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Abstract

Osteoporosis is a prevailing bone disease, which weakens the bone and is one of the

major factors of disability, especially in elderly persons. In this thesis, we developed

various machine learning models to predict fracture risk of osteoporosis. These mod-

els were built to base their predictions on genotype and phenotype data of patients.

We performed two different types of analysis: fracture risk prediction (a classifica-

tion model) and bone mineral density (BMD) prediction (a regression model). For

fracture risk prediction we implemented four different algorithms: logistic regression,

random forest, gradient boosting, and multi-layer perceptron (MLP) based on differ-

ent risk factors identified. We performed our experiments using 307 and 1103 Single

Nucleotide Polymorphism (SNPs) with data from 5133 patients. For both 307 and

1103 SNPs the performance of MLP was the best with area under curve (AUC) of

0.970 and 0.981 respectively. Logistic regression had the worst performance among

four models with AUC of 0.816 and 0.904. For BMD prediction we implemented linear

regression, random forest, gradient boosting and MLP and as a performance metric

we plotted mean squared error (MSE) versus number of iterations for both train and

test set of data. The random forest performed the best in both cases with MSE of

0.004 and linear regression was the worst with MSE of 0.104 in the test data for both

sets of SNPs.
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Chapter 1

Introduction

Osteoporosis is the prevailing bone disease in which the density and quality of bones are reduced

literally leading to abnormality called a porous bone, which is compressible, like a sponge. It is

generally characterized by low bone mineral density mass and micro-architectural deterioration of

bone tissue [IAA14]. This disease develops without showing symptoms in its early stages. Osteo-

porosis weakens the bone and results in recent fractures in the bones. It is becoming a real public

health problem because of its increasing frequencies over different countries [CDA+17]. Low Bone

Mineral Density (BMD) has been considered as the strong risk factor for osteoporosis, and thus has

been considered as key factor or indicator for its treatment and diagnosis. Genome wide association

studies (GWAS) have identified BMD is highly heritable.

Figure 1.1: Risk Factors for Osteoporosis [CDA+17]

Osteoporosis prevention is complicated and in recent years the social burden of this disease has

become large. Thus prevention and treatment of osteoporosis have become an urgent issue to be

addressed, so modeling the relationships between the disease and its risk factors (potential ones) is
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an important and crucial task. There are several potential risk factors associated with osteoporosis

as shown in figure 1.1. But the potential risk factors are not limited to demographic attributes,

family history, diet, and lifestyle [CDA+17]. Bone Mineral Density, which is one of the prime

factors for bone fractures is heritable so different genetic features too contribute as risk factors for

osteoporosis as well.

1.1 Genome Wide Association Study

In genetics, a genome wide association study (GWAS) is an observational study of a genome-wide

set of genetic variants in different individuals to see if any variant is associated with a trait. Typ-

ically, GWASs are hypothesis free methods for identification of associations between loci (genetic

regions) and traits (including diseases) [EBI]. We know that genetic variation can cause differences

in phenotypes between individuals. These variants and those tightly related to their region of

the chromosome are thus present at a higher frequency in individuals with the trait (cases) than

individual without traits (controls).

Figure 1.2: Typical allele distribution. [EBI]

GWASs typically focus on associations between single-nucleotide polymorphisms (SNPs) and

traits like major human diseases. The variants associated with the disease can be found at a higher

frequency in cases than controls.

1.2 Single Nucleotide Polymorphisms

Single Nucleotide polymorphisms (SNPs) are considered as the most common type of genetic vari-

ation among different individuals. Each SNP means a difference in a single nucleotide (building
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block of DNA). For example, an SNP may replace nucleotide guanine (G) and nucleotide adenine

(A) in a certain stretch of DNA. In on average, SNPs occur once in every 1,000 nucleotides. The

variations occurred may be unique or may occur in many individuals and these variations are found

in the DNA between genes. Most SNPs do not have an effect on health, but some studies have

found that SNPs may assist to predict the risk associated with certain diseases [GHR]. So the

SNPs may play a direct role in the disease that have been affecting the gene’s function. In this

thesis, we included different indentified SNPs that have significant association with fracture risk in

osteoporosis.

1.3 Objective

The main objective of this thesis is to perform predictive analysis on the genotypes dataset using

various machine learning algorithms. The main focus is to identify if risk of fracture exists or not

and to predict the bone mineral density value for the available genotype dataset.

1.4 Outline

In chapter 1, we provided an introduction to osteoporosis and genome-wide association study. We

also introduced to the risk factors associated with the disease. In chapter 2, we will be focusing on

the related works previously conducted for the identification of different SNPs that are associated

with high risk for fracture. Also in chapter 2 we will provide some background on the algorithms

and terms associated with machine learning.

Chapter 3 will be focused on data descriptions and imputation of the dataset. In chapter 4,

we will be presenting the experimental results obtained with different models.

Lastly, in chapter 5 we will summarize our results and offer an insight about future works that

can prove to be more helpful in solving this problem in proximate future..

3



Chapter 2

Background and Preliminaries

2.1 Related Works

Bone Mineral Density (BMD) has been a widely used varaible for predicting fracture risk in Os-

teoporosis. And, recent studies show that BMD is heritable, and GWAS have identified common

variants at different loci associated with the trait, including those that are significantly associated

with fracture risk. In meta-analysis of lumbar spine and femoral neck BMD, it was identified that

63 SNPs were related highly for fracture risk, after all possible pairwise interactions of the 82 SNPs

[ESE+12]. 307 conditionally independent SNPs that attained genome-wide significance at 203 loci

were identified in a GWAS conducted within 142,487 individuals from UK. This research included

153 previously unreported loci [KMG+17]. In the recent publication in April 2018, 518 genome-

wide significant loci (301 new) were identified, explaining 20% of its variance [MKY+19]. A recent

article published by Kim shows the identification of 613 new loci associated with heel BMD for

osteoporosis and fracture [Kim18]. The research conducted using data from UK Biobank identifies

1362 independent SNPs which are clustered into 899 loci.

A supervised Machine learning approach was used to identify the risk of osteoporosis using

two algorithms: Naive Bayes’ (NB) and Multi-layer Perceptron (MLP) [CDA+17]. 20 risk factors

were identified based on information collected from 45 patients in Nigerian hospitals. The MLP

accuracy was at 100% where NB method achieved the accuracy of just 71.4%. Hsueh-Wei et al.

[CCK+13] used wrapper-based feature selection method was used along with three classification

algorithms: multilayer feedforward neural network (MFNN), NB, and logistic regression. The

performance of the MFNN model with wrapper-based approach was the best predictive model

classifying osteoporosis outcome.
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In an experiment that was conducted by Forgetta et al. [FKBMF+18], which used 341,449

individuals from UK biobank with speed of sound (SOS): a risk factor for osteoporosis fracture. The

experiment was conducted to develop gnomically-predicted SOS (gSOS) by using various machine

learning algorithms. Genotypes data was used, which resulted in a relevant prediction of SOS and

fracture. This article focuses on analyzing the osteoporosis fracture with SOS which explained

4.8-fold more variance in SOS than FRAX (fracture risk assessment tool) clinical factors.

Tae et al. [YKK+13] conducted a research on osteoporotic data of 1674 Korean postmenopausal

women osteoporotic data with low BMD at any site among total hip, femoral neck, or lumbar

spine measurements. Among different algorithms implemented support vector machines (SVM)

had higher area under curve (AUC) of the receiver operating characteristic (ROC). SVM, artificial

neural network (ANN), and logistic regression (LR) were three algorithms implemented for creating

the models.

2.2 Preliminaries

Before going into applications of machine learning algorithms, this chapter helps the reader to

understand the concepts of machine learning and different implementation of machine learning

algorithms. Mostly, we will be focusing on the supervised learning: task of inferring a function

from labeled training data.

2.2.1 Machine Learning

Machine learning is the field of artificial intelligence and can can be defined as programming com-

puters to optimize a performance criterion using some example data or past experience [Eth10].

Moreover, it is the study of algorithms and statistical models that computers use to perform a spe-

cific task without being explicitly programmed. Machine learning algorithms build a mathematical

model of some sample data, also known as ”training data”, which is then used to predict or make

decisions for some other data also known as ”test” data. Several machine learning algorithms are

widely used in various real life applications like spam filtering, stock prediction, image processing,

anomaly detection, stock market prediction, fraud detection, medical diagnosis and many more.

Usually, machine learning is divided into two types: supervised and unsupervised. However,

reinforcement learning, ensemble learning and neural network also have been considered as types of

machine learning approaches [Dey16]. Supervised learning deals with mapping an input to output
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labels or input to continuous output. Whereas, in unsupervised learning we wish to discover the new

pattern or learn the inherent structure of the data without explicitly provided labels. Reinforcement

learning is about attaining a complex objective or maximizing along a particular dimension over

many steps. Algorithms in reinforcement learning can be expected to perform better in more

complex, real-life environments. Ensemble learning is a learning paradigm where multiple learners

are trained to solve the same problem collectively. This thesis deals mostly with supervised learning

algorithms for constructing different models which we will discuss in next section. However, we’ve

used ”boosting” – an ensemble learning approach for predicting output and ”backpropagation” –

a neural network approach.

2.2.2 Supervised Learning

Supervised learning is an approach where we infer a function from labeled training data. The

training data consists of a set of training examples where each example is a pair consisting of input

features and a desired output value. In supervised learning the goal is to map the inputs x to

output y, given a labeled set of training data

D = (xi, yi)
N
i=1

where N is the number of training examples. Depending upon the form of response or output

variable the supervised learning can be further categorized into two: classification and regression.

We deal with both a classification and a regression problem in this thesis which are discussed in

sections 2.2.3 and 2.2.4.

2.2.3 Classification

Classification, a type of supervised learning, is the task of approximating a mapping function (f)

from input variables (x) to discrete output variables (y), often called as labels or categories. In this

thesis, predicting whether there is a fracture or not is the example of a classification problem. Here

the problem is binary classification problems as there are only two classes (yes or no) for predicting

fracture. Furthermore, classification can be multi-class (where the output labels are more than

two output labels) or multi-label (where each sample set is assigned to target labels) [TOWb]. In

present thesis we deal with binary classification where we predict whether the patient has risk of

bone fracture or not.

6



2.2.4 Regression

Regression is similar to classification except the response or output variable is continuous. So, it is

the task of approximating a mapping function (f) from input variables (x) to a continuous output

variable (y). Since regression predicts a quantity, the performance of the model must be reported

as an error in those predictions. In this thesis, we have used regression techniques for prediction

the BMD value using different input features.

2.2.5 Ensemble Learning

The main principle behind ensemble learning is grouping weak learners to form a strong learner so

that accuracy can be increased. For example, ensemble learning may combine several decision trees

classifiers to produce better predictive performance than a single decision tree classifier. Ensemble

learning helps to reduce the factors variance and bias, which cause the main differences in actual

and predicted values. Bagging and boosting are the techniques that are used to decrease variance

and increase robustness of the model. In this thesis we have both boosting and bagging concepts

which are discussed next.

Boosting

In general, boosting is an ensemble approach for reducing bias, and variance in supervised learning.

The idea of boosting is to train weak learners sequentially, each trying to correct its predecessor by

adjusting weights to the samples that were previously misclassified [MED].

Bagging

Bootstrap aggregating, also called bagging, is another strong model for ensemble learning approach

designed to improve the stability and accuracy of machine learning algorithms used in classification

and regression problems. This method reduces variance and helps to avoid overfitting. Bagging is

based on the bootstrap algorithm which draws random sample from given dataset with replacement.

This method helps us to understand the mean and standard deviation from the dataset in a better

view. An example for bootstrapping is shown in figure 2.1.
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Figure 2.1: Bootstrapping from main population to sample population [BEC]

2.2.6 Neural Networks

Artificial neural network are the computing systems inspired by biological neural networks that

constitute animal brains. Actually, neural networks is not an algorithm, but rather a framework

for many machine learning algorithms to work together and process data inputs. These systems

perform tasks by learning examples without being programmed with any specific rules. Neural

Network is constructed from 3 types of layers: input (initial data for NN), hidden (intermediate

layer between input and output layers where all the calculations are done) and output (result for

the given inputs) layers [TOWa]. Figure 2.2 shows the basic architecture for neural networks. In

this thesis, we used back-propagation algorithm for our data analysis and predicting results.

Figure 2.2: Neural Network Architecture[TOWa]
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2.2.7 Model Selection

In this section we will discuss the different learning approaches we used for predictive analysis of the

dataset. Depending upon the analysis we choose five predictive models: linear regression, logistic

regression, random forest, gradient boosting, and backpropagation algorithms which are discussed

in following section.

2.2.8 Linear Regression

Before going into linear regression, let us get familiar with regression. In statistical modeling,

regression is a method for estimating the relationships among variables. It is a method of modeling

a target value based on different independent predictors. Based on the number of independent

variables and type of relationship between both dependent and independent variables, regression

techniques differ mostly. Linear Regression – a type of regression analysis – is one of the most well

known and understood algorithms in statistics and machine learning because the representation is

so simple. Linear regression is used for continuous dependent variable. The representation in linear

regression for a specific set of input values ”x” and the predicted output ”y” (continuous varaible)

for that set of input values would be:

y = b0 + b1x (2.1)

where b0 and b1 are the parameters to estimate. Here, b0 is also called the bias term and b1 is the

weight for input variable x. Figure 2.3 shows an example of linear regression.
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Figure 2.3: Linear regression [WIL]

2.2.9 Logistic Regression

Like other regression analyses, logistic regression is also a predictive analysis. This is also one of

the most popular algorithms used for classification problems. Logistic regression is used when the

target variable (dependent) variable has only two values, say 0 and 1 or Yes or No. Multinomial

logistic regression is usually used for the case when dependent variables has three or more cases.

Unlike linear regression that outputs continuous values, logistic regression uses sigmoid function to

return a probability value which can be then mapped into number of discrete classes. The sigmoid

function can be given by :

S(z) =
1

1 + e−z
(2.2)

where S(z) is the probability estimate (output between 0 and 1), z is input to the function (in

the form b0 + b1x) and e base of natural log. This prediction function returns a probability value

between 0 and 1. In order to map this to a class, we select a threshold value from which we will

classify values to class 0 or class 1. The plot for the sigmoid function is shown in Figure 2.4. The

decision boundary is given as:

P ≥ 0.5, class = 1 (2.3)

P < 0.5, class = 0 (2.4)

Here the probability function P is defined as :
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Figure 2.4: Sigmoid function Graphv [MLR]

P (class = 1) = S(b0 + b1x) (2.5)

Here b0 and b1 are the logistic regression parameters to estimate and are thus learned during the

training process.

2.2.10 Random Forest

Random forest is an ensemble learning approach for classification and regression problems. It is one

of the most used algorithms, because it can be used for both classification and regression problem

as well as of its simplicity. Like from its name, it creates a forest and makes it random by training

on different samples of data. It implements ”bagging” where it builds different decision trees in

ensemble. The general idea of bagging method is to combine different learning models (trees) so

as to increase the overall results and performance [TOWc]. Decision trees are the foundation of

random forest algorithm so before going into random forest let us get familiarize with decision tree

concepts.

Decision tree is one of the most widely used methods for inductive inference over supervised

data. It represents a procedure that classifies the categorical data [RJA+17]. A basic representation

of decision tree can be seen in Figure 2.5 where it classifies whether weather is suitable to play tennis

or not with decision ”yes” or ”no”. The example starts with an outlook with three choices: sunny,

overcast and, rain. If it is sunny we check if the humidity is high or normal. If it is high we make

decision ”no” for playing else ”yes” for playing. If the outlook is overcast then we decide to play

and if rain we check if wind is high or low. Decision tree represents a flowchart like tree structure,
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where each internal node denotes a test on an attribute, each branch represents an outcome of the

test, and each leaf node holds a class label. This involves breaking down of the training set into

different subsamples.

Figure 2.5: Decision tree [GEE]

Random forest utilizes the bootstrap concepts, which assert them simply re-running the same

learning algorithm on different subsets of the data can result in highly correlated predictors, thus

limiting the amount of variance reduction that is possible. Random forests tries to decorrelate the

base learners by learning trees based on a randomly chosen subset of input variables, as well as a

randomly chosen subset of data cases [Mur12]. An example of random forest is shown in figure 2.6.

Figure 2.6: Random Forest [AEA+17]

In random forest algorithm, each new data point visits all the trees in the ensemble, which

were grown using random samples from the training set. The function for aggregation will differ
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depending upon the task (i.e. classification or regression). For regression task, it uses the aver-

age prediction values of each tree, whereas for classification, it uses the mode or most frequently

predicted class by individual trees (also known as majority voting)[KDN].

2.2.11 Gradient Boosting

Gradient boosting, another ensemble approach, is a widely-used machine learning algorithm, due to

its efficiency, accuracy, and interpretability. As discussed in section 2.2.5, gradient boosting trains

the models in a sequential manner to create them strong learners from a weak one. The gradient

boosting algorithm can be understood easily by understanding another boosting algorithm known

as Adaptive boosting (AdaBoost). In AdaBoost, each tree is assigned an equal weight during

training. After the evaluation of the first tree, those observations that are difficult to classify

are given some extra weights and the weights for those observations that are easy to classify are

lowered [TOWd]. As a result, the second tree is grown on the new weighted data. The main idea

for AdaBoost improving the predictions made by the first tree. For the third tree, we compute

the classification error from previous two trees and grow third tree to predict the revised residuals

and so on. The final predictions is the weighted sum of the predictions made by the previous tree

models.

Gradient boosting algorithms alos trains many models in additive, gradual, and sequential

manner. Unlike AdaBoost, where it identifies the shortcomings by adjusting weights on data

points, gradient boosting performs same by using gradients in loss function (y = mx + b + e, e

being an error term). The loss function indicates how good the model’s coefficients are fitting the

data. Instead of a loss function that generally offers less control and which does not correspond

with real world applications, gradient boosting allows one to optimize a user specified cost function.

This is one of the biggest motivations of using gradient boosting [TOWd].

2.2.12 Feedforward Neural Networks

A feedforward neural network, also known as multilayer perceptron (MLP), is a series of logistic

regression models stacked on top of each other, with the final layer being logistic or linear regression

model, depending upon whether we are solving a classification or regression problem [Mur12].

Before going into multi-layer neurons lets us get some concepts of single neuron and its model.

Neuron, also referred as ”node” or ”unit”, is the basic unit of computation in a neural network.

In a single neuron model, the node receives input from sources, the system does the calculations
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where each input is complemented with weight (w) and produces the output. The node applies

function f to the weighted input sum. This is shown in figure 2.7 where the network accepts two

inputs x1 and x2 with weights w1 and w2, respectively. There is also the bias ”b” which provide a

trainable constant value for each node. The output is calculated as shown in figure. The function

f is nonlinear and also called activation function.

Figure 2.7: Single neuron[MED]

Figure 2.8: MLP with two hidden layers[GD98]

As in contrast to single neuron model, MLP is a model consisting of a system of simple

interconnected nodes representing a non-linear mapping between an input vectors and output

vectors[GD98]. The example of MLP with two hidden layers is as shown in figure 2.8 Each of

the nodes are connected or assigned weights. The output signals are function of the sum of inputs

to the node modified by activation function. MLP includes at least one hidden layer (except of one

input and one output layer).
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2.2.13 Evaluation Criteria

In machine learning, we use majority of data to train the model. And later we test the trained

model with remaining portion of dataset to evaluate the performance of the created model. In this

thesis, we used the following evaluation criteria for testing the performance of our model.

Confusion Matrix

A confusion matrix is an N * N matrix, where N is the number of classes (class labels), is a table

(matrix) that is widely used to describe the performance of a classification model on a set of test

data whose true values are known. The example of confusion matrix for binary classifier is shown

in figure 2.9:

Figure 2.9: Confusion matrix for binary classifier [DAT]

There are two predicted classes ”yes” or ”no”. The total number of examples is 165 and classi-

fier predicted yes 110 times and no 55 times. For understanding the performance of the model let

us get familiarize with some basic terms used in confusion matrix:

True Positive (TP): These are the cases in which the model predicted ”yes” and actual value is

also ”yes”.

False Positive (FP): These are the cases where the model predicted ”yes” but the actual value

was ”no”.

True Negative: (TN) These are the cases where the model predicted ”no” and the actual value

is also ”no”.

False Negative (FN): These are the cases where the model predicted ”no” but the actual value

was ”yes”

From above example we can modify the confusion matrix as shown in figure 2.10:
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Figure 2.10: Confusion matrix for binary classifier II [DAT]

Recall

Recall, also known as sensitivity, attempts to answer the question: what proportion of actual

positives were identified correctly? Mathematically, it can be represented as:

Recall =
TP

(TP + FN)
(2.6)

In the above example, we have 100 TP and 5 FN so the recall, using above formula can be

found as 100/105.

Precision

Precision attempts to answer the question: when it predicts ”yes”, how often it is correct? Math-

ematically, it can be represented as ratio of TP by sum of TP and FP.

Precision =
TP

(TP + FP )
(2.7)

In the above example, using the above formula precision can be calculated as 100/110 that is

0.91.
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True Negative Rate

True Negative Rate (TNR) also known as specifity is calculated as the number of correct negative

predictions divided by total number of negative rate in the dataset. The best case for specificity is

1 and the worst case is 0. Mathematically, specifity can be represented as:

Specifity =
TN

(TN + FP )
(2.8)

From above example, we can calculate TNR to be 50/60 or 5/6.

AUC-ROC curve

In a classification problem, we use AUC (Area Under the Curve) of ROC (Receiver Operating

Characteristics) curve, to measure and visualize the performance for our model at various threshold

settings. AUC-ROC curve is one of the most widely used and important evaluation metrics for

checking any classification model’s performance.

An example of AUC-ROC curve is shown in figure 2.11. ROC is a probability curve and AUC

represents degree or measure of separability. Higher the AUC, better the model is at predicting.

The ROC curve is plotted with True Positive Rate (TPR) against False Positive Rate (FPR) where

TPR is on y-axis and FPR is on x-axis. TPR is also known as recall or sensitivity and FPR is

given as:

FPR = 1 − Specifity (2.9)

Figure 2.11: AUCROCcurve
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Mean Squared Error

Mean squred error (MSE) is a metric used for regression analysis which tells how close a regression

line is to set of points. In general, mean squared error (MSE) is the measures of the mean of the

squares of the errors – the difference between the predicted values and true values. It is a risk

function which is corresponding to the expected value of the squared error loss [MEM]. MSE is

strictly positive because of square. If yi is the true value for ith point and ypi be the estimated

value for ith instance, then mathematically MSE can be represented as:

MSE =
1

N

N∑
i=1

(yi − ypi)
2 (2.10)

In this thesis, we used MSE as one of the evaluation criteria for analyzing the train and test

dataset loss during the prediction of total spine BMD which is continuous values.
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Chapter 3

Implementations

3.1 Data Description

The dataset implemented in this thesis is from MrOs (Osteoporotic Fractures in Men Study), a

research study funded by the National Institutes of Health. This dataset contains phenotypes

information as well as genotype informations for different SNPs. The dataset contains highly

confidential information along with different numerical values for different features. Some brief

description for the numerical values in the dataset are present in Table 3.1.

Variable Calculated TypeType Description

subjectId Integer De-identified Subject Id

ASCA Decimal Serum Calcium

B1THD Decimal Hologic 4500 Total Hip BMD

B1TLD Decimal 4500 Total Spine BMD Values

BUAMEAN Decimal Mean of 3 BUA (Broad-band ultrasound attenuation) measures

FAANYHIP Enum Integer (0 or 1) Incident hip fracture

FAANYSLD Enum Integer (0 or 1) Incident proximal humerus fracture

FAANYWST Enum Integer (0 or 1) Incident wrist fracture

FAHIPFV1 Integer Follow up time to first Incident Hip Fracture

FVDISPAR Enum Integer (1 to 4) Depth perception levels

AGE Integer Age of the patients

GRS FN Decimal Femoral Neck Genetic Risk Score (GRS)

GRS LS Decimal Lumber Spine Genetic Risk Score (GRS)

GSGRAVG Decimal Grip Strength

........ ...... ......

........ ...... ......

Table 3.1: Brief data description for the MrOs dataset

The dataset contains data from 5133 patients with two different types of BMD values and 3
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different types of fractures cases. Out of 5133 , 5.98% of patients (i.e., 307) patients have fractures.

The visualization for the fractured vs non fractured data can be seen in Figure 3.1.

Figure 3.1: Data visualization for fracture analysis

3.2 Imputations

Initially, due to confidentiality requirements the dataset we had was in binary format. So, we

needed to carryout pre-imputation process to make the file in variable coded file (vcf) format.

After the pre-imputation process, the vcf files were uploaded in Michigan Imputation Server for

genotype imputation service [IMP]. To this server, we can upload phased or un-phased GWAS

genotypes data and can receive phased and imputed genomes, which would be used to calculate the

GRS values later in post-imputation process. After the calculation of GRS values, we used other

available and phenotype information of individuals to build different models.

3.3 Post Imputation Process for Risk Score Calculations

After the imputation was done, we received the vcf, info and vcf binary files from the Michigan

Imputation Server. The info files contained different SNPs with their unique id (rsId), position and

neighbors position (called as position+1) along with minor allele frequency (MAF), r-square values,

allele and alternate alleles for each chromosomes. From this info file we extracted the 307 SNPs

information. The extracted information is used to get all alleles pairing for each chromosomes

which were used to generat ped files. From ped files we used the beta values for each SNPs to
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calculate the genetic risk scores for each patient and for each chromosomes. The scores generated

were weighted and unweighted GRS. In present work we’ve used the weighted GRS values for both

femoral neck (FN) and lumber spine (LS). After the calculations were done for both FN and LS for

each chromosome, we then summed up all the weighted GRS values and used them for analysis.

3.4 Data Normalization

Normalization is a technique mostly applied as a part of data preparation for machine learning

models. The main goal of normalization is to change the values of numeric columns in the dataset

to a common scale, without distorting differences in the range of values. Witho our dataset we

performed mean variance normalization on the training dataset, where we obtain the normalized

data by using following formula:

NormalizedData =
x− µ

σ
(3.1)

where,

µ =
1

N

N∑
i=1

xi (3.2)

is the mean and,

σ2 =

√√√√ n∑
i=1

(yi − ȳ)2isthestandarddeviation. (3.3)

3.5 Data Splitting

For each approach, we split the entire dataset into 80% as training set and 20% as test set. We

specified a random number (random seed) while splitting the data, so as to ensure the same data

split every time when the program is executed. We used training set for resampling and hyper-

parameter tuning, and training the model. After the model was trained, we used the test set to

evaluate the performance of the model.

3.6 Data Resampling

We mentioned earlier in section 3.1 that only about 6% of the cases actually are fracture cases.

To improve the performance of the model we’ve implemented a resampling technique known as

Synthetic Minority Over-sampling (SMOTE).
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3.7 Hyperparameter Optimization

Hyperparameter tuning or optimization is the process of choosing a set of optimal hyperparameters

for a learning algorithm. In contrast to model parameters, hyperparameter is the configuration

that is external to the model. In this thesis, we used cross validation technique for tuning the

hyperparameters. We’ve used k-fold cross validation where we set the value of k as 10. In 10-fold

cross-validation, the training dataset is divided into 10 folds, and for each fold, we choose the

current fold as a test set and remaining folds a a training set. We used sckit learn’s randomized

search cross validation method to find the best hyperparameters for different algorithms.
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Chapter 4

Results

4.1 Fragility Fracture Prediction

We implemented four different algorithms: logistic regression, random forest, gradient boosting and

multi-layer perceptron, for analysis of MrOs dataset. Following are the results obtained for each of

models.

4.1.1 Logistic Regression

The AUC-ROC curve for logistic regression model with 307 SNPs is shown in figure 4.1. The area

under curve is found to be .816. The confusion matrix for the same model can be seen in figure 4.2.

The ROC AUC curve and confusion matrix for logistic regression with 1103 SNPs are shown in

figure 4.3 and 4.4, AUC was higher with 0.904. Recall and precision for 307 SNPs were calculated

to be 0.533 and 0.220 respectively. For 1103 SNPs recall was calculated to be 0.55 and precision

was found to be 0.297.
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Figure 4.1: AUC-ROC curve for
logistic regression (307 SNPs)

Figure 4.2: Confusion matrix for
logistic regression (307 SNPs)

Figure 4.3: AUC-ROC curve for
logistic regression (1103 SNPs)

Figure 4.4: Confusion matrix for
logistic regression (1103 SNPs)

4.1.2 Random Forest

The random forest model performed better than the logistic model, in both SNPs cases.. The

overall evaluation for random forest model can be seen from figures 4.5 to 4.8. The AUC for 307

SNPs was 0.875 and for 1103 SNPs it was 0.916.
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Figure 4.5: AUC-ROC curve for
random forest (307 SNPs)

Figure 4.6: Confusion matrix for
random forest (307 SNPs)

Figure 4.7: AUC-ROC curve for
random forest (1103 SNPs)

Figure 4.8: Confusion matrix for
random forest (1103 SNPs)

4.1.3 Gradient Boosting

The AUC-ROC curve for gradient boosting is summarized in figure 4.9-4.12. The AUC for 307

SNPs was 0.866 and for 1103 SNPs it was 0.933.
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Figure 4.9: AUC-ROC curve for
gradient boosting (307 SNPs)

Figure 4.10: Confusion matrix for
gradient boosting (307 SNPs)

Figure 4.11: AUC-ROC curve for
gradient boosting (1103 SNPs)

Figure 4.12: Confusion matrix for
gradient boosting (1103 SNPs)

4.1.4 Multilayer Perceptron

Among the four algorithms for classifying fracture cases, MLP achieved the best result with ROC

AUC curve of 0.97 for 307 SNPs and 0.981 for 1103 SNPs. The recall and precision for 307 SNPs

were found to be 0.533 and 0.84 respectively. And, recall and precision for 1103 SNPs were 0.70

and 0.84 respectively. The overall performance for the model is as shown in figures 4.13-4.16
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Figure 4.13: ROC AUC curve for
MLP

Figure 4.14: Confusion Matrix for
MLP

Figure 4.15: ROC AUC curve for
MLP (1103 SNPs)

Figure 4.16: Confusion Matrix for
MLP (1103 SNPs)
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4.1.5 Fracture Prediction Results Summary

Table 4.1 summarizes the results for four different models with AUC, recall, and precision values

for 307 SNPs and figure 4.2 summarizes the results for 1103 SNPs.

Model AUC Recall Precision

Logistic Regression 0.816 0.53 0.220

Random Forest 0.875 0.464 0.426

Gradient Boosting 0.946 0.421 0.551

MLP 0.970 0.533 0.84

Table 4.1: Summary of the experiment results for fragility fracture risk prediction (307 SNPs)

Model AUC Recall Precision

Logistic Regression 0.904 0.55 0.297

Random Forest 0.937 0.64 0.593

Gradient Boosting 0.933 0.614 0.77

MLP 0.981 0.70 0.84

Table 4.2: Summary of the experiment results for fragility fracture risk prediction (1103 SNPs)

4.2 Bone Mineral Density Prediction

For BMD prediction we implemented four different algorithms: linear regression, random forest,

gradient boosting and multi-layer perceptron. In these experiments, we tried to predict Hologic total

hip BMD (B1THD as in dataset) value. The output value is continuous variable and the evaluation

metric used for this prediction was MSE. Following are the results obtained from different models

for BMD prediction.

4.2.1 Linear Regression

The MSE for training and test datasets for 307 and 1103 SNPs are shown in figures 4.17 and 4.18.

The mean squared error for 307 SNPs was found to be 0.1046 and for 1103 SNPs it was found to

be 0.1030 on test data.
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Figure 4.17: MSE vs iterations in
linear regression (307 SNPs)

Figure 4.18: MSE vs iterations in
linear regression (1103 SNPs)

4.2.2 Random Forest

Random forest better compared to other models. The MSE plot for training and test dataset for

both 307 and 1103 SNPs are shown in figures 4.19 and 4.20. The mean squared loss for test data

was only 0.00459 for 307 SNPs and 0.00433 for 1103 SNPs.

Figure 4.19: MSE vs Iterations in
random forest (307 SNPs)

Figure 4.20: MSE vs Iterations in
Random Forest (1103 SNPs)

4.2.3 Gradient Boosting

Gradient boosting had the second best performance for the prediction of Hologic BMD. The MSE

for training and test data for 307 and 1103 SNPs are shown in figures 4.21 and 4.22. The mean
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squared error for test set was 0.01143 for 307 SNPs and for 1103 SNPs the error was same i.e.

0.01143.

Figure 4.21: MSE vs iterations in
gradient boosting (307 SNPs)

Figure 4.22: MSE vs iterations in
gradient boosting (1103 SNPs)

4.2.4 Multilayer Perceptron

The mean squared error for the test set was 0.0972 and 0.0978 for 307 and 1103 SNPs respectively.

The MSE for training and test data is shown in figures 4.23 and 4.24.

Figure 4.23: MSE vs Iterations in
MLP (307 SNPs)

Figure 4.24: MSE vs Iterations in
MLP (1103 SNPs)
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4.2.5 Bone Mineral Density Prediction Results Summary

Table 4.3 and 4.4 summarize the MSE values for train and test set in both 307 and 1103 SNPs

experiments.

Model MSE for Train Set MSE For Test Set

Linear Regression 0.1038 0.1046

Random Forest 0.007655 0.00459

Gradient Boosting 0.0123 0.0114

Multilayer Perceptron 0.0981 0.0978

Table 4.3: MSE for different models for BMD prediction (307 SNPs)

Model MSE for Train Set MSE For Test Set

Linear Regression 0.1038 0.1030

Random Forest 0.00076 0.00459

Gradient Boosting 0.01143 0.0123

Multilayer Perceptron 0.0979 0.0972

Table 4.4: MSE for different models for BMD prediction (1103 SNPs)
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Chapter 5

Conclusions and Future Works

In this thesis, we employed supervised machine learning approach for predictive analysis for the

osteoporosis data set. We performed two different predictive analysis using different machine learn-

ing models. For the first part of the analysis – fragility prediction – multi-layer perceptron (MLP)

performed better than other predictive models. We had class unbalanced distribution of the data

set, in which the model tends to be biased towards majority samples class. To tackle this problem,

we implemented Synthetic Minority Over-sampling Technique (SMOTE), so that performance of

the model can be increased. The best performance for this analysis was seen in MLP with AUC

being 0.970 for 307 SNPs and 0.981 for 1103 SNPs. The recall and precision were calculated as

0.533 and 0.84 respectively for 307 SNPs. For 1103 SNPs the recall increased to 0.70 and precision

stayed same at 0.84. Among four models logistic regression had poor AUC. The AUC for 307 SNPs

was 0.816 and it increased to 0.904 in case of 1103 SNPs.

For the second part of the analysis, we implemented four different algorithms and the perfor-

mance evaluation was done on the basis of mean squared loss in train and test data. The output

variable was the hip bone mineral density values, which is continuous, and was plotted versus num-

ber of iterations to train the model. The performance for random forest was better among others

and the worst performance was shown by linear regression with the mean squared error of 0.103 in

1103 SNPs and 0.1046 in 307 SNPs for test data.

For both analysis, we used different phenotype risk information along with clinical risk factors

and weighted genetic risk scores (GRS) for each chromosomes. We did separate analysis for 307

and 1103 SNPs that were significantly associated with fracture risk. Recent studies have shown

that there are more than 1300 SNPs associated with fracture risk for osteoporosis, so these SNPs

can be used for further predictive analysis in the future. A good AUC value was obtained for the
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classification problem; but the recall and precision weren’t as high in both sets of SNPs. Further

work can be conducted to improve the recall and precision. Deep learning tools can be implemented

so as to get higher precision and higher recall in future. Also, we had 5133 patients data in the

dataset for the analysis and further more data can be collected for better or more complicated

analysis. The new studied risk factors can be included for better understanding and proposing a

good predictive model for minimizing the osteoporosis risk fracture.
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