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Abstract

This thesis contains my work during Ph.D. studies under the guidance of my

advisor Huai-Dong Cao.

We initiated our research on Perelman’s Conjecture stating that the three-

dimensional steady gradient Ricci soliton is the Bryant soliton up to scaling, and we

managed to prove this with the assumption that the metric is locally conformally

flat.

Later, exploring the Bach tensor, we managed to show that a four-dimensional

Bach flat shrinking Ricci soliton is either Einstein, the quotient of a Gaussian soliton

R4 or the product S3 × R. For dimension n ≥ 5, a Bach flat Ricci soliton is either

Einstein, the quotient of Gaussian soliton R4 or the product of an Einstein manifold

with a line, namely Nn−1 × R. A similar argument can be carried over to steady

Ricci solitons with some additional assumptions.

In the proof we constructed a covariant 3-tensor called the D-tensor which is

verified to be a key link for the geometry of Ricci solitons and the well-known Weyl

curvature, Cotton tensor and Bach tensor.

As an extended study, joint with Meng Zhu, we establish the rigidity result

for Kähler-Ricci solitons with harmonic Bochner tensor. Joint with Chenxu He,

we also applied the Bach-flat argument to quasi-Einstein manifolds and prove the

classification theorem.
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Chapter 1

Preliminaries on Ricci Solitons

The concept of Ricci solitons was introduced by R. Hamilton [37] in the mid 1980’s.

The importance of Ricci solitons to the Ricci flow can be illustrated as follows:

• Ricci solitons are natural generalizations of Einstein metrics.

• Ricci solitons correspond to self-similar solutions to the Ricci flow.

• The Li-Yau-Hamilton inequality becomes an equality on expanding solitons.

• Ricci solitons often appear as singularity models, i.e., the dilation limits of

singular solutions to the Ricci flow. For instance, type II and type III sin-

gularity models are steady and expanding solitons respectively; under certain

conditions, type I singularity models are shrinking solitons.

• Ricci solitons are critical points of entropy functionals. For example, com-

pact gradient steady solitons and shrinking solitons are the critical points of

Perelman’s λ and ν entropies, respectively.

In this chapter, we will give the definition and introduce some well-known results

on Ricci solitons.
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1.1 Definitions and Basic Identities

In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process

that deforms the metric gij of a Riemannian manifold by its Ricci tensor Rij,

∂

∂t
gij = −2Rij, (1.1.1)

which is formally analogous to the diffusion of heat, smoothing out irregularities in

the metric. It is the primary tool used in the Hamilton-Perelman solution to the

Poincaré conjecture. A very important part in the study of the Ricci flow is to

understand the geometry of Ricci solitons:

Definition 1.1.1. A Ricci soliton is a Riemannian manifold whose metric satisfies

Rij + LV gij = ρgij. (1.1.2)

Here V is a smooth vector field, L is the Lie derivative, and ρ is a real constant.

Ricci soliton metrics stay self-similar under the Ricci flow, and they are divided

into three types called shrinking (ρ > 0), steady (ρ = 0) or expanding (ρ < 0).

Definition 1.1.2. A gradient Ricci soliton is a special kind of Ricci soliton whose

vector field V is the gradient of some potential function f , namely, V = 1
2
∇f , and

hence for gradient Ricci solitons equation (1.1.2) reduces to:

Rij +∇i∇jf = ρgij. (1.1.3)

Definition 1.1.3. An Einstein metric is a Riemannian metric whose Ricci curva-

ture is constant, or namely

Rij = ρgij.

It is easy to see that Einstein manifolds are necessarily Ricci solitons.

Remark 1.1.1. Given a Ricci soliton (M, g0, V ) satisfying (1.1.2), it is easy to

check the following self-similar solution to the Ricci flow with initial metric g0:

g(t) = (1− 2ρt)φ∗tg0,
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where φt is the one-parameter family of diffeomorphisms generated by 1
1−2ρt

V .

Moreover, by a result of Z.-H. Zhang [61], for a complete gradient steady or

shrinking Ricci soliton, the family of diffeomorphisms {φt} exists on (−∞, T ) for

some T .

Before we start the computations, let us fix the notation and conventions used

in this paper.

Let (Mn, gij) be a Riemannian manifold of dimension n, and denote by Γkij, Rm,

Rc and R the Christoffel symbol, Riemannian curvature tensor, Ricci curvature

tensor and scalar curvature respectively. In local coordinates {x1, x2, ..., xn}, we

have the expression:

Γkij =
1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
Rm(∂i, ∂j, ∂k, ∂l) = Rijkl = gkp

(
∂Γpjl
∂xi
− ∂Γpil
∂xj

+ ΓpiqΓ
q
jl − ΓpjqΓ

q
il

)
Rc(∂i, ∂k) = Rik = gjlRijkl

R = gikRik.

Here, we use Einstein’s convention which means that we take sum over repeated

indices. For example gijhjk =
∑n

j=1 g
ijhjk. Also gij means the inverse matrix of the

metric tensor gij, namely gijg
jk = δki .

In some circumstances, we may also use <,> to represent the metric tensor.

Namely,

< X, Y >= gijX
iY j

The covariant derivative is given by

∇iVj =
∂Vj
∂xi
− ΓkijVk.

We have the following Ricci identity:

∇i∇jVk −∇j∇iVk = RijklVmg
lm.

Furthermore, throughout this paper, we will always use normal coordinates near

a given point where tensorial computation is performed. This means that for any
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point p, we choose local coordinates {x1, x2, ..., xn} near p such that gij(p) = δij and
∂gij
∂xk

(p) = 0. Therefore, we may lower all of the indices and the Ricci identities above

become

∇i∇jVk −∇j∇iVk = RijklVl.

Lemma 1.1.1. (Hamilton [39]) Let (Mn, gij, f) be a complete gradient Ricci soli-

ton (1.1.3). Then,

R + ∆f = nρ (1.1.4)

∇jRik −∇iRjk = Rijkl∇lf (1.1.5)

∇iR = 2Rij∇jf, (1.1.6)

and

R + |∇f |2 − 2ρf = C0 (1.1.7)

for some constant C0. Here R denotes the scalar curvature.

Proof. Taking the trace of equation (1.1.3) yields (1.1.4).

From

∇jRik −∇iRjk = −∇j∇i∇kf +∇i∇j∇kf = Rijkl∇lf

we obtain (1.1.5)

Using the contracted second Bianchi identity, the first equality below, and the

definition of gradient Ricci soliton (1.1.3), it follows that

∇iR = 2∇jRij = −2∇j∇i∇jf = −2∇i(∆f)− 2Ril∇lf ;

Applying the trace version of (1.1.3), namely R + ∆f = ρn, we derive

∇iR = 2∇iR− 2Ril∇lf.

Hence (1.1.6) holds.

5



To prove (1.1.7), just verify that the covariant derivative of the left hand side

equals zero:

∇i(R + |∇f |2 − 2ρf) = ∇iR + 2∇i∇jf∇jf − 2ρ∇if

= 2Rij∇jf + 2∇i∇jf∇jf − 2ρ∇if

= 2(Rij +∇i∇jf − ρgij)∇jf

= 0.

Remark 1.1.2. For shrinking Ricci solitons, it is always possible to rescale the

metric and shift the function f by a constant, such that:

Rij +∇i∇jf =
1

2
gij and R + |∇f |2 − f = 0. (1.1.8)

Without ambiguity, when we refer to shrinking Ricci solitons later, we mean the

shrinking Ricci solitons with this normalization.

Proposition 1.1.1. (Hamilton [39], Ivey [43]) Any compact steady or expanding

gradient Ricci soliton must be Einstein.

Proof. We present the proof for the expanding case. The proof for the steady case is

similar yet simpler. Let (Mn, gij) be a compact gradient expanding soliton satisfying

(1.1.3) for some ρ < 0.

From Lemma 1.1.1, we have

R + ∆f = nρ

and

R + |∇f |2 − 2ρf = C0

Taking the difference:

∆f − |∇f |2 = −2ρf + C

6



Thus using the maximum principle, we obtain:

− 2ρf |max + C ≤ 0

− 2ρf |min + C ≥ 0

which forces f |max = f |min, or equivalently implies that f is constant, which in turn

implies the soliton is Einstein.

From the proposition above, in low dimensions (n = 2 or 3), there are no compact

gradient steady or expanding Ricci solitons other than those of constant curvature.

It turns out that this is also true for compact shrinking Ricci solitons.

Proposition 1.1.2. (Hamilton [40] for n = 2, Ivey [43] for n = 3) In dimension

n ≤ 3, there are no compact gradient shrinking Ricci solitons other than those of

constant positive curvature.

Remark 1.1.3. When n ≥ 4, we can no longer expect such a proposition for compact

shrinking solitons. Some non-Einstein compact shrinking Ricci soliton examples do

exist.

1.2 Examples of Ricci Solitons

In the first section, we saw that compact gradient steady and expanding solitons are

Einstein. This is also true for compact shrinking Ricci solitons in low dimensions.

However, as remarked, examples of nontrivial compact gradient shrinking Ricci soli-

tons do exist when n ≥ 4. Also there exist complete noncompact gradient steady,

shrinking and expanding Ricci solitons which are not Einstein. In this section, we

will present some of these examples.

• Examples of Compact Shrinking Solitons

Example 1.2.1. The first example of a compact non-Einstein gradient shrink-

ing Ricci soliton was found by H.-D. Cao [9] and N. Koiso [45] independently.
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They proved the existence of a U(n) symmetric gradient shrinking Kähler-

Ricci soliton structure on the twisted projective line bundle P(Lk ⊕L−k) over

CPn−1 for n ≥ 2, where L is the hyperplane line bundle over CPn−1 and

1 ≤ k ≤ n − 1. In particular, in real dimension 4, it implies that there is a

shrinking Kähler-Ricci soliton structure on CP2#CP2.

Example 1.2.2. In [60], Wang-Zhu proved that there is a unique Kähler-Ricci

soliton structure on any toric Kähler manifold with positive first Chern class

and nonvanishing Futaki invariant. In particular, in complex dimension 2,

this means that a Kähler-Ricci soliton exists on CP2#2CP2 with U(1)×U(1)

symmetry.

• Examples of Noncompact Shrinking Solitons

Example 1.2.3. Feldman-Ilmanen-Knopf [32] discovered the first example of

a complete noncompact non-Einstein gradient shrinking Ricci soliton. They

found a family of shrinking Kähler-Ricci solitons with U(n) symmetry and a

cone-like end at infinity on the twisted line bundle over CPn−1.

Example 1.2.4. In 2011, A. Dancer and M. Wang [30] constructed Ricci

solitons on cohomogenity-one manifolds.

Example 1.2.5. In the same year, A. Futaki and M. Wang [34] constructed

gradient Kähler-Ricci solitons on Ricci-flat Kähler cone manifolds and on line

bundles over toric Fano manifolds.

These examples above are constructed on Kähler manifolds, and we point out

that so far, no example of a non-Kähler Riemannian shrinking soliton has been

discovered.

• Examples of Noncompact Steady Solitons

Example 1.2.6. The first noncompact non-Einstein steady Ricci soliton was

found by Hamilton [40] on R2, called the cigar soliton. The metric and the

8



potential function are given by

g =
dx2 + dy2

1 + x2 + y2

and

f = − log(1 + x2 + y2).

The cigar soliton has positive curvature and linear volume growth, and is

asymptotic to a cylinder of finite circumference at infinity.

Example 1.2.7. R. Bryant [8] proved the existence and uniqueness of a com-

plete noncompact rotationally symmetric gradient steady soliton with positive

curvature on Rn for n ≥ 3.

Example 1.2.8. Examples of noncompact steady Ricci solitons on Kähler

manifolds were first found by H.-D. Cao [9]. He constructed U(n) symmetric

gradient steady Kähler-Ricci solitons on both Cn and the blow-up of Cn/Zn
at the origin.

• Examples of Noncompact Expanding Solitons

Example 1.2.9. In addition to the steady solitons, R. Bryant [8] also proved

the existence of noncompact rotationally symmetric gradient expanding Ricci

solitons with positive curvature on Rn.

Example 1.2.10. A one-parameter family of gradient Kähler-Ricci expanding

solitons was discovered by H.-D. Cao [9] on Cn. These solitons are U(n)

symmetric and have positive sectional curvature.

Example 1.2.11. More examples are found by Feldman-Ilmanen-Knopf [32]

on the twisted line bundle L−k on CPn−1 for k = n + 1, n + 2, ..., where L is

the hyperplane bundle.

• The Gaussian Solitons

9



Example 1.2.12. The Euclidean space (Rn, δij) with the flat metric can be

considered as either a gradient shrinking, steady or expanding soliton, called

the Gaussian shrinker, steady soliton or expander respectively.

i) The Gaussian shrinker has potential function f = |x|2
4

satisfying

Rc+∇∇f =
1

2
g

ii) The Gaussian steady soliton has potential function f = 0 satisfying

Rc+∇∇f = 0

iii) The Gaussian expander has potential function f = − |x|
2

4
satisfying

Rc+∇∇f = −1

2
g

For more examples, we refer the reader to the survey paper [11] of H.-D. Cao.

1.3 Geometry of Gradient Ricci Solitons

In this section, we are going to discuss some important geometric properties and

classification results of gradient Ricci solitons.

1.3.1 Geometry of Gradient Shrinking Ricci Solitons

By an ancient solution, we mean a complete solution to the Ricci flow whose existing

time is (−∞, T ] for some T .

Lemma 1.3.1. Let (Mn, gij(t)) be an ancient solution to the Ricci flow. Then it

has nonnegative scalar curvature R ≥ 0.

Further, when n = 3, B.-L. Chen [25] showed more:

Lemma 1.3.2. Any 3-dimensional ancient solution to the Ricci flow must have

nonnegative sectional curvature.

10



It follows from the completeness of the gradient vector field of the potential

function f , that one can construct an ancient solution from a shrinking or steady

Ricci soliton. Namely from the view of Ricci flow, shrinking or steady Ricci solitons

are special cases of ancient solutions. Thus as a corollary:

Lemma 1.3.3. Let (Mn, gij, f) be a complete gradient shrinking or steady soliton.

Then it has nonnegative scalar curvature R ≥ 0.

Lemma 1.3.4. Any 3-dimensional complete gradient shrinking or steady Ricci soli-

ton must have nonnegative sectional curvature.

Z.-H. Zhang [61] proved that a locally conformally flat shrinking or steady Ricci

soliton has nonnegative curvature operator. Combined with the Lemma 1.3.4, we

can conclude:

Lemma 1.3.5. Let (Mn, g, f) be a complete gradient shrinking or steady Ricci soli-

ton. Then the curvature operator Rm ≥ 0 provided either

(i) n = 3 or

(ii) n ≥ 4 and g is locally conformally flat.

When a complete shrinking Ricci soliton has bounded nonnegative curvature

operator, by a maximum principle of Hamilton, it either has positive curvature

operator everywhere or its universal cover splits as N × Rk with k ≥ 1 and N a

shrinking soliton with positive curvature operator. Moreover, if a shrinking soliton

with positive curvature operator is compact, then it must be a finite quotient of the

round sphere by the results of Hamilton [37, 38] (for n = 3, 4) and Böhm-Wilking

[3] (for n ≥ 5). Brendle and Schoen [7] and Brendle [6] got the same conclusion

under some weaker suitable positive curvature conditions.

Perelman [54] showed that, in dimension 3, there is no noncompact gradient

shrinking soliton with bounded positive curvature operator.

Lemma 1.3.6. (Perelman [54]) Any complete 3-dimensional gradient shrinking

Ricci soliton with bounded positive sectional curvature must be compact.

11



Remark 1.3.1. In the Kähler case, Ni [51] has shown the nonexistence of noncom-

pact gradient shrinking Kähler-Ricci solitons with positive holomorphic bisectional

curvature.

Based on Lemma 1.3.6, Perelman obtained the following important classification

result:

Theorem 1.3.1. (Perelman [54]) Any complete 3-dimensional nonflat gradient

shrinking Ricci soliton with bounded nonnegative sectional curvature must be either

a quotient of S3 or a quotient of S2 × R.

In the past decade, a lot of effort has been made to improve and generalize

this result of Perelman. Ni-Wallach [52] and Naber [50] replaced the assumption of

nonnegative sectional curvature by nonnegative Ricci curvature. In addition, instead

of assuming bounded curvature, Ni-Wallach [52] allows the curvature to grow as fast

as ear(x), where r(x) is the distance function to some arbitrarily fixed point and a > 0

is some constant. More specifically, they proved:

Proposition 1.3.1. (Ni-Wallach [52]) Any 3-dimensional complete noncompact

nonflat gradient shrinking Ricci soliton with Rc ≥ 0 and |Rm|(x) ≤ ear(x) must be

a quotient of the round cylinder S2 × R.

Based on Lemma 1.3.4 and Proposition 1.3.1, Cao-Chen-Zhu [13] were able to

remove all the assumptions on the curvature.

Theorem 1.3.2. (Cao-Chen-Zhu [13]) Any 3-dimensional complete noncompact

nonflat gradient shrinking Ricci soliton must be a quotient of the round cylinder

S2 × R.

For n = 4, Ni-Wallach [53] showed that any 4-dimensional gradient shrinking

Ricci soliton with nonnegative curvature operator and positive isotropic curvature,

satisfying certain additional assumptions, is a quotient of S4 or S3 × R. Using this

result, Naber [50] proved

12



Theorem 1.3.3. (Naber [50]) Any 4-dimensional complete noncompact shrinking

Ricci soliton with bounded nonnegative curvature operator is isometric to R4, or a

finite quotient of S3 × R or S2 × R2.

For higher dimensions, the classification of gradient shrinking Ricci solitons was

solved under the assumption that the Weyl tensor vanishes by the work of Eminenti-

La Nave-Mantegazza [31], Ni-Wallach [52], Z.-H. Zhang [61], Petersen-Wylie [56] and

Munteanu-Sesum [49].

Eminenti-La Nave-Mantegazza [31] showed that any compact shrinking Ricci

soliton with vanishing Weyl tensor is a quotient of Sn.

In the noncompact case, Ni-Wallach [52] proved

Proposition 1.3.2. (Ni-Wallach [52]) Let (Mn, g, f) be a locally conformally flat

gradient shrinking Ricci soliton with Rc ≥ 0. Assume that

|Rm|(x) ≤ ea(r(x)+1)

for some constant a > 0, where r(x) is distance function to some fixed point. Then

its universal cover is Rn, Sn or Sn−1 × R.

By showing that locally conformal flat gradient shrinking Ricci solitons have

nonnegative curvature operator and utilizing the above result, Z.-H. Zhang [61]

proved

Theorem 1.3.4. (Z.-H. Zhang [61]) Any gradient shrinking soliton with vanishing

Weyl tensor must be a finite quotient of Rn, Sn or Sn−1 × R.

The work of Petersen-Wylie [56], Cao-Wang-Zhang [20] and Munteanu-Sesum

[49] gives another path to get the same classification result. Indeed, Petersen-Wylie

first showed

Proposition 1.3.3. (Petersen-Wylie [56]) Let (Mn, g, f) be a gradient shrinking

Ricci soliton with potential function f. If the Weyl tensor vanishes and∫
M

|Rc|2e−fdV <∞,

then (Mn, g, f) is a finite quotient of Rn, Sn or Sn−1 × R.

13



Munteanu-Sesum [49] later proved the L2 integrability of the Ricci tensor based

on the following Cao-Zhou’s growth estimate of the potential function [18].

Lemma 1.3.7. (Cao-Zhou [18]) Let (Mn, gij, f) be a complete noncompact gra-

dient shrinking Ricci soliton with normalization (1.1.8). Then,

(i) the potential function f satisfies the estimates

1

4
(r(x)− c1)2 ≤ f(x) ≤ 1

4
(r(x) + c2)2,

where r(x) = d(x0, x) is the distance function from some fixed point x0 ∈M , c1 and

c2 are positive constants depending only on n and the geometry of gij on the unit

ball B(x0, 1);

(ii) there exists some constant C > 0 such that

Vol(B(x0, s)) ≤ Csn

for s > 0 sufficiently large.

Recently, Fernández-López and Garćıa-Rió [33] obtain the rigidity result under

the harmonic Weyl assumption:

Proposition 1.3.4. (Fernández-López and Garćıa-Rió [33]) Any complete

gradient shrinking Ricci soliton (Mn, g, f) with harmonic Weyl tensor and∫
M

| divRm|2e−fdV =

∫
M

|∇Rc|2e−fdV (1.3.1)

must be rigid, i.e. it is a quotient of Nn−k×Rk, where 0 ≤ k ≤ n, N is an Einstein

manifold and Rk is the Gaussian shrinker.

Again, Munteanu-Sesum [49] used Cao-Zhou’s potential function growth esti-

mate to prove Equation (1.3.1). Therefore, they proved:

Theorem 1.3.5. (Munteanu-Sesum [49]) Any complete gradient shrinking Ricci

soliton with harmonic Weyl tensor must be rigid.

14



1.3.2 Geometry of Gradient Steady and Expanding Ricci

Solitons

Since any compact steady or expanding soliton is Einstein, our discussion here only

concerns the noncompact cases.

Proposition 1.3.5. (Hamilton [39]) Suppose that a noncompact gradient steady

Ricci soliton (Mn, g, f) satisfies

Rij = ∇i∇jf

for some function f. Assume that the Ricci curvature is positive and the scalar

curvature attains it maximum Rmax at some point x0. Then

|∇f |2 +R = Rmax

Moreover, the function is convex and attains its minimum at x0.

Remark 1.3.2. Cao-Chen [14] also showed that in this case, the function f is an

exhaustion function with linear growth. Hence we have

Proposition 1.3.6. A complete noncompact gradient steady soliton with positive

Ricci curvature whose scalar curvature attains its maximum at some point must be

diffeomorphic to Rn.

Similar results hold for expanding solitons:

Proposition 1.3.7. If a complete noncompact expanding gradient Ricci soliton has

nonnegative Ricci curvature, then its potential function f is a convex exhaustion

function with quadratic growth and the manifold is diffeomorphic to Rn.

In the Kähler setting, Cao-Hamilton [16] first showed that any noncompact gradi-

ent steady Kähler-Ricci soliton with positive Ricci curvature whose scalar curvature

attains its maximum at some point is Stein. Later, Chau-Tam [24] and Bryant [8]

independently improved the result to the following
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Theorem 1.3.6. (Chau-Tam [24] and Bryant [8]) Any noncompact gradient

steady Kähler-Ricci soliton with positive Ricci curvature whose scalar curvature at-

tains its maximum at some point is biholomorphic to Cn.

Moreover, Chau-Tam [24] also showed

Theorem 1.3.7. (Chau-Tam [24]) A complete noncompact gradient expanding

soliton with nonnegative Ricci tensor must be biholomorphic to Cn.

The classification of steady Ricci solitons with positive curvature is one of the

basic problems in the study of Ricci solitons. In dimension 2, Hamilton [40] proved

the following important uniqueness Theorem:

Theorem 1.3.8. (Hamilton [40]) The only complete steady Ricci soliton on a 2-

dimensional manifold with bounded curvature R which assumes its maximum Rmax =

1 at some point is the cigar soliton.

In dimension 3, Perelman [54] claimed that any complete noncompact κ-noncollapsed

(see [54] for definition) gradient steady Ricci soliton must be the Bryant soliton.

However, he did not provide a proof. We initiated the study by showing the unique-

ness under the assumption of locally conformal flatness, as will be described in the

next chapters.
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Chapter 2

Bach Flat and Locally

Conformally Flat Gradient Ricci

Solitons

2.1 Major Results

A fundamental question is the classification problem of Ricci solitons. Since compact

steady and expanding Ricci solitons must be Einstein, our main focus will be on the

noncompact cases as well as the shrinking Ricci solitons. This section is consist of

the author’s works, joint with H.-D. Cao, related to the classification of complete

steady and shrinking Ricci solitons.

2.1.1 Locally Conformally Flat Gradient Steady Ricci Soli-

tons

In dimension 2, Hamilton discovered the first example of a complete noncompact

gradient steady Ricci soliton, called the cigar soliton. For dimension n ≥ 3, Bryant

proved that there exists, up to scaling, a unique complete rotationally symmetric

gradient steady Ricci soliton on Rn. A well-know conjecture by Perelman [55] is

that when n = 3, the Bryant soliton should be the unique nonflat κ-noncollapsed
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gradient steady Ricci soliton.

The first progress was made by the author and his advisor H.-D. Cao in which

they classified the locally conformally flat steady Ricci solitons.

Locally conformal flatness of (Mn, g) means that at any point p ∈ M , there is

a neighborhood V ⊂ M and a real-valued function f on V , such that (V, efgij) is

flat, namely its curvature vanishes. Fortunately such a property of a Riemannian

manifold is well-understood by the Weyl-Schouten theorem, which says that a Rie-

mannian metric is locally conformally flat if and only if its Weyl curvature tensor

vanishes for n ≥ 4 or the Cotton tensor vanishes for n = 3.

Here the Weyl tensor is given by

Wijkl =Rijkl −
1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk),

(2.1.1)

and the Cotton tensor by

Cijk = ∇iRjk −∇jRik −
1

2(n− 1)
(gjk∇iR− gik∇jR). (2.1.2)

Exploring these two tensors on the gradient steady Ricci solitons,

Theorem 2.1.1. (Cao-— [14]) Let (Mn, g, f) (n ≥ 3) be a complete noncompact

gradient steady Ricci soliton. If further we assume it is locally conformally flat, then

it must be either flat or isometric to the Bryant soliton.

Our proof was in part motivated by the works of physicists Israel (1967) and

Robinson(1977) concerning the uniqueness of the Schwarzchild black hole among

all static, asymptotically flat vacuum space-times. In the course of proving The-

orem 2.1.1, we found a new covariant 3-tensor Dijk defined on any gradient Ricci

soliton, which turns out to be crucial and relates the classical Weyl tensor, the

Cotton tensor and also the Bach tensor with the geometry of a Ricci soliton.

Later, exploring the D-tensor, X.-X. Chen and Y. Wang [28] extended our result

replacing the condition by half-conformally flat when n = 4. Subsequently in [12]

we further extended the result to the Bach-flat case, which is a weaker condition

than half-conformal flatness.
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Theorem 2.1.2. (Cao-Catino-—-Mantegazza-Mazzieri [12]) Let (Mn, g, f)

(n ≥ 4) be a complete noncompact gradient steady Ricci soliton. If further we assume

it has positive Ricci curvature that the scalar curvature attains its maximum, and is

Bach flat, then it must be isometric to the Bryant soliton.

Here we remark that with the help of Theorem 1.1 in [18], the Bach-flat condition

works better for the shrinkers, which we are going to explore more in the next

subsection.

2.1.2 Bach Flat Shrinking Ricci Solitons

The Bach tensor was introduced by R. Bach in the early 1920’s to study conformal

relativity. From the definition of the Bach tensor,

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklWikjl, (2.1.3)

it is not hard to see that either Einstein or local conformal flatness will imply Bach-

flatness. Moreover when n = 4, a Bach-flat metric is precisely a critical point of the

following conformally invariant functional on the space of metrics,

W =

∫
M

|Wg|2dVg,

where Wg is the Weyl tensor of the metric g. Thus Bach-flatness is an invariant

condition under conformal change. Furthermore it is well-known that when n = 4,

half-conformal-flatness (either self-dual or anti-self-dual) also implies Bach-flatness.

Theorem 2.1.3. (Cao-— [15]) Let (M4, gij, f) be a complete Bach-flat gradient

shrinking Ricci soliton. Then, (M4, gij, f) is either

(i) Einstein, or

(ii) Locally conformally flat, and hence a finite quotient of the Gaussian shrinking

soliton R4 or S3 × R.

Theorem 2.1.4. (Cao-— [15]) Let (Mn, gij, f) (n ≥ 5) be a complete Bach-flat

gradient shrinking Ricci soliton. Then, (Mn, gij, f) is either
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(i) Einstein, or

(ii) a finite quotient of the Gaussian shrinking soliton Rn, or

(iii) a finite quotient of Nn−1×R, where Nn−1 is an Einstein manifold of positive

scalar curvature.

The main idea of the proof of the above two theorems is to explore the relation

between the Weyl tensor, the Cotton tensor, the Bach tensor, and gradient Ricci

soliton equations. The key link is the covariant 3-tensor Dijk, defined by

Dijk =
1

n− 2
(Rjk∇if −Rik∇jf) +

1

2(n− 1)(n− 2)
(gjk∇iR− gik∇jR)

+
R

(n− 1)(n− 2)
(gik∇jf − gjk∇if)

(2.1.4)

which was first constructed by H.-D. Cao and the author, as mentioned previously.

On the other hand, we proved the following key identity

|D|2 =
2|∇f |4

(n− 2)2
|hab −

H

n− 1
gab|2 +

1

2(n− 1)(n− 2)
|∇ΣR|2, (2.1.5)

where Σ is a level set of f at some regular value, hab is the second fundamental form

of Σ, and ∇ΣR is the projection of ∇R onto the tangential direction of Σ. This D

tensor is closely related to the geometry of the f -level sets. In addition we can show

the vanishing of D-tensor from Bach-flatness, and then following by some pointwise

computation, equation (2.1.5) will yield the vanishing of the Cotton tensor, and

therefore the work of Fernández-Lopéz and Garćıa-Ŕıo [33], and Munteanu-Sesum

[49] will result in the rigidity.

2.2 The covariant 3-tensor Dijk and its Relation

to Geometry

In this section, we will recall some important tensors closely related to the geometry

of gradient Ricci solitons, which is the starting point for the proof of Theorem 2.1.1,

Theorem 2.1.3 and Theorem 2.1.4.
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First of all, we recall that on any n-dimensional Riemannian manifold (Mn, gij)

(n ≥ 3), the Weyl curvature tensor is given by

Wijkl =Rijkl −
1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk),

(2.1.1)

and the Cotton tensor by

Cijk = ∇iRjk −∇jRik −
1

2(n− 1)
(gjk∇iR− gik∇jR). (2.1.2)

It is well-known that, for n = 3, Wijkl vanishes identically, while Cijk = 0 if

and only if (M3, gij) is locally conformally flat; for n ≥ 4, Wijkl = 0 if and only if

(Mn, gij) is locally conformally flat. Moreover, for n ≥ 4, the Cotton tensor Cijk is,

up to a constant factor, the divergence of the Weyl tensor:

Cijk = −n− 2

n− 3
∇lWijkl, (2.2.1)

hence the vanishing of the Cotton tensor Cijk = 0 (in dimension n ≥ 4) is also

referred as being harmonic Weyl.

Moreover, for n ≥ 4, the Bach tensor is defined by

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklW ikj l. (2.1.3)

By (2.2.1), we have

Bij =
1

n− 2
(∇kCkij +RklW ikj l). (2.2.2)

Note that Cijk is skew-symmetric in the first two indices and trace-free in any

two indices:

Cijk = −Cjik and gijCijk = gikCijk = 0. (2.2.3)

Next, let us recall the covariant 3-tensor Dijk on any gradient Ricci soliton

introduced in our work [14] and its important properties.
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For any gradient Ricci soliton satisfying the equation (1.1.3) the covariant 3-

tensor Dijk is defined as:

Dijk =
1

n− 2
(Rjk∇if −Rik∇jf) +

1

2(n− 1)(n− 2)
(gjk∇iR− gik∇jR)

− R

(n− 1)(n− 2)
(gjk∇if − gik∇jf).

(2.1.4)

This 3-tensor Dijk is closely tied to the Cotton tensor and played a significant

role in our previous work [14] classifying locally conformally flat gradient steady

solitons, as well as in the subsequent work of X. Chen and Y. Wang [28].

Most of the material in this section can be found in [14].

Lemma 2.2.1. Let (Mn, gij, f) (n ≥ 3) be a complete gradient soliton. Then Dijk

is related to the Cotton tensor Cijk and the Weyl tensor Wijkl by

Dijk = Cijk +Wijkl∇lf.

Proof. From the soliton equation (1.1.3) and the Ricci identity, we have

∇iRjk −∇jRik = −∇i∇j∇kf +∇j∇i∇kf = −Rijkl∇lf.

Hence, using equation (2.1.1), (2.1.2) and (1.1.6), we obtain

Cijk =∇iRjk −∇jRik −
1

2(n− 1)
(gjk∇iR− gik∇jR)

=−Rijkl∇lf −
1

(n− 1)
(gjkRil − gikRjl)∇lf

=−Wijkl∇lf −
1

n− 2
(Rik∇jf −Rjk∇if)

+
1

2(n− 1)(n− 2)
(gjk∇iR− gik∇jR) +

R

(n− 1)(n− 2)
(gik∇jf − gjk∇if)

=−Wijkl∇lf +Dijk.

Remark 2.2.1. By Lemma 2.2.1, Dijk is equal to the Cotton tensor Cijk for three-

dimensional gradient Ricci solitons. In addition, from Wijkl = −Wijlk, we have

that

Dijk∇kf = Cijk∇kf.
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Also, clearly Dijk vanishes if (Mn, gij, f) (n ≥ 3) is either Einstein or locally con-

formally flat. Moreover, like the Cotton tensor Cijk, Dijk is skew-symmetric in the

first two indices and trace-free in any two indices:

Dijk = −Djik and gijDijk = gikDijk = 0. (2.2.4)

What is so special about Dijk is the following key identity, which links the norm

of Dijk to the geometry of the level surfaces of the potential function f .

Proposition 2.2.1. (Cao-— [14]) Let (Mn, gij, f) (n ≥ 3) be an n-dimensional

gradient Ricci soliton satisfying (1.1.3). Then, at any point p ∈Mn where ∇f(p) 6=
0, we have

|Dijk|2 =
2|∇f |4

(n− 2)2

∣∣∣∣hab − H

n− 1
gab

∣∣∣∣2 +
1

2(n− 1)(n− 2)
|∇aR|2, (2.1.5)

where hab and H are the second fundamental form and the mean curvature of the

level surface Σ = {f = f(p)}, and gab is the induced metric on Σ.

Proof. Let {e1, e2, · · · , en} be any orthonormal frame, with e1 = ∇f/|∇f | and

e2, · · · , en tangent to Σ. Then the second fundamental form hab and the mean

curvature H are given respectively by

hab = g

(
∇a
∇f
|∇f |

, eb

)
=

1

|∇f |
∇a∇bf =

ρgab −Rab

|∇f |
, a, b = 2, · · · , n (2.2.5)

and

H =
1

|∇f |
[(n− 1)ρ− (R−R11)].

Hence, it follows that

|hab|2 =
|ρgab −Rab|2

|∇f |2
=

1

|∇f |2
[(n− 1)ρ2 − 2ρ(R−R11) +

n∑
a,b=2

|Rab|2],

and

H2 =
1

|∇f |2
[(n− 1)2ρ2 − 2(n− 1)ρ(R−R11) + (R−R11)2].
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By (1.1.6),

R11 =
1

|∇f |2
Rc(∇f,∇f) =

1

2|∇f |2
g(∇f,∇R)

and

R1a =
1

|∇f |
Rc(∇f, ea) =

1

2|∇f |
∇aR.

Moreover,

|∇ΣR|2 =
n∑
a=2

|∇aR|2 = |∇R|2 − 1

|∇f |2
{g(∇R,∇f)}2 .

Thus, by direct computation, we obtain∣∣∣∣hab − H

n− 1
gab

∣∣∣∣2 =|hab|2 −
H2

n− 1

=
1

|∇f |2
n∑

a,b=2

|Rab|2 −
1

(n− 1)|∇f |2
(R−R11)2

=
1

|∇f |2
(|Rc|2 − 2

n∑
a=2

R2
1a −R2

11)− (R−R11)2

(n− 1)|∇f |2

=
1

|∇f |2
|Rc|2 +

R

(n− 1)|∇f |4
∇f · ∇R− 1

2|∇f |4
|∇R|2

+
n− 2

4(n− 1)|∇f |6
|∇f · ∇R|2 − R2

(n− 1)|∇f |2
,

On the other hand, by (1.1.6) and (2.1.4), we obtain

|Dijk|2 =
1

(n− 2)2
|Rjk∇if −Rik∇jf |2 +

1

2(n− 1)(n− 2)2
|∇R|2

+
2R2

(n− 1)(n− 2)2
|∇f |2 +

2

(n− 1)(n− 2)2
[R∇R · ∇f −Rc(∇f,∇R)]

− 4R

(n− 1)(n− 2)2
[R|∇f |2 −Rc(∇f,∇f)]− 2R

(n− 1)(n− 2)2
∇R · ∇f

=
1

(n− 2)2
(|Rjk∇if −Rik∇jf |2 −

2

(n− 1)
|R∇f − 1

2
∇R|2)

=
2|∇f |2

(n− 2)2
|Rc|2 − 1

2(n− 2)2
|∇R|2

− 1

2(n− 1)(n− 2)2
(|∇R|2 − 4R∇R · ∇f + 4R2|∇f |2).
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Therefore, one can verify directly that

2|∇f |4

(n− 2)2
|hab −

H

n− 1
gab|2 = |Dijk|2 −

1

2(n− 1)(n− 2)
|∇ΣR|2.

Finally, thanks to Proposition 2.2.1, the vanishing of Dijk implies many nice

properties about the geometry of the Ricci soliton (Mn, gij, f) and the level surfaces

of the potential function f .

Proposition 2.2.2. (Cao-— [14]) Let (Mn, gij, f) (n ≥ 3) be any complete gradi-

ent Ricci soliton with Dijk = 0. Let γ be a regular value of f and Σγ = {f = γ} be

the level surface of f . Set e1 = ∇f/|∇f | and pick any orthonormal frame e2, · · · , en
tangent to the level surface Σγ. Then:

(a) |∇f |2 and the scalar curvature R of (Mn, gij, f) are constant on Σγ;

(b) R1a = 0 for any a ≥ 2 and e1 = ∇f/|∇f | is an eigenvector of Rc;

(c) the second fundamental form hab of Σγ is of the form hab = H
n−1

gab;

(d) the mean curvature H is constant on Σγ;

(e) on Σγ, the Ricci tensor of (Mn, gij, f) either has a unique eigenvalue λ, or

has two distinct eigenvalues λ and µ of multiplicity 1 and n − 1 respectively. In

either case, e1 = ∇f/|∇f | is an eigenvector of λ.

Proof. Clearly (a) and (c) follow immediately from Dijk = 0, Proposition 2.2.1, and

(1.1.7);

(b) follows from (a) and (1.1.6): R1a = 1
2|∇f |∇aR = 0;

For (d), we consider the Codazzi equation

R1cab = ∇Σγ
a hbc −∇Σγ

b hac, a, b, c = 2, · · · , n. (2.2.6)

Tracing over b and c in (2.2.6), we obtain

R1a = ∇Σγ
a H −∇Σγ

b hab = (1− 1

n− 1
)∇aH.

Then (d) follows since R1a = 0.
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Finally, by (2.2.5) and (c), we know

Rab = ρgab − |∇f |hab = (ρ− H

n− 1
|∇f |)gab.

But both H and |∇f | are constant on Σγ, so the Ricci tensor restricted to the

tangent space of Σγ has only one eigenvalue µ:

µ = Raa = ρ−H|∇f |/(n− 1), a = 2, · · · , n,

which is constant along Σγ. On the other hand,

λ = R11 = R−
n∑
a=2

Raa = R− (n− 1)ρ+H|∇f |,

again a constant along Σγ. This proves (e).

2.3 Proof of the Main Theorems

2.3.1 Proof of Theorem 2.1.1

From the well-known fact that the locally conformally flat condition is equivalent

to the vanishing of the Weyl tensor (2.1.1) and the Cotton tensor (2.1.2), we can

conclude the vanishing of the D tensor with the help of Lemma 2.2.1. And thus, we

are free to use Proposition 2.2.2. Furthermore, under the assumption of locally con-

formal flatness, we can extend Proposition 2.2.2 by adding a roundness conclusion:

Proposition 2.3.1. (Cao-— [14]) Let (Mn, gij, f) (n ≥ 3) be any complete locally

conformally flat gradient Ricci soliton, and let c be a regular value of f with Σγ =

{f = γ} the corresponding level surface of f . Set e1 = ∇f/|∇f | and pick any

orthonormal frame e2, · · · , en tangent to the level surface Σγ, Then:

(a) |∇f |2 and the scalar curvature R of (Mn, gij, f) are constant on Σγ;

(b) R1a = 0 for any a ≥ 2 and e1 = ∇f/|∇f | is an eigenvector of Rc;

(c) the second fundamental form hab of Σγ is of the form hab = H
n−1

gab;
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(d) the mean curvature H is constant on Σγ;

(e) on Σγ, the Ricci tensor of (Mn, gij, f) either has a unique eigenvalue λ, or

has two distinct eigenvalues λ and µ of multiplicity 1 and n − 1 respectively. In

either case, e1 = ∇f/|∇f | is an eigenvector of λ

(f) Σγ with the induced metric has constant sectional curvature.

Proof. (f): By the Gauss equation, for a 6= b, and using (c):

R
Σγ
abab = Rabab + haahbb − h2

ab = Rabab +
H2

(n− 1)2
. (2.3.1)

Using (2.1.1):

Rabab =
1

n− 2
(Raa +Rbb)−

R

(n− 1)(n− 2)

=
2µ

n− 2
− R

(n− 1)(n− 2)
.

Therefore, as is easy to see from (a), (d) and (e), that the sectional curvature of Σγ

is a constant.

Now we can complete the proof of Theorem 2.1.1:

Proof. Now (Mn, g, f) is a complete gradient steady Ricci soliton, and from lemma 1.3.5

we have Rm ≥ 0. Together with equation (1.1.7), we have 0 ≤ Rm ≤ C for some

constant C. By Hamilton’s strong maximum principle, we know either Rm > 0 or

the holonomy group is not transitive. The latter case splits into several cases:

(a) Riemannian Product: The only locally conformally flat Riemannian prod-

uct with nonnegative curvature operator is a space form Nn−1 with S1 or R, and it

is easy to see it must be flat to be a steady Ricci soliton.

(b) Locally Symmetric Space: A locally symmetric steady Ricci soliton must

be Ricci-flat, and hence flat since the Weyl tensor vanishes.
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(c) Irreducible and non-locally symmetric: Referring to Berger’s list, all

possible cases with non-transitive holonomy are Ricci-flat and hence flat.

Now, it remains to consider the first case for which Rm > 0. From Gromoll-

Meyer [35], Mn is diffeomorphic to Rn. With Rc = −Hessf > 0, f can have at

most one critical point. Letting Σγ = {x ∈ M |f(x) = γ} and θ2, θ3..., θn as the

coordinates on Σγ for regular value γ, the metric on the regular set of f can be

written as

g =
1

|∇f |2
df 2 + gab(f, θ)dθ

adθb. (2.3.2)

With the condition Rm > 0, Proposition 2.3.1 shows (Σγ, gab) is a space form of

positive curvature, and thus the round sphere, which in turn implies there exists a

critical point O for f . Therefore (2.3.2) holds on M − {O} = Rn − {O}, and we

complete the proof that M is a rotationally symmetric steady Ricci soliton on Rn,

which must be the Bryant soliton.

2.3.2 Proof of Theorem 2.1.3 and Theorem 2.1.4

Throughout this section, we assume that (Mn, gij, f) (n ≥ 4) is a complete gradient

shrinking soliton satisfying (1.1.8).

First of all, we relate the Bach tensor Bij to the Cotton tensor Cijk and the

tensor Dijk, and then show that Bach-flatness implies Dijk = 0:

Lemma 2.3.1. Let (Mn, gij, f) be a complete gradient shrinking soliton. If Bij = 0,

then Dijk = 0.

Proof. By direct computations, and using (2.2.2), (2.2.3) and lemma 2.2.1, we have
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Bij = − 1

n− 2
∇kCikj +

1

n− 2
RklWikjl

= − 1

n− 2
∇k(Dikj −Wikjl∇lf) +

1

n− 2
RklWikjl

= − 1

n− 2
(∇kDikj −∇kWjlik∇lf) +

1

n− 2
(Rkl +∇k∇lf)Wijkl.

Hence, by (1.1.8) and (2.2.1)

Bij = − 1

n− 2
(∇kDikj +

n− 3

n− 2
Cjli∇lf). (2.3.3)

Next, we use (2.3.3) to show that Bach flatness implies vanishing of the tensor

Dijk. By Lemma 1.3.7, sublevel sets Ωr = {x ∈ M |f(x) ≤ r} of f are compact.

Now by the definition of Dijk, the above identity (2.3.3), as well as properties (2.2.3)

and (2.2.4), we have

∫
Ωr

Bij∇if∇jfdV = − 1

(n− 2)

∫
Ωr

∇kDikj∇if∇jfdV

=
1

(n− 2)

( ∫
Ωr

Dikj∇if∇k∇jfdV −
∫

Ωr

∇k(Dikj∇if∇jf)dV
)

= − 1

(n− 2)

( ∫
Ωr

Dikj∇ifRjkdV +

∫
∂Ωr

Dikj∇if∇jfνkdS
)

= − 1

2(n− 2)

∫
Ωr

Dikj(∇ifRjk −∇kfRij)dV

= −1

2

∫
Ωr

|Dikj|2dV.

Here we have used (2.2.4) and the following equation concerning the boundary

term: ∫
∂Ωr

Dikj∇if∇jfνkdS =

∫
∂Ωr

Dikj∇if∇jf∇kf
1

|∇f |
dS = 0.

By taking r →∞, we immediately obtain∫
M

Bij∇if∇jfdV = −1

2

∫
M

|Dikj|2dV.
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This completes the proof of Lemma 2.3.1.

Lemma 2.3.2. Let (Mn, gij, f) (n ≥ 4) be a complete gradient shrinking Ricci

soliton with vanishing Dijk. Then the Cotton tensor Cijk = 0 at all points where

∇f 6= 0.

Proof. First of all, Dijk = 0 and Lemma 2.2.1 also imply

Cijk = −Wijkl∇lf, (2.3.4)

hence

Cijk∇kf = −Wijkl∇kf∇lf = 0. (2.3.5)

Then, for any point p ∈M with ∇f(p) 6= 0, we choose a local coordinates system

(θ2, · · · , θn) on the level surface Σ = {f = f(p)}. Then, in an open neighborhood

U of Σ in M , we use the local coordinate system

(x1, x2, · · · , xn) = (f, θ2, · · · , θn)

adapted to level surfaces. In the following, we use a, b, c to represent indices on the

level sets which range from 2 to n, while i, j, k from 1 to n. Under the above chosen

local coordinate system, the metric g can be expressed as

ds2 =
1

|∇f |2
df 2 + gab(f, θ)dθ

adθb.

Next, we set ν = − ∇f|∇f | . It is then easy to see that

ν = −|∇f |∂f , or ∂f =
1

|∇f |2
∇f.

Also ∂1 and ∂f shall be interchangeable below. And we have

∇1f = 1, and ∇af = 0 for a ≥ 2.

Then, in this coordinate, (2.3.5) implies that

Cij1 = 0.
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Claim 1: Dijk = 0 implies Cabc = 0.

To show Cabc = 0, we make use of Proposition 2.2.2 as follows: from the Codazzi

equation (2.2.6) and hab = Hgab/(n− 1), we obtain

R1cab = ∇Σ
a hbc −∇Σ

b hac =
1

n− 1
(gbc∂a(H)− gac∂b(H)).

But we also know that the mean curvature H is constant on the level surface Σ

of f , so

R1abc = 0.

Moreover, since R1a = 0, we easily obtain

W1abc = R1abc = 0.

By (2.3.4), we have

Cabc = −Wabci∇jfg
ij = W1cab∇1fg

11 = 0.

This finishes the proof of Claim 1.

Claim 2: Dijk = 0 implies C1ab = Ca1b = 0. To see this, let us compute the

second fundamental form in the preferred local coordinate system (f, θ2, · · · , θn):

hab = − < ν,∇a∂b >= − < ν,Γ1
ab∂f >=

Γ1
ab

|∇f |
.

But the Christoffel symbol Γ1
ab is given by

Γ1
ab =

1

2
g11(−∂gab

∂f
) =

1

2
|∇f |ν(gab).

Hence, we obtain

hab =
1

2
ν(gab).

On the other hand, since |∇f | is constant along level surfaces, we have

[∂a, ν] = −[∂a, |∇f |∂f ] = 0.
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Then using the fact that < ν, ν >= 1 and < ν, ∂a >= 0, it is easy to see that

∇νν = 0.

By direct computations and using Proposition 2.2.2, we can compute the follow-

ing component of the Riemannian curvature tensor:

Rm(ν, ∂a, ν, ∂b) =< ∇ν∇a∂b −∇a∇ν∂b, ν >

=< ∇ν(∇Σ
a∂b +∇⊥a ∂b), ν > − < ∇a∇ν∂b, ν >

=< ∇Σ
a∂b,−∇νν > + < ∇ν(−habν), ν > + < ∇bν,∇aν >

= −ν(hab) + hachcb

= − ν(H)

n− 1
gab +

H2

(n− 1)2 gab.

Taking the trace over a, b yields

Rc(ν, ν) = −ν(H) +
H2

n− 1

Thus

Rm(ν, ∂a, ν, ∂b) = − ν(H)

n− 1
gab +

H2

(n− 1)2
gab

=
Rc(ν, ν)

n− 1
gab.

Finally, we are ready to compute C1ab:

C1ab = −W1abi∇jfg
ij = W1a1b|∇f |2 = W (ν, ∂a, ν, ∂b),

but using proposition 2.2.2 (e), we have:
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W (ν, ∂a, ν, ∂b) = Rm(ν, ∂a, ν, ∂b) +
Rgab

(n− 1)(n− 2)
− 1

n− 2
(Rc(ν, ν)gab +Rab)

=
Rc(ν, ν)

n− 1
gab +

Rgab
(n− 1)(n− 2)

− 1

n− 2
(Rc(ν, ν)gab +Rab)

=
λ

n− 1
gab +

(λ+ (n− 1)µ)gab
(n− 1)(n− 2)

− 1

n− 2
(λgab + µgab)

= 0.

Therefore,

C1ab = W1a1b = 0.

This finishes the proof of Claim 2.

Therefore we have shown that Cij1 = 0, Cabc = 0 and C1ab = 0. This proves

Lemma 2.3.2.

For dimension n = 4, it turns out that we can prove a stronger result:

Lemma 2.3.3. Let (M4, gij, f) be a complete gradient shrinking Ricci soliton with

vanishing Dijk. Then the Weyl tensor Wijkl = 0 at all points where ∇f 6= 0.

Proof. From Lemma 2.3.2 we know that Dijk = 0, implies Cijk = 0. Hence it follows

from Lemma 2.2.1 that

Wijkl∇lf = 0

for all 1 ≤ i, j, k, l ≤ 4. For any p where |∇f | 6= 0, we can attach an orthonormal

frame at p with e1 = ∇f
|∇f | , and then we have

W1ijk(p) = 0, for 1 ≤ i, j, k ≤ 4. (2.3.6)

Thus it remains to show

Wabcd(p) = 0
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for all 2 ≤ a, b, c, d ≤ 4. However, this reduces to showing the Weyl tensor is zero in

three-dimensional case (cf. [37], p.276–277): observing that the Weyl tensor Wijkl

has all the symmetry of the Rijkl and is trace free in any two indices. Thus,

W2121 +W2222 +W2323 +W2424 = 0,

and so, by (2.3.6),

W2323 = −W2424.

Similarly, we have

W2424 = −W3434 = W2323,

which implies W2323 = 0. On the other hand,

W1314 +W2324 +W3334 +W4344 = 0,

so W2324 = 0. This shows that Wabcd = 0 unless a, b, c, d are all distinct. But, there

are only three choices for the indices a, b, c, d as they range from 2 to 4 so we can

conclude that Wabcd = 0 for all 2 ≤ a, b, c, d ≤ 4.

Now we are ready to finish the proof of our main theorems:

Conclusion of the proof of Theorem 2.1.3: Let (M4, gij, f) be a complete

Bach-flat gradient shrinking Ricci soliton. Then, by Lemma 2.3.1, Dijk = 0. We

divide the arguments into two cases:

• Case 1: the set Ω = {p ∈M |∇f(p) 6= 0} is dense.

By Lemma 2.3.3, we know that Wijkl = 0 on Ω. By continuity, we know that

Wijkl = 0 on M4. Therefore we conclude that (M4, gij, f) is locally conformally flat.

Furthermore, according to the classification result for locally conformally flat gra-

dient shrinking Ricci solitons mentioned in the introduction, (M4, gij, f) is a finite

quotient of either S4, or R4, or S3 × R.
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• Case 2: |∇f |2 = 0 on some nonempty open set. In this case, since any gradient

shrinking Ricci soliton is analytic in harmonic coordinates, it follows that |∇f |2 = 0

on M , i.e., (M4, gij) is Einstein.

This completes the proof of Theorem 2.1.3.

Conclusion of the proof of Theorem 2.1.4: Let (Mn, gij, f), n ≥ 5, be a

Bach-flat gradient shrinking Ricci soliton. Then, by Lemma 2.3.1, Lemma 2.3.2

and the same argument as in the proof of Theorem 2.1.3 above, we know that

(Mn, gij, f) either is Einstein, or has harmonic Weyl tensor. In the latter case, by

the rigidity theorem of Fernández-López and Garćıa-Ŕıo [33] and Munteanu-Sesum

[49], (Mn, gij, f) is either Einstein or isometric to a finite quotient of of Nn−k × Rk

(k > 0) the product of an Einstein manifold Nn−k with the Gaussian shrinking

soliton Rk. However, Proposition 2.2.2 (e) says that the Ricci tensor either has

one unique eigenvalue or two distinct eigenvalues with multiplicity of 1 and n − 1

respectively. Therefore, only k = 1 and k = n can occur in Nn−k × Rk.

2.3.3 Proof of Theorem 2.1.2

The major difficulty in applying the Bach-flat condition to the steady Ricci soliton

is that we do not have a nice property for the potential function f , as we have

Lemma 1.3.7 for shrinking solitons. A consequence of this is that we cannot do

integration by parts on steady Ricci solitons, and thus we do not have an analogue

of Lemma 2.3.1. If we assume the potential function f is an exhaustion function,

then the computation can be carried over. Hence in the paper [12], we gave a

sufficient condition to guarantee that f is an exhaustion function.

Lemma 2.3.4. Let (Mn, g, f) be a complete noncompact gradient steady soliton with

positive Ricci curvature, and further assume that the scalar curvature R attains its

maximum at some origin x0. Then there exist some constants 0 < c1 < c0 and

c2 > 0 such that

c1r(x)− c2 ≤ −f(x) ≤ c0r(x) + |f(x0)|
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where r(x) = d(x, x0).

Proof. From

R + |∇f |2 = C0 (1.1.7)

and the condition R = tr(Rc) > 0, we can take c0 =
√
C0 to get the upper bound.

To get the lower bound, we consider any minimizing unit-speed geodesic γ(s),

0 ≤ s ≤ s0 for large s0 > 0, starting from the origin x0 = γ(0). Denote X(s) = γ̇(s),

the unit tangent vector along γ, and ḟ = ∇Xf(γ(s)). By (1.1.3), we have

∇X ḟ = ∇X∇Xf = −Rc(X,X). (2.3.7)

Integrating it along γ, and noting that x0 is the critical point of f , we get, for s ≥ 1,

−ḟ(γ(s)) =

∫ s

0

Rc(X,X)ds ≥
∫ 1

0

Rc(X,X)ds ≥ c1,

where c1 > 0 is taken to be the least eigenvalue of Rc on the unit geodesic ball

Bx0(1). Thus,

−f(γ(s0)) = −
∫ s0

1

ḟ(γ(s))ds− f(γ(1)) ≥ c1s0 − c1 − f(γ(1)).

Define c2 = c1 + f(γ(1)), and we finish the proof.

Then we are able to work on the Bach flat steady Ricci solitons:

Lemma 2.3.5. Let (Mn, g, f) be a complete steady gradient Ricci soliton with pos-

itive Ricci curvature and with scalare curvature R attaining its maximum at some

point. If we assume Bij = 0, then on (Mn, g, f), Dijk = 0.

Proof. The proof is similar to that of Lemma 2.3.1, replacing the use of Lemma

1.3.7 with Lemma 2.3.4.

Conclusion of the proof of Theorem 2.1.2: Let (Mn, g, f), be a complete

Bach-flat gradient steady Ricci soliton with positive Ricci curvature such that the
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scalar curvature R attains its maximum at some interior point O ∈ M . Then, by

Lemma 2.3.4 we know that f is proper, strictly concave, has a unique critical point

at O, and that Mn is diffeomorphic to Rn. On the other hand, by Lemma 2.3.5, we

have Dijk = 0.

First of all, on M \ {O}, the soliton metric gij can be expressed as

ds2 =
1

|∇f |2
df 2 + gab(f, θ)dθ

adθb,

where (θ2, · · · , θn) is any local coordinates system on the level surface Σ = {f =

f(p)} at p ∈ M \ {O}. Note that, since Dijk = 0, |∇f |2 depends only on f

by Proposition 2.2.2 (a). Hence, by a suitable change of variable, we can further

express gij as

ds2 = dr2 + gab(r, θ)dθ
adθb , 0 < r <∞ .

Here r(x) is the distance function from O.

Claim 1: For r > 0, the induced metric ḡΣr = gab(r, θ)dθ
adθb on each level surface

Σr is Einstein.

This is a result of Proposition 2.2.2 (e) and the Gauss equation.

Claim 2: On M \ {O}, the metric g takes the form of a warped product metric:

ds2 = dr2 + w(r)2ḡE , r ∈ (0,+∞) , (2.3.8)

where w is some nonnegative smooth function on Mn vanishing only at O, and

ḡE = ḡΣ1 is the Einstein metric defined on the level surface Σ1.

Indeed, by the definition of the second fundamental form (2.2.5) and Proposi-

tion 2.2.2, we have
∂

∂r
gab = −2hab = φ(r)gab ,

where φ(r) = −2H(r)/(n− 1). Thus, it follows easily that

gab(r, θ) = eΦ(r)gab(1, θ),
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where

Φ(r) =

∫ r

1

φ(r) dr.

This proves Claim 2.

By scaling, we can assume that

RicḡE = (n− 2) ḡE (2.3.9)

Claim 3: We have

lim
r→0+

w(r)

r
= 1 .

Clearly, w(r) → 0 as r → 0+. On the other hand, on M \ {O}, the Ricci

tensor and the scalar curvature of the metric g in (2.3.8) take the form (see [1,

Proposition 9.106])

Ricg = −(n− 1)
w′′

w
dr ⊗ dr +

(
(n− 2)(1− (w′)2)− ww′′

)
ḡE ,

and

Rg = −2(n− 1)
w′′

w
+

(n− 1)(n− 2)

w2

(
1− (w′)2

)
respectively. Here we have used the Claim 1 and the normalization (2.3.9).

On the other hand, Rc is bounded, because it is assumed to be positive and the

scalar curvature R = 1 − |∇f |2 ≤ 1 is bounded. Thus from the expression of the

Ricci tensor above and the boundedness of Rc on Mn, it is easy to see that w′′/w

must be bounded as r → 0+. Hence, from the above scalar curvature expression, it

is easy to deduce the claim.

Claim 4: ḡE is equal to the standard round metric ḡSn−1 on the unit sphere Sn−1.

This essentially follows from the previous claims and the elementary fact that

infinitesimally the metric g is approximately Euclidean near O. In fact, the standard

expansion of the metric g around O, written in any normal coordinates (x1, · · · , xn),

gives
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g = (δij + σij(x)) dxi ⊗ dxj

= gRn + σij dx
i ⊗ dxj ,

where σij = O(|x|2). To pass to polar coordinates, we write xi = rφi(θ1, . . . , θn−1)),

with r ∈ (0,+∞) and (θ1, . . . , θn−1) being local coordinates on Sn−1. Notice that

|φ1|2 + · · ·+ |φn|2 = 1 and |x| = r. Thus, one has

g = (1 + σijφ
iφj)dr ⊗ dr + r σij

∂φi

∂θα
φjdr ⊗ dθα + r σij

∂φj

∂θα
φidθα ⊗ dr +

+
(
r2ḡS

n−1

αβ + r2σij
∂φi

∂θα
∂φj

∂θβ
)
dθα ⊗ dθβ ,

with σij = O(r2). Comparing with (2.3.8), we see that σijφ
j = 0 and

w2(r)ḡE = r2ḡSn−1 + r2σij
∂φi

∂θα
∂φj

∂θβ
dθα ⊗ dθβ , r ∈ (0,+∞) .

Now using the fact that σij = O(r2) and Claim 3, and taking the limit as r → 0,

we obtain

ḡE = ḡSn−1 .

Therefore, on M \ {O}, we have

ds2 = dr2 + w(r)2ḡSn−1 , r ∈ (0,+∞) ,

proving that the soliton metric g is rotationally symmetric. Therefore, it follows

that (Mn, g, f) is the Bryant soliton, because we know that Mn is diffeomorphic

to Rn and the Bryant soliton is the only non-flat rotationally symmetric gradient

steady soliton on Rn up to scaling. This completes the proof of Theorem 2.1.2.

Remark 2.3.1. Very recently, Perelman’s conjecture stating that a κ-noncollapsed

3-dimensional steady gradient Ricci soliton must be the Bryant soliton was verified

by S. Brendle [4] using a Killing vector argument:

Theorem 2.3.1. (Brendle [4]) Any complete 3-dimensional nonflat κ-noncollapsed

gradient steady Ricci soliton must be isometric to the Bryant soliton up to scaling.
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Brendle’s argument also works in higher dimensions under the assumption of

some asymptotic behavior.

Theorem 2.3.2. (Brendle [5]) Let (Mn, g, f) be a gradient steady Ricci soliton of

dimension n ≥ 4. Assume that M has positive sectional curvature and is asymptot-

ically cylindrical. Then (Mn, g, f) is rotationally symmetric.
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Chapter 3

Kähler-Ricci Solitons with

Harmonic Bochner tensor

Motivated by the work on Ricci solitons with vanishing Weyl tensor and Cotton

tensor described above, and as extended exploration, similar considerations lead to

the classification of Kähler-Ricci Solitons if we turn to the Bochner tensor.

3.1 Basic Definitions and Identities

First, given holomorphic coordinate {z1, z2, ..., zm} of a complex manifold M in

complex dimension m, suppose the complex manifold M has a Hermitian metric gij̄,

and this thesis will only focus on the case when the Hermitian metric is Kähler:

Definition 3.1.1. (Mm, gij̄) is Kähler iff

ω = gij̄dz
i ∧ dz̄j

is a closed (1, 1)-form.

The complexified tangent space of Mm is a 2m complex-dimensional space, which

in local coordinate is spanned by{
∂

∂z1
,
∂

∂z2
, ...,

∂

∂zm
,
∂

∂z̄1
,
∂

∂z̄2
...,

∂

∂z̄m

}
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Similar to the real case, on a Kähler manifold we also have the Christoffel sym-

bols, the Riemannian curvature tensor, the Ricci curvature tensor and the scalar

curvature respectively:

Γkij = gkl̄
∂gil̄
∂zj

Rij̄kl̄ =
∂2gij̄
∂zk∂z̄l

+ gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

Rij̄ = gkl̄Rij̄kl̄ = − ∂2

∂zi∂z̄j
log(det(gij̄))

R = gij̄Rij̄.

The covariant derivative is given by

∇iVj =
∂Vj
∂zi
− ΓkijVk

∇iVj̄ =
∂Vj̄
∂zi

∇īVj̄ =
∂Vj̄
∂z̄i
− ΓkijVk̄

∇īVj =
∂Vj
∂z̄i

,

we have the Ricci identities:

∇i∇j −∇j∇i = 0

∇i∇j̄Vk −∇j̄∇iVk = −Rij̄kl̄Vl

∇i∇j̄Vl̄ −∇j̄∇iVl̄ = −Rij̄kl̄Vk̄.

Similary, if a gradient Ricci soliton is also a Kähler manifold, we call it as a

Kähler-Ricci soliton.

Definition 3.1.2. An m-complex dimensional Kähler manifold (Mm, gij̄) is called

a gradient Kähler-Ricci soliton if there is a real-valued smooth function f satisfying

the soliton equation

Rij̄ +∇i∇j̄f = λgij̄ (3.1.1)

for some constant λ ∈ R and such that ∇f is a holomorphic vector field, i.e.

∇i∇jf = 0.
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As in Lemma 1.1.1, we have the basic properties for the Kähler-Ricci solitons:

Lemma 3.1.1. On a gradient Kähler-Ricci soliton (3.1.1), we have

R + |∇f |2 − λf = C0; (3.1.2)

R + ∆f = nλ; (3.1.3)

∇iRkj̄ = Rij̄kl̄∇lf ; (3.1.4)

and

∇iR = Rij̄∇jf. (3.1.5)

On Kähler manifolds, there is a tensor similar to the Weyl tensor, called the

Bochner tensor, which is defined as

Wij̄kl̄ =Rij̄kl̄ +
R

(n+ 1)(n+ 2)
(gij̄gkl̄ + gil̄gkj̄)

− 1

n+ 2
(Rij̄gkl̄ +Rkl̄gij̄ +Ril̄gkj̄ +Rkj̄gil̄).

(3.1.6)

We also define its divergence as the tensor Cij̄k, which is a parallel notion of the

Cotton tensor:

Cij̄k =∇qWij̄kq̄

=
n

n+ 2
∇iRkj̄ −

n

(n+ 1)(n+ 2)
(gkj̄∇iR + gij̄∇kR).

(3.1.7)

3.2 The Result and The Proof

By using a similar argument to that of [14], Y. Su and K. Zhang [59] first proved a

rigidity result for the Kähler-Ricci soliton: assuming the vanishing of the Bochner

tensor, a Kähler Ricci soliton must be Kähler-Einstein, and hence a quotient of the

corresponding space-form. Later, joint with Meng Zhu, we improved the result by

only assuming the harmonic Bochner tensor, namely the vanishing of the tensor

Cij̄k.
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Theorem 3.2.1. (—-Zhu [27]) Any complete gradient Kähler-Ricci soliton with

harmonic Bochner tensor must be isometric to Nk × Cn−k, where Nk is Kähler-

Einstein and Cn−k has a flat metric.

The proof, which is a pointwise argument, is different from that of Fernández-

Lopéz and Garćıa-Ŕıo [33] and Munteanu-Sesum [49] for the harmonic Weyl case,

since the Cij̄k tensor does not have such a nice identity as equation (2.1.5) for the

Dijk tensor.

From now on, we assume that (Mn, gij̄, f) is a gradient Kähler-Ricci soliton with

harmonic Bochner tensor so that

∇iRkj̄ =
1

n+ 1
(∇iRgkj̄ +∇kRgij̄). (3.2.1)

Lemma 3.2.1. We have

λRij̄ −Rij̄kl̄Rk̄l

=
1

n+ 1
[

1

n+ 1
∇kR∇k̄fgij̄ + (λR− |Rc|2)gij̄ −

n

n+ 1
∇iR∇j̄f (3.2.2)

+λRij̄ −Rik̄Rkj̄],

and

2(n+ 1)λ∇iR− 2R∇iR− 2Rij̄∇jR

= − 1

n+ 1
∇iR|∇f |2 −

1

n+ 1
∇kR∇k̄f∇if. (3.2.3)

Proof. On the one hand, by differentiating (3.1.5), we obtain

∆R = ∇k∇k̄R = ∇kR∇k̄f +Rkl̄∇k̄∇lf.

From (3.2.1), we obtain

∇k∇k̄Rij̄ =
1

n+ 1
(∆Rgij̄ +∇i∇j̄R)

=
1

n+ 1
(∇kR∇k̄fgij̄ +Rkl̄∇k̄∇lfgij̄ +∇iRkj̄∇k̄f +Rkj̄∇i∇k̄f)

=
1

n+ 1
[∇kR∇k̄fgij̄ + (λR− |Rc|2)gij̄ +

1

n+ 1
∇iR∇j̄f

+
1

n+ 1
∇kR∇k̄fgij̄ + λRij̄ −Rik̄Rkj̄].

(3.2.4)
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On the other hand, by differentiating (3.1.4), we have

∇k∇k̄Rij̄ = ∇iRj̄l∇l̄f +Rij̄kl̄∇k̄∇lf

= ∇kRij̄∇k̄f +Rij̄kl̄∇k̄∇lf

= ∇kRij̄∇k̄f + λRij̄ −Rij̄kl̄Rk̄l.

Now, by plugging in formula (3.2.4), we obtain (3.2.2).

Next, by taking the divergence on both sides of (3.2.2),

λ∇iR− (∇iRkl̄)Rk̄l −Rij̄kl̄∇jRk̄l

=
1

n+ 1
[

1

n+ 1
∇i∇kR∇k̄f +

1

n+ 1
∇kR∇i∇k̄f + λ∇iR−∇i|Rc|2

− n

n+ 1
∇j∇iR∇j̄f −

n

n+ 1
∇iR∆f + λ∇iR− (∇jRik̄)Rkj̄ −Rik̄∇kR]

=
1

n+ 1
[

1

n+ 1
∇iRkl̄∇lf∇k̄f +

λ

n+ 1
∇iR−

1

n+ 1
Rik̄∇kR + λ∇iR− 2Rkl̄∇iRk̄l

− n

n+ 1
∇iRjk̄∇kf∇j̄f −

λn2

n+ 1
∇iR +

n

n+ 1
R∇iR + λ∇iR

−Rkj̄∇iRjk̄ −Rik̄∇kR].

It follows that,

λ∇iR− (∇iRkl̄)Rk̄l −Rij̄kl̄∇jRk̄l

=
1

n+ 1
[− n− 1

(n+ 1)2
∇iR|∇f |2 −

n− 1

(n+ 1)2
∇kR∇k̄f∇if

+(3− n)λ∇iR− (1 +
1

n+ 1
)Rik̄∇kR− 3Rkl̄∇iRk̄l +

n

n+ 1
R∇iR].

We note,

Rlk̄∇iRkl̄ =
1

n+ 1
Rlk̄(∇iRgkl̄ +∇kRgil̄)

=
1

n+ 1
R∇iR +

1

n+ 1
Rij̄∇jR,
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and

Rij̄kl̄∇jRlk̄ =
1

n+ 1
Rij̄kl̄(∇jRglk̄ +∇lRgjk̄)

=
1

n+ 1
Rij̄∇jR +

1

n+ 1
Ril̄∇lR

=
2

n+ 1
Rij̄∇jR.

Hence, we have

λ∇iR−
1

n+ 1
R∇iR−

3

n+ 1
Rij̄∇jR

= λ∇iR− (∇iRkl̄)Rk̄l −Rij̄kl̄∇jRk̄l

=
1

n+ 1
[− n− 1

(n+ 1)2
∇iR|∇f |2 −

n− 1

(n+ 1)2
∇kR∇k̄f∇if

+(3− n)λ∇iR− (1 +
1

n+ 1
)Rik̄∇kR− 3Rkl̄∇iRk̄l +

n

n+ 1
R∇iR].

Therefore, formula (3.2.3) follows easily.

Now, suppose that∇f 6= 0 at some point p. Then we may choose an orthonormal

frame {e1, e2, · · · , en} of holomorphic vector fields at p such that e1 is parallel to

∇f . Therefore, we have |∇1f | = |∇f | and ∇kf = 0 for k = 2, · · · , n.

Lemma 3.2.2. Suppose ∇f 6= 0 at p. Then, under the frame {e1, e2, · · · , en} chosen

above, we have

Rk1̄ = R1k̄ = 0 for k ≥ 2.

Proof. From (3.1.4) and (3.2.1), we have at p,

Rij̄k1̄∇1f =
1

n+ 1
(∇iRgkj̄ +∇kRgij̄) =

1

n+ 1
(Ri1̄gkj̄ +Rk1̄gij̄)∇1f.

It follows that

Rij̄k1̄ =
1

n+ 1
(Ri1̄gkj̄ +Rk1̄gij̄).
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In particular, for k ≥ 2, we have

R11̄k1̄ =
1

n+ 1
Rk1̄ and R1k̄11̄ = 0.

However, on the other hand, it is easy to see that

R11̄k1̄ = R1̄1k̄1 = R1k̄11̄ = 0.

Therefore, Rk1̄ = R1k̄ = 0 for k ≥ 2.

Lemma 3.2.2 tells us that ∇f is an eigenvector of the Ricci curvature tensor.

Thus we may choose another orthonormal frame {w1 = e1, w2, · · · , wn} at p such

that |∇1f | = |∇f | and the Ricci curvature is diagonalized at p, i.e.

Rij̄ = Rīiδij.

Proposition 3.2.1. Suppose that ∇f 6= 0 at p. Then under the orthonormal frame

{w1, w2, · · · , wn} chosen above, we have the following identities at p:

nλR11̄ −RR11̄ = λR− |Rc|2 − n− 1

n+ 1
R11̄|∇f |2, (3.2.5)

and

(n+ 1)λR11̄ −RR11̄ −R2
11̄ = − 1

n+ 1
R11̄|∇f |2. (3.2.6)

Proof. In (3.2.2), setting i = j = 1, we have
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λR11̄ −
1

n+ 1
R2

11̄ −
1

n+ 1
RR11̄

= λR11̄ −
2

n+ 1
R2

11̄ −
1

n+ 1
R11̄(R−R11̄)

= λR11̄ −
2

n+ 1
R2

11̄ −
1

n+ 1
R11̄

n∑
k=2

Rkk̄

= λR11̄ −R11̄11̄R11̄ −
n∑
k=2

R11̄kk̄Rkk̄

= λR11̄ −
n∑
k=1

R11̄kk̄Rkk̄

=
1

n+ 1
[

1

n+ 1
R11̄|∇f |2 + λR− |Rc|2 − n

n+ 1
R11̄|∇f |2 + λR11̄ −R2

11̄].

Thus, formula (3.2.5) follows immediately.

Next, by setting i = 1 in (3.2.3) and dividing both sides of the equation by ∇1f ,

(3.2.6) follows.

Proposition 3.2.2. At a point p where ∇f 6= 0, we have either

Rc(∇f,∇f) = 0,

or

Rc(∇f,∇f) =
λ

n+ 4
|∇f |2.

Proof. Since at point p, ∇f 6= 0, formula (3.2.6) implies that in a neighborhood of

p we have[
(n+ 1)λ−R−

Rjī∇if∇j̄f

|∇f |2
+

1

n+ 1
|∇f |2

]
Rjī∇if∇j̄f

|∇f |2
= 0. (3.2.7)

Therefore, there are two possibilities
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Rjī∇if∇j̄f = 0 at p, or Rjī∇if∇j̄f 6= 0 at p.

The former case is one possible conclusion of the proposition.

In the latter case, near p we have

−(n+ 1)λ+R +
Rjī∇if∇j̄f

|∇f |2
− 1

n+ 1
|∇f |2 = 0.

Taking the covariant derivative on both sides gives us

0 = ∇kR +
1

|∇f |2
(∇if∇j̄f∇kRjī +Rjī∇if∇k∇j̄f)−

∇jf∇k∇j̄f

|∇f |4
Rl̄i∇if∇l̄f

− 1

n+ 1
(∇jf∇k∇j̄f)

= ∇kR +
1

(n+ 1)|∇f |2
∇if∇j̄f(∇kRgjī +∇jRgkī) +

1

|∇f |2
(λ∇kR−Rkj̄∇jR)

−λ∇kf −∇kR

|∇f |4
∇iR∇īf −

1

n+ 1
(λ∇kf −∇kR).

Evaluating the identity above at p under the orthonormal frame {w1, w2, · · · , wn}
yields

0 = R11̄ +
2

(n+ 1)|∇f |2
R11̄|∇f |2 +

1

|∇f |2
(λR11̄ −R2

11̄)

−λ−R11̄

|∇f |4
R11̄|∇f |2 −

1

n+ 1
(λ−R11̄)

=
n+ 4

n+ 1
R11̄ −

1

n+ 1
λ.

Thus, we have Rc(∇f,∇f) = λ
n+4
|∇f |2 whenever Rc(∇f,∇f) 6= 0.

Now we are ready to prove the main theorems.

First, we may assume that f is not a constant function, otherwise M is Kähler-

Einstein from the soliton equation.

Proof of theorem 3.2.1 (Steady Case): For steady Kähler-Ricci solitons, we

have λ = 0. From Proposition 3.2.2, we know that Rc(∇f,∇f) = λ
n+4
|∇f |2 = 0
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whenever Rc(∇f,∇f) 6= 0, which is a contradiction. Therefore, we always have

Rc(∇f,∇f) = 0. Then (3.2.5) implies that Rc = 0 in the set {p ∈ M |∇f(p) 6= 0}.
On the other hand, by the soliton equation, it is easy to see that we also have Rc = 0

in the interior of the set {p ∈ M |∇f(p) = 0}. Thus the steady soliton M must be

Kähler-Ricci flat.

Proof of theorem 3.2.1(Shrinking and Expanding Case): For shrinking and

expanding Kähler-Ricci solitons, we have λ 6= 0.

In this case, from Proposition 3.2.2 and the continuity of Rc(∇f,∇f)
|∇f |2 , we conclude

that in each component of the open set A = {p ∈ M |∇f(p) 6= 0}, we have either

Rc(∇f,∇f) = λ
n+4
|∇f |2 or Rc(∇f,∇f) = 0.

If Rc(∇f,∇f) = λ
n+4
|∇f |2 in some component Ω of A, then at any point p ∈ Ω

we have R11̄ = λ
n+4

and ∇R(p) = λ
n+4
∇f(p). Therefore, we have ∇R = λ

n+4
∇f in Ω.

It then follows that R = λ
n+4

f+C in Ω. Thus (3.2.6) implies that |∇f |2 = n+1
n+4

λf+C

in Ω. Since R + |∇f |2 − λf = C0, we have f = C1 in Ω, which contradicts the fact

that ∇f 6= 0 in Ω.

Therefore, we must have Rc(∇f,∇f) = 0 in A. Since f is a constant in the

interior of M\A, we have Rc(∇f,∇f) = 0 on the whole manifold M . It follows

that ∇R = 0 on M . Then (3.2.1) implies that the Ricci curvature tensor is parallel

on M . Therefore, by the de Rham decomposition theorem, the universal cover of

M is isometric to Nn−1 × C, where N is again an n − 1 dimensional Kähler-Ricci

soliton with harmonic Bochner tensor. Thus by induction, we can finally see that

M is isometric to a quotient of the product of a Kähler-Einstein manifold and the

complex Euclidean space.
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Chapter 4

Bach-flat Quasi-Einstein Manifolds

With some modification, quasi-Einstein manifolds can also be studied in a similar

way to Ricci solitons.

Definition 4.0.1. An n-dimensional Riemannian manifold (Mn, g, f) is called (λ, n+

m)-Einstein if the Ricci curvature satisfies:

Rij +∇i∇jf −
1

m
∇if∇jf = λgij (4.0.1)

The reason to study this equation is that in [1], it is shown that when m is a

positive integer, these (λ, n + m)-Einstein metrics are exactly those n-dimensional

manifolds which are the warped product base of an (n + m)-dimensional Einstein

metrics. More precisely, (M×Fm, g+e−2f/mgF ) is an Einstein manifold with Einstein

constant λ, and Fm is another Einstein manifold with some proper Einstein constant.

Therefore it is important to understand this equation in order to understand the

geometry of Einstein manifolds.

There are many examples for quasi-Einstein metrics. Einstein metrics and prod-

ucts of them are trivial examples of quasi-Einstein metrics. The first non-trivial ex-

ample comes from the Schwarzchild metric, which is a 4-dimensional doubly warped

product metric on S2 × R2, and viewed in two different ways, this will lead to

a (0,2+2)-Einstein metric on R2, or a (0,3+1)-Einstein metric on [0,+∞) × S2.

Lü-Page-Pope [48] construct non-trivial quasi-Einstein metrics on S2 bundles over
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Kähler-Einstein bases. C. Böhm [2] constructed interesting quasi-Einstein metrics

on spheres and product of spheres. In [42], He-Petersen-Wylie construct nontrivial

quasi-Einstein metric examples on solvable Lie groups.

It is easy to observe that when m = ∞, the quasi-Einstein equation reduces

to the Ricci soliton equation, and thus it is expected that quasi-Einstein manifolds

could behave similarly to the Ricci solitons to some extent. However, they are not

identical, since Case-Shu-Wei [21] showed that there is no non-trivial Kähler quasi-

Einstein metric on a compact manifold, while we do have compact Kähler Ricci-

soliton examples. Qian [58] showed that a quasi-Einstein metric must be compact

if λ > 0 and m > 0. In [44], D.-S. Kim and Y.-H. Kim showed that the a compact

quasi-Einstein metric with λ ≤ 0 is trivial. Analogous to Ricci solitons, G. Catino, C.

Mantegazza, L. Mazzieri and M. Rimoldi [22] prove rotational symmetry of locally

conformally flat quasi-Einstein manifolds. C. He, P. Petersen and P. Wylie [41]

get the same classification result for quasi-Einstein manifolds with slightly weaker

condition. Later we found the Bach flat condition fits into the argument as well for

the compact case.

Theorem 4.0.2. (—-He [26]) Suppose (Mn, g, f)(n ≥ 4) is a compact Quasi-

Einstein manifold with m 6= 0, 1, 2−n. If we further assume it has flat Bach tensor,

then it must have harmonic Weyl tensor and W (∇f, ·, ·, ·) = 0.

Then using Theorem 1.5 in [41], we can get the classification result that M is

either Einstein or its metric takes the form g = dt2+ψ2(t)gL, where gL is an Einstein

metric with positive Einstein constant.

To begin the computation, first we need to establish the basic formulas for the

curvature tensors.

Lemma 4.0.3. Suppose (Mn, g, f) is (λ, n+m)−Einstein with m 6= 0, 1, 2−n, then

Rij∇jf =
m

2m− 2
∇iR +

λ(n− 1)−R
m− 1

∇if
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Proof.

∇iR = 2∇jRij

= 2∇j(−∇i∇jf +
1

m
∇if∇jf)

= 2(∇i∆f −Ril∇lf +
1

m
∇j∇if∇jf +

1

m
∆f∇if)

Plug the trace version of (4.0.1), namely R+ ∆f − 1
m
|∇f |2 = λn into the above

expression:

−∇iR = 2(− 2

m
∇i∇jf∇jf −Ril∇lf +

1

m
∇jf∇i∇jf +

1

m
∇if(λn+

1

m
|∇f |2 −R))

Plug (4.0.1) into the above expression and simplify the expression as:

−∇iR = 2(
1−m
m

Rij∇jf +
λ(n− 1)

m
∇if −

R

m
∇if)

By rearrangement of the terms we get the lemma.

We can also define a D tensor on a quasi-Einstein manifold:

Dijk =
1

n− 2
(∇ifRjk −∇jfRik)

+
m

2(n− 1)(n− 2)(m− 1)
(∇iRgjk −∇jRgik)

+
λ(n− 1)−mR

(n− 1)(n− 2)(m− 1)
(∇ifgjk −∇jfgik)

(4.0.2)

Then we can carry over Lemma 2.2.1 onto quasi-Einstein manifolds as:

Lemma 4.0.4. Suppose (Mn, g, f) is (λ, n + m)−Einstein with m 6= 0, 1, 2 − n.

Then

Cijk +Wijkl∇lf =
m+ n− 2

m
Dijk,

where Cijk is the Cotton tensor defined as (2.1.2) and Wijkl is the Weyl tensor

defined as (2.1.1).
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Proof.

Cijk =∇iRjk −∇jRik −
1

2(n− 1)
(∇iRgjk −∇jRgik)

=∇i(−∇j∇kf +
1

m
∇jf∇kf)−∇j(−∇i∇kf +

1

m
∇if∇kf)

− 1

2(n− 1)
(∇iRgjk −∇jRgik)

=−Rijkl∇lf +
1

m
(∇jf∇i∇kf −∇if∇j∇kf)

− 1

2(n− 1)
(∇iRgjk −∇jRgik)

=−Rijkl∇lf +
1

m
(∇ifRjk −∇jfRik)−

λ

m
(∇ifgjk −∇jfgik)

− 1

2(n− 1)
(∇iRgjk −∇jRgik).

By plugging in the definition of the Weyl tensor (2.1.1), we get:

Cijk =−Wijkl∇lf +
m+ n− 2

m(n− 2)
(∇ifRjk −∇jfRik)

+

(
− R

(n− 1)(n− 2)
− λ

m

)
(∇ifgjk −∇jfgik)

− 1

2(n− 1)
(∇iRgjk −∇jRgik) +

1

n− 2
(gjkRil∇lf − gikRjl∇lf).

Applying Lemma 4.0.3, we will have:

Cijk +Wijkl∇lf =
m+ n− 2

m(n− 2)
(∇ifRjk −∇jfRik)

+
m+ n− 2

2(n− 1)(n− 2)(m− 1)
(∇iRgjk −∇jRgik)

+
(m+ n− 2)(λ(n− 1)−mR)

m(m− 1)(n− 1)(n− 2)
(∇ifgjk −∇jfgik)

=
m+ n− 2

m
Dijk.

As in Proposition 2.2.1, we also have:
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Proposition 4.0.3. Suppose (Mn, g, f) is a (λ, n+m)−Einstein with m 6= 0, 1, 2−n,

then for any regular value c of f , define Σ = {x ∈M |f(x) = c}, we have:

|D|2 =
2|∇f |4

(n− 2)2
|hab −

H

n− 1
gab|2 +

m2

2(n− 1)(n− 2)(m− 1)2
|∇ΣR|2,

where hab denotes the second fundamental form of Σ.

Proof. Compute |D|2 first:

|D|2 =
2

(n− 2)2
(|Rc|2|∇f |2 −Rjk∇jfRik∇if)

+
m2

2(n− 1)(n− 2)2(m− 1)2
|∇R|2

+
2(λ(n− 1)−mR)2

(n− 1)(n− 2)2(m− 1)2
|∇f |2

+
2m

(n− 1)(n− 2)2(m− 1)
(R∇R · ∇f −∇jRRjk∇kf)

+
4(λ(n− 1)−mR)

(n− 1)(n− 2)2(m− 1)
(R|∇f |2 −Rjk∇jf∇kf)

+
2m(λ(n− 1)−mR)

(n− 1)(n− 2)2(m− 1)2
∇R · ∇f.

Applying Lemma 4.0.3:

|D|2 =
2

(n− 2)2
|Rc|2|∇f |2 − |∇R|2 m2n

2(n− 1)(n− 2)2(m− 1)2

+ |∇f |2−2n[λ(n− 1)]2 − 2R2(m2 + n− 1) + 4R[λ(n− 1)](m+ n− 1)

(n− 1)(n− 2)2(m− 1)2

+∇R · ∇f−2mn[λ(n− 1)] +R(2mn− 2m+ 2m2)

(n− 1)(n− 2)2(m− 1)2
.

(4.0.3)

To compute the RHS, let’s denote e1, e2, ..., en as the local orthonormal frame

with e1 = ∇f/|∇f |, and whenever we use the indices a, b, c, we refer to the tangent

direction of Σ.

R11 =
Rij∇if∇jf

|∇f |2
=

m

2m− 2

∇R · ∇f
|∇f |2

+
λ(n− 1)−R

m− 1
; (4.0.4)
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R1a =
Raj∇jf

|∇f |
=

1

|∇f |

(
m

2m− 2
∇aR

)
; (4.0.5)

hab =< ea,∇b
∇f
|∇f |

>=
∇a∇bf

|∇f |
=
λgab −Rab

|∇f |
. (4.0.6)

Thus,

H =
λ(n− 1)−R +R11

|∇f |
=

1

|∇f |

(
m

2m− 2

∇R · ∇f
|∇f |2

+
m(λ(n− 1)−R)

m− 1

)
.

(4.0.7)

Then, we can compute |h|2:

|h|2 =
1

|∇f |2
|λgab −Rab|2

=
1

|∇f |2
(
λ2(n− 1) + |Rab|2 + 2λ(−R +R11)

)
=

1

|∇f |2
(
λ2(n− 1) + 2λ(R11 −R) + |Rc|2 − |R11|2 − 2

∑
|R1a|2

)
.

Plugging in (4.0.4) and (4.0.5):

|h|2 =
1

|∇f |2
|Rc|2 +

1

|∇f |2
λ2(n− 1)

+
2λ

|∇f |2

(
m

2m− 2

∇R · ∇f
|∇f |2

+
λ(n− 1)−mR

m− 1

)
− 1

|∇f |2

(
m2

4(m− 1)2

(∇R · ∇f)2

|∇f |4
+

(λ(n− 1)−R)2

(m− 1)2
+
m(λ(n− 1)−R)

(m− 1)2

∇R · ∇f
|∇f |2

)
− 1

|∇f |4
m2

2(m− 1)2
|∇ΣR|2.
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Thus,

2|∇f |4

(n− 2)2
|hab −

H

n− 1
gab|2 =

2|∇f |4

(n− 2)2

(
|h|2 − H2

n− 1

)
=

2

(n− 2)2

{
|Rc|2|∇f |2 + |∇f |2λ2(n− 1) +

λm

m− 1
∇R · ∇f

+ 2λ|∇f |2λ(n− 1)−mR
m− 1

− m2

4(m− 1)2
|∇1R|2

n

n− 1

− |∇f |2 (λ(n− 1)−R)2

(m− 1)2

n+m2 − 1

n− 1

− m(λ(n− 1)−R)

(m− 1)2

n+m− 1

n− 1
∇R · ∇f

− m2

(m− 1)2
|∇ΣR|2

}
.

Adding the term m2

2(m−1)2(n−1)(n−2)
|∇ΣR|2:

2|∇f |4

(n− 2)2
|hab −

H

n− 1
gab|2 +

m2

2(m− 1)2(n− 1)(n− 2)
|∇ΣR|2

=
2

(n− 2)2

{
|Rc|2|∇f |2 + |∇f |2λ2(n− 1) +

λm

m− 1
∇R · ∇f

+ 2λ|∇f |2λ(n− 1)−mR
m− 1

− m2

4(m− 1)2
|∇R|2 n

n− 1

− |∇f |2 (λ(n− 1)−R)2

(m− 1)2

n+m2 − 1

n− 1

− m(λ(n− 1)−R)

(m− 1)2

n+m− 1

n− 1
∇R · ∇f

}
=

2

(n− 2)2
|Rc|2|∇f |2 − |∇R|2 m2n

2(n− 1)(n− 2)2(m− 1)2

+ |∇f |2−2n[λ(n− 1)]2 − 2R2(m2 + n− 1) + 4R[λ(n− 1)](m+ n− 1)

(n− 1)(n− 2)2(m− 1)2

+∇R · ∇f−2mn[λ(n− 1)] +R(2mn− 2m+ 2m2)

(n− 1)(n− 2)2(m− 1)2
.

Comparing with the expression of |D|2 (4.0.3), the proposition follows.

Then, analogously to Proposition 2.2.2, we have for the quasi-Einstein case:
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Proposition 4.0.4. Suppose (Mn, g, f) is a (λ, n + m)−Einstein manifold with

m 6= 0, 1, 2 − n and Dijk = 0. Then for any regular value c of f , with Σ = {x ∈
M |f(x) = c}, we have:

(a) |∇f |2 and the scalar curvature R of (Mn, gij, f) are constant on Σ;

(b) R1abc = 0, here e1 = ∇f/|∇f | is an eigenvector of Rc, and ea, eb, ec are any

vectors in the tangent direction of Σ;

(c) the second fundamental form hab of Σ is of the form hab = H
n−1

gab;

(d) the mean curvature H is constant on Σ;

(e) on Σ, the Ricci tensor of (Mn, gij, f) either has a unique eigenvalue λ, or has

two distinct eigenvalues λ and µ of multiplicity 1 and n − 1 respectively. In either

case, e1 = ∇f/|∇f | is an eigenvector of λ.

Proof. The proof is similar to that of Proposition 2.2.2.

Again, similarly to Lemma 2.3.2, we can establish the analogue for quasi-Einstein

manifolds:

Lemma 4.0.5. Suppose (Mn, g, f) is a (λ, n + m)−Einstein with m 6= 0, 1, 2 − n
and Dijk = 0. Then Cijk = 0 and Wijkl∇lf = 0.

Proof. An argument similar to that of Lemma 2.3.2 will work.

Now, we are ready to conclude the proof for Theorem 4.0.2:

From equation (2.2.2) and Lemma 4.0.4:

(n− 2)Bij =∇kCkij +RklWikjl

=
m+ n− 2

m
∇kDkij +

n− 3

n− 2
Clij∇lf +

1

m
Wikjl∇kf∇lf.
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Then we have:

m(n− 2)

m+ n− 2

∫
M

Bij∇if∇jfdV =

∫
M

∇kDkij∇if∇jfdV

=−
∫
M

Dlij∇if∇l∇jfdV

=

∫
M

Dlij∇ifRljdV

=
1

2

∫
M

Dlij(Rlj∇if −Rij∇lf)dV

=− n− 2

2

∫
M

|D|2dV

Then it is easy to see that the vanishing of the Bach tensor will imply the van-

ishing of the D tensor, and hence Lemma 4.0.5 will complete the proof of Theorem

4.0.2.
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