be the permutation in Sn whose one-line notation is I1 · · · Ir

where Ij is the elements of Ij in increasing order. Then the left hand side of Equation

(3.1.2) can be expanded as

σA,e(
∑

y∈Sλ

(−1)ℓ(y)q−1
e,yx

u, yu). (3.1.3)

By Theorem 2.4.11 this can be written as

σA,e(detq(xI1,I1) · · · detq(xIr,Ir)) =
∑

y∈Sλ

(−1)ℓ(y)au,yuqinv(U). (3.1.4)

By Proposition 2.4.14, if U is not column-strict then the right hand side of (3.1.4) is

zero. If U is column-strict, then by Proposition 2.4.15, the right hand side of (3.1.4)

is qinv(U). Thus,

σA,e(detq(xI1,I1) · · · detq(xIr,Ir)) =




qinv(U) if U is column-strict,

0 otherwise.

Note that the above theorem is a special case of Conjecture 3.1.1 because in this

case L(U) = R(U) and linv(U) = rinv(U) = inv(U) since π is a path family of

type 1.
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3.2 Bijection between F -tableau

It is known that for a fixed polynomial ǫλq (βq(P )), the sequence of coefficients is

symmetric. For example if P is the poset

1

3
2
,

then ǫ111q (βq(P )) = q2 + 4q + 1.

As shown in Section 2.4, the coefficient of qk in the polynomial

ǫλq (βq(P )) =
∑

T

qinv(T )

counts the number of column-strict P -tableaux of shape λ⊤ with k inversions. This

combinatorial interpretation can be used to provide a combinatorial proof of the

symmetry of the coefficients for a certain class of bijective skeletons, called odd

symmetric skeletons. Let π = (π1, . . . , πn) be a bijective path family of type 1

covering a skeleton F . Call a skeleton odd symmetric if for each pair 1 ≤ i, j ≤ n,

the paths πi and πj intersect if and only if πn−i+1 and πn−j+1 intersect. The following

are examples of odd symmetric skeletons.

, , , .

Let ins(F ) be the number of pairs (πi, πj) such that i < j and πi intersects πj.

Since a pair of paths (πi, πj) is an inversion in an F -tableau if πi intersects πj, πi

appears in a column to the right of that containing πj, and i < j, it follows that

ins(F ) is the maximum number of possible inversions in an F -tableau.

For example, let F be the skeleton

5
4
3
2
1

5
4
3
2
1
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Let π be the bijective path family of type 1 covering F . Then the pairs of intersecting

paths are (π1, π2), (π1, π3), (π2, π3), (π3, π4), (π3, π5), and (π4, π5). Thus ins(F ) = 6.

Fix a path family π = (π1, . . . , πn) of type 1 with bijective skeleton F . Let

λ = (λ1, . . . , λr) be a partition of n. Given an F -tableau T of shape λ containing

π, construct the associated F -tableau T ∗ of shape λ by swapping πi and πn−i+1 in

T for every i ∈ [n] and then reordering the entries in each column to be increasing

top to bottom. For example, consider the following pairs (T, T ∗) of F -tableaux.
(

π1 π2 π3 π5

π4 ,

π2 π4 π3 π1

π5

)

(
π1 π2 π5 π3

π4 ,

π2 π4 π1 π3

π5

)

(
π1 π3 π5

π2 π4 ,

π4 π2 π1

π5 π3

)

(
π2 π4 π1

π3 π5 ,

π3 π1 π5

π4 π2

)

Observe that if T is of shape λ then necessarily T ∗ is also of shape λ. Other

properties of T are related to those of T ∗. Two such properties are illustrated by

the following propositions.

Proposition 3.2.1. Fix an odd symmetric skeleton F with bijective path family

π = (π1, . . . , πn) of type 1. If T is a column-strict F -tableau containing π, then T ∗

is a column-strict F -tableau containing π.

Proof. Suppose πi and πj, with i < j, are in column k of T , then πn−i+1 and πn−j+1

are in column k of T ∗. Since T is column-strict, it follows that πi <P πj. Since F is

odd symmetric, this implies πn−j+1 <P πn−i+1. Thus T
∗ is also column-strict.

Proposition 3.2.2. Fix an odd symmetric skeleton F with bijective path family

π = (π1, . . . , πn) of type 1. If T is a column-strict F -tableau with inv(T ) = k, then

inv(T ∗) = ins(F )− k.

Proof. Recall that ins(F ) represents the maximum number of possible inversions in

T . If inv(T ) = k then there are ins(F )− k pairs of intersecting paths that are not

inverted in T .
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To see that each inversion in T corresponds to a pair of intersecting paths that

are not an inversion of T ∗, let (πi, πj), with i < j, be an inversion in T . Note that

i < j implies n − j + 1 < n − i + 1. Since F is odd symmetric, πi intersecting πj

implies πn−i+1 and πn−j+1 intersect. Furthermore, πi in a column of T to the right of

that containing πj implies πn−i+1 is in a column of T ∗ to the right of that containing

πn−j+1. Thus (πn−j+1, πn−i+1) is not an inversion in T ∗.

To see that each pair of intersecting paths not inverted in T correspond to an

inversion in T ∗, let (πi, πj), with i < j, be a pair such that πi and πj intersect

but πi is in a column of T to the left of that containing πj. Again i < j implies

n− j + 1 < n− i + 1. Furthermore, πn−i+1 is in a column of T ∗ to the left of that

containing πn−j+1 by definition of T ∗. Since F is odd symmetric, πi intersecting πj

implies πn−j+1 and πn−i+1 intersect. Thus (πn−j+1, πn−i+1) is an inversion in T ∗.

Lastly, consider any pair of paths (πi, πj), with i < j such that πi and πj

do not intersect. Then πn−j+1 and πn−i+1 do not intersect and it follows that

(πn−j+1, πn−i+1) is not an inversion in T or T ∗. Therefore, inv(T ) = k implies

inv(T ∗) = ins(F )− k.

For λ ⊢ n, let Cλ be the set of all column-strict F -tableaux of shape λ containing

a bijective path family π of type 1, where F is an odd symmetric skeleton.

Theorem 3.2.3. Given an odd symmetric skeleton F and a bijective path family π of

type 1 covering it, the map ψ : Cλ → Cλ, defined by T 7→ T ∗ is a bijection between

column-strict F -tableaux of shape λ with j inversions and those with ins(F ) − j

inversions.

Proof. Given an odd symmetric skeleton F and a column-strict F -tableau T , of

shape λ, there is a one-to-one correspondence between T and T ∗. By Proposition

3.2.1, T ∗ is column-strict. By Proposition 3.2.2, if inv(T ) = j then inv(T ∗) =

ins(F )− j.

Consider skeletons F such that the induced sub-skeleton of the sources i through

i + k is an odd symmetric skeleton and the paths from source j to sink j for all
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j /∈ [i, i+ k] are non-intersecting. The following are examples of such skeletons.

...

... ,

...

... ,

...

... .

The bijection in Theorem 3.2.3 can be extended to the set of these skeletons by first

defining T ∗ so that πj and π(i+k)−j+1 swap positions for all i < j < i + k and πj

remains fixed for all other values of j. Extending this bijection to skeletons beyond

those with an odd symmetric subskeleton remains an open problem.
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