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Abstract

A cycle is extendable if there exists another cycle on the same set of vertices plus one

more vertex. G.R.T. Hendry conjectured (1990) that every non spanning cycle in a

Hamiltonian chordal graph is extendable. This has recently been disproved (2015),

but is still open for classes of strongly chordal graphs. Hendry’s Conjecture has

been shown to hold for the following subclasses of chordal graphs: planar chordal

graphs (2002), interval graphs, strongly chordal graphs with (two specific) forbidden

subgraphs, split graphs (2006), and spider intersection graphs (2013).

Chapter 1 of this dissertation is an introduction to the subject matter. In chap-

ter 2 we verify that Hendry’s Conjecture holds for Ptolemaic graphs which are a

subclass of strongly chordal graphs, alongside with a strong result on how smoothly

the extension can happen. In chapter 3 we develop tools for working on tree rep-

resentations of chordal graphs with Hendry’s Conjecture in mind. Chapter 4 is an

application of these tools to interval graphs, another subclass of chordal graphs.

Chapter 5 is about manipulating the aformentioned counterexample to Hendry’s

Conjecture, and applying tools from chapter 3 on it. This yields information on the

structure of graphs for which Hendry’s conjecture holds.
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Chapter 1

Introduction

All graphs described here are finite simple connected graphs. Unless otherwise noted

basic terminology follows [11]. Also note that when a result is well known we will

quote a general text rather than the paper it was originally published in. This

difference will be noted by prepending the word ‘see’ before the citation number.

Definitions 1. We use the notation G[S] when we wish to denote the subgraph

of G induced on the set of vertices S. A graph is called Hamiltonian if it has a

Hamiltonian cycle: a cycle that passes through every vertex. A chord of a cycle is an

edge between two vertices of it, which are not adjacent in the cycle. A graph is called

chordal if all of its cycles of length 4 or greater have a chord. It follows trivially from

this definition that an induced subgraph of a chordal graph is also chordal. A vertex

is simplicial provided that its neighbors form a clique. A maxclique or maximal clique

is a clique that is not the subset of a larger clique. A vertex separator is a set of

vertices whose removal separates two non-adjacent vertices into distinct connected

components.

Theorem 2 (see [3]). A chordal graph is either complete, or has two non-adjacent

simplicial vertices.

The above theorem implies that that any chordal graph except the one on a

single vertex will have at least two simplicial vertices. Moreover since being chordal

2



is a hereditary property removing a simplicial vertex will often yield new simplicial

vertices in the remaining graph, which may in turn be removed.

Definition 3. A perfect elimination order (PEO) of a graph G is a sequence

x1, x2, . . . , xn of its vertices such that xi is simplicial in G[xi+1, . . . , xn].

Chordal graphs are characterized by PEOs.

Theorem 4 (see [3]). A graph is chordal if and only if it has a perfect elimination

order.

Definition 5. We will call a cycle with the vertex sequence x1x2x3 . . . xkx1 reducible

if removing one of the vertices in the sequence yields a vertex sequence for another

cycle.

Given any cycle in a chordal graph consider the simplicial vertices of the subgraph

induced by the vertices of the cycle. Since the neighbors of a simplicial vertex are

adjacent to each other, removing one these simplicial vertices from the cycles will

reduce it. In other words every cycle in a chordal graph is reducible.

This process does not in general work in reverse. That is given a cycle in a

chordal graph there often is no way to insert a vertex into the cycle to form a larger

cycle in which the order of the vertices is preserved. However if one relaxes the

requirement to preserve the order of the vertices, it may be possible to extend the

cycle.

Definitions 6. Given two cycles C and D with the properties

(i) V (C) ⊂ V (D) and

(ii) |V (C)|+ 1 = |V (D)|,
we call D an extension of C, and we say that C is extendable, or extends to D. If

y ∈ V (D) \ V (C) is the extra vertex, we can also say C extends by y. In the rare

case where it is possible to insert a vertex into a cycle without changing the order of

the vertices, we call it a nice extension. If a graph has at least one cycle, and every

cycle of this graph is extendable, then we call that graph cycle extendable.
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By repeated extension of any one of its cycles, it is trivial to show that every

cycle extendable graph is also Hamiltonian. In the 80s George Hendry invented and

studied this property as part of his PhD dissertation. Hendry’s work was mainly

focused on proving that classical sufficient conditions on Hamiltonicity also (up to

some exceptions) implied cycle extension. As a consequence to his work he also

developed a conjecture, known as Hendry’s Conjecture.

Conjecture 7 (Hendry’s Conjecture [5]). Every Hamiltonian chordal graph is cycle

extendable.

While Hendry’s Conjecture has been recently disproved [9], there have been

some advances proving Hendry’s Conjecture for various subclasses of chordal graphs.

These include interval graphs [1, 4], planar chordal graphs [7], strongly chordal

graphs with forbidden subgraphs [1], and spider intersection graphs [2]. Much of this

work suggests that Hendry’s Conjecture may hold true for strongly chordal graphs,

which is a superclass of Ptolemaic graphs. The main result in chapter 2 is that

Henry’s Conjecture holds for Ptolemaic graphs, and we show that the extensions

are to some degree nice. In chapter 3 we develop a method for manipulating tree

representations of chordal graphs with reference to pairs of cycles (and paths) on

them, and in chapter 4 apply it to the case of certain paths on interval graphs. In

chapter 5 we apply the same techniques on the counterexample by Lafond and Sea-

mone in an attempt to classify the trees which guarantee that Hamiltonian chordal

graphs hosted on them are cycle extendable.

Fact 8 (see [3]). A vertex is simplicial if and only if it belongs in only one maxclique.

Proof. We prove the contrapositive. Assume a vertex x belongs to two distinct

maxcliques M and N . Let A = M ∩ N,B = M \ A,C = N \ A. If every pair of

vertices from B and C respectively had an edge between them, then M ∪N would

be a clique, thus contradicting maximality of both M and N . Therefore there must

exist a pair of vertices y ∈ B, z ∈ C that are not adjacent. Since y ∈ M, z ∈ N

and x ∈M ∩N , then y, z ∈ N(x). This shows that x cannot be simplicial, since its

neighborhood is not a clique.
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Assume a vertex x is not simplicial, then by the definition of simplicial, it must

have two neighbors y, z ∈ N(x) that are not adjacent. {x, y} and {x, z} are both 2-

cliques, but they can never be included in the same maxclique since y and z are not

adjacent. So x is in at least one maxclique togather with y, and in at least another

maxclique together with z. Therefore, x is in at least two distinct maxcliques.

Fact 9 (see [1]). Let G be a Hamiltonian Chordal graph of 4 vertices or more, and

x be a simplicial vertex of G. Then G \ x is Hamiltonian.

Proof. Let H = x1xx2x3 . . . xn−1x1 be any Hamiltonian cycle of G. Then since

x is simplicial and x1, x2 ∈ N(x), it follows that x1x2 ∈ E(G), and therefore

x1x2x3 . . . xn−1x1 is a Hamiltonian cycle in G \ x.

5



Chapter 2

Ptolemaic Graphs

2.1 Basic Facts and Definitions

Definition 10 (see [3]). A graph G is distance hereditary provided that for any two

vertices x, y ∈ V (G) and for every induced subgraph H of G containing those two

vertices, x and y are either disconnected in H or have the same distance between

them in H as they did in G.

Ptolemaic graphs have several equivalent definitions. We will use the following

definition.

Definition 11. A graph is Ptolemaic provided that it is both chordal and distance

hereditary.

Fact 12 (see [3]). The Ptolemaic graph property is hereditary, in other words every

induced subgraph of a Ptolemaic graph is Ptolemaic.

We combine facts 12 and 9 for convenience.

Fact 13. Let G be a Hamiltonian Ptolemaic graph of 4 vertices or more, and x a

simplicial vertex of G. Then G \ x is a Hamiltonian Ptolemaic graph.

We will use the following well known fact in the proof of the structural theorem

to follow.
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Fact 14. Given two intersecting maxcliques M1,M2 in Ptolemaic G, M1 ∩M2 sep-

arates M1 \M2 from M2 \M1.

2.2 Structural Theorem

We will now build towards a structural theorem which really is a special case of the

structure developed in [10], but we build it in a way which is both simpler and more

intuitive. It is also more useful for our proofs about cycle extendability.

Two sets A,B are overlapping provided that, A ∩ B,A \ B, and B \ A are all

nonempty.

Lemma 15 (see [10]). Let G be a Ptolemaic graph, M a maxclique of G, and

M1,M2, . . . ,Mk distinct maxcliques of G (also distinct from M), whose intersections

with M are nonempty. Let Ci = M∩Mi. For any i 6= j, either Ci∩Cj = ∅, Ci ⊆ Cj,

or Cj ⊆ Ci. In other words they are not overlapping.

Proof. By way of contradiction, assume Ci and Cj are overlapping sets. Let x ∈
Ci \Cj, y ∈ Cj \Ci. Since x, y ∈ V (M), it follows that x and y are adjacent. Since

∅ 6= Ci ∩ Cj ⊆ Mi ∩Mj, we know that Mi,Mj intersect. Therefore, by Fact 14,

Mi\Mj and Mj\Mi must be separated by Mi∩Mj. However the edge xy from Ci\Cj
to Cj \ Ci bypasses this separator. This contradiction proves the statement.

Definition 16. A separating partition of a connected graph G is a pair (S,V) where

1. V = {V1, V2, . . . , Vt} is a nontrivial partition of V (G).

2. S = {S1, S2, . . . , St} is a family of subsets of V (G).

3. ∅ ⊂ Si ⊆ Vi for all i.

4. for i 6= j the only edges from Vi to Vj are from Si to Sj.

5. For each i, G[Vi] and G[Si] are both connected.
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S1
S2

S3

S4
S5

G1

G2

G3

G4

G5

Figure 2.1: An illustration of what a separating partition may look like.

For ease of readability we will denote G[Vi] as Gi.

A visual aid showing what a separating partition may look like is given in Figure

2.1.

We now proceed to the construction of a special type of separating partition that

is associated with maxcliques that have no simplicial vertices. The properties of this

construction will be shown in a number of lemmas until we conclude with Theorem

24.

Lemma 17. Let G be a connected Ptolemaic graph, M be a maxclique with no

simplicial vertices in G. Then V (M) can be partitioned into S = {S1, S2, . . . , St}
where each Si is a vertex separator.

Proof. Let F be the family of subsets of V (M), that are nonempty intersections

of M with other maxcliques. All members of F are separators by Fact 14. Let S
be the subfamily of F , composed of its maximal members under set inclusion. To

prove that S partitions V (M) we need to show

(i)
⋃
i Si = V (M).

Recall that a vertex is simplicial if and only if it is contained in a unique maxclique

8



(Fact 8). This means that since M has no simplicial vertices; every vertex of M

must also be contained in another maxclique, i.e. must be in the intersection of this

maxclique and M . Therefore, each vertex of M is contained in some member of F ,

and thus in some member of S.

(ii) For i 6= j that Si ∩ Sj = ∅.
Since Si and Sj are defined to be maximal under set inclusion, neither is a subset

of the other. Then Si ∩ Sj = ∅ by Lemma 15. We conclude that members of S
partition V (M).

Lemma 18. S defined in Lemma 17 has at least 2 members.

Proof. If S is empty, then M has no intersections with other maxcliques. Either G

is not connected, or G = M and is a complete graph, making every vertex of M a

simplicial vertex. Either possibility is a contradiction of the hypotheses of Lemma

17.

If S has exactly one member, then that member, which is the intersection of

M with another maxclique, would cover all of M . But this would mean the other

maxclique is a superset of M , which contradicts M ’s maximality.

Given a connected Ptolemaic graph G, a maxclique M with no simplicial ver-

tices in G, and S a partition of V (M) as defined in Lemma 17, we define V =

{V1, V2, . . . , Vt} in the following way. For a fixed i, let Mi = {Mi1,Mi2, . . . } be

the set of maxcliques such that Mij ∩ M ⊆ Si for all j. For a given Mij ∈ Mi

let Gij be the connected component of G \M in which {Mij \ Si} resides. Then

Vi = Si ∪
⋃
j V (Gij).

Lemma 19. V as defined above partitions V (G).

Proof. (i)
⋃
i Vi = V (G).

Since for all i, Vi ⊆ V (G), it follows that
⋃
i Vi ⊆ V (G). We need to prove that

V (G) ⊆
⋃
i Vi. Pick any x ∈ V (G). It will suffice to show that x ∈ Vi for some i. If

x ∈M then since S partitions M , x ∈ Si for some i. Then x ∈ Vi for the same i. On

the other hand, if x /∈M , then x is in some connected component of G \M . Let us

9



call this connected component H. It is obvious that, just like any other connected

component of G \M , H must have some vertex y which is adjacent to some vertex

z ∈ M . Since z ∈ M , and S partitions M , then z ∈ Si for some i. Therefore any

maxclique containing both y and z will be a member ofMi for the same i. This in

turn means that H = Gij for some j, and therefore x ∈ Vi.
(ii) For all i 6= j, Vi ∩ Vj = ∅.

By Lemma 17 for i 6= j we know Si ∩ Sj = ∅, we need only show that

Gik ∩Gjl = ∅ ∀k, l

Assume by way of contradiction that this is not so. If there were k, l such that Gik∩
Gjl 6= ∅, firstly it would mean that Gik and Gjl are the same connected component

of G\M . Further it would mean that this connected component intersects with two

maxcliques N,N ′ such that N ∩M ⊆ Si and N ′ ∩M ⊆ Sj. Then since they are in

the same connected component of G \M , there is a path P from N \M to N ′ \M
that avoids M . Let x be a vertex of N ′ ∩M . Appending x to P , we get a new path

P ′ from N \M to N ′ ∩M ⊆ Sj ⊆M \ Si ⊆M \N avoiding M ∩N , contradicting

Fact 14.

Lemma 20.

Vi ∩M = Si, for all i.

Proof. trivial

Lemma 21. Each Gi is connected.

Proof. Each Gij is adjacent to Si, and Si forms a clique.

Lemma 22. Each Si separates Gi \ Si from G \Gi.

Proof. By way of contradiction, and without loss of generality, assume that there’s a

path P from G1 \S1 to G2 ⊆ G\G1 that does not pass through S1. Let x be the last

vertex of P in G1 and y its first vertex in G2. Let P ′ be the subpath of P from x to

y inclusive. Let A be a shortest path within G1 from x to S1, and likewise let B be

10



a shortest path within G2 from y to S2. Shorten A to A′, by removing its terminal

vertex in S1. So, the first vertex of A′ is not in S1 but in a maxclique N ⊆ G1 (not

necessarily M1) whose intersection N ∩M ⊆ S1 is a separator. The paths P ′, A′

and B do not intersect since they are all in different {Gi} (P ′ possibly in several).

As such we can concatenate A′P ′B into a final path P ′′. P ′′ is a path from N \ S1

to S2 ⊆M \S1 that does not pass through S1. The existance of P ′′ contradicts that

N ∩M ⊆ S1 must be a separator. This proves that each Si separates Gi \ Si from

G \Gi.

Lemma 23. For i 6= j the only edges between Gi and Gj are between Si and Sj,

and thus in M .

Proof. Any edge between Gi and Gj that avoids either Si or Sj, is a path that

contradicts Lemma 22.

Finally we conclude with our main structural theorem.

Theorem 24 (Structure Theorem). Let G be a connected Ptolemaic graph, M be a

maxclique with no vertices that are simplicial in G. Then, as per the construction

above, G has a separating partition (S,V), with the properties

(i) S partitions M ,

(ii) Si = Vi ∩M for each i.

Remark. We know Theorem 24 can be viewed as a special case of the structure

developed in [10]. However, in the form presented here it is both shorter and more

applicable to what follows.

Remark. The reader may find it of interest to note that Theorem 24 can be extended

to maxcliques which have simplicial vertices. To do so, one creates a special part S0

for the simplicial vertices of the maxclique in question, and sets V0 = S0. We did

not write Theorem 24 in this more general form since doing so detracts from the

readability of the proofs that follow.

We note one final lemma that is used in the next section alongside Theorem 24.

11



Lemma 25. Each Gi \M contains a vertex that is simplicial in G.

Proof. Given any Gi, if it is a single clique then every vertex of Gi \M is simplicial.

If not, then by Fact 2 there are two nonadjacent simplicial vertices of Gi as an

induced subgraph of G. At least one of them must be outside M, call it x. Since

x /∈ Si ⊆ M , it follows that its neighbors are all in Gi, and thus its neighborhood

in Gi is exactly the same as its neighborhood in G. Therefore it is still simplicial in

G.

2.3 Main Results

Lemma 26. Let G be a Ptolemaic graph, C a cycle of G which goes through every

simplicial vertex of G, and M any maxclique of G. Then there is an edge of C in

M .

Proof. If G is a complete graph, then the only possible M is all of G. Then every

edge of C is in M . From here on assume G is not a complete graph.

Case 1: M has simplicial vertices. Let x1 be one of them. Let xk be a simplicial

vertex of G, not adjacent to x1. We know such a vertex exists by Fact 2. Let

P = x1x2x3 . . . xk be one of the two paths from x1 to xk induced by C. We note

that not all vertices in that sequence may be simplicial vertices of M , let xi+1 be

the first one which is not. Then xi is simplicial in M , and so xi+1 ∈M . Therefore,

xixi+1 is an edge of C in M .

Case 2: M does not have simplicial vertices. Then we know by Theorem 24 that

M partitions into separators Si with associated components Gi. And by Lemma

25 each Gi has a simplicial vertex not in M . Without loss of generality let y1 ∈
G1, yk ∈ G2 be two such simplicial vertices, and R = y1y2 . . . yk be one of the two

paths C induces from y1 to yk. Let yi+1 be the first vertex in that path not on G1,

then yi+1 must necessarily be in some Gj (not necessarily G2). Then yiyi+1 being an

edge from G1 to Gj is an edge in M by Lemma 23. This is an edge of C in M .

12



Theorem 27. Let G be a Ptolemaic graph, C = x1x2 . . . xkx1 a cycle of G which

goes through every simplicial vertex of G, and y any vertex of G not on C. Then C

can be extended nicely by y.

Proof. Let M be a maxclique of G containing y. By Lemma 26, there is an edge of C

in M , which we may take, without loss of generality, to be x1x2. Since y, x1, x2 ∈M ,

a clique, edges x1y, and yx2 exist, thus we can extend C to x1yx2 . . . xkx1.

Remark. Theorem 27 does not hold in chordal graphs in general. (This does in fact

follow from the existance of a counterexample anyways). A Hamiltonian interval

graph is given in Figure 2.2. Note that the cycle marked in bold does not extend

nicely, even though it passes through every simplicial vertex of the graph.

v6

v4

v5

v3 v8

v9

v7

v1

v2

Figure 2.2: A cycle in a Hamiltonian interval graph that passes through every simplicial

vertex, and yet has no nice extension

Theorem 27 can be rephrased in terms of a sequence of extensions.

Corollary 28. Let G be a Ptolemaic graph. If C1 is a non-Hamiltonian cycle in G

which passes through every simplicial vertex, then there exists a sequence of cycles

C1, C2, . . . , Ck, where each Ci+1 is a nice extension of Ci (1 ≤ i < k), and the

last cycle Ck is Hamiltonian. In fact we can pick any ordering x2, x3, . . . , xk of the

vertices of G \ C1 such that V (Ci) = V (C1) ∪ {x2, x3, . . . , xi}.

13



Proof. Starting with C1 we repeatedly extended it via Theorem 27, to any vertex

of our choice, until we hit a Hamiltonian cycle.

Corollary 29. A Ptolemaic graph which features a cycle that passes through every

simplicial vertex is Hamiltonian.

v1 v2

v3 v4

x

Figure 2.3: Ptolemaic counterexample to nice extension

Remark. The sequence of nice extensions described in Corollary 28 is not always

possible if the starting cycle C1 does not pass through every simplicial vertex of

G. For a counter example consider the Ptolemaic graph in Figure 2.3. Let C1 =

v1v2v3v4v1. The two possible extensions of C1 do not preserve the order of its

vertices. We do, however, have a result that states that this need not happen more

than once in the sequence.

Theorem 30. Let G be a Ptolemaic graph with a Hamiltonian cycle H. Let C1

be a non-Hamiltonian cycle in G. Then there exists a sequence C1, C2, . . . , Ck of

cycles, where Ck = H, Ci+1 is an extension of Ci, and for all but (at most) one i

(1 ≤ i < k) these extensions are nice.

Proof. We use induction on the number of vertices.

Case 1: If C1 passes through every simplicial vertex of G, then by Corollary 28

there exists a sequence of cycles C1, C2, . . . , Ck, where each Ci+1 is a nice extension

of Ci. Replacing Ck with H, we get the sequence C1, C2, . . . , Ck−1, H, in which each

element of the sequence is a nice extension of the previous element, with the possible

exception of the extension from Ck−1 to H.

14



Case 2: If there is a simplicial vertex in G \ C1, let us call it x. By Fact

13, G \ x is a Hamiltonian Ptolemaic graph, and H \ x (a reduction of H) is a

Hamiltonian cycle of this graph. We use induction on G \ x to find a sequence of

cycles C1, C2, . . . , Ck−2, H \x where every element of the sequence is an extension of

the previous, and at most one of these extensions is not nice. Note that since H \ x
is a reduction of H, then conversely H is a nice extension of H \x. Therefore we can

append H to this sequence without increasing the number of non-nice extensions.

C1, C2, . . . , Ck−2, H \ x,H is a sequence of cycles that satisfies the hypothesis.

The proof of Theorem 30 is inductive and hides some ideas about how this

sequence can be constructed in a specific instance. What follows is an informal

description of how one can construct an extension sequence.

Construction 31.

Case 1: If C1 passes through every simplicial vertex of G, refer to the proof (case

1) of Theorem 30.

Case 2: Assume C1 does not pass through every simplicial vertex of G, here’s how

we construct the sequence C1, C2, . . . Ck. We start by coming up with a sequence of

vertices x1, x2, . . . , xl in G \C1 such that for any given i, xi+1 is a simplicial vertex

in G \ {x1, x2, . . . , xi}. (This is a partial perfect elimination ordering.) We stop

at xl when no simplicial vertices remain in G \ {x1, x2, . . . , xl} that are not also

in C1. We let Ck be a Hamiltonian cycle in G. We let Ck−i be the cycle reduced

from Ck−i+1 when xi is removed and its neighbors connected. In this way we’ve

constructed Ck−l, Ck−l+1, . . . , Ck, the last l + 1 cycles in the squence. Note that C1

passes through every simplicial vertex of G[V (Ck−l)]. So using the same strategy as

in Case 1, we can create a sequence of nicely extended cycles C1, C2, . . . , Ck−l−1, D

in G[V (Ck−l)]. These are also nice extensions in the larger graph G. Note that

while V (D) = V (Ck−l) the order of their vertices need not be the same. Therefore

the sequence C1, C2, . . . , Ck of cycles satisfies the theorem, with the one possibly

not-nice extension being the one from Ck−l−1 to Ck−l

A direct corollary of Theorem 30 is that Hendry’s Conjecture holds for Ptolemaic

graphs.
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Corollary 32. Hamiltonian Ptolemaic graphs are cycle extendable.

2.4 Further Investigation

Definition 33. A connected component of a graph is a subgraph in which there is

a path between any two vertices and there is no path from its vertices to the rest of

the graph. We denote the number of connected components of a graph G as c(G).

Definition 34. A graph is tough provided that it cannot be split into k connected

components by the removal of less than k vertices.

A Hamiltonian graph is necessarily tough. We think the converse holds for

Ptolemaic graphs. In other words, we think that a Ptolemaic graph is Hamiltonian

if and only if tough, and that this can be proved by use of the structure lemma.

It is known that the equivalent statement holds for interval graphs, and the larger

class of cocomparability graphs.

Conjecture 35. Tough Ptolemaic graphs are Hamiltonian.

Provided that Conjecture 35 is true then it might also be possible to transform

our proof of Hendry’s Conjecture in Ptolemaic graphs into a certifying algorithm

which either produces as Hamiltonian path in a given Ptolemaic graph or a set of

k vertices whose removal splits the graph into more than k connected components,

thereby showing that the graph is not tough.

Definition 36. The minimal path cover of a graph is the minimal number of paths

needed to cover its vertices.

Definition 37. The scattering number of a complete graph is −∞, for every other

graph it’s defined to be

sc(G) = max{c(G[V \ S])− |S| | S ⊆ V (G), c(G[V \ S] 6= 1)}.

A further question we may consider is that of the minimal path cover of a Ptole-

maic graph. Specifically we think it may be equal to the scattering number of the
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graph. Analogously to the previous paragraph, if this is true there may be an effi-

cient algorithm for finding the minimal path cover of Ptolemaic graphs. It should

also be noted that, just as in the case of toughness, similar results for scattering

numbers exist for interval and cocomparability graphs.

Another possibility is to investigate the circumference of Hamiltonian Ptolemaic

graphs.
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Chapter 3

Tree representation

In this chapter we use tree representation of chordal graphs to develop various terms,

lemmas and models. There is no main theorem, but the tools we develop are used

in chapters 4 and 5. We begin by discussing the characterizations of chordal graphs

as intersections of subtrees of a host tree.

Definition 38. Given a tree T and a set T of subtrees of T , we define the subtree

intersection graph associated with (T, T ) to be the graph whose vertex set is T and

whose edge set is defined by the statement that for every x, y ∈ T xy is an edge if

and only if x intersects y.

It is well known that the class of subtree intersection graphs corresponds exactly

to the class of chordal graphs.

Fact 39. Every subtree intersection graph is chordal.

Fact 40. For every chordal graph G there exists a host tree T and a set of its

subtrees T , such that G is isomorphic to the subtree intersection graph associated

with (T, T ).

We now formalize this connection between chordal graphs and subtree intersec-

tion graphs by defining tree representations.

Definition 41. A (tree) representation for a chordal graph G consists of a triple

(T, T , ρ), where T is a (host) tree, T is a set of subtrees of T , ρ is a map from V (G)
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to the set of all subtrees of T , with the properties that uv ∈ E(G) if and only if the

subtrees ρ(u) and ρ(v) intersect, and that the range of ρ is exactly T .

Note that since T = range(ρ), we will sometimes omit T , and refer to (T, ρ) as

a representation, and if a specific host tree is unnecessary or irrelevant for purposes

of discussion, we will further omit T , and refer to ρ by itself as a representation.

Also note that where ρ is irrelevant we will often abuse notation, and refer to the

subtree intersection graph associated with (T, T ) as a representation.

Since for each chordal graph there is at least one representation, and each rep-

resentation corresponds to a chordal graph, it is possible to write proofs based

on manipulating representations rather than directly manipulating the graphs they

represent.

Our proofs will often involve induction on the number of edges. The concept

of subrepresentation, which we define in the next paragraph, is eminently relevant

to such proofs since taking a subrepresentation removes edges from the graph it

represents.

Definitions 42. Given a chordal graph G, with a representation (T, ρ), if ρ′ is a

map from V ′ ⊆ V (G) to the subtrees of T such that for every vertex v ∈ V ′ we have

ρ′(v) ⊆ ρ(v), then we call the pair (T, ρ′) a subrepresentation of (T, ρ). We will allow

the convention ρ′(v) = ∅ which will mean that the vertex v is deleted. When T is

unambiguously specified or a specific T is irrelevant to the discussion, we will call ρ′

a subrepresentation of ρ. Note that if (T, ρ) is a representation of a chordal graph G,

and (T, ρ′) is a subrepresentation of (T, ρ), then not only is (T, ρ′) a representation

in itself of some graph G′ (with V (G′) = V (G)), but G′ is a subgraph of G. We will

call this subgraph a subrepresentation subgraph and denote it Gρ′ .

Since Hendry’s Conjecture is about cycles, it will be useful for us to consider

what paths and cycles look like on a representation. Given a tree T , we will refer

to a non-repeating sequence p1p2 . . . pk of subtrees of T as a path, if it satisfies the

property that pi intersects with pi+1 for all 1 ≤ i < k. We call such a sequence a

cycle if the first and last subtrees are identical. Notice that there is some room for

confusion / abuse of notation: Let’s say G is a chordal graph for which (T, T , ρ)
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is a representation. If P = p1p2 . . . pk is a path (or cycle) in G, then ρ(P ) =

ρ(p1)ρ(p2) . . . ρ(pk) is a path (or cycle) in the representation and vice versa.

Now consider a graphG with representation (T, ρ) in which we are only interested

in studying some path (or cycle) P = p1p2 . . . pk. If G is meant to be a minimal

counterexample, or we will be using induction, it is possible to shorten or trim the

subtrees ρ(pi) such that only subpaths between their intersections with ρ(pi−1) and

ρ(pi+1) remain. Furthermore we can ensure that these intersections are minimal,

namely each can be reduced to a single node. This is formally stated as below.

Lemma 43. Given a chordal graph G with representation (T, ρ) and P = p1p2 . . . pk

a path (or cycle) in G, there exists a subrepresentation ρ′ such that

1. Each ρ′(pi) is a subpath in the host tree T .

2. ρ′(pi) ∩ ρ′(pi+1) is a single node for all 1 ≤ i < k.

3. ρ′(p1)ρ
′(p1) . . . ρ

′(pk) is still a path (or cycle).

4. ρ′(v) = ∅ for all vertices v not on P .

Of course Hendry’s conjecture involves at least two cycles: one Hamiltonian cycle

and one non-Hamiltonian cycle. So, we now consider how we can shorten subtrees

in a representation while preserving two specific paths (or cycles), which we shall

name P = p1p2 . . . pk, and Q = q1q2 . . . ql.

First, we can shorten the subtrees of P and Q individually as per fact 43. We

must now combine this two subrepresentations in such way as to yield a subrepre-

sentation ρ′′′ of ρ that shortens the subtrees of both P and Q, while preserving both

of these paths (or cycles). The obvious solution is (for all v ∈ V (G)) to let ρ′′′(v)

be the union of ρ′(v) and ρ′′(v). Unfortunately, this does not always work, since in

some circumstances this union will be a disconnected subforest. In these situations

we turn this subforest into a subtree by filling the missing parts in between. We

therefore define ρ′′′(v) to be the smallest subtree of T containing both ρ′(v) and

ρ′′(v). We will denote this as ρ′′′(v) = ρ′(v) +ρ′′(v). Here the + operation takes two

subtrees and returns the smallest subtree containing both.
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Lemma 44. Given a chordal graph G with representation (T, ρ) with two paths (or

cycles) P = p1p2 . . . pk, and Q = q1q2 . . . ql, there exists a subrepresentation ρ′ such

that

1. For each v ∈ V (P ) ∪ V (Q) ρ′(v) is a subtree of at most four leaves.

2. ρ′(pi) ∩ ρ′(pi+1) is a single node for all 1 ≤ i < k.

3. ρ′(qi) ∩ ρ′(qi+1) is a single node for all 1 ≤ i < l.

4. Both ρ′(P ) and ρ′(Q) are still paths (or cycles)

5. ρ′(v) = ρ(v) for all vertices v not on P or Q.

For the sake of future convenience we now name representations that satisfy the

above conclusions. We call a tuple (G,H,C, T, ρ, η, γ,H, C, φ) a dual path (or cycle)

model provided that

1. G is a chordal graph,

2. H is a Hamiltonian path (or cycle) of G,

3. C is a non-Hamiltonian path (or cycle) of G,

4. T is a host tree for G, and ρ is a representation,

5. η and γ are subrepresentations of ρ associated with H and C with the prop-

erties described in Lemma 43,

6. For each v ∈ V (G) ρ(v) is the smallest subtree of T containing both γ(v) and

η(v),

7. H is the sequence of subpaths of T that is the image of V (H) under η,

8. C is the sequence of subpaths of T that is the image of V (C) under γ,

9. φ : C → H is the bijective map such that for each v ∈ V (C) φ(γ(v)) = η(v).
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Definitions 45. Sometimes we cut corners and refer to the tuple (T, C,H, φ) as a

dual path (or cycle) model. We call C (or C depending on context) an extendee

path (or cycle). A vertex in V (H) \ V (C) (or a subtree in H \ im(φ) depending on

context) is an extendee vertex. We call a maximal sequence of extendee vertices in

H an extendee block. A vertex in V (C) (or depending on context a subtree in C) is

called a nonextendee vertex.

Similar to the concept of subrepresentation we define a path (or cycle) submodel

as follows. A path (or cycle) model (G2, H2, C2, T 2, ρ2, η2, γ2,H2, C2, φ2) is a sub-

model of a path (or cycle) model (G1, H1, C1, T 1, ρ1, η1, γ1,H1, C1, φ1) provided that

1. V (G2) ⊆ V (G1),

2. T 2 is a subtree of T 1,

3. ρ2 is a subrepresentation of ρ1.

4. V (C2) ⊆ V (C1)

Note that this definition of submodel does not require that γ2 and η2 be sub-

representations of γ1 and η1 respectively. This is because, often they will not be.

Neither is it guaranteed that C2 = C1 or H2 = H1.
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Chapter 4

Interval Graphs

In general interval graphs are defined as graphs whose vertex set corresponds to a set

of intervals of the real number line, and whose edges correspond to the intersections

of these intervals. Due to our interest in them as a subclass of chordal graphs we

will define them as follows.

Definitions 46. An interval graph is a chordal graph with a tree representation

whose host tree is a path. Notice that the subtrees of a host tree that is a path

are subpaths, which we will name intervals. We visualize the host path as drawn

horizontally and oriented from left to right with one end picked as the left end, and

the other as the right end. Under this orientation each interval will also have a

left endpoint and a right endpoint. For a vertex x ∈ V (G) we will denote its left

endpoint under representation ρ as Lρ(x) and similarly its right endpoint Rρ(x), or

L(x) and R(x) respectively where the representation is irrelevant.

Let G be an interval graph with host path I = i1i2 . . . ik. A path P = p1p2 . . . pk

of G is an end-to-end path provided that L(p1) = i1 and R(pk) = ik . Moreover

we say that an end-to-end path P extends to another end-to-end path Q, provided

that V (Q) \ V (P ) is a set of exactly one vertex. If such a Q exists we call P (path)

extendable.

Definition 47. We call a dual path model (G,H,C, I, ρ, h, c,H, C, φ) an interval

dual path model provided that the host tree I is a path, and H and C are both

23



end-to-end paths.

The following lemma, which will be central to our proofs, is well known in the

literature.

Lemma 48 (Path Straightening Lemma). Let G be an interval graph with rep-

resentation ρ and P = p1p2 . . . pk be an end-to-end path in G. Then there is a

subrepresentation ρ′ and a permutation σ ∈ Sk such that P ′ = pσ(1)pσ(2) . . . pσ(k) is

an end-to-end path in Gρ′ and Rρ′(pσ(i)) = Lρ′(pσ(i+1))

Note that, given an interval dual path model (G,H,C, I, ρ, η, γ,H, C, φ), we can

apply the Path Straightening Lemma to both H and C, resulting in a submodel in

which both H and C are straightened paths. Below we give a name to this kind of

submodel and prove its existence.

Definition 49. We call an interval dual path model (G,H,C, I, ρ, η, γ,H, C, φ) for

which

• Rη(hi) = Lη(hi+1) for 1 ≤ i < |V (G)| − 1

• Rγ(ci) = Lγ(ci+1) for 1 ≤ i < |V (C)| − 1

straightened.

Lemma 50 (Straightened Submodel Lemma). Given an interval dual path model

(G,H,C, I, ρ, η, γ,H, C, φ), there exists a straightened submodel

(G2, H2, C2, I2, ρ2, η2, γ2,H2, C2, φ2).

Proof. We construct the submodel as follows. I2 = I, i.e. the host path remains

the same. Let η2 be the subrepresentation of η given by the path straightenening

lemma. Let H2 be the (permuted) end-to-end path on V (H) given by the same.

Simlarly let γ2 be the subrepresentation of γ, and C2 be the end-to-end path given

by the straightening lemma. We define ρ2 = η2 + γ2. The rest of the submodel can

be determined from this much.
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Lemma 51 (Sequential Extension). Let (G,H,C = c1c2 . . . ck, I, ρ, η, γ,H, C, φ) be

an interval dual path model. Let x be an extendee vertex. If for any i we have that

x is adjacent to both ci and ci+1 then C extends to c1c2 . . . cixci+1 . . . ck.

Note that sequential extension is a nice extension.

Definition 52. Let (G,H,C, I, ρ, η, γ,H = h1h2 . . . hn, C = c1c2 . . . ck, φ) be a straight-

ened interval dual path model for which the hypotheses of Lemma 51 hold. This im-

plies that there exists an extendee vertex x and some index i, such that ρ(x) = η(x)

intersects with both ci and ci+1. Since we assume the conclusions of Lemma 50,

then it follows that Lη(x) ≤ Rγ(ci) = Lγ(ci+1) ≤ Rη(x). Conversely for the hypoth-

esis of Lemma 51 to not hold, we must require at the very least for every extendee

block E = e1e2 . . . et and any c ∈ V (C), which intersects with any one of ei, that

γ(c) must completely contain E, that is Lγ(c) ≤ Lη(e1) ≤ Rη(et) ≤ Rγ(c), where

Lγ(c) = Lη(e1) only in cases where Lγ(c) is the leftmost node of I, and where

Rη(et) = Rγ(c) only in cases where Rγ(c) is the rightmost node of I. We will call

such a c (or γ(c)) a containing vertex (or interval)

Definition 53. We define a cross vertex over an extendee block E = e1, e2, . . . , et

(without loss of generality assumed to be a left to right sequence), to be an nonex-

tendee vertex x such that η(x) and γ(x) are located at different sides of η(E):

1. either Rη(x) ≤ Lη(e1) and Lγ(x) ≥ Rη(et),

2. or Rγ(x) ≤ Lη(e1) and Lη(x) ≥ Rη(et).

Lemma 54 (cross H neighbor reduction). Let (G,H,C, I, ρ, η, γ,H, C, φ) be a straight-

ened interval dual path model. Let E = e1e2 . . . et be an extendee block, and x a cross

vertex over E, with η(x) positioned immediately to the left (or right) of η(E). Then

there exists a submodel (G2, H2, C2, I2, ρ2, η2, γ2,H2, C2, φ2), such that any extension

of C2 in G2 implies an extension of C in G.

Proof. Let y be the vertex immediately after e1 in H. For example if t ≥ 2 then

y = e2. Without loss of generality let us say that h(x) is to the immediate left of
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η(E), i.e. Rη(x) = Lη(e1). Since x is a cross vertex, then γ(x) is to the right of

η(et), i.e. Lγ(x) ≥ Rη(et). Therefore ρ(x) = η(x) + γ(x) intersects with η(y). This

means x is adjacent to y. Consequently we may remove e1, and induce G2 on the

remaining vertices. Formally G2 = G \ e1, H2 = H \ e1, C2 = C, I2 = I, η2 = η

everywhere except η2(x) = η(x) + η(e1), η
2(e1) = ∅, and γ2 = γ everywhere. The

rest of the features of the submodel are deducible from these. Now note that since

C2 = C, any extension of C2 in G2 is an extension of C in G.

Lemma 55 (Cross Reduction). Let (G,H,C, I, ρ, η, γ,H, C, φ) be a straightened

interval dual path model. Given two vertices x, y with the property that Rη(x) ≤
Lη(y) and Lγ(x) ≥ Rγ(y), if either

1. (case 1) Lη(x) ≥ Lγ(y) and Rη(y) ≤ Rγ(x),

2. or (case 2) Lη(x) ≤ Lγ(y) and Rη(y) ≥ Rγ(x)

then there exists a submodel (G2, H2, C2, I2, ρ2, η2, γ2,H2, C2, φ2), such that any ex-

tension of C2 in G2 implies an extension of C in G.

Proof. We construct the submodel in question. Let I2 = I.

1. (Case 1) Let η2(x) = η(y), η2(y) = η(x), with η2 = η otherwise, and γ2 = γ

everywhere.

2. (Case 2) Let η2 = η everywhere, and γ2(x) = γ(y), γ2(y) = γ(x), with γ2 = γ

otherwise.

Note that these assertions are equivalent to declaring φ2 to be a transposition of

φ i.e. φ2(γ2(x)) = η(y) = φ(γ(y)) and φ2(γ2(y)) = η(x) = φ(γ(x)).

Together with the hypotheses these give us, ρ′(x) ⊆ ρ(x) and ρ′(y) ⊆ ρ(y), which

implies that ρ′ is a subrepresentation of ρ.

The astute reader will notice that γ2 and η2 will most likely not be subrepresen-

tations of γ and η respectively. This raises the question of what will happen to C

and H, seeing as H2 = H and C2 = C have not changed, but γ2 and η2 have. We

note that in
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1. (Case 1) H2 equals H with the positions of x and y transposed, and C2 = C.

2. (Case 2) H2 = H, and C2 equals C with the positions of x and y transposed.

Finally G2 is the subgraph of G induced by the subrepresentation ρ2.

Since V (C2) = V (C) and G2 is a subgraph of G, any extension of C2 in G2 is

an extension of C in G.

Lemma 56 (First Lead Reduction (path version)). Let (G,H = h1h2 . . . hn, C =

c1c2 . . . ck, I, ρ, η, γ,H, C, φ) be a straightened interval dual path model, in which h1 is

a nonextendee interval. Then there exists a submodel (G3, I3, H2 = h21h
2
2 . . . h

2
n, C

2 =

c21c
2
2 . . . c

2
k, ρ

2, η2, γ2,H2 = h2
1h2

2 . . . h2
n, C2 = c21 c22 . . . c2k , φ

2) with the properties

1. φ2(c21) = h2
1 . (incidentally this implies γ21 = η21)

2. Either Lγ2(c
2
1) = Rγ2(c

2
1) = Lη2(h

2
1) or Lη2(h

2
1) = Rη2(h

2
1) = Lγ2(c

2
1)

Furthermore any extension of C2 in G2 implies an extension of C in G.

Proof. To start with since H and C are end-to-end paths, we have Lγ(c1) = Lη(h1).

This implies that we can cross reduce (Lemma 55) to c1 and h1. Consequently we

have a submodel (G2, H2 = h21h
2
2 . . . h

2
n, C

2 = c21c
2
2 . . . c

2
k, I, ρ

2, η2, γ2,H2, C2, φ2), in

which c21 = h21, and an extension of C2 in G2 implies extension of C in G. This

model satisfies the first property.

Let r represent the leftmost one among the two nodes Rγ2(c
2
1) and Rη2(h

2
1), and

similarly define l = Lγ2(c
2
1) = Lη2(h

2
1) i.e. the very leftmost point of I2. Note that

the length of I2 between l and r is completely superfluous, and can be removed.

We formally do so by constructing one more submodel (G3 = G2, H3 = H2, C3 =

C2, I2, ρ3, η3, γ3,H3, C3, φ3 = φ2). I3 is the subpath of I2 from node r onwards

to the right handside. η3 = η2 except for η3(h31) which is defined by Lη3(h
3
1) =

r, Rη3(h
3
1) = Rη2(h

2
1). γ3 = γ2 except for γ3(c31) which is defined by Lγ3(c

3
1) =

r, Rγ3(c
3
1) = Rγ2(c

2
1). ρ

3 = η3 + γ3. This model satisfies both properties.
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Since C3 = C2, and G3 = G2, any extension of C3 in G3 is an extension of C2

in G2. As per Lemma 55, any extension of C2 in G2 implies an extension of C in

G.

Lemma 57 (Second Lead Reduction). Let (G,H = h1h2 . . . hn, C = c1c2 . . . ck, I, ρ, η, γ,H, C, φ)

be a straightened interval dual path model which satisfies the conclusions of Lemma

56 and that c1 is not a containing interval. Then there exists a submodel (G2, H2 =

h2 . . . hn, C
2 = c2 . . . ck, I

2, ρ2, η2, γ2,H2, C2, φ2), such that

1. V (G2) = V (G) \ c1 = h1, and

2. any extension of C2 in G2 implies an extension of C in G.

Proof. Firstly, we will manipulate c1 and h2 so that their right end points will match.

Assume, without loss of generality that Rη(h1) ≥ Rγ(c1). Let ct be the first vertex

of C such that Rγ(ct) > Rη(h1).

Since H is straightened, for all i ≥ 2 η(ci) will be placed fully to the right of

h1. That means for i ≥ 2 Lη(ci) ≥ Rη(c1 = h1) This means for 2 ≤ i ≤ t ρ(ci)

includes the node Rη(h1). Then we can lengthen c1, and shift ci for 2 ≤ i ≤ t

by constructing a submodel. We construct (G2, H2, C2, I2, ρ2, η2, γ2,H2, C2, φ2) as

follows. H2 = H,C2 = C,H2 = H, c2i = ci for i > t, η2 = η. We define γ2 via

• Lγ2(c21) = Lγ(c1), Rγ2(c
2
1) = Rη(h1)

• Lγ2(c2i ) = Rγ2(c
2
i ) = Rη(h1) for 2 ≤ i ≤ t− 1

• Lγ2(c2t ) = Rη(h1), Rγ2(c
2
t ) = Rγ(ct)

• γ2(c2i ) = γ(ci) for i > t

We define ρ2 = η2 +γ2, and G2 as the subgraph of G induced by ρ2. We should now

demonstrate that ρ2 is a subrepresentation of ρ. Since η2 = η and γ2(ci) = γ(ci)

for i > t, we need only show ρ2(ci) ⊆ ρ(ci) for 1 ≤ i ≤ t. In the case of c1

since we have φ(c1) = h1, Lγ(c1) = Lη(h1) and, Rη(h1) ≥ Rγ(c1) it follows that

γ(c1) ⊆ η(h1) = ρ(c1 = h1). Therefore shifting the right endpoint of c1 to the right
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endpoint of h1 does not change ρ2(c21) = ρ(c1). For ct we have γ2(c2t ) ⊆ γ(ct) and

η2(c2t ) = η(ct), therefore ρ2(c2t ) ⊆ ρ(ct). For 2 ≤ i ≤ t − 1, we have already noted

that Lη(ci) ≥ Rη(h1) therefore Lγ(ci) ≤ Lγ2(c
2
i ) = Rη(h1) ≤ Lη(ci) = Lη2(c

2
i ). Thus

ρ2(c2i ) ⊆ ρ(ci) for 2 ≤ i ≤ t − 1. This concludes our demonstration that ρ2 is a

subrepresentation of ρ.

Secondly we will remove the vertex c21 = h21, and the corresponding intervals c21
and h2

1 . The resulting submodel is (G3, H3 = h22h
2
3 . . . h

2
n, C

3 = c22c
2
3 . . . c

2
k, I

3, ρ3, η3, γ3,

H3 = h2
2 . . . h2

n, C3 = c22 . . . c2k , φ
3), and it is constructed as follows. G3 is the induced

subgraph of G2 on V (G2) \ {c21 = h21}. H3 and C3 are H2 and C2 missing their

initial vertex. Likewise H3 and C3 are H2 and C2 missing their initial intervals. I3

is the subpath of I2 from the node Rc2(c
2
1) = Rh2(h

2
1) onwards to the right. η3 and

ρ3 are η2 and ρ2 restricted to V (H3) respectively. Similarly γ3 and φ3 are γ2 and φ2

restricted to V (C3) respectively. This completes the construction of the submodel.

Any extension of C3 in G3 can be prefixed with c21 to become an extension of

C2 in G2. Since C2 = C and G2 is a subgraph of G, then it follows that this is an

extension of C in G as well.

Theorem 58. Every end-to-end path in a traceable interval graph is extendable.

Proof. For any given Hamiltonian interval graph G, any end-to-end Hamiltonian

path H in it, and any end-to-end non-Hamiltonian path C in it, we show that C

can be extended in G. By way of induction, assume that any smaller end-to-end

path in G can be extended, and in any end-to-end path in any Hamiltionian interval

graph smaller than G can be extended. Formally, the induction invariant is the sum

|V (G)| + |E(G)| + |V (C)|. Let (G,H,C, I, ρ, η, γ,H = h1h2 . . . hn, C = c1c2 . . . ck, φ)

be an interval dual path model.

We first apply the straightening lemma (Lemma 50), and thus have a straight-

ened interval dual path model (G2, H2, C2, I2, ρ2, η2, γ2,H2, C2, φ2), where any ex-

tension of C2 implies an extension of C.

If sequential extension (Lemma 51) is possible we extend C2 sequentially. For

the rest of this proof we may assume sequential extension is not possible. One

consequence of this is that all extendee blocks are contained in containing intervals.
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If c21 is not a containing interval, we can apply 1st Lead Reduction (Lemma 56)

to construct submodel (G3, H3, C3, I3, ρ3, η3, γ3,H3, C3, φ3). We follow up with 2nd

Lead Reduction (Lemma 57) to further construct submodel (G4, H4, C4, I4, ρ4, η4, γ4,

H4, C4, φ4). Since G4 is a proper subgraph of G we know by induction hypothesis

that C4 extends in G4. This implies extension of C3 in G3, which implies extension

of C2 in G2, which finally implies extension of C in G. For the rest of the proof we

assume c21 is a containing interval and consider three cases.

1. First extendee vertex of H2 is h21.

2. First extendee vertex of H2 is h22.

3. First extendee vertex of H2 is h23 or a later vertex.

Firstly, if h21 is an extendee vertex, h21c
2
1c

2
2 . . . c

2
k is an extension of C2. This

implies an extension of C in G.

Secondly, if the first extendee vertex of H2 is h22, then we apply Cross Reduction

(Lemma 55) on c21 and h21 to construct submodel (G3, H3, C3, I3, ρ3, h3, c3,H3, C3, φ3).

Note that since h31 = c31 is a containing vertex, it follows that h31 is a cross vertex over

the extendee block containing h32. We apply Cross H-neighbor Reduction removing

h32, and thus construct submodel (G4, H4, C4, I4, ρ4, η4, γ4,H4, C4, φ4). Since G4 is a

proper subgraph of G induction hypothesis applies. As before, extension of C4 in

G4 implies extension of C in G.

Thirdly, if the first extendee vertex of H2 is h2t with t ≥ 3, again we apply Cross

Reduction (Lemma 55) on c21 and h21, to construct submodel (G3, H3, C3, I3, ρ3, η3, γ3,

H3, C3, φ3). In this submodel since (φ3)−1(h3
1 ) = c31 , it follows that h32 is necessarily

a cross vertex over the extendee block containing h3t . We apply Cross H-neighbor Re-

duction removing h3t , and thus construct submodel (G4, H4, C4, I4, ρ4, η4, γ4,H4, C4, φ4).

Since G4 is a proper subgraph of G induction hypothesis applies. Again, extension

of C4 in G4 implies extension of C in G.
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4.1 Further Investigation

While there are already two different proofs that Hendry’s Conjecture holds for

interval graphs, it would be interesting to see if our work in this chapter yields

yet another. This should be relatively easy, seing that a straightened Hamiltonian

cycle is equivalent to two end-to-end paths. Non-Hamiltonian cycles need not be

straightened into two end-to-end paths, but for the ones that do not it is easy to

show extension.

In short, interval dual cycle models similar to our interval dual path models can

be built to work towards another proof of Hendry’s Conjecture for interval graphs.

Almost all of our lemmas can be easily modified to work for interval dual cycle

models, with the notable exception of the Second Lead Reduction Lemma (Lemma

57). Any work towards this third proof of Hendry’s Conjecture for interval graphs

must start there.
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Chapter 5

Counterexample

We start this chapter with some definitions we’ll need in the introductory para-

graphs.

Definitions 59. A subdivision of a graph G is another graph that can be attained

by replacing some (or none) of G’s edges with paths. A star also denoted K1,n is

tree on n + 1 vertices formed by adding edges between one vertex and every other

vertex. A spider is a subdivision of a star. A spider intersection graph is a chordal

graph which can be hosted on a spider. The leafage (see [8]) of a chordal graph is

the minimum number of leaves a host tree representing that graph may have.

In [1,4] it is shown that Hendry’s conjecture holds for interval graphs. In [2] it is

shown that Henry’s Conjecture holds for spider intersection graphs. Both of these

graph classes are based on the shape a host tree for the graph may take. Since in [9]

Lafond and Seamone have shown a family of counterexamples to Henry’s Conjecture,

it becomes an interesting question to resolve exactly for which host tree shapes it

holds. For us the questions takes two specific forms.

Question 60. For what leafages of chordal graphs is Hendry’s Conjecture guaranteed

to hold, for which can we find counterexamples? Leafage 2 chordal graphs are exactly

interval graphs, and any leafage 3 chordal graph is a spider intersection graph. So

the question is already solved for leafage 2 and 3, but what about leafage 4 and

higher?
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Question 61. Given that paths are subdivisions of an edge, and spiders are subdi-

visions of stars, another way to state the results on interval and spider intersection

graphs is: Any Hamiltonian chordal graph hosted on a subdivision of T where T is an

edge or a star is cycle extendable. Is there any other such tree T which can guarantee

cycle extendability for Hamiltonian chordal graphs hosted on its subdivisions?

We arrive at our answers for these two questions by modifying Lafond and Sea-

mone’s counterexample using tools developed in chapter 3. In Figure 5.1 we present

a drawing of the smallest graph of this family which we will refer to as G1. G1 is

chordal, has a Hamiltonian cycle H1 and a non-Hamiltonian non-extendable cycle

C1 where

H1 = w4dcw2hw3gz2z1bagw5ew4,

C1 = w4daw1bcw2hw3gfw5ew4.

a

w1

b

c

d

w4

e

w5

f

g

h

w2

w3z1
z2

Figure 5.1: G1, the original counterexample

By selecting a maximal spanning tree of the weighted clique graph of G1, we

produce a representation ρ1 for G1. This representation is drawn in Figure 5.2.
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e

d c a

h

b

z1 z2

g f

w4 w2 w1 w3 w5

Figure 5.2: ρ1: a tree representation for G1

Note that this representation is on a host tree with 5 leaves. It is relatively easy

to extend it to host trees with more leaves, so this answers our question on what

leafages guarantee Hendry’s Conjecture for leafages ≥ 5. This leaves us to ponder

the case for leafage 4.

Also note that there is a part of ρ1(h) that is unnecessary for either H or C. We

remove that part and construct subrepresentation ρ2(h) as drawn in Figure 5.3. In

Figure 5.4 we see G2, the graph associated with ρ2. As can be seen in the figure,

G2 = G1 \ hd.

e

d c a

h

b

z1 z2

g f

w4 w2 w1 w3 w5

Figure 5.3: ρ2: reduced from ρ1

We then build a model from ρ2 as seen in Figure 5.5. We name this model M2

We can manipulate the model by shortening the middle branch as can be seen

in Figure 5.6. We shall name this new model M3. It is important to note that

M3 is not a submodel of M2, since it adds two edges: w1h and w1e. We can see
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a

w1

b

c

d

w4

e

w5

f

g

h

w2

w3z1
z2

Figure 5.4: G2: graph corresponding to ρ2

e

d c

a h

c b

a

b

z1 z2

g g f

w4 w2 w1 w3 w5

Figure 5.5: M2: a model for ρ2

the extra edges in Figure 5.7 where we draw G3, the graph associated with M3.

However any extension of C in G3 cannot use these extra edges, since in order to

include the vertices w2, w3, w4, w5 in the cycle, the edges w2h, hw3, w4e, and ew5 are

forced, accounting for both pair of edges h and e may have. As such any extension

of C in G3 would imply an extension of C in G2 and therefore in G1, implying that

G3 is also a counterexample to Hendry’s Conjecture.

M3 (and G3) shows that there’s a counterexample to Hendry’s Conjecture with

leafage 4.
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Figure 5.6: M3: modified from model M2

a

w1

b

c

d

w4

e

w5

f

g

h

w2

w3z1
z2

Figure 5.7: G3: the graph associated with M3

Theorem 62. Hendry’s Conjecture holds for chordal graphs of leafage 3 or less, and

this result is sharp in that there are counterexamples for chordal graphs of leafage

≥ 4.

That answers question 60. Using the same counterexample we can also answer

question 61.

Definitions 63. We define TH to be the tree on 6 vertices with exactly two of them

of degree 3, and the rest degree 1. An H-shape tree [6] is a subdivision of TH .
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Theorem 64. Hamiltonian chordal graphs hosted on spiders (which are subdivisions

of stars) are cycle extendable. Any tree which is not a spider has a subdivision on

which a counterexample to Hendry’s Conjecture may be hosted. In fact one needs to

subdivide at most five times to arrive at such a subdivision.

Proof. Let T be a tree that is not a spider. T must have an induced H-shape tree.

As can be seen in model M3, G3 can be hosted on an H-shape tree, that can be

attained by subdividing TH five times. This means we can build a representation

for G3 on T just using the induced H-shape tree and subdividing at most five times

to add the necessary vertices.

G3 has one more advantage over G1 (the original Lafond, Seamone counter ex-

ample). Looking at M3 we note that (unlike in ρ1) the subtrees representing the

vertices of G3 are all paths. This answers the question of whether Hendry’s Conjec-

ture holds for another subclass of chordal graphs.

Definition 65. A VPT graph is a chordal graph which has a tree representation in

which the subtrees representing its vertices are paths.

Theorem 66. Hendry’s Conjecture does not hold for VPT graphs.

5.1 Further Investigation

Definition 67. A double star is a tree which may be obtained by joining the central

vertices of two stars. We will name this added edge the central edge of the double

star, and denote the central vertices the left central vertex and the right central vertex

arbitrarily. We will name the remaining edges side edges and divide them into two

sets, left side edges and right side edges, depending on which central vertex they are

incident to.

Since we know Hamiltonian chordal graphs hostable on subdivisions of stars

(i.e. spider intersection graphs) are cycle extendable, it makes sense to ask whether

Hendry’s Conjecture holds for chordal graphs hostable on subdivisions of double
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stars. We will ignore the double stars for which the one of the central vertices has

degree two or less since that describes a subdivision of a star (i.e. spider).

Theorem 64 tells us that Hendry’s Conjecture does not necessarily hold for all

chordal graphs hosted on all subdivisions of double stars. Specifically we know that

that if a double star has at least two left side edges, two right side edges, and that

at least one edge on both sides is subdivided at least once, and the central edge is

subdivided at least three times, then on the resultant tree we can host a counter

example to Hendry’s Conjecture. That does not cover all subdivisions of double

stars. There are in fact two classes of trees that merit further investigation.

Question 68. Start with a double star that has two or more left side edges and

two or more right side edges. Subdivide the central edge as many times as you like.

Subdivide the left side edges as many times as you like. Are Hamiltonian chordal

graphs hosted on the resultant tree guaranteed to be cycle extendable?

Question 69. Start with a double star that has two or more left side edges and two

or more right side edges. Subdivide the central edge at most twice. Subdivide the

side edges as many times as you like. Are Hamiltonian chordal graphs hosted on the

resultant tree guaranteed to be cycle extendable?

These two classes constitute exactly the subdivisions of double stars not covered

by Theorem 64. It should be noted that the smallest subdivisions of double stars

that are not spiders are H-shape trees. In other words, H-shape trees are the class

of graphs on which these two questions should be initially studied.
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