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Abstract

Several families of polynomials arise naturally as entries of transition matrices in

many parameterized spaces. The Kazhdan-Lusztig polynomials and R-polynomials

are well known examples of such families of polynomials. In this paper, we in-

troduce other families which arise in analogous ways and show that the modified

R-polynomials are in fact a subset of these new polynomials. We combinatorially

describe the coefficients of these new polynomials in a way which generalize previ-

ous combinatorial descriptions of the modified R-polynomials. Next we state new

symmetry results as well as give alternate proofs of known symmetries, providing

a bijective proof of one such result. We then apply these results to give a new

formulation of the dual canonical basis of the quantum polynomial ring in terms of

Kazhdan-Lusztig immanants. Finally, we look at a two parameter version of the

Hecke algebra and quantum polynomial ring, introducing two parameter analogs of

the modified R-polynomials and show these satisfy recursive formulas and identities

which resemble and generalize known recursive formulas and identities.
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Introduction

Representations of quantum groups provide solutions to the Quantum Yang-Baxter

equation and have applications in quantum field theory and statistical mechanics

[32]. Quantum groups also have connections to other fields of mathematics such

as algebraic geometry [33], category theory [29], knot theory [21], as well as having

applications in nuclear physics [18], astrophysics [30], and other areas of science.

Kashiwara [20] and Lusztig [27] made contributions to the representation theory

of quantum groups by introducing canonical (or crystal) bases known as enveloping

algebras. Quantum coordinate rings such asOq(SL(n,C)) are dual to the enveloping

algebras and contain dual canonical bases. The quantum polynomial ring A(n; q),

while not a quantum group, is closely related to Oq(SL(n,C)) and contains a dual

canonical basis , which is related by Hopf algebra duality to Kashiwara’s [20] and

Lusztig’s [27] canonical basis of sl(n,C). Understanding these bases will allow the

construction of representations of the algebras and lead to representations of the

quantum groups. However, these bases are defined recursively and are not easy to

construct or understand.

The Iwahori-Hecke algebra, Hn(q), is a single parameter deformation of the group

algebra C[Sn], where Sn is the symmetric group. In particular, Hn(q) specializes

to C[Sn] when q = 1. Kazhdan and Lusztig [22] introduced a basis and irreducible

modules for Hn(q), which make use of polynomials defined recursively known as

Kazhdan-Lusztig polynomials . An important ingredient in the definition of their

basis is known as the bar involution. Applying this involution to a natural basis

element of Hn(q), one obtains a new basis, related to the first by polynomials in Z[q]

known as R-polynomials . Alternatively, one may use modified R-polynomials in N[q].

2



Coefficients of the modified R-polynomials and their combinatorial interpretations

were studied by Brenti [3], [4], [5], [6], [7], Deodhar [13], and Dyer [17].

Certain C[q
1
2 , q¯

1
2 ]-submodules of Hn(q) called double parabolic modules inherit a

bar involution from Hn(q), and therefore inherit analogs of R-polynomials called

parabolic R-polynomials. Also belonging to Z[q], these parabolic R-polynomials

appear in numerous papers, yet somehow have not received the modification and

combinatorial interpretation granted to their non parabolic siblings.

Related to the bar involutions on Hn(q) and its parabolic modules is another

involution on A(n; q). This last involution, also called the bar involution, is an

important ingredient in the definition of the dual canonical basis of the quantum

polynomial ring. Again, applying this involution to a natural basis of A(n; q), one

obtains a second basis, related to the first by inverse R-polynomials and inverse

parabolic R-polynomials (equivalently, by modifications of these).

To summarize, we have several algebras with the property that a natural basis

and its bar image are related by a transition matrix whose entries are variations of

R-polynomials. Using an elementary family of bases of A(n; q), we show that in all

cases, the above entries have simple combinatorial interpretations in terms of walks

in the Bruhat order.

In Chapter 1 we first review some properties of the symmetric group, as it plays

a very important role in the Hecke algebra and quantum polynomial ring. We then

define the Hecke algebra Hn(q) and it’s submodules HI,J and H ′I,J , as well as the

quantum polynomial ring A(n; q). Next we introduce a new family of polynomials,

which we define combinatorially. This new family of polynomials will be shown to

be a generalization of the modified R-polynomials in Chapter 3. The final section

of the chapter is spent showing these polynomials appear naturally in A(n; q), by

proving a result connecting them to the basis expansion of the monomials in A(n; q).

Chapter 2 begins by establishing actions of Hn(q) on various components of

A(n; q), including the immanant space. We then use the actions to show that our

polynomials also appear naturally in the multiplicative structure of Hn(q). The

second part of the chapter is then spent establishing different symmetries satisfied

by our polynomials. These symmetries are found using the algebraic structure of

3



Hn(q) and A(n; q), yet suggest interesting combinatorial results. We provide a

bijective proof of one such symmetry.

We then shift our focus to bar involutions and the R-polynomials in Chapter 3.

We define inverse R-polynomials and show that they are equal to the R-polynomials

in the nonparabolic case. Furthermore, the modified R-polynomials are shown to

be a special subclass of the polynomials defined in Section 1.4. We also introduce

double parabolic R-polynomials, an extension of the single parabolic R-polynomials

appearing in the literature, and connect these to our new family of polynomials as

well. The second half of the chapter focuses on the dual canonical basis. We give

a new formulation in terms of the immanant space and row and column repetition.

To conclude the chapter we examine the different variations of the dual canonical

basis and bar involution appearing in the literature.

The final chapter introduces two-parameter generalizations of the Hecke algebra

and quantum polynomial ring. We focus our attention on the immanant space

at first, establishing results analogous to the first three chapters. We introduce

definitions of two parameter analogs of the bar involutions and the modified R-

polynomials, as well as the family of polynomials introduced in Chapter 1.

4



Chapter 1

The Hecke algebra and quantum

polynomial ring

The symmetric group plays an important role in the behavior of the Hecke algebra

and quantum polynomials ring. We will summarize some of the properties of the

symmetric group, define the Hecke algebra and certain submodules of the Hecke

algebra, following the treatment in [31]. Next we will review the definition of the

quantum polynomial ring and generalize previous results about the immanant space

in [31] to a general multi-graded component. Finally, we combinatorially define

a new family of polynomials and show that these are the elements of transition

matrices between bases in the quantum polynomial ring.

1.1 The Symmetric group Sn

The symmetric group Sn has a standard presentation given by the generators

s1, . . . , sn−1 and the relations

s2
i = 1, for i = 1, . . . , n− 1,

sisjsi = sjsisj, if |i− j| = 1,

sisj = sjsi, if |i− j| ≥ 2.

(1.1.1)
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Let [n] denote the set {1, . . . , n}. Let Sn act on rearrangements of the letters [n] by

si ◦ v1 · · · vn = v1 · · · vi−1vi+1vivi+2 · · · vn. (1.1.2)

For each permutation w = si1 · · · si` ∈ Sn we define the one-line notation of w to

be the word

w1 · · ·wn = si1 ◦ (· · · (si` ◦ 1 · · ·n)) · · · ). (1.1.3)

The one-line notation does not depend on the expression si1 · · · si` for w. When an

expression for w is as short as possible, we say that expression is reduced . Further-

more, we call ` = `(w) the length of w.

The Bruhat order on Sn is defined by v ≤ w if some (equivalently every) reduced

expression for w contains a reduced expression for v as a subword (See [2] for more

information). A generator is called a left ascent for w if sv > v, and a left descent

otherwise. Right ascents and descents are defined analogously. The unique maximal

element in the Bruhat order will be denoted by w0. This permutation has one line

notation n(n− 1) · · · 2 1.

It is known that left or right multiplication by w0 induces an antiautomorphism

of the Bruhat order. Thus if u < v, then we have

w0v < w0u, vw0 < uw0. (1.1.4)

We also have that

`(w0v) = `(vw0) = `(w0)− `(v) (1.1.5)

For all v ∈ Sn.

Let I and J be subsets of the standard generators (adjacent transpositions) of

W = Sn and let WI , WJ be the corresponding parabolic subgroups of W . Define

W∅ = e. Let wI0 and wJ0 be the longest elements in WI and WJ , respectively. It is

easy to see that (wI0)−1 = wI0 and (wJ0 )−1 = wJ0 .

Let WI\W/WJ be the set of double cosets of the form WIwWJ . If J = ∅, this

is the set of single cosets WI\W of the form WIw. If I = ∅, this is the set of single

cosets W/WJ of the form wWJ . If I = J = ∅, this is just W = Sn. Each double

coset is an interval in the Bruhat order and has a unique maximal and minimal
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element [10], [14]. Moreover, each double coset in WI\W/WJ is equal to a union of

single cosets in WI\W and is equal to a union of single cosets in W/WJ ,

WIwWJ =
⋃

u∈WIw

uWJ =
⋃

u∈wWJ

WIu. (1.1.6)

While the double cosets partition W , unlike single cosets, double cosets need not

have the same cardinality, i.e., for u 6= v we may have |WIuWJ | 6= |WIvWJ |.
Let W I,J

+ be the set of maximal representatives of cosets in WI\W/WJ and let

W I,J
− be the set of minimal coset representatives. These sets may be characterized

by

W I,J
+

= {w | sw < w for all s ∈ I, ws′ < w for all s′ ∈ J}

= {w | wi > wi+1 for all si ∈ I, j + 1 appears before j in w1 · · ·wr for all sj ∈ J}

= W I,∅
+ ∩W ∅,J

+ ,

W I,J
−

= {w | sw > w for all s ∈ I, ws′ > w for all s′ ∈ J}

= {w | wi < wi+1 for all si ∈ I, j appears before j + 1 in w1 · · ·wr for all sj ∈ J}

= W I,∅
− ∩W

∅,J
− ,

(1.1.7)

Following Douglass [14, Lem 2.2], we define the following Bruhat order on double

cosets. Let D1 and D2 be double cosets with corresponding minimum length rep-

resentatives u(1), u(2), and corresponding maximum length representatives v(1), v(2).

We define D1 ≤ D2 if any of the following equivalent conditions hold,

1. u(1) ≤ u(2),

2. v(1) ≤ v(2),

3. There exist elements w(1) ∈ D1, w
(2) ∈ D2 which satisfy w(1) ≤ w(2).

Suppose that w belongs to W I,J
+ . Then [14, Lem 2.2] implies that for each left

descent s of w we have sw ∈ W I,J
+ or sw ∈ WIwWJ , and that for each right descent

7



s′ of w we have ws′ ∈ W I,J
+ or ws′ ∈ WIwWJ . Similarly, that w belongs to W I,J

− .

Then [14, Lem 2.2] implies that for each left ascent s of w we have sw ∈ W I,J
−

or sw ∈ WIwWJ , and that for each right ascent s′ of w we have ws′ ∈ W I,J
− or

ws′ ∈ WIwWJ .

For each minimal coset representative u ∈ W I,J
− , we define the subsets

K = K(I, J, u) =
def
u−1Iu ∩ J

= {s ∈ J | usu−1 ∈ I}

= {sj ∈ J | siu = usj for some si ∈ I}

= {sj ∈ J | ui = j, ui+1 = j + 1 for some si ∈ I},

(1.1.8)

K ′ =
def
uKu−1 = K(J, I, u−1) = I ∩ uJu−1

= {s ∈ I | u−1su ∈ J}

= {si ∈ I | siu = usj for some sj ∈ J}

= {si ∈ I | ui = j, ui+1 = j + 1 for some sj ∈ J},
(1.1.9)

of generators. The parabolic subgroups WK ,WK′ have longest elements wK0 =

(wK0 )−1, wK
′

0 = (wK
′

0 )−1 = uwK0 u
−1, and satisfy

WK = u−1WIu ∩WJ = {v ∈ WJ | uvu−1 ∈ WI}

= {v ∈ WJ | uv = wu for some w ∈ WI}, ,

WK′ = uWKu
−1 = WI ∩ uWJu

−1 = {w ∈ WI | u−1wu ∈ WJ}

= {w ∈ WI | uv = wu for some v ∈ WJ}.
(1.1.10)

The unique minimal representative u and maximal representative v of the double

coset WIuWJ = WIvWJ are related by

v = wI0uw
K
0 w

J
0 = wI0w

K′

0 uwJ0 . (1.1.11)

(See [34, Sec. 2].) By [16, (1.3.b)] we also have

`(v) = `(u) + `(wI0) + `(wJ0 )− `(wK0 ) = `(wI0) + `(u) + `(wK0 w
J
0 )

= `(u) + `(wI0) + `(wJ0 )− `(wK′0 ) = `(wI0w
K′

0 ) + `(u) + `(wJ0 ).
(1.1.12)

8



Since WK ⊂ WJ and WK′ ⊂ WI , we define

(WI)
∅,K′
+ =

def
WI ∩W ∅,K′

+ , (WJ)K,∅+ =
def
WJ ∩WK,∅

+ (1.1.13)

to be the collections of maximal representatives of the cosets

WI/WK′ = {vWK′ | v ∈ WI}, WK\WJ = {WKv | v ∈ WJ} (1.1.14)

and

(WI)
∅,K′
− =

def
WI ∩W ∅,K′

− , (WJ)K,∅− =
def
WJ ∩WK,∅

− (1.1.15)

to be the collections of minimal representatives. Thus we have

WI = (WI)
∅,K′
+ WI = (WI)

∅,K′
− WI and WJ = WK(WJ)K,∅+ = WK(WJ)K,∅− . (1.1.16)

Furthermore, for u ∈ W I,J
− we have

WIuWJ = WIuWK(WJ)K,∅− = WIWK′u(WJ)K,∅− = WIu(WJ)K,∅−

= (WI)
∅,K′
− WK′uWJ = (WI)

∅,K′
− uWKWJ = (WI)

∅,K′
− uWJ

= (WI)
∅,K′
− WK′u(WJ)K,∅− = (WI)

∅,K′
− uWK(WJ)K,∅− .

(1.1.17)

In other words given generator sets I, J , each element v of the double coset WIuWJ

of W = Sn has unique factorizations vIuvJ−, v
I
−uv

J , vI−v
K′uvJ−, v

I
−uv

KvJ− satisfying

vI ∈ WI , vI− ∈ (WI)
∅,K′
− , vK

′ ∈ WK′

vJ ∈ WJ , vJ− ∈ (WJ)K,∅− , vK ∈ WK .
(1.1.18)

Furthermore, these factorizations satisfy

`(v) = `(vI−) + `(u) + `(vJ) = `(vI) + `(u) + `(vJ−)

= `(vI−) + `(u) + `(vK) + `(vJ−) = +`(vI−) + `(vK
′
) + `(u) + `(vJ−)

(1.1.19)

and

vK
′
u = uvK , vI = vI−v

K′ , vJ = vKvJ−,

`(vK
′
) = `(vK), `(vI) = `(vI−) + `(vK

′
), `(vJ) = `(vK) + `(vJ−).

(1.1.20)

Notice that for w ∈ W I,J
+ , we have wI− = wI0w

K′
0 , wI = wI0, wJ− = wK0 w

J
0 , and

wJ = wJ0 . For more information see [11, Thm. 1.2].
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1.2 The Hecke algebra Hn(q)

The Hecke algebra Hn(q) is the C[q
1
2 , q¯

1
2 ]-algebra with multiplicative identity T̃e = 1

generated by elements {T̃si
| 1 ≤ i ≤ n− 1} subject to the relations

T̃ 2
si

= (q
1
2 − q¯

1
2 )T̃si

+ T̃e, for i = 1, . . . , n− 1,

T̃si
T̃sj
T̃si

= T̃sj
T̃si
T̃sj
, if |i− j| = 1,

T̃si
T̃sj

= T̃sj
T̃si
, if |i− j| ≥ 2.

(1.2.1)

Note that when q = 1 this reduces to the group algebra of the symmetric group

C[Sn]. If si1 · · · si` is a reduced expression for w we define

T̃w = T̃si1
· · · T̃si`

. (1.2.2)

We shall call the elements {T̃w | w ∈ Sn} the natural basis of Hn(q) as a C[q
1
2 , q¯

1
2 ]-

module. For u, v ∈ Sn we define qu,v = (q
1
2 )`(v)−`(u). We remark that basis elements

often denoted in the literature by {Tw | w ∈ Sn} are related to our basis elements

by Tw = qe,wT̃w; however, we choose to follow the notation in [26].

Note that the first relation may be written as

(T̃si
− q

1
2 )(T̃si

− (−q¯
1
2 )) = 0. (1.2.3)

Inverses of the generators are given by

T̃−1
si

= T̃si
− (q

1
2 − q¯

1
2 )T̃e. (1.2.4)

and a multiplication rule is given by

T̃si
T̃w =

T̃siw if siw > w,

T̃siw + (q
1
2 − q¯1

2 )T̃w if siw < w.
(1.2.5)

Similarly, we have

T̃wT̃si
=

T̃wsi
if wsi > w,

T̃wsi
+ (q

1
2 − q¯1

2 )T̃w if wsi < w.
(1.2.6)
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More generally, we have

T̃u−1T̃v =



T̃u−1si
T̃siv if siu > u and siv < v,

or if siu < u and siv > v,

T̃u−1si
T̃siv + (q

1
2 − q¯1

2 )T̃u−1si
T̃v if siu < u and siv < v,

T̃u−1si
T̃siv − (q

1
2 − q¯1

2 )T̃u−1si
T̃v if siu > u and siv > v.

(1.2.7)

For each coset WIwWJ in WI\W/WJ , where w ∈ W I,J
+ , define the elements

T̃WIwWJ
=

∑
v∈WIwWJ

εv,wqv,wT̃v,

T̃ ′WIwWJ
=

∑
v∈WIwWJ

q−1
v,wT̃v.

(1.2.8)

Denote by HI,J , H ′I,J , the submodules of Hn(q) spanned by the double coset sums,

HI,J = span
C[q

1
2 ,q¯

1
2 ]
{T̃WIwWJ

| w ∈ W I,J
+ },

H ′I,J = span
C[q

1
2 ,q¯

1
2 ]
{T̃ ′WIwWJ

| w ∈ W I,J
+ }.

(1.2.9)

For example when n = 3, I = {s1}, J = {s2}, we have

HI,J = span
C[q

1
2 ,q¯

1
2 ]
{T̃WIs1s2s1WJ

, T̃WIs1,s2WJ
},

H ′I,J = span
C[q

1
2 ,q¯

1
2 ]
{T̃ ′WIs1s2s1WJ

, T̃ ′WIs1,s2WJ
},

(1.2.10)

where
T̃WIs1s2s1WJ

= T̃s1s2s1 − q
1
2 T̃s2s1 ,

T̃WIs1,s2WJ
= T̃s1s2 − q

1
2 (T̃s1 + T̃s2) + qT̃e,

(1.2.11)

and
T̃ ′WIs1s2s1WJ

= T̃s1s2s1 + q¯
1
2 T̃s2s1 ,

T̃ ′WIs1,s2WJ
= T̃s1s2 + q¯

1
2 (T̃s1 + T̃s2) + q−1T̃e.

(1.2.12)

We can let Hn(q) act on the submodules HI,∅ and H ′I,∅ by right multiplication

T̃WIwT̃si
=
∑

v∈WIw

εv,wqv,wT̃vT̃si
,

T̃ ′WIw
T̃si

=
∑

v∈WIw

q−1
v,wT̃vT̃si

,
(1.2.13)
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and on H∅,J and H ′∅,J by left multiplication,

T̃si
T̃wWJ

=
∑

v∈wWJ

εv,wqv,wT̃si
T̃v,

T̃si
T̃ ′WIw

=
∑

v∈wWJ

q−1
v,wT̃si

T̃v.
(1.2.14)

Douglass [14, Prop. 2.3] states formulas for these actions without assuming the rep-

resentative w of the coset is maximal. In particular, we may write

T̃WIwT̃si
=


T̃WIwsi

if WIwsi > WIw,

−q¯1
2 T̃WIw if WIwsi = WIw,

T̃WIwsi
+ (q

1
2 − q¯1

2 )T̃WIw if WIwsi < WIw,

(1.2.15)

T̃ ′WIw
T̃si

=


T̃ ′WIwsi

if WIwsi > WIw,

q
1
2 T̃ ′WIw

if WIwsi = WIw,

T̃ ′WIwsi
+ (q

1
2 − q¯1

2 )T̃ ′WIw
if WIwsi < WIw,

(1.2.16)

T̃si
T̃wWJ

=


T̃siwWJ

if siwWJ > wWJ ,

−q¯1
2 T̃wWJ

if siwWJ = wWJ ,

T̃siwWJ
+ (q

1
2 − q¯1

2 )T̃wWJ
if siwWJ < wWJ ,

(1.2.17)

and

T̃si
T̃ ′wWJ

=


T̃ ′siwWJ

if siwWJ > wWJ ,

q
1
2 T̃ ′wWJ

if siwWJ = wWJ ,

T̃ ′siwWJ
+ (q

1
2 − q¯1

2 )T̃ ′wWJ
if siwWJ < wWJ .

(1.2.18)

From the definitions it is easy to see that for u ∈ W I,∅
− and v ∈ W ∅,J

− ,

T̃ ′WIu
= T̃ ′WI

T̃u, T̃ ′vWJ
= T̃vT̃

′
WJ
. (1.2.19)

Furthermore, following [16], define elements dI and d̃I of C[q
1
2 , q¯

1
2 ] which serve as

generating functions for elements of WI by the number of inversions,

dI =
def

∑
v∈WI

q`(v),

d̃I =
def
q−1
e,wI

0

∑
v∈WI

q`(v).
(1.2.20)
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For example, when I = {s1, s2} and J = {s1, s3} we have

dI = 1 + 2q + 2q2 + q3, d̃I = q¯
3
2 + 2q¯

1
2 + 2q

1
2 + q

3
2 ,

dJ = 1 + 2q + q2, and d̃J = q−1 + 2 + q.
(1.2.21)

Note that dI and d̃I are not in general invertible in C[q
1
2 , q¯

1
2 ]. In [16] there is a

calculation which implies for w ∈ W I,J
+ we have

T̃ ′WI
T̃w−T̃

′
WJ

= d̃K(w)T̃
′
WIwWJ

, (1.2.22)

where by w− we are referring to the minimal coset representative for the double

coset WIwWJ and K(w) = K(w−) = K(I, J, w−) is defined by (1.1.8). We omit the

details; however, a detailed proof of (1.2.22), which involves using the definitions to

factor T̃ ′WJ
and the multiplication rules (1.2.16) and (1.2.18), appears in [31]. In a

similar manner, using (1.2.16) and (1.2.18) we can see that for v ∈ WIwWJ ,

T̃ ′WI
T̃vT̃

′
WJ

= q−1
v,wT̃

′
WI
T̃wT̃

′
WJ
. (1.2.23)

Thus for w ∈ W I,J
+ , we have

(q
1
2 )`(WIwWJ )d̃K(w)T̃

′
WIwWJ

= T̃ ′WI
T̃wT̃

′
WJ
, (1.2.24)

where we define `(WIwWJ) = `(wI0) + `(wJ0 )− `(wK(w)
0 ) to be the distance between

the minimal and maximal elements of the double coset WIwWJ .

1.3 The quantum polynomial ring A(n; q)

For each n > 0, let the quantum polynomial ring A(n; q) be the noncommutative

C[q
1
2 , q¯

1
2 ]-algebra generated by n2 variables x = (x1,1, . . . , xn,n) representing matrix

entries, subject to the relations

xi,`xi,k = q
1
2xi,kxi,`,

xj,kxi,k = q
1
2xi,kxj,k,

xj,kxi,` = xi,`xj,k,

xj,`xi,k = xi,kxj,` + (q
1
2 − q¯

1
2 )xi,`xj,k,

(1.3.1)
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for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. Notice that A(n; 1) is the

commutative polynomial ring C[x1,1, . . . , xn,n].

We can use the relations above to convert any monomial into a linear combina-

tion of monomials in lexicographic order, which we shall call standard. Thus as a

C[q
1
2 , q¯

1
2 ]-module, A(n; q) is spanned by monomials in lexicographic order. A(n; q)

has a natural grading by degree,

A(n; q) =
⊕
r≥0

Ar(n; q), (1.3.2)

where Ar(n; q) consists of the homogeneous degree r polynomials within A(n; q).

Furthermore, we may decompose each homogeneous component Ar(n; q) by consid-

ering pairs (L,M) of multisets of r integers, written as weakly increasing sequences

1 ≤ `1 ≤ · · · ≤ `r ≤ n, and 1 ≤ m1 ≤ · · · ≤ mr ≤ n. Let AL,M(n; q) be the

C[q
1
2 , q¯

1
2 ]-span of monomials whose row indices and column indices (with multiplic-

ity) are equal to the multisets L and M , respectively. This leads to the multigrading

A(n; q) =
⊕
r≥0

⊕
L,M

AL,M(n; q). (1.3.3)

The graded component A[n],[n](n; q) is spanned by the monomials

{x1,w1 · · ·xn,wn | w ∈ Sn}. (1.3.4)

Defining xu,v = xu1,v1 · · ·xun,vn for any u, v ∈ Sn, we may express the above basis

as {xe,w | w ∈ Sn}. We will call elements of this submodule (quantum) immanants

and we will call the module itself the immanant space of A(n; q).

In general, AL,M(n; q) is the C[q
1
2 , q¯

1
2 ]-submodule of A(n; q) spanned by the

monomials

{x`1,mw1
· · ·x`r,mwr

| w ∈ Sr} = {(xL,M)e,w | w ∈ Sr}, (1.3.5)

where the generalized submatrix xL,M of x is defined by

xL,M =


x`1,m1 x`1,m2 · · · x`1,mr

x`2,m1 x`2,m2 · · · x`2,mr

...
...

...

x`r,m1 x`r,m2 · · · x`n,mr

 . (1.3.6)
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Note that the variables in monomials appearing in (1.3.5) do not necessarily appear

in lexicographic order, e.g., (x112,123)e,s1s2s1 = x1,3x1,2x2,1.

For any r, an r-element multiset M = m1 · · ·mr on [n] determines a subset

ι(M) = {si | mi = mi+1} (1.3.7)

of generators of Sr, satisfying |ι(M)| ≤ r − 1. For example

ι(11224555) = {s1, s3, s6, s7}. (1.3.8)

Using the map ι, one may characterize several subsets of W = Sr as follows. Let

I = ι(L), J = ι(M). Then we have

I = {si | siL = L},

WI = {w ∈ W | wi < wk for all i ≤ j < k, sj /∈ I} = {w ∈ W | wL = L},
(1.3.9)

W I,∅
− = {w ∈ WI | wi < wi+1 whenever `i = `i+1}

= {w ∈ W | inv(w−1L) = inv(w−1) = inv(w)},

W I,∅
+ = {w ∈ WI | wi > wi+1 whenever `i = `i+1}

= {w ∈ W | inv(w−1L) = inv((wI0w)−1) = inv(w)− inv(wI0)},

(1.3.10)

J = {sj | sjM = M},

WJ = {w ∈ W | wi < wk for all i ≤ j < k, sj /∈ J} = {w ∈ W | wM = M},
(1.3.11)

W ∅,J
− = {w ∈ WJ | i appears before i+ 1 in w1 · · ·wr whenever mi = mi+1}

= {w ∈ W | inv(wM) = inv(w)},

W ∅,J
+ = {w ∈ WJ || i appears after i+ 1 in w1 · · ·wr whenever mi = mi+1}

= {w ∈ W | inv(wM) = inv(wwJ0 ) = inv(w)− inv(wJ0 )},
(1.3.12)

where inv(w) is the number of inversions, or pairs i < j such that wi > wj, of the

permutation w. Note that for w ∈ WIu we have inv(w−1L) = inv(u−1L) and that

for w ∈ uWJ we have inv(wM) = inv(uM).
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Considering the representatives of double cosets, we have

W I,J
− = {u ∈ W ∅,J

− | ui < ui+1 whenever `i = `i+1}

= {u ∈ W ∅,J
− | inv(u−1L) = inv(u−1) = inv(u)}

= {u ∈ W I,∅
− | i appears before i+ 1 in u1 · · ·ur whenever mi = mi+1}

= {u ∈ W I,∅
− | inv(uM) = inv(u)},

W I,J
+ = {v ∈ W ∅,J

+ | vi > vi+1 whenever `i = `i+1}

= {v ∈ W ∅,J
+ | inv(v−1L) = inv((wI0v)−1) = inv(v)− inv(wI0)}

= {v ∈ W I,∅
+ | i appears after i+ 1 in v1 · · · vr whenever mi = mi+1}

= {v ∈ W I,∅
+ | inv(vM) = inv(vwJ0 ) = inv(v) = inv(wJ0 )}.

(1.3.13)

Now fix u ∈ W I,J
− . Defining K,K ′ as in (1.1.8) and (1.1.9), we have the following.

K ′ = {si ∈ I | siuM = uM},

WK′ = {w ∈ WI | wuM = uM},

(WI)
∅,K′
− = {w ∈ WI | inv(wuM) = inv(w) + inv(uM)}

= {w ∈ WI | inv(wuM) = inv(wu) = inv(w) + inv(u)},

(1.3.14)

K = {sj ∈ J | (usj)−1L = sju
−1L = u−1L},

WK = {w ∈ WJ | (uw)−1L = w−1u−1L = u−1L},

(WJ)K,∅− = {w ∈ WJ | inv((uw)−1L) = inv(u−1L) + inv(w)}

= {w ∈ WJ | inv((uw)−1L) = inv((uw)−1) = inv(w) + inv(u)},
(1.3.15)
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It is easy to see that the monomials {(xL,M)u,v | u, v ∈ Sr} satisfy

(xL,M)u,v

=



(xL,M)siu,siv if `ui
< `ui+1

and mvi
> mvi+1

,

or if `ui
> `ui+1

and mvi
< mvi+1

,

or if `ui
= `ui+1

and mvi
= mvi+1

,

q
1
2 (xL,M)siu,siv = (xL,M)siu,v if `ui

= `ui+1
and mvi

> mvi+1
,

q
1
2 (xL,M)siu,siv = q

1
2 (xL,M)siu,v if `ui

> `ui+1
and mvi

= mvi+1
,

q¯
1
2 (xL,M)siu,siv = (xL,M)siu,v if `ui

= `ui+1
and mvi

< mvi+1
,

q¯
1
2 (xL,M)siu,siv = q¯

1
2 (xL,M)siu,v if `ui

< `ui+1
and mvi

= mvi+1
,

(xL,M)siu,siv + (q
1
2 − q¯1

2 )(xL,M)siu,v

= (xL,M)siu,siv + (q
1
2 − q¯1

2 )(xL,M)u,siv if `ui
> `ui+1

and mvi
> mvi+1

,

(xL,M)siu,siv − (q
1
2 − q¯1

2 )(xL,M)siu,v

= (xL,M)siu,siv − (q
1
2 − q¯1

2 )(xL,M)u,siv if `ui
< `ui+1

and mvi
< mvi+1

,

(1.3.16)

Since the dimension of AL,M(n; q) is typically less than r!, the spanning set (1.3.5)

is not in general linearly independent. In [31], Skandera states formulas describing

the dependency for the cases where L = [r] or M = [r], which we shall call the

single parabolic cases. Here we extend this result to the double parabolic case, where

neither L nor M is [r].

Proposition 1.3.1. Let L,M be r-element multisets of [n] and define subsets I =

ι(L), J = ι(M) of generators of Sr. Fix u, v ∈ Sr such that u ∈ WIvWJ . Then we

have
(xL,M)e,u = qvI

−,u
I
−

(xL,M)e,v,

(xL,M)u
−1,e = qvJ

−,u
J
−

(xL,M)v
−1,e.

(1.3.17)

Proof. Let w be the minimal element of the double coset WIvWJ , in other words

w ∈ W I,J
− ∩WIvWJ . Recall by (1.3.13) that the variables in (xL,M)e,w appear in
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lexicographic order, and by (1.3.11) we have

(xL,M)e,u = x`1,(uI
−wu

JM)1
· · ·x`r,(uI

−wu
JM)r

= x`1,(uI
−wM)1

· · ·x`r,(uI
−wM)r

= (xL,M)e,u
I
−w.

(1.3.18)

Since uI− belongs to WI , (1.3.9) implies that each pair of variables appearing out of

lexicographic order with respect to one another in (xL,M)e,u
I
−w has the form

(xk,(uI
−wM)i

, xk,(uI
−wM)j

) (1.3.19)

for some indices i < j and k. Since uI− belongs more specifically to (WI)
∅,K′
− , (1.3.14)

implies that the number of such pairs is equal to `(uI−). Thus when we sort variables

in (xL,M)e,u = (xL,M)e,u
I
−w into lexicographic order we obtain

(xL,M)e,u = qe,uI
−

(xL,M)e,w. (1.3.20)

Combining this equality with (xL,M)e,v = qe,vI
−

(xL,M)e,w, we obtain the first identity

in (1.3.17).

Similarly, recall by (1.3.13) that the variables in the monomial (xL,M)w
−1,e appear

in right-to-left lexicographic order, and by (1.3.9) we have

(xL,M)u
−1,e = x((uJ

−)−1w−1(uI)−1L)1,m1
· · ·x((uJ

−)−1w−1(uI)−1L)r,mr

= x((uJ
−)−1w−1L)1,m1

· · ·x((uJ
−)−1w−1L)r,mr

= (xL,M)(uJ
−)−1w−1,e.

(1.3.21)

Since (uJ−)−1 belongs toWJ , (1.3.11) implies that each pair of variables appearing out

of right-to-left lexicographic order with respect to one another in (xL,M)(uJ
−)−1w−1,e

has the form

(x((uJ
−)−1w−1L)i,k, x((uJ

−)−1w−1L)j ,k) (1.3.22)

for some indices i < j and k. Since (uJ−)−1 belongs more specifically to (WJ)∅,K− ,

(1.3.15) implies that the number of such pairs is equal to `(uJ−). Thus when we sort

variables in (xL,M)u
−1,e = (xL,M)(uJ

−)−1w−1,e into lexicographic order we obtain

(xL,M)u
−1,e = qe,uJ

−
(xL,M)w

−1,e. (1.3.23)
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Combining this equality with (xL,M)v
−1,e = qe,vJ

−
(xL,M)w

−1,e, we obtain the second

identity in (1.3.17).

It follows that we just need one permutation w from each double coset in

WI\W/WJ to form a basis of AL,M(n; q). A natural choice of representatives is

the set W I,J
+ , thus we will call the set {(xL,M)e,w | w ∈ W I,J

+ } the natural basis . For

example in A[3],[3](3; q), the immanant space, we have

xs1,w0 = xe,s2s1 + (q
1
2 − q¯

1
2 )xe,w0 ,

xs1s2,w0 = xe,s1 + (q
1
2 − q¯

1
2 )(xe,s1s2 + xe,s2s1) + (q

1
2 − q¯

1
2 )2xe,w0 ,

xw0,w0 = xe,e + (q
1
2 − q¯

1
2 )(xe,s1 + xe,s2) + (q

1
2 − q¯

1
2 )2(xe,s1s2 + xe,s2s1)

+
(

(q
1
2 − q¯

1
2 )3 + (q

1
2 − q¯

1
2 )
)
xe,w0 ,

(1.3.24)

and in A112,122(3, q) we have

(x112,122)w0,w0 =
(

(q
1
2 − q¯

1
2 )2q¯

1
2 + 2(q

1
2 − q¯

1
2 )q−1 + q¯

3
2

)
(x112,122)e,s1s2

+
(

(q
1
2 − q¯

1
2 )3q¯

1
2 + (q

1
2 − q¯

1
2 )2q−1 + (q

1
2 − q¯

1
2 )q¯

1
2

)
(x112,122)e,w0 .

(1.3.25)

In [31], Skandera shows that a second basis, which we will call the inverse trans-

pose basis , of AL,M(n; q) is given by {(xL,M)w
−1,e | w ∈ W I,J

+ }. We state this with

proof below.

Proposition 1.3.2. For each element w of W I,J
− , we have

(xL,M)e,w = (xL,M)w
−1,e. (1.3.26)

Proof. Recall that the variables in the monomial (xL,M)e,w = x`1,(wM)1 · · ·x`r,(wM)r

appear in lexicographic order. Writing M in multiplicity notation as M = 1b1 · · ·nbn ,

we see that for each letter k, the bk variables having column index k are those having

row indices

(w−1L)b1+···+bk−1+1 ≤ · · · ≤ (w−1L)b1+···+bk . (1.3.27)

Now consider the monomial (xL,M)w
−1,e = x(w−1L)1,m1

· · ·x(w−1L)r,mr
. Again, the bk

variables having column index k have row indices (1.3.27). Thus the sequence of
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index pairs

(((w−1L)1,m1), . . . , ((w−1L)r,mr)) (1.3.28)

is a shuffle of disjoint subsequences of the form

(((w−1L)b1+···+bk−1+1, k), . . . , ((w−1L)b1+···+bk , k)). (1.3.29)

Now let us use the relations (1.3.1) to express (xL,M)w
−1,e as a linear combination

of monomials with variables appearing in lexicographic order. Note that for any

indices j < j′, we must have mj ≤ mj′ . If mj = mj′ , then by (1.3.27) we have

(w−1L)j ≤ (w−1L)j′ , and the two variables x(w−1L)j ,mj
, x(w−1L)j′ ,mj′

are already in

lexicographic order. Now suppose that we have mj < mj′ . If (w−1L)j ≤ (w−1L)j′ ,

then again the variables are in lexicographic order. Otherwise they commute. Thus

we only use the third relation in (1.3.1) to sort (xL,M)w
−1,e, and we see that it is

equal to (xL,M)e,w.

It follows that for w ∈ W I,J
− and v ∈ WIwWJ , we have

(xL,M)e,v = qe,vI
−

(xL,M)e,w = qe,vI
−

(xL,M)w
−1,e = qe,vI

−
q−1
e,vJ
−

(xL,M)v
−1,e

= qvJ
−,v

I
−

(xL,M)v
−1,e.

(1.3.30)

More generally, for u, v ∈ Sr and y ∈ uWI , z ∈ vWJ we have

(xL,M)u,v = (xL,M)y,z. (1.3.31)

In the immanant space the double cosets are the individual permutations them-

selves and thus each w is a minimal coset representative and Proposition 1.3.2 says

xe,w = xw
−1,e. (1.3.32)

Thus, in the immanant space the natural basis and the inverse transpose basis are

identical.

A natural C[q
1
2 , q¯

1
2 ]-linear involution on A(n; q) is matrix transposition xL,M 7→

(xL,M)>, defined by

(xL,M)e,v 7→ ((xL,M)e,v)> =
def

(xL,M)v,e,

f(xL,M) 7→ f(xL,M)> =
def
f((xL,M)>),

(1.3.33)
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assuming that we have v ∈ W I,J
+ and that f is expressed as a linear combination of

monomials {(xL,M)e,w | w ∈ W I,J
+ }. This will be useful in a subsequent chapter.

1.4 Natural and inverse transpose basis expan-

sions

In the previous section we defined two bases, the natural basis and the inverse trans-

pose basis. Therefore we can express any monomial (xL,M)u,v as a linear combination

of natural basis elements and as a linear combination of inverse transpose basis el-

ements. Looking at the defining relations of A(n; q) we see that the coefficients of

the basis elements in both cases are polynomials in q
1
2 − q¯1

2 , q
1
2 , q¯

1
2 with nonnegative

integer coefficients. However, since

q¯
1
2 (q

1
2 − q¯

1
2 ) + (q¯

1
2 )2 = 1, (1.4.1)

these polynomials can be expressed in several ways, making a canonical description

of the coefficients difficult. Brenti studied polynomials with nonnegative integer

coefficients which appear in a similar manner as entries of transition matrices in

Hn(q). In [1], two combinatorial interpretations for such matrices are given. In order

to handle the lack of canonical description mentioned earlier, we will define a family

of polynomials in a manner analogous to Brenti’s combinatorial interpretations and

extend his results to a larger family of Laurent polynomials which will evaluate to

transition matrix entries within A(n; q).

For all u, v ∈ Sr and w ∈ W I,J
+ , given any reduced expression si1 · · · sik for

u, define the (Laurent) polynomials {pI,Ju,v,w(q1, q2) ∈ N[q1, q2, q
−1
2 ] | u, v ∈ Sr, w ∈

W I,J
+ } to be the polynomials whose coefficient of qa1q

b
2 is equal to the number of

sequences (π(0), . . . , π(k)) of permutations satisfying

1. π(0) = v, π(k) ∈ WIwWJ ,

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),
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4. π(j) = π(j−1) for exactly a values of j,

5. `(w)− `(π(k)) + `(uI) + `(vJ)− `(wJ0 ) = b.

The sequences begin counted by the coefficients of pI,Ju,v,w(q1, q2) can be thought of

as walks in the Bruhat order, where we allow vertices to be repeated. Alternatively,

we could consider the Bruhat order with loops added at each vertex. For example,

if n = 3, I = {s1}, J = {s2}, u = v = w0 and we choose the reduced expression

s1s2s1 for u, then we have

`(uI) + `(vJ)− `(wJ0 ) = 1 + 1− 1 = 1. (1.4.2)

Therefore, there are seven walks beginning at v = w0, which satisfy the conditions

in the definition for some w ∈ W I,J
+ . Thus we have

pI,Jw0,w0,w0
(q1, q2) = q3

1q2 + q2
1q

2
2 + q1q2,

pI,Jw0,w0,s1s2
(q1, q2) = q2

1q2 + 2q1q
2
2 + q3

2.
(1.4.3)

Similarly, for all u, v ∈ Sr and w ∈ W I,J
+ , given any reduced expression si1 · · · sik

for v, define the (Laurent) polynomials {rI,Ju,v,w(q1, q2) ∈ N[q1, q2, q
−1
2 ] | u, v ∈ Sr, w ∈

W I,J
+ } to be the polynomials whose coefficient of qa1q

b
2 is equal to the number of

sequences (π(0), . . . , π(k)) of permutations satisfying

1. π(0) = u, (π(k))−1 ∈ WIwWJ ,

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a values of j,
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5. `(w)− `(π(k)) + `(uI) + `(vJ)− `(wI0) = b.

Looking at these definitions it is easy to see that

rI,Ju,v,w(q1, q2) = pJ,Iv,u,w−1(q1, q2) (1.4.4)

for all subsets of generators I, J and permutations u, v ∈ Sr and w ∈ W I,J
+ .

In the case where I = J = ∅, we write

pu,v,w(q1) = p∅,∅u,v,w(q1, q2),

ru,v,w(q1) = r∅,∅u,v,w(q1, q2),
(1.4.5)

since the power of q2 is always zero and we have polynomials in one variable. Using

the previous example, except with I = J = ∅, we have the same seven paths as

before. This time

`(w)− `(π(k)) + `(uI) + `(vJ)− `(wJ0 ) = 0 (1.4.6)

for all paths and w ∈ S3, thus we have

pw0,w0,w(q1) =



1 if `(w) = 0,

q1 if `(w) = 1,

q2
1 if `(w) = 2,

q3
1 + q1 if `(w) = 3.

(1.4.7)

As a special case of (1.4.4) we have

ru,v,w(q) = pv,u,w−1(q), (1.4.8)

for all u, v, w ∈ Sr.

Notice that the definitions depend upon a chosen reduced expression for u or v.

On the other hand, with a little work we will show that all reduced expressions for

u yield the same polynomials {pI,Ju,v,w(q1, q2) | v ∈ Sr, w ∈ W I,J
+ }, and consequently

all reduced expressions for v yield the same polynomials {rI,Ju,v,w(q1, q2) | u ∈ Sr, w ∈
W I,J

+ }.
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Proposition 1.4.1. Fix u, v ∈ Sr and w ∈ W I,J
+ . Then we have

pI,Ju,v,w(q1, q2) =
∑

z∈WIwWJ

q
`(w)−`(z)+`(uI)+`(vJ )−`(wJ

0 )
2 pu,v,z(q1). (1.4.9)

Proof. Choose z ∈ WIwWJ , then by definition the coefficient of qa1q
b
2 in the poly-

nomial q
`(w)−`(z)+`(uI)+`(vJ )−`(wJ

0 )
2 pu,v,z(q1) is the number of sequences (π(0), . . . , π(k))

satisfying conditions (1)-(5) of the definition of pI,Ju,v,w(q1, q2) which end specifically at

z ∈ WIwWJ . Therefore by summing over all z ∈ WIwWJ , we get all the sequences

satisfying the conditions of the definition of pI,Ju,v,w(q1, q2) and equality.

Therefore, the question of whether or not pI,Ju,v,w(q1, q2) depends on the choice of

reduced expression for u, reduces to the question of whether pu,v,z(q1) depends on

the choice of of reduced expression for u. The examples (1.4.7) and (1.3.24) suggest

the polynomials {pu,v,w(q) | u, v, w ∈ Sn} might appear naturally in A[r],[r](r; q), the

immanant space for A(r; q). In order to resolve the question of whether the choice

of reduced expression changes the value of these polynomials, we prove the following

result connecting them to the immanant space precisely as the examples imply.

Proposition 1.4.2. For all u, v ∈ Sr,

xu,v =
∑

w≥u−1v

pu,v,w(q
1
2 − q¯

1
2 )xe,w. (1.4.10)

Proof. By definition pe,v,w = δv,w, thus the claim is true for u = e. Assume the claim

to be true for u having length at most ` − 1, fix a permutation u of length `, and

fix a reduced expression si1 · · · si` for u. Then we have

xu,v =

{
xsi2

···si`
,si1

v if si1v > v,

xsi2
···si`

,si1
v + (q

1
2 − q¯1

2 )xsi2
···si`

,v if si1v < v.
(1.4.11)

By induction, we see that if

pu,v,w(q) =

{
psi2

···si`
,si1

v,w(q) if si1v > v,

psi2
···si`

,si1
v,w(q) + q · psi2

···si`
,v,w(q) if si1v < v

(1.4.12)

then the claim holds.
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Suppose first that we have si1v > v. Then by induction, the coefficient of qk

in pu,v,w(q) is equal to the number of sequences (π(1) = si1v, π
(2), . . . , π(`) = w)

satisfying Conditions (2)-(4) of the definition. Prepending the permutation π(0) to

any such sequence and considering the inequality si1v > v, we see that the new

sequence

π =
def

(π(0), π(1), . . . , π(`)) (1.4.13)

satisfies all four conditions of the definition if and only if π(0) = v. Thus the coeffi-

cient of qk in pu,v,w(q) is equal to the number of sequences (π(0), . . . , π(`)) satisfying

Conditions (1)-(4) of the definition.

Now suppose that we have si1v < v. Then by induction, the coefficient of qk

in pu,v,w(q) is equal to the number of sequences (π(1) = si1v, π
(2), . . . , π(`) = w)

satisfying Conditions (2)-(4) of the definition, plus the number of sequences (π(1) =

v, π(2), . . . , π(`) = w) satisfying Conditions (2)-(3) of the definition and in which

π(j) = π(j−1) for exactly k − 1 values of j. Prepending a permutation π(0) to any

such sequence, we see that the new sequence

π =
def

(π(0), π(1), . . . , π(`)) (1.4.14)

satisfies all four conditions of the definition if and only if π(0) = v. (No new equality

π(1) = π(0) is introduced for a sequence of the first form; one new such equality

is introduced for a sequence of the second form.) Thus we see that the recursion

(1.4.12) holds.

Since the expansion of xu,v in terms of the natural basis does not depend on

the choice of reduced expression for u, neither does pu,v,w(q). Therefore, Propo-

sition 1.4.1 implies that all reduced expressions for u yield the same polynomials

{pI,Ju,v,w(q1, q2) | v ∈ Sr, w ∈ W I,J
+ }, as claimed. This also implies the polynomi-

als {rI,Ju,v,w(q1, q2) | u ∈ Sr, w ∈ W I,J
+ } are independent of the choice of reduced

expression for v, by (1.4.4).

Corollary 1.4.3. Fix u, v ∈ Sr and w ∈ W I,J
+ . Then we have

rI,Ju,v,w(q1, q2) =
∑

z∈WIwWJ

q
`(w)−`(z)+`(uI)+`(vJ )−`(wI

0)
2 ru,v,z(q1). (1.4.15)
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Proof. By (1.4.4), Proposition 1.4.1, and the special case (1.4.8), we have

rI,Ju,v,w(q1, q2) = pJ,Iv,u,w−1(q1, q2)

=
∑

z−1∈WJw−1WI

q
`(w−1)−`(z−1)+`(vJ )+`(uI)−`(wI

0)
2 pv,u,z−1(q1)

=
∑

z∈WIwWJ

q
`(w)−`(z)+`(uI)+`(vJ )−`(wI

0)
2 ru,v,z(q1).

(1.4.16)

We have seen a relationship between pI,Ju,v,w(q1, q2) and rI,Ju,v,w(q1, q2). However,

we can state another, more surprising, relationship between these polynomials by

taking advantage of Proposition 1.4.2 and the fact that xe,w = xw
−1,e. Putting these

two facts together gives us

xu,v =
∑

w≥u−1v

pu,v,w(q
1
2 − q¯

1
2 )xw

−1,e. (1.4.17)

Applying the transpose involution to both sides of (1.4.17) gives us

xv,u =
∑

w≥u−1v

pu,v,w(q
1
2 − q¯

1
2 )xe,w

−1

. (1.4.18)

Proposition 1.4.2 tells us that

xv,u =
∑

w≥u−1v

pv,u,w−1(q
1
2 − q¯

1
2 )xe,w

−1

. (1.4.19)

Comparing terms in the the two expressions for xv,u and recalling (1.4.8) we see that

pu,v,w(q) = pv,u,w−1(q) = ru,v,w(q). (1.4.20)

This is an interesting and unexpected relationship, which can be generalized to any

multi-graded component AL,M(n; q) as follows.

Proposition 1.4.4. For all u, v ∈ Sr and w ∈ W I,J
+ ,

pI,Ju,v,w(q1, q2) = q
`(wI

0)−`(wJ
0 )

2 rI,Ju,v,w(q1, q2). (1.4.21)
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Proof. Applying (1.4.20) to (1.4.9) gives

pI,Ju,v,w(q1, q2) =
∑

z∈WIwWJ

(q2)`(w)−`(z)+`(uI)+`(vJ )−`(wJ
0 )pu,v,w(q1)

= q
`(wI

0)−`(wJ
0 )

2

∑
z∈WIwWJ

(q2)`(w)−`(z)+`(uI)+`(vJ )−`(wI
0)ru,v,w(q1)

= q
`(wI

0)−`(wJ
0 )

2 rI,Ju,v,w(q1, q2),

(1.4.22)

where equality comes from (1.4.15).

This relationship is not the only thing which generalizes nicely from the im-

manant space to a general component of A(n; q). In fact, the combinatorial defini-

tion is precisely the definition we need in order to generalize Proposition 1.4.2. In

order to prove the generalization of Proposition 1.4.2 we first need a few lemmas and

corollaries. First, we will state alternate summation formulas, this time in terms of

single parabolic polynomials (when exactly one of L or M is equal to [r]).

Corollary 1.4.5. Fix u, v ∈ Sr and w ∈ W I,J
+ . Then we have

pI,Ju,v,w(q1, q2) =
∑

y∈W I,∅
+

y∈w(WJ )K,∅
−

q
`(w)−`(y)+`(vJ )−`(wJ

0 )
2 pI,∅u,v,y(q1, q2)

=
∑

y∈W ∅,J+

y∈(WI)∅,K
′

− w

q
`(w)−`(y)+`(uI)
2 p∅,Ju,v,y(q1, q2)

(1.4.23)

and
rI,Ju,v,w(q1, q2) =

∑
y∈W I,∅

+

y∈w(WJ )K,∅
−

q
`(w)−`(y)+`(vJ )
2 rI,∅u,v,y(q1, q2)

=
∑

y∈W ∅,J+

y∈(WI)∅,K
′

− w

q
`(w)−`(y)+`(uI)−`(wI

0)
2 r∅,Ju,v,y(q1, q2).

(1.4.24)

Proof. Each z ∈ WIwWJ is in a coset WIy for some y ∈ W I,∅
+ and y ∈ w(WJ)K,∅− .
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Therefore (1.4.9) can be written as a double sum in the following manner.

pI,Ju,v,w(q1, q2) =
∑

z∈WIwWJ

q
`(w)−`(z)+`(uI)+`(vJ )−`(wJ

0 )
2 pu,v,z(q1)

=
∑

y∈W I,∅
+

y∈w(WJ )K,∅
−

∑
z∈WIy

q
`(w)−`(y)+`(y)−`(z)+`(uI)+`(vJ )−`(wJ

0 )
2 pu,v,z(q1)

=
∑

y∈W I,∅
+

y∈w(WJ )K,∅
−

q
`(w)−`(y)+`(vJ )−`(wJ

0 )
2

∑
z∈WIy

q
`(y)−`(z)+`(uI)
2 pu,v,z(q1)

=
∑

y∈W I,∅
+

y∈w(WJ )K,∅
−

q
`(w)−`(y)+`(vJ )−`(wJ

0 )
2 pI,∅u,v,y(q1, q2).

(1.4.25)

The second equality comes from considering that each z ∈ WIwWJ is in a coset

yWJ for some y ∈ W ∅,J
+ and y ∈ (WI)

∅,K′
− w. Thus we have

pI,Ju,v,w(q1, q2) =
∑

z∈WIwWJ

q
`(w)−`(z)+`(uI)+`(vJ )−`(wJ

0 )
2 pu,v,z(q1)

=
∑

y∈W ∅,J+

y∈(WI)∅,K
′

− w

∑
z∈yWJ

q
`(w)−`(y)+`(y)−`(z)+`(uI)+`(vJ )−`(wJ

0 )
2 pu,v,z(q1)

=
∑

y∈W ∅,J+

y∈(WI)∅,K
′

− w

q
`(w)−`(y)+`(uI)
2

∑
z∈yWJ

q
`(y)−`(z)+`(vJ )−`(wJ

0 )
2 pu,v,z(q1)

=
∑

y∈W ∅,J+

y∈(WI)∅,K
′

− w

q
`(w)−`(y)+`(uI)
2 p∅,Ju,v,y(q1, q2).

(1.4.26)

We can express rI,Ju,v,w(q1, q2) in terms of pI,Ju,v,w(q1, q2) using Proposition 1.4.4, then

express this as either a sum of pI,∅ or p∅,J -polynomials. Using the relationship with

rI,∅ and r∅,J -polynomials, we get the formulas as claimed.

The next lemma takes advantage of the quotient ring Z[q1, q2]/(1 − q1q2 − q2
2),

which is the setting in which the polynomials will reside in the natural basis and

inverse transpose basis expansions.
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Lemma 1.4.6. Fix y ∈ W ∅,J
− , v ∈ yWJ , and w ∈ W I,J

+ . In the ring Z[q1, q2]/(1 −
q1q2 − q2

2) we have

rI,Ju,v,w(q1, q2) = rI,Ju,y,w(q1, q2). (1.4.27)

Proof. Each element v of yWJ factors uniquely as v = yt with t ∈ WJ . If `(t) = 0,

then v = y and the claim is trivial. Now fix k > 1, assume the claim to hold for

v factoring with `(t) ≤ k − 1, and choose v factoring with `(t) = k. Fix a reduced

expression si1 · · · sir for v with sir−k+1
· · · sir a reduced expression for t. Then we

have sir ∈ WJ , vsir = ytsir , `(tsir) = k − 1, and by induction, rI,Ju,vsir ,w
(q1, q2) =

rI,Ju,y,w(q1, q2) in the quotient ring.

Now fix a, b and let π = (π(0), . . . , π(r)) be a sequence satisfying the definition of

the coefficient of qa1q
b
2 in rI,Ju,v,w(q1, q2). Since we have

(π(r−1))−1 ∈ {(π(r))−1, (sirπ
(r))−1} ⊂ WIwWJ , (1.4.28)

it is clear that the subsequence π̂ = (π(0), . . . , π(r−1)) of π satisfies

1. π(0) = u, (π(r−1))−1 ∈ WIwWJ ,

2. π(j) ∈ {sijπ(j−1), π(j−1)},

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

and therefore contributes to some coefficient of rI,Ju,vsir ,w
(q1, q2).

Let us call the coefficients of rI,Ju,v,w(q1, q2) and rI,Ju,vsir ,w
(q1, q2), ca,b and da,b, re-

spectively, so that we have

rI,Ju,v,w(q1, q2) =
n∑
a=0

n∑
b=0

ca,bq
a
1q
b
2,

rI,Ju,vsir ,w
(q1, q2) =

n∑
a=0

n∑
b=0

da,bq
a
1q
b
2.

(1.4.29)

Furthermore let us define c<a,b, c
=
a,b, and c>a,b to be the number of sequences satisfying

the definition of the coefficient of qa1q
b
2 in rI,Ju,v,w(q1, q2) such that π(r−1) < π(r), π(r−1) =

π(r), and π(r−1) > π(r), respectively. Similarly, define d<a,b and d>a,b to be the number
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of sequences ρ = (ρ(0), . . . , ρ(r−1)) satisfying the definition of the coefficient of qa1q
b
2 in

rI,Ju,vsir ,w
(q1, q2) such that ρ(r−1) < sirρ

(r−1) and ρ(r−1) > sirρ
(r−1), respectively. Thus

we have
ca,b = c<a,b + c=

a,b + c>a,b,

da,b = d<a,b + d>a,b.
(1.4.30)

Note we will define ca,b = da,b = 0 whenever a or b is negative.

To establish the equality of rI,Ju,vsir ,w
(q1, q2) and rI,Ju,v,w(q1, q2) in the quotient ring,

we consider the subsequence π̂ and the three possible relationships between π(r−1)

and π(r).

First, suppose that π(r−1) < π(r). Then π̂ satisfies the conditions defining the

coefficient of qa1q
b
2 in rI,Ju,vsir ,w

(q1, q2). Moreover, sequences (ρ(0), . . . , ρ(r−1)) contribut-

ing to the coefficient of qa1q
b
2 in rI,Ju,vsir ,w

(q1, q2) and satisfying ρ(r−1) < sirρ
(r−1) corre-

spond bijectively to sequences (ρ(0), . . . , ρ(r)) contributing to the coefficient of qa1q
b
2

in rI,Ju,v,w(q1, q2) and satisfying ρ(r−1) < ρ(r). Therefore we have

c<a,b = d<a,b. (1.4.31)

Now, suppose that π(r−1) = π(r). Then π̂ satisfies the conditions defining the coef-

ficient of qa−1
1 qb−1

2 in rI,Ju,vsir ,w
(q1, q2). Moreover, sequences (ρ(0), . . . , ρ(r−1)) contribut-

ing to the coefficient of qa−1
1 qb−1

2 in rI,Ju,vsir ,w
(q1, q2) and satisfying ρ(r−1) > sirρ

(r−1)

correspond bijectively to sequences (ρ(0), . . . , ρ(r)) contributing to the coefficient of

qa1q
b
2 in rI,Ju,v,w(q1, q2) and satisfying ρ(r−1) = ρ(r). Therefore we have

c=
a,b = d>a−1,b−1. (1.4.32)

Finally, suppose that π(r−1) > π(r). Then π̂ satisfies the conditions defining the

coefficient of qa1q
b−2
2 in rI,Ju,vsir ,w

(q1, q2). Moreover, sequences (ρ(0), . . . , ρ(r−1)) con-

tributing to the coefficient of qa1q
b−2
2 in rI,Ju,vsir ,w

(q1, q2) and satisfying ρ(r−1) > sirρ
(r−1)

correspond bijectively to sequences (ρ(0), . . . , ρ(r)) contributing to the coefficient of

qa1q
b
2 in rI,Ju,v,w(q1, q2) and satisfying ρ(r−1) > ρ(r). Therefore we have

c>a,b = d>a,b−2. (1.4.33)
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Thus we have

rI,Ju,v,w(q1, q2) =
n∑
a=0

n∑
b=0

ca,bq
a
1q
b
2

=
n∑
a=0

n∑
b=0

(
c<a,b + c=

a,b + c>a,b
)
qa1q

b
2

=
n∑
a=0

n∑
b=0

(
d<a,b + d>a−1,b−1 + d>a,b−2

)
qa1q

b
2

=
n∑
a=0

n∑
b=0

d<a,bq
a
1q
b
2 +

n∑
a=0

n∑
b=0

d>a,bq
a+1
1 qb+1

2 +
n∑
a=0

n∑
b=0

d>a,bq
a
1q
b+2
2

=
n∑
a=0

n∑
b=0

(
d<a,b + d>a,b

(
q1q2 + q2

2

))
qa1q

b
2.

(1.4.34)

In the quotient ring we can make the substitution q1q2 + q2
2 = 1 and get

rI,Ju,v,w(q1, q2) =
n∑
a=0

n∑
b=0

(
d<a,b + d>a,b

)
qa1q

b
2

=
n∑
a=0

n∑
b=0

da,bq
a
1q
b
2

= rI,Ju,vsir ,w
(q1, q2).

(1.4.35)

Corollary 1.4.7. Fix y ∈ W ∅,I
− , u ∈ yWI , and w ∈ W I,J

+ . In the ring Z[q1, q2]/(1−
q1q2 − q2

2) we have

pI,Ju,v,w(q1, q2) = pI,Jy,v,w(q1, q2). (1.4.36)

Proof. Recall that pI,Ju,v,w(q1, q2) = rI,Jv,u,w−1(q1, q2) by (1.4.4). Therefore Lemma 1.4.6

implies that pI,Ju,v,w(q1, q2) = rI,Jv,y,w−1(q1, q2). Applying (1.4.4) once more gives us

(1.4.36).

The next few lemmas will establish partial natural and inverse transpose expan-

sion results which lead to the general case.
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Lemma 1.4.8. For u ∈ W ∅,I
− and v ∈ Sr,

(xL,[r])
u,v =

∑
w∈W I,∅

+

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[r])

e,w. (1.4.37)

Proof. First let us consider the case u = e. Letting w be the maximal coset rep-

resentative of WIv, by 1.3.17, we have (xL,[r])
e,v = q−1

v,w(xL,[r])
e,w. Furthermore by

definition, pI,∅e,v,w(q
1
2 − q¯1

2 , q¯
1
2 ) = (q¯

1
2 )`(w)−`(v) = q−1

v,w.

Now assume the claim holds for all u of length at most k−1. Choose u of length

k and a reduced expression si1 . . . sik for u. Since si1u < u, we have ui1 > ui1+1 and

consequently `ui1
> `ui1+1

. Thus, (1.3.16) reduces to

(xL,[r])
u,v =

{
(xL,[r])

si1
u,si1

v if si1v > v,

(xL,[r])
si1

u,si1
v + (q

1
2 − q¯1

2 )(xL,[r])
si1

u,v if si1v < v,

=



∑
w∈W I,∅

+

pI,∅si1
u,si1

v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[r])

e,w if si1v > v,

∑
w∈W I,∅

+

(
pI,∅si1

u,si1
v,w(q

1
2 − q¯

1
2 , q¯

1
2 )

+(q
1
2 − q¯1

2 )pI,∅si1
u,v,w(q

1
2 − q¯1

2 , q¯
1
2 )
)

(xL,[r])
e,w if si1v < v,

(1.4.38)

where, since `(si1u) = k−1, induction gives equality. Apparently, it suffices to show

that for `ui1
> `ui1+1

, we have

pI,∅u,v,w(q1, q2) =

pI,∅si1
u,si1

v,w(q1, q2) if si1v > v,

pI,∅si1
u,si1

v,w(q1, q2) + q1p
I,∅
si1

u,v,w(q1, q2) if si1v < v.
(1.4.39)

Suppose first that si1v > v. Then, the coefficient of qa1q
b
2 in pI,∅si1

u,si1
v,w(q1, q2) is

equal to the number of sequences (π(1), . . . , π(k)) satisfying conditions (2)-(5) of the

definition and π(1) = si1v, π(k) ∈ WIw. Prepending the permutation π(0) = v to

each of these sequences defines a bijection with those satisfying the conditions in

the definition of pI,∅u,v,w(q1, q2). Therefore pI,∅si1
u,si1

v,w(q1, q2) = pI,∅u,v,w(q1, q2) as desired.

Now suppose that si1v < v. For all a, b, the coefficient of qa1q
b
2 in pI,∅si1

u,si1
v,w(q1, q2)

is equal to the number of sequences (π(1), . . . , π(k)) satisfying conditions (2)-(5)
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of the definition and π(1) = si1v, π(k) ∈ WIw, while the coefficient of qa1q
b
2 in

q1p
I,∅
si1

u,v,w(q1, q2) is equal to the number of sequences (π(1), . . . , π(k)) satisfying con-

ditions (2), (3), and (5) of the definition and π(j) = π(j−1) for exactly a− 1 values of

j, as well as π(1) = v, π(k) ∈ WIw. Prepending the permutation π(0) = v to each of

these sequences defines a bijection with those satisfying the conditions in the defi-

nition of pI,∅u,v,w(q1, q2). Therefore pI,∅si1
u,si1

v,w(q1, q2) + q1p
I,∅
si1

u,v,w(q1, q2) = pI,∅u,v,w(q1, q2)

as desired.

Corollary 1.4.7 allows us to remove the condition on u and strengthen the pre-

vious lemma.

Corollary 1.4.9. For all u, v ∈ Sr,

(xL,[r])
u,v =

∑
w∈W I,∅

+

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[r])

e,w (1.4.40)

and

(xL,[r])
u,v =

∑
w∈W I,∅

+

rI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[r])

w−1,e. (1.4.41)

Proof. Let y ∈ W ∅,I
− such that u ∈ yWI and t ∈ WI where u = yt. Then (1.3.31)

and Lemma 1.4.8 give

(xL,[r])
u,v = (xL,[r])

y,v =
∑

w∈W I,∅
+

pI,∅y,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[r])

e,w. (1.4.42)

Since (q
1
2 −q¯1

2 )q¯
1
2 +(q¯

1
2 )2 = 1, we can apply Corollary 1.4.7 to get the first equation.

The second comes from applying (1.3.30) and (1.4.21) to the first equation.

(xL,[r])
u,v =

∑
w∈W I,∅

+

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[r])

e,w

=
∑

w∈W I,∅
+

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(q¯

1
2 )−`(w

I
0)(xL,[r])

w−1,e

=
∑

w∈W I,∅
+

rI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[r])

w−1,e.

(1.4.43)
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We have established the expansion results for the special case M = [r]. A few

more lemmas are needed in order to get the most general case.

Lemma 1.4.10. For all u ∈ Sr and v ∈ W ∅,J
− we have

(xL,M)u,v =
∑

y∈W I,∅
+

rI,∅u,v,y(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)y

−1,e. (1.4.44)

Proof. Let us first consider the case where v = e. If u−1 ∈ WIy with y ∈ W I,∅
+ ,

then by (1.3.17), we have that (xL,M)u,e = (xL,M)y
−1,e. Since there is only one

sequence, namely the sequence (u), which satisfies the conditions in the definition

of rI,∅u,e,y(q1, q2), we have by definition that

rI,∅u,e,y(q
1
2 − q¯

1
2 , q¯

1
2 ) = (q¯

1
2 )`(y)−`(u)+`(uI)−`(wI

0) = 1, (1.4.45)

as desired, since `(y)− `(u) = `(wI0)− `(uI).
Assume the claim to be true for v having length at most k−1. Fix a permutation

v having length k. Let si be such that siv < v and thus mvi
> mvi+1. Then (1.3.16)

gives

(xL,M)u,v =


(xL,M)siu,siv if `ui

< `ui+1,

q
1
2 (xL,M)siu,siv if `ui

= `ui+1,

(xL,M)siu,siv + (q
1
2 − q¯1

2 )(xL,M)u,siv if `ui
> `ui+1,

=



∑
y∈W I,∅

+

rI,∅siu,siv,y
(q

1
2 − q¯

1
2 , q¯

1
2 )(xL,M)y

−1,e, if `ui
< `ui+1,

∑
y∈W I,∅

+

q
1
2 rI,∅siu,siv,y

(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)y

−1,e, if `ui
= `ui+1,

∑
y∈W I,∅

+

(
rI,∅siu,siv,y

(q
1
2 − q¯

1
2 , q¯

1
2 )

+(q
1
2 − q¯

1
2 )rI,∅u,siv,y

(q
1
2 − q¯

1
2 , q¯

1
2 )
)

(xL,M)y
−1,e, if `ui

> `ui+1,

(1.4.46)
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where induction gives equality. Thus it suffices to show that

rI,∅u,v,y(q
1
2 − q¯

1
2 , q¯

1
2 ) =



rI,∅siu,siv,y
(q

1
2 − q¯1

2 , q¯
1
2 ) if `ui

< `ui+1,

q
1
2 rI,∅siu,siv,y

(q
1
2 − q¯1

2 , q¯
1
2 ) if `ui

= `ui+1,

rI,∅siu,siv,y
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )rI,∅u,siv,y
(q

1
2 − q¯1

2 , q¯
1
2 ) if `ui

> `ui+1.

(1.4.47)

This can be seen by applying Corollary 1.4.9 to both sides of (1.3.16) and comparing

like terms.

Lemma 1.4.11. For u ∈ Sr and v ∈ W ∅,J
− ,

(xL,M)u,v =
∑

w∈W I,J
+

rI,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)w

−1,e. (1.4.48)

Proof. Applying (1.3.17) to the result of Lemma 1.4.10 gives

(xL,M)u,v =
∑

w∈W I,J
+

 ∑
y∈W I,∅

+
y∈WIwWJ

qwJ
−,y

J
−
rI,∅u,v,y(q

1
2 − q¯

1
2 , q¯

1
2 )

 (xL,M)w
−1,e. (1.4.49)

Since v ∈ W ∅,J
− we have that vJ = e and we see this sum of single parabolic r-

polynomials is one of the sums in Corollary 1.4.5. Thus we have

(xL,M)u,v =
∑

w∈W I,J
+

rI,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)w

−1,e, (1.4.50)

as claimed.

The preceding lemma allows us to finally prove the result we were seeking, that

the polynomials {pI,Ju,v,w(q1, q2) | u, v ∈ Sr, w ∈ W I,J
+ } are the coefficients in the

natural basis expansion of monomials in A(n; q).

Theorem 1.4.12. For all u, v ∈ Sr

(xL,M)u,v =
∑

w∈W I,J
+

pI,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)e,w

=
∑

w∈W I,J
+

rI,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)w

−1,e.
(1.4.51)
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Proof. Fix u, v ∈ Sr and let y ∈ W ∅,J
− such that v ∈ yWJ . Then (1.3.16), Lemma

1.4.11, and Lemma 1.4.6 give

(xL,M)u,v = (xL,M)u,y =
∑

w∈WIwWJ

rI,Ju,y,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)w

−1,e

=
∑

w∈WIwWJ

rI,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)w

−1,e.
(1.4.52)

Applying (1.3.31) and Proposition 1.4.4 completes the proof.
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Chapter 2

The polynomials p
I,J
u,v,w and r

I,J
u,v,w

The polynomials {pI,Ju,v,w(q1, q2) | u, v ∈ Sr, w ∈ W I,J
+ } and {rI,Ju,v,w(q1, q2) | u, v ∈

Sr, w ∈ W I,J
+ } introduced in Section 1.4 appear in many more places than just

transition matrices in A(n; q). They also appear in Hn(q) and its associated sub-

modules H ′I,J . Furthermore, these families of polynomials have symmetries which,

due to the combinatorial definition, imply equinumerocity between several sets of

paths in the Bruhat order. In this chapter, following [31], we will define actions of

Hn(q) on A(n; q), which allow us to describe the multiplicative structure of Hn(q)

using our new polynomials. Then we will use their appearance in Hn(q) and A(n; q)

to establish symmetries, or identities, which the polynomials satisfy.

2.1 Connections between Hn(q) and A(n; q)

The two spaces Hn(q) and A(n; q) may not appear to have much in common at first

glance; however, it turns out that the polynomials {pI,Ju,v,w(q1, q2) | u, v ∈ Sr, w ∈
W I,J

+ } are connected to the multiplicative structure of Hn(q).

Define a left action of Hn(q) on the immanant space A[n],[n](n; q) by

T̃si
◦ f(x) =

def
f(six), (2.1.1)

where si is the n × n defining matrix for si, and where we assumed f(x) to be

expressed in terms of the natural basis. Similarly, define a right action of Hn(q) on
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A[n],[n](n; q) by

f(x) ◦ T̃si
=
def
f(xsi), (2.1.2)

where we assume f(x) to be expressed in terms of the inverse transpose basis. Thus

we have the identity

f(x) ◦ T̃si
= (T̃si

◦ f(x>))>. (2.1.3)

Formulas for these actions on natural basis elements are

T̃si
◦ xe,v = xsi,v =

xe,siv if siv > v,

xe,siv + (q
1
2 − q¯1

2 )xe,v if siv < v,

xe,v ◦ T̃si
= xv

−1,e ◦ T̃si
= xv

−1,si =

xe,vsi if vsi > v,

xe,vsi + (q
1
2 − q¯1

2 )xe,v if vsi < v.

(2.1.4)

The following formulas describing the action on monomials of the form xu,v appear

in [31].

Proposition 2.1.1. We have

T̃sj
◦ xu,v =

xusj ,v if usj > u,

xusj ,v + (q
1
2 − q¯1

2 )xu,v if usj < u,
(2.1.5)

xu,v ◦ T̃sj
=

xu,vsj if vsj > v,

xu,vsj + (q
1
2 − q¯1

2 )xu,v if vsj < v.
(2.1.6)

Proof. Assume the formula (2.1.5) to hold for all monomials xu,v with `(u) < k.

Certainly this is true if `(u) = 0. Now fix one permutation u of length k, and let si

be a left descent for u. By (1.3.16) we have

T̃sj
◦ xu,v

T̃sj
◦ xsiu,siv if siv > v,

T̃sj
◦ xsiu,siv + (q

1
2 − q¯1

2 )T̃sj
◦ xsiu,v if siv < v,

(2.1.7)
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which by induction is equal to

xsiusj ,siv if siv > v and siusj > siu,

xsiusj ,siv + (q
1
2 − q¯1

2 )xsiu,siv if siv > v and siusj < siu,

xsiusj ,siv + (q
1
2 − q¯1

2 )xsiusj ,v if siv < v and siusj > siu,

xsiusj ,siv + (q
1
2 − q¯1

2 )(xsiu,siv + xsiusj ,v)

+(q
1
2 − q¯1

2 )2xsiu,v if siv < v and siusj < siu.

(2.1.8)

Now we return to the right-hand side of the claimed formula. Suppose first that

usj > u. This implies that siu < siusj < usj. By (1.3.16) we then have

xusj ,v =

xsiusj ,siv if siv > v,

xsiusj ,siv + (q
1
2 − q¯1

2 )xsiusj ,v if siv < v,
(2.1.9)

which is equal to T̃sj
◦ xu,v by cases 1 and 3 of (2.1.8). Now suppose that usj < u.

Then we have u > siusj or u = siusj. If u = siusj, then usj = siu < u = siusj.

Applying (1.3.16) to (just the first monomial in)

xusj ,v + (q
1
2 − q¯

1
2 )xu,v = xusj ,v + (q

1
2 − q¯

1
2 )xsiusj ,v, (2.1.10)

we again obtain the expressions on the right-hand side of (2.1.9). If u > siusj, then

siu < u and siusj < usj. By (1.3.16) we then have

xusj ,v + (q
1
2 − q¯

1
2 )xu,v =


xsiusj ,siv + (q

1
2 − q¯1

2 )(xsiusj ,v + xsiu,siv)

+(q
1
2 − q¯1

2 )2xsiu,v if siv < v,

xsiusj ,siv + (q
1
2 − q¯1

2 )xsiu,siv if siv > v,

(2.1.11)

which is equal to T̃sj
◦ xu,v by cases 2 and 4 of (2.1.8).

By (2.1.3), we may apply the transpose map to the formula (2.1.5) to obtain the

formula (2.1.6).

It follows that the monomial xe,v may be written as

xe,v = T̃v ◦ xe,e = xe,e ◦ T̃v = xv
−1,e. (2.1.12)
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More generally, the monomial xu,v may be written as

xu,v = T̃u−1 ◦ xe,v = xu,e ◦ T̃v = T̃u−1T̃v ◦ xe,e = xe,e ◦ T̃u−1T̃v

= T̃u−1 ◦ xe,e ◦ T̃v.
(2.1.13)

This allows us to connect the polynomials {pu,v,w | u, v, w ∈ Sn} to the multi-

plicative structure of Hn(q).

Proposition 2.1.2. For all u, v ∈ Sn

T̃uT̃v =
∑
w∈Sn

pu−1,v,w(q
1
2 − q¯

1
2 )T̃w. (2.1.14)

Proof. Define elements {au,v,w | u, v, w ∈ Sn} in C[q
1
2 , q¯

1
2 ] by the equation

T̃uT̃v =
∑
w∈Sn

au,v,wT̃w. (2.1.15)

Then the element T̃uT̃v ◦ xe,e of A[n],[n](n; q) expands in the natural basis as∑
w∈Sn

au,v,wT̃w ◦ xe,e =
∑
w∈Sn

au,v,wx
e,w. (2.1.16)

On the other hand, by (2.1.13) and (1.4.10) this element is equal to

xu
−1,v =

∑
w∈Sn

pu−1,v,w(q
1
2 − q¯

1
2 )xe,w. (2.1.17)

Thus we have au,v,w = pu−1,v,w(q
1
2 − q¯1

2 ) for all u, v, w ∈ Sn.

Similarly, define a left action of Hn(q) on A[n],M(n; q) by

T̃si
◦ f(x[n],M) =

def
f(six[n],M), (2.1.18)

assuming f(x[n],M) is expressed in terms of the natural basis, and define a right

action of Hn(q) on AL,[n](n : q) by

f(xL,[n]) ◦ T̃si
=
def
f(xL,[n]si), (2.1.19)
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assuming f(xL,[n]) is expressed in terms of the inverse transpose basis. Thus we have

the identity

f(xL,[n]) ◦ T̃si
= (T̃si

◦ f(x>L,[n]))
>. (2.1.20)

Formulas for these actions are

T̃si
◦ (x[n],M)e,w =


(x[n],M)e,siw if siwWJ > wWJ ,

q
1
2 (x[n],M)e,w if siwWJ = wWJ ,

(x[n],M)e,siw + (q
1
2 − q¯1

2 )(x[n],M)e,w if siwWJ < wWJ .

(2.1.21)

(xL,[n])
e,w ◦ T̃si

=


(xL,[n])

e,wsi if WIwsi > WIw,

q
1
2 (xL,[n])

e,w if WIwsi = WIw,

(xL,[n])
e,wsi + (q

1
2 − q¯1

2 )(xL,[n])
e,w if WIwsi < WIw.

(2.1.22)

More generally, we have the following formulas which appear in [31].

Proposition 2.1.3. We have

T̃sj
◦ (x[n],M)u,v =

(x[n],M)usj ,v if usj > u,

(x[n],M)usj ,v + (q
1
2 − q¯1

2 )(x[n],M)u,v if usj < u,
(2.1.23)

(xL,[n])
u,v ◦ T̃sj

=

(xL,[n])
u,vsj if vsj > v,

(xL,[n])
u,vsj + (q

1
2 − q¯1

2 )(xL,[n])
u,v if vsj < v.

(2.1.24)

Proof. Fix k ≥ 1. Assume the formula (2.1.23) to hold for all monomials (x[n],M)u,v

with `(u) < k. Certainly this is true for k = 1. Now fix one permutation u of length

k and let si be a left descent for u. By (1.3.16) we have

T̃sj
◦ (x[n],M)u,v =



T̃sj
◦ (x[n],M)siu,siv if mvi

< mvi+1
,

q¯
1
2 T̃sj
◦ (x[n],M)siu,siv if mvi

= mvi+1
,

T̃sj
◦ (x[n],M)siu,siv

+(q
1
2 − q¯1

2 )T̃sj
◦ (x[n],M)siu,v if mvi

> mvi+1
,

(2.1.25)
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which by induction is equal to

(x[n],M)siusj ,siv if mvi
< mvi+1

and siusj > siu,

(x[n],M)siusj ,siv + (q
1
2 − q¯1

2 )(x[n],M)siu,siv if mvi
< mvi+1

and siusj < siu,

q
1
2 (x[n],M)siusj ,siv if mvi

= mvi+1
and siusj > siu,

q
1
2 (x[n],M)siusj ,siv + q

1
2 (q

1
2 − q¯1

2 )(x[n],M)siu,siv if mvi
= mvi+1

and siusj < siu,

(x[n],M)siusj ,siv + (q
1
2 − q¯1

2 )(x[n],M)siusj ,v if mvi
> mvi+1

and siusj > siu,

(x[n],M)siusj ,siv + (q
1
2 − q¯1

2 )((x[n],M)siu,siv

(x[n],M)siusj ,v) + (q
1
2 − q¯1

2 )2(x[n],M)siu,v if mvi
> mvi+1

and xiusj < siu.

(2.1.26)

Now we return to the right-hand side of the claimed formula. Suppose first that

usj > u. This implies that siu < siusj < usj. By (1.3.16) we then have

(x[n],M)usj ,v =


(x[n],M)siusj ,siv if mvi

> mvi+1
,

q
1
2 (x[n],M)siusj ,siv if mvi

= mvi+1
,

(x[n],M)siusj ,siv + (q
1
2 − q¯1

2 )(x[n],M)siusj ,v if mvi
< mvi+1

,

(2.1.27)

which is equal to T̃sj
◦ (x[n],M)u,v by cases 1, 3, and 5 of (2.1.26). Now suppose that

usj < u. Then we have u = siusj or u > siusj. If u = siusj, then usj = siu < u =

siusj. Applying (1.3.16) to (just the first monomial in)

(x[n],M)usj ,v + (q
1
2 − q¯

1
2 )(x[n],M)u,v = (x[n],M)usj ,v + (q

1
2 − q¯

1
2 )(x[n],M)siusj ,v, (2.1.28)

we again obtain the expressions on the right-hand side of (2.1.27). If u > siusj,

then siu < u and siusj < usj. By (1.3.16) we then have

(x[n],M)usj ,v + (q
1
2 − q¯

1
2 )(x[n],M)u,v =

(x[n],M)siusj ,siv + (q
1
2 − q¯1

2 )(x[n],M)siu,siv if mvi
< mvi+1

,

q
1
2 (x[n],M)siusj ,siv + q

1
2 (q

1
2 − q¯1

2 )(x[n],M)siu,siv if mvi
= mvi+1

,

(x[n],M)siusj ,siv + (q
1
2 − q¯1

2 )((x[n],M)siusj ,v

+(x[n],M)siu,sv) + (q
1
2 − q¯1

2 )2(x[n],M)siu,v if mvi
> mvi+1

(2.1.29)
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which is equal to T̃sj
◦ (x[n],M)u,v by cases 2, 4, and 6 of (2.1.26).

By (2.1.20), we may apply the transpose map to the formula (2.1.23) to obtain

the formula (2.1.24).

We can use these formulas to derive recursive formulas for the single parabolic

p and r-polynomials.

Lemma 2.1.4. For all u, v ∈ Sn, w ∈ W I,∅
+ , and z ∈ W ∅,J

+ , if vsi < v then

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



pI,∅u,vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi > WIw,

q
1
2pI,∅u,vsi,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if WIwsi = WIw,

pI,∅u,vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )pI,∅u,vsi,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi < WIw,

rI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



rI,∅u,vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi > WIw,

q
1
2 rI,∅u,vsi,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if WIwsi = WIw,

rI,∅u,vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )rI,∅u,vsi,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi < WIw,

(2.1.30)

and if sju < u then

p∅,Ju,v,z(q
1
2 − q¯

1
2 , q¯

1
2 ) =



p∅,Jusj ,v,sjz
(q

1
2 − q¯1

2 , q¯
1
2 ) if sjzWJ > zWJ ,

q
1
2p∅,Jusj ,v,z

(q
1
2 − q¯1

2 , q¯
1
2 ) if sjzWJ = zWJ ,

p∅,Jusj ,v,sjz
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )p∅,Jusj ,v,z
(q

1
2 − q¯1

2 , q¯
1
2 ) if sjzWJ < zWJ ,

r∅,Ju,v,z(q
1
2 − q¯

1
2 , q¯

1
2 ) =



r∅,Jusj ,v,sjz
(q

1
2 − q¯1

2 , q¯
1
2 ) if sjzWJ > zWJ ,

q
1
2 r∅,Jusj ,v,z

(q
1
2 − q¯1

2 , q¯
1
2 ) if sjzWJ = zWJ ,

r∅,Jusj ,v,sjz
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )r∅,Jusj ,v,z
(q

1
2 − q¯1

2 , q¯
1
2 ) if sjzWJ < zWJ .

(2.1.31)
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Proof. The previous proposition says that (xL,[n])
u,v = (xL,[n])

u,vsi ◦ T̃si
, where vsi <

v. Thus using Theorem 1.4.12 and (2.1.22) we can say

(xL,[n])
u,v = (xL,[n])

u,vsi ◦ T̃si

=
∑

w∈W I,∅
+

pI,∅u,vsi,w
(q

1
2 − q¯

1
2 , q¯

1
2 )(xL,[n])

e,w ◦ T̃si

=
∑

w∈W I,∅
+

WIwsi>WIw

pI,∅u,vsi,wsi
(q

1
2 − q¯

1
2 , q¯

1
2 )(xL,[n])

e,w

+
∑

w∈W I,∅
+

WIwsi=WIw

q
1
2pI,∅u,vsi,w

(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,[n])

e,w

+
∑

w∈W I,∅
+

WIwsi<WIw

(
pI,∅u,vsi,wsi

(q
1
2 − q¯

1
2 , q¯

1
2 ) + (q

1
2 − q¯

1
2 )pI,∅u,vsi,w

(q
1
2 − q¯

1
2 , q¯

1
2 )
)

(xL,[n])
e,w.

(2.1.32)

Expanding (xL,[n])
u,v in terms of the natural basis and comparing terms gives

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



pI,∅u,vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi > WIw,

q
1
2pI,∅u,vsi,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if WIwsi = WIw,

pI,∅u,vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )pI,∅u,vsi,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi < WIw.

(2.1.33)

Thus we have the first equation in the claim. To get the second equation, apply

Proposition 1.4.4 to both sides of the first. The last two equations come from

applying (1.4.4) to the first two equations in the claim while relabeling w−1 ∈ W J,I
+

as z.

These recursive formulas allow us to connect our polynomials to the action of

Hn(q) on its submodules H ′I,∅ and H ′∅,J in a manner analogous to Proposition 2.1.2.

Proposition 2.1.5. For all u,w ∈ W I,∅
+ and v ∈ Sn,

T̃ ′WIu
T̃v =

∑
w∈W I,∅

+

rI,∅u−1,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )T̃WIw (2.1.34)
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and for all u ∈ Sn and v, w ∈ W ∅,J
+ ,

T̃uT̃
′
vWJ

=
∑

w∈W ∅,J+

p∅,Ju−1,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )T̃ ′wWJ

. (2.1.35)

Proof. First let us prove the first equation holds. Let u,w ∈ W I,∅
+ . Assume v = e,

then we have T̃ ′WIu
T̃e = T̃ ′WIu

. By definition rI,∅u−1,e,w(q1, q2) = 1 if u−1 = w and zero

otherwise. Thus the claim holds.

Assume the claim holds for all v with length less than k. Choose v to be length

k and si such that vsi < v. Then by induction and (1.2.16) we have

T̃ ′WIu
T̃v = T̃ ′WIu

T̃vsi
T̃si

=
∑

w∈W I,∅
+

rI,∅u−1,vsi,w
(q

1
2 − q¯

1
2 , q¯

1
2 )T̃ ′WIw

T̃si

=
∑

w∈W I,∅
+

WIwsi>WIw

rI,∅u−1,vsi,w
(q

1
2 − q¯

1
2 , q¯

1
2 )T̃ ′WIwsi

+
∑

w∈W I,∅
+

WIwsi=WIw

rI,∅u−1,vsi,w
(q

1
2 − q¯

1
2 , q¯

1
2 )q

1
2 T̃ ′WIw

+
∑

w∈W I,∅
+

WIwsi<WIw

rI,∅u−1,vsi,w
(q

1
2 − q¯

1
2 , q¯

1
2 )
(
T̃ ′WIwsi

+ (q
1
2 − q¯

1
2 )T̃ ′WIw

)

=
∑

w∈W I,∅
+

WIwsi>WIw

rI,∅u−1,vsi,wsi
(q

1
2 − q¯

1
2 , q¯

1
2 )T̃ ′WIw

+
∑

w∈W I,∅
+

WIwsi=WIw

q
1
2 rI,∅u−1,vsi,w

(q
1
2 − q¯

1
2 , q¯

1
2 )T̃ ′WIw

+
∑

w∈W I,∅
+

WIwsi<WIw

(
rI,∅u−1,vsi,wsi

(q
1
2 − q¯

1
2 , q¯

1
2 ) + (q

1
2 − q¯

1
2 )rI,∅u−1,vsi,w

(q
1
2 − q¯

1
2 , q¯

1
2 )
)
T̃ ′WIw

.

(2.1.36)

Looking at (2.1.30), we see that, in fact, we have

T̃ ′WIu
T̃v =

∑
w∈W I,∅

+

rI,∅u−1,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )T̃ ′WIw

(2.1.37)
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as claimed.

The second equation in the claim is proved in a similar manner, only we induct

on the length of u instead of v. Let v, w ∈ W ∅,J
+ . Assume u = e, then we have

T̃eT̃
′
vWJ

= T̃ ′wWJ
. By definition p∅,Je,v,w(q1, q2) = 1 if v = w and zero otherwise. Thus

the claim holds.

Assume the claim holds for all u with length less than k. Choose u to be length

k and si such that siu < u. Then by induction and (1.2.18) we have

T̃uT̃
′
vWJ

= T̃si
T̃siuT̃

′
vWJ

=
∑

w∈W ∅,J+

p∅,Ju−1si,v,w
(q

1
2 − q¯

1
2 , q¯

1
2 )T̃si

T̃ ′wWJ

=
∑

w∈W ∅,J+
siwWJ>wWJ

p∅,Ju−1si,v,w
(q

1
2 − q¯

1
2 , q¯

1
2 )T̃ ′siwWJ

+
∑

w∈W ∅,J+
siwWJ=wWJ

p∅,Ju−1si,v,w
(q

1
2 − q¯

1
2 , q¯

1
2 )q

1
2 T̃ ′wWJ

+
∑

w∈W ∅,J+
siwWJ<wWJ

p∅,Ju−1si,v,w
(q

1
2 − q¯

1
2 , q¯

1
2 )
(
T̃ ′siwWJ

+ (q
1
2 − q¯

1
2 )T̃ ′wWJ

)

=
∑

w∈W ∅,J+
siwWJ>wWJ

p∅,Ju−1si,v,siw
(q

1
2 − q¯

1
2 , q¯

1
2 )T̃ ′wWJ

+
∑

w∈W ∅,J+
siwWJ=wWJ

q
1
2p∅,Ju−1si,v,w

(q
1
2 − q¯

1
2 , q¯

1
2 )T̃ ′wWJ

+
∑

w∈W ∅,J+
siwWJ<wWJ

(
p∅,Ju−1si,v,siw

(q
1
2 − q¯

1
2 , q¯

1
2 ) + (q

1
2 − q¯

1
2 )p∅,Ju−1si,v,w

(q
1
2 − q¯

1
2 , q¯

1
2 )
)
T̃ ′wWJ

.

(2.1.38)

Looking at (2.1.31), we see that, in fact, we have

T̃uT̃
′
vWJ

=
∑

w∈W ∅,J+

p∅,Ju−1,v,w(q
1
2 − q¯

1
2 , q¯

1
2 )T̃ ′wWJ

(2.1.39)

as claimed.
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These methods will not work in the case where neither I, nor J are the empty set,

since we do not have nice formulas for an action of Hn(q) on H ′I,J . If we were to find

such formulas, then it should be possible. However, double cosets lack certain nice

features of single cosets, presenting difficulties which may not be easily surmounted.

Problem 1. Find analogous connections between HI,J ,H ′I,J and AL,M(n; q).

2.2 Symmetries

Shortly after we first defined the polynomials {pI,Ju,v,w(q1, q2)}, we saw in (1.4.4) and

(1.4.20) that they satisfied certain symmetries,

rI,Ju,v,w(q1, q2) = pJ,Iv,u,w−1(q1, q2) (2.2.1)

and

pu,v,w(q) = pv,u,w−1(q). (2.2.2)

Due to the combinatorial definition of these polynomials, any symmetries suggest

bijections between sets of paths in the Bruhat order. In order to explore the sym-

metries these polynomials satisfy, ideally we would look for and discover bijections;

however, another tactic would be to use their presence in algebraic settings. To that

end, we can use the multiplicative structure of Hn(q) and the connection to these

polynomials.

Proposition 2.2.1. For all u, v, w ∈ Sn

pu,v,w(q) = pv−1,w−1,u(q). (2.2.3)

Proof. Define functions cwu,v ∈ Z[q
1
2 , q¯

1
2 ] by

T̃uT̃v =
∑
w∈Sn

cwu,vT̃w. (2.2.4)

[23, Lemma 4.1] shows

cwu,v = cu
−1

v,w−1 . (2.2.5)
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This fact can also be deduced from the proofs of Lemmas 10.4 and 13.3 in [28].

Proposition 2.1.2 says that cwu,v = pu−1,v,w(q
1
2 − q¯

1
2 ). Putting these two equalities

together completes the proof.

Corollary 2.2.2. For all u, v, w ∈ Sn

pu,v,w(q) = pv−1,w−1,u(q) = pw,u−1,v−1(q)

= pv,u,w−1(q) = pw−1,v−1,u−1(q) = pu−1,w,v(q).
(2.2.6)

Proof. This is seen from applying Proposition 2.2.1 repeatedly, then applying (2.2.2)

to each of those forms.

Each of these symmetries implies two sets of paths in the Bruhat order are

equinumerous. Furthermore, considering pu,v,w(q) is defined combinatorially, it

would be ideal to find bijections between these sets which imply these symme-

tries, rather than relying on the structure of the immanant space. For example we

can see that pu,v,w(q) = pu−1,w,v(q) (one of the six symmetries given by (2.2.6)) by

considering the map φ which reverses the order of a path (or finite sequence),

φ(x1, · · · , x`) =
def

(x`, · · · , x1). (2.2.7)

Proposition 2.2.3. For k ∈ N and u, v, w ∈ Sn, the reversal map is a bijection

between the set of sequences counted by the coefficient of qk in pu,v,w(q) and the set

of sequences counted by the coefficient of qk in pu−1,w,v(q).

Proof. Let π be a sequence counted by the coefficient of qk in pu,v,w(q). We need

to show that ρ = φ(π) is a sequence counted by the coefficient of qk in pu−1,w,v(q).

Clearly the initial and final points of ρ are w and v, respectively. Furthermore, if

si1 · · · si` is a reduced expression for u, then si` · · · si1 is a reduced expression for u−1

and the second condition is also satisfied. The fourth condition clearly holds and

the fifth condition is trivial in the immanant space. All that remains is to show that

the third condition holds.

Let j be an integer between 1 and ` for which tijρ
(j−1) > ρ(j−1), where ti1 · · · ti`

is the reduced expression for u−1 which is the reverse of the reduced expression
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si1 · · · si` . Assume ρ(j) 6= tijρ
(j−1), but rather ρ(j) = ρ(j−1). Since tij = si`−j+1

and

ρ(j) = π(`−j), this implies π(`−j) = π(`−j+1). For this to be true, we must have

si`−j+1
π(`−j) < π(`−j). Since π(`−j) = π(`−j+1), we also have si`−j+1

π(`−j+1) < π(`−j+1).

Except that this implies ti1ρ
(j−1) < ρ(j−1), which is a contradiction. Thus ρ satisfies

all the conditions in the definition of pu−1,w,v(q).

The reversal map is clearly injective and furthermore it is an involution and thus

a bijection as claimed.

Problem 2. Find bijections between the different sets of sequences, or walks in the

Bruhat order, which correspond to the other five symmetries in (2.2.6).

Some of the symmetries in Corollary 2.2.2 also hold in the single parabolic cases

as well. To see this we apply the result of Corollary 1.4.9 to (1.3.16) to get the

following recursive formulas

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



pI,∅siu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if `ui

< `ui+1,

q
1
2pI,∅u,siv,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if `ui

= `ui+1,

pI,∅siu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )pI,∅u,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if `ui

> `ui+1,

rI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



rI,∅siu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if `ui

< `ui+1,

q
1
2 rI,∅u,siv,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if `ui

= `ui+1,

rI,∅siu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )rI,∅u,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if `ui

> `ui+1,

(2.2.8)
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where siv < v, and

p∅,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



p∅,Jsiu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if mvi

< mvi+1,

q
1
2p∅,Jsiu,v,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if mvi

= mvi+1,

p∅,Jsiu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )p∅,Jsiu,v,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if mvi

> mvi+1,

r∅,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



r∅,Jsiu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if mvi

< mvi+1,

q
1
2 r∅,Jsiu,v,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if mvi

= mvi+1,

r∅,Jsiu,siv,w
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )r∅,Jsiu,v,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if mvi

> mvi+1,

(2.2.9)

where siu < u. These recursive formulas provide us with the means to establish

some symmetry results for the single parabolic cases.

Proposition 2.2.4. For all u ∈ W ∅,I
+ , v ∈ Sn, and w ∈ W I,∅

+ we have

pI,∅u,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) = pI,∅w−1,v−1,u−1(q

1
2 − q¯

1
2 , q¯

1
2 ), (2.2.10)

and for all u ∈ Sn, v, w ∈ W ∅,J
+ we have

p∅,Ju,v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) = p∅,Ju−1,w,v(q

1
2 − q¯

1
2 , q¯

1
2 ). (2.2.11)

Proof. Comparing Lemma 2.1.4 and (2.2.8) we notice that the two polynomials in

(2.2.10) satisfy the same recursive formulas. All that is left is to check to see that

they have the same initial condition. When v = e we have pI,∅u,e,w(q1, q2) = `(wI0) if

u−1 = w and zero otherwise. Therefore the formula holds as claimed.

Similarly, comparing Lemma 2.1.4 and (2.2.9), we see that the polynomials in

(2.2.11) satisfy the same recursive formulas. Once again they satisfy the same initial

condition, p∅,Je,v,w(q1, q2) = 1 if v = w and zero otherwise.

The symmetries stated in Proposition 2.2.4 have only been shown to hold when

q1 = q
1
2 − q¯1

2 and q2 = q¯
1
2 . We would like to understand whether this is a necessary

condition or just sufficient. One possibility that comes to mind is the quotient ring
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Z[q1, q2]/(1−q1q2−q2
2). In Lemma 1.4.6 we saw that this was the condition required

for the symmetry

rI,Ju,v,w(q1, q2) = rI,Ju,y,w(q1, q2) (2.2.12)

to hold, where y ∈ W ∅,J
− , v ∈ yWJ , and w ∈ W I,J

+ . Combining Lemma 1.4.6 and

Corollary 1.4.7, we get the following result.

Corollary 2.2.5. Fix y ∈ W ∅,I
− , u ∈ yWI , z ∈ W ∅,J

− , v ∈ zWJ , and w ∈ W I,J
+ . In

the ring Z[q1, q2]/(1− q1q2 − q2
2) we have

pI,Ju,v,w(q1, q2) = pI,Jy,z,w(q1, q2),

rI,Ju,v,w(q1, q2) = rI,Jy,z,w(q1, q2).
(2.2.13)

Proof. By Corollary 1.4.7, we have pI,Ju,v,w(q1, q2) = pI,Jy,v,w(q1, q2). We also have by

(1.4.21) that pI,Jy,v,w(q1, q2) = q
`(wI

0)−`(wJ
0 )

2 rI,Jy,v,w(q1, q2). Applying Lemma 1.4.6, we see

that rI,Jy,v,w(q1, q2) = rI,Jy,z,w(q1, q2). Putting all of this together and applying (1.4.21)

once more, we have the first equation. The second equation comes from applying

(1.4.21) to the first equation.

Problem 3. Identify general conditions on I, I ′, J, J ′, u, u′, v, v′, w, w′, as well as the

parameters q1, q2, q
′
1, q
′
2, for which

pI,Ju,v,w(q1, q1) = pI
′,J ′

u′,v′,w′(q
′
1, q
′
2). (2.2.14)

Furthermore, find bijective proofs for the known conditions.
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Chapter 3

Bar involutions and invariant

bases

As mentioned in the introduction, an important ingredient in the definition of Kazh-

dan and Lusztig’s basis of Hn(q) is known as the bar involution. Applying this

involution gives rise to modified R-polynomials in N[q]. These are the polynomials

studied by Brenti mentioned when we defined the polynomials {pI,Ju,v,w(q1, q2) | u, v ∈
Sr, w ∈ W I,J

+ }. In this chapter we will show that the modified R-polynomials are

the subset of these new polynomials when u = w0 and v ∈ W I,J
− . In order to show

this, we define the bar involution on Hn(q) and the R-polynomials, as well as intro-

duce parabolic analogues, as in [16]. We then follow [31] in defining a bar involution

on A(n; q), which is compatible with the actions of Hn(q), and introduce (parabolic)

inverse R-polynomials , as a special case of the pI,J -polynomials.

In the final two sections of the chapter we will move our interest to special bar-

invariant bases in A(n; q). Kazhdan and Lusztig defined a bar invariant basis in

Hn(q) [22], which has been of great interest. Similarly, a bar-invariant basis for

A(n; q), called the dual canonical basis , is important to representation theorists

studying quantum groups. In [31] Skandera gives a new formulation for the dual

canonical basis in the single parabolic case. We extend that formulation to the

double parabolic case, giving formulations for the entire dual canonical basis of
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A(n; q). Finally, we examine the different versions of the bar involution and dual

canonical basis appearing in several places, connecting our results to the literature.

3.1 The bar involution on Hn(q)

Define an involution on Hn(q), commonly known as the bar involution, by∑
w∈Sn

awT̃w 7→
∑
w∈Sn

awT̃w =
∑
w∈Sn

awT̃w, (3.1.1)

where

q
1
2 = q¯

1
2 , T̃w = (T̃w−1)−1. (3.1.2)

We call an element g ∈ Hn(q) bar invariant if g = g. By (1.2.4) we see that for a

generator T̃s we have the special case

T̃s = T̃s − (q
1
2 − q¯

1
2 )T̃e. (3.1.3)

The bar involution is an automorphism of Hn(q),

T̃uT̃v = T̃u · T̃v. (3.1.4)

It is not too hard to see that the elements {T̃si
| 1 ≤ i ≤ n− 1} generate Hn(q) and

satisfy the braid and commutation relations as well as(
T̃si

)2

= T̃e − (q
1
2 − q¯

1
2 )T̃s. (3.1.5)

Writing the basis {T̃v | v ∈ Sn}, which we will call the barred natural basis, in terms

of the natural basis using (3.1.3), (3.1.4), and induction, we see that we have

T̃v ∈
∑
u≤v

N[q
1
2 − q¯1

2 ]T̃u ∩
∑
u≤v

q−1
u,vZ[q]T̃u. (3.1.6)

Specifically, we may write

T̃v =
∑
u≤v

q−1
u,vRu,v(q)T̃u =

∑
u≤v

R̃u,v(q
1
2 − q¯1

2 )T̃u, (3.1.7)
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where {Ru,v(q) | u, v ∈ Sn} belong to Z[q], and {R̃u,v(q1) | u, v ∈ Sn} belong to

N[q1]. Call these the R-polynomials and modified R-polynomials , respectively.

The R-polynomials and modified R-polynomials are related by

Ru,v(q) = qu,vR̃u,v(q
1
2 − q¯

1
2 ). (3.1.8)

We will focus our attention on the modified R-polynomials; however, any formulas

or symmetries will also hold for the R-polynomials thanks to this relationship.

The combinatorial properties of the R- and modified R-polynomials have been

studied by Brenti [3], Deodhar [13], and Dyer [17]. Brenti gives a combinatorial

interpretation using what he calls R-chains, where Deodhar uses what he calls dis-

tinguished subexpressions. Several of the main results are collected in [2] and [19].

We will review some interesting facts about the modified R-polynomials, which in

Section 3.3 will be used, along with the polynomials {pu,v,w(q1) | u, v, w ∈ Sn}, to

state a new combinatorial interpretation for modified R-polynomials.

Using (3.1.4) to write T̃v = T̃vs · T̃s for vs < v, and using induction on `(v), we

see that the modified R-polynomials are the unique family {R̃u,v(q1) | u, v ∈ Sn} of

polynomials in N[q1] satisfying

1. R̃u,v(q1) = 0 if u 6≤ v.

2. R̃v,v(q1) = 1 for all u.

3. For each right descent s of v we have

R̃u,v(q1) =

R̃us,vs(q1) if us < u,

R̃us,vs(q1) + q1R̃u,vs(q1) otherwise.
(3.1.9)

(See [19] for more details.) Stating condition (3) in terms of left descents s of v, we

have

R̃u,v(q1) =

R̃su,sv(q1) if su < u,

R̃su,sv(q1) + q1R̃u,sv(q1) otherwise.
(3.1.10)
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On the other hand, we may fix a right ascent s of u and use (3.1.9) to obtain

R̃u,v(q1) =

R̃us,vs(q1) if vs > v,

R̃us,vs(q1) + q1R̃us,v(q1) otherwise,
(3.1.11)

or we may fix a left ascent s of u and use (3.1.10) to obtain

R̃u,v(q1) =

R̃su,sv(q1) if sv > v,

R̃su,sv(q1) + qR̃su,v(q1) otherwise.
(3.1.12)

From the recursive formulas (3.1.9) - (3.1.12), one can verify that for u ≤ v,

R̃u,v(q1) is a monic polynomial of degree `(v) − `(u) with constant term equal to

zero, unless u = v. For example, for u ≥ v in S3, we have

R̃u,v(q1) =



1 if `(v)− `(u) = 0,

q1 if `(v)− `(u) = 1,

q2
1 if `(v)− `(u) = 2,

q3
1 + q1 if `(v)− `(u) = 3,

(3.1.13)

and similarly,

Ru,v(q) =



1 if `(v)− `(u) = 0,

q − 1 if `(v)− `(u) = 1,

q − 2q + 1 if `(v)− `(u) = 2,

q3 − 2q2 + 2q − 1 if `(v)− `(u) = 3.

(3.1.14)

Furthermore, by (3.1.7), for all u ≤ v we have

R̃u,v(q) = R̃w0v,w0u(q) = R̃vw0,uw0(q) = R̃u−1,v−1(q). (3.1.15)

Similarly, we have

Ru,v(q) = Rw0v,w0u(q) = Rvw0,uw0(q) = Ru−1,v−1(q). (3.1.16)
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It is not difficult to see that

R̃u,v(q
1
2 − q¯1

2 ) = εu,vR̃u,v(q
1
2 − q¯

1
2 ), (3.1.17)

by applying the bar involution to one of the recursive formulas and using induction.

Similarly, we have

Ru,v(q) = Ru,v(q
−1) = εu,vq

−2
u,vRu,v(q). (3.1.18)

Thus we could have alternatively defined the modified R-polynomials by

T̃v =
∑
u≤v

εu,vR̃u,v(q
1
2 − q¯

1
2 )T̃u. (3.1.19)

We defined the modified R-polynomials in order to express the barred natural

basis in terms of the natural basis. However, we can also express the natural basis

in terms of the barred natural basis using the same polynomials. We see this by

applying the bar involution to (3.1.7) to get

T̃v =
∑
u≤v

R̃u,v(q
1
2 − q¯

1
2 )T̃u. (3.1.20)

Expanding the right-hand side using (3.1.7) and recognizing that nonnegative powers

of q
1
2 − q¯1

2 are linearly independent in Z[q
1
2 , q¯

1
2 ] gives us∑

u≤v≤w

εu,vR̃u,v(q1)R̃v,w(q1) = R̃u,v(q1)εv,wR̃v,w(q1) = δu,w. (3.1.21)

In [16], Du shows the bar involution on Hn(q) induces a bar involution on the

submodule and H ′I,J . Thus we would like to define (double) parabolic R-polynomials

and modified R-polynomials in an analogous manner.

First notice that it is easy to see the elements dI and d̃I satisfy

dI = q−2
e,wI

0
dI , d̃I = d̃I . (3.1.22)

Another interesting useful fact is that the element T̃ ′WI
is bar-invariant, i.e.

T̃ ′WI
= T̃ ′WI

, (3.1.23)
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for all subsets I of generators of Sn. In fact T̃ ′WI
is a Kazdhan-Lusztig basis element

of Hn(q) (see [22] and [24]).

For w ∈ W I,J
+ , applying the bar involution to (1.2.22) and using (1.2.23) gives

us

d̃K(w)T̃
′
WIwWJ

= T̃ ′WI
T̃ ′w−T̃

′
WJ

=
∑
u≤w−

q−1
u,w−Ru,w−(q)T̃ ′WI

T̃uT̃
′
WJ

=
∑

v∈W I,J
+

v≤w

∑
u∈WIvWJ

q−1
u,w−Ru,w−(q)q−1

u,v−T̃
′
WI
T̃v−T̃

′
WJ

=
∑

v∈W I,J
+

v≤w

∑
u∈WIvWJ

q−1
v−,w−Ru,w−(q)d̃K(v)T̃

′
WIvWJ

=
∑

v∈W I,J
+

v≤w

q−1
v,wq

−1

w
K(v)
0 ,w

K(w)
0

∑
u∈WIvWJ

Ru,w−(q)d̃K(v)T̃
′
WIvWJ

.

(3.1.24)

In light of (3.1.24), we define the parabolic R-polynomials in Z[q] by

d̃K(w)T̃ ′WIwWJ
=

∑
v∈W I,J

+
v≤w

q−1
v,wR

I,J
v,w(q)d̃K(v)T̃

′
WIvWJ

. (3.1.25)

For example, when n = 3, I = {s1}, and J = {s2}, we have

RI,∅
s1,s1

(q) = 1,

RI,∅
s1,s1s2

(q) = q − 1,

RI,∅
s1,w0

(q) = q2 − q,

(3.1.26)

and
RI,J
s1s2,s1s2

(q) = 1,

RI,J
s1s2,w0

(q) = q2 − 1.
(3.1.27)

These examples support the claim that the parabolic R-polynomials are in Z[q],

which we will prove shortly.

In [12], Deodhar defines single parabolic R-polynomials which are in Z[q] and

specialize to the R-polynomials in the nonparabolic case. This new definition of
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double parabolic R-polynomials is consistent with Deodhar’s definition of single

parabolic R-polynomials, except he uses minimal coset representatives to index the

polynomials. To see this is an extension of Deodhar’s definition we note that (3.1.24)

and (3.1.25) imply for v, w ∈ W I,J
+ ,

RI,J
v,w(q) = q−1

w
K(v)
0 ,w

K(w)
0

∑
u∈WIvWJ

Ru,w−(q). (3.1.28)

In the single parabolic case, since K(u) = ∅ for all u ∈ W I,∅
− , this becomes

RI,∅
v,w(q) =

∑
u∈WIv

Ru,w−(q). (3.1.29)

In [7], Brenti states that the right-hand side is equal to the single parabolic R-

polynomials defined by Deohdar, as a result of a formula which appears in [12].

Thus our definition of double parabolic R-polynomials is consistent with Deodhar’s.

In order to see that the double parabolic R-polynomials are consistent with

the literature we needed to express them as sums of nonparabolic R-polynomials

where the second index was the minimal representative rather than the maximal

representative. We can get a similar formula where the indices match by using

(1.2.24). Let w ∈ W I,J
+ , then

d̃K(w)T̃
′
WIwWJ

= (q
1
2 )`(WIwWJ )T̃ ′WI

T̃ ′wT̃
′
WJ

= (q
1
2 )`(WIwWJ )

∑
u≤w

q−1
u,wRu,w(q)T̃ ′WI

T̃uT̃
′
WJ

= (q
1
2 )`(WIwWJ )

∑
v∈W I,J

+
v≤w

∑
u∈WIvWJ

q−1
u,wRu,w(q)q−1

u,vT̃
′
WI
T̃vT̃

′
WJ

= (q
1
2 )`(WIwWJ )

∑
v∈W I,J

+
v≤w

∑
u∈WIvWJ

q−1
v,wRu,w(q)(q

1
2 )`(WIvWJ )d̃K(v)T̃

′
WIvWJ

=
∑

v∈W I,J
+

v≤w

q−1
v,w(q

1
2 )−`(WIvWJ )(q

1
2 )−`(WIwWJ )

∑
u∈WIvWJ

Ru,w(q)d̃K(v)T̃
′
WIvWJ

.

(3.1.30)
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Looking at the definition of the parabolic R-polynomials we see that for v, w ∈ W I,J
+ ,

we have

RI,J
v,w = (q¯

1
2 )`(WIvWJ )+`(WIwWJ )

∑
u∈WIvWJ

Ru,w(q). (3.1.31)

Recalling that `(WIvWJ) = `(wI0) + `(wJ0 ) − `(w
K(v)
0 ) for v ∈ W I,J

+ , we see that

(3.1.28) and (3.1.31) imply∑
u∈WIvWJ

Ru,w(q) = q`(WIwWJ )
∑

u∈WIvWJ

Ru,w−(q), (3.1.32)

which shows us that the double parabolic R-polynomials are in fact polynomials in

Z[q], as claimed.

Next we would like to define double parabolic modified R-polynomials. Due to

technical details we will define, for v, w ∈ W I,J
+ , the double parabolic R-polynomials

in N[q1, q2] by

R̃I,J
v,w(q1, q2) = q

(`(WIvWJ )+`(WIwWJ ))
2

∑
u∈WIvWJ

q
`(u)−`(v)
2 R̃u,w(q1), (3.1.33)

rather than using the bar involution in a manner analogous to the definition of the

double parabolic R-polynomials.

To see that this new definition is a good double parabolic generalization of the

modified R-polynomials, recall (3.1.8). This implies we have

R̃I,J
v,w(q

1
2 − q¯

1
2 , q¯

1
2 ) = (q¯

1
2 )(`(WIvWJ )+`(WIwWJ ))

∑
u∈WIvWJ

qu,vR̃u,w(q
1
2 − q¯

1
2 )

= (q¯
1
2 )(`(WIvWJ )+`(WIwWJ ))

∑
u∈WIvWJ

qu,vq
−1
u,wRu,w(q)

= q−1
v,w(q¯

1
2 )(`(WIvWJ )+`(WIwWJ ))

∑
u∈WIvWJ

Ru,w(q)

= q−1
v,wR

I,J
v,w(q).

(3.1.34)

Thus, similar to the nonparabolic case, the parabolic R-polynomials are related to

the modified R-polynomials by

RI,J
v,w(q) = qv,wR̃

I,J
v,w(q

1
2 − q¯

1
2 , q¯

1
2 ). (3.1.35)
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Therefore, this definition leads to the following result, which is analogous to the

definition of the nonparabolic modified R-polynomials,

d̃K(w)T̃ ′WIwWJ
=

∑
v∈W I,J

+
v≤w

R̃I,J
v,w(q

1
2 − q¯1

2 , q
1
2 )d̃K(v)T̃

′
WIvWJ

. (3.1.36)

3.2 The bar involution on A(n; q)

Analogous to the bar involution on Hn(q) define an involution on A(n; q) following

Brundan [8], which we will also call the bar involution, by q
1
2 = q¯

1
2 , xi,j = xi,j, and

xa1,b1 · · ·xar,br = (q
1
2 )α(a)−α(b)xar,br · · ·xa1,b1 , (3.2.1)

where α(a) is the number of pairs i < j for which ai = aj. We remark that in [8],

Brundan uses q where we have been using q¯
1
2 .

Equivalently, if L and M are r-element multisets of [n] and we define generator

subsets I = ι(L), J = ι(M) of W = Sr as before, then we have the definition

(xL,M)u,v =
def
qwJ

0 ,w
I
0
(xL,M)w0u,w0v. (3.2.2)

In the immanant space this reduces to

xu,v = xw0u,w0v. (3.2.3)

At first it may seem odd and potentially confusing to have involutions on two

different objects denoted in the same way; however, the next proposition, which

appears in the literature, e.g. [9], will justify this choice of notation.

Proposition 3.2.1. The two bar involutions are compatible with the left and right

actions of Hn(q) on A[n],[n](n; q) in the sense that

T̃si
◦ xe,v = T̃si

◦ xe,v, xe,v ◦ T̃si
= xe,v ◦ T̃si

. (3.2.4)

Proof. By the definitions we have

T̃si
◦ xe,v = xsi,v = xw0si,w0v. (3.2.5)
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On the other hand, we have

T̃si
◦ xe,v =

(
T̃si
− (q

1
2 − q¯

1
2 )T̃e

)
◦ xw0,w0v

= T̃si
◦ xw0,w0v − (q

1
2 − q¯

1
2 )xw0,w0v

= xw0si,w0v + (q
1
2 − q¯

1
2 )xw0,w0v − (q

1
2 − q¯

1
2 )xw0,w0v

(3.2.6)

by Proposition 2.1.1. The proof of the second identity is similar.

Following [31], we can state the following facts concerning the interplay between

the two bar involutions. First, notice that (1.3.30) and (3.2.2) allow us to show that

the element (xL,M)e,w0 is bar invariant. In other words we have

(xL,M)e,w0 = qwJ
0 ,w

I
0
(xL,M)w0,e = qwJ

0 ,w
I
0
q−1
wJ

0 ,w
I
0
(xL,M)e,w0

= (xL,M)e,w0 .
(3.2.7)

Recalling (3.1.3) and Proposition 2.1.3, we can see we have

(xL,[n])
e,w ◦ T̃si

=


(xL,[n])

e,wsi − (q
1
2 − q¯1

2 )(xL,[n])
e,w if WIwsi > WIw,

q¯
1
2 (xL,[n])

e,w if WIwsi = WIw,

(xL,[n])
e,wsi if WIwsi < WIw,

(3.2.8)

T̃si
◦ (x[n],M)e,w =


(x[n],M)e,siw − (q

1
2 − q¯1

2 )(x[n],M)e,w if siwWJ > wWJ ,

q¯
1
2 (x[n],M)e,w if sIwWJ = wWJ ,

(x[n],M)e,siw if sIwWJ < wWJ ,

(3.2.9)

From the above formulas, one can see that for w ∈ W I,∅
+ we have

(xL,[n])
e,w ◦ T̃u = (xL,[n])

e,wu, if `(wu) = `(w)− `(u) and wu ∈ W I,∅
+ , (3.2.10)

and for w ∈ W ∅,J
+ we have

T̃u ◦ (x[n],M)e,w = (x[n],M)e,uw, if `(uw) = `(w)− `(u) and uw ∈ W ∅,J
+ . (3.2.11)

In particular, when w = w0, we have

(xL,[n])
e,v = (xL,[n])

e,w0 ◦ T̃w0v, for v ∈ W I,∅
+ ,

(x[n],M)e,v = T̃vw0 ◦ (x[n],M)e,w0 , for v ∈ W ∅,J
+ .

(3.2.12)
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Furthermore, for si ∈ I and y ∈ WI , we have

(xL,[n])
e,w0 ◦ T̃w0siw0 = q¯

1
2 (xL,[n])

e,w0 , (xL,[n])
e,w0 ◦ T̃w0yw0 = q−1

e,t (xL,[n])
e,w0 .

(3.2.13)

For si ∈ J and z ∈ WJ , we have

T̃w0siw0 ◦ (x[n],M)e,w0 = q¯
1
2 (x[n],M)e,w0 , T̃w0zw0 ◦ (xM,[n])

e,w0 = q−1
e,t (x[n],M)e,w0 .

(3.2.14)

It follows that if t factors as t = yu with u ∈ W I,∅
+ , y ∈ WI , we have

(xL,[n])
e,w0 ◦ T̃w0t = (xL,[n])

e,w0 ◦ T̃(w0yw0)(w0u)

= (xL,[n])
e,w0 ◦ T̃w0yw0T̃w0u

= q−1
e,t (xL,[n])

e,u.

(3.2.15)

Similarly, if t factors as t = vz with v ∈ W ∅,J
+ , z ∈ WJ , we have

T̃tw0 ◦ (x[n],M)e,w0 = T̃(vw0)(w0zw0) ◦ (x[n],M)e,w0

= T̃vw0T̃w0zw0 ◦ (x[n],M)e,w0

= q−1
e,t (x[n],M)e,v.

(3.2.16)

Lemma 3.2.2. For u ∈ W I,∅
+ , t = yu, with y ∈ WI , and v ∈ W ∅,J

+ , t = zv, with

z ∈ WJ ,

(xL,[n])e,u = q−1
e,y(xL,[n])

e,w0 ◦ T̃w0t,

(x[n],M)e,v = q−1
e,z T̃tw0 ◦ (x[n],M)e,w0 .

(3.2.17)

Proof. We can write (3.2.15) as

(xL,[n])
e,u = qe,t(xL,[n])

e,w0 ◦ T̃w0u (3.2.18)

and then apply the bar involution. Recalling that (xL,[n])
e,w0 is bar invariant, we get

the first formula. The second formula follows a similar argument using (3.2.16).
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3.3 The modified S-polynomials

Writing the basis {(xL,M)e,v | v ∈ W I,J
+ } of AL,M(n; q) in terms of the natural basis,

we have

(xL,M)e,v =
∑

w∈W I,J
+

εv,wq−1
v,wS

I,J
v,w(q)(xL,M)e,w. (3.3.1)

where {SI,Jv,w(q) | v, w ∈ W I,J
+ } are polynomials in Z[q] which we shall call (parabolic)

S-polynomials (or (parabolic) inverse R-polynomials). For example, when n = 3,

I = {s1}, and J = {s2}, we have

SI,∅s1,s1(q) = 1,

SI,∅s1,s1s2(q) = q − 1,

SI,∅s1,w0
(q) = 1− q,

(3.3.2)

and
SI,Js1s2,s1s2(q) = 1,

SI,Js1s2,w0
(q) = q − 1.

(3.3.3)

As with the parabolic R-polynomials, these examples support the claim that the

S-polynomials are in Z[q]. Once again we will see the validity of this claim after

establishing a few summation results.

Looking at (3.2.2) and recalling the result of Theorem 1.4.12, we see that

(xL,M)e,v = qwJ
0 ,w

I
0
(xL,M)w0,w0v

= qwJ
0 ,w

I
0

∑
w∈W I,J

+

pI,Jw0,w0v,w
(q

1
2 − q¯

1
2 , q¯

1
2 )(xL,M)e,w. (3.3.4)

Therefore we have that the S-polynomials are just special cases of the family of

polynomials introduced in Chapter 1. If we define (parabolic) modified S-polynomials

(or (parabolic) inverse modified R-polynomials) by

S̃I,Jv,w(q1, q2) = q
`(wJ

0 )−`(wI
0)

2 pI,Jw0,w0v,w
(q1, q2), (3.3.5)

then we have

(xL,M)e,v =
∑

w∈W I,J
+

S̃I,Jv,w(q
1
2 − q¯

1
2 , q¯

1
2 )(xL,M)e,w, (3.3.6)
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which is analogous to the definition of the modified R-polynomials, just as the S-

polynomials are analogous to the R-polynomials. Notice that we have that

S̃I,Jv,w(q
1
2 − q¯

1
2 , q¯

1
2 ) = εv,wqv,wS

I,J
v,w(q−1) (3.3.7)

and by (1.4.4)

S̃I,Jv,w(q1, q2) = rI,Jw0,w0v,w
(q1, q2). (3.3.8)

Looking at the definition of pI,Jw0,w0v,w
(q1, q2), we see that we have for v, w ∈ W I,J

+ ,

since w0v ∈ W I,J
− and (w0v)J = e and (w0)I = wI0, given any reduced expression

si1 · · · sik for w0, the polynomial S̃I,Jv,w(q1, q2) ∈ N[q1, q2] is the polynomial whose

coefficient of qa1q
b
2 is equal to the number of sequences (π(0), . . . , π(k)) of permutations

satisfying

1. π(0) = w0v, π
(k) ∈ WIwWJ ,

2. π(j) ∈ {π(j−1), sijπ
(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a indices j,

5. `(w)− `(π(k)) = b.

Alternatively, by (3.3.8), we have for v, w ∈ W I,J
+ , given any reduced expression

si1 · · · sik for w0v, the polynomial S̃I,Jv,w(q1, q2) ∈ N[q1, q2] is the polynomial whose

coefficient of qa1q
b
2 is equal to the number of sequences (π(0), . . . , π(k)) of permutations

satisfying

1. π(0) = w0, (π
(k))−1 ∈ WIwWJ ,

2. π(j) ∈ {π(j−1), sijπ
(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a indices j,

5. `(w)− `(π(k)) = b.

64



Just as before we will use the notation S̃v,w(q1) = S̃∅,∅v,w(q1, q2) for the special

case when I = J = ∅. In the immanant space we can use Proposition 3.2.1 to find

recursive formulas for the modified S-polynomials. Using (2.1.6) to write xe,v =

xe,vs ◦ T̃−1
s = xe,vs ◦ T̃s for vs > v, and using induction, we see that the modified

S-polynomials are the unique family {S̃v,w(q1) | v, w ∈ Sr} of polynomials in N[q1]

satisfying

1. S̃v,w(q1) = 0 if w 6≥ v.

2. S̃v,v(q1) = 1 for all v.

3. For each right ascent s of v we have

S̃v,w(q1) =

S̃vs,ws(q1) if ws > w,

S̃vs,ws(q1) + q1S̃vs,w(q1) otherwise.
(3.3.9)

Stating condition (3) in terms of left ascents s of v, this is

S̃v,w(q1) =

S̃sv,sw(q1) if sw > w,

S̃sv,sw(q1) + q1S̃sv,w(q1) otherwise.
(3.3.10)

On the other hand, we may fix a right descent s of w to obtain

S̃v,w(q1) =

S̃vs,ws(q1) if vs > v,

S̃vs,ws(q1) + q1S̃v,ws(q1) otherwise,
(3.3.11)

or we may fix a left descent s of w to obtain

S̃v,w(q1) =

S̃sv,sw(q1) if sv > v,

S̃sv,sw(q1) + q1S̃v,sw(q1) otherwise.
(3.3.12)

The various recurrence formulas above show modified S-polynomials and modi-

fied R-polynomials are equal.

Proposition 3.3.1. For all u, v ∈ Sr,

S̃v,w(q1) = R̃v,w(q1). (3.3.13)
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Proof. Comparing the recursive formulas and initial conditions for the modified S-

and R-polynomials, we see that

S̃v,w(q1) = R̃w0w,w0v(q1). (3.3.14)

Furthermore, by (3.1.15) we have

S̃v,w(q1) = R̃v,w(q1), (3.3.15)

as claimed.

As a consequence of the above proposition we have a new combinatorial inter-

pretation for the modified R-polynomials, which is reminiscent of Dyer’s result in

[17].

Corollary 3.3.2. The coefficient of qa1 in the polynomial R̃u,v(q1) is equal to the

number of sequences (π(0), . . . , π(k)) of permutations satisfying

1. π(0) = w0v, π
(k) ∈ WIwWJ ,

2. π(j) ∈ {π(j−1), sijπ
(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a indices j,

where si1 · · · sik is any reduced expression for w0.

Another consequence is that

Sv,w(q) = Rv,w(q). (3.3.16)

Furthermore by (3.1.16) and (3.1.15) we have

Su,v(q) = Sw0v,w0u(q) = Svw0,uw0(q) = Su−1,v−1(q) (3.3.17)

and

S̃u,v(q) = S̃w0v,w0u(q) = S̃vw0,uw0(q) = S̃u−1,v−1(q). (3.3.18)

66



The equations (3.1.17) and (3.3.13) imply

S̃v,w(q
1
2 − q¯1

2 ) = εv,wS̃v,w(q
1
2 − q¯

1
2 ). (3.3.19)

Similarly, (3.1.18) and (3.3.16), we see that

Su,v(q) = Su,v(q
−1) = εu,vq

−2
u,vSu,v(q). (3.3.20)

Since by definition the polynomial S̃v,w(q) = rw0,w0v,w(q) = pw0,w0v,w, we can use

(3.1.15) to state more symmetries for the polynomials {pw0,v,w(q) | v, w ∈ Sr},

pw0,w0v,w(q) = pw0,w,w0v(q) = pw0,w0ww0,vw0(q) = pw0,w0v−1,w−1(q), (3.3.21)

which we had not previously found by other methods.

Next we establish some summation results, connecting the parabolic and non-

parabolic polynomials. By (1.4.15) and (1.4.24) we have

S̃I,Jv,w(q1, q2) =
∑

z∈WIwWJ

q
`(w)−`(z)
2 S̃v,z(q1), (3.3.22)

and
S̃I,Jv,w(q1, q2) =

∑
y∈W I,∅

+

y∈w(WJ )K,∅
−

q
`(w)−`(y)
2 S̃I,∅v,y(q1, q2)

=
∑

z∈W ∅,J+

z∈(WI)∅,K
′

− w

q
`(w)−`(z)
2 S̃∅,Jv,z (q1, q2).

(3.3.23)

We can use the definition of the modified S-polynomials and (2.2.13) to give us an

alternate summation formula, which holds in the ring Z[q1, q2]/(1− q1q2 − q2
2).

Lemma 3.3.3. In the ring Z[q1, q2]/(1−q1q2−q2
2), for v ∈ W I,∅

+ such that v ∈ uWJ ,

we have

S̃I,Ju,w(q1, q2) = q
`(u)−`(v)
2

∑
y∈W I,∅

+

y∈w(WJ )K,∅
−

q
`(w)−`(y)
2 S̃I,∅v,y(q1, q2). (3.3.24)
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Proof. Since v ∈ uWJ , we have that w0v ∈ w0uWJ , and in Z[q1, q2]/(1− q1q2 − q2
2)

(2.2.13) and (1.4.24) tell us

S̃I,Ju,w(q1, q2) = rI,Jw0,w0u,w
(q1, q2) = rI,Jw0,w0v,w

(q1, q2)

=
∑

y∈W I,∅
+

y∈w(WJ )K,∅
−

q
`(w)−`(y)+`((w0v)J )
2 rI,∅w0,w0v,y

(q1, q2). (3.3.25)

Recall that left multiplication by w0 is an antiautomorphism of the Bruhat order.

This implies that it maps the coset uWJ to the coset w0uWJ , in such a way that

if v < u then w0u < w0v. Thus the length of (w0v)J , the distance between w0v

and the minimal element in the coset w0uWJ , is equal to the distance between

v and the maximal element in the coset uWJ , or u itself. This distance is just

`((w0v)J) = `(u)− `(v). Substituting this into the above equation gives us formula

as claimed.

It will be useful to generalize (3.3.22) to linear combinations of the polynomials

{S̃t,z(q1) | t ∈ WIvWJ , z ∈ WIwWJ}. A partial result is stated in [31], when we

restrict ourselves to the case where q1 = q
1
2 − q¯1

2 and q2 = q¯
1
2 .

Lemma 3.3.4. For u,w ∈ W I,∅
+ and t ∈ WIu, we have

S̃I,∅u,w(q
1
2 − q¯

1
2 , q¯

1
2 ) = q−1

t,u

∑
v∈WIw

q−1
v,wS̃t,v(q

1
2 − q¯

1
2 ). (3.3.26)

Similarly, for u,w ∈ W ∅,J
+ and t ∈ uWJ , we have

S̃∅,Ju,w(q
1
2 − q¯

1
2 , q¯

1
2 ) = q−1

t,u

∑
v∈wWJ

q−1
v,wS̃t,v(q

1
2 − q¯

1
2 ). (3.3.27)

Proof. Expanding (3.2.17) in terms of the modified S- and R-polynomials using

(3.1.20) gives us∑
w∈W I,∅

+
u≤w

S̃I,∅u,w(q
1
2 − q¯

1
2 )(xL,[r])

e,w = q−1
e,y(xL,[r])

e,w0 ◦
∑

w0v≤w0t

R̃w0v,w0t(q
1
2 − q¯

1
2 )T̃w0v

= q−1
t,u

∑
w∈W I,∅

+

∑
v∈WIw
v=zw

S̃t,v(q
1
2 − q¯

1
2 )(xL,[r])

e,w0 ◦ T̃w0zw0T̃w0w.

(3.3.28)
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Next we apply (3.2.13) and (3.2.12) to the right-hand side to get∑
w∈W I,∅

+
u≤w

S̃I,∅u,w(q
1
2 − q¯

1
2 )(xL,[r])

e,w = q−1
t,u

∑
w∈W I,∅

+

∑
v∈WIw
v=zw

S̃t,v(q
1
2 − q¯

1
2 )q−1

e,z (xL,[r])
e,w

= q−1
t,u

∑
w∈W I,∅

+

∑
v∈WIw

q−1
v,wS̃t,v(q

1
2 − q¯

1
2 )(xL,[r])

e,w.

(3.3.29)

Comparing coefficients of (xL,[r])
e,w in the equation above, gives us the first result.

The second result can be found in a similar manner using (3.2.17), (3.1.20), (3.2.14),

and (3.2.12).

Corollary 3.3.5. For u,w ∈ W I,J
+ and t ∈ WIuWJ ,

S̃I,Ju,w(q
1
2 − q¯

1
2 , q¯

1
2 ) = q−1

t,u

∑
v∈WIwWJ

q−1
v,wS̃t,v(q

1
2 − q¯

1
2 ). (3.3.30)

Proof. Fix u,w ∈ W I,J
+ and t ∈ WIuWJ . Then there exists y ∈ W I,∅

+ , such that

y ∈ u(WJ)K,∅− and t ∈ WIy. Lemmas 3.3.3 and 3.3.4 imply

S̃I,Ju,w(q
1
2 − q¯

1
2 , q¯

1
2 ) = q−1

y,u

∑
z∈W I,∅

+

z∈w(WJ )K,∅
−

q−1
z,wS̃

I,∅
y,z(q

1
2 − q¯

1
2 , q¯

1
2 )

= q−1
y,u

∑
z∈W I,∅

+

z∈w(WJ )K,∅
−

q−1
z,wq

−1
t,y

∑
v∈WIz

q−1
v,zS̃t,v(q

1
2 − q¯

1
2 )

= q−1
t,u

∑
v∈WIwWJ

q−1
v,wS̃t,v(q

1
2 − q¯

1
2 ).

(3.3.31)

The relationship between the S- and modified S-polynomials and this corollary

imply that for u,w ∈ W I,J
+ and t ∈ WIuWJ ,

εu,wS
I,J
u,w(q) =

∑
v∈WIwWJ

q2
v,wεt,vSt,v(q), (3.3.32)

In particular if t = u,

SI,Ju,w(q) =
∑

v∈WIwWJ

εv,wq
2
v,wSu,v(q). (3.3.33)
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This expression finally justifies the claim that the parabolic S-polynomials are in

Z[q].

A generalization of (3.1.21) for the parabolic inverse R-polynomials is given

below.

Proposition 3.3.6. For u,w ∈ W I,J
+ ,∑

v∈W I,J
+

u≥v≥w

q−1
u,vS

I,J
u,v (q)qv,wS

I,J
v,w(q−1) = δu,w. (3.3.34)

Proof. Fix u ∈ W I,J
+ , then applying the bar involution to (3.3.1), we have

(xL,M)e,u =
∑

v∈W I,J
+

εu,vq
−1
u,vS

I,J
u,v (q)(xL,M)e,v

=
∑

v∈W I,J
+

εu,vq
−1
u,vS

I,J
u,v (q)

∑
w∈W I,J

+

εv,wq−1
v,wS

I,J
v,w(q)(xL,M)e,w

=
∑

v∈W I,J
+

∑
w∈W I,J

+

εu,wq
−1
u,vS

I,J
u,v (q)qv,wS

I,J
v,w(q−1)(xL,M)e,w.

(3.3.35)

Comparing terms, we see that (3.3.34) holds as claimed.

We mentioned that the definition of the double parabolic R-polynomials is con-

sistent with the literature, since in the single parabolic case they equaled the R-

polynomials defined by Deodhar. Brenti in [7] mentions that [12] Deodhar defines

two families of R-polynomials, depending on the parameter x ∈ {−1, q}. The R-

polynomials we have defined are equal to Deodhar’s when x = −1. It turns out that

the single parabolic S-polynomials are equal to Deodhar’s family of polynomials

when x = q. In order to see this we recall Lemma 2.1.4 and recognize by (3.3.8) we

have for vsi > v,

S̃I,∅v,w(q
1
2 − q¯

1
2 , q¯

1
2 ) =



S̃I,∅vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi > WIw,

q
1
2 S̃I,∅vsi,w

(q
1
2 − q¯1

2 , q¯
1
2 ) if WIwsi = WIw,

S̃I,∅vsi,wsi
(q

1
2 − q¯1

2 , q¯
1
2 )

+(q
1
2 − q¯1

2 )S̃I,∅vsi,w
(q

1
2 − q¯1

2 , q¯
1
2 ) if WIwsi < WIw.

(3.3.36)
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Then (3.3.7) tells us

SI,∅v,w(q) =


SI,∅vsi,wsi

(q) if WIwsi > WIw,

−SI,∅vsi,w
(q) if WIwsi = WIw,

qSI,∅vsi,wsi
(q) + (q − 1)SI,∅vsi,w

(q) if WIwsi < WIw.

(3.3.37)

If we define Î = w0Iw0, then we see that the polynomials {S Î,∅w0w−,w0v−(q) | v, w ∈
W I,∅

+ }, for w0v−si > w0v−, satisfy

S Î,∅w0w−,w0v−(q) =



S Î,∅w0w−si,w0v−si
(q) if WÎw0w−si > WÎw0w−,

−S Î,∅w0w−,w0v−si
(q) if WÎw0w−si = WÎw0w−,

qS Î,∅w0w−si,w0v−si
(q)

+(q − 1)S Î,∅w0w−,w0v−si
(q) if WÎw0w−si < WÎw0w−,

(3.3.38)

which is the same recursive formula Brenti asserts Deodhar’s single parabolic R-

polynomials satisfy in [7]. Furthermore, he states there is a unique family of poly-

nomials satisfying this recursion (and some initial conditions which can easily be

seen are also satisfied). Since the polynomials {S Î,∅w0w−,w0v−(q) | v, w ∈ W I,∅
+ } are

Deodhar’s polynomials we can express them as a sum using another result in [7],

S Î,∅w0w−,w0v−(q) =
∑

w0u∈WÎw0w−

εw0u,w0wq
−2
w0u,w0w

Sw0u,w0v(q). (3.3.39)

Using (3.3.17) and (3.3.33) we have

S Î,∅w0w−,w0v−(q) =
∑

w0u∈WÎw0w−

εw0u,w0wq
−2
w0u,w0w

Sv,u(q)

=
∑

u∈WIw

εu,wq
2
u,wSv,u(q)

= SI,∅v,w(q).

(3.3.40)

Thus we conclude the polynomials {SI,∅v,w(q) | v, wW I,∅
+ } are equal to Deodhar’s

family of polynomials for x = q. Brenti relates the two families in [7], which leads

us to conclude that

SI,∅v,w(q) = εv,wq
−2
v,wR

I,∅
v,w(q). (3.3.41)
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In terms of modified polynomials this relationship is

S̃I,∅v,w(q) = R̃I,∅
v,w(q). (3.3.42)

Problem 4. Is there a similar relationship for the double parabolic R- and S-

polynomials.

3.4 Bar invariant bases

There exists a unique basis for A(n; q) which is invariant under the bar involution,

called the dual canonical basis . For the immanant space, this basis is somewhat well

understood and can be described using inverse Kazhdan-Lusztig polynomials . Simi-

larly, we can define the dual canonical basis for an arbitrary multi-graded component

AL,M(n; q) using parabolic inverse Kazhdan-Lusztig polynomials . However, this for-

mulation is somewhat cumbersome and not instructive. In this section we first prove

the existence of the bar-invariant basis of AL,M(n; q), by defining parabolic inverse

Kazhdan-Lusztig polynomials. Finally, we show the dual canonical basis elements

can be described using the immanant space and generalized submatrices, producing

a new formulation for the dual canoncial basis.

Theorem 3.4.1. For any v ∈ W I,J
+ there exists a unique bar-invariant element

ImmL,M
v (x) ∈ AL,M(n; q) such that

ImmL,M
v (x) =

∑
w∈W I,J

+
w≥v

εv,wq
−1
v,wQ

I,J
v,w(q)(xL,M)e,w, (3.4.1)

where QI,J
v,w(q) are polynomials in Z[q] of degree at most

1

2
(`(w)− `(v)− 1) if v < w

and QI,J
v,v (q) = 1.

Proof. To prove the uniqueness we can rewrite the condition

ImmL,M
u (x) = ImmL,M

u (x) (3.4.2)
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as

qu,wQ
I,J
u,w(q−1)− q−1

u,wQ
I,J
u,w(q) =

∑
v∈W I,J

+
u≤v<w

q−1
u,vQ

I,J
u,v(q)q

−1
v,wS

I,J
v,w(q) (3.4.3)

for all w > u. In particular, there is a unique solution QI,J
u,w(q) to the above equation

when all other polynomials which appear are known, if we constrain this solution

to satisfy the degree condition.

The existence comes from observing that the substitution

QI,J
v,w(q) =

∑
z∈WIwWJ

εw,zQv,z(q), (3.4.4)

where the polynomials Qv,z(q) are the inverse Kazhdan-Lusztig polynomials related

to the Kazhdan-Lusztig polynomials by

Qv,w(q) = Pw0w,w0v(q) = Pww0,vw0(q), (3.4.5)

satisfies (3.4.2). In order to see that this substitution satisfies (3.4.2), we first notice

that equation (2.2.a) in [22] can be rewritten as

Pu,w(q) =
∑

u≤v≤w

εu,vq
2
v,wRu,v(q)Pv,w(q) (3.4.6)

for u ≤ w in W = Sr. Now recalling (3.3.16) and (3.3.17), we have Sv,w(q) =

Rw0w,w0v(q). Thus (3.4.5) tells us that we have

Qw0w,w0u(q) =
∑

u≤v≤w

εu,vq
2
v,wSw0v,w0u(q)Qw0w,w0v(q). (3.4.7)

Reindexing the above equation and applying the bar involution gives us

Qu,w(q) =
∑

u≤v≤w

εu,vq
−2
v,wSv,w(q)Qu,v(q)

=
∑

u≤v≤w

εu,vq
−2
v,wεu,vq

−2
u,vSv,w(q)Qu,v(q)

= q−2
u,w

∑
u≤v≤w

Qu,v(q)Sv,w(q),

(3.4.8)
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where the second line comes from applying (3.3.20). Finally, we can use this to see

that the expression

Fv =
∑

w∈W I,J
+

w≥v

εv,wq
−1
v,w

∑
z∈WIwWJ

εw,zQv,z(q)(xL,M)e,w

=
∑

w∈W I,J
+

w≥v

∑
z∈WIwWJ

εv,zq
−1
v,wQv,z(q)(xL,M)e,w

(3.4.9)

is bar-invariant. Applying the bar involution to Fv gives

Fv =
∑

w∈W I,J
+

w≥v

εv,wq−1
v,w

∑
z∈WIwWJ

εw,zQv,z(q)(xL,M)e,w

=
∑

w∈W I,J
+

w≥v

∑
z∈WIwWJ

εv,zq−1
v,wQv,z(q)(xL,M)e,w

=
∑

w∈W I,J
+

w≥v

∑
z∈WIwWJ

εv,zqv,wQv,z(q
−1)(xL,M)e,w

=
∑

w∈W I,J
+

w≥v

∑
z∈WIwWJ

εv,zqv,wQv,z(q
−1)

∑
y∈W I,J

+

εw,yqw,yS
I,J
w,y(q

−1)(xL,M)e,y

=
∑

w∈W I,J
+

w≥v

∑
y∈W I,J

+

∑
z∈WIwWJ

εv,zqv,yQv,z(q
−1)εw,yS

I,J
w,y(q

−1)(xL,M)e,y.

(3.4.10)

Since z ∈ WIwWJ , we can use (3.3.32) to expand the parabolic S-polynomial as a
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sum over appropriate nonparabolic S-polynomials and then apply (3.4.8) to get

Fv =
∑

w∈W I,J
+

w≥v

∑
y∈W I,J

+

∑
z∈WIwWJ

εv,zqv,yQv,z(q
−1)

∑
u∈WIyWJ

q−2
u,yεz,uSz,u(q

−1)(xL,M)e,y

=
∑

y∈W I,J
+

∑
u∈WIyWJ

εv,uqv,uq
−1
u,y

∑
v≤z≤u

Sz,u(q
−1)Qv,z(q

−1)(xL,M)e,y

=
∑

y∈W I,J
+

∑
u∈WIyWJ

εv,uqv,uq
−1
u,yq

−2
v,uQv,u(q)(xL,M)e,y

=
∑

y∈W I,J
+

∑
u∈WIyWJ

εv,uq
−1
v,yQv,u(q)(xL,M)e,y.

(3.4.11)

Thus the expression is bar-invariant as claimed.

The fact that the sum of inverse Kazhdan-Lusztig polynomials satisfies the degree

equation comes from the fact that the Kazhdan-Lusztig polynomials satisfy a similar

degree equation (see [22]).

Once again, we will use the notation

Immv(x) = Imm[r],[r]
v (x). (3.4.12)

For example, when r = 3, we have

Immw0(x) = xe,w0 ,

Imms1s2(x) = xe,s1s2 − q¯
1
2xe,w0 ,

Imms2s1(x) = xe,s2s1 − q¯
1
2xe,w0 ,

Imms1(x) = xe,s1 − q¯
1
2 (xe,s1s2 + xe,s2s1) + q−1xe,w0 ,

Imms2(x) = xe,s2 − q¯
1
2 (xe,s1s2 + xe,s2s1) + q−1xe,w0 ,

Imme(x) = xe,e − q¯
1
2 (xe,s1 + xe,s2) + q−1(xe,s1s2 + xe,s2s1)− q¯

3
2xe,w0 .

(3.4.13)

Similarly, we have

Imm112,122
s1s2

(x) = (x112,122)e,s1s2 − q¯
1
2 (x112,122)e,w0 ,

Imm112,122
w0

(x) = (x112,122)e,w0 .
(3.4.14)

An interesting symmetry results as a consequence of the previous theorem.
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Lemma 3.4.2. For v, w ∈ W I,J
+ ,

QJ,I
v−1,w−1(q) = QI,J

v,w(q). (3.4.15)

Proof. First notice that the left-hand side is defined since we have v−1, w−1 ∈ W J,I
+ .

Next taking advantage of (3.4.4), we can say

QJ,I
v−1,w−1(q) =

∑
z−1∈WJw−1WI

εw−1,z−1Qv−1,z−1(q) =
∑

z∈WIwWJ

εw,zQv,z(q) = QI,J
v,w(q).

(3.4.16)

Another interesting consequence follows.

Lemma 3.4.3. For v, w ∈ W I,J
+

QI,J
v,w(q) =

∑
z∈W ∅,J+

z∈WIwWJ

εz,wQ
∅,J
v,z (q) =

∑
z∈W I,∅

+
z∈WIwWJ

εz,wQ
I,∅
v,z(q). (3.4.17)

Proof. This is an easy consequence of (3.4.4), recognizing that every element of

WIwWJ is in a right coset and a left coset within the double coset,∑
z∈W ∅,J+

z∈WIwWJ

εz,wQ
∅,J
v,z (q) =

∑
z∈W ∅,J+

z∈WIwWJ

εz,w
∑
y∈zWJ

εz,yQv,y(q)

=
∑

y∈WIwWJ

εw,yQv,y(q) = QI,J
v,w(q).

(3.4.18)

The last equality in the claim follows similarly.

Skandera, in [31] expresses the single parabolic Kazhdan-Lusztig immanants in

the following manner.

Theorem 3.4.4. Fix multisets L,M and let I = ι(L), J = ι(M). For u ∈ W I,∅
+ and

v ∈ W ∅,J
+ we have

ImmL,[r]
u (x) = Immu(xL,[r]),

Imm[r],M
v (x) = q−1

e,wJ
0
Immv−1((x[r],M)>).

(3.4.19)
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Proof. Fix u ∈ W I,∅
+ . By definition we have

Immu(xL,[r]) =
∑
v≥u

εu,vq
−1
u,vQu,v(q)(xL,[r])

e,v

=
∑

w∈W I,∅
+

w≥u

∑
v∈WIw

εu,vq
−1
u,vQu,v(q)q

−1
v,w(xL,[r])

e,w

=
∑

w∈W I,∅
+

w≥u

(
εu,wq

−1
u,w

∑
v∈WIw

εv,wQu,v(q)
)

(xL,[r])
e,w.

(3.4.20)

Applying the bar involution to the penultimate expression above, we have

Immu(xL,[r]) =
∑

w∈W I,∅
+

w≥u

εu,wqu,w
∑

v∈WIw

εv,wQu,v(q
−1)(xL,[r])e,w

=
∑

w∈W I,∅
+

w≥u

εu,wqu,w
∑

v∈WIw

εv,wQu,v(q
−1)

∑
z∈W I,∅

+
z≥w

εw,zqw,zS
I,∅
w,z(q

−1)(xL,[r])
e,z.

(3.4.21)

By (3.3.32), this is∑
w∈W I,∅

+
w≥u

εu,wqu,w
∑

v∈WIw

εv,wQu,v(q
−1)

∑
z∈W I,∅

+
z≥w

q−1
v,w

∑
y∈WIz

q−1
y,z(εv,yqv,ySv,y(q

−1))(xL,[r])
e,z

=
∑

z∈W I,∅
+

z≥u

∑
y∈WIz

εu,yq
−1
y,z

∑
w∈W I,∅

+
u≤w≤z

qu,y
∑

v∈WIw

Qu,v(q
−1)Sv,y(q

−1)(xL,[r])
e,z

=
∑

z∈W I,∅
+

z≥u

εu,zq
−1
u,z

∑
y∈WIz

εy,zq
2
u,y

∑
u≤v≤y

Qu,v(q
−1)Sv,y(q

−1)(xL,[r])
e,z

=
∑

z∈W I,∅
+

z≥u

εu,zq
−1
u,z

∑
y∈WIz

εy,zQu,y(q)(xL,[r])
e,z

= Immu(xL,[r]).

(3.4.22)

By the uniqueness of the basis {ImmL,[r]
u (x) |u ∈ W I,∅

+ }, we have the first desired

result.
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The proof of the second result is similar. Fix u ∈ W ∅,J
+ . By definition we have

q−1
e,wJ

0
Immu−1((x[r],M)>) = q−1

e,wJ
0

∑
v−1≥u−1

εu,vq
−1
u,vQu,v(q)((x[r],M)>)e,v

−1

= q−1
e,wJ

0

∑
v≥u

εu,vq
−1
u,vQu,v(q)(x[r],M)v

−1,e

= q−1
e,wJ

0

∑
w∈W ∅,J+
w≥u

∑
v∈wWJ

εu,vq
−1
u,vQu,v(q)q

−1
v,w(x[r],M)w

−1,e

= q−1
e,wJ

0

∑
w∈W ∅,J+
w≥u

(
εu,wq

−1
u,w

∑
v∈wWJ

εv,wQu,v(q)
)

(x[r],M)w
−1,e

=
∑

w∈W ∅,J+
w≥u

(
εu,wq

−1
u,w

∑
v∈wWJ

εv,wQu,v(q)
)

(x[r],M)e,w.

(3.4.23)

Applying the bar involution to the penultimate expression above, we have

q−1
e,wJ

0
Immu−1((x[r],M)>) =

∑
w∈W ∅,J+
w≥u

εu,wqu,w
∑

v∈wWJ

εv,wQu,v(q
−1)(x[r],M)e,w

=
∑

w∈W ∅,J+
w≥u

εu,wqu,w
∑

v∈wWJ

εv,wQu,v(q
−1)

∑
z∈W ∅,J+
z≥w

εw,zqw,zS
∅,J
w,z(q

−1)(x[r],M)e,z.
(3.4.24)
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By (3.4.8), this is∑
w∈W ∅,J+
w≥u

εu,wqu,w
∑

v∈wWJ

εv,wQu,v(q
−1)

∑
z∈W ∅,J+
z≥w

q−1
v,w

∑
y∈zWJ

q−1
y,z(εv,yqv,ySv,y(q

−1))(x[r],M)e,z

=
∑

z∈W ∅,J+
z≥u

∑
y∈zWJ

εu,yq
−1
y,z

∑
w∈W ∅,J+
u≤w≤z

qu,y
∑
v∈zWJ

Qu,v(q
−1)Sv,y(q

−1)(x[r],M)e,z

=
∑

z∈W ∅,J+
z≥u

εu,zq
−1
u,z

∑
y∈zWJ

εy,zq
2
u,y

∑
u≤v≤y

Qu,v(q
−1)Sv,y(q

−1)(x[r],M)e,z

=
∑

z∈W ∅,J+
z≥u

εu,zq
−1
u,z

∑
y∈zWJ

εy,zQu,y(q)(x[r],M)e,z

= q−1
e,wJ

0
Immu−1((x[r],M)>).

(3.4.25)

By the uniqueness of the basis {Imm[r],M
u (x) |u ∈ W ∅,J

+ }, we have the second desired

result.

We are not be able to express the double parabolic immanants simply as a non-

parabolic immanant evaluated at a generalized submatrix as in the single parabolic

case. However, the following results are generalizations of the previous result, in

which we express double parabolic immanants as single parabolic immanants eval-

uated at a generalized submatrix.

Theorem 3.4.5. For v ∈ W I,J
+

ImmL,M
v (x) = Imm[r],M

v (xL,[r]),

ImmL,M
v (x) = q−1

wI
0 ,w

J
0
Imm

L,[r]

v−1 ((x[r],M)>).
(3.4.26)

Proof. By definition we have

Imm[r],M
v (xL,M) =

∑
z∈W ∅,J+
z≥v

εv,zq
−1
v,zQ

∅,J
v,z (q)(xL,M)e,z

=
∑

w∈W I,J
+

w≥v

∑
z∈W ∅,J+

z∈WIwWJ

εv,zq
−1
v,zQ

∅,J
v,z (q)q−1

z,w(xL,M)e,w,
(3.4.27)
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where the second line comes from the fact that the difference in length between z

and w is just the difference in zI− and wI−, since they are both maximal with respect

to J . Lemma 3.4.3 allows us to complete the proof,

Imm[r],M
v (xL,M) =

∑
w∈W I,J

+
w≥v

εv,wq
−1
v,w

∑
z∈W ∅,J+

z∈WIwWJ

εz,wQ
∅,J
v,z (q)(xL,M)e,w,

=
∑

w∈W I,J
+

w≥v

εv,wq
−1
v,wQ

I,J
v,w(q)(xL,M)e,w,

= ImmL,M
v (x).

(3.4.28)

The second result is proved in a similar manner. By definition we have

Imm
L,[r]

v−1 ((xL,M)>) =
∑

z∈W I,∅
+

z≥v

εv,zq
−1
v,zQ

I,∅
v,z(q)(xL,M)z

−1,e

=
∑

w∈W I,J
+

w≥v

∑
z∈W I,∅

+
z∈WIwWJ

εv,zq
−1
v,zQ

I,∅
v,z(q)q

−1
z,w(xL,M)w

−1,e,
(3.4.29)

where the second line comes from the fact that the difference in length between z

and w is just the difference in zJ− and wJ−, since they are both maximal with respect

to I. Lemma 3.4.3 allows us to complete the proof once again,

ImmL,[r]
v (xL,M) =

∑
w∈W I,J

+
w≥v

εv,wq
−1
v,w

∑
z∈W I,∅

+
z∈WIwWJ

εz,wQ
I,∅
v,z(q)(xL,M)w

−1,e,

=
∑

w∈W I,J
+

w≥v

εv,wq
−1
v,wQ

I,J
v,w(q)(xL,M)w

−1,e,

=
∑

w∈W I,J
+

w≥v

εv,wq
−1
v,wQ

I,J
v,w(q)qwI

0 ,w
J
0
,

= qwI
0 ,w

J
0
ImmL,M

v (x).

(3.4.30)

At first, it seems we should be able to use Theorems 3.4.4 and 3.4.5 to express

the double parabolic immanants as regular immanants. However this does not work
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as

q−1
e,wJ

0
Immv−1((xL,M)>) = qwI

0 ,e

∑
w∈W I,J

+
w≥v

∑
z∈WIwWJ

εv,zq
−1
v,zq

−1
zJ
−,w

J
−
Qv,z(q)(xL,M)e,w (3.4.31)

does not have the complete difference in length between z and w, but rather just

the J part. We see that when we plug in xL,M to the nonparabolic immanant we

pick up a factor depending on I that we don’t pick up when we plug in x[r],M . Thus,

if we wait until after we have gone to the single parabolic form, then plug in the

xL,M , the extra factor does not appear. Thus we can still express double parabolic

immanants as regular immanants if we use a two step process, first evaluating at one

generalized submatrix and simplifying and then evaluating at another generalized

submatrix and simplifying.

3.5 Alternative bar involutions

In the literature, the bar involution is sometimes defined without the power of

qα(a)−α(b), or with an alternate power. The dual canonical basis is then defined to

be invariant under these alternate bar involutions. In an effort to address this let

us generalize the definition of the bar involution. Define the k-bar involution by

ϕk(q) = q−1, ϕk(xi,j) = xi,j, and

ϕk(xa1,b1 · · ·xar,br) = q
k
2xar,br · · ·xa1,b1 . (3.5.1)

Looking at the definition of the bar involution on AL,M(n; q), we see that this is just

the k-bar involution where k = `(wI0)− `(wJ0 ).

It is straight forward to show that for j 6= k we have

ϕj((xL,M)u,v) = (q
1
2 )j−kϕk((xL,M)u,v). (3.5.2)

The existence of a unique bar-invariant basis for one of these involutions guar-

antees the existence and uniqueness of an invariant basis for all choices of k even,

as we will see below. Define {ImmL,M
v,k (x) | v ∈ W I,J

+ } to be the k-bar-invariant
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basis for AL,M(n; q) and call them k-immanants . Thus we have ImmL,M
v (x) =

ImmL,M

v,`(wI
0)−`(wJ

0 )
(x), for each v ∈ W I,J

+ . Furthermore we have

ϕk((q
1
2 )

k−(`(wI
0)−`(wJ

0 ))

2 ImmL,M
v (x)) = (q¯

1
2 )

k−(`(wI
0)−`(wJ

0 ))

2 (q
1
2 )k−(`(wI

0)−`(wJ
0 ))ImmL,M

v (x)

= (q
1
2 )

k−(`(wI
0)−`(wJ

0 ))

2 ImmL,M
v (x).

(3.5.3)

Thus we can relate the k-immanants to the Kazhdan-Lusztig immanants by

ImmL,M
v,k (x) = q

k
4 qwI

0 ,w
J
0
ImmL,M

v (x). (3.5.4)

An interesting thing to note is that if k is not even, we would need to extend our

space to allow fourth powers of q in order to have a bar invariant basis.

In [8] Theorem 15 gives a basis for A(n; q), {Mα,β | (α, β) ∈
⋃

(Iµ × Iν)
+}.

For each component AL,M(n; q), this basis is just {q−1
wI

0 ,w
J
0
(xL,M)e,v | v ∈ W I,J

+ }.
In Theorem 16, Brundan describes a bar involution. This involution turns out to

be the 2(`(wJ0 ) − `(wI0))-bar involution. This is as expected since, as mentioned

earlier, q is being used where we have been using q¯
1
2 . Brundan then defines the dual

canonical basis to be invariant under this involution. Therefore, what he calls the

dual canonical basis consists of the `(wJ0 )− `(wI0)-immanants.

In [36], Zhang uses defines a bar involution which is the 0-bar involution. Thus

the dual canonical basis he defines is the set of 0-immanants.

In [15], Du defines the dual canonical basis to be the set {Zλ,v,µ | v ∈ W I,J
− }.

Letting v ∈ W I,J
+ , we can express this in our notation as

Zλ,v−,µ = ZL,M
v = q−1

e,wJ
0

∑
w∈W I,J

+
w≥v

εv,wq
−1
v,wQ

I,J
v,w(q)(xL,M)w

−1
− ,e, (3.5.5)

where v−, w− ∈ W I,J
− are the minimal representatives of the cosets WIvWJ ,WIwWJ ,

respectively. This looks very similar to the Kazhdan-Lusztig immanant basis, but

is not equivalent. In fact we have

ImmL,M
v (x) = q−1

e,wJ
0

∑
w∈W I,J

+
w≥v

εv,wq
−1
v,w−Q

I,J
v,w(q)(xL,M)w

−1
− ,e. (3.5.6)
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Alternatively we could express them more naturally as

ZL,M
v = q

−(`(wI
0)+`(wJ

0 ))
2

∑
w∈W I,J

+
w≥v

εv,wq
−1
v,wQ

I,J
v,w(q)qe,wK

0
(xL,M)e,w,

ImmL,M
v (x) =

∑
w∈W I,J

+
w≥v

εv,wq
−1
v,wQ

I,J
v,w(q)(xL,M)e,w.

(3.5.7)

The difference between them is an overall power of q and (more importantly) the

qe,wK
0

term in the summation. This implies that the Z-basis is not k-bar invariant for

any k in the double parabolic case. In the single and nonparabolic cases `(wK0 ) = 1

and the Z-basis consists of k-immanants.

Proposition 3.5.1. For all u, v ∈ W I,∅
+ , and w ∈ W ∅,J

+ , we have

Z [r],[r]
v = Zv = Immv(x),

ZL,[r]
v = q−1

e,wI
0
ImmL,[r]

v (x) = Imm
L,[r]
v,0 (x),

Z [r],M
v = q−1

e,wJ
0
Imm[r],M

v (x) = Imm
[n],M

v,−2`(wJ
0 )

(x).

(3.5.8)

Proof. This is an easy consequence of (3.5.7), recognizing what I, J , and K are in

each instance.

Corollary 3.5.2. The bases {Zv | v ∈ Sr}, {ZL,[r]
v | v ∈ W I,∅

+ }, and {Z [r],M
v | v ∈

W ∅,J
+ } are bar invariant, 0-bar invariant, and −2`(wJ0 )-bar invariant, respectively.

Proof. This follows from the definitions and Proposition 3.5.1.

The previous results would lead us to believe that Du is using the `(wJ0 )-bar

involution. This works for the single and nonparabolic cases. Since K depends on

w and the length of K is not constant for each double coset, we cannot just factor

out qe,wK
0

and express the Z-basis as a multiple of the Kazhdan-Lusztig immanants.

Define the ?-bar operation by ϕ?(q) = q−1, ϕ?(xi,j) = xi,j, and

ϕ?((xL,M)e,v) = q−(`(wI
0)+`(wJ

0 ))
∑

w∈W I,J
+

w≥v

εv,wqv,wS
I,J
v,w(q−1)q

e,w
K(v)
0

q
e,w

K(w)
0

(xL,M)e,w.

(3.5.9)
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Lemma 3.5.3. The ?-bar operation is an involution.

Proof. Let A = `
(
wI0
)

+ `
(
wJ0
)
, then applying the ?-bar involution to a natural

basis element twice gives

ϕ?(ϕ?((xL,M)e,v)) = ϕ?(
∑

w∈W I,J
+

w≥v

q−Aεv,wqv,wS
I,J
v,w(q−1)q

e,w
K(v)
0

q
e,w

K(w)
0

(xL,M)e,w)

= qAq−1

e,w
K(v)
0

∑
w,z∈W I,J

+
z≥w≥v

εv,wq
−1
v,wS

I,J
v,w(q)q−Aεw,zqw,zS

I,J
w,z(q

−1)q
e,w

K(z)
0

(xL,M)e,z

= q−1

e,w
K(v)
0

∑
z∈W I,J

+
z≥v

εv,zqe,wK(z)
0

∑
w∈W I,J

+
z≥w≥v

q−1
v,wS

I,J
v,w(q)qw,zS

I,J
w,z(q

−1)(xL,M)e,z.

(3.5.10)

By (3.3.34), we have

ϕ?(ϕ?((xL,M)e,v)) = q−1

e,w
K(v)
0

q
e,w

K(v)
0

(xL,M)e,v = (xL,M)e,v. (3.5.11)

The ?-bar involution is not a k-bar involution for any value of k in the double-

parabolic case. Notice whenever either L or M is [r], then the ?-bar involution is

equal to the `(wJ0 )-bar involution and we have Du’s Z-basis is ?-bar invariant.

Proposition 3.5.4. For all v ∈ W I,J
+ , ZL,M

v is ?-bar invariant, or in other words,

ϕ?(Z
L,M
v ) = ZL,M

v . (3.5.12)
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Proof. Let A = `
(
wI0
)

+ `
(
wJ0
)
, then applying the ?-bar involution gives

ϕ?(Z
L,M
v ) = q

A
2

∑
w∈W I,J

+
w≥v

εv,wqv,wQ
I,J
v,w(q−1)q−1

e,w
K(w)
0

ϕ?((xL,M)e,w)

= q
A
2

∑
w,z∈W I,J

+
z≥w≥v

εv,wqv,wQ
I,J
v,w(q−1)q−Aεw,zqw,zS

I,J
w,z(q

−1)q
e,w

K(z)
0

(xL,M)e,z

= q¯
A
2

∑
w,z∈W I,J

+
z≥w≥v

q
e,w

K(z)
0

εv,wqv,z
∑

y∈WIwWJ

εw,yQv,y(q
−1)

∑
x∈WIzWJ

q−2
x,zεy,xSy,x(q

−1)(xL,M)e,z

= q¯
A
2

∑
z∈W I,J

+
z≥v

q
e,w

K(z)
0

∑
x∈WIzWJ

εv,xqv,xq
−1
x,z

∑
z≥y≥v

Qv,y(q
−1)Sy,x(q

−1)(xL,M)e,z

= q¯
A
2

∑
z∈W I,J

+
z≥v

q
e,w

K(z)
0

∑
x∈WIzWJ

εv,xqv,xq
−1
x,zq

−2
v,xQv,z(q)(xL,M)e,z

= q¯
A
2

∑
z∈W I,J

+
z≥v

q
e,w

K(z)
0

εv,zq
−1
v,z

∑
x∈WIzWJ

εx,zQv,x(q)(xL,M)e,z

= q¯
A
2

∑
z∈W I,J

+
z≥v

q
e,w

K(z)
0

εv,zq
−1
v,zQ

I,J
v,z (q)(xL,M)e,z

= ZL,M
v .

(3.5.13)

Du’s choice to use minimal coset representatives seems to be a minor difference,

but ends up being quite significant. Since, Du’s basis agrees with a k-immanant

basis in the single parabolic cases, one might think the ?-bar involution may fix

Immv(xL,M) when the bar involution did not. However, this is not the case and

we are left wondering if there is an involution which would allow us to express the

double parabolic immanants as nonparabolic immanants expressed at a generalized

submatrix directly, rather than in a two step process.

Problem 5. Find an involution f : A(n; q)→ A(n; q) which fixes Immv(xL,M).
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Chapter 4

Two parameter generalizations of

Hn(q) and A(n; q)

In the previous chapters we have seen that the various families of polynomials have

many properties when restricted to the quotient ring Z[q1, q2]/(1− q1q2 − q2
2). This

ring arises as we are often using q1 = q
1
2 − q¯1

2 and q2 = q¯
1
2 . In [25] and [35], two-

parameter generalizations of Hn(q) and A(n; q) are defined. In this chapter we make

analogous definitions to the single parameter case and seek to better understand the

role of Z[q1, q2]/(1− q1q2− q2
2). We will follow the structure of [31] and focus first on

the special immanant space submodule before considering a general multi-graded

component and parabolic submodules.

4.1 The two-parameter Hecke algebra.

In [25], Lascoux defines a two-parameter version of the Hecke algebra. Define the

two-parameter Hecke algebra Hn(q2, q4) to be the C[q2, q
−1
2 , q4, q

−1
4 ]-algebra with mul-

tiplicative identity T̃e = 1, generated by elements {T̃si
| 1 ≤ i ≤ n − 1} subject to

86



the relations

(T̃si
− q2T̃e)(T̃si

− q4T̃e) = 0, for i = 1, . . . , n− 1,

T̃si
T̃sj
T̃si

= T̃sj
T̃si
T̃sj
, if |i− j| = 1,

T̃si
T̃sj

= T̃sj
T̃si
, if |i− j| ≥ 2.

(4.1.1)

Notice that we have Hn(q
1
2 ,−q¯1

2 ) = Hn(q). Furthermore, inverses of the generators

are given by

T̃−1
si

=
T̃si
− (q2 + q4)T̃e
−q2q4

, (4.1.2)

and multiplication rules are given by

T̃si
T̃w =

T̃siw if siw > w,

−q2q4T̃siw + (q2 + q4)T̃w if siw < w
(4.1.3)

and

T̃wT̃si
=

T̃wsi
if wsi > w,

−q2q4T̃wsi
+ (q2 + q4)T̃w if wsi < w.

(4.1.4)

More generally, we have

T̃u−1T̃v =



T̃u−1si
T̃siv if siu < u and siv > v,

or if siu > u and siv < v,

−q2q4T̃u−1si
T̃siv + (q2 + q4)T̃u−1si

T̃v if siu < u and siv < v,

(−q2q4)−1T̃u−1si
T̃siv

+(−q2q4)−1(q2 + q4)T̃u−1si
T̃v if siu > u and siv > v.

(4.1.5)

Thus we have

T̃u−1T̃v ∈ (−q2q4)k/2T̃u−1v +
∑

w≥u−1v

N[−q2q4, q2 + q4]T̃w. (4.1.6)

Notice that in Hn(q
1
2 ,−q¯1

2 ) = Hn(q), we have −q2q4 = 1 and q2 + q4 = q
1
2 − q¯

1
2 .

Therefore, these formulas are consistent with the earlier definitions and we see why

the −q2q4 term does not appear in Hn(q).
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In [25], Lascoux also mentions that the elements

T̃si
= −q2q4T̃

−1
si

(4.1.7)

generate Hn(q2, q4) and satisfy the condition

(T̃si
+ q2)(T̃si

+ q4) = 0. (4.1.8)

Therefore we have

T̃si
= T̃si

− (q2 + q4)T̃e (4.1.9)

and

T̃ 2
si

= −q2q4T̃e − (q2 + q4)T̃si
. (4.1.10)

Letting T̃w = T̃si1
· · · T̃si`

, where w = si1 · · · si` is a reduced expression, we have

T̃w = (−q2q4)`(w)T̃−1
w . (4.1.11)

We have that {T̃w | w ∈ Sn} is a basis for Hn(q2, q4), which we will call the inverse

natural basis. Multiplication rules are given by

T̃si
T̃w =

T̃siw if siw > w,

−q2q4T̃siw − (q2 + q4)T̃w if siw < w,
(4.1.12)

and

T̃wT̃si
=

T̃wsi
if wsi > w,

−q2q4T̃wsi
− (q2 + q4)T̃w if wsi < w.

(4.1.13)

4.2 The two-parameter quantum polynomial ring

In [35], Takeuchi defines a two-parameter version of GLn, which leads to a two-

parameter version of the quantum polynomial ring. Following [35], for each n ≥ 0,

let the two-parameter quantum polynomial ring A(n; q2, q4) be the noncommutative

C[q2, q
−1
2 , q4, q

−1
4 ]-algebra generated by n2 variables x = (x1,1, . . . , xn,n), subject to
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the relations
xi,`xi,k = −q−1

4 xi,kxi,`

xj,kxi,k = q2xi,kxj,k

xj,kxi,` = −q2q4xi,`xj,k

xj,`xi,k = xi,kxj,` + (q2 + q4)xi,`xj,k,

(4.2.1)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n. As with the two-parameter Hecke

algebra, we have A(n; q
1
2 ,−q¯1

2 ) = A(n; q). Just as before, as a C[q2, q
−1
2 , q4, q

−1
4 ]-

module, A(n; q2, q4) is spanned by monomials in lexicographic order, or standard

form. The natural grading of A(n; q2, q4) by degree,

A(n; q2, q4) =
⊕
r≥0

Ar(n; q2, q4), (4.2.2)

where Ar(n; q2, q4) consists of the homogeneous degree r polynomials, has a finer

grading by multidegree, in which for each monomial we keep track of the multiset

of row indices and the multiset of column indices,

Ar(n; q2, q4) =
⊕
L,M

AL,M(n; q2, q4), (4.2.3)

where the sum is over pairs (L,M) of multisets of [n] having cardinality r.

We will focus our attention on A[n],[n](n; q2, q4), the two-parameter immanant

space, the C[q2, q
−1
2 , q4, q

−1
4 ]-submodule of A(n; q2, q4) spanned by the monomials

{x1,w1 · · ·xn,wn | w ∈ Sn}, (4.2.4)

which we will once again call the natural basis of A[n],[n](n; q2, q4). Using the same

notation as before we can see that the monomials {xu,v | u, v ∈ Sn} satisfy

xu,v =



−q2q4x
siu,siv if siu < u and siv > v,

(−q2q4)−1xsiu,siv if siu > u and siv < v,

xsiu,siv + (q2 + q4)xsiu,v if siu < u and siv < v,

xsiu,siv − (−q2q4)−1(q2 + q4)xsiu,v if siu > u and siv > v.

(4.2.5)
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For example in A[3],[3](3; q2, q4), we have

xs1,w0 = xe,s2s1 + (q2 + q4)xe,w0 ,

xs1s2,w0 = xe,s1 + (q2 + q4)(xe,s1s2 + xe,s2s1) + (q2 + q4)2xe,w0 ,

xw0,w0 = xe,e + (q2 + q4)(xe,s1 + xe,s2) + (q2 + q4)2(xe,s1s2 + xe,s2s1)

+
(
(q2 + q4)3 − q2q4(q2 + q4)

)
xe,w0 .

(4.2.6)

We no longer have (1.3.32), but rather

xw
−1,e = (−q2q4)`(w)xe,w. (4.2.7)

In A(n; q) we have a transpose involution, (xe,w)>= xw,e. In A(n; q2, q4) this is

no longer an involution. Rather, by (4.2.7) we see that

((xe,w)>)>= (−q2q4)2`(w)xe,w. (4.2.8)

Define a modified transpose operation by (xe,w)† = (−q2q4)−`(w)(xe,w)>. This is also

an involution specializing to the transpose operation in A(n; q).

Proposition 4.2.1. The map x → x† defined by (xe,w)† = (−q2q4)−`(w)xw,e, is a

well-defined C[q2, q4]-linear transposition on A(n; q2, q4). In particular, we have

(xu,v)† = (−q2q4)`(u)−`(v)xv,u. (4.2.9)

Proof. Observe that by (4.2.7) we have

((xe,w)†)† = (−q2q4)−`(w)(xw,e)† = (xe,w
−1

)† = (−q2q4)−`(w)xw
−1,e = xe,w. (4.2.10)

Now suppose that we know (xu,v)† = xv,u whenever `(u) ≤ k and choose a per-

mutation su with length of k + 1 and u < su. Then by (4.2.5) and induction we

have

(xsu,v)† =

−q2q4(xu,sv)† if sv > v,

(xu,sv)† + (q2 + q4)(xu,v)† if sv < v,

=

−q2q4(−q2q4)`(u)−`(sv)xsv,u if sv > v,

(−q2q4)`(u)−`(sv)xsv,u + (q2 + q4)(−q2q4)`(u)−`(v)xv,u if sv < v.

(4.2.11)
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If sv > v then `(sv) = `(v) + 1 and by (4.2.5) we have

−q2q4(−q2q4)`(u)−`(sv)xsv,u = (−q2q4)`(u)−`(v)(−q2q4)xv,su = (−q2q4)`(su)−`(v)xv,su.

(4.2.12)

Similarly, if sv < v then `(sv) = `(v)− 1 and by (4.2.5) we have

(−q2q4)`(u)−`(sv)xsv,u + (q2 + q4)(−q2q4)`(u)−`(v)xv,u

= (−q2q4)`(u)−`(v)+1
(
xv,su − (−q2q4)−1(q2 + q4)xv,u

)
+ (q2 + q4)(−q2q4)`(u)−`(v)xv,u

= (−q2q4)`(su)−`(v)xv,su.

(4.2.13)

Therefore, we have that (xsu,v)† = (−q2q4)`(su)−`(v)xv,su as claimed.

In the proof above we see that (4.2.10) implies we have

(xe,w)† = xe,w
−1

. (4.2.14)

Using the defining relations we can see that

xu,v ∈ (−q2q4)
k
2xe,u

−1v +
∑

w>u−1v

N[−q2q4, q2 + q4]xe,w, (4.2.15)

where k = `(u)− `(v) + `(u−1v). The following result also provides a definition for

two-parameter p-polynomials, as well as suggesting how we might later define the

two-parameter pI,J -polynomials in order for them to evaluate to the coefficients in

the natural basis expansion as in A(n; q).

Proposition 4.2.2. The coefficient of xe,w in the natural expansion of xu,v has the

form pu,v,w(−q2q4, q2 + q4) for some polynomial pu,v,w(q0, q1) in N[q0, q1],

xu,v =
∑

w≥u−1v

pu,v,w(−q2q4, q2 + q4)xe,w. (4.2.16)

In particular, given a reduced expression si1 · · · si` for u, the coefficient of qa0q
b
1 in

pu,v,w(q0, q1) is equal to the number of sequences (π(0), . . . , π(`)) of permutations sat-

isfying
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1. π(0) = v, π(`) = w.

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , `.

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j − 1).

4. π(j) = π(j−1) for exactly b values of j.

5. π(j) > π(j−1) for exactly a values of j.

Proof. Clearly the claim is true for u = e. Assume the claim to be true for u having

length at most ` − 1, fix a permutation u of length `, and fix a reduced expression

si1 · · · si` for u. Then we have

xu,v =

−q2q4x
si2
···si`

,si1
v if si1v > v,

xsi2
···si`

,si1
v + (q2 + q4)xsi2

···si`
,v if si1v < v.

(4.2.17)

By induction, we see immediately that the coefficient of xe,w in the natural expansion

of xu,v has the form pu,v,w(−q2q4, q2+q4) for some polynomial pu,v,w(q0, q1) ∈ N[q0, q1].

In particular,

pu,v,w(q0, q1) =

q0 · psi2
···si`

,si1
v,w(q0, q1) if si1v > v,

psi2
···si`

,si1
v,w(q) + q1 · psi2

···si`
,v,w(q) if si1v < v.

(4.2.18)

Suppose first that we have si1v > v. Then by induction, the coefficient of qa0q
b
1

in pu,v,w(q0, q1) is equal to the number of sequences (π(1) = si1v, π
(2), . . . , π(`) =

w) satisfying Conditions (2)-(4) of the proposition and in which π(j) > π(j−1) for

exactly a − 1 values of j. Prepending the permutation π(0) to any such sequence

and considering the inequality si1v > v, we see that the new sequence

π =
def

(π(0), π(1), . . . , π(`)) (4.2.19)

satisfies all five conditions of the proposition if and only if π(0) = v. (One new

inequality π(1) > π(0) is introduced.) Thus the coefficient of qa0q
b
1 in pu,v,w(q0, q1) is

equal to the number of sequences (π(0), . . . , π(`)) satisfying Conditions (1)-(5) of the

proposition.
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Now suppose that we have si1v < v. Then by induction, the coefficient of qa0q
b
1

in pu,v,w(q0, q1) is equal to the number of sequences (π(1) = si1v, π
(2), . . . , π(`) =

w) satisfying Conditions (2)-(5) of the proposition, plus the number of sequences

(π(1) = v, π(2), . . . , π(`) = w) satisfying Conditions (2),(3), and (5) of the proposition

and in which π(j) = π(j−1) for exactly b− 1 values of j. Prepending a permutation

π(0) to any such sequence, we see that the new sequence

π =
def

(π(0), π(1), . . . , π(`)) (4.2.20)

satisfies all five conditions of the proposition if and only if π(0) = v. (No new equality

π(1) = π(0) is introduced for a sequence of the first form; one new such equality is

introduced for a sequence of the second form.) Thus we see again that the coefficient

of qa0q
b
1 in pu,v,w(q0, q1) is equal to the number of sequences (π(0), . . . , π(`)) satisfying

Conditions (1)-(5) of the proposition.

From (4.2.6) we see that for permutations in w ∈ S3, we have

pw0,w0,w(q0, q1) =



1 if `(w) = 0,

q1 if `(w) = 1,

q2
1 if `(w) = 2,

q3
1 + q0q1 if `(w) = 3.

(4.2.21)

Corollary 4.2.3. For all u, v, w ∈ Sn we have

pv,u,w−1(−q2q4, q2 + q4) = (−q2q4)`(v)−`(u)pu,v,w(−q2q4, q2 + q4). (4.2.22)

Proof. Applying the dagger operation to both sides of (4.2.16) gives

(−q2q4)`(u)−`(v)xv,u =
∑

w≥u−1v

pu,v,w(−q2q4, q2 + q4)(−q2q4)−`(w)xw,e

=
∑

w≥u−1v

pu,v,w(−q2q4, q2 + q4)xe,w
−1

.
(4.2.23)

Thus we have

xv,u =
∑

w−1≥uv−1

(−q2q4)`(v)−`(u)pu,v,w(−q2q4, q2 + q4)xe,w
−1

. (4.2.24)
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Expanding the left-hand side using (4.2.16) and comparing terms, we see the claim

is true.

Previously, we defined two families of polynomials, the pI,J - and rI,J -polynomials.

Corollary 4.2.3 suggests the two-parameter version of the r-polynomials should have

the following definition. For all u, v, w ∈ Sn, given any reduced expression si1 · · · sik
for v, define the (Laurent) polynomials {ru,v,w(q0, q1) ∈ N[q0, q

−1
0 , q1] | u, v, w ∈ Sn}

to be the polynomials whose coefficient of qa0q
b
1 is equal to the number of sequences

(π(0), . . . , π(k)) of permutations satisfying

1. π(0) = u, (π(k))−1 = w,

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly b values of j,

5. π(j) > π(j−1) for exactly a values of j.

Thus we see the following equation holds,

ru,v,w(q0, q1) = pv,u,w−1(q0, q1) (4.2.25)

and the two families of polynomials satisfy an analogous relation to (1.4.8). Fur-

thermore, by Corollary 4.2.3, we can say

ru,v,w(−q2q4, q2 + q4) = (−q2q4)`(v)−`(u)pu,v,w(−q2q4, q2 + q4), (4.2.26)

as well as

xu,v =
∑

w≥u−1v

ru,v,w(−q2q4, q2 + q4)xw
−1,e. (4.2.27)
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4.3 Connecting Hn(q2, q4) and A[n],[n](n; q2, q4)

In the one parameter case we defined actions of Hn(q) on A(n; q) and used them to

connect the multiplicative structure of Hn(q) to the p-polynomials. Similarly, define

a left action of Hn(q2, q4) on A[n],[n](n; q2, q4) by

T̃si
◦ f(x) = f(six), (4.3.1)

where si is the n × n defining matrix for si, and where we assume f(x) to be

expressed in terms of the natural basis. Similarly, define a right action of Hn(q2, q4)

on A[n],[n](n; q2, q4) by

f(x) ◦ T̃si
= f(xsi), (4.3.2)

where we assume f(x) to be expressed in terms of the basis {xv,e | v ∈ Sn}.
Formulas for these actions on monomials in standard form are

T̃si
◦ xe,v = xsi,v =

−q2q4x
e,siv if siv > v,

xe,siv + (q2 + q4)xe,v if siv < v,
(4.3.3)

xe,v ◦ T̃si
= (−q2q4)−`(v)xv

−1,e ◦ T̃si
= (−q2q4)−`(v)xv

−1,si

=


(−q2q4)−`(v)−1xsiv

−1,e if vsi > v,

(−q2q4)−`(v)xsiv
−1,e

+(−q2q4)−`(v)(−q2q4)−1(q2 + q4)xv
−1,e if vsi < v,

=

xe,vsi if vsi > v,

(−q2q4)−1xe,vsi + (−q2q4)−1(q2 + q4)xe,v if vsi < v,

(4.3.4)

With a bit more work, we obtain the following formulas describing the action on

monomials of the form xu,v not necessarily belonging to the natural basis.

Proposition 4.3.1. We have

T̃sj
◦ xu,v =

xusj ,v if usj > u,

−q2q4x
usj ,v + (q2 + q4)xu,v if usj < u.

(4.3.5)
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xu,v ◦ T̃sj
=

xu,vsj if vsj > v,

(−q2q4)−1xu,vsj + (−q2q4)−1(q2 + q4)xu,v if vsj < v.
(4.3.6)

Proof. Assume the formula (4.3.5) to hold for all monomials xu,v with `(u) < k.

Certainly, this is true if `(u) = 0. If `(u) = 1, then u is just a single adjacent

transposition si. We can restate (4.3.5) as

T̃sj
◦ xsi,v =

xsisj ,v if si 6= sj,

−q2q4x
e,v + (q2 + q4)xsi,v if si = sj.

(4.3.7)

First assume si = sj. Then we have by (4.2.5)

T̃sj
◦ xsi,v =

T̃si
◦ (−q2q4)xe,siv if siv > v,

T̃si
◦ (xe,siv + (q2 + q4)xe,v) if siv < v,

=

−q2q4x
si,siv if siv > v,

xsi,siv + (q2 + q4)xsi,v if siv < v.

(4.3.8)

By (4.2.5), when siv > v we have

−q2q4x
si,siv = −q2q4x

e,v +−q2q4(q2 + q4)xe,siv = −q2q4x
e,v + (q2 + q4)xsi,v. (4.3.9)

Similarly, when siv < v we have

xsi,siv + (q2 + q4)xsi,v = −q2q4x
e,v + (q2 + q4)xsi,v. (4.3.10)

Thus when si = sj,

T̃sj
◦ xsi,v = −q2q4x

e,v + (q2 + q4)xsi,v, (4.3.11)

as claimed. Next assume si 6= sj, then by similar steps as before we have

T̃sj
◦ xsi,v =

T̃sj
◦ (−q2q4)xe,siv if siv > v,

T̃sj
◦ (xe,siv + (q2 + q4)xe,v) if siv < v,

=

−q2q4x
sj ,siv if siv > v,

xsj ,siv + (q2 + q4)xsj ,v if siv < v.

(4.3.12)
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Since sisj > si, (4.2.5) tells us that when siv > v we have

−q2q4x
sj ,siv = −q2q4(−q2q4)−1xsisj ,v = xsisj ,v. (4.3.13)

Similarly, when siv < v we have

xsj ,siv + (q2 + q4)xsj ,v = xsisj ,v − (q2 + q4)xsj ,v + (q2 + q4)xsj ,v = xsisj ,v. (4.3.14)

Again we have the claimed formula.

Now fix one permutation u of length k, and let si be a left descent for u. By

(4.2.5) we have

T̃sj
◦ xu,v =

T̃sj
◦ (−q2q4)xsiu,siv if siv > v,

T̃sj
◦ xsiu,siv + T̃sj

◦ (q2 + q4)xsiu,v if siv < v,
(4.3.15)

which by induction is equal to

−q2q4x
siusj ,siv if siusj > siu and siv > v,

(−q2q4)2xsiusj ,siv + (−q2q4)(q2 + q4)xsiu,siv if siusj < siu and siv > v,

xsiusj ,siv + (q2 + q4)xsiusj ,v if siusj > siu and siv < v,

−q2q4x
siusj ,siv + (q2 + q4)xsiu,siv

+(−q2q4)(q2 + q4)xsiusj ,v + (q2 + q4)2xsiu,v if siusj < siu and siv < v.

(4.3.16)

Now we return to the right-hand side of (4.3.5). Suppose first that usj > u. This

implies that siu < siusj < usj. By (4.2.5) we then have

xusj ,v =

−q2q4x
siusj ,siv if siv > v,

xsiusj ,siv + (q2 + q4)xsiusj ,v if siv < v,
(4.3.17)

which is equal to T̃sj
◦ xu,v by cases 1 and 3 of (4.3.16). Now suppose that usj < u.

Then we have u > siusj or u = siusj. If u = siusj, then usj = siu < u = siusj.

Applying (4.2.5) to the first monomial in

−q2q4x
usj ,v + (q2 + q4)xu,v = −q2q4x

usj ,v + (q2 + q4)xsiusj ,v, (4.3.18)
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we again obtain the expressions on the right-hand side of (4.3.17). If u > siusj,

then siu < u and siusj < usj. By (4.2.5) we then have

−q2q4x
usj ,v + (q2 + q4)xu,v

=


(−q2q4)2xsiusj ,siv + (−q2q4)(q2 + q4)xsiu,siv if siv > v,

−q2q4x
siusj ,siv + (−q2q4)(q2 + q4)xsiusj ,v

+(q2 + q4)xsiu,siv + (q2 + q4)2xsiu,v if siv < v,

(4.3.19)

which is equal to T̃sj
◦ xu,v by cases 2 and 4 of (4.3.16).

The formula for the right action is proved in much the same way. Unlike in the

one parameter version we cannot just use the transpose operation to simplify the

proof.

Assume the formula (4.3.6) to hold for all monomials xu,v with `(v) < k. Cer-

tainly, this is true if `(v) = 0. If `(v) = 1, then v is just a single adjacent transposi-

tion si. We can restate (4.3.6) as

xu,si ◦ T̃sj
=

xu,sisj if si 6= sj,

(−q2q4)−1xu,e + (−q2q4)−1(q2 + q4)xu,si if si = sj.
(4.3.20)

First assume si = sj. Then we have by (4.2.5)

xu,si ◦ T̃sj
=

(−q2q4)−1xsiu,e ◦ T̃sj
if siu > u,

(xsiu,e + (−q2q4)−1(q2 + q4)xu,e) ◦ T̃sj
if siu < u,

=

(−q2q4)−1xsiu,si if siu > u,

xsiu,si + (−q2q4)−1(q2 + q4)xu,si if siu < u.

(4.3.21)

By (4.2.5), we have

xu,si ◦ T̃sj
= (−q2q4)−1xu,e + (−q2q4)−1(q2 + q4)xu,si (4.3.22)

as claimed. Next assume si 6= sj, then by similar steps as before we have

xu,si ◦ T̃sj
=

(−q2q4)−1xsiu,sj if siu > u,

xsiu,sj + (−q2q4)−1(q2 + q4)xu,sj if siu < u.
(4.3.23)
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By (4.2.5), we have

xu,si ◦ T̃sj
= xu,sisj (4.3.24)

as claimed.

Now fix one permutation v of length k, and let si be a left descent for v. By

(4.2.5) we have

xu,v ◦ T̃sj
=

(−q2q4)−1xsiu,siv ◦ T̃sj
if siu > u,

(xsiu,siv + (q2 + q4)xsiu,v) ◦ T̃sj
if siu < u,

(4.3.25)

which by (4.2.5) and induction is equal to(−q2q4)−1xsiu,siv ◦ T̃sj
if siu > u,

(xsiu,siv + (−q2q4)−1(q2 + q4)xu,siv) ◦ T̃sj
if siu < u,

=



(−q2q4)−1xsiu,sivsj if siu > u and sivsj > siv,

(−q2q4)−2 (xsiu,sivsj + (q2 + q4)xsiu,siv) if siu > u and sivsj < siv,

xsiu,sivsj + (−q2q4)−1(q2 + q4)xu,sivsj if siu < u and sivsj > siv,

(−q2q4)−1xsiu,sivsj + (−q2q4)−1(q2 + q4)xsiu,siv

+(−q2q4)−2(q2 + q4)xu,sivsj

+(−q2q4)−2(q2 + q4)2xu,siv if siu < u and sivsj < siv.

(4.3.26)

Now we return to the right-hand side of (4.3.6). Suppose first that vsj > v. This

implies that siv < sivsj < vsj. By (4.2.5) we then have

xu,vsj =

(−q2q4)−1xsiu,sivsj if siu > u,

xsiu,sivsj + (q2 + q4)xsiu,vsj if siu < u,
(4.3.27)

which, by (4.2.5), is equal to xu,v ◦ T̃sj
by cases 1 and 3 of (4.3.26). Now suppose

that vsj < v. Then we have v > sivsj or v = sivsj. If v = sivsj, then vsj = siv <

v = sivsj. Applying (4.2.5) to the first monomial in

(−q2q4)−1xu,vsj +(−q2q4)−1(q2 +q4)xu,v = (−q2q4)−1xu,vsj +(−q2q4)−1(q2 +q4)xu,sivsj

(4.3.28)
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and using (4.2.5), we again obtain the expressions on the right-hand side of (4.3.27).

If v > sivsj, then siv < v and sivsj < vsj. By (4.2.5) we then have

(−q2q4)−1xu,vsj + (−q2q4)−1(q2 + q4)xu,v

=


(−q2q4)−2xsiu,sivsj + (−q2q4)−2(q2 + q4)xsiu,siv if siu > u,

(−q2q4)−1xsiu,sivsj + (−q2q4)−1(q2 + q4)xsiu,vsj

+(−q2q4)−1(q2 + q4)xsiu,siv + (−q2q4)−1(q2 + q4)2xsiu,v if siu < u,

(4.3.29)

which, by (4.2.5), is equal to xu,v ◦ T̃sj
by cases 2 and 4 of (4.3.26).

Unlike the one-parameter case, we no longer have a nice connection between the

right action and the transpose operation. In fact(
T̃sj
◦ (xu,v)>

)>
=
(
T̃sj
◦ xv,u

)>
=

(xvsj ,u)> if vsj > v,

−q2q4(xvsj ,u)>+ (q2 + q4)(xv,u)> if vsj < v,

=

xu,vsj if vsj > v,

−q2q4x
u,vsj + (q2 + q4)xu,v if vsj < v.

(4.3.30)

Looking at Proposition 4.3.1 we can clearly see this is not the same as xu,v ◦ T̃sj
.

100



When we try using the modified transpose (dagger) operation we get(
T̃sj
◦ (xu,v)†

)†
=
(
T̃sj
◦ (−q2q4)`(u)−`(v)xv,u

)†

=


(−q2q4)`(u)−`(v)(xvsj ,u)† if vsj > v,

(−q2q4)`(u)−`(v)+1(xvsj ,u)†

+(−q2q4)`(u)−`(v)(q2 + q4)(xv,u)† if vsj < v,

=


(−q2q4)`(u)−`(v)+`(vsj)−`(u)xu,vsj if vsj > v,

(−q2q4)`(u)−`(v)+1+`(vsj)−`(u)xu,vsj

+(−q2q4)`(u)−`(v)+`(v)−`(u)(q2 + q4)xu,v if vsj < v,

=

−q2q4x
u,vsj if vsj > v,

xu,vsj + (q2 + q4)xu,v if vsj < v.

(4.3.31)

Again, this is not the same as xu,v ◦ T̃sj
. If you apply (4.2.5) to (4.3.5) in the case

where u = e, then you get something very similar to this formula.

Using Proposition 4.3.1 we can see that

T̃v ◦ xe,si =

(−q2q4)`(v)xe,vsi if vsi > v,

(−q2q4)`(v) ((−q2q4)−1xe,vsi + (−q2q4)−1(q2 + q4)xe,v) if vsi < v,

xe,si ◦ T̃v =

xe,siv if siv > v,

(−q2q4)−1xe,siv + (−q2q4)−1(q2 + q4)xe,v if siv < v.

(4.3.32)

Furthermore we have

xe,v = (−q2q4)−`(v)T̃v ◦ xe,e = xe,e ◦ T̃v (4.3.33)

and

xu,e = T̃u−1 ◦ xe,e = (−q2q4)`(u)xe,e, ◦ T̃u−1 . (4.3.34)

More generally, we can express any monomial xu,v as

xu,v = T̃u−1 ◦ xe,v = xu,e ◦ T̃v = T̃u−1 ◦ xe,e ◦ T̃v
= (−q2q4)−`(v)T̃u−1T̃v ◦ xe,e = (−q2q4)`(u)xe,e ◦ T̃u−1T̃v.

(4.3.35)
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Thus we have that

T̃u−1T̃v ◦ xe,e = (−q2q4)`(u)+`(v)xe,e ◦ T̃u−1T̃v. (4.3.36)

Therefore we have

A[n],[n](n; q2, q4) = Hn(q2, q4) ◦ xe,e = xe,e ◦Hn(q2, q4). (4.3.37)

We have shown that the two spaces are connected in a similar manner to the

one-parameter case; however, the right action defined as such is no longer nicely

connected to the left action. To this end let us define an alternate right action of

Hn(q2, q4) on A[n],[n](n; q2, q4) by

f(x) C T̃si
= −q2q4f(xsi), (4.3.38)

where f(x) is expressed in terms of the basis {xv,e | v ∈ Sn}. This action will reduce

to the standard action in the case where −q2q4 = 1, as in Hn(q) and A(n; q). Thus

it is a generalization of the previous action defined in Chapter 2.

Using similar methods as before we see that we have

xe,v C T̃si
=

−q2q4x
e,vsi if vsi > v,

xe,vsi + (q2 + q4)xe,v if vsi < v.
(4.3.39)

This recursive formula can be generalized in the following manner.

Proposition 4.3.2. We have

xu,v C T̃sj
=

−q2q4x
u,vsj if vsj > v,

xu,vsj + (q2 + q4)xu,v if vsj < v.
(4.3.40)

Proof. Assume the formula (4.3.40) to hold for all monomials xu,v with `(v) < k.

Certainly, this is true if `(v) = 0. If `(v) = 1, then v is just a single adjacent

transposition si. We can restate (4.3.40) as

xu,si C T̃sj
=

−q2q4x
u,sisj if si 6= sj,

xu,e + (q2 + q4)xu,si if si = sj.
(4.3.41)
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First assume si = sj. Then we have by (4.2.5)

xu,si C T̃sj
=

(−q2q4)−1xsiu,e C T̃sj
if siu > u,

(xsiu,e + (−q2q4)−1(q2 + q4)xu,e) C T̃sj
if siu < u,

=

xsiu,si if siu > u,

−q2q4x
siu,si + (q2 + q4)xu,si if siu < u.

(4.3.42)

By (4.2.5), we have

xu,si C T̃sj
= xu,e + (q2 + q4)xu,si (4.3.43)

as claimed. Next assume si 6= sj, then by similar steps as before we have

xu,si C T̃sj
=

xsiu,sj if siu > u,

−q2q4x
siu,sj + (q2 + q4)xu,sj if siu < u.

(4.3.44)

By (4.2.5), we have

xu,si C T̃sj
= −q2q4x

u,sisj (4.3.45)

as claimed.

Now fix one permutation v of length k, and let si be a left descent for v. By

(4.2.5) we have

xu,v C T̃sj
=

(−q2q4)−1xsiu,siv C T̃sj
if siu > u,

(xsiu,siv + (q2 + q4)xsiu,v) C T̃sj
if siu < u,

(4.3.46)
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which by (4.2.5) and induction is equal to(−q2q4)−1xsiu,siv C T̃sj
if siu > u,

(xsiu,siv + (−q2q4)−1(q2 + q4)xu,siv) C T̃sj
if siu < u,

=



xsiu,sivsj if siu > u and sivsj > siv,

(−q2q4)−1 (xsiu,sivsj + (−q2q4)−1(q2 + q4)xsiu,siv) if siu > u and sivsj < siv,

−q2q4x
siu,sivsj + (q2 + q4)xu,sivsj if siu < u and sivsj > siv,

xsiu,sivsj + (q2 + q4)xsiu,siv

+(−q2q4)−1(q2 + q4)xu,sivsj

+(−q2q4)−1(q2 + q4)2xu,siv if siu < u and sivsj < siv.

(4.3.47)

Now we return to the right-hand side of (4.3.6). Suppose first that vsj > v. This

implies that siv < sivsj < vsj. By (4.2.5) we then have

−q2q4x
u,vsj =

xsiu,sivsj if siu > u,

−q2q4x
siu,sivsj +−q2q4(q2 + q4)xsiu,vsj if siu < u,

(4.3.48)

which, by (4.2.5), is equal to xu,v C T̃sj
by cases 1 and 3 of (4.3.47). Now suppose

that vsj < v. Then we have v > sivsj or v = sivsj. If v = sivsj, then vsj = siv <

v = sivsj. Applying (4.2.5) to the first monomial in

xu,vsj + (q2 + q4)xu,v = xu,vsj + (q2 + q4)xu,sivsj (4.3.49)

and using (4.2.5), we again obtain the expressions on the right-hand side of (4.3.48).

If v > sivsj, then siv < v and sivsj < vsj. By (4.2.5) we then have

xu,vsj + (q2 + q4)xu,v

=


(−q2q4)−1xsiu,sivsj + (−q2q4)−1(q2 + q4)xsiu,siv if siu > u,

xsiu,sivsj + (q2 + q4)xsiu,vsj

+(q2 + q4)xsiu,siv + (q2 + q4)2xsiu,v if siu < u,

(4.3.50)

which, by (4.2.5), is equal to xu,v C T̃sj
by cases 2 and 4 of (4.3.26).
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Furthermore, the action C defined in (4.3.38) is related to the dagger operation

as follows

xu,v C T̃sj
=
(
T̃sj
◦ (xu,v)†

)†
. (4.3.51)

Using the dagger operation, or Proposition 4.3.2, we can see that

xe,si C T̃v =

(−q2q4)`(v)xe,siv if siv > v,

(−q2q4)`(v) ((−q2q4)−1xe,siv + (−q2q4)−1(q2 + q4)xe,v) if siv < v.

(4.3.52)

Moreover, we have

xe,v = (−q2q4)−`(v)T̃v ◦ xe,e = (−q2q4)−`(v)xe,e C T̃v (4.3.53)

and

xu,e = T̃u−1 ◦ xe,e = xe,e, C T̃u−1 . (4.3.54)

In general, we can express any monomial xu,v as

xu,v = T̃u−1 ◦ xe,v = (−q2q4)−`(v)xu,e C T̃v = (−q2q4)−`(v)T̃u−1 ◦ xe,e C T̃v

= (−q2q4)−`(v)T̃u−1T̃v ◦ xe,e = (−q2q4)−`(v)xe,e C T̃u−1T̃v.
(4.3.55)

Thus we have that

T̃u−1T̃v ◦ xe,e = T̃u−1 ◦ xe,e C T̃v = xe,e C T̃u−1T̃v, (4.3.56)

and

A[n],[n](n; q2, q4) = Hn(q2, q4) ◦ xe,e = xe,e CHn(q2, q4). (4.3.57)

All of this evidence suggests the C action may in fact be the correct two-parameter

generalization of the action of Hn(q) on A(n; q).

Now that we have a better understanding of Hn(q2, q4) and A[n],[n](n; q2, q4) are

related we can state a result analogous to Proposition .

Proposition 4.3.3. For all u, v ∈ Sn we have

T̃u−1T̃v =
∑
w∈Sn

(−q2q4)`(v)−`(w)pu,v,w(−q2q4, q2 + q4)T̃w. (4.3.58)

105



Proof. Define au,v,w by T̃u−1T̃v =
∑
au,v,wT̃w. Then

(−q2q4)`(v)xu,v = T̃u−1T̃v ◦ xe,e =
∑

au,v,wT̃w ◦ xe,e

=
∑

au,v,w(−q2q4)`(w)xe,w.
(4.3.59)

Expanding the left-hand side using (4.2.16) and collecting terms completes the proof.

4.4 The bar involution on Hn(q2, q4).

Just as for Hn(q), we may define a bar-involution on Hn(q2, q4), which will lead to

two parameter versions of the modified R-polynomials. Furthermore, this will lead

to generalizations of Kazhdan and Lusztig’s work on bar-invariant bases and con-

structing representations of Hn(q2, q4). We will focus our attention on the modified

R-polynomials as before.

Define an involution on Hn(q2, q4) by∑
w∈Sn

awT̃w 7→
∑
w∈Sn

awT̃w =
∑
w∈Sn

aw · T̃w, (4.4.1)

where

q2 = −q4, q4 = −q2, T̃w = (T̃w)−1. (4.4.2)

Once again the bar involution is an automorphism of Hn(q2, q4) and we have

T̃uv = T̃u · T̃v, if `(uv) = `(u) + `(v). (4.4.3)

Using this fact, (4.1.2), and induction we can express T̃v in terms of the natural

basis in several ways,

T̃v ∈ (−q2q4)−`(v)

(
T̃v +

∑
u<v

N[−q2q4, q2 + q4]T̃u

)
,

T̃v ∈ (−q2q4)−`(v)

(
T̃v +

∑
u<v

Z[q2, q4]T̃u

)
.

(4.4.4)
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Using the first expression above we can define polynomials R̃u,v(q0, q1) in N[q0, q1],

which we’ll call modified R-polynomials , by

T̃v = (−q2q4)−`(v)
∑
u≤v

R̃u,v(−q2q4, q2 + q4)T̃u. (4.4.5)

The second expression suggests we can define two-parameter R-polynomials; how-

ever, in Hn(q) we factored out a power of q. It is not clear which powers of q2 and

q4 should be factored out to define the R-polynomials, as we would want them to

be related to the bar-invariant basis of Hn(q2, q4) in a manner analogous to their

original definition. For our immediate purposes, we are interested in the modified

R-polynomials and will leave this problem for another paper.

The modified R-polynomials in N[q0, q1] satisfy

1. R̃u,v(q0, q1) = 0 if u � v.

2. R̃v,v(q0, q1) = 1 for all v.

3. For each left descent s of v we have

R̃u,v(q0, q1) =

R̃su,sv(q0, q1) if su < u,

q0R̃su,sv(q0, q1) + q1R̃u,sv(q0, q1) otherwise.
(4.4.6)

Using the above conditions we calculate for u ≤ v in S3, we have

R̃u,v(q0, q1) =



1 if `(v)− `(u) = 0,

q1 if `(v)− `(u) = 1,

q2
1 if `(v)− `(u) = 2,

q3
1 + q0q1 if `(v)− `(u) = 3.

(4.4.7)

Similarly, for each right descent s of v we have

R̃u,v(q0, q1) =

R̃us,vs(q0, q1) if us < u,

q0R̃us,vs(q0, q1) + q1R̃u,vs(q0, q1) otherwise.
(4.4.8)

107



On the other hand, we may fix a right ascent s of u and obtain

R̃u,v(q0, q1) =

R̃us,vs(q0, q1) if vs > v,

q0R̃us,vs(q0, q1) + q1R̃us,v(q0, q1).
(4.4.9)

Or we may fix a left ascent s of u and obtain

R̃u,v(q0, q1) =

R̃su,sv(q0, q1) if sv > v,

q0R̃su,sv(q0, q1) + q1R̃su,v(q0, q1).
(4.4.10)

From the recursive formulas above, one can verify that for u ≤ v, R̃u,v(q0, q1) is

a monic polynomial of degree `(v) − `(u) with constant term equal to zero, unless

u = v. By (4.4.5) we have

R̃u,v(q0, q1) = R̃w0v,w0u(q0, q1) = R̃vw0,uw0(q0, q1) = R̃u−1,v−1(q0, q1). (4.4.11)

Furthermore, in a manner similar to the one-parameter case, using induction we can

see that

R̃u,v(−q2q4, q2 + q4) = εu,vR̃u,v(−q2q4, q2 + q4). (4.4.12)

4.5 The bar involution on A[n],[n](n; q2, q4).

Just as with the Hecke algebra, we can define a bar involution on A[n],[n](n; q2, q4),

which will be analogous to the one-parameter case. Define the bar involution on

A[n],[n](n; q2, q4) by,

xu,v = xw0u,w0v. (4.5.1)

Recall in chapter 3, we saw that the two bar involutions on Hn(q) and A(n; q)

were compatible, and this allowed us to connect the modified R- and inverse R-

polynomials. We would like this to be the case in the two-parameter version as well,

which we will see is almost true.

Proposition 4.5.1. The two bar involutions are compatible with the left action of

Hn(q2, q4) on A[n],[n](n; q2, q4) in the sense that

T̃si
◦ xe,v = T̃si

◦ xe,v. (4.5.2)
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Proof. First look at the left-hand side and see

T̃si
◦ xe,v = xsi,v = xw0si,w0v. (4.5.3)

Next we look at the right-hand side and see

T̃si
◦ xe,v = (−q2q4)−1

(
T̃si
− (q2 + q4)T̃e

)
◦ xw0,w0v

= (−q2q4)−1 (−q2q4x
w0si,w0v + (q2 + q4)xw0,w0v)

− (−q2q4)−1(q2 + q4)xw0,w0v

= xw0si,w0v.

(4.5.4)

The compatibility holds for the left action; however the two bar involutions are

not compatible with the right actionl ◦. We see this in a similar manner. We have

that

xe,v ◦ T̃si
= (−q2q4)−`(v)xw0v−1,w0si , (4.5.5)

while

xe,v ◦ T̃si
=

(−q2q4)−`(v)
(

(−q2q4)−2xw0v−1,w0si − (−q2q4)−1(q2 + q4)((−q2q4)−1 − 1)xw0v−1,w0

)
.

(4.5.6)

Whenever −q2q4 = 1, these are the same (as in the one parameter case), but in

general they are not.

On the other hand, the two bar involutions are almost compatible, in a sense,

with the C right action.

Proposition 4.5.2. The two bar involutions are compatible with the C right action

of Hn(q2, q4) on A[n],[n](n; q2, q4) in the sense that

xe,v C T̃si
= (−q2q4)2xe,v C T̃si

. (4.5.7)

Proof. First look at the left-hand side and see

xe,v C T̃si
= (−q2q4)−`(v)+1xv−1,si = (−q2q4)−`(v)+1xw0v−1,w0si . (4.5.8)
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Next we look at the right-hand side and see

xe,v C T̃si
= (−q2q4)−`(v)xw0v−1,w0 C (−q2q4)−1

(
T̃si
− (q2 + q4)T̃e

)
= (−q2q4)−`(v)−1

(
xw0v−1,w0si + (q2 + q4)xw0v−1,w0 − (q2 + q4)xw0v−1,w0

)
= (−q2q4)−`(v)−1xw0si,w0v.

(4.5.9)

This provides more evidence that the C action is the correct generalized right

action.

As before we define the modified S-polynomials by

S̃v,w(−q2q4, q2 + q4) = pw0,w0v,w(−q2q4, q2 + q4). (4.5.10)

Then by (4.2.16) we once again have

xe,v =
∑
w≥v

S̃v,w(−q2q4, q2 + q4)xe,w. (4.5.11)

Furthermore, we can see from the combinatorial interpretation that

pu,v,w(q0,−q1) = εe,uεv,wpu,v,w(q0, q1), (4.5.12)

which implies

S̃v,w(−q2q4, q2 + q4) = S̃v,w (−q2q4,−(q2 + q4))

= εe,w0εw0v,wS̃v,w(−q2q4, q2 + q4)

= εv,wS̃v,w(−q2q4, q2 + q4).

(4.5.13)

In the single-parameter case we were able to eventually conclude that the modi-

fied S-polynomials were just the modified R-polynomials. This is not as easy to see

in the two-parameter setting.

Problem 6. Are the two-parameter modified S-polynomials equal to the modified

R-polynomials, or are there certain conditions on the variables q0 and q1 for which

they are equal?
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Chapter 5

Conclusion

In this paper we have introduced a new family of polynomials, defined combinato-

rially in terms of walks in the Bruhat order. These polynomials were shown to be

transition matrix entries for the natural basis and inverse transpose bases within

A(n; q). We then showed that these polynomials turn out to be a superset of the

family of modified R-polynomials which have been studied by Brenti, Deodhar,

and Dyer. Moreover, we introduced new double parabolic versions of the R- and

modified R-polynomials, as wells as inverse R- and modified R-polynomials. These

polynomials were shown to be linear combinations of ordinary ones and were used

to develop a new formulation for the dual canonical basis of A(n; q). Due to the lack

of consistency in the literature, we surveyed the different definitions which appear

for the dual canonical basis and connected them to our results.

The new family of polynomials inherited symmetries from the R-polynomials.

We were able to identify many more symmetries by connecting them to the mul-

tiplicative structure of Hn(q) and by taking advantage of their role in the natural

basis and inverse transpose basis expansions. These symmetries imply many com-

binatorial results. We were able to provide a bijective proof of one such symmetry.

Finally, we looked at two-parameter versions of Hn(q) and A(n; q), defining two-

parameter versions of the modified R-polynomials as well as our new polynomials

for the nonparabolic case. We would like to prove results similar to those for the

one-parameter case. One such result would be to find a relationship between the
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two-parameter inverse modified R-polynomials and the two-parameter modified R-

polynomials. We used recursive formulas in the one-parameter situation to establish

the link; however, in the case the recursive formulas are not exactly the same, but

related. It seems probable there is a relation which is similar, yet different.

Several other open problems were mentioned throughout the paper. We saw

that the formulation for the dual canonical basis in the double parabolic case re-

quired a two step process. It would be interesting to find an involution which fixed

Immv(xL,M). Du’s involution appeared to be close, but did not succeed. Such an

involution may prove to have nice properties and be connected to the dual canoni-

cal basis. However, it is hard to imagine such an involution existing, since when we

simplify the element (xL,M)e,v in terms of maximal elements, the length of the coset

comes into play. Seeing how this is not the same for all cosets, it would be difficult

to define an involution which accounts for this properly.

Another open problem was to connect the double parabolic R-polynomials and

the double parabolic inverse R-polynomials. We named them inverse R-polynomials

because of the relationship which holds in the single and nonparabolic cases; how-

ever, we do not see this holding in the double parabolic case. Due to the summation

results, one would think we would be able to connect the two, possibly with some ap-

propriate factors of q floating around. This may just take some careful consideration

and use of symmetries holding in the other cases.

In Chapter 2, we saw that the nonparabolic polynomials satisfied many symmetry

identities. Yet as we moved to the single parabolic case the number of symmetries

appeared to shrink. In the end we have yet to find a symmetry result for the

double parabolic case. This may in fact mirror the lack of connection between the

double parabolic R-polynomials and the inverse R-polynomials. Just because we

have not found a symmetry, does not mean none exist. Possibly, if we could identify

general conditions which give symmetries, we will be able to make progress on the

R-polynomial problems.

One possibility would be to find bijections which give the symmetry results we

currently know. It seems likely that once we have a better sense of the combinatorics
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involved in these paths on the Bruhat order, we might gain insight into the symme-

tries satisfied by the parabolic versions. This may be the most most promising way

of approaching the problem. In the future, we hope to find bijective proofs of all

the relations in (2.2.6) and use these to make progress toward resolving all of the

previously mentioned problems. However, it is worth mentioning one other possible

strategy. If we could find a connection between the multiplicative structure of the

submodules H ′I,J and our new family of polynomials analogous to the connections

in the single and nonparabolic cases, this may provide a way of bypassing the need

for combinatorial proofs of the symmetry results.

It is easy to see that there are many interesting problems which have sprung

up from our results in this paper. While we have managed to generalize the R-

polynomials and defined double parabolic versions, much work remains in order to

understand all of the combinatorics encoded in these amazing polynomials.
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[33] Ya. S. Sŏıbelman, On the quantum flag manifold, Funktsional. Anal. i Prilozhen.

26 (1992), no. 3, 90–92. MR MR1189033 (93k:17037)

[34] Louis Solomon, A Mackey formula in the group ring of a Coxeter group, J.

Algebra 41 (1976), no. 2, 255–264.

[35] M. Takeuchi, A two-parameter quantization of gl(n) (summary), Proc. Japan

Acad. 66 (1990).

[36] Hechun Zhang, On dual canonical bases, J. Phys. A 37 (2004), no. 32, 7879–

7893.

117



Index

bar involution, 2–4, 52, 53, 56, 57, 60–62,

72–74, 77, 78, 81, 82, 85, 108

?-bar, 83–85

k-bar, 81, 83, 84

k-immanants, 82, 83, 85

Brenti, 3, 21, 52, 54, 58, 70, 71, 111

R-chains, 54

Bruhat, 3, 6, 7, 22, 37, 48, 68, 111, 113

Brundan, 60, 82

Deodhar, 3, 54, 57, 58, 70, 111

distinguished subexpressions, 54

double coset, 6, 7, 9, 13, 16, 17, 19, 20,

47, 76, 83

Douglass, 7, 12

Du, 56, 82, 84, 85, 112

dual canonical basis, 1–4, 52, 53, 72, 81,

82, 111, 112

Dyer, 3, 54, 66, 111

factorization, 9

Hecke algebra, 1–5, 10, 37, 40, 47, 52, 53,

57, 108, 111

action, 37, 38, 40, 44, 52, 60

submodule, 3, 11, 37, 44, 47, 56, 113

immanant space, 3–5, 14, 20, 24, 27, 37,

48, 60, 65, 72

Kashiwara, 2

Kazhdan, 106

Kazhdan-Lusztig

R-polynomials, 1–4, 52, 54, 64, 70,

111, 113

basis, 2, 52, 57

immanants, 1, 76, 80–83, 85

inverse R-polynomials, 3, 4, 75

inverse polynomials, 72, 73, 75

modified R-polynomials, 1–4, 52, 54,

56, 64, 65, 108, 111

parabolic inverse polynomials, 72

polynomials, 1, 2, 73, 75

Lascoux, 86, 88

Lusztig, 2, 106

multiset, 14, 15, 17, 60, 76, 89

parabolic, 17, 35, 43, 49, 50, 52, 67, 79,

83, 84, 112, 113

R-polynomials, 3, 4, 52, 56–59, 63,

70–72, 111, 112

immanants, 79–81, 85

118



inverse R-polynomials, 3, 52, 63, 69,

70, 74, 111, 112

inverse modified R-polynomials, 63,

64, 67, 111

modified R-polynomials, 56, 59, 111

modules, 3

subgroup, 6, 8

quantum polynomial ring, 1–5, 13, 37,

52, 60, 72, 108, 111

inverse transpose basis, 19–21, 28, 38,

111

natural basis, 19–21, 25, 28, 35, 37,

40, 44, 63, 84, 111

quotient ring, 28, 30, 31, 50, 67, 86

Skandera, 52, 76

symmetric group, 2, 3, 5

length, 6

reduced expression, 6, 10, 21–25, 64,

88, 91, 94

Takeuchi, 88

two-parameter, 86, 91, 94, 105, 108, 111

GLn, 88

bar involution, 106, 108, 109

Hecke algebra, 86, 88, 89, 102, 105,

106, 108

action, 95, 98, 100, 102, 108, 109

immanant space, 86, 89, 102, 105,

108

inverse modified R-polynomials, 110,

112

modifiedR-polynomials, 106, 107, 112

quantum polynomial ring, 88

natural basis, 89, 91, 95

Zhang, 82

119



Curriculum Vitae

Justin Lambright

Email: jjl307@lehigh.edu

Office phone: (610) 758-4707

Cell phone: (484) 894-0973

Department of Mathematics

Lehigh University

14 E. Packer Ave.

Bethlehem, PA 18015

Citizenship: United States.

Research interests:

Algebraic combinatorics: special bases of quantum groups and Hecke

algebras, Kazhdan-Lusztig polynomials, partially ordered sets.

Education:

Lehigh University Bethlehem, PA

September 2007-May 2011

Ph.D., Mathematics, May 2011.

Thesis A generalization of Kazhdan and Lusztig’s R-polynomials super-

vised by Mark Skandera.

Western Illinois University Macomb, IL

September 2005-May 2007

M.S., Mathematics, May 2007.

Geneva College Beaver Falls, PA

September 2001-May 2005

B.S., Applied Mathematics, May 2005

B.S., Physics, May 2005.

120



Professional history:

Anderson University Anderson, IN

beginning August 2011

Assistant Professor of Mathematics.

Lehigh University Bethlehem, PA

August 2010-present

Calculus Instructor. Responsible for first semester calculus. Prepared

and presented lectures, wrote and graded exams and quizzes.

Math 75 Calculus I: Part A Fall 2010

Lehigh University Bethlehem, PA

August 2007-May 2009

Teaching Assistant. Teaching assistant for various levels of calculus, in-

cluding multivariate, ran recitation sessions once a week for four sections

per semester, graded papers/homework and exams, held office hours.

Spoon River College Macomb, IL

June 2006-August 2007

Instructor of Mathematics. Prepared and presented lectures, wrote and

graded tests and quizzes.

Math 133 Business Calculus I Summer 2006, Spring 2007
Math 132 Statistics Summer 2007
Math 060 Intermediate Algebra Summer 2007
Math 102 General Education Mathematics Summer 2007

Western Illinois University Macomb, IL

June 2006-May 2007

Instructor of Mathematics. Prepared and presented lectures, wrote and

graded tests and quizzes.

121



Math 095 Intermediate Algebra Summer 2006, Fall 2006, Spring 2007

Western Illinois University Macomb, IL

August 2005-May 2006

Teaching Assistant. Teaching assistant for the remedial algebra course,

ran recitation sessions once a week, for four sections per semester, graded

papers/quizzes and exams.

Grants and awards:

Lehigh University Bethlehem, PA

August 2009-August 2010

NSF GK12-STEM Fellow. Designed and implemented lessons introduc-

ing students to mathematics research and areas beyond the normal scope

of the middle school curriculum, aided middle school math teachers with

classroom activities.

Publications:

1. ”Combinatorial formulas for double parabolic R-polynomials”, (with Mark

Skandera), in Proceedings of the 22nd annual Conference on Formal Power

Series and Algebraic Combinatorics, 2010. San Francisco, CA.

2. Double Parabolic Kazhdan-Lusztig Polynomials and an Immanant Formula-

tion of the Dual Canonical Basis (In preparation with Mark Skandera)

Presentations:

GSIMS, Lehigh University. November, 2010.

FPSAC Conference, San Francisco State University. August 2010.

Graduate Student Combinatorics Conference, Auburn University. April,

2010.

122



Grad Student Combinatorics Seminar, University of Michigan. March,

2010.

Grad Student Combinatorics Seminar, University of Pennsylvania. Nov,

2009.

Combinatorics Seminar, Binghamton University. November, 2009.

Discrete Geometry and Combinatorics Seminar, Cornell University. Nov,

2009.

AMS special session, Penn State University. October, 2009.

GSIMS, Lehigh University. October, 2009.

CAGE Seminar, University of Pennsylvania. October, 2009.

FPSAC Conference, Linz, Austria. July 2009.

Graduate Student Colloquium, Lehigh University. April, 2009.

Other activities:

• Spring 2009 - Spring 2011: Founder and coordinator of Graduate Student
Intercollegiate Mathematics Seminar at Lehigh University.

• Spring 2010 - Spring 2011: Mathematics Graduate Student Liason Committee.

• Fall 2006 - Spring 2007: Western Illinois University Mathematics Department
Grade Appeal Committee.

123


	Lehigh University
	Lehigh Preserve
	2011

	A generalization of Kazhdan and Lusztig's R-polynomials
	Justin Jay Lambright
	Recommended Citation


	tmp.1363264564.pdf.Z9mp5

