
Lehigh University
Lehigh Preserve

Theses and Dissertations

2012

Sharpness of exponent bounds for SU(n)
Karen B. McCready
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
McCready, Karen B., "Sharpness of exponent bounds for SU(n)" (2012). Theses and Dissertations. Paper 1315.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1315?utm_source=preserve.lehigh.edu%2Fetd%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Sharpness of exponent bounds for SU(n)

by

Karen McCready

Thesis Advisor: Donald M. Davis

A Dissertation

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Mathematics

Lehigh University

May 2012



Copyright by

Karen McCready

ii



Approved and recommended for acceptance as a dissertation in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Karen McCready

Sharpness of exponent bounds for SU(n)

Date

Donald M. Davis, Dissertation Director, Chair

Accepted Date

Committee Members

Martin Bendersky

David Johnson

Susan Szczepanski

Steven Weintraub

iii



Acknowledgments

I would like to thank my advisor, Professor Donald M. Davis, for his excellent

guidance, patience, help, and encouragement. Without his knowledge, counsel and

kindness, I would not have been able to write this dissertation. I also wish to thank

Professor Martin Bendersky, Professor David Johnson, Professor Susan Szczepanski,

and Professor Steven Weintraub for their service as committee members.

I am very grateful to my parents, as well as my brother and sisters, for their

constant love, support, patience, and encouragement that has helped me to keep

going through every challenge. I am also thankful for all of my fellow graduate

students and Mary Ann Dent for their encouragement and help.

Finally, I thank the Lord. Without Him I can do nothing, but with Him all things

are possible. Soli Deo gloria.

iv



Contents

List of Tables vi

Abstract 1

1 Introduction 2

2 Historical Background 5

3 Proof of Theorem 1.4 8

4 Sharpness of Inequalities 18

Bibliography 26

Vita 28

v



List of Tables

4.1 Values of ν5(a5(k,N)) relevant to e5(k, 25) . . . . . . . . . . . . . . . 19

4.2 Values of ν5(a5(k,N)) relevant to e5(k, 26) . . . . . . . . . . . . . . . 19

4.3 Values of ν5(a5(k,N)) relevant to e5(k, 26) when ν5(k − 25) = 21 . . . 19

4.4 Comparison of values . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



Abstract

The p-primary v1-periodic homotopy groups of a topological space X, denoted by

v−1
1 π∗(X)(p), are roughly the parts of the homotopy groups of X localized at a prime

p which are detected by K-theory. We will use combinatorial number theory to

determine, for p an odd prime, the values of n for which

v−1
1 π2(n−1)(SU(n))(p)

∼= Z/pn−1+νp(bnpc!).

As a corollary, we obtain new bounds for the p-exponent of π∗(SU(n)).
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Chapter 1

Introduction

For a prime number p, the homotopy p-exponent of a space X, denoted by expp(X),

is the largest e ∈ {0, 1, 2, . . .} such that some homotopy group πi(X) has an element

of order pe. Homotopy groups of spaces are often very difficult to compute. Thus,

knowing the p-exponent of a space, for some p, is helpful in understanding more about

the structure of the space. We are particularly interested in the special unitary group,

SU(n), the group of n-by-n unitary matrices of determinant 1. Much progress has

been made in the study of expp(SU(n)), and that is the focus of this work.

In [12], Davis and Sun proved a strong lower bound for the homotopy p-exponent

of SU(n). Let νp(n) denote the largest power of p that divides n.

Theorem 1.1. (Davis and Sun, 2007) For any prime p and n ∈ {2, 3, 4, . . .}, some

homotopy group πi(SU(n)) contains an element of order pn−1+νp(bnpc!), i.e.,

expp(SU(n)) ≥ n− 1 + νp

(⌊
n

p

⌋
!

)
.

We will study the extent to which this bound might be sharp.

In [11], Davis and Mahowald defined, for any prime p, the p-primary v1-periodic

homotopy groups of a topological space X, denoted by v−1
1 π∗(X)(p). These are a

first approximation to the p-primary homotopy groups, π∗(X)(p). For spheres and
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compact Lie groups, each v−1
1 πi(X)(p) group is a direct summand of some homotopy

group πj(X). Thus, they provide lower bounds for expp(X). We will use these groups

and tools from number theory, in particular, Stirling numbers of the second kind, to

find out more about p-divisibility of homotopy groups of SU(n).

For n, k ∈ N with n+ k ∈ Z+, the Stirling number of the second kind, S(n, k), is

the number of ways to partition n objects into k nonempty subsets, where S(0, 0) := 1.

For example, S(3, 2)=3. These numbers satisfy the condition

S(k, j)j! = (−1)j
j∑
i=0

(−1)i
(
j

i

)
ik.

For p prime and any integer k, we define the partial Stirling numbers,

ap(k, j) =
∑
i 6≡0(p)

(−1)i
(
j

i

)
ik.

From these, we define

ep(k, n) = min(νp(ap(k, j)) : j ≥ n).

In [9], Davis showed that ep(k, n) provides significant information about the groups

v−1
1 π2k(SU(n))(p) and v−1

1 π2k−1(SU(n))(p).

Theorem 1.2. (Davis, 1991) If p or n is odd, then

v−1
1 π2k(SU(n))(p)

∼= Z/pep(k,n),

and v−1
1 π2k−1(SU(n))(p) is an abelian group of the same order, but not necessarily

cyclic.

Thus, for any k, ep(k, n) gives a lower bound for expp(SU(n)). We would like to

know the largest value of ep(k, n) over all possible k. For many n, ep(n− 1, n) gives
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the largest v1-periodic homotopy group of SU(n), or close to it, as discussed in [7].

So this value is of significant interest. Davis and Sun provided a lower bound for

ep(n − 1, n) in the following theorem, which was proved in [12], and clearly implies

Theorem 1.1.

Theorem 1.3. (Davis and Sun, 2007) Let p be a prime number. Then

ep(n− 1, n) ≥ n− 1 + νp

(⌊
n

p

⌋
!

)
.

We would like to know when this bound is sharp. In [7], Davis gave condi-

tions that tell when equality is obtained for the primes 2 and 3, giving the groups

v−1
1 π2(n−1)(SU(n))(2) and v−1

1 π2(n−1)(SU(n))(3) for those values of n for which we have

equality. The following theorem provides a generalization to all odd primes of Davis’

result for p = 3.

Let sp(n) denote n− 1 + νp

(⌊
n
p

⌋
!
)

.

Theorem 1.4. Let p be an odd prime and n ∈ {1, 2, 3, . . .}, with n = · · · d2d1d0 in

base-p expansion. Then ep(n − 1, n) = sp(n) if and only if the following condition

holds.

1. If d0 = 0, then d1 = 1 and di+1 + di < p for i ≥ 2.

2. If d0 6= 0, then d1 + d0 ≤ p and di+1 + di < p for i ≥ 1.

We will prove this theorem by showing that, for each n, there is an N ≥ n such

that νp(ap(n− 1, N)) = sp(n) if and only if the condition holds.

Corollary 1.5. If n satisfies the condition of Theorem 1.4, then

v−1
1 π2(n−1)(SU(n))(p)

∼= Z/psp(n).

If n does not satisfy the condition, then expp(SU(n)) > sp(n).
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Chapter 2

Historical Background

A great deal of work has been done in homotopy theory during the last 40 years

that has led to the work done here. As mentioned before, the p-primary v1-periodic

homotopy groups of a topological space X are a first approximation to the actual

homotopy groups of X localized at a prime. They roughly give the part of π∗(X)

detected by K-theory. They were defined by Davis and Mahowald in [11] as a direct

limit of maps of Moore spaces into the space X, using Adams maps. More precisely,

v−1
1 πi(X)(p) = lim−→

e,N

[M i+N ·t(e)(pe), X],

where

t(e) =


2(p− 1)pe−1 if p is odd,

max{8, 2e−1} if p = 2,

and Mn(pe) is the Moore space Sn−1 ∪pe Dn. The direct system uses Adams maps,

introduced in [1], A : Mn+t(e)(pe)→Mn(pe), which induce isomorphisms in K-theory

for n ≥ 2e+ 3.

In the 1970’s, Mahowald developed ideas that led to the introduction of the

v1-periodic homotopy groups. He computed the 2-primary v1-periodic homotopy
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groups of odd dimensional spheres, and showed that these are the image of the J-

homomorphism and associated unstable elements, in [13]. In 1989, Thompson did

analogous work for odd primes p, in [17], showing that the image of the J homomor-

phism, along with unstable elements, are the only v1-periodic elements of π∗(S
n)(p).

A famous result of Cohen, Moore and Neisendorfer, in [6], showed that if p 6= 2 then

expp(S
2n+1) = n, and that the image of the J homomorphism gives elements of max-

imal order. Thus, for odd primes, p-primary v1-periodic elements give elements of

π∗(S
2n+1) of maximal order. This has not yet been proven for the prime 2. Selick’s

work for the prime 2 can be found in [14]. Davis has conjectured that the v1-periodic

elements of SU(n) also give elements of maximal order in the actual homotopy groups

of SU(n).

In the 1980’s, Bendersky and others developed the unstable Novikov spectral

sequence for the actual homotopy groups of spaces, found in [3] and [2]. It is based

on the BP spectrum. He computed the 1-line and unstable elements on the 2-line for

spheres, as well as the 1-line for SU(n). Davis observed that his computations for

the 1-line and 2-line of spheres, localized at a prime, agree with the p-primary v1-

periodic homotopy groups of spheres. Combining this with a Five Lemma argument,

he showed that, localized at a prime, the 1-line and 2-line of the unstable Novikov

spectral sequence for SU(n) give its p-primary v1-periodic homotopy groups. This

led to Davis’ result that, for p an odd prime, v−1
1 π2k(SU(n))(p)

∼= Z/pep(k,n), in [9].

He then began to study ep(n− 1, n), since the largest values of ep(k, n) seem to occur

when k = n−1 or n−1 plus a multiple of a large power of p. In [9], Davis showed that

ep(n−1, n) ≥ n−1. Since any value of ep(k, n) gives a lower bound for the homotopy

p-exponent of the space, this implied that expp(SU(n)) ≥ n−1 for p odd. Bendersky

and Davis then proved an analogous result for the prime 2, in [4]. This case was

more complicated than the cases for odd primes because the spectral sequence used

to obtain the v1-periodic homotopy groups has elements in all filtrations at the prime
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2, and thus differentials and extensions must be considered. At the odd primes the

spectral sequence is nonzero only in filtrations 1 and 2, and hence has no differentials

or extensions.

In 1998, in [8], Davis used the unstable Novikov spectral sequence to show that, for

odd primes, expp(SU(n)) ≥ n−1+bn+2p−3
p2
c+bn+p2−p−1

p3
c. In 2005, Davis conjectured

an improved lower bound for ep(n− 1, n), and thus for expp(SU(n)). In [12], he and

Sun proved the result, giving the inequality ep(n− 1, n) ≥ n− 1 + νp(bnp c!). Since

νp(bn/pc!) = bn/p2c+ bn/p3c+ bn/p4c+ . . . ,

their result gave a nice generalization of Davis’ formula in [8]. Davis then proved

number theoretic conditions on n for which this inequality is sharp for the primes 2

and 3, in [7], in 2008. In this dissertation, the condition on n for which the inequalilty

ep(n− 1, n) ≥ n− 1 + νp(bnp c!) is sharp is generalized for all odd primes. The method

used to obtain this generalization differs greatly from the method used by Davis, in

[7], for the prime 3. An attempt to modify that method to show the condition for all

odd primes proved to be cumbersome, and less effective. In the last chapter, a chart

is included which provides calculations for the prime 5, for n from 2 to 128, to give a

sense of how close the inequality ep(n− 1, n) ≥ n− 1 + νp(bnp c!) is to being sharp for

various n and whether it gives the largest ep(k, n).

7



Chapter 3

Proof of Theorem 1.4

In the remainder of this work we will use Lucas’ Theorem to reduce binomial coeffi-

cients mod p. This gives, mod p,

(
n

k

)
≡

m∏
i=1

(
ai
bi

)
,

where n =
∑m

i=0 aip
i and k =

∑m
i=0 bip

i in base-p expansion.

Let Bn(N) = 1

bnpc!
∑

k≥1(−1)k
(
N
pk

)
kn−1. In [7], Davis showed that, for N ≥ n,

Bn(N) can be used to determine exactly when νp(ap(n− 1, N)) = sp(n).

Proposition 3.1. (Davis, 2008) For N ≥ n, νp(ap(n− 1, N)) = sp(n) if and only if

Bn(N) 6≡ 0 mod p.

We include the proof here.
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Proof of Proposition 3.1. Since N ≥ n, (−1)NS(n− 1, N)N ! = 0. Thus,

0 = (−1)NS(n− 1, N)N !

= ap(n− 1, N) +
∑
k

(−1)pk
(
N

pk

)
(pk)n−1

= ap(n− 1, N) + pn−1
∑
k

(−1)k
(
N

pk

)
kn−1.

Hence, νp(ap(n− 1, N)) = n− 1 + νp

(∑
k(−1)k

(
N
pk

)
kn−1

)
, and so νp(ap(n− 1, N)) =

sp(n) = n − 1 + νp

(⌊
n
p

⌋
!
)

if and only if νp

(∑
k(−1)k

(
N
pk

)
kn−1

)
= νp

(⌊
n
p

⌋
!
)

. This

holds if and only if νp

(
1

bnpc!
∑

k(−1)k
(
N
pk

)
kn−1

)
= νp

(⌊
n
p

⌋
!
)
− νp

(⌊
n
p

⌋
!
)

= 0, which

is true if and only if 1

bnpc!
∑

k≥1(−1)k
(
N
pk

)
kn−1 6≡ 0 mod p.

Thus we would like to know whether Bn(N) 6≡ 0 mod p for some N ≥ n. However,

we need not check every possible value of N in order to determine this. In [12], Davis

and Sun proved that

νp

(∑
k

(−1)k
(
m

pk

)
kl

)
≥ νp

(⌊
m

p

⌋
!

)

for all integers m and l. So,

νp

 1⌊
n
p

⌋
!

∑
k

(−1)k
(
N

pk

)
kn−1

 ≥ νp

(⌊
N

p

⌋
!

)
− νp

(⌊
n

p

⌋
!

)
.

Hence, νp

(
1

bnpc!
∑

k(−1)k
(
N
pk

)
kn−1

)
> 0 unless νp

(⌊
N
p

⌋
!
)

= νp

(⌊
n
p

⌋
!
)

. Since νp(m!) =∑
i≥1

⌊
m
pi

⌋
, this means that we only need to check N such that

⌊
N
p2

⌋
=
⌊
n
p2

⌋
.

From the following lemma, we will see that we can use Stirling numbers of the

second kind to determine when Bn(N) 6≡ 0 mod p.

9



Lemma 3.2. For νp

(⌊
N
p

⌋
!
)

= νp

(⌊
n
p

⌋
!
)

, we have, mod p,

Bn(N) ≡ u · S(n− 1, bN/pc),

for some u ∈ {1, 2, · · · , p− 1}.

The proof of this lemma uses methods due to Sun in [15]. We will also use the

identity ik =
∑

l S(k, l)l!
(
i
l

)
. Let Cpx+r,l denote

∑
i(−1)i

(
px+r
pi

)(
i
l

)
.

Proof. Let n = px+ t and N = p(x+h) + r, with 0 ≤ t, r ≤ p− 1 and 0 ≤ h < p− x̄,

where x̄ denotes the residue of x mod p. We will prove that, mod p,

Bpx+t(p(x+ h) + r) ≡ u · S(px+ t− 1, x+ h), (3.1)

for some u ∈ {1, 2, · · · , p− 1}.

We will use the inequality proved by Sun and Davis in [16, Theorem 1.1], which

says that νp(l!Cp(x+h)+r,l) ≥ νp((x+h)!)+x+h−l. This implies that νp

(
l!Cp(x+h)+r,l

x!

)
>

0 for l < x+ h.

10



We have, mod p,

Bn(N) = Bpx+t(p(x+ h) + r)

=
1

x!

∑
i

(−1)i
(
p(x+ h) + r

pi

)
ipx+t−1

=
1

x!

∑
i

(−1)i
(
p(x+ h) + r

pi

)∑
l

S(px+ t− 1, l)l!

(
i

l

)

=
1

x!

∑
l

(∑
i

(−1)i
(
p(x+ h) + r

pi

)(
i

l

))
l!S(px+ t− 1, l)

=
1

x!

∑
l≤x+h

Cp(x+h)+r,ll!S(px+ t− 1, l)

=
(x+ h)!

x!
Cp(x+h)+r,x+hS(px+ t− 1, x+ h)

+
1

x!

∑
l<x+h

Cp(x+h)+r,ll!S(px+ t− 1, l)

≡ (x+ h)(x+ h− 1) · · · (x+ 1)Cp(x+h)+r,x+hS(px+ t− 1, x+ h).

Now since Cp(x+h)+r,x+h = (−1)x+h
(
p(x+h)+r
p(x+h)

)
≡ (−1)x+h mod p, we see that

Cp(x+h)+r,x+hS(px+ t− 1, x+ h) ≡ (−1)x+hS(px+ t− 1, x+ h)

mod p. Also, for 1 ≤ h < p− x̄, (x+ h)(x+ h− 1) · · · (x+ 1) 6≡ 0 mod p, and so

Bpx+t(p(x+ h) + r) ≡ u · S(px+ t− 1, x+ h)

mod p, for some u ∈ {1, 2, · · · , p− 1}, as desired.

Therefore, we would like to know the mod p values of S(px+ t− 1, x+ h). Let p

be prime and 1 ≤ r ≤ p. Let qr(x) =

p∏
j=r+1

(1− jx) =

p−2∑
k=0

bk,rx
k ∈ Z/p[X]. Note that

11



b0,r = 1 and

bk,r = 0 if k > p− 1− r. (3.2)

Proposition 3.3. Let p be prime and x = pa + ∆, where 1 ≤ ∆ ≤ p. Let 0 ≤ h ≤

p− 1− ∆̄. If h ≤ t− 1, then, mod p,

S(px+ t− 1, x+ h) ≡


bt−1−h,∆+h

(
(p+1)x
x

)
if ∆ < p or h = 0,

bt−1−h,h
(

(p+1)x
x

)
if ∆ = p and h > 0.

If h ≥ t, then, mod p,

S(px+ t− 1, x+ h) ≡


bp−2+t−h,∆+h

(
(p+1)x−p

x

)
if ∆ < p or h = 0,

bp−2+t−h,h
(

(p+1)x−p
x

)
if ∆ = p and h > 0,

where ∆̄ denotes the residue of ∆ mod p.

In the special case where t = 1 and h = 0, this gives a nice new identity for the

Stirling numbers of the second kind.

Corollary 3.4. For p prime and any nonnegative integer n, mod p, S(pn, n) ≡(
(p+ 1)n

n

)
.

In order to prove Proposition 3.3, we will first prove the following lemma, which

provides formulas for S(pa+r+(p−1)i+k, pa+r), where 1 ≤ r ≤ p and 0 ≤ k ≤ p−2.

The methods used to prove the lemma are similar to those used in [5]. We will also

use the following identity, obtained from [5]. For a fixed k ≥ 0, we have

∑
n≥0

S(n, k)xn =
k∏
i=1

x

1− ix
.

12



Lemma 3.5. Let p be prime, a and i nonnegative integers, and 1 ≤ r ≤ p. Then

S(pa+ r + (p− 1)i+ k, pa+ r) ≡ bk,r
(
a+i
a

)
mod p, for 0 ≤ k ≤ p− 2.

Proof. We have, mod p,

∑
n≥0

S(n, pa+ r)xn ≡ xpa+r · qr(x)

(1− xp−1)a+1

= xpa+r

(
p−2∑
k=0

bk,rx
k

)(∑
i≥0

(−1)ix(p−1)i

(
−a− 1

i

))

= xpa+r

(
p−2∑
k=0

bk,rx
k

)(∑
i≥0

x(p−1)i

(
a+ i

a

))
.

Matching coefficients of powers of x on either side of the equation finishes the

proof of the lemma.

Proof of Proposition 3.3. Let 0 ≤ h ≤ p−1− ∆̄. First suppose that h ≤ t−1. Then,

mod p,

S(px+ t− 1, x+ h)

= S(p(pa+ ∆) + t− 1, pa+ ∆ + h)

= S(pa+ ∆ + h+ (p− 1)(pa+ ∆) + t− 1− h, pa+ ∆ + h)

≡


bt−1−h,∆+h

(
(p+1)a+∆

a

)
if ∆ < p or h = 0,

bt−1−h,h
(

(p+1)(a+1)
a+1

)
if ∆ = p and h > 0,

≡


bt−1−h,∆+h

(
(p+1)pa+p∆+∆

pa+∆

)
if ∆ < p or h = 0,

bt−1−h,h
(

(p+1)p(a+1)
p(a+1)

)
if ∆ = p and h > 0,

≡


bt−1−h,∆+h

(
(p+1)x
x

)
if ∆ < p or h = 0,

bt−1−h,h
(

(p+1)x
x

)
if ∆ = p and h > 0.

13



Similarly we have, when h ≥ t, mod p,

S(px+ t− 1, x+ h)

= S(p(pa+ ∆) + t− 1, pa+ ∆ + h)

= S(pa+ ∆ + h+ (p− 1)(pa+ ∆− 1) + p− 2 + t− h, pa+ ∆ + h)

≡


bp−2+t−h,∆+h

(
(p+1)a+∆−1

a

)
if ∆ < p or h = 0,

bp−2+t−h,h
(

(p+1)(a+1)−1
a+1

)
if ∆ = p and h > 0,

≡


bp−2+t−h,∆+h

(
(p+1)pa+p∆−p+∆

pa+∆

)
if ∆ < p or h = 0,

bp−2+t−h,h
(

(p+1)p(a+1)−p
p(a+1)

)
if ∆ = p and h > 0,

≡


bp−2+t−h,∆+h

(
(p+1)x−p

x

)
if ∆ < p or h = 0,

bp−2+t−h,h
(

(p+1)x−p
x

)
if ∆ = p and h > 0.

The following lemma will also be used in the proof of Theorem 1.4.

Lemma 3.6. Let a be a natural number. Then
(

(p+1)a−1
a

)
≡ 0 mod p.

Proof. Let a = pq + t, 1 ≤ t ≤ p− 1. We have, mod p,

(
(p+ 1)(pq + t)− 1

pq + t

)
=

(
p(p+ 1)q + pt+ (t− 1)

pq + t

)
≡
(

(p+ 1)q + t

q

)(
t− 1

t

)
≡ 0.

So
(

(p+1)a−1
a

)
≡ 0 mod p for a 6≡ 0 mod p.

Let r be a natural number such that r 6≡ 0 mod p and let a = plr, l ≥ 1. We will

proceed by induction on l to show that
(

(p+1)a−1
a

)
≡ 0 mod p.
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Base case: l = 1. So a = pr. We have, mod p,

(
(p+ 1)a− 1

a

)
=

(
p(pr) + p(r − 1) + p− 1

pr

)
≡

(
pr + r − 1

r

)
=

(
(p+ 1)r − 1

r

)
≡ 0.

Now assume that
(

(p+1)plr−1
plr

)
≡ 0 mod p for l > 1. Then, mod p,

(
(p+ 1)pl+1r − 1

pl+1r

)
=

(
p(pl+1r) + pl+1r − 1

pl+1r

)
=

(
p(pl+1r) + p · pl(r − 1) + p(pl − 1) + p− 1

p(plr)

)
≡

(
pl+1r + pl(r − 1) + pl − 1

plr

)
=

(
p · plr + plr − 1

plr

)
=

(
(p+ 1)plr − 1

plr

)
≡ 0,

by the induction hypothesis.

From Proposition 3.1, (3.1), and Proposition 3.3, we see that for n = px + t and

N = p(x + h) + r, with 0 ≤ t, r ≤ p − 1, 0 ≤ h ≤ p − 1 − x̄ and ∆ defined as in

Proposition 3.3, we have νp(ap(n−1, N)) = sp(n) if and only if the following condition

holds: for h ≤ t− 1, bt−1−h,∆+h

(
(p+1)x
x

)
6≡ 0 mod p or bt−1−h,h

(
(p+1)x
x

)
6≡ 0 mod p, and,

for h ≥ t, bp−2+t−h,∆+h

(
(p+1)x−p

x

)
6≡ 0 mod p or bp−2+t−h,h

(
(p+1)x−p

x

)
6≡ 0 mod p. We

will use this to find the conditions on n for which ep(n− 1, n) = sp(n).

Proof of Theorem 1.4. Let n = px + t and N = p(x + h) + r, as above. Let t = 0.

Then h ≥ t, and νp(ap(n− 1, N)) = sp(n) if and only if
(

(p+1)x−p
x

)
6≡ 0 mod p and, for

∆ < p or h = 0, bp−2−h,∆+h 6= 0, while for ∆ = p and h > 0, bp−2−h,h 6= 0. If ∆ = p

15



and h > 0, then, mod p,

(
(p+ 1)x− p

x

)
≡
(

(p+ 1)(a+ 1)− 1

a+ 1

)
≡ 0,

by Lemma 3.6. If 1 ≤ ∆ ≤ p − 1 or h = 0, by (3.2), the coefficient bp−2−h,∆+h = 0

if ∆ ≥ 2. So bp−2−h,∆+h = 0 unless ∆ = 1. Let N = n. Then h = 0, and we have

bp−2−h,1 = bp−2,1 = 1, by Wilson’s Theorem. Thus, νp(ap(n − 1, n)) = sp(n) if and

only if
(

(p+1)x−p
x

)
6≡ 0 mod p and ∆ = 1, where ∆ = d1. Additionally, since bp−2,1 6= 0,

if νp(ap(n − 1, n)) > sp(n), then νp(ap(n − 1, N)) > sp(n) for all N ≥ n. Thus, this

requirement also gives the condition on n for which ep(n − 1, n) = sp(n). Note that(
(p+1)x−p

x

)
6≡ 0 mod p if and only if, when n is written in base-p expansion, the sum of

any two consecutive digits, except perhaps the sums involving the last three digits,

is less than p. For if n = . . . d2d1d0 in base-p expansion, then, mod p,

(
(p+ 1)x− p

x

)
=

(
· · ·+ (d3 + d2)p2 + (d2 + d1 − 1)p+ d1

· · ·+ d3p2 + d2p+ d1

)
6≡ 0

if and only if di+1 + di < p for i ≥ 2, d2 + d1 ≤ p and d1 6= 0. So if n = . . . d2d10 in

base-p expansion, then ep(n− 1, n) = sp(n) if and only if d1 = 1 and di+1 + di < p for

i ≥ 2.

Now let t = 1. If h = 0, then bt−1−h,∆+h = b0,∆ = 1. So νp(ap(n− 1, n)) = sp(n) if

and only if
(

(p+1)x
x

)
6≡ 0 mod p. For h > 0 and ∆ = p, we have h ≥ t, and

(
(p+1)x−p

x

)
≡ 0

mod p, by Lemma 3.6, as above. For h > 0 and ∆ < p, we have bp−2+t−h,∆+h =

bp−1−h,∆+h, which is 0, by (3.2), since ∆ ≥ 1. Thus, if νp(ap(n − 1, n)) > sp(n),

then νp(ap(n − 1, N)) > sp(n) for N ≥ n. Hence, ep(n − 1, n) = sp(n) if and only if(
(p+1)x
x

)
6≡ 0 mod p. As noted by Davis in [7], for n = . . . d2d1d0 in base-p expansion,

we have, mod p,

(
(p+ 1)x

x

)
=

(
· · ·+ (d3 + d2)p2 + (d2 + d1)p+ d1

· · ·+ d3p2 + d2p+ d1

)
6≡ 0
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if and only if di+1 + di < p for i ≥ 1. Therefore, if n = . . . d2d11 in base-p expansion,

then ep(n− 1, n) = sp(n) if and only if di+1 + di < p for i ≥ 1.

Finally, let 2 ≤ t ≤ p− 1. If h ≤ t− 1, then νp(ap(n− 1, N)) = sp(n) if and only if

bt−1−h,∆+h 6= 0 or bt−1−h,h 6= 0 and
(

(p+1)x
x

)
6≡ 0 mod p. Note that, for ∆ < p or h = 0,

we have bt−1−h,∆+h = 0 if t + ∆ ≥ p + 1, by (3.2). For t + ∆ ≤ p, or for ∆ = p and

h > 0, consider h = t− 1. This gives bt−1−h,∆+h = b0,∆+h = 1 and bt−1−h,h = b0,h = 1.

So for N = p(x+ t− 1), we have νp(ap(n− 1, N)) = sp(n) if and only if
(

(p+1)x
x

)
6≡ 0

mod p and t+ ∆̄ ≤ p, where t = d0 and ∆̄ = d1.

For h ≥ t, when ∆ = p and h > 0, the binomial coefficient
(

(p+1)x−p
x

)
≡ 0 mod p

by Lemma 3.6, as seen earlier. For ∆ < p or h = 0, the coefficient bp−2+t−h,∆+h = 0

if 2− t ≤ ∆, by (3.2), which is true since ∆ ≥ 1 and t ≥ 2. Thus, νp(ap(n− 1, N)) >

sp(n) when h ≥ t. So if νp(ap(n − 1, N)) > sp(n) for N = p(x + t − 1), then

νp(ap(n − 1, N)) > sp(n) for all N ≥ n. Hence, ep(n − 1, n) = sp(n) if and only if(
(p+1)x
x

)
6≡ 0 mod p and t + ∆̄ ≤ p. As we saw before, this condition is equivalent to

requiring that if n = . . . d2d1d0 in base-p expansion, then di+1 + di < p for i ≥ 1 and

d1 + d0 ≤ p.
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Chapter 4

Sharpness of Inequalities

In this section we compare the values of sp(n), ep(n − 1, n) and ēp(n) for the prime

5. The term ē5(n) is the maximum value of e5(k, n) over all k, and we use kmax to

denote the least positive k for which e5(k, n) = ē5(n). The chapter ends with a table

that lists each of these values for 2 ≤ n ≤ 128. These were computed using Maple.

Similar tables by Davis can be found in [7] for the prime 2 and in [12] for the prime

3. The purpose of the table is to study how close each of the following inequalities,

s5(n) ≤ e5(n− 1, n) ≤ ē5(n),

is to being sharp for various n.

The value of s5(n), for each n, was computed using the formula sp(n) = n− 1 +

νp

(⌊
n
p

⌋
!
)

. The value of e5(n− 1, n) was determined using the definition, e5(k, n) =

min(ν5(
∑

i 6≡0(5)(−1)i
(
N
i

)
ik) : N ≥ n). Letting N = n − 1 + j, Maple was used to

compute the value of

ν5(
∑
i 6≡0(5)

(−1)i
(
n− 1 + j

i

)
ik), (4.1)

where k = n − 1 and 1 ≤ j ≤ 25, since we only need to check N ≥ n such that⌊
N
p2

⌋
=
⌊
n
p2

⌋
. For each n, the smallest value in this array gives e5(n− 1, n).
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Table 4.1: Values of ν5(a5(k,N)) relevant to e5(k, 25)

ν5(k − 24) \ N 25 26 27 28 29 30
17 26 22 22 22 24 24
18 27 23 23 23 25 25
19 ≥ 28 24 24 24 26 ≥ 26
20 28 25 25 25 27 26
21 28 ≥ 26 ≥ 26 ≥ 26 28 26
≥ 22 28 26 26 26 ≥ 29 26

Table 4.2: Values of ν5(a5(k,N)) relevant to e5(k, 26)

ν5(k − 25) \ N 26 27 28 29 30 31
17 22 22 22 22 27 23
18 23 23 23 23 27 24
19 24 24 24 24 27 25
20 25 25 25 25 27 26
21 ≥ 26 ≥ 26 ≥ 26 ≥ 26 27 ≥ 27
≥ 22 26 26 26 26 27 27

The three tables on this page provide the relevant values of e5(k, n) for n = 25

and n = 26, to illustrate how the value of ē5(n) was determined when kmax = n − 1

and kmax > n− 1. The value ē5(n) was determined, using Maple, by first computing

the values of (4.1), with n ≤ N ≤ n+ 24, for increasing values of ν5(k− (n−1)). The

smallest value in each row is e5(k, n), which is shown in boldface. Values of N larger

than those shown yield larger values of ν5(a5(k,N)), and so they do not determine

the value of e5(k, n). The charts display the largest values of e5(k, n), and show when

these values stabilize. The largest value of e5(k, n) is ē5(n). In the case n = 26 and

ν5(k − 25) = 21, the value of e5(k, n) is not clear initally. The third table gives more

information, providing the values of e5(k, n) for this case.

Table 4.3: Values of ν5(a5(k,N)) relevant to e5(k, 26) when ν5(k − 25) = 21

ν5(k−25
4
− 521) \ N 26 27 28 29 30 31
21 26 26 26 26 27 ≥ 27
≥ 22 ≥ 27 ≥ 27 ≥ 27 ≥ 27 27 27
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From Table 4.4 we see that when n ≡ 1 or 2 mod 25, and perhaps 3 mod 53, the

inequality e5(n − 1, n) ≤ ē5(n) fails by 1 to be sharp. Here the maximum value of

e5(k, n) first occurs at a value of k equal to n − 1 plus a multiple of a power of 5.

Determining whether this pattern continues requires further study. Additionally, the

inequality s5(n) ≤ e5(n−1, n) appears to fail by one to be sharp when n is a multiple

of 25, but in these cases the inequality e5(n− 1, n) ≤ ē5(n) seems to be sharp. Since

the above observations suggest agreement with the work of Davis for the primes 2

and 3, we have the following analogous conjecture for the prime 5.

Conjecture 4.2. If n = 5t, where t ≥ 2, then ē5(n) = e5(n − 1, n) = s5(n) + 1. If

n = 5t + 1, with t ≥ 1, then ē5(n) = e5(n− 1, n) + 1 = s5(n) + 1.

This conjecture claims that the inequality s5(n) ≤ e5(n − 1, n) fails to be sharp by

1 when n = 5t, for t > 1. As we already know from Theorem 1.4, that inequality is

sharp for n = 5t + 1, but in this case kmax 6= n − 1. It appears that kmax occurs at

5t + 4 · 55t−1+t−1 in these cases. Davis has proven a result similar to Conjecture 4.2

for the prime 2 in [10] and has conjectured the analogous statement to hold for the

prime 3.

A goal for future work would be to prove Conjecture 4.2 and then to prove an

analogous statement for all odd primes. Eventually we would like to have a sharp lower

bound for exp(SU(n)) for each n. One aspect of accomplishing this is to determine

exactly when the inequality ep(n− 1, n) ≤ ēp(n) is not sharp, and then to find ēp(n)

for those n. Then we would still need to find ēp(n) for those n such that kmax = n−1

where the inequality sp(n) ≤ ep(n− 1, n) is not sharp.
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Table 4.4: Comparison of values

n s5(n) e5(n− 1, n) ē5(n) kmax

2 1 1 1 1
3 2 2 2 2
4 3 3 3 3
5 4 4 4 4
6 5 5 6 5 + 4 · 54

7 6 6 6 6
8 7 7 7 7
9 8 8 8 8
10 9 10 10 9
11 10 10 11 10 + 4 · 3 · 58

12 11 11 11 11
13 12 12 12 12
14 13 14 14 13
15 14 15 15 14
16 15 15 16 15 + 4 · 3 · 512

17 16 16 16 16
18 17 18 18 17
19 18 19 19 18
20 19 20 20 19
21 20 20 21 20 + 4 · 516

22 21 22 22 21
23 22 24 24 22
24 23 25 25 23
25 25 26 26 24
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n s5(n) e5(n− 1, n) ē5(n) kmax

26 26 26 27 25 + 4 · 521

27 27 27 28 26 + 4 · 521

28 28 28 28 27
29 29 29 29 28
30 30 30 30 29
31 31 31 32 30 + 4 · 3 · 524

32 32 32 32 31
33 33 33 33 32
34 34 34 34 33
35 35 36 36 34
36 36 36 37 35 + 4 · 528

37 37 37 37 36
38 38 38 38 37
39 39 40 40 38
40 40 41 41 39
41 41 41 42 40 + 4 · 3 · 532

42 42 42 42 41
43 43 44 44 42
44 44 46 46 43
45 45 47 47 44
46 46 47 48 45 + 4 · 3 · 537

47 47 49 49 46
48 48 50 50 47
49 49 51 51 48
50 51 52 52 49
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n s5(n) e5(n− 1, n) ē5(n) kmax

51 52 52 53 50 + 4 · 3 · 541

52 53 53 54 51 + 4 · 3 · 541

53 54 54 54 52
54 55 55 55 53
55 56 56 56 54
56 57 57 58 55 + 4 · 3 · 544

57 58 58 58 56
58 59 59 59 57
59 60 60 60 58
60 61 62 62 59
61 62 62 63 60 + 4 · 3 · 548

62 63 63 63 61
63 64 64 64 62
64 65 66 66 63
65 66 68 68 64
66 68 68 69 65 + 4 · 3 · 553

67 68 69 69 66
68 69 71 71 67
69 70 72 72 68
70 71 73 73 69
71 72 73 74 70 + 4 · 4 · 557

72 73 75 75 71
73 74 76 76 72
74 75 77 77 73
75 77 78 78 74
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n s5(n) e5(n− 1, n) ē5(n) kmax

76 78 78 79 75 + 4 · 3 · 561

77 79 79 80 76 + 4 · 3 · 561

78 80 80 80 77
79 81 81 81 78
80 82 82 82 79
81 83 83 84 80 + 4 · 564

82 84 84 84 81
83 85 85 85 82
84 86 86 86 83
85 87 88 88 84
86 88 89 90 85 + 4 · 569

87 89 90 90 86
88 90 91 91 87
89 91 93 93 88
90 92 94 94 89
91 93 94 95 90 + 4 · 2 · 573

92 94 95 95 91
93 95 97 97 92
94 96 98 98 93
95 97 99 99 94
96 98 99 100 95 + 4 · 2 · 577

97 99 101 101 96
98 100 102 102 97
99 101 103 103 98
100 103 104 104 99
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n s5(n) e5(n− 1, n) ē5(n) kmax

101 104 104 105 100 + 4 · 581

102 105 105 106 101 + 4 · 581

103 106 106 106 102
104 107 107 107 103
105 108 108 108 104
106 109 111 111 105
107 110 112 112 106
108 111 113 113 107
109 112 114 114 108
110 113 116 116 109
111 114 116 117 110 + 4 · 4 · 590

112 115 117 117 111
113 116 118 118 112
114 117 120 120 113
115 118 121 121 114
116 119 121 122 115 + 4 · 594

117 120 122 122 116
118 121 124 124 117
119 122 125 125 118
120 123 126 126 119
121 124 126 127 120 + 4 · 4 · 598

122 125 128 128 121
123 126 129 129 122
124 127 130 130 123
125 130 131 131 124
126 131 131 132 125 + 4 · 5102

127 132 132 134 126 + 4 · (5103 + 5102)
128 133 133 134 127 + 4 · 5102
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