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Abstract

Perelman’s Ricci steady and shrinker entropies, λ(g) and ν(g), and the Ricci ex-

pander entropy, ν+(g), introduced by Feldman-Ilmanen-Ni are nondecreasing along

the Ricci flow and their critical points are exactly compact gradient steady (i.e., Ricci

flat), shrinking and expanding (i.e., negative Einstein) Ricci solitons, respectively.

In [1], Cao-Hamilton-Ilmanen presented the second variations of λ(g) and ν(g)

and investigated the entropy stability of compact Ricci flat and positive Einstein

manifolds. In this paper, we first compute the second variation of ν+(g) and briefly

discuss the entropy stability of compact hyperbolic space forms. Next, we calcu-

late the second variation of ν(g) for general compact gradient shrinking solitons

which was essentially due to Cao-Hamilton-Ilmanen (first stated in [2], see also [3]).

Our main contributions are that we give all the computational detail which Cao-

Hamilton-Ilmanen did not show, and the last term in their formula was corrected.

As an application of this formula, we obtain a necessary condition for entropy stable

shrinkers in terms of the least eigenvalue and its multiplicity of certain Lichnerowicz

type operator associated to the second variation.

Finally, we study the rigidity of gradient Kähler-Ricci solitons with harmonic

Bochner tensor. In particular, we prove that complete gradient steady Kähler-

Ricci solitons with harmonic Bochner tensor are Kähler-Ricci flat, i.e., Calabi-Yau,

and that complete gradient shrinking (respectively, expanding) Kähler-Ricci solitons

with harmonic Bochner tensor must be isometric to a quotient ofNk×Cn−k, whereN

is a Kähler-Einstein manifold with positive (respectively, negative) scalar curvature.

1



Chapter 1

Preliminaries on Ricci Solitons

The concept of Ricci solitons was introduced by R. Hamilton [4] in the mid 1980’s.

The importance of Ricci solitons to the Ricci flow can be illustrated as follows:

• Ricci solitons are natural generalizations of Einstein metrics.

• Ricci solitons correspond to self-similar solutions to the Ricci flow.

• The Li-Yau-Hamilton inequality reaches equality on expanding solitons.

• Ricci solitons often appear as singularity models, i.e., the dilation limits, of

singular solutions to the Ricci flow. For instance, under certain conditions,

type II and type III singularity models are steady and expanding solitons.

Particularly, shrinking solitons are possible type I singularity models in the

Ricci flow.

• Ricci solitons are critical points of the entropy functionals. For example, com-

pact gradient steady solitons and shrinking solitons are the critical points of

Perelman’s λ and ν entropies, respectively.

In this chapter, we will give the definition and introduce some well-known results

on Ricci solitons.
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1.1 Definition and Basic Identities

Let (Mn, g) be a Riemannian manifold with metric g = gijdx
i ⊗ dxj in local co-

ordinates {x1, x2, · · · , xn}. In the Ricci flow, we study the following degenerate

parabolic equation 
∂g̃ij(t)

∂t
= −2R̃ij(t),

g̃ij(0) = gij,

(1.1.1)

where R̃ij(t) is the Ricci curvature tensor of g̃ at time t.

A very important part of studying the Ricci flow is the study of the geometry

and classification of the Ricci solitons.

Definition 1.1.1. A complete Riemannian manifold (Mn, g) is called a complete

Ricci soliton if there exists a vector field V such that the following equation is satisfied

Rij +
1

2
LV gij = λgij, (1.1.2)

where LV is the Lie derivative in the direction of V and λ is a constant. The cases

in which λ > 0, = 0, or < 0 correspond to shrinking, steady or expanding solitons,

respectively.

Moreover, if V is a gradient vector field, i.e., V = ∇f for some smooth function

f , then we say that (M, g) is a gradient Ricci soliton with potential function f . In

this case, the soliton equation (1.1.2) becomes

Rij +∇i∇jf = λgij. (1.1.3)

Remark 1.1.1. Given a Ricci soliton (M, g0) with vector field V satisfying (1.1.2),

it is easy to check that we can get the following self-similar solution to the Ricci flow

with initial metric g0:

g(t) = (1− 2λt)φ∗tg0,

where φt is the one-parameter family of diffeomorphisms generated by 1
1−2λt

V .

Moreover, by a result of Z.-H. Zhang [5], for a complete gradient steady or shrink-

ing Ricci soliton, the family of diffeomorphisms {φt} exists on (−∞, T ) for some

T .
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When the underlying manifold is a Kähler manifold, we have the corresponding

notion of a Kähler-Ricci soliton.

Definition 1.1.2. A Kähler manifold (Xn, gij̄) of complex dimension n is called a

Kähler-Ricci soliton if there exists a holomorphic vector field V on X such that the

following equation is satisfied

Rij̄ +
1

2
(∇j̄Vi +∇iVj̄) = λgij̄, (1.1.4)

for some real constant λ. It is a gradient Kähler-Ricci soliton if V = ∇f for some

real-valued function f , i.e.,

Rij̄ +∇i∇j̄f = λgij̄, and ∇i∇jf = 0. (1.1.5)

Again, the cases where λ = 0, > 0 and < 0 correspond to steady, shrinking and

expanding solitons, respectively.

Before we start any computation, let us clarify the notations and conventions

used in this paper.

Let (Mn, gij) be a Riemannian manifold of dimension n and denote by Γkij, Rijkl,

Rij and R the Christoffel symbol, Riemannian curvature tensor, Ricci curvature

tensor and scalar curvature, respectively, in local coordinates {x1, x2, · · · , xn}. Thus

we have

Γkij =
1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
,

Rk
ijl =

∂Γkjl
∂xi
− ∂Γkil
∂xj

+ ΓkipΓ
p
jl − ΓkjpΓ

p
il,

Rijkl = gkpR
p
ijl,

Rjl = gikRijkl = Ri
ijl,

and

R = gjlRjl.

Here, we have also used Einstein convention which means that we take sum over

any repeated index. For example, gkl ∂gil
∂xj

=
∑n

l=1 g
kl ∂gil
∂xj

.

4



When (Xn, gij̄) is a Kähler manifold of complex dimension n, we denote by

Γkij, Rij̄kl̄, Rij̄ and R the Christoffel symbol, Riemannian curvature tensor, Ricci

curvature tensor and scalar curvature, respectively, in holomorphic coordinates

{z1, z2, · · · , zn}. Then

Γkij = gkl̄
∂gil̄
∂zj

,

Rij̄kl̄ = gpl̄R
p
ij̄k

=
∂2gij̄
∂zk∂z̄l

+ gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

,

Rij̄ = gkl̄Rij̄kl̄ = − ∂2

∂zi∂z̄j
log(det(gij̄)),

and

R = gij̄Rij̄.

According to the conventions above, we have the following Ricci identities:

∇i∇jVk −∇j∇iVk = −Rl
ijkVl,

and

∇i∇jTkl −∇j∇iTkl = −Rp
ijkTpl −R

p
ijlTkp,

where Vk and Tkl are (0, 1) and (0, 2) tensors, respectively.

Throughout the rest of the paper, we will always use normal coordinates near

a given point to perform pointwise computations. This means that for any point

p, we choose local coordinates {x1, x2, · · · , xn} near p such that gij(p) = δij and
∂gij
∂xk

(p) = 0 for k = 1, · · · , n. Therefore, we may lower all of the indices and the

Ricci identities above become

∇i∇jVk −∇j∇iVk = RijklVl,

and

∇i∇jTkl −∇j∇iTkl = RijkpTpl +RijlpTkp.

Correspondingly, in the Kähler case, we have

∇i∇j̄Vk −∇j̄∇iVk = −Rij̄kl̄Vl,

5



∇i∇j̄Vl̄ −∇j̄∇iVl̄ = Rij̄kl̄Vk̄,

and

∇i∇j̄Tkl̄ −∇j̄∇iTkl̄ = −Rij̄kp̄Tpl̄ +Rij̄pl̄Tkp̄.

Lemma 1.1.1. Let (Mn, gij) be a complete gradient Ricci soliton with potential

function f satisfying (1.1.3). Then we have

R + ∆f = nλ, (1.1.6)

∇jRik −∇iRjk = Rijkl∇lf, (1.1.7)

∇iR = 2Rij∇jf, (1.1.8)

and

R + |∇f |2 − 2λf = C (1.1.9)

for some constant C.

Proof. Equation (1.1.6) is obtained by taking traces on both sides of (1.1.3). From

the soliton equation (1.1.3) and the Ricci identity, we have

∇jRik −∇iRjk = ∇i∇j∇kf −∇j∇i∇kf = Rijkl∇lf. (1.1.10)

This is equation (1.1.7).

Taking the trace in (1.1.7) with respect to the indices i and k and using the

contracted second Bianchi identity

∇jRij =
1

2
∇iR

gives us (1.1.8).

The above Bianchi identity also implies that

∇j(R + |∇f |2 − 2λf) = ∇jR + 2∇j∇lf∇lf − 2λ∇jf

= 2(Rjl +∇j∇lf − λgjl)∇lf

= 0.
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Therefore, we have for some constant C

R + |∇f |2 − 2λf = C.

For a gradient Kähler-Ricci soliton, similarly we have

Lemma 1.1.2. On a gradient Kähler-Ricci soliton satisfying (1.1.5), we have

R + ∆f = nλ, (1.1.11)

∇iRkj̄ = Rij̄kl̄∇lf, (1.1.12)

∇iR = Rij̄∇jf, (1.1.13)

and

R + |∇f |2 − λf = C (1.1.14)

for some constant C.

Proposition 1.1.1. (Hamilton [6], Ivey [7]) Any compact gradient steady or

expanding Ricci soliton must be Einstein.

Proof. We only present the proof for the expanding case. The proof for the steady

case is similar yet simpler. Let (Mn, gij) be a compact gradient expanding soliton

such that

Rij +∇i∇jf = −ρgij, (1.1.15)

for some constant ρ > 0.

From Lemma 1.1.1, we have for some constant C

R + |∇f |2 + 2ρf = C (1.1.16)

and

R + ∆f = −nρ. (1.1.17)

By subtracting (1.1.16) from (1.1.17), we obtain

∆f − |∇f |2 = 2ρf + C0,

7



where C0 = −nρ− C. Thus, at a minimum point x1 of f , we have

2ρf(x1) + C0 = ∆f(x1) ≥ 0,

i.e., minM f(x) ≥ −C0

2ρ
. However, at a maximum point x2 of f , we have

2ρf(x2) + C0 = ∆f(x2) ≤ 0,

i.e., maxM f(x) ≤ −C0

2ρ
. Therefore, it must be the case that minM f = maxM f , i.e.,

f is a constant. Hence, (M, gij) is an Einstein manifold.

From the Proposition above, we see that in low dimensions (n=2 and 3), there

are no compact gradient steady or expanding solitons other than the ones of constant

curvature. It turns out that this is also true for compact gradient shrinking solitons.

Proposition 1.1.2. (Hamilton [8] for n = 2, Ivey [7] for n = 3) In dimension

n ≤ 3, there are no compact gradient shrinking Ricci solitons other than those of

constant positive curvature.

In the following, we derive the evolution equations of the curvature tensors for

gradient Ricci solitons.

Lemma 1.1.3. Let (Mn, gij, f) be a gradient Ricci soliton satisfying (1.1.3). Then

we have

∆Rijkl = ∇pRijkl∇pf + 2λRijkl − 2RipkqRpjql −RijpqRpqkl + 2RipqlRpjkq, (1.1.18)

∆Rik = ∇pRik∇pf + 2λRik − 2RpqRipkq, (1.1.19)

and

∆R = ∇pR∇pf + 2λR− 2|Rc|2. (1.1.20)

Proof. By the second Bianchi identity, the Ricci identity and the soliton equation

8



(1.1.3) we have

∆Rijkl = ∇p∇pRijkl

= −∇p∇iRjpkl −∇p∇jRpikl

= −∇i∇pRjpkl −RpijqRqpkl −RpipqRjqkl −RpikqRjpql −RpilqRjpkq

−∇j∇pRpikl −RpjpqRqikl −RpjiqRpqkl −RpjkqRpiql −RpjlqRpikq

= ∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik

− 2RipjqRpqkl +RiqRqjkl +RjqRiqkl + 2RipqlRpjkq − 2RipkqRpjql

= −∇i∇k∇l∇jf +∇i∇l∇k∇jf +∇j∇k∇l∇if −∇j∇l∇k∇if

− 2RipjqRpqkl +RiqRqjkl +RjqRiqkl + 2RipqlRpjkq − 2RipkqRpjql

= −∇i(Rkljp∇pf) +∇j(Rklip∇pf)

− 2RipjqRpqkl +RiqRqjkl +RjqRiqkl + 2RipqlRpjkq − 2RipkqRpjql

= ∇pRklij∇pf −Rkljp(λgip −Rip) +Rklip(λgjp −Rjp)

− 2RipjqRpqkl +RiqRqjkl +RjqRiqkl + 2RipqlRpjkq − 2RipkqRpjql

= ∇pRijkl∇pf + 2λRijkl − 2RipjqRpqkl + 2RipqlRpjkq − 2RipkqRpjql

= ∇pRijkl∇pf + 2λRijkl − 2RipkqRpjql −RijpqRpqkl + 2RipqlRpjkq.

In the last step above, we used the first Bianchi identity

Ripjq = −Rijqp −Riqpj = Rijpq +Riqjp

to derive

2RipjqRpqkl = RijpqRpqkl.

By taking traces on both sides of (1.1.18) with respect to the indices j and l, we

have

∆Rik = ∇pRik∇pf + 2λRik − 2RpqRipkq −RilpqRpqkl + 2RipqlRplkq.

9



Notice that

RilpqRpqkl = RiplqRlqkp

= −Riplq(Rqklp +Rklqp)

= RipqlRplkq −RipqlRkqlp

= 2RipqlRplkq.

Thus, one gets

∆Rik = ∇pRik∇pf + 2λRik − 2RpqRipkq.

By taking traces one more time, we have

∆R = ∇pR∇pf + 2λR− 2|Rc|2.

1.2 Examples of Ricci Solitons

In the first section, we saw that compact gradient steady and expanding solitons are

Einstein, and that it is also the case for low dimensional compact gradient shrinking

solitons. However, for n ≥ 4 there do exist nontrivial compact gradient shrinking

solitons. Also, there exist complete noncompact gradient steady, shrinking and ex-

panding Ricci solitons that are not Einstein. In this section, we will present some

of these examples.

• Examples of Compact Shrinking Solitons

Example 1.2.1. The first example of a compact non-Einstein gradient shrinking

soliton was found by H.-D. Cao [9] and N. Koiso [10] independently. They showed

the existence of a U(n) symmetric gradient shrinking Kähler-Ricci soliton structure

on the twisted projective line bundle P(Lk ⊕ L−k) over CP n−1 for n ≥ 2, where L

is the hyperplane line bundle over CP n−1 and 1 ≤ k ≤ n− 1. In particular, in real

dimension 4, it implies that there is a shrinking Kähler-Ricci soliton structure on

CP 2#(−CP 2), where the negative sign means taking the opposite orientation.

10



Example 1.2.2. In [11], Wang-Zhu proved that there is a unique Kähler-Ricci

soliton structure on any toric Kähler manifold with positive first Chern class and

nonvanishing Futaki invariant. In particular, in complex dimension 2, this means

that a Kähler-Ricci soliton exists on CP 2#2(−CP 2) with U(1)× U(1) symmetry.

• Examples of Noncompact Shrinking Solitons

Example 1.2.3. Feldman-Ilmanen-Knopf [12] discovered the first example of a com-

plete noncompact non-Einstein gradient shrinking soliton. They found a family of

shrinking Kähler-Ricci solitons with U(n) symmetry and a cone-like end at infinity

on the twisted line bundle over CP n−1.

The examples above are all constructed on Kähler manifolds. We point out that

so far no example of Non-Kähler Riemannian shrinking soliton has been found.

• Examples of Noncompact Steady Solitons

Example 1.2.4. The first noncompact non-Einstein steady soliton was found by

Hamilton [8] on R2, called the cigar soliton. The metric and the potential function

are given by

ds2 =
dx2 + dy2

1 + x2 + y2

and

f = −log(1 + x2 + y2).

The cigar has positive curvature and linear volume growth, and is asymptotic to a

cylinder of finite circumference at infinity.

Example 1.2.5. R. Bryant [13] (see also [14]) proved the existence and unique-

ness of a complete noncompact rotationally symmetric gradient steady soliton with

positive curvature on Rn for n ≥ 3.

Example 1.2.6. Examples of noncompact steady solitons on Kähler manifolds were

first found by H.-D. Cao [9]. He constructed U(n) symmetric gradient steady soli-

tons on both Cn and the blow-up of Cn/Zn at the origin.

11



• Examples of Noncompact Expanding Solitons

Example 1.2.7. Besides steady solitons, R. Bryant also proved the existence of

noncompact rotationally symmetric gradient expanding solitons with positive curva-

ture on Rn, see [14].

Example 1.2.8. A one-parameter family of gradient Kähler-Ricci expanding soli-

tons was found by H.-D. Cao [9] on Cn. These solitons are U(n) symmetric and have

positive sectional curvature. More examples of noncompact Kähler-Ricci expanding

solitons were found by Feldman-Ilmanen-Knopf [12] on the twisted line bundle L−k

on CP n−1 for k = n+ 1, n+ 2, · · · , where L is the hyperplane bundle.

• The Gaussian Solitons

Example 1.2.9. The Euclidean space (Rn, g0) with the flat Euclidean metric can be

considered as either a gradient shrinking or an expanding soliton, called the Gaussian

shrinker or expander, respectively.

i) The Gaussian shrinker has potential function f = |x|2
4

satisfying

Rc0 +Hess(f) =
1

2
g0.

ii) The Gaussian expander has potential function f = − |x|
2

4
satisfying

Rc0 +Hess(f) = −1

2
g0.

For more examples of Ricci solitons, we refer the readers to the survey paper [3]

of H.-D. Cao.

1.3 Geometry of Gradient Ricci Solitons

In this section, we will discuss some important geometric properties and classification

results of gradient Ricci solitons.

12



1.3.1 Geometry of Gradient Shrinking Ricci Solitons

By definition, an ancient solution of the Ricci flow is a complete solution existing

on the time interval (−∞, T ) for some T . In [5], Z.-H. Zhang proved

Proposition 1.3.1. (Z.-H. Zhang [5]) Any gradient shrinking or steady Ricci

soliton whose underlying manifold is complete must have nonnegative scalar curva-

ture.

As a corollary, it follows that the gradient vector field of the potential function

is complete, and hence one can construct an ancient solution from the shrinking or

steady soliton. On the other hand, we have the following nice curvature properties

of ancient solutions:

Theorem 1.3.1. (B.-L. Chen [15]) Any 3-dimensional ancient solution must have

nonnegative sectional curvature.

Proposition 1.3.2. (B.-L. Chen [15]) Any ancient solution must have nonnega-

tive scalar curvature.

Proposition 1.3.1 and Theorem 1.3.1 immediately imply the following:

Proposition 1.3.3. Any 3-dimensional complete gradient shrinking or steady Ricci

soliton must have nonnegative sectional curvature.

When a complete shrinking soliton has bounded nonnegative curvature operator,

by a maximum principle of Hamilton [4], it either has positive operator everywhere

or its universal cover splits as N × Rk with k ≥ 1 and N a shrinking soliton with

positive curvature operator. Moreover, if a shrinking soliton with positive curvature

operator is compact, then it must be a finite quotient of the round sphere by the

results of Hamilton [4, 16] (for n = 3, 4) and Böhm-Wilking [17] (for n ≥ 5).

Indeed, Perelman [18] showed that, in dimension 3, there is no noncompact

gradient shrinking soliton with bounded positive curvature operator.

Proposition 1.3.4. (Perelman [18]) Any complete 3-dimensional gradient shrink-

ing soliton with bounded positive sectional curvature must be compact.

13



Remark 1.3.1. In the Kähler case, Ni [19] has the following similar result:

Proposition 1.3.5. (Ni [19]) In any complex dimension, there is no complete

noncompact gradient shrinking Kähler-Ricci soliton with positive holomorphic bisec-

tional curvature.

Based on Proposition 1.3.4, Perelman [18] obtained the following important clas-

sification result:

Theorem 1.3.2. (Perelman [18]) Any complete 3-dimensional nonflat gradient

shrinking soliton with bounded nonnegative sectional curvature must be either a quo-

tient of S3 or a quotient of S2 × R.

In the past decade, a lot of effort has been made to improve and generalize

this result of Perelman. Ni-Wallach [20] and Naber [21] replaced the assumption of

nonnegative sectional curvature by nonnegative Ricci curvature. In addition, instead

of assuming bounded curvature, Ni-Wallach [20] allows the curvature to grow as

fast as ear(x), where r(x) is the distance function and a > 0 is some constant. More

specifically, they proved

Proposition 1.3.6. (Ni-Wallach [20]) Any 3-dimensional complete noncompact

non-flat gradient shrinking soliton with Rc ≥ 0 and |Rm|(x) ≤ ear(x) must be a

quotient of the round cylinder S2 × R.

Based on Theorem 1.3.1 and Proposition 1.3.6, Cao-Chen-Zhu [22] were able to

remove all the assumptions on the curvature.

Theorem 1.3.3. (Cao-Chen-Zhu [22]) Any 3-dimensional complete noncompact

non-flat gradient shrinking soliton must be a quotient of the round cylinder S2 ×R.

For n = 4, Ni-Wallach [23] showed that any 4-dimensional gradient shrinking

soliton with nonnegative curvature operator and positive isotropic curvature, satis-

fying certain additional assumptions, is a quotient of S4 or S3×R. Using this result,

Naber [21] proved
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Theorem 1.3.4. (Naber [21]) Any 4-dimensional complete noncompact shrinking

Ricci soliton with bounded nonnegative curvature operator is isometric to R4, or a

finite quotient of S3 × R or S2 × R2.

For higher dimensions, the classification of gradient shrinking solitons was solved

under the assumption that the Weyl tensor vanishes by the work of Eminenti-La

Nave-Mantegazza [24], Ni-Wallach [20], Z.-H. Zhang [25], Petersen-Wylie [26] and

Munteanu-Sesum [27].

Eminenti-La Nave-Mantegazza [24] showed that any compact shrinking Ricci

soliton with vanishing Weyl tensor is a quotient of Sn.

In the noncompact case, Ni-Wallach [20] proved

Proposition 1.3.7. (Ni-Wallach [20]) Let (Mn, gij) be a locally comformally flat

gradient shrinking soliton with Rc ≥ 0. Assume that

|Rm|(x) ≤ ea(r(x)+1)

for some constant a > 0. Then its universal cover is Rn, Sn or Sn × R.

By showing that locally conformally flat gradient shrinking solitons have non-

negative curvature operator and utilizing the above result, Z.-H. Zhang [25] proved

Theorem 1.3.5. (Z.-H. Zhang [25]) Any gradient shrinking soliton with vanishing

Weyl tensor must be a finite quotient of Rn, Sn or Sn × R.

The work of Petersen-Wylie [26] and of Munteanu-Sesum [27] give another path

to get the same classification result. Indeed, Petersen-Wylie first showed

Proposition 1.3.8. (Petersen-Wylie [26]) Let (Mn, gij, f) be a gradient shrink-

ing soliton with potential function f . If the Weyl tensor vanishes and∫
M

|Rc|2e−fdV <∞.

Then (Mn, g) is a finite quotient of Rn, Sn or Sn × R.

Munteanu-Sesum [27] later proved the L2 integrability of the Ricci tensor based

on the following Cao-Zhou’s growth estimate of the potential function [28].
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Proposition 1.3.9. (Cao-Zhou [28]) Let (Mn, gij, f) be a gradient shrinking soli-

ton with potential function f . Then f satisfies the following estimate

1

4
(r(x)− c1)2 ≤ f(x) ≤ 1

4
(r(x) + c2)2.

Here r(x) is the distance from an origin O, c1 and c2 are positive constants depending

only on n and the geometry of gij in the unit ball BO(1).

Recently, the same rigidity result has been obtained under two types of weaker

assumptions than vanishing of the Weyl tensor.

The first type of weaker assumption is harmonicity of the Weyl tensor, i.e.,

divW = 0. Fernádez-López and Garćıa-Ŕıo [29] showed

Proposition 1.3.10. (Fernádez-López and Garćıa-Rı́o [29]) Any complete gra-

dient shrinking soliton (Mn, gij, f) with harmonic Weyl tensor and∫
M

| divRm|2e−fdV =

∫
M

|∇Rc|2e−fdV (1.3.1)

must be rigid, i.e. it is a quotient of Nn−k×Rk, where 0 ≤ k ≤ n, N is an Einstein

manifold and Rk is the Gaussian shrinker.

Again, Muteanu-Sesum [27] used Cao-Zhou’s potential function growth estimate

to prove (1.3.1). Therefore, we have

Theorem 1.3.6. Any complete gradient shrinking soliton with harmonic Weyl ten-

sor must rigid.

The second type of weaker assumption is vanishing of the Bach tensor. This is

a result of Cao-Chen [30].

Theorem 1.3.7. (Cao-Chen [30]) Any complete gradient shrinking soliton (Mn, gij)

with vanishing Bach tensor and n ≥ 4 is either Einstein, a finite quotient of the

Gaussian shrinking soliton or a finite quotient of Nn−1×R, where N is an Einstein

manifold with positive scalar curvature.
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1.3.2 Geometry of Gradient Steady and Expanding Ricci

Solitons

Since compact steady and expanding solitons are necessarily Einstein, our discussion

here only concerns noncompact ones.

Proposition 1.3.11. (Hamilton [6]) Suppose that we have a noncompact gradient

steady soliton (Mn, gij) so that

Rij = ∇i∇jf

for some function f . Assume that the Ricci curvature is positive and the scalar

curvature attains its maximum Rmax at some point x0. Then

|∇f |2 +R = Rmax

on Mn. Moreover, the function f is convex and attains its minimum at x0.

Remark 1.3.2. Cao-Chen [31] also showed that in this case, the function f is an

exhaustion function of linear growth. Hence we have

Proposition 1.3.12. A complete noncompact gradient steady soliton with positive

Ricci curvature whose scalar curvature attains its maximum at some point must be

diffeomorphic to Rn.

Remark 1.3.3. If a complete noncompact gradient expanding soliton has nonneg-

ative Ricci curvature, then the potential function f is a convex exhaustion function

of quadratic growth. Therefore, we have

Proposition 1.3.13. A complete noncompact gradient expanding soliton with non-

negative Ricci curvature must be diffeomorphic to Rn.

In the Kähler setting, Cao-Hamilton first showed that any noncompact gradient

steady Kähler-Ricci soliton with positive Ricci curvature whose scalar curvature

attains its maximum at some point is Stein (and also diffeomorphic to R2n). Later,

Chau-Tam [32] and Bryant [33] independently improved the result to the following
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Theorem 1.3.8. (Chau-Tam [32] and Bryant [33]) Any noncompact gradi-

ent steady Kähler-Ricci soliton with positive Ricci curvature whose scalar curvature

attains its maximum at some point is biholomorphic to Cn.

Moreover, Chau-Tam [32] also showed

Theorem 1.3.9. (Chau-Tam [32]) A complete noncompact gradient expanding

soliton with nonnegative Ricci curvature must be biholomorphic to Cn.

The classification of steady Ricci solitons with positive curvature is one of the

basic problems in the study of Ricci solitons. In dimension 2, Hamilton [8] proved

the following important uniqueness Theorem:

Theorem 1.3.10. (Hamilton [8]) The only complete steady Ricci soliton on a 2-

dimensional manifold with bounded curvature R which assumes its maximum Rmax =

1 at some point is the cigar soliton on R2.

Remark 1.3.4. For a gradient steady soliton, one can remove all the assumptions

in the above Theorem. Indeed, by Proposition 1.3.1 and equation (1.1.9), a complete

2-dimensional steady soliton must have bounded nonnegative curvature. Thus by

Hamilton’s maximum principle [4], we know that it is either flat or has positive

curvature. Then a theorem in [14] shows that a 2-dimensional gradient steady soliton

with bounded positive curvature must be the cigar soliton.

In dimension 3, Perelman [18] claimed that any complete noncompact κ noncol-

lapsed gradient steady soliton with bounded positive curvature must be the Bryant

soliton. However, he did not provide a proof. The first progress on this problem is

made by Cao-Chen [31]. They showed

Theorem 1.3.11. Let (Mn, gij, f), n ≥ 3, be an n-dimensional complete noncom-

pact locally conformally flat gradient steady soliton. Then (Mn, gij, f) is either flat

or isometric to the Bryant soliton.

Remark 1.3.5. For n ≥ 4, Catino-Mantegazza [34] independently proved this result

by using a different method.
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Remark 1.3.6. If in the above theorem we only assume that the sectional curvature

is positive, then we have uniqueness, i.e. (Mn, gij, f) must be the Bryant soliton.

Subsequently, Cao-Chen’s work has been used by S. Brendle [35] in classifying

3-dimensional steady Ricci solitons satisfying a certain asymptotic condition, and

X. X. Chen-Y. Wang [36] in classifying 4-dimensional half-conformally flat steady

solitons, respectively.

Recently, Cao-Catino-Chen-Mantegazza-Mazzieri [37] established the uniqueness

of gradient steady solitons by assuming Bach-flatness of the manifold, which is a

weaker condition than locally conformal flatness and half-conformal flatness.

Proposition 1.3.14. (Cao-Catino-Chen-Mantegazza-Mazzieri [37]) Any com-

plete Bach-flat gradient steady soliton with positive Ricci curvature such that the

scalar curvature attains its maximum at an interior point is isometric to the Bryant

soliton.

Very recently, the claim of Perelman above on the uniqueness of κ-noncollapsed

3 dimensional gradient steady solitons with positive curvature was finally proved by

S. Brendle [38].

Theorem 1.3.12. (Brendle [38]) Any complete 3-dimensional non-flat κ noncol-

lapsed gradient steady soliton must be isometric to the Bryant soliton up to scaling.

Remark 1.3.7. For higher dimension steady solitons, Brendle [39] also has the

following result:

Proposition 1.3.15. (Brendle [39]) Let (Mn, gij) be a gradient steady soliton of

dimension n ≥ 4. Assume that M has positive sectional curvature and is asymptot-

ically cylindrical. Then (Mn, gij) is rotationally symmetric.
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Chapter 2

The Entropy Functionals and

Stability of Compact Ricci solitons

2.1 Introduction and Main Results

In [18], Perelman introduced the F and W functionals on a compact manifold

(Mn, gij), which are defined as

F(gij, f) =

∫
M

(R + |∇f |2)e−fdV,

and

W(gij, f, τ) = (4πτ)−
n
2

∫
M

[τ(R + |∇f |2) + f − n]e−fdV,

where R is the scalar curvature of M , f is a smooth function and τ > 0 is a constant.

The corresponding entropy functionals are the following λ and ν functionals:

λ(gij) = inf{F(gij, f, τ)| f ∈ C∞(M), and

∫
M

e−fdV = 1},

and

ν(gij) = inf{W(gij, f, τ)| f ∈ C∞(M), τ > 0, and (4πτ)−
n
2

∫
M

e−fdV = 1}.

He also showed that the λ and ν entropies are monotone increasing under the
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Ricci flow, and their critical points are precisely given by gradient steady and shrink-

ing solitons satisfying equations

Rij +∇i∇jf = 0, (2.1.1)

and

Rij +∇i∇jf =
1

2τ
gij, (2.1.2)

respectively. In particular, it follows that all compact steady and shrinking Ricci

solitons are gradient Ricci solitons.

To find the corresponding variational structure for the expanding case, M. Feld-

man, T. Ilmanen and L. Ni [40] introduced the W+ functional. Let (Mn, g) be a

compact Riemannian manifold, f a smooth function on M , and σ > 0. Define

W+(g, f, σ) = (4πσ)−
n
2

∫
M

e−f [σ(|∇f |2 +R)− f + n]dV,

and the corresponding entropy

ν+(g) = sup
σ>0

µ+(g, σ),

where

µ+(g, σ) = inf{W+(g, f, σ)| f ∈ C∞(M), and (4πσ)−
n
2

∫
M

e−fdV = 1}.

They showed that ν+ is nondecreasing along the Ricci flow and constant precisely

on gradient expanding solitons such that

Rij +∇i∇jf = − 1

2σ
gij. (2.1.3)

Therefore, compact expanding solitons must also be gradient solitons.

Among all three kinds of compact Ricci solitons, the shrinkers are the ones of the

most interest because compact gradient steady or expanding Ricci solitons must be

Einstein by Proposition 1.1.1. In Chapter 1, we have seen that many classification

and rigidity results have been obtained for gradient shrinking solitons. Moreover,

while under many circumstances shrinking solitons are rigid, there do exist non-

Einstein non-product gradient shrinking solitons. For example, in dimension 4,
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the Kähler-Ricci soliton found by Cao [9] and Koiso [10] on CP 2#(−CP 2), and

Feldman-Ilmanen-Knopf soliton [12] on the blow-up of C2 at the origin.

One may notice that most of the classification results for shrinking solitons have

assumed either directly or implicitly that the curvature operator is nonnegative.

For example, locally conformally flat gradient shrinking solitons have nonnegative

curvature operator. However, this condition may not be satisfied in general. For

instance, Cao-Koiso’s example mentioned above on CP 2#(−CP 2) only has posi-

tive Ricci curvature, but the curvature operator changes sign. Therefore, shrinking

solitons with nonnegative curvature operator may not represent general singularity

models.

On the other hand, as far as applications of the Ricci flow to topology are

concerned, it is actually more interesting to study stable shrinking solitons, since

generic singularity models are expected to be stable. By definition, a compact

Ricci soliton (M, gij) is said to be entropy stable, if the second variation of the

corresponding entropy functional at gij is nonpositive, i.e., gij is a local maximum

point. The study of the stability of Ricci solitons was initiated by H.-D. Cao,

R. Hamilton and T. Ilmanen [1]. They presented the following second variational

formulas of the λ and ν entropies for Ricci flat and positive Einstein manifolds,

respectively, and investigated the entropy stability of certain Einstein manifolds.

Theorem 2.1.1. (Cao-Hamilton-Ilmanen [1]) Let (M, gij) be a compact Ricci

flat manifold and consider variations gij(s) = gij + shij. Then the second variation

of the λ entropy is given by

d2

ds2

∣∣∣∣
s=0

λ(g(s)) =

∫
M

< Lh, h > dV,

where

Lh :=
1

2
∆h+Rm(h, ·) + div∗ div h+

1

2
∇2vh,

and vh satisfies

∆vh = div div h.
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Theorem 2.1.2. (Cao-Hamilton-Ilmanen [1]) Let (Mn, gij) be an Einstein man-

ifold with Rc = 1
2τ
gij for some τ > 0, and consider variations gij(s) = gij + shij.

Then the second variation δ2
gν(h, h) of the ν entropy is given by

d2

ds2

∣∣∣∣
s=0

ν(g(s)) =
τ

Vol(M, g)

∫
M

< Nh, h > dV,

where

Nh :=
1

2
∆h+Rm(h, ·) + div∗ div h+

1

2
∇2vh −

g

2nτ Vol(M, g)

∫
M

trg h dV,

and vh is the unique solution of

∆vh +
vh
2τ

= div div h and

∫
M

vhdV = 0.

In the above Theorems, we used the notation

Rm(h, ·)ij = gkqgplRipjqhkl.

Our first main result is the following second variation of the ν+ functional for

compact expanding solitons, i.e., negative Einstein manifolds.

Theorem 2.1.3. (Z. [41]) Let (Mn, g) be a compact negative Einstein manifold

such that Rij = − 1
2σ
gij for some σ > 0. Let h be a symmetric 2-tensor. Consider

the variation of metric g(s) = g + sh. Then the second variation of ν+ is

d2

ds2

∣∣∣∣
s=0

ν+(g(s)) =
σ

Vol(g)

∫
M

< N+h, h > dV,

where

N+h :=
1

2
∆h+ div∗divh+

1

2
∇2vh +Rm(h, ·) +

g

2nσVol(g)

∫
M

trh dV,

and vh is the unique solution of

∆vh −
vh
2σ

= div(divh) and

∫
M

vhdV = 0.
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Furthermore, analogous to the work of Cao-Hamilton-Ilmanen in [1], we also

investigated the entropy stability of certain negative Einstein manifolds. As an

example, we found that compact hyperbolic spaces are entropy stable. But, unlike

the positive Einstein and Ricci flat cases, it seems hard to find other examples of

negative Einstein manifolds which are either entropy stable or unstable.

Returning to the study of stable shrinking solitons, as part of their examples,

Cao-Hamilton-Ilmanen showed that, while Sn and CP n are entropy stable, many

known positive Einstein manifolds are unstable. In particular, they proved that in

complex dimension 2, except for CP 2, there are no stable positive Kähler-Einstein

surfaces. Actually, the work of Cao-Hamilton-Ilmanen suggested that most compact

gradient shrinking solitons should be unstable, in the sense that they are not the

maximal points of the ν-entropy, hence after a small perturbation along certain

direction, we can get higher entropy, and the entropy keeps increasing along the

Ricci flow so that the solution will never converge back to the original metric. Also

for this reason, unstable shrinking solitons may not be able to represent generic

singularity models. Thus, it is desirable and important to classify stable shrinking

solitons. Certainly, in the study of the stability of shrinking solitons, the second

variational formula of the ν-entropy plays an indispensable role.

Other than the second variational formula of the ν-entropy for positive Einstein

manifolds, Cao-Hamilton-Ilmanen also announced in [1] (see also [2]) that there

was also a second variational formula for general compact shrinking solitons (the

formula can be found in [3]). However, the last term in the formula stated in [3] was

incorrect. Cao and the author recalculated the second variation of the ν-entropy

and gave the detailed computation in [42].

Before stating our next main result, we need to introduce the following notations

(divf h)i = gjk(∇jhik − hik∇jf),

∆f = ∆−∇f · ∇,

and ∫
M

< div†f w, h > e−fdV =

∫
M

< w, divf h > e−fdV,
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i.e., div†f w = −1

2
Lw#g.

where h is a symmetric 2-tensor, w is a 1-form and w# is its dual vector field.

Now we are ready to state the second variation of the ν-entropy for general

compact shrinking solitons.

Theorem 2.1.4. (Cao-Hamilton-Ilmanen)(Cao-Z. [42]) Let (Mn, gij, f) be a

compact gradient Ricci shrinking soliton with potential function f satisfying the Ricci

soliton equation (2.1.2). For any symmetric 2-tensor h = hij, consider variations

gij(s) = gij + shij. Then the second variation of ν is given by

d2

ds2

∣∣∣∣
s=0

ν(g(s)) =
τ

(4πτ)n/2

∫
M

< N̂h, h > e−fdV,

where the stability operator N̂ is given by

N̂h :=
1

2
∆fh+Rm(h, ·) + div†f divf h+

1

2
∇2v̂h−Rc

∫
M
< Rc, h > e−fdV∫
M
Re−fdV

, (2.1.4)

and v̂h is the unique solution of

∆f v̂h +
v̂h
2τ

= divf divf h and

∫
M

v̂he
−fdV = 0.

Remark 2.1.1. As we pointed out before, Theorem 2.1.4 is essentially due to Cao-

Hamilton-Ilmanen (cf. Theorem 6.3 in [3]). However, the coefficient of the last

term of the stability operator N̂ (which depends on δτ , the first variation of the

parameter τ) was stated incorrectly in [3]. One of our contributions is deriving an

explicit formula for δτ (see Lemma 2.3.2 below), thus obtaining the correct coefficient

and hence a complete second variation formula for Ricci shrinkers. We emphasize

that, while the stability operator N̂ is already quite useful even without knowing the

explicit coefficient of the last term, it will be rather crucial to have this explicit and

correct coefficient in efforts of trying to classify stable shrinkers. For example, this

explicit coefficient is essential in showing that the Ricci tensor is a null eigen-tensor

of N̂ (see Lemma 2.4.3) which rules out any hope of using the Ricci tensor as a

possible unstable direction.
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Remark 2.1.2. In the very recent work [43], S. Hall and T. Murphy proved that

compact Kähler-Ricci shrinking solitons with Hodge number h1,1 > 1 are unstable,

thus extended the result of Cao-Hamilton-Ilmanen [1] in the Kähler-Einstein case.

In the course of their proof, they also verified the second variation formula stated

in [44], though they didn’t find out explicitly the coefficient of the last term of N̂

(which does not affect the proof of their result since they only considered certain

special variations orthogonal to Rc).

Finally, using the second variation formula, we obtain the following necessary

condition for stable shrinkers:

Proposition 2.1.1. Suppose (Mn, gij, f) is a compact stable shrinking soliton sat-

isfying (2.1.2), then − 1
2τ

is the only negative eigenvalue of the operator Lf (with Rc

being an eigen-tensor), defined by

Lfh =
1

2
∆h+Rm(h, ·), (2.1.5)

on ker divf and the multiplicity of − 1
2τ

is one. In particular, − 1
2τ

is the least eigen-

value of Lf on ker divf .

Remark 2.1.3. In proving Proposition 2.1.1, the explicit coefficient of the Rc term

in N̂ is not needed.

Remark 2.1.4. In the mean curvature flow, Colding and Minicozzi [45] have shown

that for any shrinker its mean curvature H is an eigenfunction of certain operator

involved in the corresponding stability operator, and that for any stable shrinker the

mean curvature function H belongs to the least eigenvalue of the operator which

in turn implies that H does not change sign. This fact and a theorem of Huisken

allowed them to classify compact stable mean curvature shrinkers. Our Proposition

2.1.1 above can be considered as the Ricci flow analogue of their results.
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2.2 The First Variations of the Entropy function-

als

Let (M, gij) be a compact n-dimensional Riemannian manifold. In this section we

will state some basic properties of the entropy functionals and compute their first

variations. Recall that the F , W and W+ functionals are defined as follows:

F(gij, f) =

∫
M

(R + |∇f |2)e−fdV, (2.2.1)

W(gij, f, τ) = (4πτ)−
n
2

∫
M

[τ(R + |∇f |2) + f − n]e−fdV, (2.2.2)

and

W+(g, f, σ) = (4πσ)−
n
2

∫
M

[σ(|∇f |2 +R)− f + n]e−fdV, (2.2.3)

where R is the scalar curvature of M , f is a smooth function and τ, σ > 0 are

constants.

The corresponding entropy functionals are

λ(gij) = inf{F(gij, f)|f ∈ C∞(M), and

∫
M

e−fdV = 1}, (2.2.4)

ν(gij) = inf
τ>0

µ(g, τ), (2.2.5)

where µ(g, τ) = inf{W(gij, f, τ)| f ∈ C∞(M), and (4πτ)−
n
2

∫
M
e−fdV = 1},

and

ν+(g) = sup
σ> 0

µ+(g, σ), (2.2.6)

where µ+(g, σ) = inf{W+(g, f, σ)| f ∈ C∞(M), and (4πσ)−
n
2

∫
M
e−fdV = 1}.

First of all, we show that λ(g), ν(g) and ν+(g) are actually achievable.

Note that if we set u = e−
f
2 , then the F functional becomes

F(gij, u) =

∫
M

(Ru2 + 4|∇u|2)dV,

and the constraint
∫
M
e−fdV = 1 becomes

∫
M
u2dV = 1. Therefore, λ(gij) is just

the first eigenvalue of the operator −4∆ +R.
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Moreover, under the same substitution u = e−
f
2 , the W functional can be ex-

pressed as

W(gij, u, τ) = (4πτ)−
n
2

∫
M

[τ(Ru2 + 4|∇u|2)− u2 log u2 − nu2]dV.

According to the work of Rothous [46], µ(gij, τ) can be achieved by some positive

function u such that (4πτ)−
n
2

∫
M
u2dV = 1. Then the following Proposition of

Perelman [18] shows that ν(gij), as the infimum of µ(gij, τ), can be further realized

by some τ .

Proposition 2.2.1. (Perelman [18]) For an arbitrary metric gij on a compact

manifold M , the function µ(gij, τ) is negative for small τ > 0 and limτ→0+ µ(gij, τ) =

0, limτ→∞ µ(gij, τ) =∞.

Similarly, for the W+ functional, if we set u = (4πσ)−
n
2 e−f , then we have

W+(gij, f, σ) =

∫
M

[
σ(
|∇u|2

u
+Ru) + u log u

]
dV +

n

2
log(4πσ) + n.

Feldman-Ilmanen-Ni [40] proved that µ+(gij, σ) and ν+(σ) can be achieved.

Proposition 2.2.2. (Feldman-Ilmanen-Ni [40]) Let (M, gij) be a compact man-

ifold.

1) µ+(gij, σ) can be attained by a unique function u.

2) If λ(gij) < 0, then ν+(gij) is attained by a unique σ > 0.

Now, let us compute the first variations of the entropy functionals. Since the

computations are similar, we will only present the details for the first variation of

the ν functional.

Lemma 2.2.1. (Perelman [18]) If we have variations vij = δgij, h = δf , and
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η = δτ , then the first variation of the W functional is

δW(vij, h, η)

= (4πτ)−
n
2

∫
M

−τvij(Rij +∇i∇jf −
1

2τ
gij)e

−fdV

+ (4πτ)−
n
2

∫
M

(
1

2
trg v − h−

n

2τ
η)[τ(R + 2∆f − |∇f |2) + f − n− 1]e−fdV

+ (4πτ)−
n
2

∫
M

η(R + |∇f |2 − n

2τ
)e−fdV.

Proof. First, let us recall the formulas of the connection coefficients and the curva-

tures in local coordinates

Γkij =
1

2
gkl(

∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

),

Rk
ijl =

∂Γkjl
∂xi
− ∂Γkil
∂xj

+ ΓkipΓ
p
jl − ΓkjpΓ

p
il,

Rjl = Rk
kjl,

and

R = gjlRjl.

In the normal coordinates at a fixed point, we have

δΓkij =
1

2
gkl(

∂vil
∂xj

+
∂vjl
∂xi
− ∂vij
∂xl

)

=
1

2
gkl(∇jvil +∇ivjl −∇lvij),

δRjl = δRk
kjl

=
∂δΓkjl
∂xk

− ∂δΓkkl
∂xj

=
∂

∂xk

[
1

2
gkp(∇jvpl +∇lvjp −∇pvjl)

]
− ∂

∂xj

[
1

2
gkp∇lvkp

]
=

1

2
(∇p∇lvjp +∇p∇jvlp −∆vjl −∇j∇ltrgv),
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δR = δ(gjlRjl)

= −vjlRjl + gjlδRjl

= −vjlRjl +∇i∇jvij −∆trgv,

and

δ
√

det(gij) =
1

2
√

det(gij)
vijCji =

1

2

√
det(gij)vijg

ji =
trgv

2

√
det(gij),

where (Cij) is the matrix of cofactors.

Thus, the first variation of the W functional is

δW(vij, h, η)

=

∫
M

[η(R + |∇f |2) + τ(−∆trgv +∇i∇jvij − vijRij − vij∇if∇jf

+ 2∇if∇ih) + h](4πτ)−
n
2 e−fdV

+

∫
M

[τ(R + |∇f |2) + f − n](−n
2

η

τ
+
trgv

2
− h)(4πτ)−

n
2 e−fdV

=

∫
M

[η(R + |∇f |2) + h](4πτ)−
n
2 e−fdV

+

∫
M

[−τvij(Rij +∇i∇jf) + τ(trgv − 2h)(∆f − |∇f |2)](4πτ)−
n
2 e−fdV

+

∫
M

[τ(R + |∇f |2) + f − n](−n
2

η

τ
+
trgv

2
− h)(4πτ)−

n
2 e−fdV

= −
∫
M

τvij(Rij +∇i∇jf −
1

2τ
gij)(4πτ)−

n
2 e−fdV

+

∫
M

(
trgv

2
− h− n

2τ
η)[τ(R + |∇f |2) + f − n+ 2τ(∆f − |∇f |2)](4πτ)−

n
2 e−fdV

+

∫
M

[η(R + |∇f |2 − n

2τ
) + (h− trgv

2
+

n

2τ
η)](4πτ)−

n
2 e−fdV

=

∫
M

−τvij(Rij +∇i∇jf −
1

2τ
gij)(4πτ)−

n
2 e−fdV

+

∫
M

(
trgv

2
− h− n

2τ
η)[τ(R + 2∆f − |∇f |2) + f − n− 1](4πτ)−

n
2 e−fdV

+

∫
M

η(R + |∇f |2 − n

2τ
)(4πτ)−

n
2 e−fdV.
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To compute the first variation of the ν functional, we also need the following

Lemma:

Lemma 2.2.2. (Cao-Hamilton-Ilmanen [1]) Assume that ν(g) is realized by

some f and τ . Then it is necessary that the pair (f, τ) solves the following equations:

τ(−2∆f + |∇f |2 −R)− f + n+ ν = 0, (2.2.7)

and

(4πτ)−
n
2

∫
M

fe−fdV =
n

2
+ ν. (2.2.8)

Proof. For fixed τ̃ > 0, suppose that µ(g, τ̃) is attained by some function f̃ such that

(4πτ̃)−
n
2

∫
M
e−f̃dV = 1. According to the Lagrange multiplier method, we consider

the following functional

L(g, f̃ , τ̃ , γ) = (4πτ̃)−
n
2

∫
M

e−f̃ [τ̃(|∇f̃ |2 +R) + f̃ − n]dV

+ γ[(4πτ̃)−
n
2

∫
M

e−f̃dV − 1].

Denote by δf̃ the variation of f̃ . Then the variation of L with respect to δf̃ is

δL = (4πτ̃)−
n
2

∫
M

e−f̃ (−δf̃)[τ̃(|∇f̃ |2 +R) + f̃ − n]dV

+ (4πτ̃)−
n
2

∫
M

e−f̃ [2τ̃∇f̃∇(δf̃) + δf̃ ]dV

− (4πτ̃)−
n
2

∫
M

γ(δf̃)e−f̃dV

= (4πτ̃)−
n
2

∫
M

e−f̃ (δf̃)[τ̃(−2∆f̃ + |∇f̃ |2 −R)]dV

+ (4πτ̃)−
n
2

∫
M

e−f̃ (δf̃)(−f̃ + n+ 1− γ)dV.

Since at the minimizer f̃ of µ(g, τ̃) we have δL = 0, it follows that

τ̃(−2∆f̃ + |∇f̃ |2 −R)− f̃ + n+ 1− γ = 0. (2.2.9)

Integrating both sides with respect to the measure (4πτ̃)−
n
2 e−f̃dV , we get

−γ + 1 = (4πτ̃)−
n
2

∫
M

e−f̃ [τ̃(|∇f̃ |2 +R) + f̃ − n]dV = µ(g, τ̃).
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For the minimizer (τ, f) of ν(g), equation (2.2.9) is just equation (2.2.7).

Now we consider the variations δτ and δf of both τ and f . We have at (f, τ)

0 = (4πτ)−
n
2

∫
M

e−f (− n

2τ
δτ − δf)[τ(|∇f |2 +R) + f − n]dV

+ (4πτ)−
n
2

∫
M

e−f [δτ(|∇f |2 +R) + 2τ∇f∇(δf) + δf ]dV. (2.2.10)

and

(4πτ)−
n
2

∫
M

e−f (− n

2τ
δτ − δf)dV = 0. (2.2.11)

Using (2.2.7) and (2.2.11), we can write (2.2.10) as

0 = (4πτ)−
n
2

∫
M

e−f [δτ(|∇f |2 +R) + δf ]dV

= (4πτ)−
n
2

∫
M

e−f [
1

τ
δτ(ν − f + n)− n

2τ
δτ ]dV

= (δτ)
1

τ
(4πτ)−

n
2

∫
M

e−f (ν − f +
n

2
)dV.

Hence, we obtain equation (2.2.8).

One can get the similar necessary condition on the minimizers of the λ and the

ν+ functionals.

Lemma 2.2.3. The infimum λ(g) is achieved by some function f satisfying

−2∆f + |∇f |2 −R = λ(g).

Lemma 2.2.4. The minimizer (f, σ) of the ν+(g) functional must satisfy the fol-

lowing equations:

σ(−2∆f + |∇f |2 −R) + f − n+ ν+ = 0, (2.2.12)

and

(4πσ)−
n
2

∫
M

fe−fdV =
n

2
− ν+. (2.2.13)
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Combining Lemma 2.2.1 and Lemma 2.2.2, it is easy to get the first variation of

the ν entropy.

Proposition 2.2.3. On a compact manifold (M, gij), consider the variation gij(s)

of the metric gij with gij(0) = gij and hij(s) = d
ds
gij(s). Then the first variational

formula of the ν(gij(s)) functional is

d

ds
ν(gij(s)) =(4πτ)−

n
2

∫
−τ < h,Rc+∇2f − 1

2τ
g > e−fdV

=(4πτ)−
n
2

∫
−τhij(Rij +∇i∇jf −

1

2τ
gij)e

−fdV,

where (f, τ) = (f(s), τ(s)) is a minimizer of ν(gij(s)).

Proof. Let us denote by δf and δτ the variation of f(s) and τ(s) separately. From

Lemma 2.2.1, we have

d

ds
ν(gij(s))

= (4πτ)−
n
2

∫
M

−τhij(Rij +∇i∇jf −
1

2τ
gij)e

−fdV

+ (4πτ)−
n
2

∫
M

(
1

2
trg h− δf −

n

2τ
δτ)[τ(R + 2∆f − |∇f |2) + f − n− 1]e−fdV

+ (4πτ)−
n
2

∫
M

δτ(R + |∇f |2 − n

2τ
)e−fdV.

Using (2.2.7), we may rewrite the second integral on the right hand side of the above

formula as

(4πτ)−
n
2

∫
M

(− n

2τ
δτ − δf +

trgh

2
)(ν(g(s))− 1)e−fdV.

But differentiating (4πτ)−
n
2

∫
M
e−fdV = 1 implies

(4πτ)−
n
2

∫
M

(− n

2τ
δτ − δf +

trgh

2
)e−fdV = 0. (2.2.14)

Therefore, the second integral on the right hand side vanishes.

Moreover, integrating (2.2.7) against the measure (4πτ)−
n
2 e−fdV gives us

(4πτ)−
n
2

∫
M

[τ(R + |∇f |2) + f − n− ν]e−fdV = 0.
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Hence, by (2.2.8), we have

(4πτ)−
n
2

∫
M

(R + |∇f |2 − n

2τ
)e−fdV = 0.

This implies that the third integral on the right hand side of the first variation

formula of ν(g(s)) also vanishes and the proof is completed.

By a similar computation, one can also get the following first variations of the

λ and ν+ functionals.

Proposition 2.2.4. On a compact manifold (M, gij), consider the variation gij(s)

of the metric gij with gij(0) = gij and hij(s) = d
ds
gij(s). Then the first variational

formula of the λ(gij(s)) functional is

d

ds
λ(g(s)) =

∫
M

hij(−Rij −∇i∇jf)e−fdV,

where f = f(s) is a minimizer of λ(g(s)).

Proposition 2.2.5. On a compact manifold (M, gij), consider the variation gij(s)

of the metric gij with gij(0) = gij and hij = d
ds
gij(s). Then the first variational

formula of the ν+(gij(s)) functional is

d

ds
ν+(g(s)) = (4πσ)−

n
2

∫
M

σhij(−Rij −∇i∇jf −
1

2σ
gij)e

−fdV,

where (f, σ) = (f(s), σ(s)) is the minimizer of ν+(g(s)).

First of all, we can conclude from Propositions 2.2.3, 2.2.4 and 2.2.5 that the

critical points of the λ, ν and ν+ entropies are exactly the compact gradient steady,

shrinking solitons and expanding solitons (M, gij, f) satisfying

Rij +∇i∇jf =
ρ

2τ
gij, (2.2.15)

where ρ = 0, 1, and − 1, respectively. In particular, it follows that any compact

Ricci soliton is necessarily a gradient soliton.

Moreover, from the definition of the entropy functionals, we can see that they

are invariant under diffeomorphisms. This implies that their first variations vanish
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when hij = ∇i∇jf = 1
2
L∇fgij, since in this case the metrics vary along the family of

diffeomorphisms generated by the vector field ∇f . Given the fact that the ν and ν+

functionals are also invariant under scaling of the metric, the first variations of the

ν and ν+ functionals also vanish when hij = ρgij. Therefore, if gij(s) varies along

the Ricci flow, i.e., hij = −2Rij, we will have

d

ds
λ(gij(s)) =

∫
M

|Rij +∇i∇jf |2e−fdV ≥ 0,

d

ds
ν(gij(s)) = (4πτ)−

n
2

∫
2τ |Rij +∇i∇jf −

1

2τ
gij|2e−fdV ≥ 0,

and
d

ds
ν+(gij(s)) = (4πσ)−

n
2

∫
2σ|Rij +∇i∇jf +

1

2σ
gij|2e−fdV ≥ 0,

which show that the entropy functionals are all nondecreasing along the Ricci flow.

Hence we have recovered the Theorem proved in [18] by Perelman.

2.3 The Second Variation of the Entropy Func-

tionals

In the previous section, we have seen that the critical points of the entropy func-

tionals are compact gradient Ricci solitons. In this section, we will calculate the

second variation of these functionals at their critical points.

According to Proposition 1.1.1, for the steady and expanding case, we only need

to compute the second variations of the λ and ν+ functionals at Ricci flat and

negative Einstein metrics, respectively. The second variation of the λ functional

was obtained by Cao-Hamilton-Ilmanen in [1]. In the following, we will present the

second variation of the ν+ entropy calculated by the author in [41].

First, as in [1], we denote Rm(h, h) = Rijklhikhjl, divω = ∇iωi, (divh)i = ∇jhji,

(div∗ω)ij = −(∇iωj + ∇jωi) = −1
2
Lω#gij, where h is a symmetric 2-tensor, ω is a

1-tensor, ω# is the dual vector field of ω, and Lω# is the Lie derivative.
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Theorem 2.3.1. (Z. [41]) Let (Mn, g) be a compact negative Einstein manifold

such that Rij = − 1
2σ
gij. Let hij be a symmetric 2-tensor. Consider the variation of

metric g(s) = g + sh. Then the second variation of ν+ is

d2ν+(g(s))

ds2
|s=0 =

σ

Vol(g)

∫
M

< N+h, h >,

where

N+h :=
1

2
∆h+ div∗divh+

1

2
∇2vh +Rm(h, ·) +

g

2nσVol(g)

∫
M

trh,

and vh is the unique solution of

∆vh −
vh
2σ

= div(divh), and

∫
M

vh = 0.

Proof. By Proposition 2.2.5, we have the following first variation of the ν+ func-

tional:

d

ds
ν+(g(s)) = (4πσ)−

n
2

∫
M

σhij(−Rij −∇i∇jf −
1

2σ
gij)e

−fdV.

Since at s = 0, we have f = C, (4πσ)−
n
2 e−f = 1

Vol(M)
and Rij = − 1

2σ
gij, the second

variation of ν+ at gij is

d2

ds2
ν+(g(s))|s=0

=
1

Vol(M)

∫
M

σhij[−
∂

∂s
Rij|s=0 −∇i∇j

∂f

∂s
|s=0 +

1

2σ2

∂σ

∂s
|s=0gij −

1

2σ
hij]dV.

Now in Lemma 2.2.1, we have seen that

∂

∂s
Rij|s=0 =

1

2
(∇p∇ihjp +∇p∇jhip −∆hij −∇i∇jtrgh).

Thus, we have∫
M

hij
∂

∂s
Rij|s=0dV

=

∫
M

1

2
hij(∇p∇ihjp +∇p∇jhip −∆hij −∇i∇jtrgh)dV

=

∫
M

[hij∇k∇ihjk −
1

2
hij∆hij −

1

2
hij∇i∇jtrgh]dV

=

∫
M

[hij(∇i∇khjk +Rkijlhkl +Rilhjl)−
1

2
hij∆hij −

1

2
trgh(div div h)]dV

=

∫
M

[−hij(div∗ div h)ij − hijRikjlhkl −
1

2σ
|hij|2 −

1

2
hij∆hij −

1

2
trgh(div div h)]dV
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Since (4πσ)−
n
2

∫
M
e−fdV = 1, (4πσ)−

n
2

∫
M
fe−fdV = n

2
− ν+ and d

ds
ν+|s=0 = 0,

after differentiation, we have

(4πσ)−
n
2

∫
M

e−f (− n

2σ

∂σ

∂s
|s=0 −

∂f

∂s
|s=0 +

1

2
trgh)dV = 0,

and

(4πσ)−
n
2

∫
M

e−f [f(− n

2σ

∂σ

∂s
|s=0 −

∂f

∂s
|s=0 +

1

2
trgh) +

∂f

∂s
|s=0]dV = 0.

Hence, ∫
M

∂f

∂s
|s=0dV = 0,

and
n

2σ

∂σ

∂s
|s=0 =

1

Vol(M)

∫
M

1

2
trghdV.

Therefore, it follows

d2

ds2
ν+(g(s))|s=0

=
σ

Vol(M)

∫
M

[hij(div∗ div h)ij + hijRikjlhkl +
1

2
hij∆hij

+
1

2
trgh(div div h)− ∂f

∂s
|s=0 div div h]dV +

1

2n

(
1

Vol(M)

∫
M

trghdV

)2

.

Suppose that vh is the unique solution to the equation

∆vh −
vh
2σ

= div(div h),

then it is easy to check by differentiating (2.2.12) that

vh = −2
∂f

∂s
|s=0 + trgh−

n

σ

∂σ

∂s
|s=0.
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Thus,

d2

ds2
ν+(g(s))|s=0

=
σ

Vol(M)

∫
M

[hij(div∗ div h)ij + hijRikjlhkl +
1

2
hij∆hij

+
1

2
vh(div div h)]dV +

1

2n

(
1

Vol(M)

∫
M

trghdV

)2

=
σ

Vol(M)

∫
M

[hij(div∗ div h)ij + hijRikjlhkl +
1

2
hij∆hij

+
1

2
hij∇i∇jvh)]dV +

1

2n

(
1

Vol(M)

∫
M

trghdV

)2

=
σ

Vol(M)

∫
M

< N+h, h > dV.

By a similar computation, one can also get the second variation of the λ entropy

for compact Ricci flat metrics in Theorem 2.1.1.

For the shrinking case, Cao-Hamilton-Ilmanen [1] first derived the second vari-

ation of the ν entropy for positive Einstein metrics in Theorem 2.1.2. And as we

have mentioned, they also announced in [1] that there is a second variational for-

mula of the ν entropy for general gradient shrinking solitons (the formula can be

found in [3]). However, in both references, no detailed computation has been shown.

Therefore, Cao and the author recalculated the second variation of the ν entropy for

gradient shrinking solitons and found that the last term stated in [3] was actually

incorrect.

In the following, we give a detailed computation of the second variational for-

mula stated in Theorem 2.1.4. Throughout the rest of this section, we assume

that (Mn, gij) is a compact gradient shrinking Ricci soliton, and the pair (f, τ) is a

minimizer of the functional ν(gij). Hence, (f, τ) satisfies

Rij +∇i∇jf =
1

2τ
gij. (2.3.1)

Let us first recall the notations that will be used,
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(divf h)i = gjk(∇jhik − hik∇jf),

∆f = ∆−∇f · ∇,

and ∫
M

< div†f w, h > e−fdV =

∫
M

< w, divf h > e−fdV,

i.e., div†f w = −1

2
Lw#g,

where h is a symmetric 2-tensor, w is a 1-form and w# is its dual vector field.

Lemma 2.3.1. Suppose that gij(s) is a variation of gij such that gij(0) = gij and

δgij = hij. Then at s = 0 we have

δRc+ δ∇2f − 1

2τ
h = −1

2
∆fh−Rm(h, ·)− div†f divf h−∇2(−δf +

1

2
trg h).

Proof. First of all, in the proof of Lemma 2.2.1, we see that the variation δRc of the

Ricci tensor is given by

(δRc)ij =
1

2
(∇k∇ihjk +∇k∇jhik −∆hij −∇i∇jtrgh)

= −Rikjlhkl +
1

2
(∇i∇khjk +∇j∇khik +Rikhjk

+Rjkhik −∆hij −∇i∇j trg h), (2.3.2)

and, by direct computation (see, e.g., [41]),

(δ∇2f)ij = ∇i∇j(δf)− 1

2
(∇ihjk +∇jhik −∇khij)∇kf. (2.3.3)

On the other hand, by the definition of divf and div†f and using the shrinking soliton

equation (2.3.1), we have

div†f divf h =− 1

2
[∇i(divf h)j +∇j(divf h)i]

=− 1

2
[∇i(∇khjk − hjk∇kf) +∇j(∇khik − hik∇kf)]

=− 1

2
(∇i∇khjk +∇j∇khik −∇kf∇ihjk −∇kf∇jhik)

− 1

2
(Rikhkj +Rjkhki) +

1

2τ
hij.
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Now, combining the above computations, we arrive at

δRc+ δ∇2f =− 1

2
∆fh−Rm(h, ·)− div†f divf h−∇2(−δf +

1

2
trg h) +

1

2τ
h.

To compute the second variation of the ν functional, we also need the following

key Lemma:

Lemma 2.3.2. Under the same assumptions as in Lemma 2.3.1, we have at s = 0

δτ = τ

∫
M
< Rc, h > e−f∫
M
Re−f

.

Proof. First of all, by taking the trace in (2.3.1) we get

R + ∆f =
n

2τ
. (2.3.4)

By substituting (2.3.4) in (2.2.7), we have

R + |∇f |2 =
f − ν
τ

. (2.3.5)

From (2.3.4) and (2.3.5), it follows that

−∆ff = |∇f |2 −∆f =
f − ν − n/2

τ
. (2.3.6)

Moreover, from (2.3.2), (2.3.3) and using (2.3.1), we get

δR = − 1

2τ
trg h+ hij∇i∇jf +∇i∇jhij −∆ trg h, (2.3.7)

and

δ(∆f) = ∆(δf)− hij∇i∇jf −∇ihij∇jf +
1

2
∇i trg h∇if, (2.3.8)

respectively. Moreover,

δ|∇f |2 = 2∇if∇j(δf)− hij∇if∇jf. (2.3.9)

When we integrate (2.3.5) against the measure (4πτ)−
n
2 e−fdV and use (2.2.8), we

obtain

(4πτ)−
n
2

∫
M

τ(|∇f |2 +R)e−fdV =
n

2
. (2.3.10)
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On the other hand, by differentiating (4πτ)−
n
2

∫
M
e−fdV = 1 and (2.2.8), we have

(4πτ)−
n
2

∫
M

(− n

2τ
δτ − δf +

1

2
trg h)e−fdV = 0, (2.3.11)

and

(4πτ)−
n
2

∫
M

f(− n

2τ
δτ − δf +

1

2
trg h)e−fdV + (4πτ)−

n
2

∫
M

δfe−fdV = 0. (2.3.12)

Now, differentiating (2.2.7) and using (2.3.4), (2.3.8) and (2.3.9), we obtain

0 =δτ(− n

2τ
+ |∇f |2 −∆f)− δf

+ τ(−2∆(δf) + 2hij∇i∇jf + 2∇ihij∇jf −∇i(trg h)∇if

+ 2∇if∇i(δf)− hij∇if∇jf − δR).

Substituting (2.3.7) in the above identity, we get

0 =− n

2τ
δτ − 2τ∆(δf) + 2τ∇(δf)∇f − δf + δτ(|∇f |2 −∆f)

+ τ(2hij∇i∇jf + 2∇ihij∇jf −∇i(trg h)∇if − hij∇if∇jf)

+ τ(
1

2τ
trg h− hij∇i∇jf −∇i∇jhij + ∆ trg h).

But, by the definition of divf , we compute that

divf divf h =∇i(∇jhij − hij∇jf)−∇if(∇jhij − hij∇jf)

=∇i∇jhij − hij∇i∇jf − 2∇if∇jhij + hij∇if∇jf.

Hence, we get

0 = (−nδτ
2τ
− δf +

1

2
trg h) + δτ(−∆ff) + τ∆f (−2δf + trg h)− τ divf divf h.

Multiplying the above identity by f and integrating against the measure (4πτ)−
n
2 e−fdV ,

we get
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0 = (4πτ)−
n
2

∫
M

f(− n

2τ
δτ − δf +

1

2
trg h)e−fdV

+ (4πτ)−
n
2 δτ

∫
M

f(−∆ff)e−fdV

+ (4πτ)−
n
2

∫
M

τf∆f (−2δf + trg h)e−fdV

− (4πτ)−
n
2

∫
M

τf(divf divf h)e−fdV.

By (2.3.12) and integration by parts, the above identity becomes

0 = (4πτ)−
n
2

∫
M

−δfe−fdV + δτ(4πτ)−
n
2

∫
M

|∇f |2e−fdV

+ (4πτ)−
n
2

∫
M

τ(−2δf + trg h)∆ffe
−fdV

− (4πτ)−
n
2

∫
M

τ < h,∇2f > e−fdV.

Using (2.3.1), (2.3.6) and (2.3.10), we obtain

0 = −(4πτ)−
n
2

∫
M

δfe−fdV +
n

2τ
δτ − δτ(4πτ)−

n
2

∫
M

Re−fdV

+ (4πτ)−
n
2

∫
M

2τ(
n

2τ
δτ + δf − 1

2
trg h)(

1

τ
f − ν

τ
− n

2τ
)e−fdV

+ (4πτ)−
n
2

∫
M

(−1

2
trg h+ τhijRij)e

−fdV.

By using (2.3.11) and (2.3.12), we arrive at

0 = (4πτ)−
n
2

∫
M

(
n

2τ
δτ + δf − 1

2
trg h)e−fdV − δτ(4πτ)−

n
2

∫
M

Re−fdV

+ (4πτ)−
n
2

∫
M

τRijhije
−fdV

= −δτ(4πτ)−
n
2

∫
M

Re−fdV + (4πτ)−
n
2

∫
M

τRijhije
−fdV.

Therefore,

δτ = τ

∫
M
Rijhije

−fdV∫
M
Re−f

.
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Remark 2.3.1. The denominator in the above Lemma is positive for compact gra-

dient shrinking Ricci solitons, because by Proposition 1.3.1, the scalar curvature R

of a compact gradient shrinking soliton must be nonnegative. Then we may use the

strong maximum principle on equation (1.1.20) to derive the positivity of the scalar

curvature.

Now we are ready to prove Theorem 2.1.4.

Theorem 2.3.2. (Cao-Hamilton-Ilmanen)(Cao-Z. [42])Let (Mn, gij, f) be a

compact gradient Ricci shrinking soliton with potential function f satisfying the Ricci

soliton equation (2.1.2). For any symmetric 2-tensor h = hij, consider variations

gij(s) = gij + shij. Then the second variation of the ν functional is given by

d2

ds2

∣∣∣∣
s=0

ν(g(s)) =
τ

(4πτ)n/2

∫
M

< N̂h, h > e−fdV,

where the stability operator N̂ is given by

N̂h :=
1

2
∆fh+Rm(h, ·)+div†f divf h+

1

2
∇2v̂h−Rc

∫
M
< Rc, h > e−fdV∫
M
Re−fdV

, (2.3.13)

and v̂h is the unique solution of

∆f v̂h +
v̂h
2τ

= divf divf h,

∫
M

v̂he
−f = 0.

Proof. From the first variation formula in Proposition 2.2.3, we see that the second

variation at a gradient shrinker (Mn, gij, f) is given by

δ2νg(h, h) =(4πτ)−
n
2

∫
−τ < h, δ(Rc+∇2f − 1

2τ
g) > e−f

=(4πτ)−
n
2

∫
−τ < h, δRc+ δ∇2f − 1

2τ
h > e−f

+ (4πτ)−
n
2 (−δτ

2τ
)

∫
M

trg he
−f .

By Lemma 2.3.1 and Lemma 2.3.2, the second variation becomes
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δ2νg(h, h) =(4πτ)−
n
2

∫
M

−τ < h, δRc+ δ∇2f − 1

2τ
h > e−f

+ (4πτ)−
n
2 (−δτ

2τ
)

∫
M

trg he
−f

=(4πτ)−
n
2

∫
M

τ < h,
1

2
∆fh+Rm(h, ·) + div†f divf h > e−f

+ (4πτ)−
n
2

∫
M

τ < h,∇2(−δf +
1

2
trg h) > e−f

+ (4πτ)−
n
2 (−δτ

2τ
)

∫
M

trg he
−f

=τ(4πτ)−
n
2

∫
M

< h,
1

2
∆fh+Rm(h, ·) + div†f divf h+

1

2
∇2v̂h > e−f

+ τ(4πτ)−
n
2
δτ

τ

∫
M

< h,∇2f − 1

2τ
g > e−f

=τ(4πτ)−
n
2

∫
M

< h,
1

2
∆fh+Rm(h, ·) + div†f divf h+

1

2
∇2v̂h > e−f

− τ(4πτ)−
n
2

∫
M
< Rc, h > e−fdV∫
M
Re−fdV

∫
M

< h,Rc > e−fdV.

Here,

v̂h = −2δf + trg h−
2δτ

τ
(f − ν),

and it is straightforward to check by using (2.2.7) that

∆f v̂h +
v̂h
2τ

= divf divf h and

∫
M

v̂he
−fdV = 0. (2.3.14)

To see the uniqueness of the solution to (2.3.14), it suffices to show that λ1 >
1
2τ

,

where λ1 = λ1(∆f ) denotes the first eigenvalue of ∆f . Let u be a (non-constant)

first eigenfunction so that

∆fu = −λ1u.

Then by direct computation, we get

1

2
∆f |∇u|2 =|∇2u|2 +∇(∆fu) · ∇u+ (Rc+∇2f)(∇u,∇u)

≥ 1

n
|∆u|2 + (

1

2τ
− λ1)|∇u|2.
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Thus,

0 =

∫
M

1

2
∆f |∇u|2e−fdV ≥

1

n

∫
M

|∆u|2e−fdV + (
1

2τ
− λ1)

∫
M

|∇u|2e−fdV.

Since u is non-constant, we obtain

λ1 >
1

2τ
.

This completes the proof of theorem.

2.4 Stability of Compact Ricci Solitons

In this section, we will discuss the entropy stability of compact gradient Ricci soli-

tons. According to the definition, a compact gradient Ricci soliton is entropy stable

if the second variation of the corresponding entropy functional is nonpositive. This

is equivalent to saying that the stability operators L, N , N+ and N̂ in Theorems

2.1.1, 2.1.2, 2.1.3 and 2.1.4 are nonpositive on the space of symmetric 2-tensors.

• Stability of compact Einstein manifolds

Let (M, gij) be a compact Einstein manifold which is either Ricci flat, positive

Einstein with Rij = 1
2τ
gij, or negative Einstein with Rij = − 1

2σ
gij. Denote by

C∞(Symm2((T ∗M)) the space of symmetric 2-tensors. To study the nonpositivity

of the operators L, N and N+, we may use the following decomposition

C∞(Symm2((T ∗M)) = ker div⊕ im div∗ .

It is easy to see that L, N and N+ all vanish on im div∗, because 2-tensors in this

subspace are the Lie derivatives of the metric gij along certain directions, and thus

the metric varies by a family of diffeomorphisms, but the λ, ν and ν+ functionals

are invariant under diffeomorphisms.

On ker div, we have

L =
1

2
∆L,
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where ∆Lhij = ∆hij + 2Rikjlhkl − Rikhkj − hikRkj is the Lichnerowicz Laplacian

on symmetric 2-tensors. Therefore, the stability of compact Ricci flat manifolds is

equivalent to the nonpositivity of ∆L on ker div.

Example 2.4.1. The flat torus T n is entropy stable, since according to the positive

mass theorem, it does not admit any metric with positive scalar curvature.

Example 2.4.2. Calabi-Yau K3 surfaces are entropy stable, since ∆L ≤ 0 by

Guenther-Isenberg-Knopf [47]. More generally, any manifold with a parallel spinor

is stable, according to Dai-Wang-Wei [48].

Question:(Cao-Hamilton-Ilmanen) Is there any compact unstable Ricci flat

manifold?

For positive and negative Einstein manifolds, we may further decompose ker div

as

ker div = (ker div)0 ⊕ Rg,

where (ker div)0 = {hij ∈ ker div |
∫
M
trghdV = 0}.

Since the ν and ν+ functionals are also scaling invariant, the operators N and

N+ vanish on the Rg part. On (ker div)0, it is easy to see that

N =
1

2
(∆L +

1

τ
),

and

N+ =
1

2
(∆L −

1

σ
).

Let us denote by µL, µN and µN+ the largest eigenvalue of ∆L, N and N+ on

(ker div)0. Firstly, one may notice that we have the following further decomposition

of (ker div)0 on negative Einstein manifolds (M, gij) with Rij = − 1
2σ
gij:

(ker div)0 = S0 + S1,

where S1 = {hij ∈ (ker div)0 | hij = (− 1
2σ
u+∆u)gij−∇i∇ju, u ∈ C∞(M) and

∫
M
u =

0} and S0 = {hij ∈ (ker div)0 | trgh = 0} is the space of transverse traceless 2-

tensors.
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Define

Tu := (− 1

2σ
u+ ∆u)gij −∇i∇ju

for a smooth function u. Then one can check that ∆L(Tu) = T (∆u) and kerT =

{0}. Thus, the Lichnerowicz Laplacian on S1 and the Laplacian on functions have

the same eigenvalues. It follows that N+ is always negative on S1. Therefore,

to check the stability of compact negative Einstein manifolds, one needs only to

compute µN+ on S0.

In the following we present several examples in [1] and [41] for positive and

negative Einstein manifolds:

Example 2.4.3. The round sphere Sn is entropy stable with µN = − 2
n−1

τ < 0.

In fact, it is geometrically stable in the sense that the solution to the Ricci flow

converges to it starting from any nearby metric by the results of R. Hamilton [4, 8,

16] and G. Huisken [49].

Example 2.4.4. The complex projective space CP n is neutrally stable with µL = − 1
τ

and µN = 0 (see e.g. Boucetta [50]).

Example 2.4.5. Any product of two Einstein manifolds M = Mn1
1 ×Mn2

2 is unstable

with µN = 1
2τ

and eigen-tensor h = 1
n1
g1 − 1

n2
g2.

Example 2.4.6. Any compact Kähler-Einstein manifold Mn of positive scalar cur-

vature with dimH1,1(M) ≥ 2 is unstable. Indeed, in this case we may choose a

harmonic 2-form η perpendicular to the Kähler form so that if h is the correspond-

ing variational 2-tensor, we have ∆Lh = 0 and µN = 1
2τ

.

Example 2.4.7. Let Qn denote the complex hyperquadric in CP n+1 defined by
n∑
i=0

z2
i = 0.

Then Q2 is CP 1×CP 1 which is unstable by the example above. For n = 3, we have

dimH1,1(Q3) = 1, so the method in the example above does not apply. But according

to Gasqui and Goldschmidt [51], Q3 is unstable with µL = −2
3
τ and µN = 1

6
τ . When

n = 4, we have that Q4 is entropy stable by the work of Gasqui and Goldschmidt

[52] with µL = − 1
τ

and µN = 0.
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Example 2.4.8. Suppose that M is an n-dimensional compact real hyperbolic space

form with n ≥ 3. By [53] or [54], the biggest eigenvalue of ∆L on transverse traceless

symmetric 2-tensors on real hyperbolic space is − (n−1)(n−9)
4

. Since on M we have

Rc = −(n−1)g, 1
σ

= 2(n−1), thus the biggest eigenvalue of N+ on S0 is not greater

than − (n−1)2

8
. It implies that M is entropy stable for n ≥ 3.

Remark 2.4.1. When n = 3, D. Knopf and A. Young [55] proved that closed 3-folds

with constant negative curvature are geometrically stable under a certain normalized

Ricci flow. R. Ye obtained a more powerful stability result earlier in [56].

Remark 2.4.2. For n=2, R. Hamilton [8] proved that when the average scalar cur-

vature is negative, the solution of the normalized Ricci flow with any initial metric

converges to a metric with constant negative curvature. In particular, they are en-

tropy stable. On the other hand, in [57] we see that the biggest eigenvalue of the

Lichnerowicz Laplacian on trace free symmetric 2-tensors is 2. Thus N+ is nonpos-

itive definite on (ker div)0, which also implies the entropy stability.

Remark 2.4.3. For the noncompact case, in [58], V. Suneeta proved a certain

geometric stability of Hn using different methods.

• Stability of Compact Shrinking Solitons

Let (M, gij, f) be a compact shrinking soliton. Without loss of generality, we

may assume that the shrinking soliton (Mn, gij, f) satisfies the equation

Rij +∇i∇jf =
1

2
gij. (2.4.1)

We also normalize f so that (4π)−
n
2

∫
M
e−fdV = 1.

In this case, the entropy stability is equivalent to the nonpositivity of the operator

N̂ in Theorem 2.1.4.

Example 2.4.9. In [43], S. Hall and T. Murphy showed that any compact Kähler-

Ricci soliton with h1,1 ≥ 2 must be unstable. Indeed, the condition that h1,1 ≥ 2

allows one to construct a (1, 1)-form which is ∆f harmonic and perpendicular to the

Ricci form. Moreover, the corresponding 2-tensor provides us an unstable direction.
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In particular, the Cao-Koiso soliton on CP 2#(−CP 2) and the Wang-Zhu soliton

on CP 2#2(−CP 2) are unstable as compact non-Einstein shrinking solitons.

However, there are no other known examples of either stable or unstable compact

non-Einstein shrinking solitons. In the following, we explore some nice properties of

N̂ which may help us study the classification of compact stable shrinking solitons.

Since the potential function f is not a constant in general, we need to decompose

C∞(Symm2(M)) as

C∞(Symm2(M)) = im div†f ⊕ ker divf .

It is not hard to verify that im div†f = im div∗. Thus, we have N̂ = 0 on im div†f .

On ker divf , one can simplify N̂ to

N̂h = Lfh−Rc
∫
M
< Rc, h > e−fdV∫
M
Re−fdV

, (2.4.2)

where

Lfh =
1

2
∆fh+Rm(h, ·).

It is easy to see that Lf is a self-adjoint operator with respect to the weighted

L2-inner product (·, ·)f =
∫
M
< ·, · > e−fdV .

Lemma 2.4.1. For any complete shrinking Ricci soliton satisfying (2.4.1), we have

Rc ∈ ker divf .

Proof. By definition and the second contracted Bianchi identity,

(divf Rc)i = ∇jRij −Rij∇jf =
1

2
∇iR−Rij∇jf.

On the other hand, from (1.1.8), we have

∇iR = 2Rij∇jf.

Therefore, divf (Rc) = 0.

49



Lemma 2.4.2. For any complete shrinking soliton satisfying (2.4.1), its Ricci tensor

is an eigen-tensor of the operator Lf :

Lf (Rc) =
1

2
Rc.

Proof. From (1.1.19), we have

∆Rij = ∇lRij∇lf + 2RkijlRkl +Rij, (2.4.3)

i.e., 2Lf (Rij) = Rij.

From (2.4.3) we obtain

∆fR = R− 2|Rc|2, (2.4.4)

from which it follows that

2

∫
M

|Rc|2e−f =

∫
M

Re−f . (2.4.5)

Therefore, by Lemma 2.4.2, (2.4.4) and (2.4.5), we have

Lemma 2.4.3.

N̂(Rc) = 0.

Now we are ready to prove

Proposition 2.4.1. Suppose that (Mn, gij, f) is an entropy stable compact shrinking

soliton satisfying (2.4.1), then −1/2 is the only negative eigenvalue of the operator

Lf on ker divf , and the multiplicity of −1/2 is one. In particular, −1/2 is the least

eigenvalue of Lf on ker divf .

Proof. By Lemma 2.4.1 and Lemma 2.4.2, we know that Rc ∈ ker divf , and is an

eigen-tensor of Lf with eigenvalue −1/2. Suppose that there exists a (non-zero)

symmetric 2-tensor h ∈ ker divf such that

Lfh = αh,

with α > 0, and

(Rc, h)f =:

∫
M

< Rc, h > e−f = 0.
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Then, by (2.4.2), we have

δ2νg(h, h) =
1

(4π)n/2

∫
M

< N̂h, h > e−f

=
1

(4π)n/2

∫
M

< Lfh, h > e−f

=
α

(4π)n/2

∫
M

|h|2e−f > 0,

a contradiction to the entropy stability of (Mn, gij, f). Thus −1/2 is the only neg-

ative eigenvalue of Lf on ker divf , with multiplicity one.

Remark 2.4.4. In [43], S. Hall and T. Murphy have given a very nice interpretation

of their proof in terms of the multiplicity of the eigenvalue −1/2: for any compact

shrinking Kähler-Ricci soliton satisfying (2.4.1), the eigen-space of eigenvalue −1/2

has multiplicity at least h1,1. Hence a compact shrinking Kähler-Ricci soliton with

h1,1 > 1 is unstable.
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Chapter 3

Rigidity of Gradient Kähler-Ricci

Soliton with Harmonic Bochner

Tensor

3.1 Introduction

We have seen in Chapter 1 that many results have been obtained on the classi-

fication of Riemannian Ricci solitons. However, very few results are known for

Kähler-Ricci solitons. In [59], H.-D. Cao and R. Hamilton observed that complete

noncompact gradient steady Kähler-Ricci solitons with positive Ricci curvature such

that the scalar curvature attains its maximum must be Stein (and also diffeomor-

phic to R2n). Later, under the same assumptions, A. Chau and L.-F. Tam [32],

and R. Bryant [33] independently proved that such steady Kähler-Ricci solitons are

actually biholomorphic to Cn. Moreover, Chau and Tam [32] showed that complete

noncompact expanding Kähler-Ricci solitons with nonnegative Ricci curvature are

also biholomorphic to Cn.

Recently, Q. Chen and the author [60] showed the rigidity of gradient Kähler-

Ricci solitons with harmonic Bochner tensor, so that more information on all three

kinds of Kähler-Ricci solitons has been gathered. To state our result, let us first
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recall that a complete Kähler manifold (Mn, gij̄) is called a gradient Kähler-Ricci

soliton if there is a real valued smooth function f such that

Rij̄ +∇i∇j̄f = λgij̄, and ∇i∇jf = 0.

The cases where λ = 0, > 0 and < 0 correspond to steady, shrinking and expanding

solitons, respectively.

Moreover, on a Kähler manifold, there is an object called the Bochner tensor

which is similar to the Weyl tensor in the Riemannian case. The Bochner tensor

Wij̄kl̄ is defined by

Wij̄kl̄ = Rij̄kl̄ −
R

(n+ 1)(n+ 2)
(gij̄gkl̄ + gil̄gkj̄)

+
1

(n+ 2)
(Rij̄gkl̄ +Rkl̄gij̄ +Ril̄gkj̄ +Rkj̄gil̄).

We also denote the divergence of the Bochner tensor by

Cij̄k = glq̄∇lWij̄kq̄

=
n

n+ 2
∇iRkj̄ −

n

(n+ 1)(n+ 2)
(gkj̄∇iR + gij̄∇kR).

Definition 3.1.1. A Kähler manifold Mn is said to have harmonic Bochner tensor

if Cij̄k = 0, i.e.,

∇iRkj̄ =
1

n+ 1
(gkj̄∇iR + gij̄∇kR).

Very recently, by using an argument similar to that in the paper [31] of Cao-

Chen, Y. Su and K. Zhang [61] have shown that any complete noncompact gradient

Kähler-Ricci soliton with vanishing Bochner tensor is necessarily Kähler-Einstein,

and hence a quotient of the corresponding complex space form.

In the following, we investigate gradient Kähler-Ricci solitons with harmonic

Bochner tensor, and extend the classification results of Su and Zhang. Our main

results are:

Theorem 3.1.1. (Chen-Z. [60]) Any complete gradient steady Kähler-Ricci soli-

ton with harmonic Bochner tensor must be Kähler-Ricci flat (i.e., Calabi-Yau).
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Theorem 3.1.2. (Chen-Z. [60]) Any complete gradient shrinking (respectively,

expanding) Kähler-Ricci soliton with harmonic Bochner tensor must be isometric to

the quotient of Nk × Cn−k, where Nk is a k-dimensional Kähler-Einstein manifold

with positive (respectively, negative) scalar curvature.

Remark 3.1.1. It is known that a compact Kähler manifold with vanishing Bochner

tensor (also called Bochner-Kähler or Bochner-flat) is necessarily a compact quotient

of Mk
c ×Mn−k

−c , where Mk
c and Mn−k

−c denote the complex space forms of constant

holomorphic sectional curvature c and −c, respectively (cf., e.g., Corollary 4.17 in

[62]). It follows immediately that any compact Kähler-Ricci soliton with vanishing

Bochner tensor must be a quotient of a complex space form.

Remark 3.1.2. We recall that in the Riemannian case, by using a rigidity result of

Petersen and Wylie [26], Fernández-López and Garćıa-Rı́o [29], and Munteanu and

Sesum [27] proved that Ricci shrinkers with harmonic Weyl tensor must be rigid,

i.e., a quotient of the product of an Einstein manifold and Rk.

3.2 Proof of the Main Theorems

Let (Mn, gij̄, f) be a gradient Kähler-Ricci soliton, i.e.,

Rij̄ +∇i∇j̄f = λgij̄, and ∇i∇jf = 0. (3.2.1)

Recall, Lemma 1.1.2 in Chapter 1 that the following basic identities hold.

R + |∇f |2 − λf = C; (3.2.2)

R + ∆f = nλ; (3.2.3)

∇iRkj̄ = Rij̄kl̄∇lf ; (3.2.4)

and

∇iR = Rij̄∇jf. (3.2.5)
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From now on, we assume that (Mn, gij̄, f) is a gradient Kähler-Ricci soliton with

harmonic Bochner tensor so that

∇iRkj̄ =
1

n+ 1
(∇iRgkj̄ +∇kRgij̄). (3.2.6)

Lemma 3.2.1. We have

λRij̄ −Rij̄kl̄Rk̄l

=
1

n+ 1
[

1

n+ 1
∇kR∇k̄fgij̄ + (λR− |Rc|2)gij̄ −

n

n+ 1
∇iR∇j̄f (3.2.7)

+ λRij̄ −Rik̄Rkj̄],

and

2(n+ 1)λ∇iR− 2R∇iR− 2Rij̄∇jR

= − 1

n+ 1
∇iR|∇f |2 −

1

n+ 1
∇kR∇k̄f∇if. (3.2.8)

Proof. On one hand, by differentiating (3.2.5) and using the contracted second

Bianchi identity, we obtain

∆R = ∇k∇k̄R = ∇kR∇k̄f +Rkl̄∇k̄∇lf.

From (3.2.1) and (3.2.6), we get

∇k∇k̄Rij̄ =
1

n+ 1
(∆Rgij̄ +∇i∇j̄R)

=
1

n+ 1
(∇kR∇k̄fgij̄ +Rkl̄∇k̄∇lfgij̄ +∇iRkj̄∇k̄f +Rkj̄∇i∇k̄f)

=
1

n+ 1
[∇kR∇k̄fgij̄ + (λR− |Rc|2)gij̄ +

1

n+ 1
∇iR∇j̄f

+
1

n+ 1
∇kR∇k̄fgij̄ + λRij̄ −Rik̄Rkj̄]. (3.2.9)

On the other hand, by differentiating (3.2.4), we have

∇k∇k̄Rij̄ = ∇iRj̄l∇l̄f +Rij̄kl̄∇k̄∇lf

= ∇kRij̄∇k̄f +Rij̄kl̄∇k̄∇lf

= ∇kRij̄∇k̄f + λRij̄ −Rij̄kl̄Rk̄l.
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Now, by plugging in formula (3.2.9), we obtain (3.2.7).

Next, by taking the divergence on both sides of (3.2.7), we get

λ∇iR− (∇iRkl̄)Rk̄l −Rij̄kl̄∇jRk̄l

=
1

n+ 1
[

1

n+ 1
∇i∇kR∇k̄f +

1

n+ 1
∇kR∇i∇k̄f + λ∇iR−∇i|Rc|2

− n

n+ 1
∇j∇iR∇j̄f −

n

n+ 1
∇iR∆f + λ∇iR− (∇jRik̄)Rkj̄ −Rik̄∇kR]

=
1

n+ 1
[

1

n+ 1
∇iRkl̄∇lf∇k̄f +

λ

n+ 1
∇iR−

1

n+ 1
Rik̄∇kR + λ∇iR− 2Rkl̄∇iRk̄l

− n

n+ 1
∇iRjk̄∇kf∇j̄f −

λn2

n+ 1
∇iR +

n

n+ 1
R∇iR + λ∇iR

−Rkj̄∇iRjk̄ −Rik̄∇kR].

That is,

λ∇iR− (∇iRkl̄)Rk̄l −Rij̄kl̄∇jRk̄l

=
1

n+ 1
[− n− 1

(n+ 1)2
∇iR|∇f |2 −

n− 1

(n+ 1)2
∇kR∇k̄f∇if

+ (3− n)λ∇iR− (1 +
1

n+ 1
)Rik̄∇kR− 3Rkl̄∇iRk̄l +

n

n+ 1
R∇iR].

But,

Rlk̄∇iRkl̄ =
1

n+ 1
Rlk̄(∇iRgkl̄ +∇kRgil̄)

=
1

n+ 1
R∇iR +

1

n+ 1
Rij̄∇jR,

and

Rij̄kl̄∇jRlk̄ =
1

n+ 1
Rij̄kl̄(∇jRglk̄ +∇lRgjk̄)

=
1

n+ 1
Rij̄∇jR +

1

n+ 1
Ril̄∇lR

=
2

n+ 1
Rij̄∇jR.
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Hence, we have

λ∇iR−
1

n+ 1
R∇iR−

3

n+ 1
Rij̄∇jR

= λ∇iR− (∇iRkl̄)Rk̄l −Rij̄kl̄∇jRk̄l

=
1

n+ 1
[− n− 1

(n+ 1)2
∇iR|∇f |2 −

n− 1

(n+ 1)2
∇kR∇k̄f∇if

+ (3− n)λ∇iR− (1 +
1

n+ 1
)Rik̄∇kR− 3Rkl̄∇iRk̄l +

n

n+ 1
R∇iR].

Therefore, formula (3.2.8) follows easily.

Now, suppose that∇f 6= 0 at some point p. Then we may choose an orthonormal

frame {e1, e2, · · · , en} of holomorphic vector fields at p such that e1 is parallel to

∇f . Therefore, we have |∇1f | = |∇f | and ∇kf = 0 for k = 2, · · · , n at p.

Lemma 3.2.2. Suppose ∇f 6= 0 at p. Then, under the frame {e1, e2, · · · , en} chosen

above, we have at p:

Rk1̄ = R1k̄ = 0 for k ≥ 2.

Proof. From (3.2.4)-(3.2.6), we have at p,

Rij̄k1̄∇1f =
1

n+ 1
(∇iRgkj̄ +∇kRgij̄) =

1

n+ 1
(Ri1̄gkj̄ +Rk1̄gij̄)∇1f.

It follows that

Rij̄k1̄ =
1

n+ 1
(Ri1̄gkj̄ +Rk1̄gij̄). (3.2.10)

In particular, for k ≥ 2, we have that

R11̄k1̄ =
1

n+ 1
Rk1̄ and R1k̄11̄ = 0.

However, on the other hand, it is easy to see that

R11̄k1̄ = R1̄1k̄1 = R1k̄11̄ = 0.

Therefore, Rk1̄ = R1k̄ = 0 for k ≥ 2.
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Lemma 3.2.2 tells us that ∇f is an eigenvector of the Ricci curvature tensor.

Thus we may choose another orthonormal frame {w1 = e1, w2, · · · , wn} at p such

that |∇1f | = |∇f | and the Ricci curvature tensor is diagonalized at p, i.e.,

Rij̄ = Rīiδij.

Proposition 3.2.1. Suppose that ∇f 6= 0 at p. Then under the orthonormal frame

{w1, w2, · · · , wn} chosen above, we have the following identities at p:

nλR11̄ −RR11̄ = λR− |Rc|2 − n− 1

n+ 1
R11̄|∇f |2, (3.2.11)

and

(n+ 1)λR11̄ −RR11̄ −R2
11̄ = − 1

n+ 1
R11̄|∇f |2. (3.2.12)

Proof. In (3.2.7), setting i = j = 1 and using (3.2.10), we have

λR11̄ −
1

n+ 1
R2

11̄ −
1

n+ 1
RR11̄

= λR11̄ −
2

n+ 1
R2

11̄ −
1

n+ 1
R11̄(R−R11̄)

= λR11̄ −
2

n+ 1
R2

11̄ −
1

n+ 1
R11̄

n∑
k=2

Rkk̄

= λR11̄ −R11̄11̄R11̄ −
n∑
k=2

R11̄kk̄Rkk̄

= λR11̄ −
n∑
k=1

R11̄kk̄Rkk̄

=
1

n+ 1
[

1

n+ 1
R11̄|∇f |2 + λR− |Rc|2 − n

n+ 1
R11̄|∇f |2 + λR11̄ −R2

11̄].

Thus, formula (3.2.11) follows immediately.

Next, by setting i = 1 in (3.2.8) and dividing both sides of the equation by ∇1f ,

we get (3.2.12).

Proposition 3.2.2. At a point p where ∇f 6= 0, we have either

Rc(∇f,∇f) = 0,
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or

Rc(∇f,∇f) =
λ

n+ 4
|∇f |2.

Proof. Since at point p, ∇f 6= 0, formula (3.2.12) implies that in a neighborhood of

p we have[
(n+ 1)λ−R−

Rjī∇if∇j̄f

|∇f |2
+

1

n+ 1
|∇f |2

]
Rjī∇if∇j̄f

|∇f |2
= 0. (3.2.13)

Therefore, there are two possibilities, either

I) Rjī∇if∇j̄f = 0 at p,

or

II) Rjī∇if∇j̄f 6= 0 at p. In this case, near p we have

−(n+ 1)λ+R +
Rjī∇if∇j̄f

|∇f |2
− 1

n+ 1
|∇f |2 = 0.

Taking the covariant derivative on both sides and using (3.2.1) gives us

0 = ∇kR +
1

|∇f |2
(∇if∇j̄f∇kRjī +Rjī∇if∇k∇j̄f)−

∇jf∇k∇j̄f

|∇f |4
Rl̄i∇if∇l̄f

− 1

n+ 1
(∇jf∇k∇j̄f)

= ∇kR +
1

(n+ 1)|∇f |2
∇if∇j̄f(∇kRgjī +∇jRgkī) +

1

|∇f |2
(λ∇kR−Rkj̄∇jR)

− λ∇kf −∇kR

|∇f |4
∇iR∇īf −

1

n+ 1
(λ∇kf −∇kR).

Evaluating the identity above at p under the orthonormal frame {w1, w2, · · · , wn}
yields

0 = R11̄ +
2

(n+ 1)|∇f |2
R11̄|∇f |2 +

1

|∇f |2
(λR11̄ −R2

11̄)

− λ−R11̄

|∇f |4
R11̄|∇f |2 −

1

n+ 1
(λ−R11̄)

=
n+ 4

n+ 1
R11̄ −

1

n+ 1
λ.

Thus, we have Rc(∇f,∇f) = λ
n+4
|∇f |2 whenever Rc(∇f,∇f) 6= 0.
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Now we are ready to prove the main Theorems.

First, we may assume that f is not constant, for otherwise we get that M is

Kähler-Einstein from the soliton equation.

Proof of theorem 3.1.1: For steady Kähler-Ricci solitons, we have λ = 0.

From Proposition 3.2.2, we know that in case of λ = 0, we always haveRc(∇f,∇f) =

0. Then (3.2.2) and (3.2.11) imply that Rc = 0 on the set {p ∈M |∇f(p) 6= 0}. On

the other hand, by the soliton equation, it is easy to see that we also have Rc = 0

in the interior of the set {p ∈ M |∇f(p) = 0}. Thus the steady soliton M must be

Kähler-Ricci flat.

Proof of theorem 3.1.2: For shrinking and expanding Kähler-Ricci solitons, we

have λ 6= 0.

In this case, from Proposition 3.2.2 and the continuity of Rc(∇f,∇f)
|∇f |2 , we conclude

that in each component of the open set A = {p ∈ M |∇f(p) 6= 0}, we have either

Rc(∇f,∇f) = λ
n+4
|∇f |2 or Rc(∇f,∇f) = 0.

If Rc(∇f,∇f) = λ
n+4
|∇f |2 in some component Ω of A, then at any point p ∈ Ω

we have R11̄ = λ
n+4

and ∇R(p) = λ
n+4
∇f(p) from formula (3.2.5). Therefore, we

have ∇R = λ
n+4
∇f in Ω. It then follows that R = λ

n+4
f + C in Ω. Thus (3.2.12)

implies that |∇f |2 = n+1
n+4

λf +C ′ in Ω. Since R+ |∇f |2− λf = C0, we have f = C1

in Ω, which contradicts the fact that ∇f 6= 0 in Ω.

Therefore, we must have Rc(∇f,∇f) = 0 in A. Since locally f is a constant in

the interior of M\A, we have Rc(∇f,∇f) = 0 on the whole manifold M . It follows

by (3.2.5) that ∇R = 0 on M . Then (3.2.6) implies that the Ricci curvature tensor

is parallel on M . Therefore, by the de Rahm decomposition theorem, the universal

cover of M is isometric to Nn−1×C, where N is again an (n−1) dimensional Kähler-

Ricci soliton with harmonic Bochner tensor. Thus by induction, we can finally get

that M is isometric to a quotient of the product of a Kähler-Einstein manifold and

the complex Euclidean space.
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