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Abstract

The principal result of Chapter 1 is a new, direct and elementary proof of the

general Central Limit Theorem (CLT). Two important stepping-stones are, first, a

new, similarly direct and elementary proof of the CLT for Bernoulli random variables

defined on [0,1]; this was initially proved by Bernoulli in the 1700’s. The second

important stepping-stone is a new result for Bernstein polynomials of continuous

functions. Bernstein polynomials are a fundamental object of mathematical analysis.

It is well known that Bernstein polynomials of a continuous function on intervals

[0, bn] when n tends to infinity return the value of the function for an appropriate rate

of bn, but uniform convergence is sacrificed. Nothing was known for the symmetric

interval [−bn, bn]. We have proven that for these intervals the limit does not recover

the function but rather its integral with respect to Gaussian measure. The extension

to our direct proof of the of the general CLT involves a new and surprising connection

between the CLT and the Haar basis on [0, 1]: the i.i.d. sequence of random

variable is transformed to a sequence defined on [0,1] and the random variables in

the transformed sequence are then expanded with respect to the Haar basis.

Our work on the estimation of the concentration of measure for fractional Brow-

nian motion requires finding the intersections of ellipsoidal and spherical shells for

Gaussian measure in RN . Gaussian measure is concentrated on a small shell of a

sphere of radius the square root of N. We want to determine how large this shell

must be to include the majority of the Gaussian measure. This result determines

the rate of convergence of averages of squares for fractional Brownian increments.

It requires understanding the spectrum of the covariance operator as a function of

dimension N and the Hurst index. To help understand the spectrum, we compute

the exact rate of the largest eigenvalue of this operator.
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Introduction

In this dissertation, we will present our new proof of the Central Limit Theorem

(CLT) and our computation of the confidence intervals for fractional Brownian mo-

tion. In chapter 1, we will discuss our proof of the CLT. While the standard proof

of today makes use of the Levy Continuity Theorem, our proof avoids this theo-

rem to provide a direct proof of the CLT. We accomplish this by expanding our

random variables using the Haar wavelet basis. In section 1, we will discuss the

various definitions for weak convergence and why weak-∗ convergence in the dual

space of bounded, regular, finitely additive measures is the most natural definition.

In section 2, we will discuss the history of the theorem and how it relates to our new

proof. In section 3, we will discuss Bernstein polynomials, a fundamental object of

mathematical analysis. In section 4, we will give a new elementary proof of the CLT

for Bernoulli random variables. This proof not only establishes a new CLT result

but also provides a new result for Bernstein polynomials. In section 5, we will dicuss

the Haar wavelet basis and how we use this basis to give a new proof of the CLT.

In chapter 2, we will present our computation of the confidence intervals for

fractional Brownian motion (fBm). In section 1, we will provide definitions and

explain the applications of Brownian motion and fBm. In section 2, we will present

our computation for the confidence intervals for fBm which uses ergodic theory

and Jensen’s inequality. This computation requires knowledge of the spectrum for

the covariance operator for fBm increments. In section 3, we will compute the

largest eigenvalue for the covariance matrix. This gives us an estimation for the

concentration of measure for fBm.

2



Chapter 1

The Central Limit Theorem

1.1 Background

We have succeeded in giving a new proof of the Central Limit Theorem. There

are four main types of convergence for sequences of random variables: almost sure

convergence, convergence in probability, Lp convergence, and weak convergence. For

definitions of these types of convergence, consult Appendix A. Weak convergence is

the type of convergence required for the Central Limit Theorem. A sequence of real-

valued random variables (Xn) on a probability space (Ω,F , P ) is said to converge

weakly, denoted by ”⇒”, to a random variable X provided that for each bounded,

continuous function f : R→ R, we have

lim
n→∞

EP (f(Xn)) = EP (f(X)).

By the Helly-Bray Theorem, this statement is equivalent to the following definition:

For each x ∈ R,

lim
n→∞

P (Xn ≤ x) = P (X ≤ x).

By Levy’s Continuity Theorem, weak convergence is equivalent to the following:

lim
n→∞

EP (eitXn) = EP (eitX)

for each t ∈ R. The functions φ(t) = EP (eitX), φn(t) = EP (eitXn) are known as the

characteristic functions forX, Xn, respectively. We will see that the first formulation
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type involving bounded, continuous functions is the most natural definition for weak

convergence. Weak convergence of random variables is discussed in more detail in

[2] and [3].

Recall that a Banach space X is a complete normed vector space. The dual

space X∗ of X is the space of all continuous linear functionals on X. That is, X∗ is

the space of all continuous linear functions φ : X → R. X∗ is also a Banach space

with the norm given by

‖φ‖ = sup
‖x‖≤1

|φ(x)|.

We may subsequently consider the dual space X∗∗ of X∗, known as the second dual

of X. We will construct an imbedding κ : X ↪→ X∗∗. For each x ∈ X, let κ(x) ∈ X∗∗

be the linear functional on X∗ given by

κ(x)(φ) = φ(x)

for each φ ∈ X∗. Then, κ : X ↪→ X∗∗ is an injective linear map. Hence, we can

think of X as a subset of X∗∗ as κ(X) ⊆ X∗∗.

A sequence of elements {xn} ⊆ X is said to converge in the weak topology to

x ∈ X provided that

lim
n→∞

φ(xn) = φ(x)

for each φ ∈ X∗. A sequence of elements {φn} ⊆ X∗ is said to converge in the

weak−∗ topology to φ ∈ X∗ provided that

lim
n→∞

φn(x) = φ(x)

for each x ∈ X. The weak−∗ topology is the coarsest topology on X∗ in which the

maps

κ(x) : X∗ → R

are continuous.

Let S be a separable, complete metric space (Polish space), and consider Cb(S),

the space of all bounded, continuous functions on S. Then, by the Riesz Represen-

tation Theorem, any linear functional L on Cb(S) has the form

L(f) =

∫
S

fdµ

4



for some regular, bounded, finitely additive measure µ defined on the Borel σ-algebra

BS. Equipped with the norm given by total variation of measure, the space of all

regular, bounded, finitely additive measures on S, rba(S), is a Banach space with

(Cb(S))∗ =rba(S). Thus, for a sequence of measures {µn} from rba(S) to converge

to a measure µ ∈ rba(S) in the weak−∗ topology, it is required that

lim
n→∞

µn(f) = µ(f)

for each f ∈ Cb(S). Thus, by the Riesz Representation Theorem, we have

lim
n→∞

∫
S

fdµn =

∫
S

fdµ

for each f ∈ Cb(S). Letting S = R, µn = PX−1
n , and µ = PX−1, we arrive at the

definition for weak convergence. Functional analysis is discussed in more detail in

[6].

The Central Limit Theorem (CLT), the second pearl of probability theory, states

that if (Xi) is a sequence of independent identically distributed random variables

with E(X1) = µ and var(X1) = σ2, then

X1 + ...+Xn − nµ√
nσ

⇒ N(0, 1).

Here, N(0, 1) denotes the normal distribution with mean 0 and variance 1. This

distribution is also known as the famous ”bell curve” from statistics. A random

variable Y
d
= N(0, 1) provided that

P (a ≤ Y ≤ b) =

∫ b

a

1√
2π
e−

1
2
x2

dx

for each a, b ∈ R with −∞ < a ≤ b < ∞ where f(x) = 1√
2π
e−

1
2
x2

is the density

function for N(0, 1). The current standard proof of the CLT establishes the con-

vergence of the characteristic functions for our sequence of random variables. The

CLT is discussed in more detail in [2] and [3].

5



1.2 History

The CLT is the result of contributions made by such famous mathematicians, in-

terested in the distribution of sums of independent random variables, as Laplace,

Poisson, Dirichlet, Cauchy, Chebyshev, Markov, Feller, and Levy, among others. In

this section, I will discuss the contributions made by these mathematicians to the

CLT from the 1770s until the 1930s. The following historical sketch is based on [4].

Laplace was the first mathematician to break significant ground on the CLT.

According to H. Fischer, before Laplace and his successors, applications of prob-

ability theory mainly involved moral problems. Formulas existed for computing

probabilities based on a large number of trials, but they were too complicated for

numerical calculations. In 1774, Laplace made his first efforts towards proving the

CLT by developing useful methods for approximating the probabilities of sums of

independent random variables. In 1810, he made significant progess through the use

of generating functions and the clever substitution t = eix. Laplace’s special case of

the CLT was the result of forty years of effort. For more details on Laplace’s work

on the CLT, consult Appendix B.

Laplace never proved the general CLT that we use today. Instead, he considered

the approximate probabilities involving linear combinations of observed errors. His

most general version of the CLT is the following: Let ε1, ..., εn be independent ob-

servation errors with mean µ and variance σ2. Let λ1, ..., λn be constant multipliers

and a > 0. Then, we have

P

| n∑
j=1

λj(εj − µ)| ≤ a

√√√√ n∑
j=1

λ2
j

 ≈ 2

σ
√

2π

∫ a

0

e−
x2

2σ2 dx.

Although Laplace never proved today’s general CLT, he did introduce several

new ideas that inspired the work of his successors, including Poisson. However, while

Laplace and Poisson agreed on the study of probability in a classical sense, they

differed in its applications to moral problems. While Laplace exercised caution with

regards to these applications, Poisson believed that the laws of mathematics had

a direct connection to the physical world. He strived to use precise mathematical
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analysis to solve real world problems. Through his work, Poisson established a

formula for the probability that a sum of random variables is within given limits.

He then produced a counterexample to this formula, which led to the reworking of

his assumptions. For more details on Possion’s work on the CLT, consult Appendix

C.

In the nineteenth century, many changes in mathematics occurred. The field of

probability was criticized for its use in human decision making, such as court trials.

Dirichlet’s main interest in mathematics was in the discussion of analytical problems

rather than in applications. Like Laplace, Dirichlet also worked with the gamma

function.

Γ(s+ 1) = M

∫ ∞
−s

e−z
(

1 +
z

s

)s
dz = M

∫ ∞
−s

e−t
2 dz

dt
dt.

Setting

e−z
(

1 +
z

s

)s
= e−t

2

,

he differentiated both sides to obtain

z
dz

dt
= 2t(s+ z).

Using the expansion

z = k1t+ k2t
2 + ...,

Dirichlet established the recursive formulas

k1 =
√

2s, kn =
2kn−1

(n+ 1)k1

− 1

2k1

n−1∑
i=2

kikn+1−i

to obtain

Γ(s+ 1) = ss+
1
2 e−s
√

2π

(
1 +

∑
n≥1

1 · 3 · 5...(2n+ 1)a2n+1

sn

)
,

where

ai = 21−i(
√

2s)i−2ki.

He set ∫ ∞
−n

e−z(1 +
z

n
)ndz =

∫ ∞
−n

ydz = Γ(n+ 1)enn−n,

7



where ∫ −nm
−n

ydz +

∫ nm

−nm
ydz +

∫ ∞
nm

ydz = I1 + I2 + I3,

and 1
3
< m < 2

3
. Then, he showed that I1, I3 → 0, and

I2√
2n
→
∫ ∞
−∞

e−u
2

du =
√
π.

Thus, Dirichlet obtained a result for Γ(n + 1) used to approximate the normal

distribution.

Cauchy made an important contribution to the CLT by introducing the concept

of the characteristic function which is used today. This development resulted from

Cauchy’s analysis of the interpolation of random errors. In the final paper of eight

which he published on the CLT, Cauchy discussed the approximate normal distri-

bution of linear combinations of random errors. This argument is similar to the one

made by Dirichlet, and his method is still used today.

In studying the interpolation of observational errors, Cauchy used the ”fonction

auxiliaire” now known as the characteristic function for a random variable. With

the error in [κ1, κ2] given by the function g(x), we have ”fonction auxiliaire” given

by

φ(x) =

∫ κ2

κ1

e−izxg(z)dz.

Cauchy’s version of the CLT provides upper bounds for the error of the normal

approximation to the distribution of

n∑
j=1

λjεj

where (εj) are idependent identically distributed errors. He assumed that (λj) have

order O( 1
n
) and

∑
λ2
j := Λ has the order of O( 1

n
). Then, he established

|P

(
−v ≤

n∑
j=1

λjεj ≤ v

)
−
∫ v

2
√
cΛ

0

e−θ
2

dθ| ≤ C1(n) + C2(n, v) + C3(n)

8



for sufficiently large n, with explicit formulas for C1, C2, C3.

Chebyshev and his student Markov made contributions to the CLT through their

method of moments. An enthusiastic teacher, Chebyshev founded the St. Petersburg

school which Markov attended. The method of moments involves finding properties

of monotonically increasing functions µ ≥ 0 defined on [a, b] by knowing its moments

M0 :=

∫
x∈[a,b]

dµ(x), M1 :=

∫
x∈[a,b]

xdµ(x), ..., Mn :=

∫
x∈[a,b]

xndµ(x).

In 1887, Chebyshev introduced the following version of the CLT (in the terminology

of today): Let ui be a sequence of independent random variables (quantities) with

zero expectation, nonnegative densities, φi, with finite moments of arbitrarily high

order. Assume that, for each order, an upper and lower bound of the moments exist,

uniformly in i but not in n. Then, for any t < t′ ∈ R, we have

lim
n→n

P

(
t ≤

∑n
i=1 ui√

2
∑n

i=0Eu
2
i

≤ t′

)
=

1√
π

∫ t′

t

e−x
2

dx.

In 1898, Markov published his version of the CLT with the following assumptions:

Let u1, u2, ... be ”independent quantities” which satisfy the following conditions:

Euk = 0 for each k. For all natural numbers m ≥ 2 there exists a constant Cm

such that |Eumk | < Cm for all k ∈ N. Eu2
k ”does not get infinitely small, if k grows

indefinitely.” Then,

lim
n→∞

P

α
√√√√2

n∑
i=0

Eu2
i ≤

n∑
i=1

ui ≤ β

√√√√2
n∑
i=0

Eu2
i

 =
1√
π

∫ β

α

e−x
2

dx

for α < β ∈ R. Notice that the conclusions for Chebyshev’s and Markov’s versions

of the CLT are essentially identical.

In the twentieth century, the field of probability evolved to become more rigor-

ous. At the second International Congress of Mathematics in Paris in 1900, Hilbert

proposed the axiomatization of the applied sciences as one of his 23 problems. This

problem required ”to treat in the same manner, by means of axioms, those physical

9



sciences in which mathematics plays an important part; in the first rank are the

theory of probability and mechanics.” This proposition set probability on a path

towards becoming axiomatic, due to Kolmogorov in 1933, and following precise

mathematical analysis.

This goal of axiomatizing probability was achieved by Kolmogorov in 1933. [4]

A σ-algebra on the set Ω is a collection of subsets of Ω which contains the empty

set and is closed under complements and countable unions. A probability measure

on a set Ω is a set function on a σ-algebra F which satisfies the following axioms:

a) 0 ≤ P (A) ≤ 1 for all A ∈ F

b) P (∅) = 0, P (Ω) = 1

c) For any sequence A1, A2, ... of disjoint sets in F ,

P (∪∞k=1Ak) =
∞∑
k=1

P (Ak).

These axioms provided a universal setting for later work on the CLT. Levy then

proved his version of the CLT after first proving some preliminary results about

characteristic functions which, in turn, he used in proving his version of the CLT.

Levy was introduced to characteristic functions while reading the work of Poincare.

Poincare defined ”fonctions characteristiques” to be functions of the form

f(α) =
∑

p(x)eαx

for discrete quantities whose values x occur with probability p(x), and

f(α) =

∫ ∞
−∞

φ(x)eαxdx

for continuous quantities with density φ. Levy then proved the following theorems

about characteristic functions: Let φ(z) denote the characteristic function for dis-

tribution function F (x) given by

φ(z) =

∫ ∞
−∞

eizxdF (x).

10



Theorem 1: If for λ → λ0 the laws Lλ tend to the limit law L with characteristic

function ω, then φλ(z) also tends to ω(z) uniformly in each compact interval of

z-values.

Theorem 2: If ω is a characteristic function such that limλ→λ0 φλ(z) = ω(z) uni-

formly in each compact interval of z-values, then Lλ tends to the probability law L
which belongs to ω.

Levy and Feller each proved a version of the CLT. Feller’s version of the CLT

can be stated as follows: Let (Xk) be a sequence of independent random variables

with distributions Vk all having median 0. Then, there exist sequences (an > 0) and

(bk) of real numbers such that

P

(
1

an

n∑
k=1

(Xn − bk) ≤ x

)
→ Φ(x).

Further,

max
1≤k≤n

P (|Xk − bk| > εan)→ 0 for each ε > 0

as n→∞ if and only if

for each δ > 0, for each η > 0, there exists n(δ, η) such that for each n ≥ n(δ, η) :

p2
n(δ)∑n

k=1

∫
|x|≤pn(δ)

x2dVk(x)
< η

where pn(δ) = min{r ∈ R+
0 : P (|Xk| > r) ≤ δ}.

Levy’s version of the CLT can be stated as follows: Let Ln be the dispersion of∑n
k=1Xk having a fixed probability γ ∈ (0, 1). Then, there exist sequences (an > 0)

and (bk) of real numbers such that

P

(
1

an

n∑
k=1

(Xn − bk) ≤ x

)
→ Φ(x).

Further,

max
1≤k≤n

P (|Xk| > εLn)→ 0 for each ε > 0

as n→∞ if and only if for each δ > 0, for each η > 0, there exists n(δ, η) such that

for each n ≥ n(δ, η) there exists X(n) > 0:

11



X2(n)∑n
k=1

(∫
|x|≤X(n)

x2dVk(x)−
(∫
|x|≤X(n)

xdVk(x)
)2
) < η

and
n∑
k=1

P (|Xk| > X(n)) < δ.

Efforts to give new proofs of the CLT have been made since the proofs of Levy

and Feller. In [1], Barron shows that the density function fn(x) a normalized sum of

i.i.d. random variables converges to the normal density φ(x) in the sense of relative

entropy:
∫
fn ln(fn)/φ → 0 provided that relative entropy is finite for some n. In

[7], Bahr analyzes the convergence of moments of normalized sums of i.i.d. random

variables towards corresponding moments of the normal distribution.

1.3 Bernstein polynomials

The Bernstein polynomial of order n of the function f(x) defined on the closed

interval [0, 1] is given by

Bn(x) = Bf
n(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

For f continuous on [0, 1],

lim
n→∞

Bn(x) = f(x)

uniformly in x. Bernstein first introduced this set of polynomials to provide a

simple proof of the Weierstrauss Approximation Theorem. As we may transform

the interval [a, b] into [0, 1], the result holds for a function f on any closed, bounded

interval. The so-called ”singular operators” provide other means for approximating a

generating function f(x). The best known singular operator is the Dirichlet integral

sn(x) =
1

π

∫ π

−π
f(t)

sin(n+ 1
2
)(t− x)

2sin1
2
(t− x)

dt

12



which represents the partial sums sn(x) of the Fourier series of the function f(x)

integrable on [−π, π].

We can also define Bernstein polynomials for functions on unbounded intervals.

The Bernstein polynomial of order n defined on the interval (0, b) is found by making

the substitution y = x
b

in the polynomial Bφ
n(y) of the function φ(y) = f(by),

0 ≤ y ≤ 1. Thus, we obtain the polynomial

Bn(x) = Bf
n(x; b) =

n∑
k=0

f

(
bk

n

)(
n

k

)(x
b

)k (
1− x

b

)n−k
.

By letting b = bn, a function of n, we may consider a function f on the unbounded

interval (0,∞). As with functions on [a, b], we would like for Bn(x; bn) → f(x) to

hold with minimal assumptions on f . It is true that this relation is preserved for

bn = o(n). As the example of the function f(x) = x2 with Bn(x; bn) =
(
1− 1

n

)
x2 +

bn
x
n

provides a counterexample, this condition is also necessary. The material on

Bernstein polynomials is develped in [5].

The next question to naturally arise is whether we can extend this relation to

functions on unbounded, symmetric intervals. We start by considering the Bernstein

polynomial of order n defined on the interval (−b, b). This polynomial is found by

making the substitution y = x+b
2b

in the polynomial Bφ
n(y) of the function φ(y) =

f(b(2y − 1)), 0 ≤ y ≤ 1. Thus, we obtain the polynomial

Bn(x) = Bf
n(x;−b, b) =

n∑
k=0

f

(
2b

(
k

n

)
− b
)(

n

k

)(
x+ b

2b

)k (
1−

(
x+ b

2b

))n−k
.

For b =
√
n, we have

f

(
2b

(
k

n

)
− b
)

= f

(
2
√
nk

n
−
√
n

)
= f

(
2k√
n
− n√

n

)
= f

(
2k − n√

n

)
.

13



In the next section, we show that for any bounded, continuous function f : R→ R,

we have

Bf
n(0;−

√
n,
√
n) =

n∑
k=0

f

(
2k − n√

n

)(
n

k

)(
1

2

)n
→
∫ ∞
−∞

f(x)
1√
2π
e−

x2

2 dx.

It is a simple exercise to extend from x = 0 to any 0 ≤ x ≤ 1.

1.4 A new proof of the CLT for Bernoulli random

variables

In this section, we will present our new elementary proof of the CLT for Bernoulli

random variables defined on [0, 1]. Bernoulli is the first mathematician to consider

the CLT for Bernoulli random variables.

Let (Xi) be an i.i.d. sequence of random variables with P (X1 = 1) = P (X1 =

−1) = 1
2
. Then, EX1 = 0 and varX1 = 1. We will verify the Central Limit Theorem

by showing that
X1 + ...+Xn√

n
⇒ N(0, 1).

We will prove this by showing that for any bounded continuous function f : R→ R,
we have

lim
n→∞

EP

(
f

(
X1 + ...+Xn√

n

))
= EP (f(Y ))

where Y
d
= N(0, 1). To show this, we will first compute

EP

(
f

(
X1 + ...+Xn√

n

))
.

We have n i.i.d. random variables each having the values 1 and (-1) with probability
1
2
. If we consider the sum of these random variables, then for any point in the sample

space, we have k of the random variables equal to 1 and the other (n− k) of them

equal to (-1) for some 0 ≤ k ≤ n. Summing up the random variables, we have the

values k − (n − k) = 2k − n for 0 ≤ k ≤ n. By independence, we multiply the

14



probabilities for each value of Xi, 1 ≤ i ≤ n, to obtain the probability of
(

1
2

)n
for

every combination of Xi = ±1, 1 ≤ i ≤ n. As the sum of the random variables is

equal for every combination of k 1’s and (n−k) (-1)’s , the value 2k−n√
n

has probability(
1
2

)n (n
k

)
. Therefore, we have

EP

(
f

(
X1 + ...+Xn√

n

))
=

n∑
k=0

(
1

2

)n(
n

k

)
f

(
2k − n√

n

)
.

In the previous section, we discussed Bernstein polynomials on symmetric intervals.

The right hand side of the previous displayed equation is the Bernstein polynomial

Bf
n(0;−

√
n,
√
n). Since Y

d
= N(0, 1), then we have EP (f(Y )) = 1√

2π

∫∞
−∞ f(x)e

−x2

2 dx.

Therefore, we will show that

lim
n→∞

n∑
k=0

(
1

2

)n(
n

k

)
f

(
2k − n√

n

)
=

1√
2π

∫ ∞
−∞

f(x)e
−x2

2 dx.

Let ε > 0. Choose b such that 1
b
< ε

6
and 1√

2π

∫∞
b
e
−x2

2 dx < ε
12‖f‖∞ . By Chebyshev’s

Inequality, we have

∑
|n
2
−k|> b

√
n

2

(
1

2
)n
(
n

k

)
≤

√
1
4
n

b
√
n

2

=
1

b
<
ε

6
.

Since g(x) = f(x) e
−x2

2√
2π

is continuous on R, then g(x) is uniformly continuous on

[−b, b]. Therefore,

lim
n→∞

n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

g

(
2k − n√

n

)
χ

[ 2k−n√
n
,
2(k+1)−n√

n
)
(x) = g(x)χ[−b,b)(x).

By the Dominated Convergence Theorem,

lim
n→∞

n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

g

(
2k − n√

n

)
2√
n

=

∫ b

−b
g(x)dx.

Therefore, there exists an N ∈ N such that

|
n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

g

(
2k − n√

n

)
2√
n
−
∫ b

−b
g(x)dx| < ε

6

15



for all n ≥ N . Let

An := |
n∑
k=0

(
1

2
)n
(
n

k

)
f

(
2k − n√

n

)
− 1√

2π

∫ ∞
−∞

f(x)e
−x2

2 dx|.

Therefore, by cutting off the tails of our integral, for all n ≥ N,

An ≤ |
n∑
k=0

(
1

2
)n
(
n

k

)
f

(
2k − n√

n

)
− 1√

2π

∫ b

−b
f(x)e

−x2

2 dx|+ ε

6
.

Using Chebyshev’s inequality,

An ≤ |
n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

(
1

2
)n
(
n

k

)
f

(
2k − n√

n

)
− 1√

2π

∫ b

−b
f(x)e

−x2

2 dx|+ ε

3
.

For n ≥ N ,

An ≤ |
n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

(
1

2
)n
(
n

k

)
f

(
2k − n√

n

)
−

n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

f(
2k − n√

n
)

1√
2π
e
− 1

2
( 2k−n√

n
)2 2√

n
|+ ε

2
.

Since f is a bounded function,

An ≤ ‖f‖∞

n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

|(1

2
)n
(
n

k

)
− 1√

2π
e−

( 2k−n√
n

)2

2
2√
n
|+ ε

2
.

By Stirling’s Formula,

Bn,k := (
1

2
)n
(
n

k

)
= (

1

2
)n(1 +O(

1

n
))

√
2πnn+ 1

2

(2π)kk+ 1
2 (n− k)(n−k)+ 1

2

Letting k = n
2

+ j,

Bn,k = (
1

2
)n(1 +O(

1

n
))

nn+ 1
2

√
2π(n

2
+ j)

n
2

+j+ 1
2 (n

2
− j)n2−j+ 1

2

= (
1

2
)n(1 +O(

1

n
))

nn+ 1
2

√
2π(n

2
)n+1(1 + 2j

n
)
n
2

+j+ 1
2 (1− 2j

n
)
n
2
−j+ 1

2

= (1 +O(
1

n
))

2
√

2π
√
n(1 + 2j

n
)
n
2

+j+ 1
2 (1− 2j

n
)
n
2
−j+ 1

2

.
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It follows that

(1 +
2j

n
)
n
2

+j(1− 2j

n
)
n
2
−j = e(n

2
+j)ln(1+ 2j

n
)e(n

2
−j)ln(1− 2j

n
)

= e(n
2

+j)( 2j
n
− 2j2

n2 +O(n
3
2 ))e(n

2
−j)(−2j

n
− 2j2

n2 −O(n
3
2 ))

= e
2j2

n
+O( 1

n
).

Hence,

(
1

2
)n
(

n
n
2

+ j

)
= (1 +O(

1

n
))

2√
2π
√
n
e
−2j2

n
+O( 1

n
)(1 +

2j

n
)−

1
2 (1− 2j

n
)−

1
2

= (1 +O(
1

n
))

2√
2π
√
n
e
−2j2

n
+O( 1

n
)(1 +

j

n
+O(

1

n
))(1− j

n
+O(

1

n
))

= (1 +O(
1

n
))

2√
2π
√
n
e
−2j2

n
+O( 1

n
)(1− j2

n2
+O(

1

n
)).

Thus,
n
2

+ b
√
n

2∑
k=n

2
− b
√
n

2

|(1

2
)n
(
n

k

)
− 1√

2π
e−

( 2k−n√
n

)2

2
2√
n
|

=

b
√
n

2∑
j=− b

√
n

2

|(1

2
)n
(

n
n
2

+ j

)
− 1√

2π
e−

2j2

n
2√
n
|

=
2

√
n
√

2π

b
√
n

2∑
j=− b

√
n

2

e−
2j2

n |(1 +O(
1

n
))2(1− j2

n2
+O(

1

n
))− 1|

≤ 4
√
n
√

2π

b
√
n

2∑
j=0

(
j2

n2
+O(

1

n
))

=
4

√
n
√

2π
(
b
√
n

2
( b
√
n

2
+ 1)(b

√
n+ 1)

6
+O(

1√
n

))

=
b3

6
√

2π

1

n
+O(

1

n
).

17



Choosing n sufficiently large, we have b3

6
√

2π
1
n
< ε

2‖f‖∞ . That is, we have proven the

following theorem:

For each ε > 0, there exists an N ∈ N such that

n ≥ N ⇒ |
n∑
k=0

(
1

2
)n
(
n

k

)
f(

2k − n√
n

)− 1√
2π

∫ ∞
−∞

f(x)e
−x2

2 dx| < ε+O(
1

n
).

In the next section, we extend this proof to the general CLT by expanding

our random variables using the Haar wavelet basis {Hj,k(x)|0 ≤ j < ∞, 0 ≤ k ≤
2j − 1} ∪ {χ[0,1]} defined in the next section. For fixed j ∈ N ∪ {0}, we have

2−
j
2

2j−1∑
k=0

Hj,k(x) = εj

with P (εj = 1) = P (εj = −1) = 1
2
. Thus, the Haar wavelet basis is implicitlyem-

bedded in this proof for Bernoulli random variables.

1.5 Creating an i.i.d. sequence of random vari-

ables on the probability space ([0, 1],B, λ)

Let X be a random variable on a probability space (Ω,F , P ). In this section, we

will create an i.i.d. sequence of random variables on ([0, 1],B, λ), having the same

distribution as X. Here, B denotes the sigma algebra of Borel subsets of [0, 1] and λ

denotes Lebesque measure on [0, 1]. Consider the cumulative distribution function

F : R → [0, 1] given by F (x) = P (X ≤ x). We define Q : [0, 1] → R so that

Q(p) = inf{x ∈ R|P (X ≤ x) ≥ p}. Note that Q is not a true inverse for F , as F is

not injective. Q is often refered to as the quantile function for X. We can see that

Q is a random variable on ([0, 1],B, λ) with the same distribution as X.

From X, we create an i.i.d. sequence of random variables by appropriately

randomizing the binary sequence. Consider the binary expansion of x ∈ [0, 1] given

by (ε(x)i)
∞
i=1. We then have

x =
∞∑
i=1

εi(x)

2i
.
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For an example, consult Appendix D.

We now create the following arrangement of (εi(x))∞i=1.


ε1

ε2 ε3

ε4 ε5 ε6 ε7

ε8 ε9 ε10 ε11 ε12 ε13 ε14 ε15


One can see that row i ∈ N has 2i elements numbered from left to right, starting

with ε2i−1 . Any arrangement of (εi) without repetitions will work for our problem.

Now, we randomize [0, 1] by forming the functions Pi(x) : [0, 1] → [0, 1], i ∈ N,

as follows: For each i ∈ N and x ∈ [0, 1], let Pi(x) denote the number in [0, 1]

whose binary expansion is obtained from the elements of column i, starting with

the first entry. For example, the number (P2(x)) would have the binary expansion

(ε3(x), ε5(x), ε9(x), ...). Since 3
8

has the binary expansion (0, 1, 1, 0, 0, 0, ...), then

P2(3
8
) has the binary expansion (1, 0, 0, 0, ...). Therefore, P2(3

8
) = 1

2
. Observe that

λ(εj(Pi(x)) = 0) = λ(εj(Pi(x)) = 1) = 1
2

for each i, j ∈ N. Furthermore, the

sequence (Pi(x)) is independent as each Pi(x) depends on a disjoint set of εj’s.

We have thus created an i.i.d. sequence of random variables on [0,1] given by

Xi(x) = X(Pi(x)) for each i ∈ N.

1.6 Properties of the Haar basis

The Haar basis is the simplest orthonormal system on [0, 1] and consists of the set

S = {Hj,k(x)|0 ≤ j <∞, 0 ≤ k ≤ 2j − 1} ∪ {χ[0,1]} where

Hj,k =


2
j
2 x ∈ [ k

2j
,
k+ 1

2

2j
)

−2
j
2 x ∈ [

k+ 1
2

2j
, k+1

2j
)

0 otherwise

As S = {Hj,k(x)|0 ≤ j <∞, 0 ≤ k ≤ 2j − 1}∪{χ[0,1]} forms a complete orthonormal

basis for L2([0, 1]), we can expand any φ ∈ L2([0, 1]) as
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φ(x) =
∞∑
j=0

2j−1∑
k=0

cj,kHj,k(x) +

∫ 1

0

φ(x)dx

where cj,k =
∫ 1

0
φ(x)Hj,k(x)dx. Let X be a random variable (measurable function)

defined on the probability space ([0, 1],B, λ). If X ∈ L1([0, 1],B, λ), we may assume

EX = 0 by simply changing X into X − EX. Assuming that EX2 < ∞, varX =

‖X‖2
2 <∞. Thus, we have

∫ 1

0
X(x)dx = EX = 0 and

X(x) =
∞∑
j=0

2j−1∑
k=0

cj,kHj,k(x)

where cj,k =
∫ 1

0
X(x)Hj,k(x)dx.

For simplicity, let us assume that varX = 1 as we may replace X by X√
varX

.

Then, by Plancherel’s equality, we have

∞∑
j=0

2j−1∑
k=0

c2
j,k = 1.

The Haar basis is discussed in more detail in [8]. Expanding X(Pi(x)) using the

Haar basis, we have

Xi(x) = X(Pi(x)) =
∞∑
j=0

2j−1∑
k=0

cj,kHj,k(Pi(x)).

As Hj,k(x) = 2
j
2 (−1)εj+1(x)χ{k}(b2jxc),

X(Pi(x)) =
∞∑
j=0

2j−1∑
k=0

cj,k2
j
2 (−1)εj+1(Pi(x))χ{k}(b2jPi(x)c).

Setting k = b2jPi(x)c,

X(Pi(x)) =
∞∑
j=0

cj,b2jPi(x)c2
j
2 (−1)εj+1(Pi(x)).
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1.7 Properties of YM(x)

The next two lemmas will investigate the properties of the random variable

YM(x) =
M∑
j=0

2
j
2 cj,b2jxc(−1)εj+1(x)

for x ∈ [0, 1]. The random variable YM plays an essential role in proving the CLT.

YM is a discrete random variable with finitely many values. Note that this function

depends on (ε1(x), ..., εM+1(x)). Therefore, YM(x) is constant on dyadic intervals of

the form [ k
2M+1 ,

k+1
2M+1 ) for 0 ≤ k ≤ 2M+1 − 1. We call the 2M+1 values of the function

YM(x) outcomes. For an example, consider the case where M = 2. We will then

find the possible values for the function

Y2(x) =
2∑
j=0

2
j
2 cj,b2jxc(−1)εj+1(x).

Since Y2(x) depends on (ε1(x), ε2(x), ε3(x)), then Y2(x) is constant on the dyadic

intervals [k
8
, k+1

8
) for 0 ≤ k ≤ 7. We have the following outcomes for Y2(x):

[0,
1

8
) : o1 = c0,0 +

√
2c1,0 + 2c2,0

[
1

8
,
2

8
) : o2 = c0,0 +

√
2c1,0 − 2c2,0

[
2

8
,
3

8
) : o3 = c0,0 −

√
2c1,0 + 2c2,1

[
3

8
,
4

8
) : o4 = c0,0 −

√
2c1,0 − 2c2,1

[
4

8
,
5

8
) : o5 = −c0,0 +

√
2c1,1 + 2c2,2

[
5

8
,
6

8
) : o6 = −c0,0 +

√
2c1,1 − 2c2,2

[
6

8
,
7

8
) : o7 = −c0,0 −

√
2c1,1 + 2c2,3

[
7

8
, 1) : o8 = −c0,0 −

√
2c1,1 + 2c2,3

Observe that
∑8

i=1 oi = 0.

Lemma 1.7.1. If (oi)
2M+1

i=1 are outcomes of YM , then
∑2M+1

i=1 oi = 0.
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Proof. For x ∈ [0, 1], we have n = 2M+1 possible outcomes, each corresponding to

an interval of the form [ k
2M+1 ,

k+1
2M+1 ) for some 0 ≤ k ≤ 2M+1 − 1. Each outcome is

equal to a sum of M + 1 terms. Now, we fix j = j0 and consider this term in the

outcome. For j = j0, we consider terms of the form

2
j0
2 cj0,b2j0xc(−1)εj0+1(x).

We note the cj0,b2j0xc depends only on (ε1(x), ...εj0(x)) as b2j0xc = k if and only

if x ∈ [ k
2j0
, k+1

2j0
). Thus, cj0,b2j0xc is constant on intervals of the form [ k

2j0
, k+1

2j0
) for

0 ≤ k ≤ 2j0 − 1. Each interval [ k
2j0
, k+1

2j0
) is the union of 2M+1−j0 intervals of length

1
2M+1 , and hence the coefficient cj0,k corresponds to 2M+1−j0 outcomes. If we cut the

interval [ k
2j0
, k+1

2j0
) in half, then for the left half we have εj0+1(x) = 0 and for the

right half we have εj0+1(x) = 1. Thus, we have 2M−j0 outcomes with the coefficient

2
j0
2 cj0,k and 2M−j0 outcomes with the coefficient −2

j0
2 cj0,k for each 0 ≤ k ≤ 2j0 − 1.

Summing over all 0 ≤ k ≤ 2j0 − 1 and then over all 0 ≤ j0 ≤M , we have
∑n

i=1 oi =

0.

Lemma 1.7.2. If (oi)
2M+1

i=1 are outcomes of YM , then
∑2M+1

i=1 o2
i = 2M+1σ2

M , where

σM =

√√√√ M∑
j=0

2j−1∑
k=0

c2
j,k.

Proof. Group the outcomes in pairs, corresponding to the dyadic intervals [ k
2M+1 ,

k+1
2M+1 )

and [ k+1
2M+1 ,

k+2
2M+1 ) for k even. Furthermore, for each outcome, group the first M terms

together. Therefore, for x1 ∈ [ k
2M+1 ,

k+1
2M+1 ), we have(

M−1∑
j=0

2
j
2 cj,b2jx1c(−1)εj+1(x1) + 2

M
2 cM,b2Mx1c

)
,

and for x2 ∈ [ k+1
2M+1 ,

k+2
2M+1 ) we have(
M−1∑
j=0

2
j
2 cj,b2jx2c(−1)εj+1(x2) − 2

M
2 cM,b2Mx2c

)
.

Squaring and then adding these terms, we obtain
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(
M−1∑
j=0

2
j
2 cj,b2jx1c(−1)εj+1(x1)

)2

+ 2

(
M−1∑
j=0

2
j
2 cj,b2jx1c(−1)εj+1(x1)

)(
2
M
2 cM,b2Mx1c

)

+
(

2
M
2 cM,b2Mx1c

)2

+

(
M−1∑
j=0

2
j
2 cj,b2jx2c(−1)εj+1(x2)

)2

−2

(
M−1∑
j=0

2
j
2 cj,b2jx2c(−1)εj+1(x2)

)(
2
M
2 cM,b2Mx2c

)
+
(

2
M
2 cM,b2Mx2c

)2

.

Since x1, x2 ∈ [ l
2M
, l+1

2M
) for 2l = k, then we have b2jx1c = b2jx2c and εj(x1) = εj(x2)

for all 0 ≤ j ≤M . Therefore, we have

2

(
M−1∑
j=0

2
j
2 cj,b2jx1c(−1)εj+1(x1)

)(
2
M
2 cM,b2Mx1c

)

−2

(
M−1∑
j=0

2
j
2 cj,b2jx2c(−1)εj+1(x2)

)(
2
M
2 cM,b2Mx2c

)
= 0.

As b2Mx1c = b2Mx2c = l , summing the squares of the two final terms, we have

(
2
M
2 cM,b2Mx1c

)2

+
(

2
M
2 cM,b2Mx2c

)2

= 2Mc2
M,l + 2Mc2

M,l = 2M+1c2
M,l.

Summing over all terms corresponding to j = M, we have

2M+1

2M−1∑
l=0

c2
M,l

 .

Now, we consider

2∑
i=1

(
M−2∑
j=0

2
j
2 cj,b2jxic(−1)εj+1(xi) + 2

M−1
2 cM−1,b2M−1xic

)2
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for some x1, x2 ∈ [ k
2M
, k+1

2M
) for even k. Then, we choose x3, x4 ∈ [2k+1

2M
, 2k+2

2M
) and

consider

4∑
i=3

(
M−2∑
j=0

2
j
2 cj,b2jxic(−1)εj+1(xi) + 2

M−1
2 cM−1,b2M−1xic

)2

.

Adding these terms together, we now obtain

(
2
M−1

2 cM−1,b2M−1x1c

)2

+
(

2
M−1

2 cM−1,b2M−1x2c

)2

+
(

2
M−1

2 cM−1,b2M−1x3c

)2

+
(

2
M−1

2 cM−1,b2M−1x4c

)2

= 2M−1c2
M−1,l + 2M−1c2

M−1,l + 2M−1c2
M−1,l + 2M−1c2

M−1,l

= 4 · 2M−1c2
M−1,l = 2M+1c2

M−1,l.

It follows that

n∑
i=1

o2
i = 2M+1

 M∑
j=0

2j−1∑
k=0

c2
j,k

 = 2M+1σ2
M .

1.8 A new proof of the CLT

In this section, we will give a new proof of the Central Limit Theorem:

Theorem 1.8.1. Let (Xi) be a sequence of i.i.d. random variables with mean µ

and variance σ2. Let f : R→ R be a bounded, continuous function. Then, for each

ε > 0, there exists N0 ∈ N such that∣∣∣∣E (f (X1 + ...+XN −Nµ
σ
√
N

))
− E(f(Y ))

∣∣∣∣ < ‖f‖∞Cn 5
2 bn+1

4(2π)
n−1

2 N
,

where Y
d
= N(0, 1), for all N ≥ N0, where b and n will be defined later.

24



Proof. The proof proceeds via the following steps, A-G:

• A. We truncate the Haar expansions for our random variables to have only

finitely many terms.

• B. We examine the truncated Haar expansion and show that it is actually a

multinomial random variable.

• C. We cut off the tails of the multinomial random variable by using Cheby-

shev’s inequality.

• D. We use Stirling’s formula and Taylor series to approximate the multinomial

coefficients.

• E. We write our Gaussian random variable as a sum of independent Gaussian

random variables and then express the expected value as an integral.

• F. We cut off the tails of our Gaussian integral and then express this integral

as a Riemann sum.

• G. We compute the difference between the expected value for the sums of our

truncated Haar expansions and the Gaussian Riemann sum.

Step A. Let

y(N) :=
1√
N

N∑
i=1

∞∑
j=0

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x)),

x(N,M) :=
1√
N

N∑
i=1

M∑
j=0

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x)),

z(N,M) :=
1√
N

N∑
i=1

∞∑
j=M+1

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x)).

Let f : R→ R be a bounded, continuous function. Let ε > 0. We have

E(y(N)) = 0.
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By Chebyshev’s inequality, we have

P (|y(N)| > L) =
var(y(N))

L2
=

1

L2
< ε

for sufficiently large L. Note that P (|y(N)| > L) < ε for all N ∈ N. Therefore, by

uniform continuity of f on [−L,L], there exists a δ > 0 such that |f(x)− f(y)| < ε

whenever |x|,|y| ≤ L and |x− y| < δ.

We will now compute

var(z(N,M)) = var

(
1√
N

N∑
i=1

∞∑
j=M+1

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x))

)

=
1

N
var

(
N∑
i=1

∞∑
j=M+1

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x))

)
.

As (
∞∑

j=M+1

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x))

)
is an independent sequence,

var(z(N,M)) =
1

N

N∑
i=1

var

(
∞∑

j=M+1

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x))

)
.

As (
∞∑

j=M+1

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x))

)
is an identically distributed sequence,

var(z(N,M)) =
1

N
·N ·var

(
∞∑

j=M+1

2
j
2 cj,b2jP1(x)c(−1)εj+1(P1(x))

)

= var

(
∞∑

j=M+1

2
j
2 cj,b2jP1(x)c(−1)εj+1(P1(x))

)

= var

 ∞∑
j=M+1

2j−1∑
k=0

cj,kHj,k(P1(x))

 .
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By Plancherel’s formula,

var(z(N,M)) =
∞∑

j=M+1

2j−1∑
k=0

c2
j,k = 1− σ2

M .

Note that var(z(N,M)) does not depend on N .

By Cheyshev’s Inequality, we have

P (|y(N)− x(N,M)| ≥ δ) = P (|z(N,M)| ≥ δ) ≤ var(z(N,M))

δ2
=

1− σ2
M

δ2
< ε

for sufficiently large M .

Then, we have

P (|y(N)− x(N,M)| ≥ δ) ≤ ε.

Let

AM = {|y(N)− x(N,M)| ≥ δ}.

Then, we have

|EP (f(y(N)))− EP (f(x(N,M)))|

≤ |EP ((f(y(N))− f(x(N,M)))χAM ) |+ |EP ((f(y(N))− f(x(N,M)))χACM )|

≤ EP |(f(y(N))− f(x(N,M)))χAM |+ EP |(f(y(N))− f(x(N,M)))χACM |

≤ 2‖f‖∞P (AM) + εP (ACM)

≤ ε(2‖f‖∞ + 1).

If X
d
= N(0, 1), then

σMX → X

as M →∞. Thus, by continuity of f ,

f(σMX)→ f(X)

as M →∞. Hence, by the Dominated Convergence Theorem,

E(f(σMX))→ E(f(X))
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as M →∞. Hence, there exists M0 ∈ N such that

|E(f(σMX))− E(f(X))| < ε

for all M ≥M0.

So let M be large enough so that

1− σ2
M

δ2
< ε

and

|E(f(σMX))− E(f(X))| < ε.

Note that M does not depend on N . M and n will be fixed from now on.

Step B. We will now take a closer look at x(N,M). Let

x(N,M) =
1√
N

N∑
i=1

Y (M, i),

and note that

Y (M, i) =
M∑
j=0

2
j
2 cj,b2jPi(x)c(−1)εj+1(Pi(x)).

Then, Y (M, i) is a random variable with n = 2M+1 possible values o1, ..., on each

having probability 1
n
. As N → ∞, we can assume that N > n. Therefore, the

outcomes of Y (M, i) must repeat. If ki denotes the number of the outcome oi in the

sum
N∑
i=1

Y (M, i),

then this random variable has values

k1o1 + ...+ knon

where

k1 + ...+ kn = N.

Therefore, for fixed k1, ..., kn with k1 + ...+ kn = N ,

P

(
N∑
i=1

Y (M, i) =
n∑
i=1

kioi

)
=

(
N

k1, ..., kn

)(
1

n

)N
,
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and

EP (f(x(N,M))) =
N∑

k1=1

...
N∑

kn=1
k1+...+kn=N

1

nN

(
N

k1, ..., kn

)
f

(∑n
i=1 kioi√
N

)
.

Step C. We will now cut off the tails from our expected value using Chebyshev’s

inequality. Let Ki be the random variable which denotes the number of times

the outcome oi is observed, having values ki. We have E(Ki) = N( 1
n
) = N

n
and

var(Ki) = N( 1
n
)(1− 1

n
). By Chebyshev’s Inequality, we have

P

(
|Ki −

N

n
| ≥ b1

√
N

n
(1− 1

n
)

)
≤

√
N
n

(1− 1
n
)

b1

√
N
n

(1− 1
n
)

=
1

b1

<
ε

n

for large enough b1 > 0. Let b = max{b0, b1}, where b0 will be defined in Step F. Set

AN,n := {|Ki −
N

n
| ≥ b

√
N

n
(1− 1

n
) for some i, 1 ≤ i ≤ n}.

Then, by finite additivity, we have

P (AN,n) < n
( ε
n

)
= ε.

Let h(N, n) :=
√

N
n

(1− 1
n
). Let

q(N, k1, ...kn) :=
1

nN

(
N

k1, ..., kn

)
f

(∑n
i=1 kioi√
N

)
.

Set

Ei := {1 ≤ Ki ≤ N and
n∑
i=1

Ki = N}.

Set

BN,n := AN,n ∩ (∪ni=1Ei) .

Then, we have

P (BN,n) ≤ P (AN,n) < ε.
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It follows that∣∣∣∣∣∣∣∣∣
N∑

k1=1

...
N∑

kn=1
k1+...+kn=N

q(N, k1, ...kn)−
N
n

+b1h(N,n)∑
k1=N

n
−b1h(N,n)

...

N
n

+b1h(N,n)∑
kn=N

n
−b1h(N,n)

k1+...+kn=N

q(N, k1, ..., kn)

∣∣∣∣∣∣∣∣∣ < ε‖f‖∞.

Note that

E(x(N,M)) = E

(
1√
N

N∑
i=1

oiKi

)
=

1√
N

N∑
i=1

oiE(Ki) =
1√
N

N∑
i=1

oi
N

n
=

1√
N

N

n

n∑
i=1

oi = 0.

and

var(x(N,M)) = var

(
1√
N

N∑
i=1

oiKi

)
=

=
1

N

N∑
i=1

o2
ivar(Ki) =

1

N
(N)

(
1

n

)(
1− 1

n

) n∑
i=1

o2
i

=

(
1

n

)(
1− 1

n

)
nσ2

M =

(
1− 1

n

)
σ2
M .

Step D. We will now use Stirling’s formula and Taylor series to approximate

the multinomial coefficients. Set

l(N, k1, ..., kn) :=
1

nN

(
N

k1, ..., kn

)
.

By Stirling’s Formula, we have

l(N, k1, ..., kn) =

(
1 +O

(
1
N

))
(2π)

1
2NN+ 1

2

(2π)
n
2 nN(N + k1)(N+k1+ 1

2
) + ...+ (N + kn)(N+kn+ 1

2
)
.

Letting ki = N
n

+ ji for 1 ≤ i ≤ n,

l(N, k1, ..., kn) =

(
1 +O

(
1
N

))
(2π)

1
2NN+ 1

2

(2π)
n
2 nN(N

n
+ j1)(N

n
+j1+ 1

2
) + ...+ (N

n
+ jn)(N

n
+jn+ 1

2
)
.
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Factoring (N
n

) from each term (N
n

+ ji) in the denominator,

l(N, k1, ..., kn) =

(
1 +O

(
1
N

))
NN+ 1

2

(2π)
n−1

2 nN(N
n

)N+n
2 (1 + nj1

N
)(N

n
+j1+ 1

2
) + ...+ (1 + njn

N
)(N

n
+jn+ 1

2
)

=

(
1 +O

(
1
N

))
n
n
2

(2π)
n−1

2 N
n−1

2 (1 + nj1
N

)(N
n

+j1+ 1
2

) + ...+ (1 + njn
N

)(N
n

+jn+ 1
2

)
.

For all 1 ≤ i ≤ n, we set

m(N, n, i) := (1 +
nji
N

)
N
n

+ji+
1
2 = e(N

n
+ji+

1
2

)ln(1+
nji
N

).

Using a Taylor series approximation,

m(N, n, i) = e(N
n

+ji+
1
2

)(
nji
N
−n

2j2i
2N2 +O( 1

N3 ))

= eji+
j2i n

2N
+
nji
2N
−n

2j3i
2N2 −

n2j2i
4N2 +O( 1

N2 ).

Therefore, we have

(1 +
nj1

N
)
N
n

+j1+ 1
2 ...(1 +

njn
N

)
N
n

+jn+ 1
2 = e( n

2N
− n2

4N2 )
∑n
α=1 j

2
α− n2

2N2

∑n
α=1 j

3
α+O( 1

N2 ).

Set

H(N, j1, ..., jn) := (− n

2N
+

n2

4N2
)

n∑
i=1

j2
i +

n2

2N2

n∑
i=1

j3
i +O(

1

N2
).

Hence, we have

l(N, j1, ..., jn) =

(
1 +O

(
1

N

))
eH(N,j1,...,jn)n

n
2

(2π)
n−1

2 N
n−1

2

.

Step E. Let Y1, ..., Yn be Gaussian random variables with mean 0 and variance 1.

Let (oi)
n
i=1 be as in Section 1.7. Then, consider o′i = oi

σM
. For simplicity of notation,

we will replace o′i by oi. Then, we have

n∑
i=1

o2
i = n,

n∑
i=1

oi = 0.
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Therefore, we have 1√
n

∑n
i=1 oiYi

d
= N(0, 1).

Set

O =


o1

.

.

on

 , Y =


Y1

.

.

Yn

 .
Then, the vector projection of Y in direction of the vector

u=


1

.

.

1


is given by

V =

(
1

n

n∑
i=1

Yi

)
u =

(
1√
n

n∑
i=1

Yi

)
u√
n

=

(
1√
n

n∑
i=1

Yi

)
u

‖u‖

which means that V is a one dimensional standard normal on the line through the

origin and orthogonal to the hyperplane in Rn given by

n∑
i=1

yi = 0.

Call that hyperplane S. Viewing V and Z := Y − V as vector valued random

variables, in addition to being orthogonal, as vectors, they are also independent

as random variables. This can be verified by checking that all components (or

coordinates) of Z are independent of all components (coordinates) of V . Since all

components of V are equal to

Y =
1

n

n∑
i=1

Yi,

that is V is a one dimensional random variable, and components (coordinates) of

Y − V are Yi − Y , the independence of Gaussian random variables follows from

E((Yi − Y )Y ) = E(YiY )− E
(
Y
)2

=
1

n
− 1

n
= 0
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for all i = 1, ..., n. Note that OTY = OT (Y − V ) +OTV, and since OTu = 0,

f

(∑n
i=1 oiYi√
n

)
= f

(
1√
n
OTY

)
= f

(
1√
n
OTZ

)
,

that is

f

(
1√
n
OTZ

)
does not depend on V. Note that since the components of Z satisfy

n∑
i=1

(
Yi − Y

)
= 0,

the law of Z, L(Z), is a standard Gaussian n − 1 dimensional measure on the

hyperplane S. From the independence of Z and V , and Fubini’s Theorem, it follows

that

Ef

(
1√
n
OTY

)
= EL(Z)EL(V)f

(
1√
n
OTZ

)
= EL(Z)f

(
1√
n
OTZ

)
,

Since the density of Y is given by

1(√
2π
)n exp(−1

2
yTy) =

1(√
2π
)n−1 exp(−1

2
zT z)

1(√
2π
) exp

(
−1

2
(y)2

)
,

where y, z, and y are the realizations of Y , Z, and Y , respectively, it follows that

EL(Z)f

(
1√
n
OTZ

)
=

1(√
2π
)n−1

∫
S

f

(
1√
n

n∑
n=1

oiyi

)
exp

(
−1

2

n∑
i=1

y2
i

)
dS,

i.e., the expected value with respect to L(Z) is a surface integral over the hyperplane

S. In arriving at the last equality we have used that

y =
1

n

n∑
i=1

yi = 0 on S.

By projecting S onto yn = 0 plane we have

EL(Z)f

(
1√
n
OTZ

)
=

√
n(√

2π
)n−1

∫
...

∫
f

(
1√
n

n∑
n=1

oiyi

)
e(−

1
2

∑n
i=1 y

2
i )dy1...dyn−1
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where

yn = −
n−1∑
i=1

yi.

The factor
√
n appears as the result of replacing dS by dy1...dyn−1.

Step F. We will now cut off the tails of our Gaussian integral and then approx-

imate the integral by a Riemann sum. Choose b0 > 0 such that

√
n

∣∣∣∣∫ ...

∫
1

(
√

2π)n−1
e−

1
2(
∑n
i=1 y

2
i )dy1...dyn−1 −

∫ b2

−b2
...

∫ b2

−b2

1

(
√

2π)n−1
e−

1
2(
∑n
i=1 y

2
i )dy1...dyn−1

∣∣∣∣ < ε

for all b2 ≥ b0. Then, we consider

I =

√
n(√

2π
)n−1

∫
...

∫
f

(
1√
n

n∑
i=1

oiyi

)
e(−

1
2

∑n
i=1 y

2
i )dy1...dyn−1.

and

Ib =

√
n(√

2π
)n−1

∫ b

−b
...

∫ b

−b
f

(
1√
n

n∑
i=1

oiyi

)
e(−

1
2

∑n
i=1 y

2
i )dy1...dyn−1.

Let g(y1, ...yn) := f
(

1√
n

∑n
i=1 oiyi

)
e(−

1
2

∑n
i=1 y

2
i ). Note that∣∣∣∣∣

n∑
i=1

oiyi

∣∣∣∣∣ ≤
n∑
i=1

|oi||yi|

≤ b
n∑
i=1

|oi| <∞.

Then, let

S =

√
n(√

2π
)n−1

bh(N,n)∑
j1=−bh(N,n)

...

bh(N,n)∑
jn−1=−bh(N,n)

∫ (j1+1)
√
n√
N

j1
√
n√
N

...

∫ (jn−1+1)
√
n√
N

jn−1

√
n√
N

j1+j2+...+jn=0

g(y1, ..., yn)dy1...dyn−1

where h(N, n) is as in Step D. Let

BN,n := { 1√
N

n∑
i=1

oiji >

n∑
i=1

|oi|b}.
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Then, we have

|I − n
n
2(√

2π
)n−1

N
n−1

2

bh(N,n)∑
j1=−bh(N,n)

...

bh(N,n)∑
jn−1=−bh(N,n)

j1+j2+...+jn=0

f

(
1√
N

n∑
i=1

oiji

)
e

(
−n

2

∑n
i=1

j2i
N

)
|

≤ |I − S|+ |S − n
n
2(√

2π
)n−1

N
n−1

2

bh(N,n)∑
j1=−bh(N,n)

...

bh(N,n)∑
jn−1=−bh(N,n)

j1+j2+...+jn=0

f

(
1√
N

n∑
i=1

oiji

)
e

(
−n

2

∑n
i=1

j2i
N

)
|

< ε+ εP (BN,n) + 2‖f‖∞P (BC
N,n) ≤ ε(1 + 2‖f‖∞)

for large enough N .

Step G. Now, assuming that
∑n

i=1 ji = 0, we consider the difference

DN := |
bh(N,n)∑

jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

n
n
2

(2π)
n−1

2 N
n−1

2

eH(N,j1,...,jn)f

(∑n
i=1 jioi√
N

)

−
bh(N,n)∑

jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

n
n
2

(2π)
n−1

2 N
n−1

2

e

(
−n

2

∑n
i=1

j2i
N

)
f

(∑n
i=1 jioi√
N

)
|

=
n
n
2

(2πN)
n−1

2

|
bh(N,n)∑

jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

f

(
n∑
i=1

jioi√
N

)(
eH(N,j1,...,jn) − e

(
−n

2

∑n
i=1

j2i
N

))
|

=
n
n
2

(2πN)
n−1

2

|
bh(N,n)∑

jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

f

(
n∑
i=1

jioi√
N

)
e

(
−n

2

∑n
i=1

j2i
N

) (
eG(N,j1,...,jn) − 1

)
|

where G(N, j1, ..., jn) = ( n2

4N2 )
∑n

i=1 j
2
i + n2

2N2

∑n
i=1 j

3
i +O( 1

N2 ). Then,

DN ≤
n
n
2

(2πN)
n−1

2

|
bh(N,n)∑

jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

f

(
n∑
i=1

jioi√
N

)(
eG(N,j1,...,jn) − 1

)
|

≤ n
n
2

(2πN)
n−1

2

bh(N,n)∑
jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

|f

(
n∑
i=1

jioi√
N

)(
eG(N,j1,...,jn) − 1

)
|.
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Since G(N, j1, ...jn) ≥ 0, then
(
eG(N,j1,...,jn) − 1

)
≥ 0 and thus

DN ≤
n
n
2

(2πN)
n−1

2

bh(N,n)∑
jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

|f

(
n∑
i=1

jioi√
N

)
|
(
eG(N,j1,...,jn) − 1

)
.

Since f is bounded,

DN ≤ ‖f‖∞
n
n
2

(2πN)
n−1

2

bh(N,n)∑
jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

(
eG(N,j1,...,jn) − 1

)
.

Using a Taylor series approximation, we have

DN ≤ ‖f‖∞
n
n
2

(2πN)
n−1

2

bh(N,n)∑
jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−b(N,n)

(
1 +G(N, j1, ..., jn) +O(

1

N2
)− 1

)

= ‖f‖∞
n
n
2

(2πN)
n−1

2

bh(N,n)∑
jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−b(N,n)

(
G(N, j1, ..., jn) +O(

1

N2
)

)

= ‖f‖∞
n
n
2

(2πN)
n−1

2

bh(N,n)∑
jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

((
n2

4N2

) n∑
i=1

j2
i +

n2

2N2

n∑
i=1

j3
i

)
.

We also have

bh(N,n)∑
jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

j2
1 + ...+ j2

n = 2n(b(N, n))n+1

and
bh(N,n)∑

jn−1=−bh(N,n)

...

bh(N,n)∑
j1=−bh(N,n)

j3
1 + ...+ j3

n = 0.

It then follows that

‖f‖∞
n
n
2 bn+1

(2πN)
n−1

2 n
n+1

2

(
n2

4N2

)
nN

n+1
2 =

‖f‖∞Cn
5
2 bn+1

4(2π)
n−1

2 N
< ε
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for large enough N . This proves the Theorem 1.8.1. That is, for each ε > 0, there

exists an N0 ∈ N such that

|
√
n(√

2π
)n−1

∫
...

∫
f

(
1√
n

n∑
n=1

oiyi

)
e(−

1
2

∑n
i=1 y

2
i )dy1...dyn−1

−
N∑

k1=1

...

N∑
kn=1

k1+...+kn=N

1

nN

(
N

k1, ..., kn

)
f

(∑n
i=1 kioi√
N

)
| < ε

for all N ≥ N0.

For future work, we would like to extend this result to a proof for Rn and,

ultimately, for stochastic processes.
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Chapter 2

The Estimation of the

Concentration of Measure for

Fractional Brownian Motion

2.1 Fractional Brownian Motion

The theory of stochastic processes is a foundational subject in the field of analysis.

Brownian motion is the most fundamental and widely used stochastic process. A

Brownian motion process (Wt)t∈[0,T ] along with filtration (Ft)t∈[0,T ] satisfies

a. W0 = 0.

b. t→ Wt is continuous almost surely.

c. For all 0 ≤ s < t ≤ T, (Wt −Ws)
d
= N(0, t− s).

d. For all 0 = t0 < t1 < ... < tn ≤ T, the increments

Wt1 −Wt0 , ...,Wtn −Wtn−1

are independent of one another.

For d, we may equivalently write that for 0 ≤ r ≤ s < t ≤ T , Wt −Ws is indepden-

dent of the sigma algebra Fr.
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In 1900, Henri Poincare and his doctoral student Louis Bachlier modeled stock

prices by a random walk, an approximation of Brownian motion, with the hope

that this model would capture the randomness of stock prices. Einstein developed

Brownian motion through his work on Avogadros number, the number of molecules

in a mole of gas. Myron Scholes and Robert C. Merton developed the Black-Scholes

option pricing theory in 1973 and won the Nobel Prize for their work in 1997.

A key feature of the Brownian motion process is independent time increments.

Accordingly, this is reflected in the Black-Scholes model for returns on stock. How-

ever, this assumption is not always consistent with actual data. Instead, the past

influences the present, creating dependent time increments.

Therefore, recent efforts to remedy this defect have led to consideration of frac-

tional Brownian motion, in which the time increments depend on one another, and

which Kolmogorov developed in his study of turbulence.

The strength of this dependence is controlled by the so-called Hurst index. The

Hurst index H is a numerical parameter taking values in [0, 1] where H = 1
2

cor-

responds to the Brownian motion process. A fractional Brownian motion process

(WH
t )t∈[0,T ] with Hurst index H has covariance structure

E(WH(t)WH(s)) =
1

2
(|t|2H + |s|2H − |t− s|2H).

The fractional Brownian motion process was developed by Kolmogorov in his study

of turbulence. It is used today in fluid mechanics to model turbulent systems. To

this day, fractional Brownian motion is used in fluid dynamics to model turbulent

systems. In fact, Brownian motion and fractional Brownian motion have applica-

tions in modeling population growth, neuronal activity, genetic information, turbu-

lent diffusion, radio-astronomy signals from stars, and the dynamics of satellites to

mention just a few.
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2.2 The Confidence Intervals for fBm

Theorem 2.2.1. Let (WH
t )t∈[0,∞) be a fractional Brownian motion process with

Hurst index H. Then,

P (AN,ε)

≥ |SN |

(2π)
N
2

√∏N
i=1 λi

∫ √(N+1)(1+ε)

√
(N−1)(1−ε)

e−
1
2
ρ2B

(
ρN−1

√
Bdρ

B
N
2

)

where

AN,ε = {(N − 1)(1− ε) ≤

(
N∑
i=1

(Wi −Wi−1)2

)
≤ (N − 1)(1 + ε)},

B =
ρ2

Nπ

N∑
i=1

1

λi
,

and (λi) are the eigenvalues for the covariance matrix, MN,H , for fractional Brow-

nian noise.

Proof. Consider the fractional Brownian motion process (WH
t )t∈[0,∞) with Hurst

index H. By the Ergodic Theorem, we have∑N
i=1(Wti −Wti−1

)2

N − 1
→ δ2H

almost surely where 0 = t0 < t1 < ... < tN and |ti − ti−1| = δ for each 1 ≤ i ≤ N .

By taking logs, we can solve for H. The Ergodic Theorem is discussed more in [2].

Let ti = i for each 1 ≤ i ≤ N . We consider

P (1− ε ≤

(∑N
i=1(Wti −Wti−1

)2

(N − 1)δ2H

)
≤ 1 + ε)

= P ((N − 1)(1− ε) ≤

(
N∑
i=1

(Wi −Wi−1)2

)
≤ (N − 1)(1 + ε))

=

∫
...

∫
(N−1)(1−ε)≤

∑N
i=1 x

2
i≤(N−1)(1+ε)

1

(2π)
N
2

√
detM

e−
1
2
x̄TM−1x̄dx1...dxN
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Rotating to a basis of eigenvectors,

=

∫
...

∫
(N−1)(1+ε)≤

∑N
i=1 x

2
i≤(N−1)(1+ε)

1

(2π)
N
2

√∏N
i=1 λi

e
− 1

2
(
∑N
i=1

x2
i
λi

)
dx1...dxN

Converting to spherical coordinates,

=
1

(2π)
N
2

√∏N
i=1 λi

∫
...

∫
e
− 1

2

∑N
i=1

x2
i
λi ρN−1sinN−2(φ1)sin(φ2)N−3...sin(φN−2)dρdφ1...dφN

where

x1 = ρcos(φ1)

x2 = ρsin(φ1)cos(φ2)

x3 = ρsin(φ1)sin(φ2)cos(φ3)
...

xN−1 = ρsin(φ1)...sin(φN−2)cos(φN−1)

xN = ρsin(φ1)...sin(φN−1)

and
√

(N − 1)(1 + ε) ≤ ρ ≤
√

(N + 1)(1 + ε), φi ∈ [0, π) for 1 ≤ i ≤ N − 2, and

φN−1 ∈ [0, 2π). Multiplying and dividing by |SN | = 2π
N
2

Γ(N
2

)
, we have

|SN |
|SN |

1

(2π)
N
2

√∏N
i=1 λi

∫
...

∫
e
− 1

2

∑N
i=1

x2
i
λi ρN−1sinN−2(φ1)sin(φ2)N−3...sin(φN−2)dρdφ1...dφN

Since f(x) = ex is a convex function, by Jensen’s Inequality we have

|SN |
|SN |

1

(2π)
N
2

√∏N
i=1 λi

∫
...

∫
e
− 1

2

∑N
i=1

x2
i
λi ρN−1sinN−2(φ1)sin(φ2)N−3...sin(φN−2)dρdφ1...dφN

≥ 1

(2π)
N
2

√∏N
i=1 λi

∫ √(N−1)(ε+1)

√
(N−1)(ε−1)

ρN−1e−
1
2
B|SN |dρ
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where

B =
1

|SN |

∫ 2π

0

∫ π

0

...

∫ π

0

N∑
i=1

x2
i

λi
sinN−2(φ1)...sin(φN−2)dφ1dφ2...dφN

=
1

|SN |

N∑
i=1

∫ 2π

0

∫ π

0

...

∫ π

0

x2
i

λi
sinN−2(φ1)...sin(φN−2)dφ1dφ2...dφN

=
1

|SN |

N∑
k=1

Ii.

Now, we will compute Ii and show that

Ii =
2πρ2

λi

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)

for all 1 ≤ i ≤ N. Using β(a, b) = Γ(a)Γ(b)
Γ(a+b)

, we have

I1 =
1

λ1

∫ 2π

0

∫ π

0

...

∫ π

0

x2
1sinN−2(φ1)sinN−3(φ2)...sin(φN−2)dφ1...dφN−1

=
2πρ2

λ1

∫ π

0

cos2(φ1)sinN−2(φ1)dφ1

∫ π

0

sinN−3(φ2)dφ2...

∫ π

0

sin(φN−2)dφN−2

=
2πρ2

λ1

β(
N − 1

2
,
3

2
)β(

N − 2

2
,
1

2
)...β(1,

1

2
)

=
2πρ2

λ1

(
Γ(N−1

2
)Γ(3

2
)

Γ(N+2
2

)

)(
Γ(N−2

2
)Γ(1

2
)

Γ(N−1
2

)

)
...

(
Γ(3

2
)Γ(1

2
)

Γ(4
2
)

)(
Γ(2

2
)Γ(1

2
)

Γ(3
2
)

)
=

2πρ2

λ1

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)
.

I2 =
1

λ2

∫ 2π

0

∫ π

0

...

∫ π

0

x2
2sinN−2(φ1)sinN−3(φ2)...sin(φN−2)dφ1...dφN−1

=
2πρ2

λ2

∫ π

0

sin2(φ1)sinN−2(φ1)dφ1

∫ π

0

cos2(φ2)sinN−3(φ2)dφ2

∫ π

0

sinN−4(φ3)dφ3...

...

∫ π

0

sin(φN−2)dφN−2

=
2πρ2

λ2

∫ π

0

sinN(φ1)dφ1

∫ π

0

cos2(φ2)sinN−3(φ2)dφ2

∫ π

0

sinN−4(φ3)dφ3...
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...

∫ π

0

sin(φN−2)dφN−2

=
2πρ2

λ2

β(
N + 1

2
,
1

2
)β(

N − 2

2
,
3

2
)β(

N − 3

2
,
1

2
)...β(1,

1

2
)

=
2πρ2

λ2

Γ(N+1
2

)Γ(1
2
)

Γ(N+2
2

)

Γ(N−2
2

)Γ(3
2
)

Γ(N+1
2

)

Γ(N−3
2

)Γ(1
2
)

Γ(N−2
2

)
...

Γ(1)Γ(1
2
)

Γ(3
2
)

=
2πρ2

λ2

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)

=
2πρ2

λ2

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)
.

...

Ii =
1

λi

∫ 2π

0

∫ π

0

...

∫ π

0

x2
i sin

N−2(φ1)sinN−3(φ2)...sin(φN−2)dφ1...dφN−1

=
2πρ2

λi

∫ π

0

sin2(φ1)sinN−2(φ1)dφ1

∫ π

0

sin2(φ2)sinN−3(φ2)dφ2...

...

∫ π

0

sin2(φi−1)sinN−i(φi−1)dφi−1

∫ π

0

cos2(φi)sin
N−i−1(φi)dφi

∫ π

0

sinN−i−2(φi+1)dφi+1...

...

∫ π

0

sin(φN−2)dφN−2

=
2πρ2

λi

∫ π

0

sinN(φ1)dφ1

∫ π

0

sinN−1(φ2)dφ2...

...

∫ π

0

sinN−i+2(φi−1)dφi−1

∫ π

0

cos2(φi)sin
N−i−1(φi)dφi

∫ π

0

sinN−i−2(φi+1)dφi+1...

...

∫ π

0

sin(φN−2)dφN−2

=
2πρ2

λi
β(
N + 1

2
,
1

2
)β(

N

2
,
1

2
)...β(

N − i+ 3

2
,
1

2
)β(

N − i
2

,
3

2
)β(

N − i− 1

2
,
1

2
)...β(1,

1

2
)

=
2πρ2

λi

Γ(N+1
2

)Γ(1
2
)

Γ(N+2
2

)

Γ(N
2

)Γ(1
2
)

Γ(N+1
2

)
...

Γ(N−i+3
2

)Γ(1
2
)

Γ(N−i+4
2

)

Γ(N−i
2

)Γ(3
2
)

Γ(N−i+3
2

)

Γ(N−i−1
2

)Γ(1
2
)

Γ(N−i
2

)
...

Γ(1)Γ(1
2
)

Γ(3
2
)

=
2πρ2

λi

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)
.
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...

IN−2 =
1

λN−2

∫ 2π

0

∫ π

0

...

∫ π

0

x2
N−1sinN−2(φ1)sinN−3(φ2)...sin(φN−2)dφ1...dφN−1

=
2πρ2

λN−2

∫ π

0

sin2(φ1)sinN−2(φ1)dφ1

∫ π

0

sin2(φ2)sinN−3(φ2)dφ3...

...

∫ π

0

sin2(φN−3)sin2(φN−3)dφN−3

∫ π

0

cos2(φN−2)sin(φN−2)dφN−2

=
2πρ2

λN−2

∫ π

0

sinN(φ1)dφ1

∫ π

0

sinN−1(φ2)dφ3...

...

∫ π

0

sin4(φN−3)dφN−3

∫ π

0

cos2(φN−2)sin(φN−2)dφN−2

=
2πρ2

λN−2

β(
N + 1

2
,
1

2
)β(

N

2
,
1

2
)...β(

5

2
,
1

2
)β(1,

3

2
)

=
2πρ2

λN−2

Γ(N+1
2

)Γ(1
2
)

Γ(N+2
2

)

Γ(N
2

)Γ(1
2
)

Γ(N+1
2

)
...

Γ(5
2
)Γ(1

2
)

Γ(6
2
)

Γ(1)Γ(3
2
)

Γ(5
2
)

=
2πρ2

λN−2

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)
.

IN−1 =
1

λN−1

∫ 2π

0

∫ π

0

...

∫ π

0

x2
N−1sinN−2(φ1)sinN−3(φ2)...sin(φN−2)dφ1...dφN−1

=
ρ2

λN−1

∫ π

0

sin2(φ1)sinN−2(φ1)dφ1

∫ π

0

sin2(φ2)sinN−3(φ2)dφ2...

...

∫ π

0

sin2(φN−2)sin(φN−2)dφN−2

∫ 2π

0

cos2(φN−1)dφN−1

=
πρ2

λN−1

∫ π

0

sinN(φ1)dφ1

∫ π

0

sinN−1(φ2)dφ2...

∫ π

0

sin3(φN−2)dφN−2

=
πρ2

λN−1

β(
N + 1

2
,
1

2
)β(

N

2
,
1

2
)...β(

4

2
,
1

2
)

=
2πρ2

λN−1

(
1

2

Γ(N+1
2

)Γ(1
2
)

Γ(N+2
2

)

Γ(N
2

)Γ(1
2
)

Γ(N+1
2

)
...

Γ(4
2
)Γ(1

2
)

Γ(5
2
)

)
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=
2πρ2

λN−1

(
1

2

(Γ(1
2
))N−2Γ(2)

Γ(N+2
2

)

)
=

2πρ2

λN−1

(
1

2

)(
Γ(3

2
)Γ(1

2
)N−3

Γ(N+2
2

)

)(
Γ(1

2
)

Γ(3
2
)

)
since Γ(z + 1) = zΓ(z),

=
2πρ2

λN−1

(
1

2

)(
Γ(3

2
)Γ(1

2
)N−3

Γ(N+2
2

)

)(
Γ(1

2
)

1
2
Γ(1

2
)

)

=
2πρ2

λN−1

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)
.

IN =
1

λN

∫ 2π

0

∫ π

0

...

∫ π

0

x2
NsinN−2(φ1)sinN−3(φ2)...sin(φN−2)dφ1...dφN−1

=
ρ2

λN

∫ π

0

sin2(φ1)sinN−2(φ1)dφ1

∫ π

0

sin2(φ2)sinN−3(φ2)dφ2...

...

∫ π

0

sin2(φN−2)sin(φN−2)dφN−2

∫ 2π

0

sin2(φN−1)dφN−1

=
πρ2

λN

∫ π

0

sinN(φ1)dφ1

∫ π

0

sinN−1(φ2)dφ2...

∫ π

0

sin3(φN−2)dφN−2

=
πρ2

λN
β(
N + 1

2
,
1

2
)β(

N

2
,
1

2
)...β(2,

1

2
).

=
2πρ2

λN

Γ(3
2
)(Γ(1

2
))N−3Γ(1)

Γ(N+2
2

)
.

It then follows that

Ii =
2πρ2

λi

Γ(3
2
)(Γ(1

2
))N−3

Γ(N+2
2

)

for all 1 ≤ i ≤ N and thus

B =
2πρ2Γ(3

2
)(Γ(1

2
))N−3

Nπ
N
2

N∑
i=1

1

λi

=
ρ2

πN

N∑
i=1

1

λi
.

Therefore, we have
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P ((N − 1)(1− ε) ≤

(
N∑
i=1

(Wi −Wi−1)2

)
≤ (N − 1)(1 + ε))

≥ |SN |

(2π)
N
2

√∏N
i=1 λi

∫ √(N+1)(1+ε)

√
(N−1)(1−ε)

e−
1
2
ρ2B

(
ρN−1

√
Bdρ

B
N
2

)

where

B =
ρ2

Nπ

N∑
i=1

1

λi
.

Thus, all of the information in the bounds is obtained by understanding the

spectrum of the covariance operator.

2.3 The Spectrum for the Covariance Matrix of

fBm Increments

Now, to determine the confidence intervals for fractional Brownian motion, we study

the spectrum of the covariance operator.

Theorem 2.3.1. The maximum eigenvalue for the covariance matrix for fractional

Brownian noise of dimension N and Hurst index H has a rate of N2H−1 for H ∈
(1

2
, 1). For H ∈ (0, 1

2
), an upper bound for the largest eigenvalue is 3

2
.

Proof. The covariance function for a fractional Brownian motion process (WH(t))t∈[0,T ]

is given by

E(WH(t)WH(s)) =
1

2
(|t|2H + |s|2H − |t− s|2H).

Therefore, the matrix MN,H has entries MN,H
i,j = 1

2
(|i − j + 1|2H + |i − j − 1|2H −

2|i− j|2H) for some H ∈ (0, 1). By Brauer’s Theorem, the spectrum of a matrix is

contained in the union of circles of radius equal to the absolute value of the sum of
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the rows without the diagonal entry and center equal to the diagonal entry. For the

sum of row k without the diagonal entry, we have

N∑
m=0,m6=k

1

2
(|m− k + 1|2H + |m− k − 1|2H − 2|m− k|2H)

as a telescoping sum,

=
1

2
((k + 1)2H − k2H + (N − k + 1)2H − (N − k)2H) + (−1).

Now, we will find the maximum value of this sum over all k. Let

f(k) =
1

2
((k + 1)2H − k2H + (N − k + 1)2H − (N − k)2H) + (−1).

Then, we have

f ′(k) =
1

2
(2H(k + 1)2H−1 − 2Hk2H−1 − 2H(n− k + 1)2H−1 + 2H(N − k)2H−1).

Setting f ′(k) = 0, we obtain

(k + 1)2H−1 + (N − k)2H−1 = k2H−1 + (N − k + 1)2H−1,

which has k = N
2

as a solution. For the second derivative test, we have

f ′′(k) = H(2H − 1)((k + 1)2H−2 − k2H−2 + (N − k + 1)2H−2 − (N − k)2H−2).

Since (2H − 2) < 0 for each H ∈ (0, 1), we have

((k + 1)2H−2 − k2H−2) ≤ 0

and

((N − k + 1)2H−2 − (N − k)2H−2) ≤ 0

for k > 0. Therefore, for H ∈ (0, 1
2
), we have (2H − 1) < 0 and thus f”(k) > 0, so

f(0) or f(N) is a maximum. Thus, for H ∈ (0, 1
2
), we have

f(0) = f(N) =
1

2
((N + 1)2H −N2H + 1) + (−1)
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=
N2H

2
(1 +

1

N
)2H − N2H

2
− 1

2

=
N2H

2
(1 +

2H

N
+O(

1

N2
))− N2H

2
− 1

2

= HN2H−1 − 1

2
+O(N2H−2).

Thus, 1
2
−HN2H−1 + 1 is an upper bound for the largest eigenvalue. Similarly, for

H ∈ (1
2
, 1), we have (2H−1) > 0 and thus f ′′(k) < 0, so f(N

2
) is a maximum. Thus,

for H ∈ (1
2
, 1)

f(
N

2
) + 1 = ((

N

2
+ 1)2H − (

N

2
)2H)

gives us an upper bound for the largest eigenvalue. We have

((
N

2
+ 1)2H − (

N

2
)2H) = (

N

2
)2H(1 + (

2

N
))2H − (

N

2
)2H .

Using Taylor series approximation, we have

((
N

2
+ 1)2H − (

N

2
)2H) = (

N

2
)2H(1 + 2H(

2

N
) +O(

1

N2
))− (

N

2
)2H

=
4H

4H
N2H−1 +O(N2H−2).

Since H ∈ (1
2
, 1), then O(N2H−2)→ 0 as N →∞. Now, we will find a lower bound

for the largest eigenvalue of M . To do this, we will consider < Mx, x > where

x =
1√
N

(11...1)T .

Then, we have

< Mx, x >=
1

N

N∑
i=0

N∑
j=0

1

2
(|i− j + 1|2H + |i− j − 1|2H − 2|i− j|2H)

As a telescoping sum,

=
1

N
(N + 1)2H =

1

N
((N2H)(1 +

1

N
)2H)

Using Taylor series approximation,

= N2H−1(1 + o(
1

N
)) = N2H−1 +O(N2H−2).

48



Since H ∈ (1
2
, 1), then O(N2H−2) → 0 as N → ∞. Now, we will show that the

upper and lower bounds for the matrix M are sufficiently close to one another. The

largest eigenvalue λN,H corresponding to matrix MN,H must satisfy

N2H−1 ≤ λN,H ≤ 4H

4H
N2H−1.

To find the maximum value of 4H
4H

, let

g(H) =
4H

4H
.

Then, we have

g′(H) =
4 · 22H − 4H · 22H · 2ln(2)

24H
.

Setting g′(H) = 0, we obtain

H =
1

2ln(2)
.

Then, we have maximum value

1.06 < g(
1

2ln(2)
) =

2

ln(2) · 2
1

ln(2)

< 1.062.

Therefore, we have largest eigenvalue λN,H of matrix MN,H with rate equal to

a(H)N2H−1 where 1 ≤ a(H) < 1.062.

Thus, we have the rate for the largest eigenvalue for M . For future work, we

would like to continue our analysis of the spectrum of M to find tight bounds for

the concentration of measure for fBm.
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Chapter 3

Appendix

3.1 Appendix A.

A sequence of random variables (Xn) on a probability space (Ω,F , P ) is said to

converge ”almost surely” to a random variable X provided that

P ({ω ∈ Ω : Xn(ω) 9 X(ω)}) = 0.

This sequence of random variables converges to X ”in probability” provided that

for each ε > 0,

lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}) = 0.

A sequence of random variables (Xn) is said to converge to a random variable X in

the Lpnorm provided that

lim
n→∞

‖Xn −X‖p = 0

where ‖X‖p =
(∫

Ω
X(ω)pdP (ω)

) 1
p .

3.2 Appendix B.

The following notes on Laplace are from [4]. Laplace first became interested in

the probabilities of randomly distributed sums of angles of inclination. In 1776, he
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published a paper determining the probability that the sums of angles of inclination

of comet orbits were within given limits. In 1781, Laplace developed a general

method for calculating these probabilities based on convolutions of density functions.

In the most simple case, Laplace considered n variables with the same rectangular

distribution between 0 and h. Then, the probability that the sum of those variables

is between a and b is given by

P =
1

hnn!

(
N∑
i=0

(
n

i

)
(−1)i(b− ih)n −

M∑
i=0

(
n

i

)
(−1)i(a− ih)n

)

where N =min(n, b b
n
c) and M =min(n, b a

n
c). However, this formula was too intri-

cate for direct numerical computations.

Laplace was particularly interested in approximating integrals by studying func-

tions with a sharp peak. For these functions, the main contribution to the integral

is contained in some small interval around the value at which the maximum occurrs.

He approximated these functions by f(a)e−α(x−a)2
for a function f whose maximum

occurs at x = a. One can easily see the connection between this approximation and

the density for the normal distribution. An example of an integral that Laplace

studied is the gamma function

Γ(s+ 1) =

∫ ∞
0

e−xxsdx.

Letting x = z + s,

Γ(s+ 1) =

∫ ∞
−s

e−(z+s)(z + s)sdz.

To approximate this integral, Laplace recognized that the integrand has maximum

value at M = e−sss attained at x = s, or equivalently, at z = 0. Then, Laplace set

e−(z+s)(z + s)s = e−se−z(z + s)s = Me−t
2z

and expanded t2 = −1
z
log(e−z(1 + z

s
)s) in a power series about z. He also expanded

z in a power series about t. After transforming the variable of integration from z to
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t, he obtained

Γ(s+ 1) = M

∫ ∞
−∞

e−t
2√

2s

(
1 +

4t

3
√

2s
+
t2

6s
+ ...

)
dt

= ss+
1
2 e−s
√

2π

(
1 +

1

12s
+

1

288s2
+ ...

)
.

This computation provides an example of Laplace’s method for approximation. For

many problems, this method worked well in establishing a close approximation.

However, this method did not work well for the case of sums of random variables.

Therefore, another method was needed.

In his next approach, Laplace was able to compute probabilities for sums of

independent random variables. As an example, consider random variables X1, ..., Xn

with mean 0 which take values k
m

, m ∈ N, k = −m,−m + 1, ...,m − 1,m with

probabilities pk. Then, let Pj denote the probability that
∑n

l=1 Xl has the value
j
m
,−nm ≤ j ≤ nm. Laplace used the generating function T (t) =

∑m
k=−m pkt

k.

By independence of the random variables, Pj is equal to the coefficient of tj in the

product (T (t))n. As the execution of this method is extremely complicated, dating

back to de Moivre, Laplace employed the trick of letting t = eix. As a result of

1

2π

∫ π

−π
e−itxeisxdx = δt,s

it follows that

P (j) =
1

2π

∫ π

−π
e−ijx

(
m∑

k=−m

pke
ikx

)n

dx.

Expanding eikx in power series,

P (j) =
1

2π

∫ π

−π
e−ijx

(
m∑

k=−m

pk

(
1 + ikx− k2x2

2
− ...

))n

dx.

As the random variables (Xl) have mean 0, then we have
∑m

k=−m pkk = 0 and∑m
k=−m pkk

2 = m2σ2. Making these substitutions, we have

P (j) =
1

2π

∫ π

−π
e−ijx

(
1− m2σ2x2

2
− iAx3 + ...

)
dx
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where A is a constant depending on
∑m

k=−m pkk
3. Expanding

log

(
1− m2σ2x2

2
− iAx3 + ...

)n
:= log(z)

in power series, we have

log(z) = −m
2σ2nx2

2
− iAnx3 + ...

which gives us

z = e−
m2σ2nx2

2
−iAnx3+...

= e−
m2σ2nx2

2

(
1− iAnx3 + ...

)
.

Letting y = x
√
n, we have

P (j) =
1

2π
√
n

∫ π
√
n

−π
√
n

e
−ij y√

n e−
m2σ2y2

2

(
1− iAy3 + ...

)
dy.

For very large n, we have

P (j) =
1

2π
√
n

∫ ∞
−∞

e
−ij y√

n e−
m2σ2y2

2 dy.

Laplace showed in different ways that this integral is equal to

1

mσ
√

2πn
e
−j2

2m2σ2n (∗).

Summing up (∗) for j
m
∈ [r1

√
n, r2

√
n], we have

P

(
r1

√
n ≤

∑
Xl ≤ r2

√
n

)
≈

∑
j∈[mr1

√
n,mr2

√
n]

1

mσ
√

2πn
e
−j2

2m2σ2n ,

approximating by an integral with ∆x = 1√
n
,

≈
∫ mr2

mr1

1

mσ
√

2π
e
−j2

2m2σ2 dx

=

∫ r2

r1

1

σ
√

2π
e−

x2

2σ2 dx.
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This gives us a special case of the CLT by establishing the probability that a sum

of random variables is within given limits. As he starts by considering discrete ran-

dom variables, he later extends to the case with m ”infinitely large.” Laplace never

proved the general CLT that we use today. Instead, he considered the approximate

probabilities involving linear combinations of observed errors. His most general ver-

sion of the CLT is the following: Let ε1, ..., εn be independent observation errors with

mean µ and variance σ2. Let λ1, ..., λn be constant multipliers and a > 0. Then, we

have

P

| n∑
j=1

λj(εj − µ)| ≤ a

√√√√ n∑
j=1

λ2
j

 ≈ 2

σ
√

2π

∫ a

0

e−
x2

2σ2 dx.

3.3 Appendix C.

The following notes on Poisson are from [4]. Unlike Laplace, Poisson started with

sums of random variables from the beginning. By considering random variables (Xn)

with density functions fn and by letting Ss = X1 + ...+Xs, Poisson established the

formula

P (c− ε ≤ Ss ≤ c+ ε) =
1

π

∫ ∞
−∞

(
s∏

n=1

∫ b

a

fn(x)eiαxdx

)
eiαcsin(εα)

dα

α

However, the justification for this formula was incomplete. He then considered the

special case with s = 1. Changing the order of integration, he obtained the formula

P (c− ε ≤ X1 ≤ c+ ε) =
1

π

∫ b

a

∫ ∞
−∞

eiα(x−c)sin(εα)
dα

α
f1(x)dx.

By using the formula ∫ ∞
0

sin(kx)

x
dx =

π

2
, k > 0

he obtained ∫ ∞
−∞

eiα(x−c)sin(εα)
dα

α
=

{
π x ∈ [c− ε, c+ ε]

0 x /∈ [[c− ε, c+ ε].
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In order to establish this formula, Poisson required

P (c− ε ≤ X1 ≤ c+ ε) =

∫ c+ε

c−ε
f1(x)dx.

To extend to the general case, Poisson set∫ b

a

fn(x)cos(αx)dx := ρncos(φn)

∫ b

a

fn(x)sin(αx)dx := ρnsin(φn)

where R := ρ1...ρs and ψ := φ1 + ...+φs. Since R(−α) = R(α) and ψ(−α) = −ψ(α),

he showed that

P (c− ε ≤ Ss ≤ c+ ε) =
2

π

∫ ∞
0

Rcos(ψ − cα)sin(εα)
dα

α
.

This formula gives us the probability that a sum of the large number of random

variables is within a given limit. While Poisson’s work on the CLT was based on

the work of Laplace, Poisson’s strict mathematical analysis led to more rigorous

treatment of the CLT. Poisson’s version of the CLT can be summarized as follows:

Let X1, ..., Xs be random variables with densities that decrease sufficiently fast as

their arguments tend to ±∞. Suppose that for the absolute values ρn(α) of the

characteristic function Xn there exists a function r(α) independent of n with 0 ≤
r(α) < 1 for each α 6= 0 such that

ρn(α) ≤ r(α).

Then, for arbitrary γ,γ′,

P

(
γ ≤

∑s
n=1(Xn − EXn)√
2
∑s

n=1 V arXn

≤ γ′

)
≈ 1√

π

∫ γ′

γ

e−u
2

du.

To investigate the validity of his work, Poisson considered a counterexample for

random variables with density function equal to

f(x) =
1

π(1 + x2)
.
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Then, we have the probability that the sum of the random variables is within a fixed

limit given by

P (c− ε ≤
∑

Xn ≤ c+ ε) =
1

π
arctan

(
εs

s2 + c2 − ε2

)
Therefore, the probability is not approximated by the normal distribution for large

s. Next, Poisson considered linear combinations of identically distributed errors∑
γnεn which satisfy

f(x) = e−2|x|.

These linear combinations of errors satisfy

P (−c ≤
∑

γnεn ≤ c) =
1− e−2c

1 + e2c

if γn = 1
n
, and

P (−c ≤
∑

γnεn ≤ c) = 1− 4

π
arctan(e−2c)

if γn = 1
2n−1

. In the first example, we have

ρ1(α)...ρs(α) =
1

(1 + α2

4
)(1 + α2

4·4)...(1 + α2

4·s2 )
→ πα

e
1
2
πα − e− 1

2
πα
.

In the second example, we have

ρ1(α)...ρs(α) =
1

(1 + α2

4
)(1 + α2

4·9)...(1 + α2

4·(2s−1)2 )
→ 2

e
πα
4 − e−πα4

.

Poisson’s earlier version of the CLT led the way for a more rigorous treatment.

Letting

ρ := ρ1 =

√
(

∫ b

a

f1(x)cos(αx)dx)2 + (

∫ b

a

f1(x)sin(αx)dx)2

and φ := φ1, Poisson showed that

P (c− ε ≤ Ss ≤ c+ ε) =
2

π

∫ ∞
0

ρscos(sφ− cα)sin(εα)
dα

α
.
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For ”infinitely small” α, he deduced that

ρs =

{
(1− h2α2)s α infinitely small

0 otherwise

where

h2 :=
1

2

(∫ b

a

x2f1(x)dx−
(∫ b

a

xf1(x)dx

)2
)
.

For ”infinitely large” s and large but finite Y ,

P (c− ε ≤ Ss ≤ c+ ε) ≈ 2

π

∫ Y

0

e−h
2y2

cos[(ks− c) y√
s

]sin(
εy√
s

)
dy

y
+

+
2

π

∫ ∞
Y√
s

ρscos(sφ− cα)sin(εα)
dα

α
.

Poisson observed that

2

π

∫ ∞
Y√
s

ρscos(sφ− cα)sin(εα)
dα

α
≈ 0.

Using the equality,

1

y
cos[(ks− c) y√

s
]sin(

εy√
s

) =
1

π
√
s

∫ ε

−ε
cos[(ks− c+ z)

y√
s

]dz

we have
2

π

∫ Y

0

e−h
2y2

cos[(ks− c) y√
s

]sin(
εy√
s

)
dy

y

=
1

π
√
s

∫ ε

−ε

(∫ ∞
0

e−h
2y2

cos[(ks− c+ z)
y√
s

]dy

)
dz

Thus, we have

P (c− ε ≤ Ss ≤ c+ ε) ≈ 1

2h
√
πs

∫ ε

−ε
e−

(ks−c+z)2

4h2s dz.

Setting c = ks and ε = 2hr
√
s, he obtained the following version of the CLT

P (ks− 2hr
√
s ≤ Ss ≤ ks+ 2hr

√
s) ≈ 2√

π

∫ r

0

e−t
2

dt.
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3.4 Appendix D.

For an example, we will show that 3
8

has binary expansion equal to (0, 1, 1, 0, 0, 0, ...)

as follows: We first divide [0, 1) into two intervals of equal length, [0, 1
2
) and [1

2
, 1).

Since 3
8

is in the left interval [0, 1
2
), we write 0 as the first digit in the binary

expansion. Next, we divide [0, 1
2
) into two intervals of equal length, [0, 1

4
) and [1

4
, 1

2
).

Since 3
8

is in the right interval [1
4
, 1

2
), we write 1 as the second digit. Continuing the

process, we divide [1
4
, 1

2
) into two intervals of equal length, [1

4
, 3

8
) and [3

8
, 1

2
). Since

3
8

is in the right interval [3
8
, 1

2
), then we write 1 as the third digit in the binary

expansion for 3
8
. One can see that since 3

8
is the left endpoint of the interval [3

8
, 1

2
),

3
8

will always be in the left interval following each of the proceeding subdivisions.

Therefore, 3
8

has binary expansion equal to (0, 1, 1, 0, 0, 0, ...). We can check that
0
2

+ 1
4

+ 1
8

= 3
8
.
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