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Abstract

This thesis contains my work during my Ph.D. studies at Lehigh University under

the guidance of my advisor Huai-Dong Cao. The work is related to objects called

Ricci solitons which serve as singularity models of Ricci flow. We are going to study

Ricci solitons in this thesis from the following aspects:

1. Curvature properties.

2. Volume growth properties.

3. Uniqueness under constraints of the asymptotic geometry.

We first explore the curvature estimate for four dimensional steady Ricci solitons.

The main result is about control of the full curvature tensor Rm by scalar curvature

R.

We are then going to study curvature and volume growth properties of complete

steady Kahler Ricci solitons with positive Ricci curvature. The main result is that

volume growth is at least half dimensional and scalar curvature behaves like 1
r

in

average where r is the geodesic distance to some point.

In the third part, we are going to study the uniqueness of the steady Kahler

Ricci soliton constructed by Huai-Dong Cao under constraints of the asymptotic

geometry. The main result says that it is unique if we ask that the metric tensor be

C1 close in some sense to the model.
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Chapter 1

Preliminary

1.1 Definition of Ricci solitons

The Ricci flow is a geometric PDE introduced by R. Hamilton in 1982 [37]. It is

a nonlinear weakly parabolic system which evolves the metric tensor by its Ricci

tensor,

∂

∂t
gij = −2Rij.

It is a powerful tool in the study of the geometry of the underlying manifold

where this PDE system evolves. For example, it is the primary tool used in G.

Perelman’s solution of the Poincaré conjecture[51]. It has also been applied by R.

Schoen and S. Brendle[5] in the proof of the differentiable sphere theorem.

Singularity analysis is one of the main parts of studying the Ricci flow. Self

similar solutions, called Ricci solitons arise during singularity analysis.

Definition 1.1.1. A complete Riemannian manifold (M, g) is called a Ricci soliton,

if there exists a complete vector field V , such that

Rij +
1

2
LV gij = λgij

for some constant λ ∈ R.
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Based on the sign of λ, they divide into three types, namely shrinking (λ > 0),

steady (λ = 0) and expanding (λ < 0).

Moreover, if V is a gradient vector field, i.e., V = ∇f , then we say it is a

gradient Ricci soliton with potential function f . In the these we are going to focus

on gradient steady solitons (V = ∇f, λ = 0)

Rij +∇i∇jf = 0.

Ricci solitons are natural generalization of Einstein manifolds (V = 0). The self

similar solution generated by a Ricci soliton often appears as a singularity model, i.e.,

the parabolic dilation limit of Ricci flow near a singularity. Therefore, the structure

of Ricci soliton helps us know more about the Ricci flow near itsp singularity.

1.2 Curvature equations and inequalities

Lemma 1.2.1. (Hamilton [39]) Let (Mn, gij, f) be a complete gradient steady

soliton satisfying Eq. (1.1). Then

R = −∆f, (1.1)

∇iR = 2Rij∇jf, (1.2)

R + |∇f |2 = C0 (1.3)

∇lRijkl = Rijkl∇lf (1.4)

We also collect several equations and inequalities of R,Ric and Rm (cf. [39],[54]).

Lemma 1.2.2. Let (Mn, gij, f) be a complete gradient steady soliton satisfying Eq.

3



(1.1). Then, we have

∆fR = −2|Ric|2,

∆fRic = −2RijklRjl,

∆fRm = Rm ∗Rm,

where ∗ means linear combinations of contractions between tensors, ∆f is the f-

Laplacian operatorp ∆−∇f · ∇.

Lemma 1.2.3. Let (Mn, gij, f) be a complete gradient steady soliton satisfying Eq.

(1.1). Then

∆f |Ric|2 ≥ 2|∇Ric|2 − 4|Rm||Ric|2,

∆f |Rm| ≥ −c|Rm|2,

∆f |Rm|2 ≥ 2|∇Rm|2 − C|Rm|3.

Here c > 0 is some universal constant depending only on the dimension n.

Remark 1.2.1. To derive the second differential inequality, one needs to use the Kato

inequality |∇|Rm|| ≤ |∇Rm| as shown in [45].

To get nonnegativity of scalar curvature, we will need the following useful result

by B.-L. Chen [22].

Proposition 1.2.1. (B.-L Chen [22]) Let gij(t) be a complete ancient solution to

the Ricci flow on a noncompact manifold Mn. Then the scalar curvature R of gij(t)

is nonnegative for all t.

Since gradient steady solitons generate self silimar solutions which are not just

ancient but eternal, we have,

Lemma 1.2.4. Let (Mn, gij, f) be a complete gradient steady soliton. Then it has

nonnegative scalar curvature R ≥ 0.

Remark 1.2.2. In fact, by Proposition 3.2 in [54], either R > 0 or (Mn, gij) is Ricci

flat.
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1.3 Basic properties of solitons

Let us compare some previous results for complete gradient shrinking and steady

Ricci solitons.

Properties Shrinking solitons Steady solitons
(1) If Rc > 0, R attains maximum,

Potential function f ∼ 1
4
r2, [15] c1r − c2 ≤ −f ≤

√
Rmaxr + c3, [16]

growth (2)infy∈∂Br(x) f(y) ∼ −
√

Λr, [63]
(1)V ol(Br) ≤ crn, [15]

Volume growth (2)V ol(Br) ≥ cr, [46] (1)c · r ≤ V ol(Bp(r)) ≤ c · ea
√
r, [44]

(3)If Rc ≥ 0, then (2) If f satisfies a uniform condition,

limr→∞
V ol(Br)
rn

= 0, [48] V ol(Br) ≤ rn. [61]

1.4 Some examples of steady solitons

Steady solitons arise as certain Type II singularity models of the Ricci flow. Recall

a gradient steady Ricci soliton satisfies

Rij + fij = 0.

Therefore Ricci flat spaces are steady solitons if we pick our potential function f

to be 0. Indeed, by an argument of Hamilton [39], a compact steady soliton has to

be trivial (Ricci flat). Therefore a nontrivial steady soliton is noncompact. Many

people have constructed nontrivial steady solitons and we list some of them.

Space R2 Rn(n ≥ 3) Cn(n ≥ 2)
Metric Ansatz SO(2) or U(1) SO(n) U(n)
Potential function f = − ln cosh(r) f ∼ −cr f ∼ −cr
Volume Growth V ol(Br) ∼ r V ol(Br) ∼ r

n+1
2 V ol(Br) ∼ rn

Curvature R(g) > 0, sec(g) > 0, sec(g) > 0,
R = O(e−2r) R = O(1

r
) R = O(1

r
)

Found by R. Hamilton, [38] R. Bryant, [8] H.-D. Cao, [11]
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Chapter 2

Curvature estimates for four-

dimensional steady solitons

2.1 Background

A complete Riemannian metric gij on a smooth manifold Mn is called a gradient

steady Ricci soliton if there exists a smooth function f on Mn such that the Ricci

tensor Rij of the metric gij satisfies the equation

Rij +∇i∇jf = 0. (2.1)

The function f is called a potential function of the gradient steady soliton. Clearly,

when f is a constant the gradient steady Ricci soliton (Mn, gij, f) is simply a Ricci-

flat manifold. Gradient steady solitons play an important role in Hamilton’s Ricci

flow, as they correspond to translating solutions, and often arise as Type II singu-

larity models. Thus one is interested in possibly classifying them or understanding

their geometry.

It turns out that compact steady solitons must be Ricci-flat. In dimension n = 2,

Hamilton [36] discovered the first example of a complete noncompact gradient steady
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soliton on R2, called the cigar soliton, where the metric is given by

ds2 =
dx2 + dy2

1 + x2 + y2
.

The cigar soliton has potential function f = − log(1 + x2 + y2), positive curvature

R = 4ef , and is asymptotic to a cylinder at infinity. Furthermore, Hamilton [36]

showed that the only complete steady soliton on a two-dimensional manifold with

bounded (scalar) curvature R which assumes its maximum at an origin is, up to

scaling, the cigar soliton. For n ≥ 3, Bryant [10] proved that there exists, up to

scaling, a unique complete rotationally symmetric gradient Ricci soliton on Rn; see,

e.g., Chow et al. [28] for details. The Bryant soliton has positive sectional curvature,

linear curvature decay and volume growth of geodesic balls B(0, r) on the order

of r(n+1)/2. In the Kähler case, Cao [11] constructed a complete U(m)-invariant

gradient steady Kähler-Ricci soliton on Cm, for m ≥ 2, with positive sectional

curvature. It has volume growth on the order of rm and also linear curvature decay.

Note that in each of these three examples, the maximum of the scalar curvature is

attained at the origin. One can find additional examples of steady solitons, e.g., in

[41, 43, 30, 31, 3] etc; see also [14] and the references therein.

In dimension n = 3, Perelman [52] claimed that the Bryant soliton is the only

complete noncompact, κ-noncollapsed, gradient steady soliton with positive section-

al curvature. Recently, Brendle has affirmed this conjecture of Perelman (see [6];

and also [7] for an extension to the higher dimensional case). On the other hand, for

n ≥ 4, Cao-Chen [16] and Catino-Mantegazza [20] proved independently, and using

different methods, that any n-dimensional complete noncompact locally conformally

flat gradient steady Ricci soliton (Mn, gij, f) is either flat or isometric to the Bryant

soliton (the method of Cao-Chen [16] also applies to the case of dimension n = 3).

In addition, Bach-flat gradient steady solitons (with positive Ricci curvature) for

all n ≥ 3 [19] and half-conformally flat ones for n = 4 [25] have been classified

respectively.

Inspired by the very recent work of Munteanu-Wang [45], in [17] we studied cur-

vature estimates of four-dimensional complete noncompact gradient steady solitons.
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In [45], Munteanu and Wang made an important observation that the curvature

tensor of a four-dimensional gradient Ricci soliton (M4, gij, f) can be estimated in

terms of the potential function f , the Ricci tensor and its first derivates. In addi-

tion, the (optimal) asymptotic quadratic growth property of the potential function

f proved in [15], as well as a key scalar curvature lower bound R ≥ c/f shown in

[29] are crucial in their work. Even though gradient steady Ricci solitons in general

don’t share these two special features (cf. [63, 44, 61] and [29, 34]), some of the

arguments in [45] can still be adapted to prove certain curvature estimates for two

classes of gradient steady solitons.

2.2 Main Results

Theorem 2.2.1. Let (M4, gij, f) be a complete noncompact 4-dimensional gradient

steady Ricci soliton with positive Ricci curvature Ric > 0 such that the scalar cur-

vature R attains its maximum at some point x0 ∈M4. Then, (M4, gij) has bounded

Riemann curvature tensor, i.e.

sup
x∈M
|Rm| ≤ C

for some constant C > 0. If in addition R has at most linear decay, then

sup
x∈M

|Rm|
R
≤ C.

Theorem 2.2.2. Let (M4, gij, f), which is not Ricci-flat, be a complete noncompact

4-dimensional gradient steady Ricci soliton. If limx→∞R(x) = 0, then, for each

0 < a < 1, there exists a constant C > 0 such that

|Ric|2 ≤ CRa and sup
x∈M
|Rm| ≤ C.

Suppose in addition R has at most polynomial decay. Then, for each 0 < a < 1,

8



there exists a constant C > 0 such that

|Rm|2 ≤ CRa.

2.3 Preliminaries

It follows from Remark 1.2.2 that the constant C0 in (1.3) is positive whenever f is

a non-constant function (i.e., the steady soliton is non-trivial). By a suitable scaling

of the metric gij, we can normalize C0 = 1 so that

R + |∇f |2 = 1. (2.2)

In the rest of this chapter, we shall always assume this normalization (2.4).

Combining (2.1) and (2.4), we obtain −∆f + |∇f |2 = 1. Thus, setting F = −f ,

∆fF = 1. (2.3)

For gradient steady solitons with positive Ricci curvature Ric > 0,

Proposition 2.3.1. (Cao-Chen [16]) Let (Mn, gij, f) be a complete noncompact

gradient steady soliton with positive Ricci curvature Ric > 0 such that the scalar

curvature R attains its maximum Rmax = 1 at some point x0 ∈ Mn. Then, there

exist some constants 0 < c1 ≤ 1 and c2 > 0 such that F = −f satisfies the estimates

c1r(x)− c2 ≤ F (x) ≤ r(x) + |F (x0)|, (2.4)

where r(x) = d(x0, x) is the distance function from x0.

Remark 2.3.1. In (2.4), only the lower bound on F requires the assumptions on Ric

and R. Note that, under the assumption in Proposition 2.3.1, F (x) is proportional

to the distance function r(x) = d(x0, x) from above and below. Throughout the

9



chapter, we denote

D(t) = {x ∈M : F (x) ≤ t},

B(t) = B(x0, t) = {x ∈M : d(x0, x) ≤ t}.

2.4 Case 1: steady soliton with Ric > 0

First of all, we need the following key fact, valid for 4-dimensional gradient steady

Ricci solitons in general, due to Munteanu and Wang [45].

Lemma 2.4.1. (Munteanu-Wang [45]) Let (M4, gij, f) be a complete noncompact

gradient steady soliton satisfying (1.1). Then there exists some universal constant

c > 0 such that

|Rm| ≤ c(
|∇Ric|
|∇f |

+
|Ric|2

|∇f |2
+ |Ric|).

Proof. This follows from the same arguments as in the proof of Proposition 1.1 of

[45], but without replacing |∇f |2 by f in their argument.

Proposition 2.4.1. Let (M4, gij, f) be a complete noncompact gradient steady soli-

ton with positive Ricci curvature such that R attains a maximum. Then, there exists

some constant C > 0, depending on the constant c1 in (2.7), such that outside a

compact set,

|Rm| ≤ C(|∇Ric|+ |Ric|2 + |Ric|).

Proof. This easily follows from Lemma 2.4.1 and the following fact shown by Cao-

Chen [16]:

|∇f |2 ≥ c1 > 0. (2.5)

Remark 2.4.1. Note that, combining (2.5) with (2.2) and (2.3), we have

0 < c1 ≤ |∇F |2 = |∇f |2 ≤ 1. (2.6)

10



Now we are ready to prove our first main result.

Theorem 2.4.1. Let (M4, gij, f) be a complete noncompact gradient steady soliton

with positive Ricci curvature Ric > 0 such that R attains its maximum at some

point x0 ∈ M4. Then, there exists some constant C > 0, depending on c1 in (2.5),

such that

sup
x∈M
|Rm| ≤ C.

Proof. First of all, from (2.4), we have R ≤ 1. Hence, since Ric > 0, it follows that

0 < |Ric| ≤ R ≤ 1. (2.7)

Thus, by Proposition 2.4.1 and (2.7), we see that

|∇Ric|2 ≥ 1

2C2
|Rm|2 − (|Ric|2 + |Ric|)2 ≥ 1

2C2
|Rm|2 − 4. (2.8)

Using the first two inequalities in Lemma 1.2.3, we obtain

∆f (|Rm|+ λ|Ric|2) ≥ −C|Rm|2 + 2λ(|∇Ric|2 − 2|Rm||Ric|2). (2.9)

By (2.8), (2.9), and picking constant λ > 0 sufficiently large (depending on the

constant C in Proposition 2.4.1, hence on c1), it follows that

∆f (|Rm|+ λ|Ric|2) ≥ 2|Rm|2 − 4λ|Rm| − C ′ ≥ (|Rm|+ λ|Ric|2)2 − C. (2.10)

Next, let ϕ(t) be a smooth function on R+ so that 0 ≤ ϕ(t) ≤ 1, ϕ(t) = 1 for

0 ≤ t ≤ R0, ϕ(t) = 0 for t ≥ 2R0, and

t2
(
|ϕ′(t)|2 + |ϕ′′(t)|

)
≤ c (2.11)

for some universal constant c and R0 > 0 arbitrary large. We now take ϕ = ϕ(F (x))

as a cut-off function with support in D(2R0). Note that

|∇ϕ| = |ϕ′||∇F | ≤ c

R0

and |∆fϕ| ≤ |ϕ′∆fF |+ |ϕ′′||∇F |2 ≤
c

R 0
(2.12)

11



on D(2R0) \D(R0) for some universal constant c.

Setting u = |Rm|+ λ|Ric|2 and G = ϕ2u, then direct computations, (2.10) and

(2.12) yield

ϕ2∆fG = ϕ4∆fu+ ϕ2u∆f (ϕ
2) + 2ϕ2∇u · ∇ϕ2

≥ ϕ4
(
u2 − C

)
+ ϕ2u

(
2ϕ∆fϕ+ 2|∇ϕ|2

)
+ 2∇G · ∇ϕ2 − 8|∇ϕ|2G

≥ G2 + 2∇G · ∇ϕ2 − CG− C.

Now it follows from the maximum principle that G ≤ C on D(2R0) by some constant

C > 0 depending on c1 but independent of R0. Hence u = |Rm| + λ|Ric|2 ≤ C on

D(R0). Since R0 > 0 is arbitrary large, we see that

sup
x∈M
|Rm| ≤ sup

x∈M

(
|Rm|+ λ|Ric|2

)
≤ C.

This completes the proof of Theorem 2.4.1.

Proposition 2.4.2. Let (M4, gij, f) be a complete noncompact gradient steady soli-

ton with positive Ricci curvature Ric > 0 and R attains its maximum at x0 ∈ M4.

Then the function u = |Rm|+λ|Ric|2
R

, with λ > 0 sufficiently large, satisfies the differ-

ential inequality

∆fu ≥ u2R− CR− 2∇u · ∇(logR)

for some constant C > 0 outside a compact set.

Proof. First of all, by an argument similar to that of (2.8)-(2.10) in the proof of

Theorem 2.4.1, by choosing λ sufficiently large we have

∆f (|Rm|+ λ|Ric|2) ≥ (|Rm|+ λ|Ric|2)2 − 4λ2|Ric|4 − λ(|Ric|4 + |Ric|2)

≥ (|Rm|+ λ|Ric|2)2 − C|Ric|2

for some constant C > 0. Here we have also used the fact (2.8).

12



Thus, by a direct computation,

∆fu = R−1∆f (|Rm|+ λ|Ric|2) + (uR)∆f (R
−1) + 2∇(uR) · ∇(R−1)

≥ (|Rm|+ λ|Ric|2)2 − C|Ric|2

R
+ (uR)

[
2
|Ric|2

R2
+ 2
|∇R|2

R3

]
− 2

R2

(
u|∇R|2 +R∇u · ∇R

)
≥ Ru2 − CR− 2∇u · ∇ logR.

Theorem 2.4.2. Let (M4, gij, f) be a complete noncompact gradient steady Ricci

soliton with Ric > 0 such that R attains its maximum. Suppose R has at most linear

decay, i.e. for some c > 0, R(x) ≥ c/r(x), outside a compact set. Then

sup
x∈M

|Rm|
R
≤ C.

Proof. Fix λ sufficient large so that Proposition 2.4.2 holds and set u = |Rm|+λ|Ric|2
R

.

Next, let ϕ(t) be a Lipschitz function on R+ so that ϕ(t) = d−t
d

for 0 ≤ t ≤ d,

ϕ(t) = 0 for t ≥ d. Let ϕ = ϕ(F ) and G = ϕ2u. Then on D̊(d) \D(1) ϕ satisfies,

|∇ϕ| = |ϕ′∇F | ≤ 1

d
,

∆fϕ = ϕ′∆fF = −1

d
.

Then outside D(1), we have,

ϕ24f (G) = ϕ4(4fu) + ϕ2u(4fϕ
2) + 2ϕ2∇ϕ2 · ∇u

≥ ϕ4
(
Ru2 − cR− 2∇u · ∇ logR

)
+2
(
ϕ4fϕ+ |∇ϕ|2

)
G+ 2ϕ2∇ϕ2 · ∇u

≥ RG2 − cR + 4ϕ (∇ϕ · ∇ logR)G

−8

d
G+

(
2∇ϕ2 − 2ϕ2∇ logR

)
· ∇G.

13



Now by Lemma 1.2.3 and Ric > 0, we have |∇ logR| = 2|Ric(∇f)
R
| ≤ 2. Also, when

R has at most linear decay outside some D(t0) and for d > t0, we have R ≥ a
d

in D(d)\D(t0) for some constant a > 0 independent d. Therefore there exists c

independent of d such that on D̊(d) \D(1), following inequalities holds,

ϕ24f (G) ≥ RG2 − cR− c

d
G+

(
2∇ϕ2 − 2ϕ2∇ logR

)
· ∇G

≥ 1

2
RG2 − cR +

(
2∇ϕ2 − 2ϕ2∇ logR

)
· ∇G.

Recall u > 0, therefore the maximum of Gd must attains in the interior of D(d).

Then it follows from maximum principle argument that u ≤ C on M4, hence |Rm| ≤
CR on M4.

2.5 Case 2: steady soliton with limx→∞R(x) = 0

In this section, we prove our second main result, Theorem 2.2.2. Throughout the sec-

tion we assume (M4, gij, f) is a complete noncompact, non Ricci-flat, 4-dimensional

gradient steady Ricci soliton such that

lim
x→∞

R(x) = 0. (2.13)

Note that, by Remark 1.2.2, (M4, gij, f) necessarily satisfies R > 0.

First of all, we need the following useful Laplacian comparison type result for

gradient Ricci solitons.

Lemma 2.5.1. Let (Mn, gij, f) be any gradient steady Ricci soliton and let r(x) =

d(x0, x) denote the distance function on Mn from a fixed base point x0. Suppose that

Ric ≤ (n− 1)K

on the geodesic ball B(x0, r0) for some constants r0 > 0 and K > 0. Then, for any
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x ∈Mn \B(x0, r0), we have

∆fr(x) ≤ (n− 1)

(
2

3
Kr0 + r−1

0

)
.

Remark 2.5.1. Lemma 2.5.1 is a special case of a more general result valid for

solutions to the Ricci flow due to Perelman [51], see, e.g., Lemma 3.4.1 in [18]. Also

see [33] and [62] for a different version.

Theorem 2.5.1. Let (M4, gij, f) be a complete noncompact gradient steady Ricci

soliton which is not Ricci-flat,. If limx→∞R(x) = 0, then, for each 0 < a < 1, there

exists a constant C > 0 such that

sup
x∈M
|Ric|2 ≤ CRa and sup

x∈M
|Rm| ≤ C.

Proof. The proof is similar to that of Munteanu-Wang [45] except we need to use

the distance function to cut-off rather than the potential function since the potential

function may not be proper.

Since limx→∞R(x) = 0, it follows from (2.4) that

|∇f | ≥ c1 > 0

for some 0 < c1 < 1 outside a compact set. By Lemma 1.2.1 and Lemma 2.4.1, we

have

∆f |Ric|2 ≥ 2|∇Ric|2 − C|Rm||Ric|2

≥ 2|∇Ric|2 − C
(
|∇Ric|+ |Ric|2 + |Ric|

)
|Ric|2.

Also, since R > 0 on M4, by using the first identity in Lemma 2.3 we have

∆f

(
1

Ra

)
= 2a

|Ric|2

Ra+1
+ a(a+ 1)

|∇R|2

Ra+2
.

15



Hence,

∆f

(
|Ric|2

Ra

)
=

∆f |Ric|2

Ra
+ |Ric|2∆f

(
1

Ra

)
+ 2∇|Ric|2 · ∇

(
1

Ra

)
≥ 2|∇Ric|2

Ra
− C (|∇Ric|+ |Ric|2 + |Ric|) |Ric|2

Ra

+|Ric|2
[
2a
|Ric|2

Ra+1
+ a(a+ 1)

|∇R|2

Ra+2

]
− 4a

|Ric| |∇|Ric|| |∇R|
Ra+1

Apply Cauchy’s inequality to the last term

−4a
|Ric| |∇|Ric|| |∇R|

Ra+1
≥ −4a

|Ric| |∇Ric| |∇R|
Ra+1

≥ −a(a+ 1)
|Ric|2|∇R|2

Ra+2
− 4a

a+ 1

|∇Ric|2

Ra
.

Thus, we have

∆f

(
|Ric|2R−a

)
≥ 2(1− a)

1 + a

|∇Ric|2

Ra
− C |∇Ric||Ric|

2

Ra

−C |Ric|
4 + |Ric|3

Ra
+ 2a

|Ric|4

Ra+1

≥ (2a− CR

1− a
)
|Ric|4

Ra+1
− C |Ric|

3

Ra
.

Therefore, for u = |Ric|2
Ra

, we have derived the differential inequality

∆fu ≥ (2a− CR

1− a
)u2Ra−1 − Cu3/2Ra/2. (2.14)

Since R → 0, for any 0 < a < 1, we can choose a fixed d0 > 0 depending on a

and sufficiently large so that

(2a− CR

1− a
) ≥ a (2.15)

outside the geodesic ball B(x0, d0).

Next, for any D0 > 2d0, we choose a function ϕ(t) as follows: 0 ≤ ϕ(t) ≤ 1 is a
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smooth function on R such that

ϕ(t) =


1, 2d0 ≤ t ≤ D0,

0, t ≤ d0 or t ≥ 2D0.

Also,

t2|ϕ′′(t)| ≤ c and 0 ≥ ϕ′(t) ≥ − c

D0

, if 2d0 ≤ t ≤ 2D0. (2.16)

Now we use ϕ = ϕ(r(x)) as a cut-off function whose support is in B(x0, 2D0) \
B(x0, d0). Note that by lemma 2.5.1, we get

|∇ϕ|2 = |ϕ′|2 ≤ c

D2
0

and ∆fϕ = ϕ′∆fr(x) + ϕ′′ ≥ − C

D0

. (2.17)

on B(x0, 2D0) \B(x0, 2d0) respectively.

Setting G = ϕ2u, then by our choice of ϕ and (2.17), we see that

ϕ2∆fG = ϕ4∆fu+ ϕ2u∆fϕ
2 + 2ϕ2(∇u · ∇ϕ2)

≥ ϕ4
(
au2Ra−1 − Cu3/2Ra/2

)
+ 2ϕ2u(∆fϕ

2)− 8|∇ϕ|2G+ 2∇G · ∇ϕ2

≥ aG2Ra−1 − CG3/2Ra/2 − CG+ 2∇G · ∇ϕ2.

AssumeG achieves its maximum at some point p ∈ B(x0, 2D0). If p ∈ B(x0, 2D0)\
B(x0, 2d0), then it follows from the maximum principle that

0 ≥ aG2(p)Ra−1(p)− CG3/2(p)Ra/2(p)− CG(p).

On the other hand, noticing that the fact 0 < a < 1 and R uniformly bounded from

above, implies.

G(p) ≤ C

for some constant C depending on a but independent of D0.
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Thus,

max
B(x0,D0)

u ≤ max
B(x0,2D0)

G ≤ max

{
C, max

B(2d0)
u

}
≤ C ′

for some C ′ > 0 indepedent of D0. Therefore |Ric|2 ≤ CRa on M4.

It remains to show |Rm| ≤ C on M4. However, once we know supx∈M Ric ≤ C,

|Rm| ≤ C follows essentially from the same argument as in the proof of Theorem

2.4.1. We leave the details to the reader.

Lemma 2.5.2. Let (M4, gij, f), which is not Ricci-flat, be a complete noncompact

gradient steady Ricci soliton with limx→∞R(x) = 0. Then for each 0 < a < 1 and

µ > 0, there exist constants λ > 0 and D > 0 so that function

v =
|Rm|2 + λ|Ric|2

Ra

satisfies the differential inequality

∆fv ≥ µv −D.

Proof. By Lemma 1.2.2 and Theorem 2.5.1,

∆fv =
∆f (|Rm|2 + λ|Ric|2)

Ra
+ vRa∆f (

1

Ra
) + 2∇(vRa) · ∇(R−a)

≥ 2|∇Rm|2 + 2λ|∇Ric|2

Ra
− c |Rm|

2 + λ|Ric|2

Ra

+(|Rm|2 + λ|Ric|2)

[
−a4fR

Ra+1
+ a(a+ 1)

|∇R|2

Ra+2

]
−4a
|Rm||∇Rm||∇R|

Ra+1
− 4aλ

|Ric||∇Ric||∇R|
Ra+1

.

By applying Cauchy’s inequality to terms with |∇R|,

18



∆fv ≥
2|∇Rm|2 + 2λ|∇Ric|2

Ra
− c |Rm|

2 + λ|Ric|2

Ra

− 4a

a+ 1

|∇Rm|2

Ra
− 4aλ

a+ 1

|∇Ric|2

Ra

≥ 2λ(1− a)

1 + a

|∇Ric|2

Ra
− c |Rm|

2 + λ|Ric|2

Ra
.

Now by Proposition 2.4.1, for some constant ε > 0, we have

2ε|Rm|2 ≤
(
|∇Ric|+ |Ric|2 + |Rc|

)2

≤ 2|∇Ric|2 + 2(|Ric|2 + |Ric|)2.

Thus,

∆fv ≥
[

2ελ(1− a)

1 + a
− c
]
|Rm|2

Ra
−
[
2λ

1− a
1 + a

(|Ric|+ 1)2 + cλ

]
|Ric|2

Ra

≥ [ελ(1− a)− c] (v − λ |Ric|
2

Ra
)− λ

[
2(1− a)(|Ric|+ 1)2 + c

] |Ric|2
Ra

.

Therefore, by Theorem 2.5.1, for each 0 < a < 1 and µ > 0 one can choose λ ≥
C/(1− a), with C > 0 depending on µ and sufficiently large, so that

∆fv ≥ µv −D

for some constant D > 0 depending on λ.

Theorem 2.5.2. Let (M4, gij, f), which is not Ricci-flat, be a complete noncompact

gradient steady Ricci soliton with limr→ ∞R = 0. Suppose R has at most polynomial

decay, i.e., R(x) ≥ C/rk(x) outside B(r0) for some fixed r0 > 1, some constant c > 0

and positive integer k. Then, for each 0 < a < 1, there exists a constant C such

that

|Rm| ≤ CRa/2.
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Proof. Let p = k
2
. Consider the following function on R+:

ϕ(t) =


(
d−t
d

)p
0 ≤ t ≤ d

0 t ≥ d.

Next, let ϕ = ϕ(r(x0)) on M4. Then on ˚B(d) \ (Cut(x0) ∪B(r0)) we have,

|∇ϕ| =
p

d

(
d− r
d

)p−1

|∇r| = p

d− r
ϕ,

4fϕ = −p
d

(
d− r
d

)p−1

4fr +
p(p− 1)

d2

(
d− r
d

)p−2

|∇r|2

=

[
− p

d− r
4fr +

p(p− 1)

(d− r)2

]
ϕ

Consider w = v − D
µ

with v = |Rm|2+λ|Ric|2
Ra

, µ and D as in Lemma 2.5.2. Then,

w satisfies

4fw ≥ µw.

Let G=ϕ2w, then on ˚B(d) \B(r0), we have

4fG = (∆fϕ
2)w + ϕ2∆fw + 2(∇ϕ2) · ∇w

≥
(
2ϕ∆fϕ+ 2|∇ϕ|2

)
w + µϕ2w + 4ϕ∇ϕ · ∇ G

ϕ2

≥
(
µ+

24fϕ

ϕ
− 6
|∇ϕ|2

ϕ2

)
G+

4

ϕ
〈∇G,∇ϕ〉. (2.18)

Recall that G = 0 outside B(d). Now consider a maximum point q of G.

Case 1. G(q) ≤ 0. Then, max
B(d)

w ≤ 0.
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Case 2. G(q) > 0 and q ∈ B(r0). Then, on Ω = B((1− 1
21/p

)d), we have

max
Ω

w ≤ max
Ω

1

ϕ2
·G(q)

≤ 4G(q)

≤ 4 max
B(r0)

w.

Case 3. G(q) > 0 and q /∈ B(r0), q /∈ Cut(x0). Then we could apply by (2.18)

and Lemma 2.5.1, at q,

0 ≥ µ+ 2
4fϕ

ϕ
− 6
|∇ϕ|2

ϕ2

≥ µ− 2pK0
1

d− r
− (4p2 + 2p)

1

(d− r)2

for some constant K0 > 0 depending on r0 and maxB(r0) |Ric|. Hence 1
d−r(q) > C for

some constant C depending on µ, p = k/2 and K0. Thus, we have

d− r(q) ≤ c (2.19)

for some constant c > 0 independent of d.

Therefore,

max
Ω

w ≤ max
Ω

1

ϕ2
·G(q)

≤ 4G(q)

≤ 4
(d− r(q))2p

d2p

(|Rm|2 + λ|Ric|2)

Ra
(q)

≤ C
rak(q)

d2p

≤ Cd(a−1)k ≤ C

for some constant C > 0 independent of d.

Case 4. G(q) > 0, q /∈ B(r0), q ∈ Cut(x0). Then we could not apply (2.18)

directly since d(x0,−) is not smooth at p. Now consider the support function Gε
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constructed by the following procedure. Firstly, pick any minimal geodesic γ from

x0 to p, then choose a point x1 ∈ γ very close to x0. Notice that x1 /∈ Cut(p). Let

ε = d(x0, x1), consider rε(x) = d(x1, x). Then we have,

• rε(q) + ε = r(q)

• rε(x) + ε ≥ r(q)

• rε(x) is smooth near q

Now consider Gε(x)=ϕ(rε(x) + ε)2w where ϕ was defined in the beginning of

the section. Then Gε(x) ≤ G(x) ≤ G(q) = Gε(q). Then we could apply maximum

principle at q since Gε is smooth at q.

0 ≥ µ+ 2
4fϕε
ϕε
− 6
|∇ϕε|2

ϕ2
ε

≥ µ− 2pK0(x1)
1

d− rε − ε
− (4p2 + 2p)

1

(d− rε − ε)2

Hence 1
d−rε(q)−ε > C for some constant C depending on µ, p = k/2 and K0(x1).

In order to get rid of the dependence of x1, we let ε→ 0, then we have

d− r(q) ≤ c (2.20)

for some constant c > 0 independent of d.

Now follow the exact same argument of Case 3, we get an uniform estimate of

max
Ω

w on Ω = B((1− 1
21/p

)d) which is independent of d.

Therefore supM w ≤ C, and hence |Rm|2 ≤ CRa on M4 for each 0 < a < 1.
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Chapter 3

Curvature and volume growth of

steady Kähler Ricci solitons

3.1 Background

We call a Riemannian metric gij Kähler if there exists a (1,1) tensor J such that

• J2 = −IdTM

• g(JX, JY ) = g(X, Y ) for any X, Y ∈ TM

• ∇J = 0

If a steady Ricci soliton is Kähler, we call it a steady Kähler Ricci soliton. For

properties of Kähler manifold readers may consult [2], [32]. We are going to list

some notations we will use in this chapter.

Firstly consider the complexified tangent bundle TMC = TM ⊗C. Then extend

J by complex linearity. Denote

• T 1,0M = {X − iJX|X ∈ TM},

• T 0,1M = {X + iJX|X ∈ TM}.

Now extend g using complex linearily to TMC = TM ⊗ C. Then gC satisfies
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• gC(X,Y ) = gC(X, Y )

• gC(X,X) > 0 for X ∈ TMC − 0

• gC(X, Y ) = 0 for X, Y ∈ T 1,0M

gC becomes a Hermitian metric on T 1,0M , for simplicity we use gij for this Her-

mitian metric in this chapter. Since ∇J = 0, Ric also shares the similar symmetry.

We denote Ricij for the non vanishing part of the complexified tensor.

In this part we are going to analyze the asymptotic behaviour of steady Kähler

Ricci solitons with positive Ricci curvature. We are going to focus on two parts; the

first one is volume growth and the second one is curvature decay.

For the volume growth, when the manifold has nonnegative Ricci curvature the

classical Bishop comparison theorem implies the volume growth is at most Euclidean.

And under the same condition, the volume growth is at least linear by a result of Yau

and Calabi [64]. If furthermore the manifold has positive holomorphic bisectional

curvature, Bing-Long Chen and Xi-Ping Zhu showed [23] that the volume growth

is at least half Euclidean growth and curvature has to decay in the average sense.

Applying their method, we showed that if the manifold is a steady Kähler Ricci

soliton metric, then similar results hold when the metric has positive Ricci curvature.

3.2 Volume growth

Theorem 3.2.1. For any Kähler Ricci soliton (M2n, gij, f) with positive Ricci cur-

vature and scalar curvature attaining its maximum, volume growth is at least half

Euclidean, i.e.,

V ol(Br) ≥ crn

here r is the geodesic distance to some point x0.

Proof. Fix r > 1, and consider positive function ϕr = e−
F
r where F = −f . Here we
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consider the Ricci form Ω = Ric(JX, Y ) and Kähler form ω = g(JX, Y ).∫
{ϕr>δ}

(ϕr − δ)n(
√
−1)n(∂∂F )n

= −
∫
{ϕr>δ}

n(ϕr − δ)n−1(∂ϕr ∧ ∂F ) ∧ (
√
−1)n(∂∂F )n−1

=

∫
{ϕr>δ}

n(ϕr − δ)n−1(
ϕr
r
∂F ∧ ∂F ) · (

√
−1)n(∂∂F )n−1

≤
∫
{ϕr>δ}

n(ϕr − δ)n−1ϕr
r
|∇F |2g ∧ (

√
−1)n−1(∂∂F )n−1 ∧ ω

≤
∫
{ϕr>δ}

C1(n,R0)
(ϕr − δ)n−1ϕr

r
(
√
−1)n−1(∂∂F )n−1 ∧ ω

≤
∫
{ϕr>δ}

C2(n,R0)
(ϕr − δ)n−2ϕ2

r

r2
(
√
−1)n−2(∂∂F )n−2 ∧ ω2

· · ·

≤
∫
{ϕr>δ}

Cn(n,R0)
ϕnr
rn
ωn

Here R0 is the maximum value of scalar curvature, recall we have |∇F |2 ≤ R0.

Let δ → 0 we get ∫
M

ϕnrΩn ≤ C(n,R0)

rn

∫
M

ϕnrω
n

Left hand side has a strictly lower bound since Ricci form is a positive (1,1)

form. Therefore we have,

c ≤ C(n,R0)

rn

∫
M

ϕnrω
n

Recall from (2.4) the potential function estimate c1d(x)− c2 ≤ F ≤
√
R0d(x) +

|F (x0)| which gives the following estimate,

ϕr ≤ e−
c1d(x)−c2

r ≤ Ce−c1
d
r
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outside B(x0, 1). Therefore we have,∫
M

ϕnrω
n ≤ C ′

∫
M

e−c1n
d
rωn

≤ C ′
∞∑
i=0

∫
B2i+1r−B2ir

e−c1n
d
rωn + C ′

∫
Br

e−c1n
d
rωn

≤ C ′
∞∑
i=0

∫
B2i+1r

e−c1n
2ir
r ωn + C ′

∫
Br

e−c1n
r
rωn

= C ′
∞∑
i=0

e−2ic1n

∫
B2i+1r

ωn + C ′e−c1nV ol(Br)

≤
∞∑
i=0

e−2ic1nV ol(B2i+1r) + C ′e−c1nV ol(Br)

≤
∞∑
i=0

e−2ic1n2(i+1)2nV ol(Br) + C ′e−c1nV ol(Br)

≤ C ′′(c1, c2, n) · V ol(Br)

Here c1, c2 come from the estimate for ϕr from the previous page.

Therefore

c ≤ C(n,R0)

rn

∫
M

ϕnrω
n ≤ C(n,R0, c1, c2)

V olBr

rn
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3.3 Curvature estimates

Theorem 3.3.1. For a steady Kähler Ricci soliton (M2n, gij, fij) with positive Ricci

curvature such that the scalar curvature attains its maximum, for any x0 there exists

C such that
1

V ol(B(r))

∫
B(r)

R(x) ≤ C

1 + r
,

here B(r) is a geodesic ball of radius r to any point.

Proof. We are going to use the following theorem by Hörmander. The version we

are going to use is in Chapter VIII, Theorem 6.5. [32] With the natural function F

our manifold is Stein. Furthermore we have the following inequality,

√
−1∂∂(F ) + c1(KM) +Ric = Ric > 0

Now fix a base point x0 and some cut off function θ near x0. Let ε be some

small number such that
√
−1∂∂(F + 2εθ log |z − x0|) is still positive. Then for m

large enough such that [mε] − n > 0 we find a nontrivial L2 section S of Km
M with

prescribed value at x0, say S(x0). Furthermore∫
M

|S|2he−mFdVg <∞

√
−1∂∂ log |S|2h = [S = 0] +mRic ≥ mRic

Since the Ricci curvature is nonnegative, the mean value inequality for subhar-

monic functions gives,

|S|2(x) ≤ c(n)

V ol(B(x, 3d(x0, x)))

∫
B(x,3d(x0,x))

|S|2(x)

=
c(n)

V ol(B(x, 3d(x0, x)))

∫
B(x,3d(x0,x))

|S|2(x)e−mF emF

≤ C ′em
√
R0d(x,x0)
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Now consider M̃ = M × C2, with the product metric. This space has nonnegative

Ricci curvature, therefore parabolicity translates to volume growth.([42] Theorem

5.2). The volume growth of M̃ is at least n + 4, therefore there exists a positive

Green function G̃(x, y) on M̃ . Now consider G̃(x) = G̃(x′0, x) where x′0 = (x0, 0)

where x0 is the point that we can prescribe S. Recall that we have,

4 log(|S|2) ≥ mR,

and log(|S|2) has singularity along S = 0. Therefore we consider log(|S|2 + δ).

4 log(|S|2 + δ) ≥ mR
|S|2

|S|2 + δ

Now pull back functions |S|2, R on M through map M̃ → M , we get functions

|̃S|2, R̃ such that,

4 log(|̃S|2 + δ) ≥ mR̃
|̃S|2

|̃S|2 + δ

∫
β>G̃>α

mR̃
|̃S|2

|̃S|2 + δ
(G̃− α)1+ε ≤

∫
β>G̃>α

4 log(|̃S|2 + δ)(G̃− α)1+ε

=

∫
β>G̃>α

log(|̃S|2 + δ)4(G̃− α)1+ε

+

∫
G̃=β

∂ log(|̃S|2 + δ)

∂n
(G̃− α)1+ε

−(1 + ε)

∫
G̃=β

log(|̃S|2 + δ)(G̃− α)ε
∂G̃

∂n

∫
β>G̃>α

log(|̃S|2 + δ)4(G̃− α)1+ε ≤ sup
G̃>α

log(|̃S|2 + δ)

∫
β>G̃>α

4(G̃− α)1+ε

= sup
G̃>α

log(|̃S|2 + δ)

∫
G̃=β

(1 + ε)(G̃− α)ε
∂G̃

∂n
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Letting ε→ 0, we get

∫
β>G̃>α

mR̃
|̃S|2

|̃S|2 + δ
(G̃− α) ≤ sup

G̃>α

log(|̃S|2 + δ)

∫
G̃=β

∂G̃

∂n

+

∫
G̃=β

∂ log(|̃S|2 + δ)

∂n
(G̃− α)

−
∫
G̃=β

log(|̃S|2 + δ)
∂G̃

∂n

We’ll prove later such that G̃ ∼ c
d2n+2 , |∂G̃

∂n
| ∼ c′

d2n+3 . By using these facts, we

obtain,

∫
G̃=β

∂G̃

∂n
∼ cd2n+3

d2n+3
∼ c

∫
G̃=β

|G̃− α| → cd2n+3

d2n+2
= cd→ 0

˜|S(x0)|2 = 1

Letting β → +∞, then letting δ → 0(furthermore use S̃ = 0 has codimension 1)∫
G̃>α

mR̃(G̃− α) ≤ c(n) sup
G̃>α

log(|̃S|2)

On G̃ > 2α, we have (G̃− α) ≥ 1
2
G̃ therefore∫

G̃>2α

mR̃G̃ ≤ c(n) sup
G̃>α

log(|̃S|2)

Goal: Change G(x0,−) level set coordinates back to regular geodesic ball.

Tool: Green function estimate

c(n)−1d̃2(x, x0)

V ol(B̃(x0, d̃(x, x0))
≤ G̃(x, x0) ≤ c(n)d̃2(x, x0)

V ol(B̃(x0, d̃(x, x0))
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From [42] Thm5.2, we have the following estimate for a space with nonnegative

Ricci curvature:

c(n)−1

∫ ∞
d2

dt

V ol(
√
t)
≤ G(x, x0) ≤ c(n)

∫ ∞
d2

dt

V ol(
√
t)
.

Lower bound:∫ ∞
d2

dt

V ol(
√
t)
≥
∫ ∞
d2

c(n)d2n+2dt

V ol(
√
d2) · tn+1

=
c(n)d2n+2dt

V ol(d)

∫ ∞
d2

t−n−1 = c′
d2

V (d)
.

Here we use Bishop-Gromov:V ol(
√
d2)

V ol(
√
t)
≥ (

√
d2√
t

)2n+2 when t > d2.

Upper bound: This is way back to observation (23) in Shi’s construction. Be-

cause we have a flat factor which has accurate volume growth information, V ol(
√
d2)

V ol(
√
t)
≤

C(n)(
√
d2√
t

)4.

Since the volume is locally are Euclidean, the above estimates imply G̃ ∼ c
d2n+2

when d→ 0. By the Cheng-Yau gradient estimate |∂G̃
∂n
| ∼ c′

d2n+3 .

Let r(α) be the largest number such that B̃(x0, r(α)) ⊂ {G̃ > α}. Because of

the Green function estimate,

B̃(x0, r(α)) ⊂ {G̃ > α} ⊂ B̃(x0, c(n)r(α)).

Recall we have, ∫
G̃>α

mR̃G̃ ≤ c(n) sup
G̃> 1

2
α

log(|̃S|2),

together with the lower bound G ≥ r(α)2

V ol(r(α))
inside B(r(α)),

∫
G̃>α

mR̃G̃ ≥
∫
B̃(r(α))

mR̃G̃

≥ m · C r(α)2

V ol(r(α))

∫
B̃(r(α))

R̃.
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By Green function estimate, and the estimate for log(|̃S|2),

sup
G̃> 1

2
α

log(|̃S|2) ≤ sup
B(c(n)r(α))

log(|̃S|2) ≤ c(n)(r̃ + c′).

Therefore on M̃ we have,

1

V ol(r̃)

∫
B̃(r(α))

R̃ ≤ c
r̃ + c

r̃2
≤ c

1

r̃ + 1
.

The above estimates also hold for M since

BM(
1

2
r)×BC2(

1

2
r) ⊂ B(r̃) ⊂ BM(r)×BC2(r).

31



Chapter 4

Uniqueness under constraints of

the asymptotic geometry.

4.1 Background

Recall a steady Ricci soliton (M, g) is a Riemannian metric which satisfies the e-

quation 2Ric = LX(g). For a steady Ricci soliton (M, g) if in addition the metric

is Kähler and X is the gradient of some real valued function, then we call it steady

gradient Kähler Ricci soliton.

H.D. Cao constructed a family of steady gradient Kähler Ricci solitons on Cn

with positive holomorphic bisectional curvature in [11]. This is the first noncompact

(nontrivial) example of a steady Kähler Ricci soliton. There are also many important

examples of Kähler Ricci solitons constructed by Koiso in [49], M. Feldman, T.

Ilmanen, and D. Knopf in [43] and Akito Futaki and Mu-Tao Wang in [1].

In [11], Cao asked a question on symmetry of steady Kähler Ricci solitons with

positive holomorphic bisectional curvature on Cn. O. Schnürer, and A. Chau’s result

in [24] gave a partial answer to this question.

Recently S. Brendle showed O(n)−symmetry of certain steady solitons in [57]

[58]. His work solved an open problem proposed by Perelman in [51]. Otis Chodosh

extended the argument to expanding solitons in [26]. Otis Chodosh and Frederick
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Tsz-Ho Fong showed U(n)−symmetry of certain gradient expanding Kähler Ricci

Solitons in [27].

In this chapter we will give a partial answer to the question proposed by Cao in

[11] . The argument is similar to [27] which comes from [57] [58] [26].

We are going to compute norms, gradients and distance with respect to the

model metric constructed by Cao in [11] in this Chapter.

4.2 Main Theorem

Main Theorem For n ≥ 2. Let (Cn, gm, Xm) be a steady gradient Kähler Ricci

solitons constructed by Cao in [11]. Let (Cn, g̃, X̃) be some steady gradient Kähler

Ricci soliton with following properties.

1. r2+ j
2 |∇j(g̃ − gm)| = o(1) for j = 0, 1

2. g̃ has positive holomorphic bisectional curvature,

here r is the geodesic distance to the origin with respect to gm.

Then there exists a point p ∈ Cn and a map Φp : z → z + p such that g = Φ∗p(g̃)

satisfies standard U(n)− symmetry.

4.3 Preliminary

In this section we are going to present expression and basic properties of the metric

construct by H.-D. Cao in [11]. Let (z1, z2, ..., zn) be standard holomorphic coordi-

nate on Cn. Let t = log(|z|2). Then the U(n)-symmetric steady Kähler Ricci soliton

in [11] is given by

(gm)ij = e−tφ(t)δij + e−2tzizj(φ
′(t)− φ(t)) (4.1)

(gm)ij = et
δij

φ(t)
+ zizj

( 1

φ′(t)
− 1

φ(t)

)
(4.2)
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where φ(t) satisfies φn−1φ′eφ = ent after normalization. From computations in

[11] we have following properties.

φ(t) → nt

φ′(t) → n

φ′′(t) → 0

φ′′′(t) → 0

r(t) = O(t)

Here r is the distance to origin with respect to gm. We’ll always use r, t for above

purpose.

4.4 Calculations

In the calculation part, we are going to analyze, under the asymptotic constraint,

how much could various quantities differ from the original model. From now on g

is some steady gradient Kahler Ricci soliton metric satisfies assumptions 1,2. gm is

the model metric constructed in [11].

4.4.1 Killing vectors of the model metric

We are going to show |Ua| = O(r
1
2 ), |∇Ua| = O(1), |X| = O(r

1
2 ), |∇X| = O(1) by

straightforward computations. Here Ua are killing vectors coming from the unitary

symmetry of gm, X is the soliton vector of the model metric. r is the distance to

origin with respect to gm. Notice that JX is Killing, therefore we only need to do

explicit computation for Killing vector fields.

We pick following explicit R−basis of Killing vectors of gm.

1. U1,0
k = izk

∂
∂zk
,

2. U1,0
u,v = zu

∂
∂zv
− zv ∂

∂zu
where u 6= v,
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3. Ũ1,0
u,v = i(zu

∂
∂zv

+ zv
∂
∂zu

) where u 6= v.

Our goal is to show |Ua| = O(r
1
2 ), |∇Ua| = O(1). We can restrict the computa-

tion to the direction (z1, 0, ..., 0) ∈ Cn by symmetry.

•|Ua| = O(r
1
2 )

By expression 4.1 , at (z1, 0, ..., 0), metric looks like

gij = e−tdiag{φ′(t), φ(t), ..., φ(t)} (4.3)

From the expression of Killing vectors above and the relationship between the

Kähler metric and its associated Riemannian metric. It’s sufficient to calculate the

length of z1
∂
∂z1

, z1
∂
∂zk

using the Kähler metric .

(a) |z1
∂
∂z1
|2 = e−t|z1|2φ′(t) = 1

|z1|2
|z1|2φ′(t) = φ′(t)→ n ∼ O(1)

(b) |z1
∂
∂zk
|2 = e−t|z1|2φ(t) = 1

|z1|2
|z1|2φ(t) = φ(t)→ nt ∼ O(r)

Here we have used the asymptotic behaviour of φ(t) in Section 4.3.

•|∇Ua| = O(1)

Since all Ua are real holomorphic, when we calculate |∇Ua|, we can restrict all

discussion to T 1,0
C . From 4.1, Christoffel symbol Γ i

jk is

gli

e2t

{
zj

[
(−φ(t)+φ′(t))δkl+e

−t(2φ(t)−3φ′(t)+φ′′(t))zkzl

]
+(φ′(t)−φ(t))zkδjl

}
(4.4)

At (z, 0, ..., 0) we have the following 4 cases

(A) j 6= 1 Γ i
jk = gjizke

−2t
(
φ′(t)− φ(t)

)
(B) j = 1, k 6= 1 Γ i

1k = gkiz1e
−2t
(
φ′(t)− φ(t)

)
(C) j = 1,k = 1,i 6= 1 Γ i

11 = 0
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(D) j = 1,k = 1,i = 1 Γ 1
11 = g11z1e

−2t
(
φ′′(t)− φ′(t)

)
From the expression of a basis of Killing vectors we pick at the beginning of

4.4.1, we only need to estimate the length of ∇(zu ∂
∂zv

) along (z, 0, ...0).

Case I u = v = k where k 6= 1

I.1) ∇ ∂

∂zl
(zk ∂

∂zk
) = 0 for l 6= k

I.2) ∇ ∂

∂zk
(zk ∂

∂zk
) = ∂

∂zk

Therefore |∇(zk ∂
∂zk

)|gm = 1
| ∂
∂zk
| |

∂
∂zk
| = 1

Case II u = v = 1

II.1) Taking the derivative along ∂
∂zl

where l 6= 1

∇ ∂

∂zl
(z1 ∂

∂z1
) = z1Γm

l1
∂

∂zm
= 1

φ(t)
(φ′(t)− φ(t)) ∂

∂zl

1
φ(t)

(φ′(t)− φ(t)) is bounded by the properties of φ(t) listed in Section 4.3.

II.2) Taking the derivative along ∂
∂z1

∇ ∂
∂z1

(z1 ∂
∂z1

) = ∂
∂z1

+ z1Γm
l1

∂
∂zm

=
[
1 + 1

φ′(t)
(φ′′(t)− φ′(t))

]
∂
∂z1

1
φ(t)

(φ′(t)− φ(t)) is bounded by Section 4.3.

Therefore |∇(z1 ∂
∂z1

)|gm = O(1)

Case III u 6= v and u 6= 1

∇ ∂

∂zl
(zu ∂

∂zv
) = δlu

∂
∂zv

Therefore |∇(zu ∂
∂zv

)|gm ≤
1
| ∂
∂zu
|C|

∂
∂zu
| ≤ C ( ∂

∂zu
direction is longer by 4.3 and

properties of φ(t) in Section 4.3 )
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Case IV u 6= v and u = 1

VI.1)Taking the derivative along ∂
∂zl

where l 6= 1

∇ ∂

∂zl
(z1 ∂

∂zv
) = δ1v

1
φ(t)

(
φ′(t)− φ(t)

)
∂
∂zl

VI.2)Taking the derivative along ∂
∂z1

∇ ∂
∂z1

(z1 ∂
∂zv

) = ∂
∂zv

+ z1Γ s
lv

∂
∂zs

= φ′(t)
φ(t)

(
∂
∂zv

)
From the expression of the metric in 4.3 and the properties of φ(t) in Section 4.3

we see that |∇(z1 ∂
∂zv

)|gm is also O(1)

4.4.2 Shifting preserves the assumption 1

We are going to show for g̃ satisfies Assumption 1 , 2 , and any point p ∈ Cn, Φ∗p(g̃)

also satisfies Assumption 1 , 2.

We just need to check for Assumption 1 still holds for Φ∗p(g). This is equivalent

to say that r2+ j
2 |∇j(Φ∗p(g̃)− gm)|gm = o(1) for j = 0, 1.

Directly pull back Assumption 1 by Φ∗p, we get.

r2+ j
2 |∇j(g̃ − gm)|gm = o(1) =⇒ r2+ j

2 |Φ∗p(∇)j(Φ∗p(g̃)− Φ∗p(gm))|Φ∗p(gm) = o(1)

After this, it’s sufficient to check following facts..

1. |Φ∗p(gm)− gm|gm = O( log(|z|2)
|z| )

2. |∇(Φ∗p(gm)− gm)|gm = O( (log(|z|2))2

|z| )

3. r2+ j
2 |(Φ∗p∇)j(k)|Φ∗pgm = o(1) for j = 0, 1 implies r2+ j

2 |∇j(k)|gm = o(1) for

j = 0, 1

STEP 1 |Φ∗p(gm)− gm|gm = O( log(|z|2)
|z| )

Plug 4.1 into (Φ∗p(gm)− gm)ij, we get
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(Φ∗p(gm)− gm)ij =

[
φ(log(|z + p|2))

|z + p|2
− φ(log(|z|2))

|z|2

]

+ (zi + pi)(zj + pj)

[
φ′(log(|z + p|2))− φ(log(|z + p|2))

|z + p|4
− φ′(log(|z|2))− φ(log(|z|2))

|z|4

]

+
φ′(log(|z|2))− φ(log(|z|2))

|z|4

[
(zi + pi)(zj + pj)− zizj

]
(4.5)

For the norm of the first two terms, apply mean value theorem to real valued

function f(x) = φ(log(x2))
x2

, we get

∣∣∣∣f(|z+p|2)−f(|z|2)

∣∣∣∣ ≤ |p|∣∣∣∣f ′(|z|+ξ)∣∣∣∣, ξ ∈ (−|p|, |p|)∣∣∣∣f ′(|z|+ ξ)

∣∣∣∣ = 2

∣∣∣∣φ′( log((|z|+ξ)2
)
−φ
(

log((|z|+ξ)2)
)(

|z|+ξ
)3 ∣∣∣∣ ≤ C log(|z|2)

|z|3 . The last step uses the

asymptotic of φ in Section 4.3. Therefore the norms of the first two terms is bounded

by C log(|z|2)

|z|3 . This bound works for other 2 coupled terms by similar arguments.

Together with the coarse estimate
∣∣guv∣∣ ≤ C̃et = C̃|z|2 from expression 4.2 , we

have |Φ∗p(gm)− gm|gm = O( log(|z|2)
|z| )

STEP 2 |∇(Φ∗p(gm)− gm)|gm = O( (log(|z|2))2

|z| )

Let δg = Φ∗p(gm)− gm. Then for any i, j, (δg)ij = O( log(|z|2)

|z|3 ) by STEP 1.

(∇mδg)ij = ∂
∂zm

(δgij)− (δg)(∇m
∂
∂zi
, ∂
∂zj

)

1. ∂
∂zm

(δgij)

Expression of δgmt has been separated into three lines in 4.5

When ∂
∂zm

hits the first line of 4.5
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∂

∂zm

[
φ(log(|z + p|2))

|z + p|2
− φ(log(|z|2))

|z|2

]

= (zm + pm)

[
(φ′ − φ)(log(|z + p|2))

|z + p|4
− (φ′ − φ)(log(|z|2))

|z|4

]

+
(φ′ − φ)(log(|z|2))

|z|4
[
zm + pm − zm

]
By applying the mean value theorem to f(x) = φ′(log(x2))−φ(log(x2))

x4
and asymptotic

of φ(x), we get the order of the sum of these two terms is O( log(|z|2)

|z|4 ).

When ∂
∂zm

hits the second and third line of 4.5, the order is also O( log(|z|2)

|z|4 ) by

the asymptotic of φ(t) up to third order and a similar discussion.

2. (δg)(∇m
∂
∂zi
, ∂
∂zj

) = O( (log(|z|2))2

|z|4 ) This is done by using the result from STEP

1 and the coarse bound |Γrpq| = O( log(|z|2)
|z| ) which is directly from its expression 4.4

Therefore |∇(Φ∗p(gm)− gm)|gm = O( (log(|z|2))2

|z| )

STEP 3 r2+ j
2 |(Φ∗p∇)j(k)|Φ∗pgm = o(1) j = 0, 1 implies r2+ j

2 |∇j(k)|gm = o(1)

For j = 0, this comes from the equivalence of Φ∗pgm and gm by STEP 1.

For j = 1, it’s sufficient to show |(Φ∗p∇−∇)k|gm = O( log(|z|2)
|z| ))(

(Φ∗p∇i −∇i)k
)
jl

= ksl(Γ̃
s
ij − Γsij) = ksl

(
g̃sv∂ig̃jv − gsv∂igjv

)
1.As a complex number, |ksl| = O( 1

|z|2 ) by properties of k and g.

2.|g̃sv∂ig̃jv − gsv∂igjv| = |(g̃sv − gsv)∂ig̃jv − gsv∂i(g̃jv − gjv)| = O( log(|z|2)

|z|2 )

|(Φ∗p∇−∇)k|gm = O( log(|z|2)
|z| )) holds by 1,2 together with |guv| ≤ |z|2.

4.4.3 Rigidity of the soliton vector

In this subsection we are going to see the soliton vector X̃ of g must satisfies X̃1,0 =

(λzi + bi) ∂
∂zi

where Re(λ) 6= 0. Therefore there exists an shifting map (Φ∗p(X̃))1,0 =

λzi ∂
∂zi

. In other words, the soliton vector field is rigid suppose we know information

about the asymptotic geometry.
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Write X̃1,0 as ui(z) ∂
∂zi

. Then ui(z) is a holomorphic function on Cn.

By [12] |X̃|2g +R(g) is constant. R(g) > 0 by Assumption 2 . Therefore we have

|X̃|2g <∞. By Assumption 1 , we see that |X̃|2gm <∞
From properties of φ(t) and φ′(t) in section 4.3 . We see that there exists a

positive C(t0) s.t. φ(t), φ′(t) is greater than C for all t > t0. Recall the expression

of gm at (z, 0, ...0) is diag{φ
′(t)
et
, φ(t)
et
...φ(t)

et
}. Therefore |X̃|2gm is finite implies for

|z| > et0 , +∞ > giju
i(z)uj(z) ≥

∑
iC
|ui(z)|2

|z|2 . Therefore |ui(z)|2 is at most linear

growth. ui(z) = aijz
j + bi. Let X̃L = bi ∂

∂zi
Then |X̃L|gm → 0 uniformly.

1. aij = δij ã
j. To see this we use |X̃ − X̃L|gm is finite and make a calculation at

(0, ..., z, ..., 0) where the j-th place is not 0. By 4.1 , the metric is 1
|z|2diag{φ, ..., φ

′, ..., φ}
at this point.

∞ > |X −XL|gm =
〈
aqpz

p ∂

∂zq
, asrz

r
∂

∂zs

〉
= aqja

s
j|zj|

2gqs

=
∑
q 6=j

φ(t)|aqj |
2 + |ajj|

2φ′(t)

From the properties of φ(t) in Section 4.3. We must have aqj = 0 for q 6= j

2. ã1 = ã2 = ... = ãn We still use |X̃ − X̃L|gm is finite and make a calculation at

(0, ..., z, ..., z, ..., 0). Here the nonzero places, the ith and jth ones, are equal. By

4.1, at this point, we have

(gm)pp = (gm)qq = e−tφ(t) + e−2t|z|2(φ′(t)− φ(t))

(gm)pq = (gm)qp = e−2t|z|2(φ′(t)− φ(t))

Therefore∞ > |X̃−X̃L|gm = 1
4

(
|ãi|2 + |ãj|2

)
φ′(t)+ 1

4
|ãi− ãj|2φ(t). From Section

4.3, we see that ãi = ãj, ∀i, j
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3. Re(λ) 6= 0 Suppose λ is purely imaginary. Then there exists a closed circle

as integral curve for vector field X̃. This contradicts with X̃ being the gradient of

some real function.

4.4.4 Decay rate of Ricci of the model metric

We are going to show there exists a C > 0 such that Ricm− C
t2
gm ≥ 0 by straightfor-

ward computations. Since both Ricm and gm are U(n)−symmetric, we can restrict

our discussion along (z, 0, ..., 0). Along this direction, we have

gij = e−tdiag {φ′(t), φ(t), ..., φ(t)}

Rij = e−tdiag {v′′(t), v′(t), ..., v′(t)}

where v(t) = nt − (n − 1) log(φ(t)) − log(φ′(t)). As we assume gm have the same

normalization as in [11]. The equation of φ is φn−1φ′eφ = ent.

Let’s consider λ1(t) = v′′(t)
φ′(t)

, λk(t) = v′(t)
φ(t)

where k ≥ 2

1. λk, k ≥ 2

λk =
n− (n− 1)φ

′(t)
φ(t)
− φ′′(t)

φ′(t)

φ(t)
>
Ck
t

2. λ1

λ1 =
1

φ′(t)

[
(n− 1)

(φ′(t))2 − φ′′(t)φ(t)

(φ(t))2
+

(φ′′(t))2 − φ′′′(t)φ′(t)
(φ′(t))2

]
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We have the following identities from Cao’s paper [11]

φ′′ =nφ′ − (φ′)2 − (n− 1)
(φ′)2

φ

φ′′′ =n2φ′ − 3n(φ′)2 + 2(φ′)3 − 3n(n− 1)
(φ′)2

φ

+ 4(n− 1)
(φ′)3

φ
+ (n− 1)(2n− 1)

(φ′)2

φ2

Plugging them into expression of λ1, we have

λ1 =
1

φ′

[
φ′′ +

(2n− 1)(n− 1)φ′

φ2
(φ′ − 1)

]

By the asymptotic of φ in Section 4.3, we see that (2n−1)(n−1)φ′

φ2
(φ′ − 1) ∼

n(2n−1)(n−1)2

t2

Therefore we only need to show φ′′ > 0 if n > 1.

Since φ′ > 0, we can write t as a function of φ. From the soliton equation, we

have φ′ = ent

φn−1eφ
as a function of φ. Plug it into the expression of φ′′, we have

φ′′ =
ent

φ2n−2e2φφ

(
φneφn− entφ− (n− 1)ent

)
.

Let fk(φ) = dk

dφk

(
φneφn− entφ− (n− 1)ent

)
. By expansion of φ at zero from [11],

limφ→0f0(φ) = 0. Now take the derivative on f0 using d
dφ
ent = nφn−1eφ

f1(φ) =
d

dφ
f0 = nφn−1eφ − ent.

Then we have limφ→0f1(φ) = 0. Take the derivative again

f2(φ) =
d

dφ
f1 = nφn−2eφ(n− 1) > 0.

Therefore we have φ′′ > 0. Hence ∃ C1 > 0 s.t. λ1 >
C
t2
.
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4.4.5 Main Argument

Proof We can assume that gm has the same normalization(α = 1, β = 1) as in [11],

since scaling on metric and dilation on coordinates does not affect our assumption.

Pick an R–basis of Killing vectors of gm, {Ua}n
2

a=1.

We have seen in 4.4.3 that there exist a p ∈ Cn s.t. X̃p = 0. For this specific p,

let g = Φ∗p(g̃), X = Φ∗p(X̃). We’ll show Ua is also Killing for g.

Now let h = LUag, Z = 4RUa +Ric(Ua) = 0, then by Proposition 2.3.7 in[53]

4L(h) = −2LUa(Ric) + LZ(g)

= −LUa(LX(g))

= −LX(LUa(g))

= −LX(h)

Here we use a fact in 4.4.3 that X is a radial vector. Therefore [X,Ua] = 0.

Furthermore Ua is real holomorphic, hence Z = 4RUa +Ric(Ua) = 0

In 4.4.1 , we have seen that |X| = O(1), |∇X| = O(1). Since assumption 1 is

preserved by shifting by 4.4.2, we get |LX(g − gm)| = o(r−2). By the argument in

4.4.3, X1,0 = λX1,0
m where Re(λ) 6= 0. Hence we have |Ricg−Re(λ)Ricgm| = o(r−2).

In 4.4.4 we saw that Ricgm ≥ c
r2
gm for n ≥ 2. Together with positivity of Ricg, we

get Ricg ≥ c̃
r2
gm.

By 4.4.1 , |Ua| = O(r
1
2 ) , |∇Ua| = O(1). These combined with assumption 1

give us |h| = o(r−2). Therefore for sufficient large θ, θ(Ricg) > h. The following

argument is quite similar to the analysis in Prop 4.4 in [27].

Consider θ0 = inf{ θ | θ(Ricg) > h} . And let w = θ0Ricg − h.

We’ll see that θ0 > 0 leads to a contradiction. If θ0 > 0, by Ricg ≥ c̃
r2
gm,

|h| = o(r−2) and the positivity of Ricg, ∃ p ∈ M, e1 ∈ TpM s.t. w(e1, e1) = 0.

Parallel translating e1 in a neighbourhood of p, then we have (4w)(e1, e1) > 0,

(DXw)(e1, e1) = 0 at p.

Now the discussion goes to the complexified tangent bundle. Extend w by

C−linearity. The discussion separates into two parts. The first part is to show
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Tr w = 0 at p. The second part is to show Tr w satisfies 4(Tr w) +DX(Tr w) ≤ 0.

For the first part, let η1 = 1
2
(e1− iJe1) ∈ T 1,0

p,C, then w(η1, η1) = 0. Together with

w ≥ 0, this implies we can extend η1 into unitary basis η1 ... ηn ∈ T 1,0
q,C such that

w(ηi, ηj) is diagonal. Also we can parallel extend ηi like η1.

Since 4Lw + LXw = 0, plug in ηi,ηi ∈ T 1,0
p,CM (Extend J-invariant (0,2)-tensor

w by C-linearity.)

0 = (4w)(ηi, ηi) + 2ΣkRm(ηi, ηk, ηi, ηk)w(ηk, ηk)− 2w(Ric(ηi), ηi)

+(DXw)(ηi, ηi) + w(DηiX, ηi) + w(ηi, DηiX)

w(DηiX, ηi) = ηi(ηif)w(ηi, ηi) = ηi(ηif)w(ηi, ηi) = w(ηi, DηiX)

From the soliton equation, we have Ric(ηi) = DηiX, therefore

0 = (4w)(ηi, ηi) + 2ΣkRm(ηi, ηk, ηi, ηk)w(ηk, ηk) + (DXw)(ηi, ηi). (4.6)

Now take i = 1 ,we see that 0 ≥ 2ΣkRm(η1, ηk, η1, ηk)w(ηk, ηk). That g has

positive holomorphic bisectional curvature implies Rm(η1, ηk, η1, ηk) > 0. Therefore

w(ηk, ηk) = 0 for any k at p. The nonnegative function Tr w = 0 at p.

Equation (4.6) only uses 4Lw + LXw = 0, the soliton equation, w(ηi, ηj) is

diagonal and the extension is parallel. Now sum (4.6) for all i at q give us4(Tr w)+

DX(Tr w) ≤ 0.

By Hopf’s strong maximum principle, Tr w = 0. Therefore w is 0. This violates

the asymptotic of Ricg and h. Therefore θ0 = 0, h ≤ 0. Now apply a similar

argument to −h implies h = 0. Therefore g is U(n)−symmetric. Therefore it must

be in the family of steady solitons in [11].
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