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ABSTRACT 

Deep Data Locality on Apache Hadoop 

By 

Sungchul Lee 

Dr. Yoohwan Kim, Examination Committee Co-Chair 

Dr. Ju-Yeon Jo, Examination Committee Co-Chair 

School of Computer Science 

University of Nevada, Las Vegas 

 

 

The amount of data being collected in various areas such as social media, network, 

scientific instrument, mobile devices, and sensors is growing continuously, and the technology to 

process them is also advancing rapidly. One of the fundamental technologies to process big data 

is Apache Hadoop that has been adopted by many commercial products, such as InfoSphere by 

IBM, or Spark by Cloudera. MapReduce on Hadoop has been widely used in many data science 

applications. As a dominant big data processing platform, the performance of MapReduce on 

Hadoop system has a significant impact on the big data processing capability across multiple 

industries. Most of the research for improving the speed of big data analysis has been on Hadoop 

modules such as Hadoop common, Hadoop Distribute File System (HDFS), Hadoop Yet Another 

Resource Negotiator (YARN) and Hadoop MapReduce. In this research, we focused on data 

locality on HDFS to improve the performance of MapReduce. To reduce the amount of data 

transfer, MapReduce has been utilizing data locality. However, even though the majority of the 

processing cost occurs in the later stages, data locality has been utilized only in the early stages, 

which we call Shallow Data Locality (SDL). As a result, the benefit of data locality has not been 

fully realized. We have explored a new concept called Deep Data Locality (DDL) where the data 
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is pre-arranged to maximize the locality in the later stages. Specifically, we introduce two 

implementation methods of the DDL, i.e., block-based DDL and key-based DDL. 

In block-based DDL, the data blocks are pre-arranged to reduce the block copying time in 

two ways. First the RLM blocks are eliminated. Under the conventional default block placement 

policy (DBPP), data blocks are randomly placed on any available slave nodes, requiring a copy 

of RLM (Rack-Local Map) blocks. In block-based DDL, blocks are placed to avoid RLMs to 

reduce the block copy time. Second, block-based DDL concentrates the blocks in a smaller 

number of nodes and reduces the data transfer time among them. We analyzed the block 

distribution status with the customer review data from TripAdvisor and measured the 

performances with Terasort Benchmark. Our test result shows that the execution times of Map 

and Shuffle have been improved by up to 25% and 31% respectively.  

In key-based DDL, the input data is divided into several blocks and stored in HDFS 

before going into the Map stage. In comparison with conventional blocks that have random keys, 

our blocks have a unique key. This requires a pre-sorting of the key-value pairs, which can be 

done during ETL process. This eliminates some data movements in map, shuffle, and reduce 

stages, and thereby improves the performance. In our experiments, MapReduce with key-based 

DDL performed 21.9% faster than default MapReduce and 13.3% faster than MapReduce with 

block-based DDL. Additionally, key-based DDL can be combined with other methods to further 

improve the performance. When key-based DDL and block-based DDL are combined, the 

Hadoop performance went up by 34.4%. 

In this research, we developed the MapReduce workflow models with a novel 

computational model. We developed a numerical simulator that integrates the computational 

models. The model faithfully predicts the Hadoop performance under various conditions. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Motivation 

This chapter introduces the big data trends and the principles of the Apache Hadoop. It 

describes how Hadoop resolves the network congestion to handle the big data traffic load. There 

are three methods to improve the performance of Hadoop, that is, 3rd party software on YARN, 

hardware, and data locality, which is described in this chapter. We also briefly introduce the data 

locality concept and the limitations of traditional approaches on data locality in Hadoop. 

The amount of data being collected in various areas such as social media, network, 

scientific instrument, mobile devices, and sensors is growing continuously, and the technology to 

process them is also advancing rapidly. Every year, the data production is growing faster. 2.5 

quintillion bytes of data are generated [113]. It is bigger than the total size of data generated in 

the past two years [1]. According to Soprasteria, information technology consulting company, 

they expect that the data size generated in 2020 will be 44 times greater than in 2009, resulting in 

44 zettabytes in 2020 [2]. Therefore, the companies in big data industry, such as Oracle, IBM, 

and Google, will try to develop analysis software to handle large amount data. Especially, the 

company tries to make statistical software such as BigR [3, 4], Rhadoop [5] and Spark [6], which 

analyze the massive amount of data in a fast, convenient and efficient [7]. This software is based 

on Hadoop system [8] to handling rage amount of data.  

According to the Wikibon [102], the value of big data market accounts for approximately 

92.2 billons. Wikibon divided the big data market into three parts: big data service (40% of all 

big data market’s revenues in 2015), hardware (31%) and software (29 percent). Among the 
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three, the big data software is projected to grow faster than others. The ratio of big data software 

will be 46% of the big data market in 2026.  

The big data comes from various sources such as social media, stock exchange, 

transportation, search engine, healthcare, etc. Data sources are categorized into three types: 1) 

structured data such as relational data, 2). semi-structured data such as XML data, CSV data, and 

3) unstructured data such as Word, PDF, text, media, etc. The unstructured data is difficult to 

handle using traditional methods, yet the amount of unstructured or semi-structured data are 

increasing than the amount of structured data. Hadoop is well suited in handling such data, and 

therefore, it has received a huge attention by data scientists. Apache Hadoop (hereafter, Hadoop) 

is a software framework in big data analytics, and performance of this framework has a 

substantial impact on the entire system [9]. It has been widely used by scientists and industry.  

 

1.2 Hadoop Performance Research 

Recently, people have started focusing on high speed performance of big data analysis to 

apply a result of the analysis into the real world. Company and researcher have shifted their 

focus towards the real-time strategy with big data to get more values and benefits. They have 

studied to increase Hadoop performance to analyze data of various aspect and huge size. 

There are three major ways to improve Hadoop performance: 3rd party software on 

YARN, data locality in Hadoop and Hardware. Figure 1-1 shows the performance research area 

in Hadoop system. The words with blue color in Figure 1-1 represents the 3rd part software 

research like Spark [6], MapR [103] and so on. By the 3rd part software such as in-memory 

system, big data scientists can analyze big data in real-time. However, there is some limitation 
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such as cost and size of data. Bascially, memory is more expensive than a hard disk to store a 

data. Therefore, analysis data is limited by the size of memory.  

The green color in Figure 1-1 represents the hardware research such as Solid-State Disk 

[104], InfiniBand [105] and so on. The basic concept of Hadoop is that it uses cheap machines to 

handle such a big data. Whenever the data size is enlarged, the hardware’s cost will be 

dramatically increased to support networks, hard disk, memory and so on. So, Hadoop pursues to 

use cheap machines, 4 cores, 8 Gbyte memory and 2 hard disks, for installing Hadoop clustering. 

 

Figure 1-1. Composition of Hadoop system with physical hardware and 3rd party software 
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The Hardware and 3rd party software required extra costs or didn’t give impact on the core of 

Hadoop system.  

One important principle of Hadoop is "Moving Computation is cheaper than Moving 

Data" [1], as shown in Figure 1-2. A requested computation by an application is much more 

efficient if it is executed near the data on which it operates. This is especially true when the size 

of the data set is large [1]. This minimizes network congestion among nodes in MapReduce and 

increases overall throughput of the system. The assumption is that it is often better to migrate the 

computation closer to where the data is located rather than moving the data to where the 

application is running like in Figure 1-2. Hadoop Distributed File System (HDFS) provides 

interfaces for applications to move closer to where the data are located [10]. Researchers have 

 

Figure 1-2. Moving code to Slave nodes. 
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been trying the minimize network congestion, increase transmission rates, to increase the overall 

throughput of the Hadoop system.  

 

1.3 Overview of Our Works 

Our research explores the concept of data locality. The red color in Figure 1-2 shows the 

data locality research on Hadoop system. The data locality research can improve Hadoop 

performance without extra cost by addressing inside of Hadoop system such as YARN, Hadoop 

Distributed File System (HDFS), MapReduce. (The detail information of Hadoop will be 

expalined in Chapter 2. ). Therefore, We have been studying the data locality to give broad 

impact in big data software without any extra cost. 

There are two data locality concepts in Hadoop. One is the initial block locations on 

HDFS. The information of initial blocks location is used for allocating task into mappers and 

reducers. The other is the partitions. After finding the task on mapper, partitions are sent to 

reduers based on the key. The process of moving partitions creates a network congestion 

between mappers and reducers. Traditional data locality research [12-22, 27,31,109-111] studied 

the initial location of blocks to allocate task into mapper. The research tried to increase the data 

locality between mappers and data nodes. In a research [111], the performance of Hadoop was 

improved by up to 28%, when tested with 10 GB of input data on WordCound and Terasort 

Benchmark [50].  

However, there are many limitations on the data locality research. (Chapter 4.6.) Most of 

the data locality research focused on early stages (i.e., Map) and overlooked later stages (i.e., 

shuffle) in MapReduce, even though the locality can be increased in later stages. Most researches 

in the data locality addressed only the initial locations of blocks on HDFS. They generally use a 
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strategy using a fixed number of replicas on HDFS, same block for the replicases on HDFS and 

default block placement polish on HDFS. This is because they start optimizing the performance 

after uploading the input data into HDFS.  

In this research, we applied the data locality to all stages of MapReduce. We developed a 

new concept of deep data locality (DDL). Furthermore, we have explored two types of DDL, that 

is, Block-based DDL (Chapter 6.2) and Key-based DDL (Chapter 6.3). The DDL concept can be 

applied to multiple stages of MapReduce regardless of application types, number of containers, 

or node status. DDL concept can be combined with other data locality methods, such as 3rd party 

software or speciaized hardware.  

Another contribution of our work is the computational models and simulation tools that 

can predict Hadoop performance by considering various factors. Predicting hadoopo 

performance has been difficult due to several reasons. First, it is hard to predict node’s status in 

each stage. Hadoop uses multiple nodes to process big data. Also, each node executes several 

different daemons and the. status of nodes changes constantly. Consequently, it is hard to predict 

each node’s status and daemons. Second, each stage in MapReduce uses a different number of 

containers, such as mapper and reducer, to process the data dependindg on the configuration. The 

nodes status and the locality on Hadoop can be changed based on the configuration and locations 

of blocks. Lastly, the blocks in HDFS are used differently depending on the types of applications. 

And the locality of blocks in HDFS are changed accordingly. We created a computational model 

that considers these factors, and developed simulation software that integrates the model. 
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CHAPTER 2. HADOOP SYSTEM 

 

Chapter 2 introduces the background of Hadoop system. Understanding the background 

of Hadoop is important to know the reason of the data locality caused in the Hadoop system. 

There are four modules in Hadoop system such as Hadoop common, YARN, MapReduce, and 

HDFS. Among the four modules, the HDFS and MapReduce are illustrated in this chapter. 

HDFS and MapReduce are crucial elements for understanding the data locality. All blocks are in 

HDFS and the data locality is caused when MapReduce process the blocks in HDFS. First, this 

chapter explained the Master-Slave architecture to understand the physical Hadoop structure. 

Second, the detail of HDFS is explained about the block system in HDFS and block replication.  

Understanding HDFS helps to explain the data locality in chapter 3 and 4, and Block-based DDL 

in chapter 6. Lastly, the process procedure of MapReduce is illustrated by dividing the 

MapReduce into eight stages. The process procedure of MapReduce is related to the Hadoop 

performance analysis model in chapter 5. The map, transfer, and reducer among the eight stages 

must be understood for comprehend the Hadoop performance analysis model in chapter 5. 

Hadoop is an open-source software framework that works as distributed processing of big 

data [10]. Hadoop offers file system and operating system abstraction written in Java. Big data 

includes various data types – such as unstructured, semi-structured, and structured data – 

characterized by their size. Analysis of the unstructured and semi-structured data sets are 

complex process to be accomplished using a single desktop computer. Utilization of the Hadoop 

system is essential to solve such problems. Hadoop is mainly consisted of four modules: Hadoop 
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Common, Hadoop HDFS, Hadoop Yet Another Resource Negotiator (YARN), and Hadoop 

MapReduce.  

Hadoop Common is a basic module for supporting the system. It refers to common 

utilities and essential Java libraries needed by Hadoop. Hadoop Common includes a base core of 

the framework that supports services and processes on Hadoop, such as abstraction of the basic 

operating system and associated file system.  

Hadoop YARN module is a framework for job scheduling and application management. 

YARN was released in the upgraded Hadoop version 2.0. In YARN, Resource Manager (RM) 

supports scheduling, and Node Manager (NM) are used for monitoring in the Hadoop system. 

RM receives the job from the client, schedules the job, and allocates it to slave nodes based on 

the slave’s status. Each slave node has NM, a framework for monitoring resources such as CPU, 

memory, disk, network, and so on. NM responds to the request of RM about status. By this 

function, Hadoop achieve scalability, multi-tenancy, cluster utilization, and compatibility.  

HDFS is a file system for Hadoop. Input data is split into smaller blocks and distributed 

in a Hadoop cluster. HDFS use three VM daemons – such as NameNode, Secondary NameNode 

and DataNode – to manage the small pieces of block in Hadoop. MapReduce can be executed on 

the blocks using mapper and reducer, and this provides the scalability that is needed for big data 

processing [11]. 

 

2.1 Master-Slave Architecture 

Hadoop has master-slave architecture. Master layer manages the application and slave-

node resources. Slave layer stores the data and processes the application with the data. The 

master node is normally called NameNode and it works mainly for the user and MapReduce, 
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because, the node stores all HDFS metadata that contains information on block locations, 

namespace, identification, and replicas about blocks in slave nodes. In Hadoop version 1.0, 

JobTracker in NameNode manages all slave nodes and applications to process the job. 

JobTracker distributes the job into slave node through Task Tracker in version 1.0. JobTracker 

schedules and manage the entire job. JobTracker calculates a number for Mapper and Reducer to 

execute the job. And, JobTracker selects TaskTracker in Slave Node. Most of the data locality 

scheduling research in Map stage started with JobTracker and TaskTracker to increase the 

locality in Map stage [12-22].  

Each TaskTracker in slave node manages mappers and reducers to process the 

 

Figure 2-1. Hadoop VM Daemon. 
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MapReduce job. Hadoop version 1.0 has a scaling issue and is limited to run other frameworks 

by JobTracker. In the updated Hadoop version 2.0, JobTracker's role is divided into mainly three 

different type of daemons to manage clusters and applications by YARN. These include RM in 

master layer, the Job History (JH) server, and NM in slave layer. TaskTracker has been replaced 

with Node Managers (NMs) and Application Masters (AMs). Here We skip the JH server 

because it doesn’t improve the performance of Hadoop in YARN.  

YARN mainly has three different types of daemons: RM, NM, and an application 

manager (AM) (Figure 2-1). RM in master node is the master that manages all NMs and 

schedules the applications. RM receives the report from NMs through the heartbeat of each NM. 

Based on this information, RM launches the AMs in slave nodes and scheduling to process 

allocated applications. Task Tracker's role in version 1.0 is split into NM and AM. Table 2-1 

shows how to change the name and role in the Hadoop daemon. Each slave node has its own NM 

to take instructions from RM, manage resources, and report status to RM. AMs work with NMs 

to launch containers. There is one AM per application. Each container takes the mapper and 

reducer role using the YARN child daemon. Current data locality research with scheduler uses 

TABLE 2-1. Hadoop Version 1 vs. Hadoop Version 2 

 
Hadoop version 1 Hadoop version 2 

Cluster Manage JobTracker in Master Node Resource Manager in Resource Node 

Application Manager JobTracker in Master Node Application Master in Slave Node 

Task Manager Task Tracker in Slave Node Application Master in Slave Node 

Task Mapper/Reducer in Slave Node Container (YARN child) in Slave Node 
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YARN to allocate tasks into containers that have the data stored locally on disk.  

 

2.2 Hadoop Distributed File System 

Hadoop uses HDFS modules for a distributed file system. HDFS is the file management 

layer of Hadoop. It is a Java-based distributed file system for big data. HDFS is more highly 

fault tolerant and requires low-cost hardware than other distributed file systems. By HDFS, 

Hadoop can access input data with high throughput and handle large data sets. The HDFS cluster 

has a single NameNode that manages the file system namespace and regulates access to blocks 

as a master node in Hadoop version 1.0. Some of the roles are moved to the resource manager in 

version 2.0 to manage the slave node during the process for scaling the Hadoop system. HDFS 

mainly has three daemons to manage the blocks – such as NameNode, Secondary NameNode, 

and DataNode (DN). The NameNode is a centralized system to handle DNs using metadata 

which contains all the information of related block such as locations, name, identification, and so 

on.  

Secondary NameNode is the backup for NameNode with fsimage. When NameNode 

restarts or stops, the entire Hadoop system in version 1.0 does not work at all. Secondary 

NameNode serves as a master node to overcome this issue. The secondary node puts a 

checkpoint in the filesystem, helping NameNode to function better or recover. Figure 2-1 shows 

the HDFS daemon in master node and slave node. Each slave node has one DN to manage the 

data set and report the block information to NameNode periodically. DNs are responsible for 

serving read and write requests from the file system’s clients. The DNs also perform block 

creation, deletion, and replication upon instruction from NameNode. 
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Figure 2-2 shows the basic architecture of HDFS which stores the file as block units. 

HDFS splits large files into blocks (64MB or more) and distributes the blocks to data nodes. For 

example, if the file size is 1 gigabyte, the file divides by 128MB and each block stores at slave 

nodes. The block size in HDFS is set at “hdfs-site.xml” configure file by “dfs.blocksize.” The 

blocks normally are duplicated to other slave nodes. The number of duplicating is set at “hdfs-

site.xml” configure file by “file.replication.” The detail configuration of HDFS is in the appendix. 

The duplicating location is selected by block placement policy in HDFS. The default block 

placement policy in HDFS is the second duplicating block and has to be stored in a different rack 

of the server. Accordingly, HDFS manages files as block units and copies them to several slave 

nodes. Block information – such as size, location, and replication – is stored at master nodes 

using a metadata file.  

This block system in HDFS and replication are important to data location research which 

seeks to improve data locality in Map stage and Shuffle stage. 

 

Figure 2-2. Basic architecture of HDFS. 
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2.2.1 Block System in HDFS 

One large file is difficult to read using a single machine [9], but small files are easy to 

read on a single machine. Also, HDFS supports write-once, read-many semantics on files. 

Hadoop splits the file into several components and sends the code to process the application like 

Figure 2-3. HDFS stores the original data to be divided into several blocks which will be 

distributed into several DNs. The block size can be set by the HDFS configuration file which 

contains basic setup for HDFS (hdfs-site.xml). The default block size is 128 MB in HDFS 

configuration in Hadoop version 2.0. Each DN manages the block and master node stores the 

block information using metadata. 

For example, if the block size is set to 128 MB in the HDFS configuration and the 

original data size is 3 GB, then HDFS splits the input data into 24 blocks of 128 MB each. 

Additionally, HDFS makes replicas of the blocks (detail in next section). Each block is replicated 

 

Figure 2-3 Hadoop split input data into several blocks.  
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a number of times based on the HDFS configuration to ensure high data availability, fault 

tolerance, and the ability to run on commodity hardware. When RM has requested the 

application with 3 gigabytes from a user, RM normally selects a container which has a block to 

process the application. Each container processes less data than the original large data file. 

 

2.2.2 Block Replication 

 HDFS reliably stores the large data file across nodes in clusters. Each component of 

input data is stored as a sequence of blocks. All the blocks are the same size except the last block. 

Each slave node makes replicas of the block for fault tolerance. The number of replicas is set at 

 

Figure 2-4. Basic replica placement policy on HDFS. 



15 

 

replica factor in hdfs-site.xml (see Appendix). The replicas are stored at different nodes. The 

replicas follow the HDFS’s placement policy – such as rack awareness to distribute the replicas 

for data reliability, availability, and network bandwidth utilization [23]. Figure 2-4 shows the 

replica’s role in Hadoop. 

For example, if there are three replicas of a block, the first replica is stored at the rack 1 

slave node and the first replica makes a copy in the rack 2 slave node. The replica in the rack 2 

slave node duplicates itself at a different node in same rack (rack 2). Hadoop provides reliable 

storage without backup data by the replicas. Hadoop improves data locality to process big data 

via replicas in HDFS.  

The purpose of a rack-aware replica placement policy is to improve data reliability, 

availability, and network bandwidth utilization. For the most part, the blocks spread out to nodes. 

Communication between two nodes in different racks has to pass through switches. In most cases, 

network bandwidth among machines in the same rack is greater than network bandwidth among 

nodes in different racks. Some data locality research uses the replica placement policy because 

Hadoop can keep fault tolerant and improve data locality by using speculative task [24, 25] with 

the replicas [26]. When one of the nodes that processes the job with mapper or reducer is down, 

the other node can replace the node's job as a speculative task with the replica. If there is no 

replica in another node, the application fails to finish the job. 

 

2.3 Basic Architecture of MapReduce 

MapReduce is a programming model and an associated implementation for processing in 

parallel on the HDFS [9].  
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Figure 2-5 shows the basic architecture of MapReduce in Hadoop version 1.0. Job 

Tracker in master node manages job scheduling. Job Tracker distributes the job to the selected 

TaskTracker in slave node. Task Tracker performs the job using Mapper and Reducer. The job, 

an actual program working for a user’s request, is divided into several slaves by JobTracker. 

JobTracker is located on master node to schedule jobs and track tasks. The distributed job is 

 

Figure 2-5. Basic architecture of MapReduce in Hadoop version 1.X. 
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called a task, which is the execution of a mapper or a reducer on a block. Mapper is a middle 

process to map the input key-value pairs to a set of intermediate key-value pairs. Normally, the 

task allocated to mapper depends on data locality in map stage. Each slave node has TaskTracker 

to report the status of mapper or reducer to JobTracker. After map stage, mapper sorts the 

intermediate output by key to send it to Reducer. This phase is called the sort/spill phase.  

When one of the mappers finishes the sort/spill phase, the mapper sends the intermediate 

output to reducer for shuffle stage. The Shuffle phase works on the network. Figure 2-6 

illustrates shuffling the pair by key and value. By shuffling, each reducer gathers a specific key 

and value without repetition of the key.  

When the intermediate output reaches slave nodes, each slave merges the intermediate 

output by key. This is called the Merge phase. When the some amount of merge files is stacked 

the reducer starts to process the batch job. The reducer stage processes the intermediate output. 

After processing, reducer produces a new set of final output. This final output is stored in the 

 

Figure 2-6. Hadoop Shuffling. 
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HDFS as a result for the client’s request.  

The MapReduce stage is important to improving the processing time of MapReduce 

using data locality. In next section, We detail use of MapReduce with Hadoop version 2.0 to 

understand data locality research in Hadoop. 

 

2.3.1 MapReduce on Hadoop Version 2.0 

This section presents an overview of current research on Hadoop performance 

enhancements and the background on MapReduce and YARN. We will briefly describe the 

workflow of MapReduce as illustrated in Figure 2-7 and survey the related research works.  

YARN is divided into two major parts, one for job scheduling using Scheduler, and the 

other for resource management via Application Manager. MapReduce is divided into three major 

stages. The first stage is Map which reads input data and emits key/value pairs in the data node. 

The second stage is Shuffle which redistributes data to reducer based on the output of map. 

Sort/Spill and Merge stages are typically included in the Shuffle stage. The third stage is Reduce 

 

Fig 2-7. The workflow of MapReduce on Hadoop Version 2.0. 
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which accepts a key and all the values having the same key and emits the final output to the data 

nodes. The workflow of MapReduce is further divided into the following eight stages. 

1) Scheduling: When a client submits a job to the Master node, the Resource Manager in the 

Master node executes the Application Manager which decides whether to accept the job 

or not. Application Manager in the master nodes manages the Application Master (App 

Master in Figure 2-7) which handles the containers in the job. When a master node 

receives a client’s request, the Application Manager selects one Application Master 

among the slave nodes to execute the job. The Resource Managers schedule the job using 

scheduler if the job is accepted. The scheduler creates several Containers in the data 

nodes based on the Resource Tracker which stores the configure information and the 

status of resources in the data node, to divide the job into several tasks. Many previous 

researches have studied the scheduler in order to optimize the usage of resources in the 

data node to the highest level using container allocation [27], data locality [28, 29], 

storage [30], optimizing configure of Hadoop [31] and workload balancing [32].  

2) Monitoring: Each node has a single Node Manager which reports the status of the node, 

such as CPU, memory, and disk status to the Resource Manager using Heartbeat, the 

communication method among containers, Application Master and Node Manager. 

Scheduler makes the job scheduling based on the information of Heartbeat [33] and the 

Heartbeat has an influence on the initialization and the termination of a job [34]. 

Application Master reports a hardware and software failure to Resource Manager via 

Heartbeat when Application Master detects the failures from containers and data nodes 

[35]. Therefore, the Monitoring stage is important to assist scheduler and to make the 

system highly fault-tolerant.  
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3) Map: Mappers in containers execute the task using the data block in data nodes. This is a 

part of the actual data manipulation for the job requested by the client. All mappers in the 

activated containers by Application Master execute the tasks in parallel. The performance 

of mapper depends on scheduling [27, 31], data locality [28, 29], programmer skills, 

container’s resources, data size and data complexity.  

4) Sort/Spill: The output pair which is emitted by the mapper is called partition. The partition 

is stored and sorted in the key/value buffer in the memory in order to process the batch 

job. The size of the buffer is configured by Resource Tracker and when its limited is 

reached, Spill is started. This stage has been studied as part of the Shuffle stage because 

the performance of this stage depends on the programming in map and hardware 

resources. However, it may be worth to study it separately.  

5) Shuffle: The key/value pairs in the spilled partition are sent to reducer in Slave nodes 

based on the key via the network in the Shuffle stage. Most of the network problems 

occur in the Shuffle stage due to the huge volume of data. Increasing the network 

performance is a big issue and researchers have approached it from Software Define 

Network (SDN) [36], Remote Direct Memory Access (RDMA) [37], and Hadoop 

configurations [38], etc. 

6) Merge: The partitions in the partition set is merged at container which works as a reducer 

in order to finish the job. This stage has been usually studied along with the Shuffle stage, 

such as in-memory with compression [39, 40].  

7) Reduce: The reducer in the Slave nodes processes the merged partition set to make a result 

of the application for the client’s request. All reducers in the containers activated by 

Application Master run the tasks in parallel. The performance of reducer depends on 
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scheduling [27, 31], data locality [28, 29], programmer skills, container resources, data 

size, and data complexity, as was the case in the Map stage. However, unlike in the Map 

stage, the Reduce stage can be improved by in-memory computing [39, 40, 41, 42]. 

8) Output: The output of reducer is stored at the slave nodes. This output data may be still big 

even after going through Map and Reduce stages. Therefore, data compression is needed 

in the Output stage. Various methods of compression have been studied to reduce the 

data size in order to transfer the data among cluster nodes [32, 41]. Although this stage 

has not drawn much attention due to the maturity of compression algorithms, it is still 

important to improve inter-node communication efficiency.  

We note that there are other areas affecting the performance, not in the workflow of 

MapReduce, such as storage method of big data [30], garbage collection [40], in-memory 

computing [39, 40, 41], pre-partitioning [44], etc. Most of the research related to the 

performance of MapReduce affect only one specific stage out of all. For example, the SDN [36] 

on the Hadoop increases the performance of shuffle stage. The research of Hadoop scheduling 

[27] and data locality [28, 29] affect Map stage to increase the speed of Hadoop. Unlikely, the 

LNBPP extends Map stage to Shuffle stage in the workflow of MapReduce to improve the 

performance of MapReduce.  
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CHAPTER 3. DATA LOCALITY 

 

Chapter 3 explain the data locality. The overall concept of the data locality research will 

be addressed in the chapter. There are three data localities on Hadoop, such as data-local, rack-

local, and off-rack. This chapter clarified the detail of the three data localities on HDFS. This 

chapter showed how the data localities appear on the HDFS and the effect of the rack-local on 

the Map stage. The data localities cause the network congestion during the MapReduce 

processing. Understanding the data localities is important to comprehend the traditional data 

locality research and the importance of the data locality research on Hadoop. At the end of the 

chapter, the basic scheme of data locality is explained to easily understand the traditional data 

locality in chapter 4. 

Achieving data locality at one of the stage in MapReduce – map, shuffle and reduce stage 

– is quite intuitive. The input data is split into small data blocks and distributed to slave nodes. 

We refer this type of data as locality SDL (Shallow Data Locality). However, the data gets 

relocated at Shuffle stage and the Reduce stage cannot utilize any locality. If the data is pre-

distributed to the appropriate Reduce nodes, it will reduce the Shuffle time and improve the 

performance. We refer this type of data locality DDL (Deep Data Locality). However, due to the 

high complexity of Hadoop configuration and the difficulty of cross-optimization between 

Hadoop and MapReduce, the data locality on shuffle stage has not been studied widely yet. To 

utilize DDL fully, an integrated approach between Hadoop and MR is needed. 

Researchers have tried to modify the unbalanced block placement in slave nodes to make 

the performance more consistent across the slave nodes using data location [28, 31], scheduling 
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job [31] and so on. They focused on the resource of slave nodes such as CPU and memory to 

increase the utilization of the resources in the slave nodes to the highest level. Although those 

efforts improved the performance to some degree, the performance has not been fully optimized 

because they have not considered the locations of intermediate outputs in Shuffle and Reduce 

stages. Before addressing the main idea of DDL, We introduce the data locality in this chapter to 

understand DDL.  

The data locality impacts performance of Hadoop such as speed, reliability, analysis, 

availability, network bandwidth utilization, especially distributing data and data management 

components. Data Locality allows a Map program to be executed on the same node where the 

data is located to reduce network traffic. During this process, to increase the data locality, 

Hadoop makes several replicas of the data blocks, and distribute them to multiple slave nodes. 

This duplication increases not only the data availability but also data reliability in case of data 

loss. 

 

3.1 Basic Concept of Data Locality 

Before processing big data in Hadoop, the user must upload the input data into HDFS. 

The input data is divided into several chunks that are stored in slave nodes and made into several 

replicas in different nodes [10]. Therefore, processing data in Hadoop works on HDFS using 

blocks in slave nodes. The type of block location can be divided by three based on the location of 

the blocks. Fig 3-1 shows the three types of locality in HDFS: data-local, rack-local, and off-rack. 
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1) Data-local (local disk): The data block is on the local disk. The node can process the data 

block without a copy of data from other nodes as in Figure 3-1’s Block 1 in slave node. 

So, there is no overhead of network traffic. Mostly, YARN tries to allocate a job to the 

node which stores the data block in data local. Most data locality research has tried to 

keep data-local in MapReduce.  

2) Rack-local (in-rack disk): The data block is on another node in the same rack. So, the 

node has to copy the data block from another node in the same rack as in Figure 3-1’s 

Block 2. When YARN does not receive any heartbeat from the node that has the data 

block for processing the job, YARN allocates the job into another node which is idle even 

though the node does not have the data block. The rack-local directs network traffic 

among nodes to copy source block. In the shuffle stage, there is the rack-local in shuffle 

stage because of partitions in mapper. Mapper has several partitions based on key, and 

the partitions have to move to reducer based on key, eventually one of partition has to 

 

Figure 3-1 Data locality in HDFS. 
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move other nodes. The scheduler research in Hadoop tries to allocate the job to a node in 

the same rack or local-disk to reduce network traffic.  

3) Off-rack (off-rack disk, off-switch, rack off): The data block is not on the same rack but 

on another rack. Sometimes, the processing node has to copy the source block from 

another node in another rack like Figure 3-1 ‘s Block 3. If the node does not have Block 3 

to process a job in MapReduce, the node has to copy Block 3 from another node that has 

Block 3 to process the job. The off-rack creates the largest delay in network traffic among 

data locality in Hadoop. There are some off-rack situation in Hadoop on the cloud system 

because the cloud system supports resource using VM with several server. So, the 

literature [45-49] tries to gather the slave nodes in the same server, if the nodes have the 

sequence of input data.  

Data locality mostly is applied in map, shuffle, and reduce stages in big data processing, 

especially in MapReduce. YARN, for example, selects the slave node which has the blocks like 

data-local to process a job in map stage. By sending the code to the slave nodes, Hadoop can 

improve locality in map stage. YARN has considered locality when YARN selects a container as 

a mapper.  

 

3.2 Example of Data Locality with Test 

To understand the movement of blocks during shuffling, We have tracked the locations of 

blocks and containers on HDFS. We uploaded 2.2GB of customer review data from TripAdvisor 

on HDFS composed of 20 slave nodes. The data is divided into 18 blocks and 6 replicas are 

created for each block, resulting in 108 blocks. They are spread to 20 slave nodes by HDFS.  
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 Table 3-1 shows the locations of those blocks in 20 slave nodes on HDFS in one test run. 

This block assignment is different in every execution. According to Table 3-1, the blocks are 

randomly spread by the DBPP on the HDFS. Therefore, each slave node has a different number 

of blocks ranging from 2 to 9. We tracked the blocks when MapReduce processes the job which 

is submitted by clients. After executing the job 20 times, We observed that the performance of 

MapReduce fluctuates significantly and We found a correlation between the number of RLMs 

and the performance. RLM (Rack-Local Map) is the number of map tasks that doesn’t have a 

block on its own node but has it in another node on the same rack. The RLM introduces an 

overhead while executing the Map stage because the block has to be copied from another node to 

Table 3-1. Block location in slave nodes 
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the node running the task. Because different blocks are assigned for each node in every new 

execution, each execution generates different number of RLM. Table 3-2 and Figure 3-2 show 

the result of the test runs where TM and TP are increased as the number of RLM is increased.   

Table 3-3 shows one example of activated slave nodes which have activated container. In some 

cases, the nodes do not have the necessary blocks. For example, according to Table 3-1, node 17 

does not have block 9, so it needs to copy the block that is called RLM. There are three RLMs in 

this case. Likewise, blocks 12, and 14 are copied by slave nodes 13 and 13 respectively. The 

number of RLMs varies dynamically for each execution of a job, which is determined by 

Application Master.   

Table 3-2. Effect of RLM on TM and TP on DBPP 

Number of 

RLMs 

TM 

(sec) 

Tp 

(sec) 

# of 

test 

runs 

2 27.974 51 3 

3 29.274 53 3 

4 36.620 62 3 

5 37.828 64 3 

6 38.105 65 5 

7 41.461 71 3 

* The values are the average of the test runs. 

 

 

Figure 3-2. Effect of RLM on TM and TP on DBPP. 
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3.3 Basic Scheme for Data Locality 

 According to related work, most data locality research has focused on scheduling to 

reduce the data transferring among nodes because of version and previous distributed system 

research. Therefore, to understand basice scheme of data locality is very useful understanding the 

data locality. In this section, We show the basic scheme of data locality scheduling in Hadoop. 

The fundamental principle of locality scheduling is reducing the amount of data transferring 

among nodes when processing moves to the next stage. The scheduler selects the node that has a 

data block to process data. Algorithm 3-1 shows the principle to achieve the locality in 

MapReduce. This scheme does not consider the resource of the node to select the mapper and 

reducer, but it is sufficient to show a basic scheme of locality schedule for understanding. The 

first while loop in Algorithm 3-1 keeps rotating until all the block is allocated to the slave nodes. 

The second while loop finds the data-local node to allocate the block in mapper. The data-local 

nodes, that have real data in local disk, are selected to increase data-local. If the block is in the 

node, the node is selected as a mapper to process the block. If the block is not in the list of nodes, 

one of the list nodes will be allocated based on the node that has the block in the same rack. If 

the node cannot be selected in the local disk, the scheduler selects the node from the near node 

which has real data to reduce the off-rack. After finishing the map stage, there are several 

Table 3-3. Allocated slave nodes to process MapReduce on HDFS 

Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Assigned 

Node 
1 17 13 13 12 13 13 12 13 17 17 1 13 17 13 17 17 12 

Has the 

block? 
Y Y Y Y Y Y Y Y Y N Y Y N Y N Y Y Y 
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partitions in each node. To increase the data-local in the for loop, the node, which has most of 

the key, is selected as a reducer.  

The next chapter explained how the performance of Hadoop is improved by traditional 

data locality. The basic scheme of data locality will be useful to understanding the data locality 

scheduling.   

 Algorithm 3-1: Basic scheme for scheduling.  

  Input: D (the list of block number in the data) 

  Output: P (Partition), O (Output in Reducer) 

// b: list of block numbers, L: list of nodes and b, n: node 

//m: mapper, r: reducer, M: mapper list, R: reducer list, k: key  

1  Initialization: P  0, R  0, b  0, N  0, O  (0, 0), M  0 

 // select node for mapper 

2 while D < > 0 do 

3  b  get_number_blocks (D) 

4  nget_next_node(L) 

5   while b <> 0 || n <> 0 do  

6    if b in n 

7    Add_mapper(M,n,b) 

8    b = 0; 

9   end 

10   nget_next_node(L) 

11   end 

12  If (n ==0 &&b <>0) Add_mapper_from_near (M,L,b) 

13  end 

14  P (each n)  do_map (M) 

 // select reducer 

15  for each mapper m  

16  k<-get_max_key (m,K,P) 

17  R<-set_reducer (R,k,m) 

18  remove_key (k,K) 

19 end 

20 O do reduce(R) 
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CHAPTER 4. RELATED WORK OF DATA LOCALITY RESEARCH 

 

Chapter 4 illustrates the related works based on the process procedure of MapReduce. 

The process procedure can be divided into three stages, such as map, shuffle and reduce. Most of 

researchers increased one of the performance among the three stages. In this chapter, we will 

explain about the previous research of the data locality in each stage. We will illustrate how the 

data locality is applied in each stage by chapter 4. 

Based on a previous research related to Hadoop performance with big data processing, 

we introduced data locality in Hadoop and MapReduce. We focused on data locality in software 

methods without extra cost. So, We did not employ hardware solutions – RAMDISK [88], solid 

state drives [89,90], or software define network [91] (SDN) – to increase Hadoop performance. 

Researchers have tried to minimize network congestion to increase transmission rates, 

and to increase overall throughput of the system using data locality as a software field that 

evaluates Hadoop performance. This concept is important to reduce data processing time in 

Hadoop. It is necessary to understand data locality in Hadoop to apply the concept in Hadoop 

system. In this section, We divide the three parts of big data processing stages using MapReduce 

to explain data locality in Hadoop with previous data locality findings.  

 

4.1 Data Locality in Map 

Mapper is a container in slave nodes that executes the task with the data block. This is 

part of the actual data manipulation for the job requested by the client. The map stage works in 
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parallel with mappers. All mappers in the activated containers are controlled by AM and execute 

the tasks in parallel. Most study of the map stage has focused on scheduling and increasing 

Hadoop performance by improving locality. Monitoring using the heartbeat in Hadoop is 

necessary for task scheduling. Therefore, to improve locality in map stage, We need to know 

about monitoring and scheduling on YARN. Figure 4-1 shows the relation between master nodes 

and slave nodes in map stage.  

• Monitoring: NM in slave node (Figure 3-3) reports the status of the node – CPU, memory, 

and disk status – to the RM using heartbeat, the communication method among 

containers AM and NM. Also, RM stores the information of slave nodes in the metadata. 

Scheduler performs scheduling based on the information in heartbeat [51] and metadata. 

This information influences initialization and termination of a job [52]. AM reports a 

 

Figure 4-1. Map stage. 
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hardware and software failure to RM via heartbeat when AM detects the failures from 

containers and data nodes [53]. Also, RM detects slave nodes that are slower than 

expected, to be preferentially scheduled on faster nodes. This is called speculative 

execution in Hadoop. Therefore, the monitoring phase is important to assist scheduler and 

makes the system highly fault tolerant. 

• Scheduling: The scheduler in master node creates several containers in the slave nodes to 

divide the job into different tasks. NM in slave node is a Java Virtual Machine (JVM) 

process associated with a collection of physical resources including CPU core, disk, and 

memory. When a client submits a job to the master node, the RM in the master node 

executes the AM which decides whether to accept the job or not. Application manager in 

the master nodes manages the AM that controls the containers in the job. When a master 

node receives a client’s request, the Application Manager selects one AM among the 

slave nodes to execute the job. The resource managers schedule the job using scheduler if 

the job is accepted. The scheduler creates several containers in the data nodes based on 

the Resource Tracker which stores the configure information and status of resources in 

the data node, to divide the job into several tasks.  

Mostly, scheduling tries to allocate the job into slave nodes, that have the input block in 

the own disk, to reduce rack-local and off-rack using monitoring and heartbeat in Hadoop. 

Research has focused on scheduling the container (task/mapper) for achieving locality and 

fairness. 

Scheduling research in Hadoop can be divided into three parts like JobTracker, YARN, and 

Cloud as follows: 
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1) JobTracker: In Hadoop early version 0.X and 1.X, JobTracker in name node manages all 

slave nodes and applications to process the job. JobTracker distributes the job into slave 

node through Tasktracker in SlaveNodes in Hadoop version 1.X. JobTracker schedules 

and handles the entire job. JobTracker directs mapper and reducer to execute the job and 

selects TaskTracker in slave node. Each TaskTracker in slave node manager directs 

mappers and reducers to process the MapReduce job. The literature [12 - 22] suggests 

that scheduling of JobTracker can result in improved data locality in the map stage.  

2) YARN: After Hadoop version 2.0, YARN is used for scheduling. The Hadoop YARN 

module is a framework for job scheduling and application management. When YARN 

has requested the application from the client, it schedules the application into slave nodes. 

YARN schedules the job based on the slave’s status. The literature [54-58] supportsd use 

of YARN for achieving data locality in the map stage.  

3) Cloud: Cloud computing provides services, such as Platform as a Service (PaaS) like 

microsoft Azure [59] or Infrastrucutre as a Service(IaaS) like Amazon Ib Service (AWS) 

[60]. The provider serves the Hadoop system on a cloud system. The cloud system has a 

scheduler to allocate the hardware resource to slave nodes in Hadoop. The literature [45-

49] suggests use of the cloud scheduler to allocate Hadoop VM into the physically 

located machine with the same server based on data location. 

Additional studies of data locality in map stage include the following: 

4) Network: The network status can make a network perspective algorithm [61, 62] 

employing the queueing model for network routing algorithm with data locality.  
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5) Placement: The literrature [63-69] focuses on location of data and block on HDFS to 

group the task in the same rack. Studies [70,71] endeavor to gather nodes on the same 

server by organizing cluster. 

6) Speculative and replica: When one of the nodes that processes the job with 

mapper/reducer is down, the other node can replace the node's function as a speculative 

task with the replicas. The literature considers the speculative [72, 73] and replica [74] to 

improve locality in the shuffle stage by selecting slave node that already has the block on 

the local disk in the map stage. 

 

4.2 Data Locality in Shuffle 

The key/value pairs in the spilled partition are sent to a reducer in slave node based on 

the key via the network in the shuffle stage. Most network problems occur in the shuffle stage 

because of the high data volume. One of the main functions in shuffle stage is data transfer from 

mapper to reducer. Two more functions in shuffle stage are as follows:  

• Sort/spill: Before transferring the middle output into reducer, Sort/spill works in mapper 

as shown in Figure 2-5. The output pair which is emitted by the mapper is called partition. 

The partition is stored and sorted in the key/value buffer in memory in order to process 

the batch job. The size of the buffer is configured by Resource  

Tracker in version 1.X (or RM in version 2.X). When its limited is reached, spill is 

started.  

• Merge: After reducer receives the partitions from the mapper, the partitions are merged in 

order to batch job and reduce a stage.  



35 

 

There are mainly three elements to improve locality in shuffle stage (scheduling, block 

location and key): 

1) Scheduling: Scheduling in JobTracker [19] or YARN [76, 77] affects locality in shuffle 

stage like data locality in map. The scheduling in shuffle stage is related to scheduling 

reducer task and network status. We only count on the scheduling research that considers 

network status to schedule the reduce task. The other reducer task scheduling will be 

handled in data localiity in reduce. The literature suggests shuffle service instead of 

shuffle stage [78] or inside shuffle stage [79] using the scheduler.  

2) Placement: Hadoop splits input data into several chunks and stores it in the cluster using 

HDFS. So, block location is related to the locality. There are some off-rack in the shuffle 

stage if a node in another rack is selected as a reducer. The literature [63, 72, 80] supports 

reducing the off-rack using block location in HDFS. These studies recommend 

manipulating block in HDFS before processing MapReduce or application. The block is 

located in the same rack by grouping blocks [80] or block location policy [63, 72].  

3) Partition/Key: The partition, middle ouput of the map, is deliverd to the reducer based on 

the key. So, the key is the main criterion to transfer data into reducer nodes. The literature 

[81-84, 86, 87] supports reduction of data transferring – selecting the reducer that has 

most of the key [82, 83], improving the partitioning algorithm [81, 85] in clustering, 

applying query optimization algorithm [86], using replica [84], pre-shuffle and pre-

fetching [87] before shuffle stage. 
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4.3 Data Locality in Reduce 

The reducer in slave node processes the merged partition set complete the application and 

store the result in HDFS. This is also part of the data manipulation for the job requested by the 

client, as in map stage. All reducers in the containers activated by AM run the tasks in parallel.  

Research on data locality in reduce stage is very similar to study of data locality in 

shuffle stage because both tried to reduce network traffic between mapper and reducer. Here We 

divide the research into two parts. One is data locality in the shuffle that focuses on network and 

partitions in shuffle stage. The other is data locality in reduce stage that concentrates on selecting 

the reducer in order to improve locality.   

Reduce stage can use a scheduler like map stage and service like shuffle stage to improve 

locality. 

1) Scheduling: Most scheduling research in reduce stage uses JobTracker, YARN, and 

cluster like map stage. The research into dynamic scheduling [20, 54, 58] dynamically 

selects the slot to reduce network traffic using map task location and mapper/reducer 

information. The previous research of task scheduling [49, 75, 92-96] mostly uses 

sampling and mapper location to reduce tasks. Also, cluster scheduling [45,46] uses the 

block and container location in order to remove rack-local and off-local by selecting 

reducer in the same rack that contains the map tasks.  

2) Service/Framework: The research [78] suggests a new service between shuffle stage and 

reduce stage or to make a framework to input an extra module in the middle of 

MapReduce to improve data locality in the reduce stage [97]. 

Much work about locality has been completed to reduce off-rack and rack-local. Mostly, 

locality in Hadoop concentrates on scheduling in MapReduce. Also, the research studies one or 
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two stages in MapReduce. In the next section, the locality studies are clustered based on this 

stage, and We show trends in this field. 

 

4.4 Analyzing Previous Data Locality Research 

We make a clustering locality research based on the stages in MapReduce, as in Figure4-

2. Most research has swarmed in scheduling for improving locality in MapReduce using 

JobTracker and YARN. Scheduling in reduce stage and shuffle stage correlates to each other, but, 

We distinguish between scheduling in shuffle stage [19, 76-79] and scheduling in reduce stage 

[20, 45, 49, 54, 58, 75, 92, 96] based on the network and reducer. Some studies [19, 20, 45, 49, 

54, 58, 63] affect two stages in MapReduce to improve locality. Scheduling and data placement 

overlap in two stages, according to Figure 4-2.  

We reorganized the locality studies using Figure 4-2 to analyze trends in locality by 

creating a timeline similar to Table 4-1. At first, the scheduling in map stage is investigated like 

traditional scheduling studies. Various data locality impacts in Hadoop appeared after announced 

TABLE 4-1. Time line of data locality research  

  

2007 

Initial Version 

0.14.1 

2009 

Version 

0.20 

2011 

HDFS/MR 

0.23 

2012 

YARN 

2.0-Alpha 

2013 

Stable 

Version 

2.2 

2014 

REST 

API 

2.5 

2016 

3.0 

Alpha 

Section 

Map 

Scheduling  [12-22,45-49,54-58] N/A 4.1-1,2,3 

Network     [61,62] N/A 4.1-4 

Placement   [63-71] N/A 4.1-5 

Speculative/Replica   [72-74]   N/A 4.1-6 

Shuffle 

Scheduling    [19, 76-79] N/A 4.2-1 

Placement    [63,72,80] N/A 4.2-2 

Partition/Key   [81-87] N/A 4.2-3 

Reduce 
Scheduling   [20,45,49,54,58,75,92-96] N/A 4.3-1 

Service/Framework    [78,97] N/A 4.3-2 
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in the HDFS and MapReduce by Apache in 2011. This is relevant to data placement studies 

because the research can easily modify data location using HDFS. The speculative task research 

and partition/key research are interested in the performance property of MapReduce, but the 

researchers are indifferent about the speculative task research because the speculative task is 

reduced by the stable version of Hadoop.  

After adding YARN in Hadoop version 2.0, an interesting network in shuffle and new 

service in Hadoop became available. With YARN, the developer and researcher are alloId 

multiple data processing engines, such as real-time streaming, SQL, in-memory, NoSQL, Scala, 

and so on. YARN works as a data operating system to manage the cluster resource.  

 

Figure 4-2. Clustering locality research  



39 

 

As a result, the researcher can apply their findings in Hadoop using YARN. Specifically, 

the shuffle stage begins to increase Hadoop performance using scheduling and data placement. 

Also, the research of data locality in reduce stage are interested because the researcher can use 

YARN for increasing Hadoop performance using the framework and new service.  

With the upgraded Hadoop, various research areas to improve locality became possible. 

Data locality measures the performance of MapReduce using various methods, such as Terasort 

Benchmark [50], Teragen, TeraSort, PageRank, WordCount, and so on. The performance test 

shows different results based on the type of applications. For big data testing, researchers have to 

consider data size and type, such as structured, semi-structured, and unstructured. So, We divide 

the big data application into categories as in Table 4-2, based on a mapper/reducer number and 

the size of input/middle output. Table 4-2 shows the categories and most efficient research for 

data locality in Hadoop.  

1) Input > Partition: Data locality in map stage is most important if input data are larger 

than middle output (partitions) in shuffle stage. Because the more data is constrated on 

the mapper than reducer (in the case of the Mapper = Reducer and Mapper < Reducer in 

Table 4-2). The amount of data in mapper and reducer, However, should be considered 

Table 4-2. Category of application type and highest efficiency research 

 Mapper>Reducer Mapper=Reducer Mapper<Reducer 

Input >Partition Map, Shuffle, Reduce Map Map 

Input =Partition Shuffle, Reduce Map, Shuffle, Reduce Map 

Input <Partition Shuffle, Reduce Shuffle, Reduce Map, Shuffle, Reduce 
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when the number of nodes, which role as a Reducer, are fewer than the number of nodes, 

which role as a Mapper (in the case of Mapper > Reducer in Table 4-2). Because the 

reducer could be handle more data than mapper. Work that focuses on improving locality 

in map stage tries to reduce the size of the data that has to be transferred to other nodes 

for the map task.  

2) Input = Partition: If the input data is equal to the Partition in size, the mapper/reducer 

number should be considered. A stage that has fewer taskers (mapper or reducer) should 

transfer more data than another stage which has more taskers. For example, there are 

more data trasnsfers in the reduce stage if the number of reducer nodes is fewer than the 

number of mapper nodes (in the case of Mapper > Reducer in Table 4-2). In that case, 

the research that focuses on the shuffle and reduce stage is better performance than the 

other. If the number of the mapper is smaller than the number of the reducer (Mapper < 

Reducer in Table 4-2), the research that focuses on map stage is better performance than 

others. 

3) Input < Partition: If the partition size is larger than the input data, the amount of data 

transferred is increased in the shuffle stage. Reseachers have tried to reduce data transfer 

between mapper and reducer using selected nodes that had a mapper, as a reducer. Mostly, 

the shuffle stage and reduce stage research is better performance than other research 

when middle output is large (Mapper > Reducer, Mapper = Reducer in Table 4-2). If the 

number of the mapper is smaller than the number of the reducer (Mapper < Reducer in 

Table 4-2), map stage research also could improve the locality for Hadoop performance, 

because the network traffic can be concentrated on the mapper.  



41 

 

Each locality research study demonstrates different ability based on the application type 

because each stage in MapReduce uses the different size of data in processing big data.  

4.5 Performance Testing 

We measured the performance of MapReduce with previous research using Terasort and 

WordCount to understand the specifics. We divided this testing into two parts with different 

experimental environments to show various aspects of data locality. 

 

4.5.1 Terasort Benchmark 

Terasort Benchmark [50] is commonly used for measuring the performance of 

MapReduce [66-68]. We conducted testing on CloudLab [98], a cloud computing platform for 

research. My test utilized one master node which manages HDFS, one RM node, and ten slave 

nodes. Each node was equipped with 6 gigabytes memory, two Xeon E5-2650v2 processors 

(eight cores each, 2.6 GHz) and 1 TB hard drive. Hadoop 2.7.1 was installed on a Linux machine 

 

Figure 4-3. Process time of Map in Terasort. 
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running Ubuntu 14. Six different random data sets were created using Teragen (i.e., two 30 GB 

data, two 60 GB data, and two 120 GB data). The data consisted of key and value pairs. The data 

set sizes were chosen following research on Hadoop testing by Intel [99].  

We used ten mappers and one reducer to process the data.  Figure 4-3 shows the result of 

Map processing with default MapReduce, data locality scheduling, and data placement. The data 

placement increased the data-local in map stage by placing the data in the nodes, which will 

work as a mapper. The placement worked when the input data was uploaded on HDFS before 

processing MapReduce. Some extra processing time might be required when uploading the input 

data into HDFS. The scheduling considered all angles of MapReduce with any given situation. 

Sometimes the processing time in map stage was increased because of rack-local in data locality 

scheduling.  

In shuffle stage, However, the processing time with the scheduling took less time than 

 

Figure 4-4. Process time of shuffle. 
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default processing time in shuffle stage. Figure 4-4 shows the result of processing time in shuffle 

stage. Data locality scheduling took less time (about 200 sec) than default MapReduce in Figure 

4-4 with 120 gigabytes of data. Data placement and data locality scheduling reduced the 

processing time in shuffle by reducing the rack-local and off-rack. The Terasort application is in 

Input = Partition and Mapper > Reducer in Table 4-2. So, the shuffle stage is more efficient 

than map stage to increase performance of MapReduce.  

 

4.5.2 WordCount 

In the previous test, We used large-scale data set sizes (30 gigabytes, 60 gigabytes, and 

120 gigabytes), but We was limited by the network and physical disk location in Cloud Lab. So, 

We installed Hadoop 2.7.1 in five physical machines in the University of Nevada, Las Vegas 

(UNLV) Security Lab. The master node and RM node were installed in the machine with 16 

 

Figure 4-5. WordCount process time with default and data placement. 
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gigabytes memory, Intel Core i5, and solid state drive. The four slave nodes were installed in the 

machines with 8 gigabytes memory, Intel Core i5, and the eMMC disk. We used 1 gigabyte 

random data for MapReduce with WordCount.  

The process time of reduce stage was 0 because the output of reduce stage in WordCount 

got too smaller after shuffle stage, also, already processed in sort/spill and merge phase. The 

result of processing time is shown in Figure 4-5. In this test, We only compared between 

MapReduce on the default Hadoop system and MapReduce with data placement. There was no 

rack-local or off-rack in the map stage because We used only four slave nodes with three replicas 

in the same switch. There was network traffic in the shuffle stage because We used sixteen 

mappers and two reducers. The partitions in the sixteen mappers had to be transferred to reducers.  

We only applied simple data placement on HDFS. Data placement on HDFS can reduce 

the processing time of the shuffle stage by selecting the reducer among the nodes that has most 

of the partitions. In the WordCount test, the processing time was not influenced much by data 

locality in the shuffle stage and reduce stage because the middle output was small and the 

number of reducers could be increased. This test was still valuable, However, when the input 

data and middle output are large, as in Figure 4-4.  

 

4.6 Limitation of Shallow Data Locality 

While the data locality works in small scale, it does not work as expected in large scale 

where Hadoop is most needed. There are two major reasons for this. First, when there are a large 

number of data blocks and computing nodes, there is inefficiency on block assignments, and 

Hadoop will attempt to utilize the computing nodes even when the data block is not locally 

present. The number of RLMs also gets increased when the number of blocks is increased. 
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Second, the mostly data locality currently only applies to one or two stages - map, shuffle and 

reduce stage. We have analyzed the processing times of each stage with Terasort Benchmark [50] 

and obtained the result in Figure 4-6, which clearly shows that the later stages take much longer 

time than Map in the Terasort Benchmark test. That means Shuffle and Merge in some case of 

application takes longer than other stages such as reduce and map.  

Unfortunately, the majority of the big data processing cost is actually in the later stages 

(shuffle, merge, reduce) in some application case. Current most research of data locality have 

focused only on one stage with specific application type (one of Table 4-2). They overlook the 

other stages such as map, shuffle and reduce stage. Even though the Rack-Local and Off-Rack 

increase in Reduce stage like Figure 4-7. The data locality on Hadoop can change based on the 

stage of MapReduce and the type of application.  

Therefore, the data locality in the all stages such as map, shuffle, reduce, have to be 

consider to improve performance of Hadoop processing time. 

 

 
*Map appears as a line as it is too small 

Figure 4-6. Processing Times of Each Step of MapReduce. 
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Figure 4-7 Changing Data Locality between Map and Reduce step. 
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CHAPTER 5. MAPREDUCE COMPUTATIONAL MODEL 

 

Chapter 5 explains the Hadoop performance analysis model. In this chapter, the simple 

computational model is illustrated for understanding the process of MapReduce. We advanced 

the simple computation model by adding the data locality. The advanced Hadoop performance 

model will be explained in 5.2 section. The 5.2 section will show the advantage about the data 

locality of Hadoop performance by comparing it to the default MapReduce. By the section, we 

can calculate the performance of Hadoop with data locality. 

 

5.1 Simple Computational Model 

We developed a simple computational model to understand the performance of 

MapReduce based on Terasort in its default configuration. The model does not consider other 

factors, such as in-memory computing [39, 40, 41], algorithms [100], scheduling [27,31], etc. 

This model considers only four major stages, i.e., map, shuffle, merge and reduce. We do not 

consider three small stages of, scheduling, monitoring, and output. They are rather related to 

HDFS and their stages are mostly controlled by the HDFS configurations. We merge the 

Spill/Sort stage into the map stage because the spill/sort is invoked only when the mapper makes 

an output. Each container processes one block at a time. We assume that the processing time (P) 

of a container with one block is identical for all containers. And, all containers start the job at the 

same time. 
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1)  Map: Its performance depends on the number of containers (|C|) and the number of 

Blocks (B). Each container can get a different number of blocks. We define sets C and B 

as following. 

C = {C1, C2, …Ci … Ck},  where Ci is a Container 

B = {B1, B2, …Bi … Bk},  where Bi is the number of blocks in Ci.  

The containers work in parallel in the Map stage. So, the total processing time for the Map stage 

(TM) is defined as follows. 

TM = Max {P × Bj},  where j = 1 … k 

2)  Shuffle: The total process time of Shuffle stage depends on the amount of mapper’s 

outputs. There are several methods of data delivery, but We employ a FIFO method for 

simplicity. The delivered file size depends on the mapper’s output, which is same as the 

number of blocks in case of Terasort. We define F as a set of numbers of delivered files 

in a container:  

F = {F1, F2 …Fj …, Fn},   where Fj is a number of delivered files from Cj.  

The total number of files sent from mapper to reducer via shuffle is: 





n

i

iT FF
1

 

Let tf be the delivery time of one file. Then the total processing time (Ts) of Shuffle stage is:  

TS = FT × tf 

3) Merge: Merge stage is started when the output of mapper reaches a slave node which 

works as a reducer. We use one reducer in our Terasort Benchmark. For simplicity, we 
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assume that all mapper’s output is received by one reducer, although multiple reducers 

working in parallel can be used. The processing time of Merge stage depends on how 

many mapper’s output is made. The total number of mapper’s output is: 





k

i

iT BB
1

 

Let tmerge be the merging time between Bi and Bi+1, then the total processing time (TE) of merge 

is: 

TE = (BT -1) * tmerge 

4)  Reduce: When Merge stage is finished, the container works as a reducer. In the Terasort 

Benchmark, only one slave node is used as a reducer. So, the processing speed depends 

on the resource of the selected slave node and the size of the input data. Like in mapper, 

We define P as the processing time of one block in the container. Then the total 

processing time (TR) of reduce is: 

TR = P × BT 

By combining all the above, We get the total time (TP) of MapReduce processing: 

TP = TM + TS + TE + TR 

Note that the number of blocks such as BT cannot be controlled directly by MapReduce 

because it is determined by the configuration of the HDFS which sets up the block size and the 

input data size. Also, there is an inverse relationship between BT and P. For example, if BT is 

reduced in the configuration of HDFS, then P is increased because the block size gets larger. 
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Therefore, researchers have tried to reduce TM and P using scheduling [29], hardware solution 

[101], in-memory computing [39,40,41], data locality [28, 29], and so on. Also, they have tried 

to reduce tf using RESTful API, Software Defined Network [36] and Remote Direct Memory 

Access (RDMA) [37], and so on. 

 

5.2 Advanced Analyzing Hadoop Performance Model 

In the previous section, we made the simple computational model based on MapReduce 

process. However, the simple computation model is not enough to measure the effectiveness of 

data locality in Hadoop. Data locality is related on the location of blocks in HDFS and the 

location of keys in blocks. Therefore, we should need to combine the simple computational 

model with the location information. We made a more detailed computational model for deep 

data locality by including the keys and location information into computation model. We 

explained the computational model for deep data locality in the section stage by stage. 

Table 5-1. Constants 

Constant Symbol Definition 

𝛼 Processing time for one block 

𝛽 Transferring time of one block under Rack-Local 

𝛿 Transferring time of one block under Off-Rack 

𝜸 Processing time of Sort, Spill and Fetch for one block 

 

Table 5-2. Time Variables 

Time Symbol Definition 

T1 Processing time of First Stage (TM +TS) 

TM Processing time of Map function 

TS Processing time of Sort, Spill, Fetch in Shuffle 

T2 Processing time of Second Stage (TT +T 
R) 

TT Processing time of Transfer in Shuffle 

TR Processing time of Reduce function 

T Total processing time of Hadoop 
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How important is data locality and how much improvement can DDL bring in? To 

answer it, we have developed a Hadoop performance analysis model. This model is divided into 

two stages, 1) Map function and sort/spill/fetch, processed by the mapper, and 2) Transfer and 

reduce function, processed by the reducer. Table 5-1, 5-2, and 5-3 summarizes the notations used 

in this model.  Figure 5-1 illustrates the related stages for the time variables.  

 

5.2.1 First Stage (T1) 

All mappers work in parallel to make partitions from the allocated blocks. The resulting 

Table 5-3. Other Variables 

Symbol Definition Symbol Definition 

M Number of Mapper in Map Pr Ratio of Partition in Mapper, {P1, P2, …, Pr} 

R Number of Reducer in Reduce |Bi| Total number of allocated blocks in Mapper (𝑖) 

RLMi 
Number of Rack Local Map (RLM) in 

Mapper (𝑖) 
Bi 

Set of allocated blocks in Mapper (𝑖), { b1 , 
b2, ..., bB} 

𝑖 Mapper ID RDL Ratio of Disk-Local 

𝑗 Reducer ID RRL Ratio of Rack-Local 

  ROR Ratio of Off-Rack 

 

 

Figure 5-1 Time Variables for Each Stage 
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partitions go through sort/spill and fetch. There are two data localities at this stage, i.e., Data-

Local and Rack-Local. The processing time of each block takes the same time (𝛼) in mapper (i). 

Transferring each block (b) takes the same time (𝛽). Therefore, we have:  

𝑇𝑀 ( 𝑖, 𝑏 )  =  {
𝛼 ,         (𝐼𝑓 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑁𝑜𝑑𝑒) 

 𝛼 +  𝛽 ,  (𝐼𝑓 𝑏𝑙𝑜𝑐𝑘 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑁𝑜𝑑𝑒) 
  𝑏 𝑖𝑠 𝑎 𝑏𝑙𝑜𝑐𝑘 𝑖𝑑 

Figure 5-2 shows the map function time in mapper (i). The processing time of Map function (TM) 

depends on the number of allocated blocks and the number of RLM:  

TM (i)={ |Bi|  ∗ 𝛼 + RLMi * β}   

The processing time of sort/spill and fetch on each mapper can be calculated by multiplying the 

number of allocated blocks and processing time of Sort, Spill and Fetch for one block (𝛾):  

𝑇𝑆(𝑖) = (|Bi| ∗ 𝛾)  

The processing time of the first stage on each mapper can be calculated by adding the above two 

 

Figure 5-2 Map Function time. 
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processing times as shown in Figure 5-3. The longest processing time among all mappers is the 

processing time of the first stage (T1):  

T1 = 𝑚𝑎𝑥
1≤𝑖≤𝑀

 {TM (𝑖) + 𝑇𝑆(𝑖)} 

=  𝑚𝑎𝑥
1≤𝑖≤𝑀

 { |Bi| ∗𝛼 + RLMi * β + ( |Bi| ∗ 𝛾 )}         

= 𝑚𝑎𝑥
1≤𝑖≤𝑀

 { |Bi|∗ (𝛼 + 𝛾)+RLMi * β } 

Figure 5-4 shows the effect of RLM in this model. The more RLM blocks there are, the longer 

the processing time becomes.  

 

5.2.2 Second Stage (T2) 

This stage includes two processing times, that is, the transfer time between mapper and 

reducer, and the processing time of reducer function. To get them, we need to know the middle 

output size on the reducer (j). The middle output size on the reducer can be calculated by the 

 

Figure 5-3 Processing Time of First Stage on Mapper (i). 
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partitions in the mappers because each mapper is supposed to send the partition to the reducer. 

 

Figure 5-4 First Stage Calculation Graph. 

RLM = 0%

RLM =100%

 

Figure 5-5 Data Locality in Second Stage. 
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The middle output size of the reducer is the total number of block multiplied by the partition 

ratio per block:   

𝑃𝑟(𝑗) ∗∑|Bi|

𝑀

 𝑖=1

 

In the second stage, there are three data locality types, i.e., disk-local, rack-local and off-

rack (Figure 5-5).  Each partition on mapper has one of those locality types. For example, if the 

partition is supposed to stay in the same node, it is Data-local. If the partition is supposed to be 

transferred to a different node in the same rack, it is rack-local, otherwise, it is off-rack. Using 

the transfer time of one block under rack-local (β) and off-rack (δ), the network transfer time 

between mappers and reducer (TT) can be calculated as (Figure 5-6):  

 

Figure 5-6 Transfer Time (TT) to reducer (j) 
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TT (j) = 𝑃𝑟  (𝑗) ∗∑|Bi| ∗ {0 * RDL (j) + 𝛽 * RRL(j) + 𝛿 * ROR(j)}

𝑀

 𝑖=1

 

             = 𝑃𝑟  (𝑗) ∗ ∑ |Bi| ∗ {𝛽 * RRL(j) + 𝛿 * ROR(j)}𝑀
 𝑖=1  

The transfer time (TT) under disk-local is 0 because the partition is already in the reducer. 

The processing time of reducer function depends on the size of the middle output. So, the 

processing time of reduce function is the size of middle output on reducer multiplied by the 

processing time for one block (α):  

𝑇𝑅(𝑗) = 𝑃𝑟(𝑗) ∗ ∑ (|Bi|𝑁
 𝑖=1 ∗ 𝛼) 

Figure 5-7 shows the process of the second stage on the reducer (j). It is the longest 

processing time among the reducers, which is equal to the max value among the transfer time 

plus the processing time of reducer function: 

 

Figure 5-7 The Process of the Second State (T2) on the Reducer (j). 
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T2 = 𝑚𝑎𝑥
1≤𝑗≤𝑅

{TT(j) +𝑇𝑅(𝑗)} 

= 𝑚𝑎𝑥
1≤𝑗≤𝑅

{𝑃𝑟(𝑗) ∗ ∑ |Bi|𝑁
 𝑖=1 ∗ {𝛽 * RRL(j)+𝛿 * ROR(j)} + 𝑃𝑟(𝑗) ∗ ∑ (|Bi|𝑁

 𝑖=1  * 𝛼)}  

= 𝑚𝑎𝑥
1≤𝑗≤𝑅

[𝑃𝑟(𝑗) ∗ ∑ |Bi|𝑁
 𝑖=1 ∗ {𝛼 + 𝛽 * RRL(j)+𝛿 * ROR(j)}]  

Figure 5-8 shows the second stage processing time under different rack-local and off-rack 

ratio. As the ratio of either rack-local or off-rack grows, the processing time increases, too. 

Especially, the off-rack blocks have a greater impact in increasing the processing time.  

 

5.2.3 Total Hadoop Processing Time (T) 

The total Hadoop processing time can be obtained by adding two stages:  

𝑇 = 𝑇1 +  𝑇2 

= 𝑚𝑎𝑥
1≤𝑖≤𝑀

{|Bi|∗ (𝛼 + 𝛾) + RLMi* β} + 𝑚𝑎𝑥
1≤𝑗≤𝑅

[𝑃𝑟(𝑗) ∗ ∑ |Bi|𝑁
 𝑖=1 ∗ {𝛼 + 𝛽 * RRL(j)+𝛿 * ROR(j)}] 

 

Figure 5-8 Second Stage Calculation Graph (T2). 

𝛼 =  , 𝛽 =  , 𝛿 =  

RL = 0%

RL =100%

OR= 0%

OR =100%
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Figure 5-9 shows the graph of total Hadoop processing time. Rack Local Map (RLM) in 

the first stage, and rack-local (RRL) and off-rack (ROR) in the second stage are the locality types 

that negatively affect the Hadoop performance. Compared with the ideal case where the disk 

local is 100% in both stages, when the  

RLM is 100% in the first stage and the rack-local is 100% in the second stage, total 

Hadoop processing time is twice larger. Furthermore, if the second stage has 100% off-rack data, 

the total Hadoop processing time is three times larger than the case of data-local only. This 

observation gives an important insight in data locality. DDL minimizes the RLM on the first 

stage and maximizes the data-local on the second stage, thereby increasing the performance of 

Hadoop.  

 

Figure 5-9 Total Hadoop Processing Time Calculation Graph. 
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In this chapter, we showed the computational model for deep data locality on Hadoop. By 

reducing the RLM in the first stage and rack-local and off-rack in the second stage, we improved 

the performance of Hadoop theoretically. In chapter 6, we will show that how to implement of 

DDL in the real Hadoop system and will prove the performance improve via cloud test, physical 

test, and simulation (Appendix A). 

 

  



60 

 

CHAPTER 6. DEEP DATA LOCALITY 

 

In this chapter, we will explain how to apply the DDL concept into Hadoop system via 

the DDL methods. While the data locality is very important in Hadoop, it has been applied only 

to the early stages of Hadoop processing. In this section, we elaborate on the concept of DDL 

(Deep Data Locality) that organizes the data in a way to minimize the data transfer, which 

reduces the overall processing time. 

Hadoop places the data blocks on the associated processing nodes as much as possible to 

reduce the amount of data transfer. This concept is called data locality, but it has been utilized 

only in the early stages while the majority of the processing costs occur in the later stages. 

Therefore, the benefit of the data locality has been limited. We extended the data locality concept 

to the later stages by pre-arranging the data blocks to reduce the data transfer during the later 

stages as well as in the early stages. We will call this new concept Deep Data Locality (DDL) 

and refer the conventional scheme as Shallow Data Locality (SDL). Deep data locality concept 

has not been studied before, yet it has a great potential to improve the Hadoop processing 

performance without any extra hardware cost. 

One of the concept of Deep Data Locality is "Good Writing makes a Good reading". 

Hadoop also can apply the concept into block orgaining and re-arrange inside of the block to 

improve the performance of analyzing speed in the Hadoop system. 
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6.1 The Concept of Deep Data Locality 

Achieving data locality at map stage is quite intuitive. The input data is split into smaller 

data blocks and distributed to slave nodes. Each slave nodes just need to process the data blocks 

copied to its hard drive. We refer this type of data locality SDL (Shallow Data Locality). 

However, the data gets relocated in shuffle stage and the reduce stage cannot utilize any locality. 

If the data is pre-distributed to the appropriate reducer nodes, it will reduce the shuffle time and 

improve the performance. We refer this type of data locality DDL (Deep Data Locality). To fully 

utilize DDL, an integrated approach between Hadoop and MR is needed. 

The Deep Data Locality (DDL) can be divided two parts. One is block-based DDL which 

is manage the block location in data nodes to improve performance of MapReduce. The block-

based DDL will be dealt with next section with detail example of LNBPP. Second part is  key-

based DDL with ETL. The  key-based DDL is fine-grain manage than block-based DDL. So, the  

key-based DDL has to consider starting from big-ETL. The  key-based DDL with ETL will be 

discused in the  key-based DDL section and ETL-D (Extract, Transfer, Load with DDL).  

 

6.2 Block-based DDL 

While DDL can be promoted in a number of different ways, We study the block 

placement algorithms as the first stage in this research. DDL based on block manage the block in 

HDFS to improve the performance of processing applications in YARN. There are several block-

based DDL methods. As a preliminary stage towards block-based DDL, We designed a new 

block placement algorithm called limited node block placement policy (LNBPP). LNBPP 

algorithm replicates the data blocks to the nodes that would become Reduce nodes during the 

Hadoop block replication process, i.e., before the MapReduce process begins. 
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6.2.1 LNBPP 

My proposed algorithm LNBPP reduces the number of RLMs to improve the 

performance of map, and reduces the numbers of delivered files (F) in a container to increase the 

performance of shuffle (Chapter 5). A MapReduce process with LNBPP has a more consistent 

performance across slave nodes because of there is no fluctuation in number of RLM. As a result, 

the block assignment by the LNBPP improves the overall performance of Hadoop system. In this 

section, We describe the LNBPP mechanism in detail. 

The container in the MapReduce is allocated by the data locality and the status of 

resources in data node. The previous MapReduce researches have tried to make balanced 

workload in slave nodes using data location [27, 29], scheduling [31] and so on, in order to 

achieve the best performance, but without considering the mapper’s output and reducer’s input. 

In our tests, it was shown that the Shuffle take a big portion of the MapReduce processing as 

illustrated in chapter 4's Figure 4-7. It shows the processing times of each stage in MapReduce. 

Both DBPP and LNBPP make multiple replicas of the blocks in HDFS to assure the reliability. 

We have examined the method of decreasing data transfer time in order to decrease the shuffle 

time. 

During this process, LNBPP organizes a group of blocks (or containers) for a job in a 

way to minimize the shuffling by strategically positioning the replicas. If a replica is located on 

the same node with other containers that would need the replica later, no shuffling would be 

needed. In short, the basic concept of LNBPP is reducing the time of shuffle by removing or 

reducing the number of delivered partitions in a container. We have examined the method of 

decreasing FT in order to decrease the shuffle time. The basic concept of LNBPP is reducing the 

time of shuffle by removing or reducing the number of delivered files (F) in a container.  
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Figure 6-1 illustrates the process of MapReduce and explains how LNBPP can save the 

execution time intuitively. In Map stage, the blocks are distributed to nodes. A node can contain 

multiple blocks. For example, the second node contains B2 and B3. The blocks are converted into 

files, F1, F2, etc. In the shuffle stage, the files need to be transported to the reducer node, 

consuming network bandwidth and causing a delay. By using the node with the most files as the 

reducer, this traffic can be minimized. In this example, the 2nd node containing B2 and B3 is 

chosen as the reducer.  

Moreover, locating an additional replica in the same node does not increase processing 

time as long as the node has an unutilized core. As a result, a group gets to occupy a minimal 

number of slave nodes to in order to reduce data transfer time. This reduces the number of inter-

node shuffling of a file. Finally, LNBPP selects the container with the most number of blocks in 

the group as a reducer. This causes utilizing a reduced number of nodes rather than all available 

slave nodes, hence “Limited Node” BPP.  

 

Figure 6-1. Decreased Shuffle time by LNBPP. 
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The detail example is illustrated in Figure 6-2. With the default policy shown in Figure 6-

2 (a), the activated containers are evenly spread out to keep the balance. In this case, any node 

could become a reducer, when mapper finishes the job. The slave node that becomes reducer 

must collect the rest of mapper’s output from other slave nodes in order to perform reduce stage. 

For example, in case of the Figure6-2 (a), the Slave Node 1, 2, 3 and 4 have same number of 

blocks (B) to process jobs in Map Stages. After finishing the Map Stage, Slave Node 2 is 

selected as a reducer in Reduce Stage by Applications Manager in YARN. Therefore, Slave 

Node 1,3 and 4 have to send their partitions (P) to Slave Node 2. In the Figure 6-2 (a), Slave 

 
(a) DBPP       (b) LNBPP 

Figure 6-2. Block locations in MapReduce.  
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Node 2 receive 21 partitions from other slave nodes via network. The 21 partitions cause 

network traffic base on the size of the partition.  

The MapReduce on the LNBPP has a different block location as shown in Figure 6-2 (b). 

The nodes which will be reducers, process blocks as much as possible using their Mapper in Map 

Stage. By selecting the nodes which process most of block in Map Stage, the transfer time 

among the nodes are reduced. For example, in case of Figure 6-2 (b), Slave Node 2 process most 

of block as best Mappers in Slave Node 2 can execute. After finish Map stage, Slave Node 2 is 

selected as a reducer in Reduce stage. Therefore, the reducer keeps 16 partitions (P) in Slave 

Node 2, and, receive only 12 partitions (P) from Slave Node 1 and Slave Node 2. Shuffle stage in 

Figure 6-2 (b) is 9 partitions (33%) less data transfer comparison with Shuffle stage in Figure 6-2 

(a).  

Algorithm 6-1 shows how to make a group of nodes for LNBPP, i.e., LN (Limited Node) 

group. The algorithm accepts the list of block numbers (D) from each nodes as an input. In the 

first while loop, LNBPP searches for the node which has the largest number of blocks in D to 

make it reducer (R), and make a list of nodes (L) which has those blocks. Then L is sorted by the 

number of blocks in each node and R is added to the LN group (G). In the second while loop, the 

members of LN group (G) is updated by adding a node from L continually until the nodes in G 

includes all the blocks in D. In the third while loop, L is updated by removing the block numbers 

which is already in G.  

This not only reduces the amount of shuffle, but also has an effect of eliminating the 

RLM. After executing Algorithm 6-1, the member nodes in LN group include all input blocks for 

the next Map stages, so there is no need to copy any missing block, which eliminates RLM. 
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Through LNBPP, the degree of the data locality during Shuffle stage is increased, resulting in 

stronger DDL. 

 

6.2.2 Performance Analysis of LNBPP 

We tested the performance of the proposed LNBPP algorithm using Terasort Benchmark. 

We only describe the performance of the dual MapReduce since the performance of the single 

MapReduce is similar. The testing was conducted on the CloudLab [98] which is a cloud 

 Algorithm 6-1: Make a LN Group on LNBPP  

  Input: D (the list of block number in the data) 

  Output: G (LN group), R (Reducer ID number) 

// b: list of block numbers, L: list of nodes and b, N: node 

1  Initialization: G  0, R  0, b  0, N  0, L  (0, 0) 

2  // This creates the list of blocks for each node 

while N  get_next_node () < > 0 do 

3   b   get_number_blocks (N, D) 

4   if R < b then 

5   R  N 

6   end 

7   if b > 0 then 

8   add_node_L (N, b) 

9   end 

10  end 

11  sort_L () 

12  update_node_G (R) 

13  // This creates LN 

while N  get_next_node_L () < > 0 do 

14  D  delete_block_nember (D, N) 

16  update_node_G (N) 

17  while N   get_next_node_L () < > 0 do 

18   b   get_number_blocks (N, D) 

19   update_node_L (N,b) 

20  end 

21  sort_L () 

22  end 
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computing platform for research. Our test utilized one master node which manages HDFS, one 

RM node, and ten slave nodes on the CloudLab. Each node is equipped with 6 GB memory, 2 

Xeon E5-2650v2 processors (8 cores each, 2.6 GHz) and 1 TB hard drive. Hadoop 2.7.1 is 

installed on a Linux machine running Ubuntu 14. Three different data sets have been created by 

Teragen, i.e., two 30 GB data, two 60 GB data, and two 120 GB data. The data sizes were chosen 

following the research on Hadoop testing by Intel [101]. For the testing, two jobs with the same 

input data size were executed, and their results were compared. This is in contrast with the most 

the previous research where only one job was tested.  

We have measured the execution time of each stage for Map, Shuffle, Merge, Reduce, 

and the total execution time of MapReduce. The tests were repeated ten times to get the average 

values. Table 6-1 and Figure 6-3 show the results of the performance testing with default policy 

Table 6-1. Terasort with DBPP and LNBPP 

 

Map 

(Sec) 

Shuffle 

(Sec) 

Total 

(Min) 
 

Map 

(Sec) 

Shuffle 

(Sec) 

Total 

(Min) 
 

Map 

(Sec) 

Shuffle 

(Sec) 

Total 

(Min) 

Default-Job1- 

30G 
26 463 27 

Default-Job1- 

60G 
25 929 71 

Default-Job1-

120G 
28 2345 165 

Default-Job2- 

30G 
30 431 27 

Default-Job2- 

60G 
27 906 76 

Default-Job2-

120G 
32 1968 165 

LNBPP-Job1- 

30G 
22 292 21 

LNBPP -Job1- 

60G 
24 721 59 

LNBPP -Job1-

120G 
24 1475 150 

LNBPP-Job2- 

30G 
20 328 25 

LNBPP -Job2- 

60G 
22 771 62 

LNBPP -Job2-

120G 
25 1647 152 

Improvement 

(%) 
25% 31% 15% 

Improvement 

(%) 
12% 19% 18% 

Improvement 

(%) 
18% 28% 8% 

(a)     (b)     (c) 

   
(a)     (b)     (c) 

Figure 6-3 (a) Map Performance, (b) Shuffle Performance, (c) Total Performance 
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and LNBPP. The “Default-Job1-30G” means “Job1 executing the Default policy with 30 GB 

data”, and the “LNBPP-Job1-30G” means “Job1 executing LNBPP with 30 GB data”. In the 

results, reduce and merge show a similar performance in both cases. However, the map and 

shuffle show notable differences.  

The map performance under LNBPP is faster and more stable than the one under default 

policy for all sizes of input data. To analyze the performance differences, We have traced all the  

processes with activated containers in the slave nodes and visualized them in Figure 6-4. Each 

colored rectangle indicates a container’s processing time with one block in Map stage. It shows 

the differences in container assignments between the default policy where the containers are 

equally distributed on all slave nodes (Figure 6-4 (a)), and LNBPP where containers are limited 

to 5 nodes (Figure 6-4 (b)).  

After Map stage, the mapper’s output has to move to reducer in order to process the job. 

According to Terasort Benchmark, this Shuffle stage takes more time than the Map stage, 

therefore decreasing the amount of data transfer in Shuffle stage is the key for improving the 

overall MapReduce performance. LNBPP on HDFS focuses on Shuffle stage in order to improve 

the performance of MapReduce. By aggregating the containers in limited nodes (e.g., the left 5 

nodes in Figure 6-4 (b)), the amount of data transfer is greatly reduced. In default policy, each 

node has only roughly 1/10 of data needed for the reduce, so the remaining 9/10 data must be 

transported. But in LNBPP, each node within the limited nodes group has roughly 1/5 of data, so 

only 4/5 of data need to be transported. For example, the first slave node apt049 in Figure 6-4 (b) 

will have a container that becomes a reducer by the LNBPP after finishing Map stage. As a result, 

apt049 already has roughly 1/5 of five mapper’s output needed to process reduce. Therefore, 

LNBPP can reduce the shuffle time as shown in Figure 6-1. 
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(a) DBPP 

 

(b) LNBPP 

Figure 6-4. An example of mappers’ processing times (ms) 
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In the test, under LNBPP, the mapper’s task is assigned to only five nodes, which creates 

an illusion that it will take more time to finish the Map (TM). In fact, the histogram shows 2.7 

seconds in DBPP and 4.4 seconds in LNBPP. However, TM is not the sum of all execution times 

of mapper’s tasks. The containers in each node work in parallel using multiple virtual cores. As a 

result, TM is determined as the maximum execution time among all the nodes, as we have 

explained in Section 3. This effect is visualized in Figure 6-4. In case of LNBPP (Figure 6-4 (b)), 

all rectangle sizes are nearly equal. Any group of 8 containers running on 8 cores independently 

will finish in almost equal amount of time. However, in case of the DBPP (Figure 6-4 (a)), some 

nodes, such as apt 041 and apt 063 (2nd and 7th bar in the graph) contain larger rectangles 

indicating they are taking longer time to finish due to RLM. When they are grouped in 8 

containers on 8 cores, the time to complete is the maximum time among those 8 containers. Even 

though some containers finish early, they cannot start another container in current Hadoop 

system.  

Although a speculative execution is possible, it is only used to take over the work of a 

crashed node, which is detected by a loss of heartbeat. As a result, the completion time in DBPP 

is generally larger than in the case of LNBPP. Furthermore, the selection of those slower nodes 

vary on each execution under DBPP, making the performance fluctuate. The resulting processing 

times are tabulated in Table 6-1, showing a superior performance of LNBPP. Table 6-1 is the 

numeric version of Figure 6-3. We observe that the performance is better with LNBPP in all 3 

test cases with different data sizes. For Map, the improvement ranged from 12 % to 25%, and for 

Shuffle it ranged from 19% to 31%. This number is diminished when comparing the total 

execution time since there are 6 other stages of MapReduce that we have not worked on in this 
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research. As a result, the total time is improved by 8% to 18%, which is still a significant 

improvement over DBPP. 

 

6.3 Key-based Deep Data Locality 

Key-based DDL is another method to apply DDL into Hadoop. Key-based DDL can 

handle fine-grain inside block by managing the inside of block unlike block placement 

researches. Block placement reseraches manage and re-arrange after uploading source data in 

HDFS as a block, but, key-based DDL manage it before uploading the data in HDFS using big-

ETL (Extract, Transfer, Load). The method can reduce data transfer time and merge in 

MapReduce by useing big-ETL and re-arrange inside of blocks. 

Figure 6-5 shows the detail of MapReduce with key-based DDL with comparing default 

MapReduce. In a typical MapReduce process, after finishing the Map stage, slave nodes send the 

  

Figure 6-5   (a) Default M/R   VS.   (b) M/R with Key-Based  DDL 
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partitions that contains pairs of key and value to an appropriate reduce node based on the key as 

shown in Figure 6-5 (a). There are several keys in default blocks, after finishing map stage, the 

keys are sorted and fetched on the shuffle stage. The fetched keys are called partitions to transfer 

to reducer node. The transfred partitions are merged in reducer node to process batch job by 

reducer function.  

The MapReduce with key-based DDL eliminates some stages on shuffle stages and 

reduce stages to reduce processing time in MapReduce like Figure 6-5 (b). The sort stage and 

fetch stage on shuffle stage are eliminated by using the same key on the map stage. Also, the 

merge stage on reduce stage moves to shuffle stage. Normally, merge stage in nodes for the map 

stage is more efficient than merge stage in nodes for the reduce stage because a number of nodes 

the for mapper are greater or equal than a number of nodes for the reducer.  

Additionally, the amount of transferred partitions can be reduced by selecting node, 

which has most of key after map stage, as a reducer. In other words, after finishing map stage, 

YARN changes the node’s role, which has most of key, as a mapper to a reducer because both a 

mapper and a reducer are the container which is daemon on Hadoop. That can minimize network 

congestion among nodes in MapReduce and increase overall throughput of the system by appling 

deep data locality.  

Basic concept of the key-based DDL is that the nodes which work for MapReduce handle 

 

Figure 6-6 Traditional ETL 
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the same key to process map stages. There is required pre-step on HDFS before MapReduce to 

gather the same key in the node. The pre-step can be done by Big-ETL or Hadoop-ETL such as 

InfoSphere DataStage [106], Data Integrator [107], PowerCenter [108] and so on. In the next 

section, We will explain about the DDL-Aware ETL for applying key-based DDL into Hadoop. 

 

6.3.1 DDL-Aware ETL 

The difference between traditional ETL (Extract, Transfer, and Load) and big-ETL is the 

procedure of data load on HDFS. Traditional ETL extracts data from source and then the data is 

transformed to structured data to load in Relational Data Based Management System (RDMS) 

like Figure 6-6, but is different procedure on big-ETL. Big-ETL use the HDFS instead of RDMS 

to store the data and to trasfer the data like Figure 6-7 except dash line. Big-ETL load the data 

before transforming the data into HDFS, which is used for transforming the data, because of the 

 

Figure 6-7 DDL-Aware ETL using Big-ETL 
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volume of data. We used the big-ETL to make a key-based DDL. The big-ETL for key-based 

DDL is called DDL-Aware ETL. DDL-Aware ETL transform source data into key-based data 

and making grouping blocks using replicas in HDFS. So, each node load the blocks which have 

same keys in groups. If the nodes have the block with different key, the block should be in other 

groups like this Figure 6-7 with dashlines.  

Eventually, the purpose of the DDL-Aware ETL is for pre-shuffle in DDL like Figure 6-8 

(b). The MapReduce with traditional ETL or big-ETL have no choice but to perform shuffle 

stage like Figure 6-8 (a). It causes the network traffic and congestion among the nodes unlike 

 

 (a) Default block    (b) Pre-partitioned block by DDL-Aware ETL 

Figure 6-8. Shuffle stage 
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Figure6-8 (b). Key based DDL uses pre-partition, which is uploaded in HDFS as an input data by 

DDL-Aware ETL, to perform the shuffle stage like Figure 6-8 (b). In a typical MapReduce 

process, after finishing the map stage, slave nodes send the partition that contains pairs of key 

and value to an appropriate reduce node based on the key as shown in Figure 6-8 (a). So, there 

are an overhead of data transfer in shuffle stage among node. On the other hand, in Figure 6-8 (b), 

there is no data transfer in shuffle stage after map stages. Figure 6-8 (b) is ideal case.  

Key-based DDL improve data locality not only in the map stage but also in the shuffle 

stage and reducer stage. The data locality in entire stages of MapReduce is very important to 

increase the performance of Hadoop. In the next section, the paper shows the performance test of 

key-based DDL. 

 

6.3.2 Performance Analysis of Key-based DDL 

Block-based DDL in section 6.2 tests the performance of block-based DDL using Cloud 

Lab, but We installed Hadoop cluster on physical machines to test of  key-based DDL at the 

Security Lab in the University of Nevada Las Vegas, because the cloud system has various 

variables, which cause the effect in the performance test of MapReduce. 

The cluster is organized 5 machines, one for master node and 4 for data nodes with 

installed Hadoop 2.6. Each machine has Quad-core Intel Pentium processor, 32GB eMMC disk 

and 8GB 1333MHz DDR3 memory (Appendix D). The test use 1 giga bytes using default 

MapReduce, MapReduce with block-based DDL, MapReduce with key-based DDL and 

MapReduce with key and block-based DDL. There are various methods and combination for 

Hadoop configure with core-default.xml, hdfs-default.xml and mapred-default.xml. In this test, 

most of Hadoop configure set as a default except 



76 

 

mapreduce.job.reduce.slowstart.completedmaps = 1 and mapreduce.map.sort.spill.percent = 0.1 

in mapred-default.xml. 

The Figure 6-9 shows the result of the performance test in map stage. All of the test show 

the MapReduce with DDL is faster than default MapReduce because there are no Rack Local in 

map stage by DDL. The processing time of map stage is shorter when using key-based DDL 

instead of block-based DDL. The reason is why key-DDL already did the part of the map stage’s 

job in an early stage on DDL-Aware ETL like key paring. As the result of the test, map stage is 

improved 14.6% more than default by key-based DDL and 12.5% more than block-based DDL 

by key-based DDL.  

The locality effect is clearly heard on shuffle stage because network speed is slower than 

any other hardware devices on Hadoop cluster like disk and memory in Table 5-1. Fig 6-10 

shows the result of the performance test in shuffle stage. The DDL tries to minimize the network 

 

Figure 6-9. Performance test of Map 
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congestion by reducing data transferring among nodes using data locality. Especially, key-based 

DDL handles the partition unit in comparison with block-based DDL managed the block unit. In 

other words, controlling smaller units make more efficient data locality in MapReduce.  

According to the result of the test in shuffle stage, the performance of MapReduce is 

improved upto 23.9% by key-based DDL. The MapReduce with key-based DDL is 13.6% faster 

than block-based DDL because key-based DDL removing the sort stage and fetch stage in 

shuffle stage. Additionally, key-based DDL and block-based DDL can be used together to 

perform MapReduce. The block & key-based DDL is the fastest to perform MapReduce. It 

improves the performance 34.4% compared with the default MapReduce and 27.2% more than 

block-based DDL, 16.1% more faster than key-based DDL. The block & key-based DDL has 

advantages of both block-based DDL, which most of block will be the reducer among the 

mapper, and key-based DDL, which set each node to have the same key. 

 

Figure 6-10 Performance test of Shuffle 
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Figure 6-11 shows the total performance time of MapReduce with the four methods. 

MapReduce with key-based DDL is 21.9% more faster than default MapReduce and 13.3% more 

quicker than MapReduce with block-based DDL. Also, when the block-based DDL and key-

based DDL are used together for performing MapReduce. Block & Key DDL is 34.4% faster 

 

Figure 6-11. Performance test of MapReduce 
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Table 6-2. Performance improvement by Key-based DDL 

 Default Block-based 

Map 14.6% 12.5% 

Shuffle 23.9% 13.6% 

Total 21.9% 13.3% 
 

Table 6-3. Performance improvement by Block & Key DDL 

 Default Block-based Key-based 

Shuffle 40.1% 32% 21.3% 

Total 34.4% 27.2% 16.1% 
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than default MapReduce. Table 6-2 and Table 6-3 shows the performance improvement by key-

based DDL and block & key-based DDL.  

Though key-based DDL has some limitations, it can tremendously increase the 

performance of MapReduce. In the next section, the paper explains about the limitations of key-

based DDL.  

 

6.3.3 Limitations of Key-based DDL 

Key-based DDL is required an extra stage for setting the same key in the nodes, unlike 

block-based DDL. The extra stage can cause a delay before procceing MapReduce. We 

measured the cost to prepare the key-based DDL on HDFS by comparing between DDL-aware 

ETL and big-ETL. Table 6-4 the result of the measurement. According to the Table 6-4, DDL-

aware ETL takes 35 seconds longer than big-ETL to transform 5 GB data. The gap could be 

resendable because of the increasing performance of Hadoop system by key-based DDL. There 

is required only extra 5 seconds for 1 GB data with key-based DDL MapReduce to save 40 

seconds from default MapReduce. Additionally, there is a room to reduce the gap of the cost by 

studying ETL.   

Even though, there are the limitations, the key-based DDL can reduce the Rack-Local 

and the Off-Rack in map stage and shuffle stage. When the number of reducers is greater or 

Table 6-4. Comparison between DDL-aware ETL and Big-ETL 

Test 

cases 

Data Size 

(KB) 

Big-ETL 

(ms) 

DDL- aware 

ETL (ms) 

Overhead 

(%) 

1 57,514 1,565 1,677 7.16% 

2 575,138 11,939 15,086 26.34% 

3 5,751,369 127,543 163,249 27.99% 

 



80 

 

equal to the number of mappers, the data transferring among nodes in shuffle stage is removed 

and Rack-Local and Off-Rack in reduce stage is also removed. The effect of key-based DDL 

brings enormous effects for real-time analysis by increaing the speed of Hadoop System.  

We made the simulator to simulate the data locality researches. We will introduces the 

MapReduce simulator with various data locality methods in the Appendix A. 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

 

MapReduce is the fundamental processing paradigm in Hadoop and a lot of research have 

been conducted to improve Hadoop system performance. We have analyzed previous research 

comprehensively such as scheduling, data placement, networking, partition/key, and framework, 

and categorized them in tables and graphs. For example, our analysis shows how the number of 

containers (mapper and reducer) and data locations affect the performance of MapReduce. 

Among them, data locality is the primary research direction to improve the performance.  

We have surveyed the current research efforts in improving the performance of 

MapReduce and characterized the processing times in each stage. We made an advanced 

computational model and simulation system to predict the performance of Hadoop under variety 

of conditions. A Hadoop operator can test various combinations of data locality to get optimal 

performance with the characteristics of their data and nodes on the simulator. 

Based on the model and the experimental data, we have identified the source of 

inefficiency during map and shuffle processes. The inefficiency can be mitigated by pre-

arranging the data blocks and key-value pairs to the final location rather than the intermediate 

location in order to reduce the data transfer in later stages. This led to the development of a new 

concept of Deep Data Locality (DDL) to fully utilize data locality in every stages of MapReduce. 

There are two methods within DDL, block-based DDL, and key-based DDL.  

Block-based DDL removes RLM by placing all the blocks in the destination node in advance, 

which optimizes the map performance. It also reduces the data transfer during shuffle 

significantly by selecting the reducer node with the most blocks. The simulation results showed 
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that block-based DDL outperforms the conventional method by up to 25% in map and 31% in 

shuffle. The block-based DDL can be used with other methods, which can increase the 

performance of Hadoop system, especially through an advanced ETL process. Key-based DDL 

uses the key inside of the block and predict the partitions to remove the network traffic in the 

shuffle stage. Key-based DDL is required extra stage, which can casue overhead, as a DDL-

Aware ETL, but, it can reduce or remove some stages in map stage, shuffle stage and reduce 

stage. The key-based DDL can dramatically improve MapReduce in some specific case, for 

example, when the keys in a block are simple or predictable. The MapReduce with key-based 

DDL is 21.9% faster than default MapReduce and the key-based DDL combined with block-

based DDL is 34.4% faster. We made a computational model for key-based DDL to consider the 

data in the ETL stage.  

DDL has a great potential to improve Hadoop performance, but it still need fuether 

development. Currently, the key-based DDL can be only applied to simple key distributed blocks. 

The computational model needs to be extended for DDL-Aware ETL to consider any type of 

data. This research should be extended to include other stages of MapReduce. For example, we 

have not worked on the merge stage and need to apply the DDL concept to it. Merge stage 

occupies the largest part in the MapReduce process and any performance improvement in merge 

stage will have a significant impact in the overall MapReduce performance. 
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APPENDIX A 

 

Data Locality Simulator 

The performance of Hadoop to process MapReduce is affected by a various variable such 

as number of nodes for mapper, number of nodes for reducer, number of daemons per node, 

number of blocks, number of keys, distributed keys in block, size of data, complexity of 

MapReduce program and so on. The simulator is applied the variables to measure the 

performance of the DDL. Figure A-1 shows the DDL simulator. 

 

Figure A-1. DDL Simulator 
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There are two sections to set experiment environments. One is “Resource” section which 

set the physical machines and daemons in each node. In “Resource” section, the number of nodes 

for mapper and reducer and number of a container can be managed. By the section, the simulator 

can select the number of mapper and reducer like Hadoop configuration and MapReduce 

programming set the number of container for MapReduce processing. The other one is “Data” 

section for a characteristic of a block. The section can manipulate the input data such as a size of 

data, the number of blocks, the number of keys for partitions, individual of distributed key in a 

block, and data complexity.  The “DDL” section is for block-based DDL which allocate blocks 

in nodes. After clicking the “Gen” button, all the physical machines and data is set for 

 

Figure A-2. Block Allocations in the Simulator 
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MapReduce.  

 The “M/R Analysis section” is for analyzing the processing time in each stage of 

MapReduce and allocated blocks in nodes. Figure A-2 shows the example of allocated in nodes 

when user click the “BlockAllocat” button in the simulator. Each color in Figure A-2 represents 

node and the number on the graph denotes the number of block in the node.  

 “MapProc”, “ShuffleProc” and ReducerPro”  buttons in the simulator show each process 

time of MapReduce. Figure A-3 shows the example of analysis in the map stage when a user 

clicks the “MapProc” button. Each node uses a different number of the container for processing 

map stage. The max number of container is set by “Resource” section. “M-N0-C3” in Figure A-3 

means that “M” is mapper, “N0” is the id of node and “C” is the id of container. In that case, 

 

Figure A-3. MapProc 
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container “C3” in node-0 performed the map stage as a mapper. The number on top of the graph 

shows the process time in map stage. Each container takes 100 to process one block, for example, 

the “M-N2-C3” in Figure A-3 takes 400 processing time with four blocks. Process time of Map 

in each node is the longest time of container in the node. For example, node-2’s map processing 

time is 400, even though it has two containers for map stage such as “M-N2-C2” in Figure A-3 

and “M-N2-C3” in Figure A-3. The total map processing time is the longest process time of node 

among the data nodes. The total processing time in Figure A-3 is 400 because the node-2 is the 

longest processing time of map stage.  

Figure A-4 shows the example of analysis in the shuffle stage and reduce stage when a 

user clicks the “ShufflePro” and “ReducerPro” button. “R-N0-C0” in the graphs means that “R” 

is the reducer, “N0” is for node-0 and “C” is for container in node-0. There are two nodes in the 

   

(a) Analysis of the Shuffle    (b) Analysis of the Reduce 

Figure A-4. ShufflePro and ReducerPro 
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Figure A-4 for processing shuffle stage and reduce stage. Each node has one container. The 

number in the bar graph means the time unit. The processing time in the Figure A-4 is based on 

the size of blocks. The reason of the difference of time between Figure A-4 (a) and Figure A-4 (b) 

is data locality in the simulation. The difference between “R-N1-CO” in Figure A-4 (b) and “R-

N1-CO” in Figure A-4 (a) means the saving time by the data local. For example, the 545 time of 

“R-N1-CO” in Figure A-4 (b) minus the 539 time of “R-N1-CO” in Figure A-4 (a) is 6. The 

value 6 is the reduced time by the data locality in shuffle stage. 

The “TotalProc” button shows the total processing time of MapReduce with map, shuffle 

and reduce stages. Figure A-5 shows the result of total processing in MapReduce with default, 

block-based DDL and key-based DDL. The bottom in the graph represents the processing time 

of map stage. The middle of the bar graph denotes the processing time of shuffle stage. The top 

of the bar graph represents the processing time of reduce stage. The number in the bar graph 

means the time unit. The simulator shows the key-based DDL is more efficient than other 

methods like the previous physical test.  

There are two more sections in Figure A-1 to apply the data locality methods on Hadoop. 

One is “Block-DDL” section to apply MapReduce with block-based DDL. Selecting the methods 

in the combo box in the section, simulator manipulates the relocation of blocks on HDFS 

following the rule of block-based DDL. There are two block-based DDL. One is the LNBPP, 

which set the block location on HDFS before performing the MapReduce. The other one is the 

Frequent Block Placement Policy (FBPP), which selects the reducer, which has the most block. 

The other section is “Key-DDL” section to apply MapReduce with key-based DDL. 

Choosing the methods in the combo box in the section, the keys in blocks on HDFS is 

reallocated following the rule of key-based DDL. There are two key-based DDL methods. One is 
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the keyETL, which gathers keys before uploading HDFS. The other one is Frequent key (FKey), 

which selects key of the reducer, which has most of the key, as the key collector. 

   

Default           Block-Based DDL 

 

  

   Key-Based DDL 

Figure A-5. Total processing time of MapReduce with each stage 
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The simulator can make a various combination with block-based DDL and key-based 

DDL by selecting the methods in the two combo boxes because the two DDL methods can be 

applied on MapReduce at the same time.  

The last section is “Simulation” section which set the number of tests to make an average 

of processing time. Inputting a number in the box, simulator perform the test as much as the 

number in the box and then it makes the average of processing time in each stage to display the 

results. 

The simulator makes a various test with DDL methods possible. It lets a result of the 

performance look easy and can make various combinations with other data locality research. The 

simulator will make the test of data locality research easy. 
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APPENDIX B 

 

Sample Test Sheet 

We made the log analyzer for Hadoop. We explain the sample of the test result log of the 

default MapReduce, block-based DDL, key-based DDL, block-based DDL with ETL and key-

block-based DDL in this section. The input is 1 giga bytes. The most configuration of Hadoop is 

the default except “mapreduce.job.reduce.slowstart.completedmaps = 1” and 

Table B-1. Default MapReduce 

Job Name: word count 
 

User Name: unlv 
  

Queue: default 
  

State: SUCCEEDED 
 

Uberized: FALSE 
  

Submitted: Wed Nov 23 18:35:32 PST 2016 

Started: Wed Nov 23 18:35:41 PST 2016 

Finished: Wed Nov 23 18:38:33 PST 2016 

Elapsed: 2mins, 51sec 
 

Diagnostics: 
  

Average Map Time 41sec 
  

Average Shuffle Time 2mins, 22sec 
 

Average Merge Time 0sec 
  

Average Reduce Time 0sec 
  

ApplicationMaster 
  

Attempt Number Start Time Node Logs 

1 
Wed Nov 23 18:35:35 

PST 2016 
datanode04:8042 logs 

Task Type Total Complete 

Map 16 16 
 

Reduce 2 2 
 

Attempt Type Failed Killed Successful 

Maps 0 0 16 

Reduces 0 0 2 

Reducer Node Node 1 Node 4 
 

 



91 

 

“mapreduce.map.sort.spill.percent = 0.1” in mapred-default.xml. The cluster is organized 5 

machines, one for master node and 4 for data nodes with installed Hadoop 2.6. Each machine has 

Quad-core Intel Pentium processor, 32GB eMMC disk and 8GB 1333MHz DDR3 memory. All 

the test in this section is used 16 mappers and 2 reducers for processing the word count by the 

MapReduce programming. 

Table B-1 shows the log of default MapReduce. Node-1 and node-4 are used for the 

reduce stages. The processing time of map stage is 41 sec, and the processing time of shuffle 

stage is 2 minutes and 22 seconds. Elapsed time is 2 minutes and 51 seconds. 

Table B-2. DDL-Aware ETL 

Job Name: word count 
 

User Name: unlv 
  

Queue: default 
  

State: SUCCEEDED 
 

Uberized: FALSE 
  

Submitted: Wed Nov 23 18:39:40 PST 2016 

Started: Wed Nov 23 18:39:47 PST 2016 

Finished: Wed Nov 23 18:42:08 PST 2016 

Elapsed: 2mins, 20sec 
 

Diagnostics: 
  

Average Map Time 35sec 
  

Average Shuffle Time 1mins, 48sec 
 

Average Merge Time 0sec 
  

Average Reduce Time 0sec 
  

ApplicationMaster 
  

Attempt Number Start Time Node Logs 

1 Wed Nov 23 18:39:42 PST 2016 datanode04:8042 logs 

Task Type Total Complete 

Map 16 16 
 

Reduce 2 2 
 

Attempt Type Failed Killed Successful 

Maps 0 0 16 

Reduces 0 0 2 

Reducer Node Node 1 Node 2 
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Table B-2 shows the log of the applied the DDL-Aware ETL in the MapReduce. Table B-

2 is only applied ETL in the Hadoop, is not applied fully DDL like key-based DDL and block-

based DDL. Node-1 and node-2 are used for the reduce stages. The processing time of map stage 

is 35 sec, and the processing time of shuffle stage is 1 minutes and 48 seconds. Elapsed time is 2 

minutes and 20 seconds. The processing time of map stage is reduced than the processing time of 

map stage in default MapReduce in Table B-1, because DDL-Aware ETL can reduce the RLM in 

the map stage. The processing time of shuffle stage in Table B-2 is also reduced by the DDL-

Aware ETL. According to the test, by simply applying the DDL-Aware ETL in the Hadoop, the 

Table B-3. Block-based DDL without ETL 

Job Name: word count 
 

User Name: unlv 
  

Queue: default 
  

State: SUCCEEDED 
 

Uberized: FALSE 
  

Submitted: Wed Nov 23 20:33:01 PST 2016 

Started: Wed Nov 23 20:33:08 PST 2016 

Finished: Wed Nov 23 20:35:45 PST 2016 

Elapsed: 2mins, 36sec 
 

Diagnostics: 
  

Average Map Time 39sec 
  

Average Shuffle Time 2mins, 0sec 
 

Average Merge Time 0sec 
  

Average Reduce Time 0sec 
  

ApplicationMaster 
  

Attempt Number Start Time Node Logs 

1 Wed Nov 23 20:33:02 PST 2016 datanode01:8042 logs 

Task Type Total Complete 

Map 16 16 
 

Reduce 2 2 
 

Attempt Type Failed Killed Successful 

Maps 0 0 16 

Reduces 0 0 2 

Reducer Node Node 1 Node 2 
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performance of Hadoop system is increased. 

Table B-3 shows the log of MapReduce, which is applied the block-based DDL without 

the ETL. Table B-3 is only applied block-based ETL in the Hadoop, is not applied any ETL in 

the HDFS. Node-1 and node-2 are used for the reduce stages. The processing time of map stage 

is 39 sec, and the processing time of shuffle stage is 2 minutes and 0 seconds. Elapsed time is 2 

minutes and 36 seconds. The processing time of map stage is reduced than the processing time of 

map stage in default MapReduce in Table B-1, because block-based DDL can reduce the RLM in 

the map stage. The processing time of shuffle stage in Table B-3 is also reduced by the block-

based DDL. According to the test, the processing time of the MapReduce with block-based DDL 

Table B-4. Block-based DDL with DDL-Aware ETL 

Job Name: word count 
 

User Name: unlv 
  

Queue: default 
  

State: SUCCEEDED 
 

Uberized: FALSE 
  

Submitted: Wed Nov 23 20:22:41 PST 2016 

Started: Wed Nov 23 20:22:48 PST 2016 

Finished: Wed Nov 23 20:25:04 PST 2016 

Elapsed: 2mins, 15sec 
 

Diagnostics: 
   

Average Map Time 35sec 
  

Average Shuffle Time 1mins, 43sec 
 

Average Merge Time 0sec 
  

Average Reduce Time 0sec 
  

ApplicationMaster 
   

Attempt Number Start Time Node Logs 

1 Wed Nov 23 20:22:42 PST 2016 datanode03:8042 logs 

Task Type Total Complete 

Map 16 16 
 

Reduce 2 2 
 

Attempt Type Failed Killed Successful 

Maps 0 0 16 

Reduces 0 0 2 

Reducer Node Node 1 Node 2 
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in Table B-3 is slower than the processing time of the MapReduce with the DDL-Aware ETL in 

Table B-2. The part of the map stage is already done by the ETL, because the keys in the blocks 

are already gathered by ETL in Table B-2. Additionally, the sort stage in Table B-2 is already 

finished by ETL before processing the MapReduce. Therefore, the test shows that DDL-Aware 

ETL in Table B-2 seems faster than block-based ETL in Table B-3, but, the DDL-Aware ETL in 

Table B-2 needs the preprocess for the ETL unlike the block-based ETL. The preporcess for the 

ETL will make the overhead.  

Table B-4 shows the log of MapReduce, which is applied the block-based DDL with 

DDL-Aware ETL. Table B-4 is applied the ETL in HDFS and block-based in MapReduce. 

Node-1 and node-2 are used for the reduce stages. The processing time of map stage is 35 sec, 

and the processing time of shuffle stage is 1 minutes and 43 seconds. Elapsed time is 2 minutes 

and 15 seconds. The processing time of map stage in Table B-4 is the same as the Table B-2 

because of the DDL-Aware ETL. The processing time of shuffle stage in Table B-4 is reduced 

by block-based ETL and DDL-Aware ETL. The block-based ETL make a synergy with the 

DDL-Aware ETL, because the two methods work in the different layers.    

Table B-5 shows the log of MapReduce, which is applied the key-based DDL. Key-based 

DDL is already applied the DDL-Aware ETL in HDFS. Node-1 and node-2 are used for the 

reduce stages. The processing time of map stage is 35 sec, and the processing time of shuffle 

stage is 1 minutes and 48 seconds. Elapsed time is 2 minutes and 20 seconds. The processing 

time of map stage in Table B-5 is the same as the Table B-2 because of the DDL-Aware ETL 

which is required by the key-based DDL. The processing time of shuffle stage in Table B-5 is 

reduced by the key-based ETL. The key-based DDL is very affected by the number of reducers 

than other methods. The processing time of shuffle stage in Table B-5 can be reduced by 
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increasing the number of reducers. The key-based DDL can be reduced the dependence of the 

number of reducers by combining with the block-based ETL.  

Table B-6 shows the log of MapReduce, which is applied the key-based DDL and the 

block -based DDL. Node-2 and node-3 are used for the reduce stages. The processing time of 

map stage is 35 sec, and the processing time of shuffle stage is 1 minutes and 25 seconds. 

Elapsed time is 2 minutes and 2 seconds. The processing time of map stage in Table B-6 is the 

same as the Table B-2 because of the key-based DDL. The processing time of shuffle stage in 

Table B-5. Key-based DDL 

Job Name: word count 
 

User Name: unlv 
  

Queue: default 
  

State: SUCCEEDED 
 

Uberized: FALSE 
  

Submitted: Wed Nov 23 18:39:40 PST 2016 

Started: Wed Nov 23 18:39:47 PST 2016 

Finished: Wed Nov 23 18:42:08 PST 2016 

Elapsed: 2mins, 20sec 
 

Diagnostics: 
  

Average Map Time 35sec 
  

Average Shuffle Time 1mins, 48sec 
 

Average Merge Time 0sec 
  

Average Reduce Time 0sec 
  

ApplicationMaster 
  

Attempt Number Start Time Node Logs 

1 Wed Nov 23 18:39:42 PST 2016 datanode04:8042 logs 

Task Type Total Complete 

Map 16 16 
 

Reduce 2 2 
 

Attempt Type Failed Killed Successful 

Maps 0 0 16 

Reduces 0 0 2 

Reducer Node Node 1 Node 2 
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Table B-6 is the least time in among the methods, because the key-based DDL and the block-

based DDL make the synergy to perform the shuffle stage. The reducer, which has the most of 

the block, is selected by the block-based DDL, and the reducer is collecting the selected key by 

the key-based DDL.  

 

  

Table B-6. Key-Block based DDL 

Job Name: word count 
 

User Name: unlv 
  

Queue: default 
  

State: SUCCEEDED 
 

Uberized: FALSE 
  

Submitted: Wed Nov 23 19:05:52 PST 2016 

Started: Wed Nov 23 19:06:02 PST 2016 

Finished: Wed Nov 23 19:08:13 PST 2016 

Elapsed: 2mins, 2sec 
 

Diagnostics: 
  

Average Map Time 35sec 
  

Average Shuffle Time 1mins, 25sec 
 

Average Merge Time 0sec 
  

Average Reduce Time 0sec 
  

ApplicationMaster 
  

Attempt Number Start Time Node Logs 

1 Wed Nov 23 19:05:56 PST 2016 datanode01:8042 logs 

Task Type Total Complete 

Map 16 16 
 

Reduce 2 2 
 

Attempt Type Failed Killed Successful 

Maps 0 0 16 

Reduces 0 0 2 

Reducer Node Node 2 Node 3 
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APPENDIX C 

 

Hadoop Configuration 

In this appendix, we show configurations of the Hadoop system for the WordCount test. 

Hadoop has three layers of memory such as YARN, VM, and Java heap to control memory as 

shown in Figure C-1. YARN manages the memory of the slave node and core. YARN also limits 

the number of containers in a node based on the memory and core (yarn-site.xml sets the 

maximum number of core and memory). So, the top layer of memory is 

yarn.nodemanger.resource.memory in Figure C-1. The memory is set at yarn-site.xml.  

 

Figure C-1. Memory control in Hadoop. 
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There are two types of VM when MapReduce starts. Each application has one 

Application Master (AM). AM manages all containers related to the application. There are two 

memory options. One is yarn.app.mapreduce.am.resource.mb for the amount of memory the AM 

needs. The other is yarn.app.mapreduce.am.command-opts for the Java OPTS (OPtional 

parameTers) for the MapReduce AM processes. The two memory (AM and AM’s Java heap) are 

set by mapred-site.xml. The other VM is a container which is a role of mapper and reducer. 

There are three types of memory that are set at mapred-site.xml. The task.io.sort.mb is the size of 

the buffer to use sorting files. The Java heap is for Java OPTS for the task processes. This is set 

using mapred.child.java.opts in mapred-site.xml. The container memory is the amount of 

memory that is allocated from the scheduler for mapper/reducer.  

The memory setting should be as follows: 

 

Task.io.sort.mb < java heap < Container/AM memory << yarn.nodemanager.resource.memory. 

 

The virtual machines, such as AM and container in slave node, will die if there is not 

enough memory in the node to allocate container or AM. For example, if the maximum number 

of containers is four by setting the number of core in configuration and each container can get 2 

gigabytes of memory to process the job by setting the size of memory in configuration, then the 

node should have more then 10 gigabytes because the node needs extra memory for OS and other 

features – AM, Node Manger (NM) – for managing the node. When the real memory could not 

support the amount of memory that is required memory size, the VM will die. In the setting, the 

map, reduce, AM, and Java heap space are allocated an amount of memory. Normally, AM 

requires 1 gigabyte of memory to manage the containers that process the applications. And, 
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mapper and reducer require more memory than Java heap space. Java heap space requires 

enough memory to process a job in a container. There is Java heap space error when the Java 

heap space is not sufficiently allocated to process the job in the container.   

  Tables C-1, C-2, and C-3 show the Hadoop configurations for the WordCount test. 

Mostly, the resource of VM is controlled at yarn-site.xml and mapred-site.xml. Also, the input 

data is controlled as blocks on HDFS by hdfs-site.xml. 

In the WordCount test with 1 gigabyte data, we used one master node and four slave nodes, with 

8 gigabytes real memory and four virtue cores each. So, we set the reducer to work 

simultaneously with a map to process the MapReduce job after finishing a half of map stage 

using mapreduce.job.reduce.slowstart.completedmaps in mapred-site.xml. One slave node in the 

slave nodes will work as an AM that will use one virtual core, 1 gigabyte memory 

(yarn.app.MapReduce.am.resource.mb) for AM’s resource, and 768 megabytes of Java heap 

memory (yarn.app.MapReduce.am.command-opts) using mapred-site.xml. According to the 

setting, all slave nodes can get maximum two mappers. There are two reducers in the slave nodes. 

We allocated each mapper and reducer one virtue and 2600 megabytes of memory 

(mapreduce.map/reduce.memory.mb ) using mapred-site.xml. Therefore, we limited the 

maximum number of virtual machines to four in the slave nodes using yarn-site.xml and mapred-

site.xml. 

Using the hdfs-site.xml, we set the size of the block at 64 megabytes using dfs.blocksize and 

made replicas using dfs.replication in hdfs-site.xml. 
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Table C-1. hdfs-site.xml. 

Name Value 

dfs.replication 3 

dfs.permissions false 

dfs.blocksize 64m 

dfs.namenode.name.dir /home/unlv/Hadoop_tmp/hdfs/namenode 

dfs.datanode.data.dir /home/unlv/Hadoop_tmp/hdfs/datanode 

Table C-2. mapred-site.xml. 

Name Value 

mapreduce.[map|reduce].cpu.vcores 1 

yarn.app.MapReduce.am.command-opts -Xmx768m 

yarn.app.MapReduce.am.resource.mb 1024 

mapred.child.java.opts -Xmx2560m 

mapreduce.task.io.sort.mb 256 

mapred.job.shuffle.input.buffer.percent 0.10 

mapreduce.map.java.opts -Xmx2560m 

mapreduce.reduce.java.opts -Xmx2560m 

mapreduce.map.memory.mb 2600 

mapreduce.reduce.memory.mb 2600 

mapreduce.job.reduce.slowstart.completedmaps 0.5 

mapreduce.tasktracker.map.tasks.maximum 1 

mapreduce.tasktracker.reduce.tasks.maximum 1 

mapreduce.framework.name yarn 

mapred.job.shuffle.input.buffer.percent 0.10 

MapReduce.jobhistory.address master:10020 

MapReduce.jobhistory.webapp.address master:19888 

MapReduce.jobhistory.max-age-ms 5184000000 

MapReduce.jobhistory.intermediate-done-dir /home/unlv/Hadoop/mr-history/tmp 

MapReduce.jobhistory.done-dir /home/unlv/Hadoop/mr-history/done 

MapReduce.map.speculative false 

MapReduce.reduce.speculative false 

mapred.map.tasks.speculative.execution false 

mapred.reduce.tasks.speculative.execution false 

Table C-3. yarn-site.xml 
Name Value 

yarn.scheduler.maximum-allocation-vcores 2 

yarn.nodemanager.resource.cpu-vcores 2 

yarn.nodemanager.resource.memory-mb 7000 

yarn.scheduler.maximum-allocation-mb 7000 
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APPENDIX D 

 

Hardware Implement 

We tested the data locality performances with hardware implementation to verify the 

accuracy of the analytical and simulation models. A small Hadoop cluster has been configured 

with five machines, one for master node and 4 for slave nodes (Figure D-1). Each machine is 

equipped with quad-core Intel Pentium processor, 32GB eMMC disk (250 MB/s) and 8GB of 

1333MHz DDR3 memory. A Netgear GS108-Tv2 switch (100 Mbps) is used for the network. 

Using WordCount benchmark with 1 GB of input data, we tested four different methods, i.e., 

default MR, MR with block-based DDL, MR with key-based DDL, and MR with both block-

based and key-based DDL. 

We also installed the Ganglia 3.6 to check resource in the Hadoop system [112]. Ganglia 

store the log at default location (default: "/var/lib/ganglia/rrds"). The log of Ganglia will make 

full of size in the root directory. There is needed to move default location to other location.  

 

Figure D-1 Hadoop Testbed 
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CURRICULUM VITAE 

Sungchul Lee 

Email: lsungchul@gmail.com  
Homepage: https://lsungchul.wordpress.com  

 

EDUCATION   

University of Nevada, Las Vegas Aug. 2013 – Present  

Ph.D. Student in Computer Science GPA 3.77/4.0 

University of Nevada, Las Vegas May 2012 

M.S. in Computer Science GPA 3.8/4.0 

Konkuk University, South Korea         Feb. 2009 

B.S. in Computer Engineering GPA 3.8/4.5 

RESEARCH EXPERIENCE  

University of Nevada, Las Vegas Sep. 2013 – Present 

Research Assistant, Center for Energy Research Las Vegas, NV 

(Funded by the NSF IIA-1301726)        

Title: The Solar Energy-Water-Environment Nexus in Nevada 

▪ Development of renewable energy resources is a national priority, and Nevada is aligning 

its research and development activities in support of this important national goal. The 

abundant solar flux in Nevada makes it one of the best sources for solar energy generation 

in the world, and development of this energy source has potential to significantly diversify 

the economy of the state   

▪ Project size: $20,000,000, composed of over 50 members at University of Nevada, Reno, 

Desert Research Institute and University of Nevada, Las Vegas  

▪ Team Name: Cyberinfrastructure  

Contributions 

▪ Support interdisciplinary renewable energy research, policy, decision-making, outreach and 

education by using cyberinfrastructure  

▪ Develop integrated data repositories, intelligent and user-friendly software solutions  

▪ Big Data analysis with Nevada Climate data and renewable energy resource  

▪ Large scale of visualization on Nevada Climate Change Portal (NCCP)   

▪ Designed the RESTful web service architecture for NCCP with Java  

▪ Designed Security Algorithm for web service in Nexus Project   

University of Nevada, Las Vegas Jan. 2010 – Dec. 2011 

Research Assistant, Department of Computer Science  Las Vegas, NV 

Title: A Consumer Level Simulation Model for Demand Response Analysis on Smart Grid 

▪ This project advances the current system of Demand-Response by creating a Smart Grid 

Simulator that allows an intuitive demand response analysis. Substantial amount of electric 

power can be reduced efficiently by selective demand control over the Smart Grid 

Simulator.   
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Contributions 

▪ Designed the user interface and the control software for Simulator with visual C++   

▪ Developed the data structures for simulation models in UML   

▪ Making data anonymization system using RSA encryption algorithm  

PUBLICATIONS  

Journals 

1. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Authentication System for Stateless 

RESTful Web Service.” Journal of Computational Methods in Science and Engineering 

(JCMSE), 2016. Accepted  

2. Sungchul Lee, Eunmin Hwang, Ju-Yeon Jo, and Yoohwan Kim. “Big Data Analysis on 

Personalized Incentive Model with Synthetic Hotel Customer Data.” International Journal 

of Software Innovation, 2016. Vol. 4 Issue 3. pp. 1 - 21  

3. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Restful Web Service and Web-based Data 

Visualization for Environmental Monitoring.” International Journal of Software Innovation, 

2015. Vol. 3. Issue 1. pp. 75-94  

4. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Environmental Sensor Monitoring with 

secure RESTful Web Service.” International Journal of Services Computing, 2015. Vol. 2 

Issue 3. pp. 30-42  

Conference 

5. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Performance Improvement of MapReduce 

Process by Promoting Deep Data Locality.” The 3rd IEEE International Conference on 

Data Science and Advanced Analytics (DSAA), October 17, 2016. (acceptance rate: 20%)  

6. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Data Analysis at Single-Mode and Multi-

Mode for Data Center.” The Twenty Fifth International Conference on Software 

Engineering and Data Engineering (SEDE), 2016. September 26, 2016  

7. Yoohwan Kim, Ju-Yeon Jo, and Sungchul Lee. “A Secure Location Verification Method 

for ADS-B.”, IEEE 35th Digital Avionics Systems Conference. September 25, 2016   

8. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Secure and Stateless RESTful Web 

Service Using ID-Based Encryption.” 28th International Conference on Computer 

Applications in Industry and Engineering (CAINE). October 12, 2015  

9. Sungchul Lee, Juyeon Jo, and Yoohwan Kim. “A Method for Secure RESTful Web 

Service.” IEEE/ACIS International Conference on Computer and Information Science. 

June 28, 2015  

10. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Performance Testing of Web-Based Data 

Visualization.” IEEE International Conference on Systems, Man and Cybernetics (SMC). 

October 5, 2014  

11. Juyeon Jo, Yoohwan Kim, and Sungchul Lee. “Mindmetrics: Identifying users without 

their login IDs.” IEEE International Conference on Systems, Man and Cybernetics (SMC). 

October 5, 2014  

12. Sungchul Lee, Ju-Yeon Jo, Yoohwan Kim, & Haroon Stephen. “A Framework for 

Environmental Monitoring with Arduino-based Sensors using Restful Web Service.” IEEE 

International Conference on Services Computing, June 27, 2014 (acceptance rate: 20%)  

Poster 

1. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Enhanced Big Data Processing with a 
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New Hadoop Block Placement Policy.” Research@UNLV Presentation & Tech Expo. Oct 

7 , 2 0 1 6 

2. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Novel Block Placement Policy for 

Hadoop”, 2016 US-Korea Conference, August 10, 2016   

3. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Enhanced Big Data Processing with a 

New Hadoop Block Placement Policy.” 6th Graduate Celebration in UNLV April 25, 2016 

4. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Advanced MapReduce Process Using 

Limited Node Block Placement Policy.”, 18th Annual Graduate & Professional Student 

Research Forum in UNLV. March 12, 2016  

5. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Advanced MapReduce Process Using 

Limited Node Block Placement Policy”2016 Solar Energy-Water-Environment Nexus in 

Nevada Annual Meeting at UNR March 13, 2016   

6. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Performance Testing of Web-Based 

Visualization with Large-Scale Data” 2015 KOCSEA Technical Symposium on December 

10-11, Harvey Mudd College, California. December 11, 2015  

7. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “A Framework for Environmental 

Monitoring with Arduino-based Sensors using Restful Web Service” CWe days 2015 in 

UNLV. April 8, 2015  

8. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Performance Testing of Web-Based Data 

Visualization” CWe days 2015 in UNLV. April 8, 2015  

9. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “Performance Testing of Web-Based Data 

Visualization” 2015 Graduate & Professional Student Research Forum in UNLV. March 21, 

2015  

10. Sungchul Lee, Ju-Yeon Jo, and Yoohwan Kim. “A Framework for Environmental 

Monitoring with Arduino-based Sensors using Restful Web Service” 2014 Graduate & 

Professional Student Research Forum in UNLV. March 29, 2014  

11. Sungchul Lee and Yoohwan Kim. “A consumer level simulation model for demand 

response analysis on smart grid” College of Engineering: Graduate Celebration. April 27, 

2012  

Presentation 

1. Sungchul Lee, “Deep Data Locality on Hadoop” 2016 KOCSEA Technical Symposium on 

November 4, 2016  

2. Sungchul Lee, “Performance Improvement of MapReduce Process Using Limited Node 

Block Placement Policy.” The 3rd IEEE International Conference on Data Science and 

Advanced Analytics (DSAA), October, 17, 2016  

3. Sungchul Lee, “Data Analysis at Single-Mode and Multi-Mode for Data Center.” The 

Twenty Fifth International Conference on Software Engineering and Data Engineering 

(SEDE), September 27, 2016  

4. Sungchul Lee, “ID-Based Authentication for secure and stateless RESTful Web Service.” 

UNLV Rebel Grad Slam: 3 Minute Thesis Competition, November 4, 2015   

5. Sungchul Lee, “Secure and Stateless RESTful Web Service Using ID-Based Encryption.” 

28th International Conference on Computer Applications in Industry and Engineering 

(CAINE). October 12, 2015  

6. Sungchul Lee, “A Method for Secure RESTful Web Service.” IEEE/ACIS International 

Conference on Computer and Information Science. June 29, 2015  

7. Sungchul Lee, “IoT on Secure REST Web Service with IDA” UNLV Graduate 
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Presentation Competition. November 4, 2014  

8. Sungchul Lee, “Performance Testing of Web-Based Data Visualization.” IEEE 

International Conference on Systems, Man and Cybernetics (SMC). October 5, 2014  

9. Sungchul Lee, “Mindmetrics: Identifying users without their login IDs.” IEEE International 

Conference on Systems, Man and Cybernetics (SMC). October 5, 2014  

10. Sungchul Lee, “A Framework for Environmental Monitoring with Arduino-based Sensors 

using Restful Web Service.” 11th IEEE International Conference on Services Computing, 

June 27, 2014  

MASTER THESIS PROJECT EXPERIENCE  

University of Nevada, Las Vegas Aug. 2009 

▪ Title: Developing a Simulation Model for power demand control analysis and privacy 

protection in Smart Grid   

▪ Developed the methods, framework and simulator for power demand control and privacy 

protection in a Smart Grid environment   

▪ Researching the risks of electric usage data.   

▪ Implementing a demo system to be used for handling peak time using Smart Grid  

TECHNICAL SKILLS  

Language: C, C++, C#, Scala Scheme and Java, Objective-C, XML, PHP, Java Script, NodeJs 

Database: Oracle, MySQL, MSSQL, BigData (Hadoop) 

Software: Microsoft Visual Studio (6.0, 2005, 2008), Dev C++, GCC, Xcode, UML, R 

Hardware: Arduino, Raspberry Pi, Intel Edison 

Platform: Linux, MS-DOS/Windows95/98/NT/XP/Vista, Hadoop 

Concept: TCP/IP, HTTP, Socket, MFC, Cocoa programming, AWS, RESTful Web Service, 

Sensor Networking, MapReduce    

WORK EXPERIENCE  

Rich Robotics July. 2016 – Aug. 2016 

Software Developer Las Vegas, NV 

▪ Developed Database and Server-side code using Node.js  

▪ APWe or SDK development to connect between MS-SQL and RiCH Modules  

▪ Speech Recognizer on Android device for customer engagement  

University of Nevada, Las Vegas Sep. 2013 – Present 

Graduate Assistance Las Vegas, NV 

▪ Developed navigation and collision avoidance, algorithms and 3D simulator for Aircraft 

Systems through simulations studies  

▪ Developed decision making and prediction model using Big data analytic with Hotel Data 

and NCCP data on Hadoop system   

▪ Developed web-based Mindmetrics system which is identifying users without login IDs   

▪ Developed NextGen Simulator which is air traffic control simulation program  

Teaching July. 2014 – Aug. 2014  

Private Teaching Las Vegas, NV 

▪ Java programming for college students teaching grammars and parking system project  

Timeless Wisdom, Inc. - Options Trading Export System May 2012 – Oct. 2013 
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Co-founder Las Vegas, NV 

▪ Developed Option Trade Strategy and Auto Trading System  

▪ Implemented option pricing models with all option Greeks (esp. Black-Scholes model)  

▪ Analyzed option trading strategies such as Vertical Spread, Time Spread, Iron Condor in 

relation to VIX  

▪ Designed Software tool to analyze different trading strategies and measure past 

performances  

Designed the trading algorithms and graphical user interface with Java  

University of Nevada, Las Vegas Jan. 2010 – Dec. 2011 

Graduate Assistance Las Vegas, NV 

▪ Assistance, and Grading on Computer Organization class, Network class, and Internet 

Security class   

TeleSecurity Sciences, Inc. Jun. 2010 – Jul. 2010 

Assistant Software Engineer Las Vegas, NV 

▪ Developed the encryption and key management system in C for the software product 

licensing module  

Ubiquitous System Technology Corporation Jul. 2008 – Sep. 2008 

Junior Software Engineer Seoul, Korea 

▪ Implement communication server and data converter module with C++ for Indoor system 

and u-Conference system  

▪ Formulated various services of conference environment on PDA with RFID  

▪ Developed a range of match functions utilizing the information of passengers’ location  

▪ Incorporated information on map service of inner-space using the framework of GIS 

▪ Constructed the primary functions of fire alarm and conference monitoring task  

Korea Geospatial Information & Communication Co. Jun. 2007 – Aug. 2007                        

Summer Intern                            Seoul, Korea 

▪ Developed GIS (Geographic Information System) database and network 

▪ Provided the raw information on location of internal and external spatial frame using GIS   

▪ Researched and gave presentations on Ruby language 

Republic of Korea Air Force (Mandatory Military Service) Dec. 2003 – Mar. 2005 

Signal Corpsman Osan Air Force Base, Korea 

▪ Maintained wireless communication equipment (GRC-512/VHF), connecting the radio to 

Air Base, providing the data about enemy fighters and blue force to air defense force  

▪ Controlled encryption machine and decryption project with captain over RF channel  

▪ Held second-level secret authorization 

Tutoring Dec. 2002 – Oct. 2003 & Oct. 2005 – Dec. 2005  

Private Tutor              Seoul, Korea 

▪ Math and Science tutor for high school students teaching Pre-cal, Trigonometry, Algebra, 

Probability/Statistics, Physics, Chemistry, Biology, and Earth Science 

ACADEMIC PROJECTS  

Genetic Algorithms and Neural Networks (Graduate)  Spring, 2016 

▪ Implement Back Propagation and Perceptron Neural Networks using C# 
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Statistical Pattern Recognition (Graduate)  Spring, 2015 

▪ Calculating image similarity on Hadoop System using MapReduce and LIRE 

Compiler Construction (Graduate)  Fall, 2014  

▪ Constructed a Compiler using Jasmin and Java CUP 

Topics in Advanced Computer Science (Adv. Computer Networks - Graduate)  Fall, 2013  

▪ Implement SCTP Handover simulation using OPNET 

Database Management (Adv. Database Management - Graduate)  Spring, 2010 

▪ Constructed an employee management database using XML  

Relational Database (Multi-Paradigm Programming - Graduate)  Fall, 2009 

▪ Constructed a mini-database using Scheme          

RFID Network of Unmanned Vehicles (Bachelor’s degree project)  Fall. 2008 

▪ Implemented an RFID-based road-search module in C under embedded Linux  

▪ Sensing RFID cards to find current position, feeding the movement direction data with 

RFID, searching the shortest path using Dijkstra algorithm  

▪ Group project with 3 students  

Internet Game (Network IWe - Undergraduate)  Fall. 2008 

▪ Implemented client and server module over TCP/IP in C  

▪ Stored data of character at database 

TRAINING  

Big Data on Amazon Web Services Aug. 2014 – Aug. 2014 

Global Knowledge NV, USA 

▪ Analyzing Big Data on AWS  

Oracle OCP Training, Oracle Korea  Jul. 2008 – Sep. 2008 

Konkuk University and Oracle Korea Seoul, Korea 

▪ Constructed database servers using Oracle 10g 

RESEARCH GRANT & FUNDED  

1. Nexus Student Research Publication & Travel Support Oct. 2016 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $1,500 

2. UNLV Differential Fee  Jan. 2015 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $940 

3. GPSA Conference Travel Fund  Apr. 2015 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $575 

4. GPSA Conference Travel Fund  May 2014 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $850 

5. GPSA Conference Travel Fund  Sep. 2014 

University of Nevada, Las Vegas Las Vegas, NV   
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▪ Grant: $550 

6. The Solar Energy-Water-Environment Nexus in Nevada Aug. 2013 

National Science Foundation 

▪ Grant Number: IIA-1301726 

AWARDS & HONORS  

1. Victor & Marjaorie Kunkel Engineering Scholarship 2016-2017 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $4,000 

2. Roy & Helen Kelsall Engineering Scholarship 2016-2017 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $1,000 

3. UNLV Graduate Access Childcare Scholarship  2016-2017 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $3,000 

4. First prize of the scholarship competition of KOCSEA 2015 Dec. 2015 

KOCSEA Technical Symposium Claremont, CA. 

▪ Grant: $500 & Travel supported 

5. UNLV Graduate Access Childcare Scholarship  2015-2016 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $5,000 

6. GPSA Research Forum Outstanding Presentation  Mar. 2014 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Honorable Mention 

7. UNLV Access Grant Jan. 2014 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $2,500 

8. UNLV Access Grant Aug. 2013 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $2,500 

9. UNLV Access Grant – Grad NN  Aug. 2011 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $1,000 

10. UNLV Access Grant – Grad NN  Jan. 2011 

University of Nevada, Las Vegas Las Vegas, NV   

▪ Grant: $2,000 

11. Konkuk Shin-Jo Scholarship                                                             Aug. 2008 

Konkuk University Seoul, Korea 

▪ Grant: 70/100 of tuition fee (over $4,000) 

▪ Sole winner in the same grade in CS of 2009 (40 students) 

REVIEWER  

International Conference on Big Data, Cloud Computing and Data Science (BCD)  2016 
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MEMBERSHIP  

IEEE Membership (Student)  2014 – Present  

KSEA membership 2015 – Present 

 

EXTRA-CURRICULAR ACTIVITIES  

English Conversation Club of Konkuk University, Seoul, Korea 2002 – 2009  

▪ President (Spring, 2007), Vice-President (Fall, 2003) 

Magic School, Seoul, Korea  2002 – 2003  

▪ Vice-President (2002 – 2003) 

Calligraphy Club of Konkuk University, Seoul, Korea  2002 – 2003  

 

 

 


