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Abstract

The Hamiltonian path problem is to determine whether a graph has a Hamil-

tonian path. This problem is NP-complete in general. The path partition problem

is to determine the minimum number of vertex-disjoint paths required to cover a

graph. Since this problem is a generalization of the Hamiltonian path problem, it

is also NP-complete in general. The k-fixed-endpoint path partition problem is to

determine the minimum number of vertex-disjoint paths required to cover a graph

G such that each vertex in a set T of k vertices is an endpoint of a path. Since

this problem is a generalization of the Hamiltonian path problem and path partition

problem, it is also NP-complete in general. For certain classes of graphs, there exist

efficient algorithms for the k-fixed-endpoint path partition problem. We consider

this problem restricted to trees, threshold graphs, block graphs, and unit interval

graphs and show min-max theorems which characterize the k-fixed-endpoint path

partition number.

1



Chapter 1

Introduction

The Hamiltonian path problem (HP) is to determine whether a graph has a path

which contains all vertices in the graph, or a Hamiltonian path. In general, this

problem is NP-complete. Efficient algorithms exist which determine whether a graph

has a Hamiltonian path for cocomparability graphs [10], distance-hereditary graphs

[18], interval graphs [9, 26], circular-arc graphs [9], and convex bipartite graphs [30].

It is shown that this problem is NP-complete on grid graphs [22], chordal bipartite

graph [30], and strongly chordal split graphs [30].

The Hamiltonian path problem can be modified from a decision problem to the

path partition problem (PP) which is to determine the minimum number of vertex

disjoint paths required to cover the vertex set of a graph G. In general, this problem

is NP-complete. Efficient algorithms exist which determine the size of a minimum

path partition for trees [8, 12, 38], unicyclic graphs [12], cacti [29], block graphs [39,

40, 41], graphs with blocks which are complete graphs, cycles, or complete bipartite

graphs [33], cographs [24, 31], P4-sparse graphs [6, 13], P4-extendible graphs [13],

interval graphs [1, 20, 36], circular-arc graphs [17, 23], bipartite permutation graphs

[39], bipartite distance hereditary graphs [42], and distance hereditary graphs [19].

Note that trees are block graphs and cacti; unicyclic graphs are cacti; interval graphs

are circular-arc graphs; cographs are P4-sparse graphs; and trees, block graphs, and

cographs are distance-hereditary graphs.

The 1HP problem is to determine whether a graph has a Hamiltonian path with
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a specified vertex as an endpoint. The 2HP problem is to determine whether a

graph has a Hamiltonian path with two specified vertices as endpoints. The 1HP,

2HP, and PP problems can be modified and extended to the k-fixed-endpoint path

partition problem. A k-fixed-endpoint path partition with respect to a set T of size

k is a path partition in which every vertex in T is an endpoint of a path. For a

graph G and a given subset of the vertices T , the k-fixed-endpoint path partition

problem is to determine the minimum size of a k-fixed-endpoint path partition.

If k = 0, then the problem reduces to the path partition problem. Therefore,

the k-fixed-endpoint path partition problem is NP-complete in general. Efficient

algorithms exist which determine the size of a minimum path partition with respect

to the given set T for trees [21], block graphs [16], cographs [2, 15], and proper

(unit) interval graphs [5, 28]. An efficient algorithm exists for 2HP for grid graphs

[22]. The complexity of the k-fixed-endpoint path partition problem is unknown for

interval graphs except that when k = 1 an efficient algorithm exists [4]. Note that

tree graphs are bipartite distance-hereditary graphs, bipartite distance-hereditary

graphs are distance-hereditary graphs, and proper interval graphs are equivalent to

unit interval graphs and are interval graphs. Definitions for the above graph classes

can be found in [7].

While these efficient algorithms exist for the k-fixed-endpoint path partition

problem, no characterization theorems exist. Our goal is to determine such charac-

terization theorems which provide necessary and sufficient conditions for the k-fixed-

endpoint path partition number for trees, threshold graphs, linear block graphs,

block graphs, 2-connected unit interval graphs, and unit interval graphs. First, nec-

essary notation and definitions will be discussed. Then lower bounds which apply

to all graph classes will be established. The lower bounds yield a characterization

for the k-fixed-endpoint path partition number for trees. In chapter 2, a min-max

theorem which characterized the k-fixed-endpoint path partition number for thresh-

old graphs is considered along with additional necessary definitions. In chapter 3,

min-max theorems which characterize the k-fixed-endpoint path partition number

for linear block graphs and block graphs are discussed along with additional nec-

essary definitions. Linear block graphs are a specific case of block graphs and are

3



considered since they are also unit interval graphs and provide insight into the unit

interval graph case. In chapter 4, min-max theorems which characterize the k-fixed-

endpoint path partition number for 2-connected and connected unit interval graphs

are discussed along with additional necessary definitions. The characterization for

2-connected unit interval graphs is considered since the statement is concise and is

necessary for the characterization of connected unit interval graphs.

1.1 Notation and Definitions

Definition 1. A path is a simple graph whose vertices can be ordered so that two

vertices are adjacent if and only if they are consecutive in the list. A Hamiltonian

path is a spanning path.

Definition 2. A path partition on a graph G is a set of vertex-disjoint paths which

cover the vertices in G.

Notation 1. Let the k-fixed-endpoint path partition number be denoted PP (G;T )

for a graph G with a given set of vertices T . If T = ∅, then PP (G) denotes the path

partition number.

Path partitions of G (with respect to T ) of minimum size will be referred to as

minimum path partitions of G (with respect to T ).

Let G be a graph and S ⊂ V (G). Throughout this dissertation, when the

meaning is clear, notation such as G−S will be used to represent the graph induced

by V (G)− S.

Notation 2. Let c(G) be the number of components in G.

Typically, this notation will be used to represent the number of components in

a graph G when a subset of the vertices U has been removed; that is, c(G− U).

Let T be a set of vertices in V (G) and P be a subgraph of G. Notation such as

T ∩ P or T ∪ P will be used to represent the vertices in both T and V (P ) or either

T or V (P ), respectively. Let X and Y be sets of vertices. Then X + y will be used

4



U

G-U

Figure 1.1: Each component of G − U must contain at least one path and each vertex
in U can connect at most two of those paths.

to represent X ∪ y where y is a vertex. X − Y will represent the set of vertices in

X but not Y . X − y will represent the set X excluding the vertex y.

The following is a well-known lower bound for path partition number for general

graphs.

Lemma 1. For a graph G, PP (G) ≥ max
U⊆V

{c(G− U)− |U |}.

Consider Figure 1.1. Informally, each component of G−U must contain at least

one path and each vertex in U can connect at most two of those paths. Then G

needs at least c(G− U)− |U | paths for a minimum path partition.

1.2 Lower Bounds

Lemma 1 can be modified to determine an additional lower bound for the k-fixed-

endpoint path partition number for all graphs.

Lemma 2 (k-fixed-endpoint path partition number lower bound). For any graph

G,

PP (G;T ) ≥ max
U⊆V

{c(G− U)− |S|}

where S = U − T .

5



S

R

U
G-U

Figure 1.2: The square vertices are in T . Each component of G − U needs at least
⌈

|C ∩ T |

2

⌉

or 1 path and each vertex in S = U −T can connect at most two

of those paths.

Proof. Consider a minimum path partition P on G with respect to T . Let PU =

P−U for some subset of the vertices U . Each component of G−U must be covered

by at least one path in PU . Therefore, |PU | ≥ c(G − U). Each vertex in S can

connect at most two paths in PU to form P. Vertices in U ∩ T cannot connect any

of the paths. Therefore, |P| ≥ |PU |−|S| ≥ c(G−U)−|S|. This holds for all subsets

of the vertices U . Therefore, PP (G;T ) ≥ max
U⊆V

{c(G− U)− |S|}.

This lower bound does not take into account the vertices in T when considering

the components of G− U . First consider the following definition.

Definition 3. Let Ci be the components of G−U . Let R be the number of Ci where

Ci ∩ T = ∅. Define

cT (G− U) =
∑

i

⌈

|Ci ∩ T |

2

⌉

+R.

Now consider Figure 1.2. Informally, each component of G − U now needs at

least

⌈

|C ∩ T |

2

⌉

paths or 1 path if C∩T = ∅. Each vertex in S = U−T can connect

at most two of these paths. Vertices in U∩T cannot connect any of the paths. Then

G needs at least
∑

i

⌈

|Ci ∩ T |

2

⌉

+R− |S| paths in a minimum path partition with

6



respect to T . The following lemma provides a second, tighter lower bound for the

k-fixed-endpoint path partition number.

Lemma 3 (k-fixed-endpoint path partition number lower bound). For any graph

G,

PP (G;T ) ≥ max
U⊆V

{cT (G− U)− |S|}

where S = U − T .

Proof. Consider a minimum path partition P on G with respect to T . Let PU =

P − U for some subset of the vertices U . Each component of G − U must be

covered by at least

⌈

|Ci ∩ T |

2

⌉

paths in PU or, if Ci ∩ T = ∅, one path in PU .

Therefore, |PU | ≥ cT (G − U). Each vertex in S can connect at most two paths

in PU to form P. Vertices in U ∩ T cannot connect any of the paths. Therefore,

|P| ≥ |PU | − |S| ≥ cT (G − U) − |S|. This holds for all subsets of the vertices U .

Therefore, PP (G;T ) ≥ max
U⊆V

{cT (G− U)− |S|}.

Lemma 3 is used to determine a min-max theorem for trees and threshold graphs.

It is also used within pieces of linear block and block graphs, as well as for threshold

graphs.

If a pendant vertex is added to a graph G and the resulting graph Ĝ is in the

same class as G, then the class is said to be closed under adding a pendant vertex.

Trees and block graphs are two classes which are closed under adding a pendant

vertex. This fact allows us to use the following lemma.

Lemma 4. [11] If Ĝ is formed by adding a pendant vertex adjacent to every vertex

in G which is in T and Ĝ is in the same class as G, then PP (Ĝ) = PP (G;T ).

Lemma 4 allows the k-fixed-endpoint path partition number for a tree G with

respect to T to be determined using the path partition number for the tree Ĝ where

Ĝ is formed by adding a pendant vertex adjacent to all vertices in T since trees have

a nice characterization for the path partition number.

7



1 2 3

4

Figure 1.3: Square vertices are in T . When U includes the vertices labeled 1, 2, 3, 4,
cT (G−U)− |S| = 7. The bottom figure shows that there exists a collection
of 7 paths which cover G with respect to T .

1.3 Trees

Efficient algorithms exist for trees for the path partition problem [8, 12, 38] and

thus the k-fixed-endpoint path partition problem by Lemma 4. In [21], the k-fixed-

endpoint path partition problem for trees is solved directly. The following result is

known for the path partition problem on trees.

Lemma 5. Given a tree G, PP (G) = max
U⊆V

{c(G− U)− |U |}.

Lemmas 4 and 5 together characterize the k-fixed-endpoint path partition num-

ber for trees when a pendant vertex is added adjacent to every vertex in T . However,

the lower bound in Lemma 3 can be used to characterize the k-fixed-endpoint path

partition number for trees without requiring G to be modified. Consider the example

in Figure 1.3.

Theorem 1 (The k-Fixed-Endpoint Path Partition Problem for Trees). Given a

tree G and a set of vertices T , PP (G;T ) = max
U⊆V

{c(G−U)−|S|} where S = U −T .

Proof. Consider induction on the number of vertices.

Base If n = 1, then a minimum path partition is the trivial path and

max
U⊆V

{c(G− U)− |S|} = c(G− ∅)− |∅| = 1.

Induction Let n > 1.

8



Case 1 : Suppose there exists a vertex z which is adjacent to at least two leaves, x

and y. By induction PP (G− z;T − z) = max
U⊆V

{c((G − z) − U) − |S − z|}. Let U ′

be optimal on G − z. Let Gi be the components of G − z and Ui = U ′ ∩ Gi with

Si = Ui−T . Then PP (G− z;T − z) =
∑

i

PP (Gi;T ) =
∑

i

[c(Gi − Ui)− |Si|]. Let

U∗ = U ′ + z.

Case 1a: Suppose z /∈ T . Then S∗ = U∗ − T = ∪iSi + z. In every minimum

path partition on G − z, x and y are trivial paths. A path partition on G is a

minimum path partition on G − z with the paths x and y replaced with the path

xzy. Therefore,

PP (G;T ) ≤ PP (G− z;T )− 1

=
∑

i

[c(Gi − Ui)− |Si|]− 1

= c(G− U∗)− (|S∗| − 1)− 1

≤ max
U⊆V

{c(G− U)− |S|}.

Case 1b: Suppose z ∈ T . Then S∗ = U∗ − T = ∪iSi. In every minimum path

partition on G− z, x and y are trivial paths. A path partition on G is a minimum

path partition on G− z with the path x replaced with the path xz. Therefore,

PP (G;T ) ≤ PP (G− z;T )

=
∑

i

[c(Gi − Ui)− |Si|]

= c(G− U∗)− |S∗|

≤ max
U⊆V

{c(G− U)− |S|}.

Case 2 : Suppose there does not exist a vertex which is adjacent to at least two

leaves. Then there is a leaf y adjacent to a vertex w of degree 2.

Case 2a: Suppose w /∈ T . By induction PP (G− y;T − y) = max
U⊆V

{c((G− y)−

U) − |S|}. Let U ′ be a maximal optimal set on G − y with S ′ = U ′ − T . In a

minimum path partition on G − y, w is an endpoint of a path since it is a leaf in

G − y. A path partition on G is a minimum path partition on G − y with Pw

9



replaced by Pwy where P may be an empty path. Therefore,

PP (G;T ) ≤ PP (G− y;T − y)

= c((G− y)− U ′)− |S ′|

≤ c(G− U ′)− |S ′|

≤ max
U⊆V

{c(G− U)− |S|}.

Case 2b: Suppose w ∈ T . By induction,

PP (G− {y, w};T − {y, w}) = max
U⊆V

{c((G− {y, w})− U)− |S − {y, w}|}.

Let U ′ be a maximal optimal set in G−{y, w} with S ′ = U ′ − T . Let U∗ = U ′ +w.

Then S∗ = U∗ − T = S ′. A path partition on G is a minimum path partition on

G− {y, w} with the additional path yw. Therefore,

PP (G;T ) ≤ PP (G− {y, w};T − {y, w}) + 1

= c((G− {y, w})− U ′)− |S ′|+ 1

≤ c(G− U∗)− 1− |S∗|+ 1

≤ max
U⊆V

{c(G− U)− |S|}.

Therefore, the claim holds.

10



Chapter 2

Threshold Graphs

Threshold graphs are contained within the class of cographs. Efficient algorithms

exist for cographs for the path partition problem [24, 31], the 1HP and 2HP problems

[3], and the k-fixed-endpoint path partition problem [2, 15]. The lower bound in

Lemma 1 is tight for the path partition number for threshold graphs. The lower

bound in Lemma 3 is not tight for the k-fixed-endpoint path partition number for

threshold graphs; however, the k-fixed-endpoint path partition number for threshold

graphs will be at most one greater than this lower bound. In this chapter, when

this increase occurs will be discussed.

Threshold graphs can be characterized in many ways. The following charac-

terization will be most helpful for statements and proofs. Additional information

regarding threshold graphs and their characterizations can be found in [25].

Definition 4. A graph G is threshold graph if the vertex set of G can be partitioned

into sets R0, R1, . . . , Rm, L1, L2, . . . , Lm that satisfy:

• for each v ∈ Ri, N(v) =

i
⋃

j=1

Lj for 1 ≤ i ≤ m and

• for each v ∈ Lj, N(v) =

(

m
⋃

i=j

Ri

)

∪

(

m
⋃

j=1

Lj

)

for 1 ≤ j ≤ m.

Note that only R0 and Rm, may be empty. Figure 2.1 illustrates this charac-

terization where the cliques on the left are adjacent to all other cliques and the

11



L1

L2

Lm

R1

R2

Rm

Figure 2.1: The shaded components are cliques and the white components are indepen-
dent sets. Edges represent all possible edges between the vertex sets.

independent sets on the right at or below the level of the clique. Edges will be

omitted in all other figures with threshold graphs. All threshold graphs considered

in this dissertation will be connected. Therefore, R0 = ∅ for all considered graphs.

Given the structure of a threshold graph, any set which maximizes the lower

bound in Lemma 3 will be of the form
a
⋃

j=1

Lj , 0 ≤ a ≤ m. If any vertex in Lj is not

in U , then removing vertices from U which are in Lj will not decrease the number

of components in G−U . If any vertex in Ri is in U , then removing that vertex from

U will not decrease the number of components in G − U . These actions also will

not increase the size of S = U − T . This means the only subsets of the vertices U

which need to be considered are the empty set and a set of cliques on the left which

are consecutive from the top down. The following lemma formalizes this notion.

Lemma 6. If G is a connected threshold graph, then for some a ≥ 0, U =
a
⋃

j=1

Lj

will maximize the lower bound in Lemma 3.

Proof. Suppose U =

(

a
⋃

j=1

Lj

)

∪ X ∪ Y maximizes the lower bound in Lemma 3

whereX ⊆
m
⋃

j=a+1

Lj and Y ⊆
m
⋃

i=1

Ri. Note that a is the smallest index such that there

12



exists v ∈ La+1 and v /∈ U . Let U ′ = U−X−Y . Then, cT (G−U) ≤ cT (G−U ′) since

vertices in U ∩ T can be added to the component contained within

m
⋃

j=a+1

(Lj ∪ Rj)

when U ′ is created from U and vertices in U ∩
a
⋃

i=1

Ri can create new components in

cT (G− U ′). Additionally, for S = U − T and S ′ = U ′ − T , |S| ≥ |S ′| since vertices

are removed from U to create U ′. Therefore, cT (G − U) − |S| ≤ cT (G − U ′)− |S ′|

and U ′ maximizes the lower bound in Lemma 3.

Lemma 6 means that only subsets of the form U =
a
⋃

j=1

Lj need to be considered

for the lower bound in Lemma 3. For subsets U of this form, G − U will have at

most one nontrivial component C and a set of isolated vertices

a
⋃

i=1

Ri. Define the

following function η(a) to describe cT (G−U)−|S| where S = U−T and U =
a
⋃

j=1

Lj .

Lemma 7. Let ηG(a), 0 ≤ a ≤ m, denote the value for cT

(

G−

(

a
⋃

j=1

Lj

))

−

∣

∣

∣

∣

∣

(

a
⋃

j=1

Lj

)

− T

∣

∣

∣

∣

∣

. Then

ηG(a) =











































⌈

|T |

2

⌉

if a = 0


















∣

∣

∣

∣

∣

(

m
⋃

j=a+1

(Lj ∪ Rj)

)

∩ T

∣

∣

∣

∣

∣

2



















+

∣

∣

∣

∣

∣

a
⋃

i=1

Ri

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

(

a
⋃

j=1

Lj

)

− T

∣

∣

∣

∣

∣

if 1 ≤ a ≤ m.

When the graph G is clear from context, ηG(a) will be denoted η(a).

Figure 2.2 illustrates the values for η(a), 0 ≤ a ≤ m. Lemma 7 is easy to check.

The lower bound in Lemma 3 does not yield the k-fixed-endpoint path partition

number for every threshold graph. For example, the graph in Figure 2.2 shows

13



η(0) = 2

η(1) = 1

η(2) = 2

η(3) = 2

η(4) = 1

Figure 2.2: η(a), 0 ≤ a ≤ m, denotes cT (G−U)− |S| for subsets U which are described
in Lemma 6. PP (G;T ) ≥ 2 for this graph.

PP (G;T ) ≥ 2 yet the k-fixed-endpoint path partition number is 3. A new lower

bound is needed to account for this discrepancy.

When the maximum for the lower bound is attained for at least two different

values of a, the lower bound may not yield the k-fixed-endpoint path partition

number. When no vertices in T occur in the sets between where the maximums

occur, then the number of these vertices on the left equals the number on the right.

In addition, if the number of vertices in T below the lower level of the maximum is

even, then the k-fixed-endpoint path partition number will be at least one greater

than the lower bound in Lemma 3. The graph in Figure 2.3 satisfies these conditions.

If the lower bounds above and below the lower level of the maximum are considered

and added, the value will be one greater than the lower bound of the entire graph.

This occurs since the lower bound above the lower level of the maximum will have its

maximum occur at the higher level of the maximum. This lower bound will cause an

increase in the overall lower bound since the subgraph now has a component below

14



η(0) = 2

η(1) = 1

η(2) = 2

η(3) = 2

η(4) = 1

Figure 2.3: The graph attains the maximum η(a) = 2 twice, when a = 0 and a = 2.
However, the k-fixed-endpoint path partition number is 3 as shown in the
graph on the right.

the maximum which is not counted elsewhere. The conditions for the increase to

occur are formally stated, and then the lemma formalizes these ideas.

Condition 1. Let G be a connected threshold graph. We will say Condition 1 holds

if there exist a1 and a2, 0 ≤ a1 < a2 < m, which maximize ηG(a) such that the

following hold:

•

(

a2
⋃

j=a1+1

(Lj ∪ Rj)

)

∩ T = ∅ and

•

∣

∣

∣

∣

∣

(

m
⋃

j=a2+1

(Lj ∪ Rj)

)

∩ T

∣

∣

∣

∣

∣

is even.

Note that

∣

∣

∣

∣

∣

a2
⋃

j=a1+1

Lj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a2
⋃

i=a1+1

Ri

∣

∣

∣

∣

∣

when Condition 1 holds.
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Lemma 8. Given a connected threshold graph G,

PP (G;T ) ≥











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

Proof. Since max
0≤a≤m

{η(a)} = max
U⊆V

{cT (G − U) − |S|} by Lemma 6 and Lemma 7,

PP (G;T ) ≥ max
0≤a≤m

{η(a)} by Lemma 3. Suppose Condition 1 is satisfied by a1

and a2 with a1 < a2. Let G1 =

a1
⋃

j=1

(Lj ∪ Rj), G2 =

a2
⋃

j=a1+1

(Lj ∪ Rj), and G3 =

m
⋃

j=a2+1

(Lj ∪ Rj). Let α = max
0≤a≤m

{ηG(a)}. Then ηG1
(a1) = α −

⌈

|(G2 ∩G3) ∩ T |

2

⌉

=

α−

⌈

|G3 ∩ T |

2

⌉

since G2∩T must be empty when Condition 1 is satisfied. Addition-

ally, max{ηG3
(a)} ≥

⌈

|G3 ∩ T |

2

⌉

and η(G1∪G2)(a1) = ηG1
(a1)+1 = α−

⌈

|G3 ∩ T |

2

⌉

+

1.

Consider a minimum path partition P on G. Suppose no edges in P have an

end in G1 ∪G2 and an end in G3. In this case, PP (G;T ) = PP (G1 ∪G2;T ∩ (G1 ∪

G2)) + PP (G3;T ∩G3) ≥ α−

⌈

|G3 ∩ T |

2

⌉

+ 1 +

⌈

|G3 ∩ T |

2

⌉

= α + 1.

Suppose b edges in P have one end in G1 ∪ G2 and one end in G3. Let B be

the set of vertices in G3 which are endpoints of these edges. Then G′
3 = G3 − B

will be covered by at least

⌈

|(G3 − B) ∩ T |

2

⌉

≥

⌈

|G3 ∩ T | − |B|

2

⌉

paths. Let G′ =

G1 ∪ G2 ∪ B′ where |B′| = |B| and the vertices in B′ are adjacent to

a2
⋃

j=1

Lj . Let

T ∗ = (G′∩T )∪B′. Then ηG′(a2) = α−

⌈

|G3 ∩ T |

2

⌉

+ |B|. In this case, PP (G;T ) ≥

PP (G′;T ∗) + PP (G′
3;T ∩ G′

3) ≥

(

α−

⌈

|G3 ∩ T |

2

⌉

+ |B|

)

+

⌈

|G3 ∩ T | − |B|

2

⌉

≥

α + 1.

Therefore,

PP (G;T ) ≥











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.
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The lower bound in Lemma 8 is tight for threshold graphs. To prove this fact,

induction will be applied to a subgraph of a threshold graph G created by removing

a dominating vertex y or an edge ry where r ∈ R1. A path partition on G with

respect to T will be created using a minimum path partition on G− y with respect

to T − y or on G− {y, r} with respect to T − {y, r}.

Theorem 2. Given a connected threshold graph,

PP (G;T ) =











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

Proof. Induction on the number of vertices n in G.

Base: Suppose n = 1. Then PP (G;T ) = 1 and max
0≤a≤1

{η(a)} = 1. Condition 1

cannot be satisfied. Therefore,

PP (G;T ) =











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

Induction: Suppose n ≥ 2. Let y be a vertex in L1 of G. Let G′ be the

nontrivial connected threshold graph in G − y. Let the sets of vertices in G′ be

labeled L′
1, L

′
2, . . . , L

′
m−1, R

′
1, R

′
2, . . . , R

′
m−1. Let a1 be the smallest value for which

ηG′(a1) = max
0≤a≤m

{ηG′(a)}.

Case A: Suppose L1 = {y}. Then G′ = G − y − R1. Note that L′
j = Lj+1,

1 ≤ j ≤ m− 1, and R′
i = Ri+1, 1 ≤ i ≤ m− 1. By induction,

PP (G− y;T − y) = |R1|+











max
0≤a≤m−1

{ηG′(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m−1

{ηG′(a)} otherwise
.
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Case A1: Suppose ηG′(a1) =

⌈

|G′ ∩ T |

2

⌉

. Then a1 = 0 and

PP (G− y;T − y) = |R1|+ PP (G′;T ∩G′)

=















|R1|+

⌈

|G′ ∩ T |

2

⌉

+ 1 if Condition 1 is satisfied on G′

|R1|+

⌈

|G′ ∩ T |

2

⌉

otherwise
.

If y /∈ T and |R1| ≥ 2, then y can connect two vertices in R1. Then a path

partition on G with respect to T is a minimum path partition on G−y with respect

to T − y with two trivial paths x, z in R1 replaced by the path xyz. Therefore,

PP (G;T ) ≤ PP (G− y;T − y)− 1

= |R1|+

⌈

|G′ ∩ T |

2

⌉

− 1

= |R1|+

⌈

|G′ ∩ T |

2

⌉

− |L1 − T |

= ηG(1)

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y /∈ T , |R1| = 1, and |G′ ∩ T | is odd, then a path partition on G with respect

to T is a minimum path partition on G− y with respect to T − y with the vertex x

in R1 and a path P which has an end not in T replaced by xyP . Therefore,

PP (G;T ) ≤ PP (G− y;T − y)− 1

= |R1|+

⌈

|G′ ∩ T |

2

⌉

− 1

= |R1|+

⌈

|G′ ∩ T |

2

⌉

− |L1 − T |

= ηG(1)

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.
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If y /∈ T , |R1| = 1, |G′ ∩ T | is even, and R1 ∩ T 6= ∅. Then |T | is odd and
|G′ ∩ T |

2
+ |R1| =

|G′ ∩ T |

2
+ 1 =

⌈

|T |

2

⌉

. Then a path partition on G with respect

to T is a minimum path partition on G− y with respect to T − y with the vertex x

in R1 replaced by xy. Therefore,

PP (G;T ) ≤ PP (G− y;T − y)

= |R1|+

⌈

|G′ ∩ T |

2

⌉

=

⌈

|T |

2

⌉

= ηG(0)

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y /∈ T , |R1| = 1, |G′ ∩ T | is even, R1 ∩ T = ∅, and the maximum of ηG′(a) is

achieved only when a = 0, then ηG(0) = ηG(1), (L1 ∪ R1) ∩ T = ∅, and Condition

1 is satisfied. Then a path partition on G with respect to T is a minimum path

partition on G− y with respect to T − y found inductively with the vertex x in R1

replaced by xy. Therefore,

PP (G;T ) ≤ PP (G− y;T − y)

= |R1|+

⌈

|G′ ∩ T |

2

⌉

=

⌈

|T |

2

⌉

+ 1

= ηG(0) + 1

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y /∈ T , |R1| = 1, |G′ ∩ T | is even, R1 ∩ T = ∅, the maximum is achieved at

a2 6= a1, and Condition 1 is satisfied on G−y, then by induction, PP (G−y;T−y) =
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|G′ ∩ T |

2
+1 and there exists a path P in every minimum path partition onG−y with

respect to T−y which has an end which is not contained in T . Then a path partition

on G with respect to T is this minimum path partition on G − y with respect to

T − y with the vertex x in R1 and the path P replaced by xyP . Therefore,

PP (G;T ) ≤ PP (G− y;T − y)− 1

= |R1|+

⌈

|G′ ∩ T |

2

⌉

+ 1− 1

=

⌈

|T |

2

⌉

+ 1

= ηG(0) + 1

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y /∈ T , |R1| = 1, |G′ ∩ T | is even, R1 ∩ T = ∅, a2 6= 0, and Condition 1 is not

satisfied on G− y, then Condition 1 is satisfied on G with ηG(0) and ηG(1). Then a

path partition on G with respect to T is a minimum path partition on G− y with

respect to T − y with the vertex x in R1 replaced by xy. Therefore,

PP (G;T ) ≤ PP (G− y;T − y)

= |R1|+

⌈

|G′ ∩ T |

2

⌉

= ηG(0) + 1

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y ∈ T , Condition 1 is satisfied on G if and only if Condition 1 is satisfied

on G − y since the values ηG(a) = ηG′(a − 1) for a ≥ 1 and y will not be part of
a2
⋃

j=a1+1

(Lj ∪ Rj). Then a path partition on G with respect to T is a minimum path

partition on G − y with respect to T − y with a vertex x in R1 replaced by xy.
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Therefore,

PP (G;T ) ≤ PP (G− y;T − y)

=















|R1|+

⌈

|G′ ∩ T |

2

⌉

+ 1 if Condition 1 is satisfied

|R1|+

⌈

|G′ ∩ T |

2

⌉

otherwise

=















|R1|+

⌈

|G′ ∩ T |

2

⌉

− |L1 − T |+ 1 if Condition 1 is satisfied

|R1|+

⌈

|G′ ∩ T |

2

⌉

− |L1 − T | otherwise

=







ηG(1) + 1 if Condition 1 is satisfied

ηG(1) otherwise

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

Case A2: Suppose ηG′(a1) >

⌈

|G′ ∩ T |

2

⌉

. Then a1 > 0. Let C =
m−1
⋃

j=a1+1

(L′
j∪R

′
j).

Then

PP (G− y;T − y) =







|R1|+ ηG′(a1) + 1 if Condition 1 is satisfied on G− y

|R1|+ ηG′(a1) otherwise

and

|R1|+ ηG′(a1) = |R1|+

∣

∣

∣

∣

∣

a1
⋃

i=1

R′
i

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1
⋃

j=1

L′
j

)

− T

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=2

Lj

)

− T

∣

∣

∣

∣

∣

.

Since max
0≤a≤m−1

{ηG′(a)} >

⌈

|G′ ∩ (T − y)|

2

⌉

, there exists a path P in every min-

imum path partition on G − y with respect to T − y with an endpoint in G′ − T .

Condition 1 is satisfied on G if and only if Condition 1 is satisfied on G− y.

21



If y /∈ T , then a path partition on G with respect to T is a minimum path

partition on G − y with respect to T − y with a vertex x in R1 and the path P

replaced by xyP . Therefore,

PP (G;T ) ≤ PP (G− y;T − y)− 1

= −1 +























∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=2

Lj

)

− T

∣

∣

∣

∣

∣

+ 1 if Cond 1

∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=2

Lj

)

− T

∣

∣

∣

∣

∣

otherwise

=























∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=1

Lj

)

− T

∣

∣

∣

∣

∣

+ 1 if Condition 1

∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=1

Lj

)

− T

∣

∣

∣

∣

∣

otherwise

=







ηG(a1) + 1 if Condition 1 is satisfied

ηG(a1) otherwise

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y ∈ T , then a path partition on G with respect to T is a minimum path

partition on G − y with respect to T − y with a vertex x in R1 replaced with xy.
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Therefore,

PP (G;T ) ≤ PP (G− y;T − y)

=























∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=2

Lj

)

− T

∣

∣

∣

∣

∣

+ 1 if Condition 1

∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=2

Lj

)

− T

∣

∣

∣

∣

∣

otherwise

=























∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=1

Lj

)

− T

∣

∣

∣

∣

∣

+ 1 if Condition 1

∣

∣

∣

∣

∣

a1+1
⋃

i=1

Ri

∣

∣

∣

∣

∣

+

⌈

|C ∩ T |

2

⌉

−

∣

∣

∣

∣

∣

(

a1+1
⋃

j=1

Lj

)

− T

∣

∣

∣

∣

∣

otherwise

=







ηG(a1) + 1 if Condition 1 is satisfied on G

ηG(a1) otherwise

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

Case B: Suppose {x, y} ⊆ L1. Let r ∈ R1 and G∗ = G − {y, r} with sets

L∗
1, L

∗
2, . . . , L

∗
m, R

∗
1, R

∗
2, . . . , R

∗
m. Note that L∗

j = Lj , 2 ≤ j ≤ m and R∗
i = Ri,

2 ≤ i ≤ m. By induction,

PP (G∗;T ∩G∗) =







ηG∗(a1) + 1 if Condition 1 is satisfied

ηG∗(a1) otherwise
.

Case B1: Suppose ηG∗(a1) =

⌈

|G∗ ∩ T |

2

⌉

. Then a1 = 0 and

PP (G∗;T ∩G∗) =















⌈

|G∗ ∩ T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|G∗ ∩ T |

2

⌉

otherwise
.

If y /∈ T and r /∈ T , then ηG(a) = ηG∗(a) for all a and Condition 1 is satisfied

on G if and only if Condition 1 is satisfied on G∗. Since |L1| ≥ 2, let x ∈ L1. Every
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minimum path partition on G∗ contains a path P = P1xP2 where P1 or P2 may be

empty. Then a path partition on G with respect to T is a minimum path partition

on G∗ with respect to T ∩G∗ with path P replaced with P1yrxP2. Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗)

=















⌈

|G∗ ∩ T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|G∗ ∩ T |

2

⌉

otherwise

=















⌈

|T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|T |

2

⌉

otherwise

= ηG(0)

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y /∈ T , R1 ∩ T = R1 and |R1| is even, then the above holds. If R1 ∩ T = R1

and |R1| is odd, then

⌈

|G∗ ∩ T |

2

⌉

=

⌈

|T |

2

⌉

− 1 and a path partition on G with

respect to T is a minimum path partition on G∗ with respect to T ∩ G∗ with path
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the additional path yr. Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗) + 1

= 1 +















⌈

|G∗ ∩ T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|G∗ ∩ T |

2

⌉

otherwise

=















⌈

|T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|T |

2

⌉

otherwise

= ηG(0)

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If L1 ∩ T = L1 and r ∈ T or R1 ∩ T = ∅ and |T | is odd, then ηG(a) = ηG∗(a) + 1

for all a and Condition 1 is satisfied on G if and only if Condition 1 is satisfied on

G∗. Then a path partition on G with respect to T is a minimum path partition on

G∗ with respect to T ∩G∗ with the additional path yr. Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗) + 1

= 1 +















⌈

|G∗ ∩ T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|G∗ ∩ T |

2

⌉

otherwise

=















⌈

|T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|T |

2

⌉

otherwise

= ηG(0)

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.
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If L1 ∩ T = L1, R1 ∩ T = ∅, and |T | is even, then ηG(0) = ηG∗(0), ηG(a) =

ηG∗(a) + 1 for 1 ≤ a ≤ m, and Condition 1 is satisfied on G if and only if Condition

1 is satisfied on G∗. If there exists a2 such that ηG∗(a2) = ηG∗(a1), then ηG(a2) =

ηG∗(a2) + 1 = ηG∗(a1) + 1. Then a path partition on G with respect to T is a

minimum path partition on G∗ with respect to T ∩G∗ with the additional path yr.

Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗) + 1

= 1 +







ηG∗(a1) + 1 if Condition 1 is satisfied

ηG∗(a1) otherwise

=







ηG(a2) + 1 if Condition 1 is satisfied

ηG(a2) otherwise

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If no such a2 exists, then |R1| ≤

⌈

|L1| − 1

2

⌉

since ηG∗(1) <

⌈

|G∗ ∩ T |

2

⌉

. If |L1| is

odd, then |G∗∩T |− |L1| is odd and there exists a minimum path partition P on G∗

with respect to T ∩G∗ such that G∗− (L1 ∪R1) is covered by

⌈

|G∗ ∩ T | − |L− 1|

2

⌉

paths. One of these paths will have one end not contained in T . Then a vertex v in

L1 can be made adjacent to that path. (R1 − r) + (L1 − y − v) can be covered by

|R1| − 1 paths which have two ends in L1 − y − v and one interior vertex in R1 − r.

This leaves (|L1| − 2) − 2(|R1| − 1) = |L1| − 2 − (|L1| − 1) − 2 = 1 vertex x in L1

to be covered. This vertex will be a trivial path in P. Then a path partition on G

with respect to T is this minimum path partition on G∗ with respect to T ∩G∗ with

the path x replaced by xry.

If |L1| is even, then |G∗ ∩ T | − |L1| is even and there exists a minimum path

partition P on G∗ with respect to T ∩G∗ such that G∗ − (L1 ∪ R1) can be covered

by
|G∗ ∩ T | − |L1|

2
paths. (R1 − r) + (L1 − y) can be covered by |R1| − 1 paths

which have two ends in L1 − y and one interior vertex in R1 − r. This leaves
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|L1| − 1 − 2(|R| − 1) = |L1| − 1 − |L1| − 2 = 1 vertex x in L1 to be covered. This

vertex will be a trivial path in P. Then a path partition on G with respect to T is

this minimum path partition on G∗ with respect to T ∩G∗ with the path x replaced

by xry. Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗)

=















⌈

|G∗ ∩ T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|G∗ ∩ T |

2

⌉

otherwise

=















⌈

|T |

2

⌉

+ 1 if Condition 1 is satisfied
⌈

|T |

2

⌉

otherwise

= ηG(0)

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

Case B2: Suppose ηG∗(a1) >

⌈

|G∗ ∩ T |

2

⌉

. Then a1 > 0.

If L1 ∩T = ∅ and r /∈ T or R1∩T = R1 and |T | is even, then ηG(a) = ηG∗(a) for

all 0 ≤ a ≤ m and Condition 1 is satisfied on G if and only if Condition 1 is satisfied

on G∗. Every minimum path partition on G∗ with respect to T ∩G∗ contains a path

P = P1xP2 where x ∈ L1. If r /∈ T , then a path partition on G with respect to T is

a minimum path partition on G∗ with respect to T ∩ G∗ with the path P replaced

by P1yrxP2. If r ∈ T and |T | is even, then |G∗ ∩ T | is odd and there exists a path

P with an end not contained in T . Then a path partition on G with respect to T is

a minimum path partition on G∗ with respect to T ∩ G∗ with the path P replaced
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by Pyr. Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗)

=







ηG∗(a1) + 1 if Condition 1 is satisfied

ηG∗(a1) otherwise

=







ηG(a1) + 1 if Condition 1 is satisfied

ηG(a1) otherwise

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If L1 ∩ T = ∅, R1 ∩ T = R1 and |T | is odd, then ηG(0) = ηG∗(0) + 1 and

ηG(a) = ηG∗(a) for 1 ≤ a ≤ m. Then Condition 1 is satisfied on G if and only if

Condition 1 is satisfied on G∗. Since ηG∗(a1) ≥
|G∗ ∩ T |

2
+ 1, there exists a path P

in every minimum path partition on G∗ with respect to T ∩G∗ such that P has an

end which is not contained in T . Then a path partition on G with respect to T is

a minimum path partition on G∗ with respect to T ∩ G∗ such that the path P is

replaced by Pyr. Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗)

=







ηG∗(a1) + 1 if Condition 1 is satisfied

ηG∗(a1) otherwise

=







ηG(a1) + 1 if Condition 1 is satisfied

ηG(a1) otherwise

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

If y ∈ T , then ηG(a) = ηG∗(a)+1 for 1 ≤ a ≤ m except when R1∩T = ∅ and |T |

is odd, ηG(0) = ηG∗(0). Then Condition 1 is satisfied on G if and only if Condition
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1 is satisfied on G∗. Then a path partition on G with respect to T is a minimum

path partition on G∗ with respect to T ∩G∗ with the additional path yr. Therefore,

PP (G;T ) ≤ PP (G∗;T ∩G∗) + 1

= 1 +







ηG∗(a1) + 1 if Condition 1 is satisfied

ηG∗(a1) otherwise

=







ηG(a1) + 1 if Condition 1 is satisfied

ηG(a1) otherwise

≤











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.

Therefore,

PP (G;T ) =











max
0≤a≤m

{η(a)}+ 1 if Condition 1 is satisfied

max
0≤a≤m

{η(a)} otherwise
.
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Chapter 3

Block Graphs

Efficient algorithms exist for block graphs for the path partition problem [39, 40, 41]

and the k-fixed-endpoint path partition problem [16]. Lemma 4 applies to block

graphs as well as trees. While efficient algorithms exist, there is no min-max theorem

for the path partition problem on block graphs. Thus, Lemma 4 cannot be applied

to yield a min-max theorem for the k-fixed-endpoint path partition number for block

graphs. Therefore, a new method is required. In this chapter, min-max theorems for

the k-fixed-endpoint path partition number for linear block graphs and block graphs

are discussed. The standard definition for block graphs is below and followed by an

additional definition and notation.

Definition 5. A block graph is a graph in which all maximal 2-connected subgraphs

are cliques.

Definition 6. A linear block graph is a block graph in which every block contains

at most two cut vertices.

Notation 3. Let Λ(G) denote the set of cut vertices in a block graph G. The

shorthand Λ will be used when the graph G is clear from context.

Definition 7. The interior of a block B is the subgraph of G induced on the vertices

in B − {ui|i ∈ I} where ui, i ∈ I, are all the cut vertices in B.

Note that the interior of a block may be empty.
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T T T

Figure 3.1: Circles represent blocks in the linear block graph. A T represents a vertex in
the block which is also in T . Lemma 3 shows PP (G;T ) ≥ 2 yet a minimum
path partition on G with respect to T requires 4 paths.

3.1 Linear Block Graphs

Linear block graphs are block graphs and any characterization for the k-fixed-

endpoint path partition number for block graphs also applies to the k-fixed-endpoint

path partition number for linear block graphs. Linear block graphs are considered

separately since linear block graphs are also connected unit interval graphs. The

characterization described for the k-fixed-endpoint path partition number for linear

block graphs will require only slight modification to characterize the k-fixed-endpoint

path partition number for unit interval graphs. The lower bound in Lemma 3 does

not characterize the k-fixed-endpoint path partition number for linear block graphs.

The difference between the value of the lower bound in Lemma 3 and the value of

the k-fixed-endpoint path partition number of a linear block graph G can be arbi-

trarily large. Consider the graph in Figure 3.1. This graph can be extended to a

linear graph with 2b+1 blocks where b blocks contain exactly one vertex in T in the

interior of the block and no adjacent blocks both contain a vertex in T . It can be

shown that the lower bound in Lemma 3 would yield

⌈

b

2

⌉

and the k-fixed-endpoint

path partition number would be PP (G;T ) = b+ 1 for such a linear block graph.

Let G be a linear block graph. Label the blocks Bi, 1 ≤ i ≤ β, such that

Bi∩Bi+1 = ci, 1 ≤ i ≤ β−1, where ci ∈ Λ. Note that a linear block graph G which

has β blocks has β − 1 cut vertices.

Definition 8. A block Bi is left of block Bj if i < j. A block Bi is right of block Bj

if i > j. The leftmost block has smallest index while the rightmost block has largest

index.
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1 2

1 2

Figure 3.2: The graph on the bottom shows a partition formed by removing the vertices
labeled 1 and 2 in the graph on the top and returning them to the components
in which they are rightmost.

The linear block graph G will be partitioned into pieces to determine the k-

fixed-endpoint path partition number. The parts of the partitions will be formed

by removing some subset of the cut vertices and then returning the cut vertices to

the component in which it is the rightmost vertex. See Figure 3.2.

Definition 9. For a linear block graph G, let P(W ), W ⊆ Λ, be the partition of G

which is the set of |W | + 1 induced subgraphs formed by removing the set of edges

{civ|ci ∈ W, v ∈ Bi+1}.

Let ij be the index of the jth leftmost vertex inW ; that is, ci1 , ci2, . . . , ci|W |
where

i1 < i2 < . . . < i|W |. Then each part Pj of P(W ) can be defined as P1 =

i1
⋃

l=1

Bl,

Pj =

ij
⋃

l=ij−1+1

(Bl− cij−1
) for 2 ≤ j ≤ |W | and P|W |+1 =

β
⋃

l=i|W |+1

(Bl− ci|W |
). Note that

Bij is rightmost in part Pj and P(W ) contains |W |+ 1 parts.

Observe that the interior of the leftmost block of each part of a partition must

contain an end of a path since the end block contains exactly one cut vertex. If no

vertex in T is in the interior of the leftmost block, then an arbitrary vertex can be

chosen to be added to T in order to account for the end found in the leftmost block.

Definition 10. For a partition P(W ) on a linear block graph G, let T ′(W ) =

T ∪ {vj |j ∈ J} where J ⊆ [|W | + 1], j ∈ J when the leftmost block Bj
1 of Pj with
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cut vertex c satisfies (Bj
1 − c) ∩ T = ∅, and vj is an arbitrary vertex in the interior

of the leftmost block of Pj.

Note that the shorthand T ′ will be used to represent T ′(W ) when W is clear

from context. Creating T ′ will not increase the size of a minimum path partition on

G with respect to T . The vertices added to T to create T ′ were chosen since they

can be made ends in a minimum path partition of G with respect to T restricted to

a part Pi of P(W ).

Lemma 9. For a linear block graph G and a partition W of G, PP (Pj;T ∩ Pj) =

PP (Pj;T
′(W ) ∩ Pj), where T ′ is defined in Definition 10.

Proof. Let Q be a minimum path partition on G with respect to T . Suppose Q

restricted to Pj has no endpoint in the interior of the leftmost block Bj
1 of part Pj of

the partition. Then a path must enter Bj
1, traverse all vertices in the interior, and

leave Bj
1. Paths can only enter and leave a block at cut vertices. Thus, Bj

1 must

have two cut vertices to satisfy the path condition. Then Bj
1 cannot be leftmost in

Pj since the leftmost block has exactly one cut vertex. Therefore, a contradiction

exists, Bj
1, 1 ≤ j ≤ |W | + 1, must contain an end of a path of Q restricted to Pj,

and PP (Pj;T ) = PP (Pj;T
′).

Note that |Pj ∩ T ′| =







|Pj ∩ T |+ 1 if Bij+1 ∩ T = ∅

|Pj ∩ T | otherwise
.

Lemma 10. Let G be a linear block graph G and T be a set of k vertices. Then

PP (G;T ) ≥ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







where T ′ is defined in Def-

inition 10.

When W = ∅, we assume that

max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|)

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







=

⌈

|P|W |+1 ∩ T ′|

2

⌉

.
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Proof. Consider a partition P(W ) and a path partition Q on G with respect to

T . For each part Pj ⊆ P(W ), count the number of paths in Q which have right

endpoints in Pj . If a path in Q extends to the right of Pj , then Pj contains part

of at least

⌈

|Pj ∩ T ′|+ 1

2

⌉

paths and thus

⌈

|Pj ∩ T ′|+ 1

2

⌉

− 1 =

⌊

|Pj ∩ T ′|

2

⌋

right

ends in this case. If no path in Q extends to the right of Pj, then Pj contains at

least

⌊

Pj ∩ T ′|

2

⌋

right ends. This holds for all Pj, 1 ≤ j ≤ |W |. The rightmost part

P|W |+1 still needs to be considered. P|W |+1 has |P|W |+1∩T ′| ends of paths. Q cannot

have a path which extends to the right since P|W |+1 is rightmost. Then P|W |+1 has

at least

⌈

|P|W |+1 ∩ T ′|

2

⌉

right endpoints of paths in Q. Therefore, P(W ) contains

at least

⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌈

|Pj ∩ T ′|

2

⌉

right endpoints in Q. This holds for all

W . Therefore, PP (G;T ) ≥ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







.

The lower bound in Lemma 10 is tight for linear block graphs. The “best” par-

tition needs to be chosen to determine the k-fixed-endpoint path partition number

of G with respect to T . The “best” partition W ∗ can be formed by working left

to right. If the interior of the leftmost block contains no vertices in T , then the

leftmost cut vertex ci to be put into W ∗ will have the smallest index i for which
∣

∣

∣

∣

∣

T ∩
i
⋃

l=1

Bi

∣

∣

∣

∣

∣

is odd. If the interior of the leftmost block contains at least one vertex

in T , then the leftmost cut vertex ci to be put into W ∗ will have the smallest index

i for which

∣

∣

∣

∣

∣

T ∩

(

i
⋃

l=1

Bi

)
∣

∣

∣

∣

∣

is even. Then repeat this process for G −
i
⋃

l=1

Bi. See

Figure 3.3.

When W = ∅, we assume

⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

=

⌈

|P|W |+1 ∩ T ′|

2

⌉

.

Theorem 3. Let G be a linear block graph G and T be a set of k vertices. Then
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Figure 3.3: The square vertices are in T . The triangle vertex is in T ′ − T . This is an
example of a “best” partition for G with respect to T .

PP (G;T ) = max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







where T ′ is defined in Def-

inition 10.

Proof. Induct on the number of blocks β. The lower bound follows from Lemma 10.

Base: Suppose β = 1. Then Λ = ∅ and

max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|PJ ∩ T ′|

2

⌋







=

⌈

|P|W |+1 ∩ T ′|

2

⌉

.

Since G is a clique in this case, PP (G;T ) =

⌈

|T ′|

2

⌉

. If T = ∅, then |T ′| = 1 since

G is a leftmost block without a vertex in T . Since P|W |+1 = G, |P|W |+1 ∩ T ′| = |T ′|.

Therefore, PP (G;T ) = max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







.

Induction: Suppose β ≥ 2.

Case A: Suppose |B1 ∩ T | is even and at least 2 or |B1 ∩ T | = 1 and c1 ∈ T .

By induction, PP (G − B1;T − B1) =

⌈

|P|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

where

W ∗ is optimal on G − B1 with respect to T − B1. Let W ′ = W ∗ + c1 and let

Q1, Q2, . . . , Q|W ′|+1 be the parts of P(W ′) onG. Then Pi = Qi+1 for 1 ≤ i ≤ |W ∗|+1

and Q1 = B1. Since B1 is a clique, B1 can be covered by
|Q1 ∩ T ′|

2
paths. Note that

|Q1 ∩ T ′| is always even since either |B1 ∩ T | is even or |(B1 − c1) ∩ T | = ∅ which

means |(B1 − c1) ∩ T ′| = 1 and |B1 ∩ T ′| = 2. Then a path partition on G with

respect to T is a minimum path partition on G−B1 with respect to T − B1 found
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inductively with
|Q1 ∩ T ′|

2
additional paths. Therefore,

PP (G;T ) ≤ PP (G− B1;T − B1) +
|Q1 ∩ T ′|

2

=

⌈

|P|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

+
|Q1 ∩ T ′|

2

=

⌈

|Q|W ′|+1 ∩ T ′|

2

⌉

+

|W ′|
∑

j=2

⌊

|Qj ∩ T ′|

2

⌋

+

⌊

|Q1 ∩ T ′|

2

⌋

=

⌈

|Q|W ′|+1 ∩ T ′|

2

⌉

+

|W ′|
∑

j=1

⌊

|Qj ∩ T ′|

2

⌋

≤ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







.

Case B: Suppose |B1 ∩ T | is odd and at least three and c1 ∈ T . By induction,

PP (G− (B1− c1);T − (B1− c1)) =

⌈

|PW ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

where W ∗ is

optimal on G−(B1−c1) with respect to T−(B1−c1). Let Q1, Q2, . . . , Q|W ∗|+1 be the

parts of P(W ∗) on G. Then Pi = Qi for 2 ≤ i ≤ |W ∗|+ 1 and Q1 = P1 ∪ (B1 − c1).

Since c1 ∈ T , |(B1 − c1) ∩ T | is even,

⌊

|Q1 ∩ T ′|

2

⌋

=

⌊

|P1 ∩ T ′|

2

⌋

+
|(B1 − c1) ∩ T |

2

and B1 − c1 can be covered by
|(B1 − c1) ∩ T |

2
paths. Then a path partition on G

with respect to T is a minimum path partition on G − (B1 − c1) with respect to
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T − (B1 − c1) found inductively with
|(B1 − c1) ∩ T |

2
additional paths. Therefore,

PP (G;T ) ≤ PP (G− (B1 − c1);T − (B1 − c1)) +
|(B1 − c1) ∩ T |

2

=

⌈

|P|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

+
|(B1 − c1) ∩ T ′|

2

=

⌈

|Q|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Qj ∩ T ′|

2

⌋

≤ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







.

Case C: Suppose |B1 ∩T | is odd or 0 and c1 /∈ T . By induction, PP (G− (B1 −

c1); (T + c1)− (B1 − c1)) =

⌈

|P|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

where W ∗ is optimal

on G− (B1− c1) with respect to (T + c1)− (B1− c1). Let Q1, Q2, . . . , Q|W ∗|+1 be the

parts of P(W ∗) on G. Then Pi = Qi for 2 ≤ i ≤ |W ∗|+ 1 and Q1 = P1 ∪ (B1 − c1).

Additionally, |Q1 ∩ T ′| = |P1 ∩ T ′| − 1 + |(B1 − c1) ∩ T ′|. B1 − c1 can be covered

by

⌈

|(B1 − c1) ∩ T ′|

2

⌉

paths. Then a path partition on G with respect to T is a

minimum path partition on G− (B1− c1) with respect to (T + c1)− (B1− c1) found

inductively with the path ending at c1 joined with the path on B1 − c1 which has

exactly one endpoint in T and

⌊

|(B1 − c1) ∩ T ′|

2

⌋

additional paths. Therefore,

PP (G;T ) ≤ PP (G− (B1 − c1); (T + c1)− (B1 − c1)) +

⌊

|(B1 − c1) ∩ T ′|

2

⌋

=

⌈

|P|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|PJ ∩ T ′|

2

⌋

+

⌊

|(B1 − c1) ∩ T ′|

2

⌋

=

⌈

|Q|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Qj ∩ T ′|

2

⌋

≤ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|PJ ∩ T ′|

2

⌋







.
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Therefore, PP (G;T ) = max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







when G is a

linear block graph.

3.2 Block Graphs

Let G be a block graph and let B be a block identified as a root block.

Definition 11. Identify any vertex v in the interior of the root block B and call it

the root vertex.

Definition 12. In a block graph G, every block Bi other than the root block B has

a unique parent vertex, denoted a(Bi), which is the cut vertex on every path from

B to Bi. All other cut vertices in Bi are children vertices and the set of the vertices

is denoted c(Bi).

Definition 13. In a block graph G with root block B, every cut vertex v has a

unique parent block, denoted b(v), which is the unique block Bi containing v such

that a(Bi) 6= v. All other blocks containing v are children blocks and the set of these

blocks is denoted c(v).

Definition 14. In a block graph G, a leaf block is a block which has no children

vertices.

Note that a leaf block contains exactly one cut vertex except when the block

graph is a single block and the leaf block contains no cut vertices.

Definition 15. A vertex vi in block Bi is below another vertex vj in block Bj if

i 6= j and every path from root block B to Bi contains a(Bj). Then vj is above vi.

A block graph G can be partitioned into pieces to determine the k-fixed-endpoint

path partition number. The parts of the partition will be formed by removing some

subset of the cut vertices and then returning these cut vertices to the component in

which its children blocks reside. See Figure 3.4.
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Figure 3.4: The graph on the right shows a partition formed by removing the vertices
labeled 1, 2, and 3 in the graph on the left and returning the vertices to the
components in which their children blocks reside.

Definition 16. Let G be a block graph with root block B. Let P(W,B), W ⊆ Λ,

denote the partition of G with respect to B which is formed by removing the edges

{vw|v ∈ W,w ∈ b(v)}.

Let P0 be the part of P(W,B) which contains the vertices in B −W . Note that

P0 may be empty. Let Pv, v ∈ W , be the other parts of P(W,B) with root vertex

v. Note that all parts of P(W,B) are block graphs.

Definition 17. Let G be a block graph with root block B. Let EP(W,B) denote the

extended partition of G with respect to B which is formed by adding a pendant edge

and vertex adjacent to each root vertex v in Pv, v ∈ W .

Let P ′
v, v ∈ W , denote the parts of an extended partition on G with respect to

B with root vertex v. Note that these parts are block graphs by Lemma 4. See

Figure 3.5 which is the extended partition of the partition in Figure 3.4.

Lemma 11. Let G be a block graph with root vertex B and an extended partition

EP(W,B). Then

PP (G;T ) ≥ PP (P0;T0) +
∑

v∈W

[PP (P ′
v;Tv)− 1]

where T0 = T ∩ P0 and Tv = T ∩ P ′
v.
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Figure 3.5: The graph on the right is the extended partition of the graph on the right
with the vertices labeled 1, 2, and 3 in the set W . The triangle vertices are
the vertices added to P(W,B) to form EP(W,B).

Proof. Consider a path partition Q on G with respect to T . Consider a part P ′
v

of EP(W,B). P ′
v can be covered by PP (P ′

v;Tv) paths. Then Pv contains at least

PP (P ′
v;Tv)−1 paths which do not have v as an end. P0 can be covered by PP (P0;T0)

paths. Since P0 does not have a root vertex, no path ends at the root vertex. Then a

path partition on G with respect to T has at least PP (P0;T0)+
∑

v∈W

[PP (P ′
v;Tv)− 1]

paths. If a path is contained in multiple blocks, it will end at the root vertex in

all but one part Pv where it gets counted. Therefore, PP (G;T ) ≥ PP (P0;T0) +
∑

v∈W

[PP (P ′
v;Tv)− 1].

Observe that the interior of leaf blocks in parts Pv of P(W,B) must contain an

end of a path since each leaf block contains exactly one cut vertex. If no vertex in

T is in the interior of a leaf block, then an arbitrary vertex in the interior can be

chosen to be added to T in order to account for the end found in the leaf block.

Figure 3.6 shows the vertices added to T for the given partition.

Definition 18. For a block graph G with root block B and partition P(W,B), let

T ′(W,B) = T ∪ {vi|i ∈ I} where vi is an arbitrary vertex in the interior of a leaf

block Bi in Pv if (Bi − ci) ∩ T = ∅ where ci is the cut vertex in Bi.

Note that the shorthand T ′ will be used to represent T ′(W,B) when W and B

are clear from context. Creating T ′ will not increase the size of a minimum path
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Figure 3.6: The vertices labeled 1,2 and 3 are cut vertices which form the partition. The
square vertices are in T and the triangle vertices are added to T .

partition on G with respect to T . The vertices added to T to create T ′ were chosen

since they can be ends in a minimum path partition on G respect to T restricted to

the parts in P(W,B).

Lemma 12. Let G be a block graph with root vertex v ∈ B and T ′(W,B) as defined

in Definition 18. Then PP (Pv;T ) = PP (Pv;T
′) for all v ∈ W .

Proof. Suppose Pv is a single block. If T = ∅, then T ′ 6= ∅. Since G is a clique,

T = ∅, and |T ′| = 1, PP (Pv;T ) = 1 and PP (Pv;T
′) = 1. If T 6= ∅, then T = T ′.

Then PP (Pv;T ) = PP (Pv;T
′).

Suppose Pv is not a single block. Then every leaf block in Pv must contain an

end of a path in every minimum path partition on Pv with respect to T . If a leaf

block does not contain an end of a path, then the path must enter the block, cover

all vertices in the block, then leave the block. Since a leaf block has exactly one cut

vertex, this is not possible without either using the cut vertex twice or having an

end in the block. Then a minimum path partition on Pv with respect to T will have

ends in each leaf block, including those which contain no vertices in T , and thus is

also a minimum path partition on Pv with respect to T ′.

Therefore, PP (Pv;T ) = PP (Pv;T
′).

Lemma 13. Let G′ be a block graph G with root vertex v, a pendant edge and vertex

adjacent to v, and W = ∅. Then PP (G′;T )−1 ≥
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv where Ci are
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uF vG wH

Figure 3.7: The block graph F on the left has root vertex u and δu = 1 since at least
one component of F −u contains an odd number of vertices in T ′. The block
graph G in the middle has root vertex v and δv = 0 since G − v has no
component which contains an odd number of vertices. The block graph H

on the right has root vertex w and δw = 0 since w ∈ T .

the components of G − v, δv =







1 if v /∈ T and |Ci ∩ T ′| is odd for some i

0 otherwise
, and

T ′ is defined in Definition 18.

Figure 3.7 illustrates when δv will be 0 or be 1.

Proof. Case A: Suppose v /∈ T and has exactly one child block. If |T ′| is odd, then

δv = 1 and by Lemma 3 with U = v,

PP (G′;T )− 1 ≥

⌈

|T ′|

2

⌉

+ 1− |v| − 1

=

⌈

|T ′|

2

⌉

− 1

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− 1.

If |T ′| is even, then δv = 0 and by lemma 3 with U = ∅,

PP (G′;T )− 1 ≥

⌈

|G′ ∩ T ′|

2

⌉

=

⌈

|T ′|

2

⌉

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv

since |G′ ∩ T ′| = |T ′|+ 1 and |T ′| is odd.
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Case B: Suppose v ∈ T and has exactly one child block. Then δv = 0 and by

Lemma 3 with U = v,

PP (G′;T )− 1 ≥

⌈

|T ′|

2

⌉

+ 1− |v − T | − 1

=

⌈

|T ′|

2

⌉

+ 1− 0− 1

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv.

Case C: Suppose v /∈ T , has at least two children blocks, and |Ci ∩ T ′| is even

for all i. Then δv = 0 and by Lemma 3 with U = ∅,

PP (G′;T )− 1 ≥

⌈

|G′ ∩ T ′|

2

⌉

− 1

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

+ 1− 1

=
∑

i

⌈

|Ci ∩ T |

2

⌉

− δv

since |G′ ∩ T ′| = |T ′|+ 1 given |Ci ∩ T ′| is even for all i.

Case D: Suppose v /∈ T , has at least two children blocks, and |Ci ∩ T ′| is odd

for some i. Then δv = 1 and by Lemma 3 with U = v,

PP (G′;T )− 1 ≥
∑

i

⌈

|Ci ∩ T ′|

2

⌉

+ 1− |v| − 1

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

−+1− 1− 1

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv.

Case E: Suppose v ∈ T and has at least two children blocks. Then δv = 0 and
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by Lemma 3 with U = v,

PP (G′;T )− 1 ≥
∑

i

⌈

|Ci ∩ T ′|

2

⌉

+ 1− |v − T | − 1

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

+ 1− 0− 1

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv.

Therefore, PP (G′;T )− 1 ≥
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv.

The lower bound in Lemma 13 is tight for block graphs. The “best” partition

needs to be chosen to determine the k-fixed-endpoint path partition number of G

with respect to T . The “best” partition W ∗ can be formed by working bottom to

top. For a cut vertex ci which only has leaf blocks as children blocks, the cut vertex

will be in W ∗ in one of two situations:

• If ci ∈ T and the interior of exactly one child block contains either no vertices

in T or an odd number of vertices in T , then ci ∈ W ∗.

• If ci /∈ T and all children blocks contain an even, nonzero number of vertices

in T or at least two children blocks contain either no vertices in T or an odd

number of vertices in T , then ci ∈ W ∗.

If ci is a cut vertex where all cut vertices below ci have been considered and are not

in W ∗, then consider the components of Pci − ci where Pci is the graph below ci.

Such a ci will be in W ∗ in one of two situations:

• If ci ∈ T and exactly one component of Pci − ci contains an odd number of

vertices in T and leaves which contain no vertices in T , then ci ∈ W ∗.

• If ci /∈ T and every component of Pci − ci contains an even number of vertices

in T and leaves which contain no vertices in T or at least two components

which contain an odd number of vertices in T and leaves which contain no

vertices in T , then ci ∈ W ∗.
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Figure 3.8: The graph on the right is the “best” partition W ∗ for the graph on the left.
Vertices labeled 1, 2, and 3 are in W ∗. Square vertices are in T .

Repeat this process for G− Pci. There exists a minimum path partition on G with

respect to T such that all the paths will be contained within a part of such a “best”

partition. See Figure 3.8.

Theorem 4. Let G be a block graph with root block B. Then

PP (G;T ) = max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

where T ′ = T ′(W,B) as defined in Definition 18 and δv is as defined in Lemma 13.

When W = ∅, we assume that

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

=

⌈

|P0 ∩ T ′|

2

⌉

.

Proof. Induct on the number of blocks β in G. The lower bound follows from Lemma

13.
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Base: Suppose β = 1. Then G is a complete graph and Λ = ∅. G can be covered

by

⌈

|P0 ∩ T ′|

2

⌉

paths since G is a complete graph and

PP (G;T ) =

⌈

|P0 ∩ T ′|

2

⌉

= max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

.

Induction: Suppose β ≥ 2. Let v′ ∈ Λ be a cut vertex such that all of its

children blocks are leaf blocks in G. Let Pv′ be the induced subgraph of G on v′ and

its children blocks.

Case A: Suppose v′ ∈ T and at least one component of Pv′ − v′ contains no

vertices in T or an odd number of vertices in T . By induction,

PP (G− Pv′ ;T − Pv′) =

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

where W ∗ is an optimal subset of Λ. Let W ′ = W ∗ + v′ and let Q0, Qv, v ∈ W ′ be

the parts of the partition P(W ′, B) on G. Then P0 = Q0, Pv = Qv for all v ∈ W ∗,

and Qv′ = Pv′ . Each component Ci of Pv′ − v′ can be covered by

⌈

|Ci ∩ T ′|

2

⌉

paths

since each component is a clique. Then v′ can be made adjacent to a path in Pv′ −v′

which has exactly one end in T ′ which exists since at least one component contains

an odd number of vertices in T ′. Thus, Pv′ can be covered by
∑

i

⌈

|Ci ∩ T ′|

2

⌉

=

∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv′ since δv′ = 0. Then a path partition on G with respect to T

is a minimum path partition on G− Pv′ with respect to T − Pv′ found inductively
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with
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′ additional paths. Therefore,

PP (G;T ) ≤ PP (G− Pv′ ;T − Pv′) +
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′

=

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

+
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′

=

⌈

|Q0 ∩ T ′|

2

⌉

+
∑

v∈W ′

(

∑

Ci∈Qv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

≤ max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

.

Case B: Suppose v′ /∈ T and every component of Pv′ − v′ contains an even,

nonzero number of vertices in T . By induction,

PP (G− Pv′ ;T − Pv′) =

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

where W ∗ is an optimal subset of Λ. Let W ′ = W ∗+v′ and let Q0, Qv, v ∈ W ′ be the

parts of the partition P(W ′, B) on G. Then P0 = Q0, Pv = Qv for all v ∈ W ∗, and

Qv′ = Pv′ . Each component of Pv′ − v′ can be covered by

⌈

|Ci ∩ T ′|

2

⌉

paths since

each component is a clique. Then v′ can be inserted into a path in Pv′ − v′. Thus,

Pv′ can be covered by
∑

i

⌈

|Ci ∩ T ′|

2

⌉

=
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv′ since δv′ = 0. Then

a path partition on G with respect to T is a minimum path partition on G − Pv′

with respect to T − Pv′ found inductively with
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′ additional
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paths. Therefore,

PP (G;T ) ≤ PP (G− Pv′ ;T − Pv′) +
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′

=

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

+
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′

=

⌈

|Q0 ∩ T ′|

2

⌉

+
∑

v∈W ′

(

∑

Ci∈Qv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

≤ max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

.

Case C: Suppose v′ /∈ T and at least two components of Pv′ − v′ contain no

vertices in T or an odd number of vertices in T . By induction,

PP (G− Pv′ ;T − Pv′) =

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

where W ∗ is an optimal subset of Λ. Let W ′ = W ∗ + v′ and let Q0, Qv, v ∈ W ′

be the parts of the partition P(W ′, B) on G. Then P0 = Q0, Pv = Q − v, for all

v ∈ W ∗, and Qv′ = Pv′ . Each component of Pv′ − v′ can be covered by

⌈

|Ci ∩ T ′|

2

⌉

paths since each component is a clique. Then v′ can connect two paths which have

exactly one endpoint in T ′. Thus, Pv′ can be covered by
∑

i

⌈

|Ci ∩ T ′|

2

⌉

− 1 =

∑

i

⌈

|Ci ∩ T ′|

2

⌉

− δv′ since δv′ = 1. Then a path partition on G with respect to T

is a minimum path partition on G− Pv′ with respect to T − Pv′ found inductively
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with
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′ additional paths. Therefore,

PP (G;T ) ≤ PP (G− Pv′ ;T − Pv′) +
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′

=

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

+
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− δv′

=

⌈

|Q0 ∩ T ′|

2

⌉

+
∑

v∈W ′

(

∑

Ci∈Qv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

≤ max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

.

Case D: Suppose v ∈ T and every component of Pv′ − v′ contains an even,

nonzero number of vertices in T . By induction,

PP (G− (Pv′ −v′);T − (Pv′ −v′)) =

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

.

Let Q0, Qv, v ∈ W ∗ be the parts of the partition P(W ∗, B) on G. Then P0 =

Q0, Pv = Qv for v ∈ W ∗ − v∗, and Qv∗ = Pv∗ ∪ Pv′ where Pv∗ contains v′ in

G − (Pv′ − v′). Then Pv′ − v′ can be covered by
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

paths and

∑

Ci∈Pv∗−v∗

⌈

|Ci ∩ T ′|

2

⌉

+
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

=
∑

Ci∈Qv∗−v∗

⌈

|Ci ∩ T ′|

2

⌉

since each com-

ponent of Pv′ − v′ has an even number of vertices in T ′. Then a path partition

on G with respect to T is a minimum path partition on G − (Pv′ − v′) with re-

spect to T − (Pv′ − v′) found inductively with
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

additional paths.
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Therefore,

PP (G;T ) ≤ PP (G− (Pv′ − v′);T − (Pv′ − v′)) +
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

=

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

+
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

=

⌈

|Q0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Qv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

≤ max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

.

Case E: Suppose v /∈ T and exactly one component of Pv′ − v′ contains no

vertices in T or an odd number of vertices in T . By induction, PP (G−(Pv′−v′); (T+

v′)− (Pv′ − v′)) =

⌈

|P0 ∩ (T ′ + v′)|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ (T ′ + v′)|

2

⌉

− δv

)

. Let

Q0, Qv, v ∈ W ∗ be the parts of the partition P(W ′, B) onG. Then P0 = Q0, Pv = Qv

for v ∈ W ∗ − v∗, and Qv∗ = Pv∗ ∪ Pv′ where Pv∗ contains v′ in G− (Pv′ − v′). Then

Pv′ − v′ can be covered by
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

paths and the path in G− (Pv′ − v′)

which has endpoint v′ can be combined with the path in Pv′ − v′ which has exactly

one endpoint in T ′. Then
∑

Ci∈Pv∗−v∗

⌈

|Ci ∩ (T ′ + v′)|

2

⌉

+
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− 1 =

∑

Ci∈Qv∗−v∗

⌈

|Ci ∩ T ′|

2

⌉

since exactly one component of Pv′ − v′ has an odd number of

vertices in T ′. Then a path partition on G with respect to T is a minimum path

partition on G − (Pv′ − v′) with respect to (T + v′) − (Pv′ − v′) found inductively
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with
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− 1 additional paths. Therefore,

PP (G;T ) ≤ PP (G− (Pv′ − v′); (T + v′)− (Pv′ − v′)) +
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− 1

=

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Pv−v

⌈

|Ci ∩ (T ′ + v′)|

2

⌉

− δv

)

+
∑

Ci∈Pv′−v′

⌈

|Ci ∩ T ′|

2

⌉

− 1

=

⌈

|Q0 ∩ T ′|

2

⌉

+
∑

v∈W ∗

(

∑

Ci∈Qv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)

≤ max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

.

Note that in this case, δv∗ will be the same whether the graph G− (Pv′ − v′) or G

is considered.

Therefore,

PP (G;T ) = max
W⊆Λ

{

⌈

|P0 ∩ T ′|

2

⌉

+
∑

v∈W

(

∑

Ci∈Pv−v

⌈

|Ci ∩ T ′|

2

⌉

− δv

)}

.
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Chapter 4

Unit Interval Graphs

Efficient algorithms exist for unit interval graphs for 1HP [5], 2HP [5], and the k-

fixed-endpoint path partition problem [5, 28]. In this chapter, min-max theorems

for the k-fixed-endpoint path partition number for 2-connected unit interval graphs

and unit interval graphs with cut vertices are discussed. 2-connected unit interval

graphs require

⌈

|T |

2

⌉

paths except in a special case when one additional path is

required. Consider the following definitions.

Definition 19. An interval representation of a graph is a family of closed intervals

assigned to the vertices so that vertices are adjacent if and only if the corresponding

intervals intersect.

Note that not all graphs have an interval representation.

Definition 20. A unit interval graph has an interval representation where all in-

tervals have unit length.

It is well known that a unit interval representation can be drawn so that the

intervals have distinct endpoints.

Definition 21. A proper interval graph has an interval representation where no

interval is properly contained within another.

Theorem 5. [35] A unit interval graph is a proper interval graph.
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The following two lemmas describe the path partition problem on 2-connected

unit interval graphs and connected unit interval graphs, respectively.

Lemma 14. [32] If G is a unit interval graph, then G is Hamiltonian if and only

if G is 2-connected.

This means every 2-connected unit interval graph contains a Hamiltonian cycle.

Lemma 15. [34] Every connected unit interval graph contains a Hamiltonian path.

4.1 2-Connected Unit Interval Graphs

Determining a characterization for the k-fixed-endpoint path partition number for

a 2-connected unit interval graph will provide a value for the maximal 2-connected

subgraphs of a connected unit interval graph. Consider an interval representation

I of a unit interval graph G with distinct endpoints. Label the intervals of I,

1, 2, . . . , n, such that l1 < l2 < · · · < ln−1 < ln where li is the left endpoint of

interval i. Label the vertices of G v1, v2, . . . , vn where vi corresponds to interval i.

Definition 22. A vertex vi is left of vertex vj in a unit interval graph G if i < j. A

vertex vi is leftmost if i = 1. Similarly, vi is right of vj if i > j and vi is rightmost

if i = n.

Label the vertices of T t1, t2, . . . , t|T | such that ti is the ith leftmost vertex in T .

Note that every vertex in T has two labels, ti and vf(i) where f is a function which

maps the index of t to the index of v.

Definition 23. An available endpoint in a path partition on G with respect to T is

a vertex not in T which is an end of a path in the path partition or a vertex in T

which is a trivial path in the path partition.

Definition 24. In a unit interval graph G, two cut sets, X1 = {vi, vi+1} and X2 =

{vj, vj+1}, i < j, are distinct if j > i+ 2.

The following lemma is a well known result.
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Lemma 16. A subgraph H of a 2-connected unit interval graph G which contains

vertices vi, vi+1, . . . , vi+j is a 2-connected unit interval graph.

Lemma 17. Let G be a 2-connected unit interval graph. Then

PP (G;T ) ≥











|T |

2
+ 1 if T has

|T |

2
pairwise distinct cut sets

⌈

|T |

2

⌉

otherwise

Proof. By Lemma 3 with U = ∅, PP (G;T ) ≥

⌈

|T |

2

⌉

.

Suppose T has
|T |

2
pairwise distinct cut sets. Then c(G − T ) =

|T |

2
+ 1. By

Lemma 3 with U = T ,

PP (G;T ) ≥ max
U⊆V

{cT (G− U)− |S|}

≥ cT (G− T )− |∅|

=
|T |

2
+ 1− 0.

Therefore,

PP (G;T ) ≥











|T |

2
+ 1 if T has

|T |

2
pairwise distinct cut sets

⌈

|T |

2

⌉

otherwise.

The following lemma is another well known result.

Lemma 18. If G is a 2-connected unit interval graph, then vi and vi+2 are adjacent

for all 1 ≤ i ≤ n− 2.

Proof. Suppose not. Since G is a unit interval graph and vivi+2 /∈ E(G), N(vi) ⊆

{v1, v2, . . . , vi−2, vi−1, vi+1} and N(vi+2) ⊆ {vi+1, vi+3, vi+4, . . . , vn−1, vn}. Then G−

vi+1 has two components since N(vi) ∩ N(vi+2) = ∅. This contradicts G being

2-connected. Therefore, vivi+2 ∈ E(G) for 1 ≤ i ≤ n− 2.
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Mertzios and Unger [28] use Stair Normal Interval Representation (SNIR) form of

a unit interval graph, initially described in [27], to characterize 2HP. Their theorems

are below.

Theorem 6. [28] Let G be a connected proper interval graph and u, v be two vertices

of G, with v ≥ u + 2. There is a Hamiltonian path in G with u, v as endpoints if

and only if the submatrices H1,u+1 and Hv−1,n of HG are two-way matrices.

Theorem 7. [28] Let G be a connected proper interval graph and u be a vertex of

G. There is a Hamiltonian path in G with u, u + 1 as endpoints if and only if HG

is a two-way matrix and either u ∈ {1, n − 1} or the vertices u − 1 and u + 2 are

adjacent.

These theorems can be restated without any knowledge of SNIR form. When

HG mentioned above is two-way, the unit interval graph G is 2-connected. It can

be verified that the following lemma is equivalent to Theorems 6 and 7. The proofs

that follow are shorter and included for completeness.

Lemma 19. A connected unit interval graph G has a Hamiltonian path with end-

points vi, vj, i < j, if and only if at least one of the following two conditions is

satisfied.

• In the case that i + 1 < j − 1, the subgraphs, H1, H2, of G which have dis-

joint vertex sets {v1, v2, . . . , vi+1} and {vj−1, vj , . . . , vn}, respectively, are two-

connected (restatement of Theorem 6).

• In the case that i + 1 = j, G is 2-connected and vi, vj do not form a cut set

(restatement of Theorem 7).

Lemma 19 can be restated in terms of when a Hamiltonian path will not exist

rather than when a Hamiltonian path does exist as follows.

Lemma 20. A connected unit interval graph G has a Hamiltonian path with end-

points vi, vj, i < j, except when there exists a cut vertex in {v1, v2, . . . , vi} or

{vj, vj , . . . , vn} or when vi and vj form a cut set.
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Proof. (⇒) Suppose H1 is connected but not 2-connected. Then there exists a with

a < i such that va−1va+1 /∈ E(G). Then an endpoint of any Hamiltonian path on

G must be contained within the set {v1, v2, . . . , va−1} which contains neither vi nor

vj . Therefore, no desired Hamiltonian path exists. Similarly, if H2 is connected but

not 2-connected, any Hamiltonian path will have an endpoint in {vb+1, vb+3, . . . , vn},

b > j, which contains neither vi nor vj .

Suppose G is 2-connected and vi, vj form a cut set. Then j = i+1 and vi−1vi+2 /∈

E(G). Therefore, an endpoint of any Hamiltonian path on G must be contained

within the set {v1, v2, vi−1} which contains neither vi nor vj . Therefore, no desired

Hamiltonian path exists.

(⇐) Define the following paths.

P1 =







vivi−2 · · · v4v2v1v3 · · · vi−3vi−1 if i is even

vivi−2 · · · v3v1v2v4 · · · vi−3vi−1 if i is odd

P2 =







vi+1vi+2 · · · vj−2vj−1 if j 6= i+ 1

∅ if j = i+ 1

P3 =







vj+1vj+3 · · · vn−2vnvn−1vn−3 · · · vj+2vj if j and n have different parity

vj+1vj+3 · · · vn−3vn−1vnvn−2 · · · vj+2vj if j and n have the same parity

If i = 1, then P1 = v1. If j = n, then P3 = vn.

If H1 and H2 are 2-connected with disjoint vertex sets or if G is 2-connected and

vi, vj do not form a cut set, then P1P2P3 is a Hamiltonian path on G with endpoints

vi, vj . Figure 4.1 illustrates some possibilities for such a path.

The following lemma will be used in the proof of Theorem 8.

Lemma 21. If G is a 2-connected unit interval graph and {va, va+1}, forms a cut

set on G, then there exists a path with endpoints va, va+1 which contains the vertices

{v1, v2, . . . , va−2, va−1} and there exists a path with endpoints va, va+1 which contains

the vertices {va+2, va+3, . . . , vn−1, vn}.
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Figure 4.1: A interval representation of a 2-connected unit interval graph is shown in
the upper left. The corresponding unit interval graph is shown in the upper
right. The lower left graph illustrates a path when a = 3 and b = 7. The
lower right graph illustrates a path when a = 1 and b = 10.
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Figure 4.2: The graph on the left is a 2-connected unit interval graph. The graph in
the center shows a path in bold with endpoints a = 3 and a+ 1 = 4 which
contains {1, 2, 3, 4}. The graph on the right shows a path in bold with
endpoints a = 3 and a+ 1 = 4 which contains {3, 4, 5, 6, 7, 8, 9, 10}.

Proof. Since {va, va+1} form a cut set, va−1va+2 /∈ E(G). By Lemma 19 applied to

G′ = {v1, v2, . . . , va, va+1}, there exists a path with endpoints va, va+1 which contains

the vertices {v1, v2, . . . , va−2, va−1}. By Lemma 19 applied to G′ = {va, va+1, . . . , vn},

there exists a path with endpoints va, va+1 which contains the vertices

{va+2, va+3, . . . , vn−1, vn}. Figure 4.2 illustrates these two paths.

The lower bound in Lemma 17 yields the k-fixed-endpoint path partition number

for 2-connected unit interval graphs. If T = ∅, then say that T forms 0 pairwise

distinct cut sets. If all vertices in T form pairwise distinct cut sets, then paths can

be formed all to the left or all to the right of the cut sets which leaves a set of

vertices on the right end or left end, respectively, which need an additional path. If

at least one vertex in T is not part of a pairwise distinct cut set, then paths can
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Figure 4.3: The square vertices are in T . In the graph G on the left, the vertices in T

form 3 pairwise distinct cut sets. Therefore, PP (G;T ) = 4. In the graph
H on the right, the vertices in T do not form 3 pairwise distinct cut sets.
Therefore, PP (G;T ) = 3. A minimum path partition is shown in bold for
each graph.

be created as in Lemma 19 so that all vertices in G are covered by

⌈

|T |

2

⌉

paths.

This can be proved using induction on the size of T . A leftmost portion of G can

be removed and induction applied to the remaining rightmost portion. The vertices

in the leftmost portion are determined by the two leftmost vertices in T , t1 and t2.

Figure 4.3 illustrates the two possible values for PP (G;T ) when G is a 2-connected

unit interval graph.

Theorem 8. Let G be a 2-connected unit interval graph. Then

PP (G;T ) =











|T |

2
+ 1 if T has

|T |

2
pairwise distinct cut sets

⌈

|T |

2

⌉

otherwise
.

Proof. Induct on the size of T .

Base: Suppose |T | = 0. Then by Lemma 14, G has a Hamiltonian cycle and

thus a Hamiltonian path. Since T = ∅, T forms 0 pairwise distinct cut sets and

PP (G;T ) =
|T |

2
+ 1 = 1.

Induction: Suppose |T | ≥ 1. Label the vertices in T as before.
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Figure 4.4: Square vertices are in T . {3, 4}, {6, 7}, and {9, 10} form distinct cut sets.
G′ = {11, 12, 13, 14, 15, 16} is used for induction.

Case 1: Suppose {t1, t2} forms a cut set on G. For maximal i, suppose

{t1, t2}, {t3, t4}, {t5, t6}, . . . , {ti, ti+1} form distinct cut sets on G. Let G′ be the

subgraph of G which contains the vertices {vj+1, vj+2, . . . vn} where ti+1 = vj . See

Figure 4.4. G′ is 2-connected by Lemma 16. Since i is the largest index which

satisfies the above, {ti+2, ti+3} either does not form a cut set in G or if {ti+2, ti+3}

does form a cut set in G, then ti+2 = vj+1. Therefore, G′ will not have
|G′ ∩ T |

2
distinct cut sets unless G′ ∩ T = ∅. By induction,

PP (G′;T ∩G′) =











1 if T ∩G′ = ∅
⌈

|T ∩G′|

2

⌉

if T ∩G′ 6= ∅

=











1 if T ∩G′ = ∅
⌈

|T | − (i+ 1)

2

⌉

if T ∩G′ 6= ∅
.

Lemma 21 can be applied to the subgraphs {v1, v2, . . . , vf(1), vf(2)},

{vf(2)+1, vf(2)+2, . . . , vf(3), vf(4)}, . . ., {vf(i−1)+1, vf(i−1)+2, . . . , vf(i), vf(i)+1)}. Then

G − G′ can be covered with
i+ 1

2
paths and a path partition on G is these paths
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Figure 4.5: Square vertices are in T . {t1, t2} = {3, 6} does not form a cut set. G′ =
{9, 10, 11, 12, 13, 14, 15, 16} is used for induction.

along with the minimum path partition on G′ found inductively. Therefore,

PP (G;T ) ≤ PP (G′;T ∩G′) +
i+ 1

2

=
i+ 1

2
+











1 if T ∩G′ = ∅
⌈

|T | − (i+ 1)

2

⌉

if T ∩G′ 6= ∅

=











|T |

2
+ 1 if T forms

|T |

2
pairwise distinct cut sets

⌈

|T |

2

⌉

otherwise

since i+ 1 is even.

Case 2: Suppose {t1, t2} does not form a cut set on G. Let G′ be the subgraph

of G which contains the vertices {t3, vf(3)+1, . . . , vn}. See Figure 4.5. By Lemma

16, G′ is 2-connected. By induction, PP (G′;T ∩ G′) =

⌈

|T ∩G′|

2

⌉

=

⌈

|T | − 2

2

⌉

=
⌈

|T |

2

⌉

−1 since G′ cannot have
|T ∩G′|

2
pairwise distinct cut sets since t3 is leftmost

in G′. Since G − G′ is 2-connected by Lemma 16, G − G′ has a Hamiltonian path

with endpoints t1 and t2 by Lemma 19. Then a path partition on G is this path with
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t1, t2 endpoints and the minimum path partition on G′ found inductively. Therefore,

PP (G;T ) ≤ PP (G′;T ∩G′) + 1

=

⌈

|T

2

⌉

− 1 + 1

=

⌈

|T |

2

⌉

since T does not form
|T |

2
pairwise distinct cut sets on G.

Therefore,

PP (G;T ) =











|T |

2
+ 1 if T has

|T |

2
pairwise distinct cut sets

⌈

|T |

2

⌉

otherwise
.

Note that when T forms
|T |

2
pairwise distinct cut sets on G, the minimum path

partition created in the proof of Theorem 8 contains
|T |

2
paths with two endpoints

in T and one path with no endpoints in T . Alternatively, a minimum path partition

exists in this case which has two paths with exactly one endpoint in T and v1 and vn

are endpoints of paths when v1, vn /∈ T . The following corollaries will be useful when

considering the k-fixed-endpoint path partition problem on unit interval graphs with

cut vertices.

Corollary 1. Let G be a 2-connected unit interval graph where T forms
|T |

2
cut

sets. There exists a minimum path partition on G with respect to T which contains

two paths with exactly one endpoint in T and v1, vn are endpoints of paths.

Proof. Apply Theorem 8 to G with the set T ′ = T + {v1, vn}. Then PP (G;T ′) =
⌈

|T ′|

2

⌉

=
|T |

2
+ 1 and v1, vn are ends of paths in the minimum path partitions on G

with respect to T ′ and thus available endpoints in the minimum path partitions on

G with respect to T .
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Corollary 2. Let G be a 2-connected unit interval graph where T has odd size.

There exists a minimum path partition on G with respect to T such that v1 or vn is

an available endpoint.

Proof. Apply Theorem 8 to G with the set T ′ = T+v1. Then PP (G;T ) =

⌈

|T ′|

2

⌉

=
⌈

|T |

2

⌉

and v1 is an end of a path in the minimum path partition on G with respect to

T ′ and thus an available endpoint in the minimum path partition on G with respect

to T . Similarly, Theorem 8 applied to G with the set T ′ = T + vn shows there

exists a minimum path partition on G with respect to T where vn is an available

endpoint.

Corollary 3. Let G be a 2-connected unit interval graph where T has even size and

T does not form
|T |

2
pairwise distinct cut sets. There exists a path partition on G

with respect to T with size
|T |

2
+1 such that v1 and vn are available endpoints except

when v1 = t1,vn = t|T |, and {t2, t3, . . . t|T |−1} form
|T |

2
− 1 pairwise disjoint cut sets.

Proof. Apply Theorem 8 to G with the set T ′ = T + {v1, vn}. Then PP (G;T ) =
⌈

|T ′|

2

⌉

=

⌈

|T |

2

⌉

+1 and v1 and vn are ends of paths in the minimum path partition

on G with respect to T ′ and thus available endpoints in the minimum path partition

on G with respect to T .

4.2 Connected Unit Interval Graphs

In this section, a characterization for the k-fixed-endpoint path partition number on

connected unit interval graphs is considered. Connected unit interval graphs have

a structure similar to linear blocks graphs. Each maximal 2-connected subgraph

(or block) of a unit interval graph is a 2-connected unit interval graph, and these

blocks can be ordered linearly from left to right. The characterization for the k-

fixed-endpoint path partition number on unit interval graphs is the same as the

characterization for linear block graphs except there is one additional situation which
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causes a vertex to be added to T ′. First, definitions and notation will be recalled

then lemmas which lead into the min-max theorem for the k-fixed-endpoint path

partition number of unit interval graphs.

A connected unit interval graph has β blocks where each block is a 2-connected

unit interval graph. Label each block Bi, 1 ≤ i ≤ β, where the vertices in Bi

have smaller indices than the vertices in Bj when i < j. Label each cut vertex ci,

1 ≤ i ≤ β − 1. Note that the cut vertices have two or three labels, ci, vg(i), and

potentially tj where g maps the index of c to the index of v.

Recall Λ is the set of cut vertices in a unit interval graph G. A block Bi is left

of block Bj if i < j. A block Bi is right of block Bj if i > j. The leftmost block

has smallest index while the rightmost block has largest index. For a unit interval

graph G, let P(W ), W ⊆ Λ, be a partition of G which is a set of |W |+ 1 induced

subgraphs formed by removing the set of edges {vivj ∈ E(G)|vi ∈ W, i < j} where

E(G) is the set of all edges in G.

Let ij be the index of the jth leftmost vertex inW ; that is, ci1 , ci2, . . . , ci|W |
where

i1 < i2 < . . . < i|W |. Then each part Pj of P(W ) can be defined as P1 =

i1
⋃

l=1

B1,

Pj =

ij
⋃

l=ij−1+1

Bl − cij−1
for 2 ≤ j ≤ |W | and P|W |+1 =

β
⋃

l=i|W |+1

Bl − ci|W |
. Note that

Bij is rightmost in part Pj and P(W ) contains |W |+ 1 parts.

In addition to the vertices which are added to T ′ for linear block graphs, when

the leftmost block Bj
1 of a part Pj has

|Pj ∩ T |

2
pairwise distinct cut sets in the

interior of the block Bj
1, then a vertex to the right of all vertices in Pj ∩ T in block

Bj
1 will be added to T .

Definition 25. For a partition P(W ) on a connected unit interval graph G, let

T ′(W ) = T ∪ {uj|j ∈ J} where J ⊆ [|W |+ 1], j ∈ J when the leftmost block Bj
1 of

Pj with cut vertex c satisfies (Bj
1−c)∩T = ∅ or when (Bj

1−c) contains
|(Bj

1 − c) ∩ T |

2
pairwise distinct cut sets, and uj is an arbitrary vertex in the interior of Bj

1 which

is left of all vertices in Bj
1 ∩ T .

When W is clear from context, T ′ will be used to represent T ′(W ).
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Lemma 22. For a unit interval graph G with T and with W a subset of the cut

vertices, PP (Pj;T ∩Pj) = PP (Pj;T
′(W )∩Pj) where T ′ is as defined in Definition

25.

Proof. Let Q be a minimum path partition on G with respect to T . Suppose Q

restricted to Pj has no endpoint in the interior of the leftmost block Bj
1 of part Pj of

the partition. Then a path must enter Bj
1, traverse all vertices in the interior, and

leave Bj
1. Paths can only enter and leave a block at cut vertices. Thus, Bj

1 must

have two cut vertices to satisfy the path condition. Then Bj
1 cannot be leftmost in

Pj since the leftmost block has exactly one cut vertex. Therefore, a contradiction

exists, Bj
1, 1 ≤ j ≤ |W |+ 1, must contain an end of a path of Q restricted to Pj.

Suppose Bj
1 has

|Bj
1 ∩ T |

2
pairwise distinct cut sets. Then by Theorem 8 applied

to Bj
1 − c with T ∩ (Bj

1 − c), Bj
1 has

|Bj
1 ∩ T |

2
+ 1 paths. By Lemma 21, there exists

a path in Q restricted to Pj with an endpoint in Bj
1 to the left of all vertices in

T ∩ (Bj
1 − c).

Therefore, PP (Pj;T ∩ Pj) = PP (Pj;T
′(W ) ∩ Pj).

Note that

|Pj ∩ T ′| =























|Pj ∩ T |+ 1 if (Bj
1 − c) ∩ T = ∅ or

Bj
1 contains

|(Bj
1 − c) ∩ T |

2
pairwise distinct cut sets

|Pj ∩ T | otherwise

.

Lemma 23. Let G be a unit interval graph G and T be a set of k vertices. Then

PP (G;T ) ≥ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T |

2

⌋







where T ′ is defined in Defi-

nition 25.

When W = ∅, we assume that

max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







=

⌈

|G ∩ T ′|

2

⌉

.
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Proof. Consider a partition P(W ) and a minimum path partition Q on G with

respect to T . For each part Pj ⊆ P(W ) count the number of paths in Q which have

right endpoints in Pj . If a path in Q extends to the right of Pj, then Pj contains

part of at least

⌈

|Pj ∩ T ′|+ 1

2

⌉

paths and thus

⌈

|Pj ∩ T ′|+ 1

2

⌉

− 1 =

⌊

|Pj ∩ T ′|

2

⌋

right ends. If no path in Q extends to the right of Pj, then Pj contains at least
⌊

|Pj ∩ T ′|

2

⌋

right ends. This holds for all Pj, 1 ≤ j ≤ |W |. The rightmost part

P|W |+1 still needs to be considered. P|W |+1 has |P|W |+1∩T ′| ends of paths. Q cannot

have a path which extends to the right since P|W |+1 is rightmost. Then P|W |+1 has

at least

⌈

|P|W |+1 ∩ T ′|

2

⌉

right endpoints of paths in Q. Therefore, P(W ) contains

at least

⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

right endpoints in Q. This holds for all

W ⊆ Λ. Therefore, PP (G;T ) ≥ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







.

The lower bound in Lemma 23 is tight for unit interval graphs. The “best”

partition needs to be chosen as before. The “best” partition W ∗ can be found by

working left to right. If the interior of the leftmost block B contains no vertices in

T or contains
|(B − c) ∩ T |

2
pairwise distinct cut sets, then the leftmost cut vertex

ci to be put into W ∗ will have the smallest index i for which

∣

∣

∣

∣

∣

T ∩

(

i
⋃

l=1

Bl

)
∣

∣

∣

∣

∣

is

odd. If the interior of the leftmost block contains vertices in T which do not form

pairwise distinct cut sets, then the leftmost cut vertex ci to be put into W ∗ will have

the smallest index i for which

∣

∣

∣

∣

∣

T ∩

(

i
⋃

l=1

Bl

)
∣

∣

∣

∣

∣

is even. Then repeat this process for

G−
i
⋃

l=1

Bl. See Figure 4.6.

Theorem 9. Let G be a unit interval graph G and T be a set of k vertices. Then

PP (G;T ) = max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







where T ′ is defined in Def-

inition 25.
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Figure 4.6: The square vertices are in T . The triangle vertices are in T ′−T . The bottom
graph is an example of a “best” partition for G with respect to T .

When W = ∅, we assume

⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

=

⌈

|G ∩ T ′|

2

⌉

Proof. Induct on the number of blocks β.

Base: Suppose β = 1. Then Λ = ∅ and max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







=

⌈

|P|W |+1 ∩ T ′|

2

⌉

. If the vertices in T form
|T |

2
pairwise disjoint cut sets, then

|T ′| = |T |+ 1 and |T ′| is odd. By Theorem 8,

PP (G;T ) =











|T |

2
+ 1 if T has

|T |

2
pairwise disjoint cut sets

⌈

|T |

2

⌉

otherwise

=















⌈

|T ′|

2

⌉

if T has
|T |

2
pairwise disjoint cut sets

⌈

|T ′|

2

⌉

otherwise

=

⌈

|P|W |+1 ∩ T ′|

2

⌉
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Induction: Suppose β ≥ 2. Let j′ be the smallest index such that if the vertices

in (B1− c1)∩T form
|(B1 − c1) ∩ T |

2
pairwise distinct cut sets, then

∣

∣

∣

∣

∣

(

j′
⋃

l=1

Bl

)

∩ T

∣

∣

∣

∣

∣

is odd and if the vertices in (B1 − c1) ∩ T do not form
|(B1 − c1) ∩ T |

2
pairwise

distinct cut sets, then

∣

∣

∣

∣

∣

(

j′
⋃

l=1

B1

)

∩ T

∣

∣

∣

∣

∣

is even. Let Q1 =

j′
⋃

l=1

Bl. Note that G − Q1

is a unit interval graph. Then by induction,

PP (G−Q1;T −Q1) = max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







=

⌈

|P|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

.

Let W ′ = W ∗ + cj′ and Q1, Q2, . . . , Q|W ′|+1 be the parts of P(W ′) on G. Then

Pi = Qi+1 for 1 ≤ i ≤ |W ∗|+ 1.

If j′ = 1, then by Theorem 8, Q1 can be covered by
|Q1 ∩ T ′|

2
paths. If j′ > 1,

then for odd i, 1 ≤ i ≤ |Q1 ∩ T ′|, form the paths Hi = Hi1Hi2Hi3 with ends ti and

ti+1 where Hi1, Hi2, and Hi3 are defined below with γ1 6= γ2.

Hi1 =







vf(i)vf(i)−2 · · · vg(γ1)+1 · · · vf(i)−3vf(i)−1 if ti ∈ Bγ1 , ti−1 ∈ Bγ2

vf(i) if ti, ti−1 ∈ Bγ1

Hi2 =







vf(i)+1vf(i)+2 · · · vf(i+1)−1 if ti, ti+1 ∈ Bγ1

vf(i)+1vf(i)+2 · · · vg(γ1) · · · vg(γ2) · · · vf(i+1)−1 if ti ∈ Bγ1 , ti+1 ∈ Bγ2

Hi3 =







vf(i+1)+1vf(i+1)+3 · · · vg(γ1) · · · vf(i+1)+2vf(i+1) if ti+1 ∈ Bγ1 , ti+2 ∈ Bγ2

vf(i+1)+1vf(i+1)+3 · · · vf(i+2)−1 · · · vf(i+1)+2vf(i+1) if ti+1, ti+2 ∈ Bγ1

Figure 4.7 illustrate examples of these paths. This yields
|Q1 ∩ T ′|

2
paths which cover

Q1. Then a path partition on G with respect to T is a minimum path partition on

G − Q1 with respect to T − Q1 found inductively with
|Q1 ∩ T ′|

2
=

⌊

|Q1 ∩ T ′|

2

⌋
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i-1 i i+1 i+2

i-1 i i+1 i+2

i-1 i i+1 i+2

Figure 4.7: Square vertices are in T . The labels indicate ti−1, ti, ti+1, ti+2. The three
graphs illustrate three possible paths in bold with endpoints ti and ti+1

depending on the placement of ti−1, ti, ti+1, ti+2.

additional paths. Therefore,

PP (G;T ) ≤ PP (G−Q1;T −Q1) +

⌊

|Q1 ∩ T ′|

2

⌋

=

⌈

|P|W ∗|+1 ∩ T ′|

2

⌉

+

|W ∗|
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋

+

⌊

|Q1 ∩ T ′|

2

⌋

=

⌈

|Q|W ′|+1 ∩ T ′|

2

⌉

+

|W ′|
∑

j=2

⌊

|Qj ∩ T ′|

2

⌋

+

⌊

|Q1 ∩ T ′|

2

⌋

=

⌈

|Q|W ′|+1 ∩ T ′|

2

⌉

+

|W ′|
∑

j=1

⌊

|Qj ∩ T ′|

2

⌋

≤ max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







.

Therefore, PP (G;T ) = max
W⊆Λ







⌈

|P|W |+1 ∩ T ′|

2

⌉

+

|W |
∑

j=1

⌊

|Pj ∩ T ′|

2

⌋







when G is a

unit interval graph.
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Chapter 5

Conclusion

Characterization theorems for the k-fixed-endpoint path partition problem were

described in this dissertation. A direct characterization for trees was discussed in

Chapter 1. A characterization for threshold graphs was discussed in Chapter 2.

This characterization is the lower bound in Lemma 3 expect in a special case when

an additional path is required. A characterization for block graphs is discussed

in Chapter 3. Additionally, Chapter 3 contains a characterization for the k-fixed-

endpoint path partition number for linear block graphs. This characterization is

simpler than that for block graphs and provides insight into the characterization

for unit interval graphs. The characterization for unit interval graphs is found in

Chapter 4. A characterization for 2-connected unit interval graphs is also in Chapter

4. This characterization is

⌈

|T |

2

⌉

expect in a special case when an additional path

is required.

These characterizations could lead to simpler or more efficient algorithms for the

k-fixed-endpoint path partition problem on these graph classes. They may also lead

to certifying algorithms.

Since an efficient algorithm exists for the k-fixed-endpoint path partition problem

for interval graphs when k = 1, this class would be a logical graph class to consider

next to describe a characterization theorem for the k-fixed-endpoint path partition

problem. Potentially the methods in Chapters 3 and 4 would extend to interval
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graphs when k = 1. An efficient algorithm for the k-fixed-endpoint path partition

problem on cographs also exists. Cographs would be another logical graph class

to consider to describe a characterization theorem for the k-fixed-endpoint path

partition number.

Additionally, 2-trees would be a graph class to consider to determine a character-

ization theorem for the path partition number as well as the k-fixed-endpoint path

partition number. No efficient algorithms have been published for these problems

on K-trees, K ≥ 2. 2-trees are an extension of trees and have many applications.
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