
UNLV Theses, Dissertations, Professional Papers, and Capstones

May 2015

A Survey on Potential Privacy Leaks of GPS Information in A Survey on Potential Privacy Leaks of GPS Information in

Android Applications Android Applications

Srinivas Kalyan Yellanki
University of Nevada, Las Vegas, yellas1@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Library and Information Science Commons

Repository Citation Repository Citation
Yellanki, Srinivas Kalyan, "A Survey on Potential Privacy Leaks of GPS Information in Android Applications"
(2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2449.
https://digitalscholarship.unlv.edu/thesesdissertations/2449

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2449&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2449?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2449&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

A SURVEY ON POTENTIAL PRIVACY LEAKS OF GPS

INFORMATION IN ANDROID APPLICATIONS

By

Srinivas Kalyan Yellanki

Bachelor of Technology, Information Technology

Jawaharlal Nehru Technological University, India

2013

A thesis submitted in partial fulfillment of the requirements

 for the

Master of Science - Computer Science

School of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2015

© Srinivas Kalyan Yellanki, 2015

All Rights Reserved

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Srinivas Kalyan Yellanki

entitled

A Survey on Potential Privacy Leaks of GPS information in Android

applications

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

 School of Computer Science

Dr. Ju- Yeon Jo, Ph.D., Chair Person 

Dr. Ajoy K. Datta, Ph.D., Committee Member 

Dr. Yoohwan Kim, Ph.D., Committee Member 

Dr. Venkatesan Muthukumar, Ph.D., Graduate College Representative 

May 2015

iii

ABSTRACT

A Survey on Potential Privacy Leaks of GPS Information in

Android Applications

By

Srinivas Kalyan Yellanki

Dr. Ju-Yeon Jo, Examination Committee Chair

Associate Professor, Department of Computer Science

University of Nevada, Las Vegas

Android-based smart phones are extremely common today. However, it is

believed that nearly half of the Android devices are vulnerable to an attack that

alters the functionality of an app with malicious software. The malware can collect

users sensitive data from the phone. In particular, there are hundreds of location-

based applications available nowadays in the Google Play store or other app

stores. The very famous services called ―Location Based Services‖ are used by

many apps on mobile phones to track the geographical coordinates of the device.

Such location information can be leaked to an attacker via malware.

In this thesis, we discuss different ways in which privacy can be breached

in android applications and their countermeasures. The vulnerabilities, the method

of detecting the information leakage, and the measures to control the security

breach are discussed. The experimental results show how effectively those

different countermeasures can help us in preventing the security breaches and

information leakage of GPS data in android applications.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Ju-Yeon Jo, my research advisor for all the support and

guidance she has offered me during the course of my graduate studies at

University of Nevada, Las Vegas. Her encouragement and valuable suggestions

have helped me immensely in seeking the right direction for this thesis. I would

like to thank Dr. Yoohwan Kim, who deserves special recognition for his

wholehearted guidance and support throughout my thesis.

I would also like to thank Dr. Ajoy K. Datta, Dr. Yoohwan Kim and Dr.

Venkatesan Muthukumar for serving my committee and reviewing my thesis. I am

grateful to Dr. Ajoy K. Datta for all his support and guidance through my Master‘s

program.

This thesis has been a challenging experience to me and was accomplished

through help of many people. In particular, I would like to express my sincere

gratitude to Dr. Ajoy K. Datta for providing me assistantship.

My deepest gratitude to my parents Mallesh Yellanki and Vijaya Laxmi Yellanki

for their love, care and opportunities they have provided me at every stage of my

life. I would also like to thank my brother Sampath Yellanki, sister Sadhana

Yellanki for their support and guidance in building up my career. Last but not the

least; I would like to thank all my friends and well-wishers for their support.

v

 TABLE OF CONTENTS

ABSTRACT……………………………………………………………… iii

ACKNOWLEDGEMENTS……………………………………………... iv

TABLE OF CONTENTS………………………………………………… v

LIST OF TABLES……………………………………………………….. ix

LIST OF FIGURES……………………………………………………… x

CHAPTER 1 INTRODCUTION……………………………………….....1

1.1 Android History…………………………………………………..1

1.2 Pre-Commercial Release Versions………………………………..3

1.2.1 Alpha Version…………………………………………...3

1.2.2 Beta Version…………………………………………….3

1.3 Outline…………………………………………………………….4

1.4 Motivation………………………………………………………...5

1.5 Attacking Procedure……………………………………………....6

CHAPTER 2 ANDROID ARCHITECTURE…………………………….8

 2.1 Android Security Architecture…………………………………....8

 2.2 System and Kernel Security……………………………………....9

 2.3 Application Security in Android………………………………...10

 2.4 Sandbox………………………………………………………….11

vi

 2.4.1 Functionality……………………………………………13

 2.5 Droidbox………………………………………………………...14

CHAPTER 3 VULNERABILITIES……………………………………..17

 3.1 Vulnerabilities of Data Leakage in Android Applications………17

 Data Leak through the Android App Structure……………………..17

 3.1.1 ContentProvider and Permission……………………….17

 3.1.2 Data Leak through Reverse Engineering……………….20

 a) Using Dedexer Tool………………………………...21

 b) Data Leak through Apk Manager…………………...22

 c) Proguard…………………………………………….23

 3.2 Vulnerabilities of Data Leakage in Android GPS Applications...24

CHAPTER 4 LEAKAGE DETECTION ANALYSIS………………….28

Detecting Leakage Analysis in GPS Applications…………………..28

 Approaches…………………………………………………………..29

 4.1 LeakMiner - A Static Taint Analysis……………………………29

 Functionality…………………………………………………….31

 4.1.1 Fundamental activity lifecycle callbacks……………….31

4.1.2 Activity supplementary callbacks………………………32

4.1.3 Basic service lifecycle callbacks……………………….32

4.1.4 Service supplementary callbacks……………….………32

vii

4.2 TaintDroid – a Dynamic Taint approach………………..………33

4.3 Detection Leakage through Hybrid Analysis……………………38

4.4 Detection Leakage through Cloud based analysis………………39

4.5 Leak Detection through Kynoid………………………………....41

4.6 DroidVulMon……………………………………………………43

 4.6.1Security Architecture for malicious App detection……..43

 4.7 Overall Comparison………………………………………….…46

CHAPTER 5 ANDROID APP- TRCK ME……………………………..48

 5.1 Location Tracking Applications…………………………………47

 5.2 Case Study……………………………………………………….49

 5.3 Personalized Android app – Track Me………………………….51

 Functionality………………………………………………….51

 5.3.1 Welcome Screen………………………………………..52

 5.3.2 Go to application……………………………………….53

 5.3.3 Contacts……………………………………………...…54

 5.3.4 Choosing a Contact…………………………………….55

 5.3.5 Start Updating………………………………………….56

 5.3.6 Text Message Notification……………………………..57

 5.3.7 Google Map View……………………………………...58

viii

CHAPTER 6 RECOMMENDATIONS FOR SECURE APPS...............59

CHAPTER 7 CONCLUSION AND FUTURE WORK………………...61

BIBLIOGRAPHY………………………………………………………...62

VITA

ix

LIST OF TABLES

Table 1 Malicious applications classification…………………………......24

Table 2 Information leakage reported by LeakMiner……………………..33

Table 3 Comparison of various Taint Analysis techniques for android-I...36

Table 4 Comparison of various Taint Analysis techniques for android-II..37

Table 5 Privacy Leak Detection Frameworks-I……………………….......45

Table 6 Privacy Leak Detection Frameworks-II………………………......46

Table 7 Comparison of different Location sharing apps on app store…….49

x

LIST OF FIGURES

Fig 1. Android Software Stack………………………………...……………9

Fig 2. Sandbox Manager……………………………………..…………….12

Fig 3. AASandbox Architecture……………………………….…………..13

Fig 4. An Example of Behavioral Graph…………………………………..16

Fig 5. Database Sharing between apps…………………………………….19

Fig 6. Relationship between apps and permissions………………………..20

Fig 7. Conversion of Android app files……………………………………22

Fig 8. Reverse Engineering through Apk Manager………………………..23

Fig 9. Potential Privacy Leaks of Android Application…………………...26

Fig 10. Overall Architecture of LeakMiner………………………………..30

Fig 11. TaintDroid within the Android Application…………………….…34

Fig 12. SmartDroid Architecture…………………………………………..38

Fig 13. Paranoid Android Architecture…………………………………….39

Fig 14. Core idea of Kynoid………………………………………………..41

Fig 15: System Architecture………………………………………………..44

Fig 16. Home Screen of app………………………………………………..52

Fig 17. Go to Application…………………………………………………..53

Fig 18. Adding a Contact…………………………………………………..54

xi

Fig 19. Choosing a Contact………………………………………………55

Fig 20. Start Updating……………………………………………………56

Fig 21. Text Message Notification to receiver……………………………57

Fig 22. Google Map View………………………………………………...58

1

CHAPTER 1

INTRODUCTION

It is very common today that everyone is using smartphones. There are many

location-based applications available now days in the play store or App store. The

very famous services called ―Location Based Services‖ are used by many

applications to track the geographical coordinates of the device. The usage of this

service is growing fast in the android applications.

1.1 Android History

In current mobile market, android is the most widely used operating system on

smartphones. The android version history of the android operating system has

begun with the release of the Android beta in November 2007 and then the first

commercial version, Android 1.0, was released in September 2008[1]. Android is

taken up by Google and currently is under ongoing development by Google and

the Open Handset Alliance (OHA).

The most recent major Android release in operating system was Android 5.0

"Lollipop", which was released on November 3, 2014 by Google. Since April

2009, the nomenclature of Android versions have been developed under

a confectionery-themed and released in an alphabetical order, beginning with

2

Android 1.5 "Cupcake"; the earlier versions 1.0 and 1.1 were not released under

specific code names:

 Alpha (1.0)

 Beta (1.1)

 Cupcake (1.5)

 Donut (1.6)

 Eclair (2.0–2.1)

 Froyo (2.2–2.2.3)

 Gingerbread (2.3–2.3.7)

 Honeycomb (3.0–3.2.6)

 Ice Cream Sandwich (4.0–4.0.4)

 Jelly Bean (4.1–4.3.1)

 KitKat (4.4–4.4.4, 4.4W–4.4W.2)

 Lollipop (5.0–5.1)

Google announced that more than one billion activated Android devices were in

use worldwide[2] on September 03, 2013 by the users. Recently in January 2015,

Android devices accounted for approximately 62% of the US smartphone and

tablet market.

3

1.2 Pre-Commercial Release Versions

The actual development of Android was started in 2003 by Android, Inc.,and later

was purchased by Google in 2005[3].

1.2.1 Alpha version

There were at least two internal releases of the software inside Google and the

OHA before the beta version was released in November 2007 as per sources. For

the milestones in internal releases, names of fictional robots were chosen, with

various releases code-named Astro Boy, Bender and R2-D2 [4][5][6].

Dan Morrill created some of the first mascot logos, but the current green Android

logo was designed by Irina Blok[7]. The project manager, Ryan Gibson, conceived

the confectionary-themed naming scheme that has been used for the majority of

the public releases, starting with Android 1.5 "Cupcake".

1.2.2 Beta version

The beta version was released on November 5, 2007[8][9], while the software

development kit (SDK) was released on November 12, 2007[10]. The November 5

date is popularly celebrated as Android's "birthday"[11]. Public beta versions of

the SDK were released in the following order[12]:

4

 November 12, 2007: m3-rc20a (milestone 3, release code 20a)
[13]

 November 16, 2007: m3-rc22a (milestone 3, release code 22a)
[14]

 December 14, 2007: m3-rc37a (milestone 3, release code 37a)
[15]

 February 13, 2008: m5-rc14 (milestone 5, release code 14)
[16]

 March 3, 2008: m5-rc15 (milestone 5, release code 15)
[12]

 August 18, 2008: 0.9
[17][18]

 September 23, 2008: 1.0-r1
[19][20]

1.3 Outline

In this survey, we discuss the different ways in which privacy can be breached in

android applications. The few issues are:

1. Detection of GPS information leakage

2. Vulnerabilities

3. Privacy issues

4. Measures to control the leakage and security breach

The survey covers everything right from creation of an android application in an

effective manner in order to prevent the security issues among the applications and

then architecture of a typical android application then discusses the privacy issues

in modern android applications followed by solutions to prevent the security

breach.

5

This survey includes extensive experiments results that how effective different

measures help us in preventing the detection of security breaches and leakage of

GPS data in android applications with a high accuracy rate.

At last, we categorize the detection results in our survey and provide the best

solution that provides the minimal leakage of GPS data in an android application.

1.4 Motivation

Almost nearly half of the Android devices are vulnerable to an attack that could

replace app functionality with malicious software that can steal and gather

sensitive personal data from a phone.

Major android developer giants like Google, Samsung and Amazon have released

patches for their own devices, but 49.5 percent of Android users are still

vulnerable according to Palo Alto Networks[21], which suffered the problem.

Google said it has not detected attempts to exploit the flaw.

 An infected application can be installed using the vulnerability, called "Android

Installer Hijacking‖. This will have full access to a device, including personal

sensitive data such as usernames and passwords, wrote Zhi Xu, a senior staff

engineer with Palo Alto.

6

The vulnerability only affects apps that are installed from a third-party play store

or websites. It is highly recommended to be more cautious while downloading

such apps from third party websites.

The apps that are downloaded from third party websites place their APK

installation files in a device's unprotected or unmonitored local storage, such as an

SD card.

From these places, a system application called PackageInstaller finishes the

installation. The flaw allows an APK file to be modified or replaced which may be

malicious, during installation without anyone knowing.

1.5 Attacking Procedure

Install and attack flow would be like this: User downloads an app what appears to

be a legitimate application from the third party website or app store. The

application after downloading and before installation asks for certain permissions

on the device.

During that process, it was possible to swap or alter the APK file in the

background because the PackageInstaller fails to verify it.After the user clicks the

install button, the PackageInstaller can actually install a different malicious app

with an entirely different set of permissions.

7

The main problem with the Android devices does not need to be rooted for the

attack to work or to inject a malware, although rooting also make devices more

vulnerable.

When the major flaw was detected, in January 2014, approximately 90 percent of

all Android devices were affected. That has since dropped to 49.5 percent, but still

many devices have not been patched.

The recent Palo Alto's exploit was a huge success against Android versions 2.3,

4.0.3 to 4.0.4, 4.1.x, and 4.2.x. The 4.4 version of Android devices fixes the issue

and some Android 4.3 devices may still be affected and since some manufacturers

have not patched yet.

In order to overcome these Malwares, Google has published a patch, and Amazon

recommends its users to download the latest version of the Amazon AppStore, so

that they update their Fire devices.

8

CHAPTER 2

ANDROID ARCHITECTURE

2.1 Android Security Architecture

Android is the most modern mobile platform designed and is open in the market.

All the android applications use the most advanced hardware and software to offer

variety of innovative features that value to customers. In order to protect that

value, the coding platform must provide an application environment that provides

the security for users, data and applications on device.

In order to secure the open platform, it requires a strong security and rigorous

security programs. This can be achieved by android by adopting the multi-layered

security and also provides protection for all the users using the platform. Android

security system is designed with device users in mind.

 This design includes the expectation that malicious app attackers would try to

perform attacks such as social engineering attacks[1] to make users to install

malware. The android security system is designed to reduce the both chances of

these attacks and to limit the impact of attack on any app.

9

2.2 System and Kernel Security

At the operating system level, android comprises Linux kernel and secure inter-

process communication (IPC). Android provides security to these two major

components to achieve secure and safe communication between apps running in

different processes. These security features at the Operating System level make

sure that even the code is severely restricted by the Application Sandbox.

The fig.1 below shows the Android Software Stack with bottom up approach

depicting various levels of Android development.

Fig 1. Android Software Stack[40]

10

2.3 Application Security in Android

Android core operating system is completely based on the Linux kernel. The most

android applications are programmed in Java programming language and run in

the Dalvik Virtual Machine (DVM). All the android applications are installed

from a single file with the .apk extension.

The android application building blocks are:

 AndroidManifest.xml: The AndroidManifest.xml file is the metadata file

that is considered as control file that tells the system, what to do with all

top-level components in an application. This file specifies what all

permissions are granted to the app.

 Activites: An Activity is usually includes displaying a UI to the user and

typically application‘s Activities is the entry point to an application.

 Services: Services are the body or execution part of code that runs in the

background. The other components ―bind‖ to a Service and trigger methods

on it via remote procedure calls.

 Broadcast Receiver: A BroadcastReceiver is an object that is instantiated

when intent is issued by the operating system. An app may register a

receiver for the low battery message and change its behavior based on that

specific-information.

11

Security features are to be considered while developing Android applications to

lessen the security breach. This can be achieved by encrypting the file system so

that it keeps device safe during any theft or loss. This can be achieved by a

concept called ―SandBox‖.

2.4 Sandbox

This Sandbox technique[26] helps users to isolate the app data and codes from the

other applications on the device. So that developers can define their own

permissions that are specific to their own applications.

Due to this isolation of application data and codes with the other applications, the

scope of influencing malicious applications is very less. This Sandbox isolates

apps data and code accessing from other apps on the device so that it can prevent

any vulnerabilities of malicious attempts by other apps.

 But in real scenario, there is a necessity of accessing Phone book or Photo Gallery

from the messenger applications on the device by which there is a large scope for

malicious apps to attack the applications data or code.

12

 Fig 2: Sandbox Manager[26]

The above figure.2 depicts the overall architecture of the Android Sandbox

Manager. To overcome this, an API called ContentProvider is responsible for

authenticating and managing accesses to the databases of other apps. Permissions

and ContentProvider are described in further detail in the following section.

For any unusual or malicious activity detection; knowledge of application‘s

characteristics is essential. There are two most common and best practices that

exists in mobile software for analyzing the application‘s activity. They are ―Static

and Dynamic analysis of software”.

These two techniques have many advantages and disadvantages in terms of their

evaluation. Static analysis involves various binary forensic techniques, including

decompilation, decryption, pattern-matching and static system call analysis.

13

Functionality

The main functionality of these techniques is to prevent running the potentially

malicious software on the devices. The Static Analysis usually filters the binaries

with malicious patterns, known as Signatures.

 Fig.3 AASandbox Architecture[26]

The above fig.3 shows the architecture of Sandbox with both the Static and

Dynamic Analysis. Due to the direct comparison with the predefined signatures,

the static analysis is very fast and simple.

Almost all the anti-virus software are based on this approach. Difficulty with the

Static Analysis is that each and every signature/malicious pattern must be known

in advance during the analysis. By which it is impossible to detect new malware or

malicious code entry from any external malicious application.

14

2.5 Droidbox

We dedicate this section to a detailed description of Droidbox[24] and its

capabilities. DroidBox[25] is a dynamic analysis tool for Android applications

targeting Android version 2.1.

The tool is based on TaintDroid[74] for detecting information leaks but has been

extended, by modifying the Android framework, to monitor API calls of interest

invoked by an application.

Applications are executed within the Android SDK emulator and logs are issued

for each monitored behavior and collected in the host operating system. A text-

based report is generated after analysis has ended and provides a summary of the

execution.

On mobile phones, malware has been discovered that listens for incoming SMS

and forwards this information to the attacker. In, TaintDroid was used to track

sensitive data originating from the phone‘s database.

DroidBox can extend this approach by adding and modifying output channels

throughout the Android framework to detect leaks via outgoing SMS and to

disclose full details of the network communication, not only in network leak

scenarios.

15

The file AndroidManifest.xml, included in the Android package, contains

permissions that are needed for the application to interact with the operating

system, for example, connecting to the Internet, sending SMS, making calls and

receiving incoming SMS.

Applications that need to interact with any resources must declare the appropriate

permission in the manifest file. It has been demonstrated that malicious Android

applications can circumvent the permission policies and [23], thus DroidBox

compares each monitored operation that requires any permission with the

package‘s manifest file to check if any permission policy has been bypassed.

Some malicious Android applications can evade anti-virus software by performing

obfuscation and changing themselves during run-time [27]. Obfuscation may

include cryptographic functions applied to the data. DroidBox is designed to detect

applications as they invoke cryptographic keys or perform encryption or

decryption on the data

Malicious Android applications can perform phone calls or send SMS to premium

rate numbers that are declared by the attacker.

16

Fig 4. An Example of Behavioral Graph[24]

The above figure shows the behavior graph produced by Droidbox describes the

temporal order of the operations. DroidBox can disclose these operations by

listening to API calls when SMS and calling methods are invoked by a sample.

Figure 4 shows the output of the sample doodle.apk that was executed for 60

seconds. On the x- axis the time of the monitored operation is shown, while the y-

axis describes what kind of operation type was monitored. This graph is generated

by picking operations and timestamps for each operation from the sandbox log and

plotting them.

17

CHAPTER 3

VULNERABILITIES

Vulnerabilities of Data Leakage in Android Applications

Apps on android devices are highly vulnerable for data leakages because the

android platform is open for developers and the android security allows users to

download apps from third party websites or app stores. Therefore data leakage

from android apps is very common and has high scope for stealing the personal

sensitive data on phone.

Data leakage in android applications can be done in many ways. Few ways are

listed below in detail[55].

3.1 Data leak through the Android App Structure

Personal sensitive data leakage in android application is done mainly through the

app structure. An android app is undergoes many steps during the development

[28]. Different ways in which data leakage occurs is discussed in following

sections:

3.1.1 ContentProvider and Permission

There are many applications[29] installed on a device and each application knows

the structure and file system of other applications and also knows how to interact

18

and access to the databases of other applications.

 In order to grant access/permissions to the other applications databases, android

interleaves ContentProviders[30], which is based on client-server model. So not all

the applications cannot access the databases of other applications until permission

is acquired from ContentProviders.

There are some applications that run on server. These applications also require

databases to access the content. So with the help of ContentProviders, apps that

run on server share their content to other applications on the device.

The server applications provide a unique URI to identify their database and

specify these URI in AndroidManifest.xml or ContentProvider file. The

applications that are so called client applications make use of these URI by

making requests to send queries to a particular database of a server app.

So, the client apps in order to use the server-side databases it should know the

names, table structures and URI of the database. Unlike ContentProviders at

server-side there are ContentResolvers at client-side.

19

 Fig 5: Database Sharing between apps[29]

The figure 5 explains how apps on android devices share resources like database.

These ContentResolvers are used by client apps to communicate with the server-

side ContentProvider. Queries and URIs are sent to server-side ContentProvider

using these ContentResolvers.

These ContentProviders and ContentResolvers serve as intermediate for sharing

databases between server and client apps. When these ContentResolver sends

queries to the ContentProvider at server-side, the ContentProvider receives results

from the database via DB Helper and send these results back to the

ContentResolvers.

20

In order to access major resources or system functions, all the android applications

see permission through the AndroidManifest.xml file[31] which is a unique file

that holds all the permissions of Android System.

Fig 6: Relationship between apps and permissions[29]

The figure 6 explains the relationship between apps on android devices and how

the permissions are granted. Now the applications that run on client side send

query requests to ContentProvider through the ContentResolver to access the

database on server.

This Android System checks for the permissions required to access or to use the

database by client apps. The service from a particular database may be denied or

granted depending upon the permission levels for a particular client request.

21

3.1.2 Leakage of Data through Reverse Engineering

In order to access the databases of other applications, the assigned URIs to every

database are used, queries that require data tables and information of fields

attributes and finally permissions required by server apps are needed.

The address books database, it is provided as default to share within the apps. In

this case not only URIs but also the access procedures or functions are also offered

via System APIs. Data leakage in android apps through Reverse Engineering can

be done in 3 different ways:

a) Using Dedexer Tool

The Java source files are converted into dex files while building an app in android.

Dedexer is a tool that compiles dex files into Java source files. This is nothing but

reverse compiling the files.

While developing an Android app, the Java source code is compiled (.java) to

(.class) files, which are called as byte code based on JVM (Java Virtual Machine).

These (.class) files are then converted into a dex type file using Dedexer tool.

The simulator that runs apps on Android devices is called Dalvik[32], which

reads the byte codes of this dex file. All together the dex files, xml files and

resources grouped together and compressed into Java archive (jar file) format and

finally to generate an apk file (.apk).

22

There is one more important file named R.Java, which is a system generated

resources file during the creation of app.

Fig 7: Conversion of Android app files[29]

The figure 7 explains the coversion of android apps files in an android device.

This Dedexer reconfigures not only user written Java source programs but also

R.Java. Still Dedexer doesn‘t completely restore all the files through reverse

engineering process.

b) Data Leakage through Apk Manager

Dedexer may be accounted as one of the best tool for attackers to manipulate the

Java source file through reverse engineering the dex files into Java Source files.

23

As mentioned earlier, the Dedexer does not support a complete restoration. And

also, it restores Java programs only without supporting xml files and resources.

That is the reason it is difficult to complete operable apps by analyzing the

existing apps and turning them into malicious codes.

But this ApkManager reverses and compiles original Java programs into Smali-

based[33] ones, which not only read just source programs but also

AndroidManifest.xml.

 Fig 8: Reverse Engineering through Apk Manager[29]

The above figure 8 explains how the data leakage is done through the Reverse

Engineering using the Apk Manager.

c) Proguard

Android system provides a feature called Proguard. This Proguard is used to

prevent the reverse-engineered result[34] from being used for malicious codes or

malware susceptible codes that influence the app.

24

On including the proguard.cfg file in the Android project can use this feature. This

Proguard deletes the less important codes to optimize and reduce program volume,

changes class names, fields and classes into meaningless ones for vagueness.

Even though it takes some time to determine the meaning and context of changed

names when vague sources are restored by reverse engineering, the analysis is

definitely not impossible, as logics are not changed, which are the limitation of

vagueness.

3.2 Vulnerabilities of Data Leakage in Android GPS applications

Many apps on the device use the GPS[57] information for navigation. But before

requesting and getting the information it needs to get the access permissions from

the user. After too many studies, we discovered that vulnerable apps generally

acquire the user‘s private data at first and then sent them through network or SMS.

Malicious applications are classified into two types[35]:

 Request only

Location Information

Request extra

Information

Send information

via Network

Low risk High risk

Send information

via SMS

High risk Low risk

Table 1: Malicious applications classification[35]

25

The above table 1 defines the classification of malicious applications. We define

the data leaks that contain only GPS information as low-level risk behavior and

the data leaks that contain more private information as high-level risk behavior.

Based on the triggering condition of the leaking behavior, we categorize the

privacy leaking behavior into three types.

1. The behavior triggered by user interaction with the application.

2. The behavior triggered automatically by background services.

3. The behavior triggered automatically by background services and user

Interaction.

The risk of leak triggered by background services on a device is only considered to

be superior to other behaviors[35]. There are few papers that are manually

analyzed on android malicious applications and noticed that most malicious

applications are risky in behavior that mainly focus on collecting and sending the

users private information.

For example, FakeFlash is an Android Malware in the disguise of an Abode flash

player application that collects user‘s phone number and phone‘s IMEI

information and then send this data by posting information to remote server[58].

So a complete path from getting privacy data to sending privacy data should be

included in a complete attack model.

26

In the below figure, we define the following specific behaviors as the potential

privacy leaks of Android application.

1. Collect user‘s private information using android framework API.

2. Transform private information into another form.

3. Send the transformed information to remote phone or remote server.

Fig 9: Potential Privacy Leaks of Android Application[35]

The above figure 9 explains the potential privacy leaks of android applications. In

the attack model, we define Entry block as the triggering action, which then leads

to privacy data leak, Sources block as the action, which collects sensitive

information, sinks block as Privacy sending action.

27

A path that is connecting a source and a sink is considered as a Confirmed path.

There is a leakage detection called ―Brox‖ which detects location leakage

information.

This tool is based on Dalvik-opcode[36] specification and uses data flow analysis

framework equipped with context-sensitive, flow-sensitive and inter-procedure

techniques to detect potential location information leakage path in Android

malicious apps.

This Brox is also a static privacy leak detection framework for Android apps. Got

inspired by WALA[56], that provides static analysis capabilities for Java byte-

code, JavaScript and related other languages; this Brox inherits its effectiveness

and correctness by using inter-procedure analysis framework.

28

CHAPTER 4

Detecting Leakage Analysis in GPS Applications

Android is the most widely used Mobile operating system on many smartphones.

There are many information flow tracking and information leakage detection

techniques that are developed on Android operating system.

The most commonly used technique is Taint analysis. This Taint Analysis is a

data flow analysis technique, which tracks the flow of private or sensitive GPS

information and its leakage.

There are varieties of apps available for different platforms and device

configurations. Apps are made for PC users and also available for Mobile users.

These android apps manipulate personal data such as contact and SMS, GPS

information and leakage of such sensitive information may cause great loss to the

android users.

Therefore, detecting sensitive GPS information leakage on Android is in urgent

need. However, till now, there is still no complete perfect solution available to get

rid of this scenario to Android markets.

A famous approach called State-of-the-art is used for detecting Android GPS

information leakage by applying dynamic analysis on user site, thus they introduce

large runtime overhead to the Android GPS apps.

29

The main major difference between both the cases is, static analysis techniques

look at the complete program source code and all possible paths of execution

before its run, whereas dynamic analysis looks at the instructions executed in the

program-run in the real time.

Approaches

There are many different approaches proposed to detect and determine the leakage

of GPS data in an android device. This detection analysis can be done in two

different ways. By static analysis and dynamic analysis. Few of the detections

techniques are proposed below:

4.1 LeakMiner - A Static Taint Analysis

There are different approaches available to detect the leakage in android

applications[37]. LeakMiner is one among them, which detects leakage of

sensitive GPS information on Android with a static taint analysis. LeakMiner

analyzes Android apps on market site unlike Dynamic analysis.

Therefore it does not introduce any runtime overhead to normal execution of target

applications on a device. Besides, this LeakMiner technique can detect sensitive

information leakage before apps are available to users, so vulnerable apps can be

identified and removed from play store before users download them.

30

Fig 10: Overall Architecture of LeakMiner[38]

The above figure 10 explains the overall architecture[38] of LeakMiner technique,

which is a static analysis for detecting the data leakage in android applications.

Staring with android app and it traverses in a reverse manner and produces the

Leak report.

Functionality

Unlike others programs, Android apps[46] doesn‘t contain the main function,

which is usually named the root or main function in C/C++ or Java. Instead of

consisting single entry point, Android apps may have multiple entry points. These

entry points are pre-defined by service interfaces and Android activity.

Our static taint analysis technique first build call graphs[59] which starts at these

one of the entry points. Then a new root function node is used to link these call

31

graphs by constructing function call edges from the root node to each of the entry

nodes. The entry points that were traced by static taint analysis are listed below:

4.1.1 Fundamental activity lifecycle callbacks

Android provides six basic lifecycle callbacks that are onCreate, onStart,

onResume, onPause, onStop, and onDestroy. User can override any of this

callback through any Android activity to do an appropriate work. These are the

hooks that are invoked by Android activity manager when the state of activity

changes. These callback functions are fundamental activity entry points for every

android app.

4.1.2 Activity supplementary callbacks

Fundamental activity[46] lifecycle callbacks are triggered each time when the state

of activity is changed. Besides, Android provides supplementary hooks, which

assist the function of Android system for efficient resource management.

For example, when the system destroys or kills an activity in order to restore

memory, a function onSaveInstanceState is invoked to save the current state of

activity. A corresponding onRestoreInstanceState hook is invoked to restore the

state when user navigates to the activity.

32

4.1.3 Basic service lifecycle callbacks

Like activities, Android services also have life callbacks, which are automatically

triggered by android service manager such as onStartCommand, onBind,

onCreate, and onDestroy[46]. These callback services are the basic entry points

for analyzing the service application behaviors.

4.1.4 Service supplementary callbacks

This Service supplementary callbacks are usually triggered when the configuration

is altered (eg. onConfigurationChanged), or when the resources are exploited (eg.

onLowMemory).

Leakage Source LeakMiner

Report

True Leak age

Device ID 278 127

Phone Information 53 50

Location 35 27

Contacts 12 12

Total Detected 305 145

Table 2: Information leakage reported by leakminer about half of the reported

informaton leakage is true information leakage.[46]

33

These functions are infrequently triggered, and our analysis includes such

interfaces for the sake of code coverage. The above table 2 explains the

information leakage reported by LeakMiner in which about half of the reported

information leakage is true information leakage.

4.2 TaintDroid – a Dynamic Taint approach

TaintDroid is a dynamic taint tracking[39] system for Android devices available

system-wide. Simultaneously, this TaintDroid[65] approach can track multiple

sources and sinks. When the sensitive information leaks through the system at the

run time, the Android phone users are get notified.

Fig 11: TaintDroid within the Android Application[60]

34

The above figure 11 explains the TainDroid structure[40] in an android

application. The main functionality of TaintDroid is achieved by altering the

Dalvik virtual machine of Android. It introduces variable level taint tracking in

android system using the shadow variables.

The size of each variable is doubled from 32 bits to 64 bits with modifying the

stack format. These additional 32 bits are used to store the taint tag ID. These taint

tag ID‘s are the unique identifiers to identify the sensitive information such as

Geographical Location coordinates and IMEI.

This TaintDroid offers various levels of tracking in android system. It does

variable level tracking for the native code in the system. For the secondary storage

files it does File level tracking.

 It does the message level tracking for the Inter Process Communications and

finally it does the method level tracking for the native code.The taint tags are

added to the sources in the taint system and when it reaches the sinks in taint

system, these tags are processed to recognize and find out which information is

leaked through at the corresponding sink.

Each application in android environment has their own sandbox with its own User

ID, Dalvik Virtual Machine instance and respective set of permissions assigned to

it.

35

In a trusted application the Taint source is marked, which is mapped in virtual

taint map by the new or modified Dalvik virtual machine. The Binder IPC is

responsible for the inter-app communication and that carries the tainted data to

binder hook of untrusted app.

This tainted data is then mapped and propagated in corresponding virtual taint

map. This virtual map is of untrusted application according to data flow rules.

When the untrusted application triggers a taint sink specified library, the particular

tag from the tainted data is retrieved and the event is reported directly to user.

 This TaintDroid technique tracks information flows at real-time for the privacy

monitoring. TaintDroid has 14% performance overhead on a CPU bound micro-

benchmark.

TheTaintDroid implementation requires constructing a ROM i.e., patched version

of Android operating system in a customized android release. CyanogenMod

ROM is an OS similar to Android available in market. This CyanogenMod ROM‘s

has been released in some of the Samsung Galaxy devices.

This TaintDroid has been integrated with this CyanogenMod ROM. There is a

successful author who presented collection of attacks on TaintDroid exploring its

effectiveness and limitations. The author applied generic classes of anti-taint

methods to overcome TaintDroid.

36

Approach Static/Dynamic Analysis Sensitive

information

Sources defined

Implicit

flows

Taint Droid Dynamic Analysis 5 sources 32

possible

Method level

tracking

AppFence[41] Dynamic Analysis 12 sources

predefined

Not analyzed

Kynoid[42] Dynamic Analysis 2
32

possible Not analyzed

LeakMiner Static Analysis 6 sources

predefined

Not analyzed

TrustDroid[43] Static Analysis Not mentioned Not analyzed

FlowDroid[44] Static Analysis Exhaustive list Analyzed[45]

Table 3: comparison of various Taint Analysis Techniques for android[37]

Table 4: comparison of various Taint Analysis Techniques for android with other

techniques[37]

 Inter app

Taint

Propagation

(IPC)

Deployment Open Source availability

Taint Droid Message level

taint tracking

Customized

Android version

Available

AppFence Not mentioned Customized

Android version

Available

Kynoid Inter Process

Tracking

Customized

Android version

Not available

LeakMiner Not analyzed Deployed on

computer

Not available

TrustDroid Not analyzed Can be deployed

on computer as

well as phone

Not available

FlowDroid Not analyzed Deployed on

computer

Available

37

The above tables 3 and 4 explain comparison of various Taint Analysis[62]

Techniques for android with other techniques. Among all the approaches from

table 3 only the TaintDroid approach follows the Method level tracking and all

other approaches are not analyzed. From table 4 only the TaintDroid approach and

AppFence approach has the open source availability.

From table 4, all the approaches including the TaintDroid can be deployed in a

customized android version whereas the FlowDroid approach is deployed on

computer instead of mobile phone.

4.3 Detection Leakage through Hybrid Analysis

Hybrid analysis is the combination of both static and dynamic analysis to enhance

the privacy leak detection. The overview of hybrid privacy[72] detection tool

known as SmartDroid[66] is shown in the below figure. The leak dete ction of

SmartDroid varies at different levels of the application.

At the higher levels it implements a static path selector that uses static analysis to

extract the expected activity of switching paths by analyzing function CFGs and

activity.

38

Fig 12: SmartDroid Architecture[66]

The above figure 12 explains the SmartDroid Architecture for an android

application. Then the dynamic UI[67] is invoked and then traversed each UI

element. This is done to reveal privacy sensitive trigger conditions according to

the static analysis reports[68] i.e., activities and switching paths.

4.4 Detection Leakage through Cloud based analysis

All the mobile devices have limited memory and are severely restricted in

resources. Due to this performing the privacy leak detection on these devices is an

issue. So, the researchers came up with a solution and proposed a new cloud based

analysis model[71].

39

Fig 13: Paranoid Android Architecture[71]

The above figure 13 explains the structure of Paranoid Android Architecture[49]

in an android device. Architecture of one such technique and tool names Paranoid

android was proposed.

Based on this model[73], performing privacy detection on mobile devices has been

eliminated. The architecture is illustrated in the above figure. The working of this

model is, the cloud[69] includes running synchronized replica of the mobile device

on a cloud-based server.

Since the server does not have any memory and mobile device like constraints, the

privacy leak detection analysis that would be too complex to run on a mobile

device can be performed successfully. In this model there is a Tracer available in

40

mobile device that collects all the necessary information required to perform all

the mobile application executions.

This tracer transmits the information over the encrypted channel to the cloudbased

Replayer[70]. It re-executes the application in the smart phone emulator. Then

eventually the privacy checks within the emulator can be performed on the server.

4.5 Leak Detection through Kynoid

Recently Daniel Schreckling proposed Kynoid[42], which is real time enforcement

of fine-grained, user defined and datacentric security policy proposed in android.

It is based on user defined security policies defined for data items stored in shared

resources. Core idea of Kynoid is to implement a middleware between application

and the data as shown in Fig to provide policy enforcement functionality.

Fig 14: Core idea of Kynoid[61]

The above figure 14 explains the core idea of Kynoid in android architecture.

Kynoid is based on TaintDroid to integrate a lightweight policy tracker in

41

sandboxing mechanism of Android[42]. It tries to make the TaintDroid approach

fine grained to support practical permission system, which allows critical and non-

critical data.

 TaintDroid supports 32 different tags in 32 bits field introduced in shadow

variable, which can refer to at most 32 different data sources. Whereas, Kynoid

uses this 32 bits field for identifiers, each variable in Android can be assigned with

different ID, which again mapped with policy.

It allows Kynoid finer grained tracking by having total 2
32

 mappings for security

policies. But this creates tremendous amount of run time and memory overhead,

which is addressed by using dependency graph in Kynoid.

Dependency graph is evaluated at sink to derive exact security policy. Kynoid

blocks the connections that are leaking information at monitored sinks as per

policies defined. Modifying this Dalvik VM for taint tracking and Kynoid system

service for policy database and ID mapping does implementation.

For inter-process policy tracking, identifiers of source variables are mapped to the

identifiers of destination variable of another app. Sinks are monitored in similar

kind of architecture that of TaintDroid to detect information leak.

Kynoid claims to be giving competitive performance on benchmark tests against

TaintDroid while providing finer granularity of taint tracking policy, but it exists

42

only as a prototype implementation. Also, Kynoid needs to analyze impact of

indirect flows to the overall performance.

4.6 DroidVulMon

In android the security-related vulnerability for mobile terminal suggests

‗DroidVulMon‘ system to detect and respond attacks in order to prevent

information leakage caused by malicious app.

The proposed scheme is different from the traditional scheme in the sense that the

proposed scheme enables to monitor and detect existence of malicious app for

multiple terminals while the traditional scheme supports to detect malicious app

for only one mobile terminal.

The proposed scheme, named as DroidVulMon, enables to collect information

related to system, service, process and network from multiple terminals so that it

can detect rooting attacks and security vulnerability.

4.6.1 Security Architecture for malicious App detection

The Architecture about the proposed system, DroidVulMon[47] can be described

as a follow Fig. One of main part is a server which consists of server application

and vulnerability checking server. Vulnerability checking server is continuously

cooperating with client.

43

Specifically, the security vulnerability-checking engine of vulnerability server

sends or receives data from security vulnerability monitoring engine in client.

They exchange data including engine update information and manage verification

logic with each other.

Additionally, the server has security-checking DB, which is used for storing the

entire data to/from server and the data maintained in DB will be utilized for

criteria to estimate whether an app is malicious app or not. As mentioned above,

client has vulnerability monitoring engine.

Figure 15: System Architecture[47]

The above figure 15 explains the system architecture of DroidVulMon[47] for an

android application. The main purpose of the engine is to verify and protect the

app in conjunction with server's vulnerability check engine. If the malicious app is

44

DroidVulMon aims to detect malicious app and security related vulnerability for

‗n‘ mobile terminals. To meet this goal, the DroidVulMon is designed effectively

to share data collected from n mobile terminal by client and server.

The main purpose of the engine is to authenticate and protect the app in

conjunction with server's vulnerability check engine. If the malicious app is

detected, events will be collected.

Those events will be sent to a native library, which is an agent to detect rooting

attack and the native library along with main program keep sharing events, rooting

attack monitoring results and information about abnormal app.

4.7 Overall Comparison

The below table 5-I/II explains the comparison of different types of Detection

analyses. All the techniques are applied on Android platform except the

ProtectMyPrivacy technique, which is for iOS device. Static data flow technique is

implemented by most of the approaches like LeakMiner, AndroidLeaks,

AppIntent. Whereas Droidtest, IntentFuzzer and TISSA use dynamic data flow

technique.

Majority of android apps are tested on AndroidLeaks approach, which is around

25,976. Approximately 57,299 leaks are found in applications; 63.51% leaks are

found in ad code. Moreover, 92% leaks are related to phone data, 5.94% leaks are

of Location data.

45

Table 5: Privacy Leak Detection Framework-I[71]

Tools/

Frameworks

Platform Technique No. of Tested Apps

LeakMiner Android Static Flow Data 1,750

PCLeaks Android Static intra Component

analysis

2,000

DroidTest Android Dynamic Data Flow 50

AndroidLeaks Android Static Data Flow 25,976

AppIntent Android Static data Flow 1,000

IntentFuzzer Android Dynamic capability leak 2,183

IccTA Android Static intra component

Analysis

3,000

TISSA Android Dynamic data flow 24

Mobile Forensics

of Privacy Leaks

Android Correlate User actions to

leaks

226

Woodpecker Android Capability Leaks 953

ProtectMyPrivacy iOS Crowdsourcing 685

46

 Summary

LeakMiner It is found that 127 app leaks device ID, 50 apps leaks phone info, 27

apps leaks Location and 12 apps leaks contacts.

PCLeaks Nearly 986 component leaks are found. While 534-activity launch

leaks are found. Moreover, broadcast injection leaks are 245 and

activity-hijacking leaks are 110.

DroidTest It is found that most app leaks model number, subscriber ID,

Location, Mobile number

AndroidLeaks Approximately 57,299 leaks are found in applications; 63.51% leaks

are found in ad code. Moreover, 92% leaks are related to phone data,

5.94% leaks are of Location data.

AppIntent It is found that 140 apps have potential data leaks, 26 apps leaks data

unintentionally, 24 apps leaks Location, 1 app leaks SMS

IntentFuzzer It is found that more than 50% of applications leak capabilities or

permissions related to network state, Location, internet connection

IccTA It is found that 425 applications leak information directly. These

leaks are related to Device and Location data

TISSA It is found that 14 apps leak Location and 13 leaks device ID.

Mobile Forensics of

Privacy Leaks

It is found that 9 different kinds of data is leaked by applications, 34

apps leaks data due to user actions on widgets 14 leak on Location.

Woodpecker Explicit capability leaks are found in trustworthy applications.

ProtectMyPrivacy It is found that 48.43% applications access identifier of device,

13.27%access locations, 1 app leaks contacts.

Table 6: Privacy Leak Detection Framework-II [71]

The above table 5-I explains the statistics and comparison of different types of

Detection analyses Least number of apps was tested on TISSA and DroidTest

approaches, which are 24 and 50 apps respectively.

47

It is found that 14 apps leak Location and 13 leaks device ID through the TISSA

approach whereas it is found that most app leaks model number, subscriber ID,

Location, Mobile number through the DroidTest approach.

Dynamic capability leak technique is applied on IntentFuzzer and number of apps

tested was 2,183. It is found that more than 50% of applications leak capabilities

or permissions related to network state, Location, internet connection.

Capability Leaks are applied on Woodpecker testing in total 953 apps. Explicit

capability leaks are found in trustworthy applications. Crowdsourcing is applied

on ProtectMyPrivacy is tested on 685 number of applications. It is found that

48.43% applications access identifier of device, 13.27%access locations, app leaks

contacts.

Static intra component Analysis is applied on IccTA testing on 3000 apps. It is

found that 425 applications leak information directly. These leaks are related to

Device and Location data.

Static intra Component analysis is applied on PCLeaks with tested on 2000 apps.

Nearly 986 component leaks are found. While 534-activity launch leaks are found.

Moreover, broadcast injection leaks are 245 and activity-hijacking leaks are 110.

48

CHAPTER 5

Android App – Track Me

5.1 Location Tracking Applications

In this chapter, we discuss about apps that records the GPS coordinates and shares

them to the dear ones. There are bunch of applications available in play store,

which works on these GPS.

The below table 6 gives the comparison between the Location sharing apps

available in the app store. The table compares the apps with the type of language

developed, type of webserver used and databases. The table also talks about the

pros and cons of the apps.

All the apps developed on Android uses either Java or C# as programming

languages for development. Usually most of the apps are developed on Java

because development on Java is more feasible. Java doesn‘t less configuration

system for development.

A common database used for app development in android is SQLite. By the

nomenclature it conveys as a Lite database. It‘s not like a usual database. Since

mobile has very less memory when compared to the desktop applications.

49

Table 7: Comparison of different Location sharing apps on app store

5.2 Case Study

Sygic GPS Application

The Sygic GPS application[50] allows the users to take pictures using an Activity

developed in house, instead of reusing the regular Android camera application.

Family Locator

Friend
Location
Finder

Friend Finder

Family Locator

Friends Finder

Database

SQLite[51] SQLite H2 DB SQLite SQLite

Language Java Java C# Java Java

Webserver GCM Http[52] GCM Http GCM Http GCM Http GCM Http

Pros and

cons

Pros:
Networking app

which also

includes:

1.Location

Sharing

2.Circle

3.Places

4.Premium

Cons:
1.Needs Internet

compulsory on

phone to track.

2.Need

Smartphone

Pros:
Shares

device ID to

establish

connection

and receives

location

updates.

Cons:

1.Needs

Internet

compulsory

to track.

2.Need

Smartphone

Pros:
Very perfect

& accurate in

giving the

location

updates.

Cons:
1.App can

only send

updates to 2

contacts

which is

limited.

2.Not on iOS,

need Internet

to run this

application.

Need

Smartphone

Pros:
Networking

app which

also includes:

1.Location

Sharing

2.Circle

3.Message

sharing

Cons:
1.Need

Internet to run

this

application.

2.Need

Smartphone.

Cons:
1.Need

Internet to run

this

application.

2.Need

smartphone.

3.Difficult to

understand

the Interface

50

To do this, the Activity called CameraActivity first registers a callback using the

Camera.takePicture function. The system triggers the callback function when the

picture is captured and attaches the actual byte array. It then calls setResult

function and finish, sending the raw picture to the caller.

The Activity has no intent-filter because the exported attribute is not set, the

default value is set to false. The Activity could only be exploited by another

application signed by the same developer, so then we classify it as low risk.

As of now, none of the other applications of the same developer currently in the

play store seem to invoke this Activity function, but this may change in the future.

This type of vulnerability is difficult to detect statically because the source is not

in the application code. The application passes a function to the camera API and

the operating system calls that function with tainted parameters.

The Intent passes through a message queue, from where it is forwarded to the

correct application handler. Identification of this vulnerability was possible

because we analyze the application together with the Android libraries and

manually added a rule to Permission Flow that marks the function that distributes

the Intents to handlers as having a tainted Intent parameter.

51

5.3 Personalized Android app – Track Me

This section discuss about an android app that is developed and entitled ―Track

Me‖ records your Geographical Longitudinal and Latitudinal location coordinates

from the app using the GPS[54].

Initially, the app has to set a mobile number to someone whom you want to share

your location coordinates. And then once the app is triggered, it sends the GPS

coordinates to that corresponding mobile number through the app[53].

Functionality

The app sends geographical coordinates along with the address and a Google

Maps link[54]. So, the app users may need not to have a smart phone on both

sides. It works perfectly even if only the sender has a smartphone and the receiver

does not have one.

This app keeps on send the geographical coordinates to the receiver in the form of

text message for every constant interval of time. Once the app is triggered, it keeps

running in the background and sends the text message to the receiver until we hit

the stop command in the app.

52

5.3.1 Home Screen

Initially, the app is supported for only android devices. The device requires

minimum OS Android 2.2 running on android devices.

Fig 16: Home Screen of app

The above figure 16 is the welcome screen for the app. Whenever the user triggers

the app from the device, this screen pops up asking to start newly or continue to

send the text messages to the previous number that has been set on the device.

53

Either you can select ―Go to Application‖ or ―Yes‖. If the user hits the ―Go to

Application‖ button then the app, it redirects to the new contact page to add a new

contact number to which the geographical coordinates updates are to be sent.

5.3.2 Go to Application

Fig 17: Go to Application

The above figure 17 shows a screen that pops up when the user hits the ―Go to

Application‖ button during the welcome screen. If the user wants to set a new

number to which the coordinates has to be sent then hits the contacts button.

54

5.3.3 Contacts

Fig 18: Adding a Contact

The above figure 18 shows a screen to add a new contact to whom the user wants

to send the updates of his/her location. A new contact can be added or an existing

contact can be chosen.

55

5.3.4 Choosing a Contact

Fig 19: Choosing a Contact

The above figure shows a screen to pick a contact from the phone directory to

whom the user has to share the location coordinates and after choosing the contact,

the user hits back button to return to Main menu.

56

5.3.5 Start Updating

Fig 20: Start Updating

The above figure 20 shows a screen saying the location updating has been started

and it keeps sends the text messages to the number, which we have set in the app.

The app keeps on send text messages to the receiver for every two minutes of

interval.

57

5.3.6 Text Message Notification

Fig 21: Text Message Notification to receiver

The above figure 21 shows a format of the text notification[53] sent to the receiver

when the app is triggered from the sender mobile. The message contains a link

which when pressed redirects to the exact location on the Google Maps.

58

5.3.7 Google Map View

Fig 22: Google Map View

The above figure 22 shows a screen, which is redirected, to the Google Maps[54]

when the link in the text message [53] is pressed. By default the app navigates to

the Google Maps and pins your exact location.

59

CHAPTER-6

RECOMMENDATIONS FOR SECURE APPLICATIONS

The best and efficient advice for security-aware Android developers is to pay close

attention to the configuration of their application (particularly, any combination of

parameters listed without additional checks, vulnerable). If such a parameter

combination is needed for functionality reuse or other constraints, here are some

ways of maintaining security:

A better approach is to always request an explicit user confirmation for the

invocation of any Activity that may be part of an inter-application flow and the

user should be informed to which caller the information will be sent.

This method has the disadvantage that it decreases the ease-of-use of the

application and to enforce that callers of your Activities own certain permissions,

developers can use either declarative permission requirements in the application

manifest and dynamic permission checks using checkPermission calls.

All the developers should consider using work-around for sending sensitive

information over inter-component boundaries. For example, several of the

applications analyzed leak information from an ordered set of items such as GPS

data, contact names/phone number or zip code.

60

For these kind of applications there is no need for complex mechanisms to

avoiding the vulnerability. It may be sufficient to return an integer index to the

information database, instead of the actual information and the caller would need

to query the database to obtain the actual information.

Passing sensitive information over the inter-component boundaries of the same

application in an encrypted form is recommended to protect against unintended

callers, but it does not help if an attacker has compromised another application

with which the current application shares the user id.

61

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Many android applications have access to other types of sensitive information

that are not protected by standard Android permissions. In order to protect

this kind of information, developers should define custom permissions to the

apps, but because of the coarse-grained nature of the custom permissions

(assigned to applications as opposed to APIs) it is not possible to

automatically identify the taint sources for such information. The method is

completely automated and it is based on coupling rule-based static taint

analysis with automatic generation[63] of rules that specify how permissions

can leak to unauthorized applications. Most mobile operating systems are

included in this category and can benefit from the proposed new application

of taint analysis[64].

62

BIBLIOGRAPHY

[1]Androidversion history ―http://en.wikipedia.org/wiki/Android_version_history‖

 [2] ―Android device activation numbers reach 1 billion worldwide"

Phandroid.com. September 3, 2013. Retrieved [November 2, 2013].

[3] Elgin, Ben (August 17, 2005). "Google Buys Android for Its Mobile

Arsenal". Bloomberg Businessweek. Bloomberg. Archived from the original on

February 24, 2011. Retrieved [February 20, 2012].

[4] "A History of Pre-Cupcake Android Codenames". Android Police. September

17, 2012. Retrieved [October 20, 2013].

[5] "Dianne Hackborn". Google+. September 1, 2012. Retrieved April 8,2013.

[6]"Dan Morrill". Google+. January 2, 2013. Retrieved January 5, 2013.

[7] Breeze, Mez. "The designer behind the logo". TheNextWeb.com(TNW).

Retrieved [August 14, 2013].

[8] "Google Launches Android, an Open Mobile Platform". Google Operating

System. [November 5, 2007].

[9] "Live Google‘s gPhone Open handset alliance conference

call"(transcript). Gizmodo. November 5, 2007. Retrieved [February 8, 2013].

[10] "Google releases Android SDK". Macworld. November 12, 2007.

Retrieved [February 8, 2013].

[11] "Android's 5th Birthday Celebration: European Best-of-Best Hackathon

Series". Devfest.info. October 2012. Retrieved [January 5, 2013].

[12] "SDK Archives". developer.android.com. Retrieved [March 7,2015].

[13] "Android 0.5, Milestone 3—the first public build - The history of Android".

Ars Technica. June 16, 2014. Retrieved [March 7, 2015].

[14] "Android: the first week". Android Developers Blog. November 16, 2007.

Retrieved [January 24, 2013].

http://www.androidpolice.com/2012/09/17/a-history-of-pre-cupcake-android-codenames/
http://gizmodo.com/#!318561/live-googles-gphone-open-handset-alliance-conference-call
http://gizmodo.com/#!318561/live-googles-gphone-open-handset-alliance-conference-call

63

[15] "Life can be tough; here are a few SDK improvements to make it a little

easier". Android Developers Blog. December 14, 2007. Retrieved [January

24, 2013].

[16] "Android SDK m5-rc14 now available". Android Developers Blog. February

13, 2008. Retrieved [January 24, 2013].

[17] "Announcing a beta release of the Android SDK". Android Developers Blog.

August 18, 2008. Retrieved [January 24, 2013].

[18] "Android 0.9, Beta—hey, this looks familiar! - The history of Android". Ars

Technica. June 16, 2014. Retrieved [March 11, 2015].

[19] "Announcing the Android 1.0 SDK, release 1", Android Developers Blog.

September 23, 2008. Retrieved [January 24, 2013].

[20] "Android 1.0—introducing Google Apps and actual hardware - The history of

Android". Ars Technica. June 16, 2014. Retrieved [March 11,2015].

[21] Android flaw puts personal data at risk for millions

―http://www.computerworld.com/article/2900845/android-flaw-puts-personal-

data-at-risk-for-millions.html?phint=newt%3Dcomputerworld_data_management

&phint=idg_eid%3Db724b568c8ffdb142ea04b55824060f3#tk.CTWNLE_nlt_data

mgmt_2015-03-25‖

[22] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, "Privilege

Escalation Attacks on Android Information Security." vol. 6531, M. Burmester, G.

Tsudik, S. Magliveras, and I. Ilic, Eds., ed: Springer Berlin / Heidelberg, 2011, pp.

346-360.

 [23] A. Lineberry, D. L. Richardson, and T. Wyatt. (2010, Dec 29). THESE

AREN‘T THE PERMISSIONS YOU‘RE LOOKING FOR. Available:

http://dtors.files.wordpress.com/2010/09/blackhat-2010-final.pdf

[24] MoutazAlazab, VeelashaMoonsamy Lynn Batten and RonghuaTian, Patrik

Lantz ―Analysis of Malicious and Benign Android Applications‖ 2012 32nd

International Conference on Distributed Computing System Workshops

[25] P. lantz. (2011). Project 5 - DroidBox: An Android Application Sandbox for

Dynamic Analysis. Available: http://www.honeynet.org/gsoc/slot5

[26] Sandbox, ‖http://www.slideshare.net/anushatuke1/android-sandbox‖

http://android-developers.blogspot.be/2007/12/life-can-be-tough-here-are-few-sdk.html
http://android-developers.blogspot.be/2007/12/life-can-be-tough-here-are-few-sdk.html

64

 [27] A. Shabtai, U. Kanonov, Y . Elovici, C. Glezer, and Y . Weiss,

"―Andromaly‖: a behavioral malware detection framework for android devices,"

Journal of Intelligent Information Systems, pp. 1-30,[October, 29 2011].

[28] Android Security, http://developer.android.com/training/articles/security-

tips.html

[29] Taenam Cho, Jae-Hyeong Kim, Hyeok-Ju Cho, Seung-Hyun Seo, Seungjoo

Kim , Vulnerabilities of Android Data Sharing and Malicious Application to

Leaking Private Information

[30] ContentProvider,

http://developer.android.com/intl/ko/reference/android/content/ContentProvider.ht

ml.

[31] Android Permission,

https://android.googlesource.com/platform/frameworks/base/+/master/core/res/An

droidManifest.xml

[32] Dalvik,

http://ko.wikipedia.org/wiki/%EB%8B%AC%EB%B9%85_(%EC%86%8C%ED

%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4).

[33] Smali, http://code.google.com/p/smali/.

[34] Android Proguard, http://developer.android.com/tools/help/proguard.html.

[35] Siyuan Ma, Zhushou Tang, Qiuyu Xiao, Jiafa Liu, Tran Triet Duong,

Xiaodong Lin, Haojin Zhu‖ Detecting GPS Information Leakage in Android

Applications‖ Globecom 2013 - Communication and Information System Security

Symposium

[36] T. Watson, ―T.j. watson libraries for analysis,‖

http://wala.sourceforge.net/wiki/index.php/Main Page.

[37] Bhushan Lokhande, Sunita Dhavale, ―Overview of Information Flow

Tracking Techniques Based on Taint Analysis for Android‖

[38] Zhemin Yang and Min Yang, ―LeakMiner: Detect Information Leakage on

Android with Static Taint Analysis‖, In Software Engineering (WCSE), 2012

Third World Congress on, pp.101–104, 2012

65

[39] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon

Jung, Patrick McDaniel, Anmol N. Sheth. "TaintDroid: An InformationFlow

Tracking System for Real-time Privacy Monitoring on Smartphones" 9th USENIX

Symposium on Operating Systems Design andImplementation (OSDI' 10) 2010.

[40] Android Security Overview,

https://source.android.com/devices/tech/security/index.html [Oct. 24,2013]

[41] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David

Wetherall, "These Aren't the Droids You're Looking For",Retroffiting Android to

Protect Data from Imperious Applications In Proc. of ACM CCS, [October 2011]

[42] Daniel Schreckling, Johannes Kostler, Matthias Schaff, ―Kynoid: Realtime

enforcement of fine-grained, user-defined, and data-centric security policies for

Android‖, information security technical report 17, pp.71-80, 2013

[43] Zhibo Zhao and F.C.C. Osono, ―Trustdroid: Preventing the use of

smartphones for information leaking in corporate networks through the used of

static analysis taint tracking‖. In Malicious and Unwanted Software

(MALWARE), 7th International Conference on, pages 135– 143, 2012

[44] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Jacques

Klein, Alexandre Bartel, Yves le Traon, Damien Octeau, Patrick McDaniel,

―Highly Precise Taint Analysis for Android Applications‖, EC SPRIDE Technical

Report. Nr. TUD-CS-2013-0113. [May, 2013]

[45] FlowDroid Now Supports Implicit Flows,

http://sseblog.ecspride.de/2013/10/flowdroid-implicit-flows/Oct. 01, 2013

[Oct.25,2013]

[46] ZheMin Yang, Min Yang ―LeakMiner: Detect information leakage on

Android with static taint analysis‖, 2012 Third World Congress on Software

Engineering.

[47] You Joung Ham, Hyung-Woo Lee, Jae Deok Lim, Jeong Nyeo Kim,

―DroidVulMon - Android based Mobile Device Vulnerability Analysis and

Monitoring System‖, 2013 Seventh International Conference on Next Generation

Mobile Apps, Services and Technologies

[48] ―A framework for static detection of privacy leaks in android applications‖,

http://dl.acm.org/citation.cfm?id=2232009

66

[49] Geogios Portokalidis, Philip Homburg, Kostas, Herbert Bos ―Paranoid

Android: versatile protection for smartphones”, http://dl.acm.org/citation.cfm

?id=1920313

[50] Sygic GPS Application, ―https://www.sygic.com/gps-navigation/features‖

[51] Android Database,

https://developer.android.com/reference/android/database/sqlite/package-

summary.html

[52] Android server,

http://developer.android.com/reference/com/google/android/gcm/server

/package-summary.html

[53] SMS in Android,

http://developer.android.com/reference/android/telephony/SmsMana

ger.html

[54] GPS in Android,

http://developer.android.com/reference/android/location/GpsStatus.html

[55] Seung-Hyun Seo, Dong-Guen Lee, Kangbin Yim, ― Analysis on

maliciousness for mobile application,‖ IMIS 2012, pp.126-129, 2012. 7.  

[56] C. Gibler, J. Crussell, J. Erickson, and H. Chen, ―Androidleaks: auto-

matically detecting potential privacy leaks in android applications on a large

scale,‖ Trust and Trustworthy Computing, pp. 291–307, 2012.

[57] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ―Riskranker: scal- able

and accurate zero-day android malware detection,‖ in Proceedings of the 10th

international conference on Mobile systems, applications, and services. ACM,

2012, pp. 281–294.

[58] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, ―Unsafe exposure

analysis of mobile in-app advertisements,‖ in Proceedings of the fifth ACM

conference on Security and Privacy in Wireless and Mobile Networks. ACM,

2012, pp. 101–112.

[59] J. Dean, D. Grove, and C. Chambers. Optimization of objectoriented

programs using static class hierarchy analysis. In Proc. ECOOP‘95, pages 77–101,

1995.

67

[60] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon

Jung, Patrick McDaniel, Anmol N. Sheth. "TaintDroid: An Information- Flow

Tracking System for Real-time Privacy Monitoring on Smart phones" 9th

USENIX Symposium on Operating Systems Design and Implementation (OSDI'

10) 2010.

[61] Daniel Schreckling, Johannes Kostler, Matthias Schaff, ―Kynoid: Real- time

enforcement of ne-grained, user-dened, and data-centric security policies for

Android‖, information security technical report 17, pp.71- 80, 2013

[62] Zhibo Zhao and F.C.C. Osono, ―Trustdroid: Preventing the use of

smartphones for information leaking in corporate networks through the used of

static analysis taint tracking‖. In Malicious and Unwanted Software

(MALWARE), 7th International Conference on, pages 135– 143, 2012

[63] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Jacques Klein,

Alexandre Bartel, Yves le Traon, Damien Octeau, Patrick McDaniel, ―Highly

Precise Taint Analysis for Android Applications‖, EC SPRIDE Technical Report.

Nr. TUD-CS-2013-0113. May, 2013

[64] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen,

―AndroidLeaks: automatically detecting potential privacy leaks in android

applications on a large scale‖, Proceeding TRUST'12 Proceedings of the 5th

international conference on Trust and Trustworthy Computing pp.291-307, 2012

[65] Golam Sarwar (Babil), Olivier Mehani, Roksana Boreli, Mohamed-Ali

Kaafar, ―On the Effectiveness of Dynamic Taint Analysis for Protecting Against

Private Information Leaks on Android-based Devices‖, SECRYPT, 10th

International Conference on Security and Cryptography 2013

[66] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui

Han, Wei Zou ―SmartDroid: an Automatic System for Revealing UI-based Trigger

Conditions in Android Applications‖

[67] S. Dienst and T. Berger. Mining interactions of android applications static

analysis of dalvik bytecode. Technical report, Department of Computer Science,

University of Leipzig, Germany, May 2011. Technical Note.

[68] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.

Sheth. Taintdroid: an information-flow tracking system for realtime privacy

monitoring on smartphones. In Proceedings of the 9th USENIX conference on

Operating systems design and implementation, OSDI‘10, pages 1–6, Berkeley,

CA, USA, 2010. USENIX Association.

68

[69] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis ―Paranoid

Android: Versatile Protection For Smartphones‖

[70] T. Leblanc and J. Mellor-Crummey. Debugging parallel programs with

instant replay. IEEE Transactions on Computers, 36(4):471–482, 1987.

[71] Muhammad Haris, The Hong Kong University of Science and Technology

‖Privacy Leakage in Mobile Computing: Tools, Methods, and Characteristics ‖

[72] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,

―Smartdroid: an automatic system for revealing ui-based trigger con- ditions in

android applications,‖ in Proceedings of the second ACM workshop on Security

and privacy in smartphones and mobile devices. ACM, 2012, pp. 93–104.

[73] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, ―Paranoid

android: versatile protection for smartphones,‖ in Proceedings of the 26th Annual

Computer Security Applications Conference. ACM, 2010, pp. 347–356. s

[74] William Enck, Peter Gilbert, Byung-gon Chun, Landon P. Cox, Jaeyeon

Jung, Patrick McDaniel, and A. N. Sheth, "TaintDroid: An Information- Flow

Tracking System for Realtime Privacy Monitoring on Smartphones," in

proceeding of the 9th USENIX Symposium on Operating Systems Design and

Implementation (OSDI '10), Vancouver, Canada 2010.

69

VITA

Graduate College

University of Nevada, Las Vegas

Srinivas Kalyan Yellanki

Degrees:

Bachelor of Technology in Computer Science, 2013

Jawaharlal Nehru Technological University

Master of Science in Computer Science, 2015

University of Nevada Las Vegas

Thesis Title: A Survey on Potential Privacy Leaks of GPS information in Android

Applications

Thesis Examination Committee:

Chair Person, Dr. Ju-Yeon Jo, Ph.D

Committee Member, Dr. Yoohwan Kim, Ph.D

Committee Member, Dr. Ajoy K. Datta, Ph.D

Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D

	A Survey on Potential Privacy Leaks of GPS Information in Android Applications
	Repository Citation

	tmp.1443218406.pdf.sb6C8

