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ABSTRACT 

 
Batching problems with constraints 

by 

Shradha Kapoor 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor, Department of Computer Science 

University of Nevada, Las Vegas 

 

There is an increasing demand for a phenomenon that can manifest benefits 

gained from grouping similar jobs together and then scheduling these groups 

efficiently. Batching is the decision of whether or not to put the jobs into same 

group based on certain criteria. Batching plays a major role in job scheduling in 

Information Technology, traffic controlling systems, and goods-flow 

management. A list batching problem refers to batching a list of jobs in the same 

order or priority as given in the problem. 

In this thesis we consider a one-machine list batching problem under weighted 

average completion. Given sequence of jobs are scheduled on single machine into 

distinct batches. Constraint is to batch these jobs into a fixed but arbitrary 

number ‘k’ of batches. Each batch can have any number of jobs (within the given 

list) grouped without changing the order of jobs. We call it a k-Batch problem. 

This is offline form of the batching problems, and is solved by reducing to a 

shortest path problem. We give an improved and faster version of the algorithm 

to solve k-Batch problem in O(n2) time. 
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CHAPTER 1 

 

INTRODUCTION 

 

Batching and dynamic programming are applied in wide variety of areas like 

traffic controlling systems, goods-flow management, job scheduling, and 

decision management. The solutions to batching problems occurring due to 

modern technologies empower the capabilities to manage operations in 

Information Technology efficiently. The topic analysis of batching is covered in 

expansive amount of literary work. Batching issues related to goods management 

are addressed by Kuik, Salomon, and Wassenhove [7]. These issues are divided 

into following levels of decision: (a) choosing/ designing the process, (b) planning 

the activity, and (c) controlling the activity. Decision to group or to not group 

similar items sequentially is referred as batching by Potts and Wassenhove [9]. 

Moreover, the decision of how and when to break a big group of identical items 

into smaller sub-groups is called batch-sizing. The paper gives description of a 

general model in a complex environment such that it takes into account all trade-

offs during batching, batch-sizing and scheduling processes.  

There is increasing demand for a phenomenon that can manifest benefits gained 

from grouping similar jobs together and then scheduling these groups efficiently. 

Consider there is one machine, where a given set of jobs have to be batched 

before being scheduled on the machine. All the jobs belonging to same batch are 

assumed to have same processing times because they are processed together in 

the batch. Whereas the consecutive batches can have a constant setup delay 
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time between each other. Coffman, Yannakakis, Magazine, Santos [2] gave an 

algorithm for any random but fixed sequence of jobs; it batches these jobs such 

that the total processing time is minimal.  

The scheduling analysis of a problem differs based on the assumptions of the 

basic model. For example, imagine the tasks belong to same group due to their 

similarity in some way, such as their storage requirements or their 

manufacturing tools. Thus, no setup time is required for the job belonging to a 

group, which is followed by another job from the same group. However, a ‘setup 

time’ for the ‘group’ will definitely be required when a given job is followed by a 

job belonging to a different group. The research work by Webster, Scott, and 

Kenneth R. Baker [8] calls this a group scheduling model. Their paper describes 

another variant of grouping model based on the ability of a machine to process 

multiple jobs simultaneously. Consider that items must be placed in a washer, 

for a washing operation. The washer has definite capacity, so fixed number of 

items can be batched together for processing at once. This model gets its name 

as batch processing model. Brucker and Hurink[10] solved one of the 

applications of batch scheduling problem, i.e. chemical batching using local 

search. For example, say there exist a set of items which are to be processed 

together by given a set of facilities. Certain given amount of product in each order 

is to be manufactured within the set deadline. There is a sequence of tasks 

involved in each production whereby each task must be performed by one of the 

allowed facilities for this process. The maximum and minimum size of a batch is 

given and manufacturing is performed in batch mode depending on the facility 
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chosen. To solve scheduling part of this problem, the paper presented a method 

to compute optimal amount of batches required to fulfil the product-requests. 

Even though the offline version of batching has been studied widely but several 

applications like Transmission Control Protocol acknowledgement demand 

online solutions. The study by W. W. Bein et al. [11] terms an online batching 

problem. In this problem there exists different jobs which are lined up as an 

online stream, and before a new job is seen by the scheduler, each of these jobs 

need to be appropriately scheduled. There are two ways to schedule a job: (a) it 

can be made part of the current batch (b) while a new batch is scheduled to be 

executed, this job can be made the first job which will be executed at that time. 

This type of algorithms, which abide the conditions mentioned above can be 

termed as online algorithms to solve batching problems. An algorithm batches a 

job if it performs the action described in (b). Let us consider the following 

application of online batching problem: given tasks can be executed either on a 

single processor or on multiple processors. These tasks are split into batches 

such that their requirement of a resource is similar. We need to setup the 

resources of each batch before its processing starts. We acknowledge the success 

of processing a batch only after it terminates. As soon as the acknowledgement 

is sent, we may set the status of the job as completed, though it is not necessary 

that the job has stopped being executed. Once job processing for all the jobs is 

done, status of the batch can me marked as completed. In case of batching 

problem run on a single processor, at one point in time one job is executed and 

a batch is completed when all its jobs are completed. A multiprocessor batching 



 

 
 

4 

problem is such that each job can be run independently on separate processor 

and we have multiple processors available at a time. In this case the runtime of 

a batch is the maximum processing time of any job in the batch. 
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CHAPTER 2 

 

 LIST BATCHING 

 
2.1 A DESCRIPTION OF THE BATCHING PROBLEM  

Partitioning and sequencing problems when combined shape into batching 

problems. We take into account a batching problem as 

1.  Set of jobs 𝐽 = 	 {𝐽,(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔	𝑡𝑖𝑚𝑒𝑠	𝑝,, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠	𝑤,)} where pi and wi are 

positive integers with i	=	1,	.	.	.	,	n.  

2. There exists a single machine, which can be scheduled with a given a set 

of Jobs	J, such that they are partitioned into batches. The completion time 

of every job in same batch is added to from the overall completion time of 

the batch. 

3. A delay or setup time s	=	1	is required every time a job from new batch is 

scheduled for processing. 

Our aim is to find a schedule such that the overall execution time of a given set 

of jobs is minimized, abiding by the conditions and constraints on it. The aim of 

a batching algorithm is to efficiently order jobs in a batch so they are processed 

efficiently.  

Batching problem can have two different types. First, when the jobs are executed 

sequentially. Second, when the jobs are executed in parallel. Note that we will 

not study the latter batching problems here.  



 

 
 

6 

Let us represent aforementioned first type of batching problem’s set of jobs in 

{𝐽C(𝑝C, 𝑤C), 𝐽D(𝑝D, 𝑤D), . . . , 𝐽E(𝑝E, 𝑤E)} manner for convenience. An example of 5 jobs 

can be represented as 𝐽C(5, 2), 	𝐽D(1, 1), 𝐽H(4, 1), 	𝐽J(1, 2), 𝐽K(2, 3), see Figure 1.  

 

Figure 1: A batching example 

 

Note that in this example, the order of jobs is not given. Therefore, there is a 

degree of freedom not only in the order but also – once an order is decided – in 

where the jobs are split into batches. 

Think of a set of 3(= n) jobs as J1(p1,	w1),	J2(p2,	w2),	J3(p3,	w3). Figure 2 shows that 

these jobs can be batched as 6 different sequences. Furthermore, each batch of 

jobs can be scheduled in 4 distinct ways. Thus, the total number of possible 

schedules is 24. 
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Figure 2: All possible batches of 3 jobs and further scheduling each batch. 

Lemma 1 (from [1]) If the sequence of jobs is fixed, then the batch sizing for any 

batching problem can be performed in O(n) time. Therefore, many batching 

problems can be solved in polynomial time. 

Proof With respect to the general objective function TF	=	∑wiCi, we can find an 

optimal sequence of batches for a fixed job sequence J1,	J2,	.	.	.	,	Jn.  

A batching solution B looks like 

B	=	s	Ji1	.	.	.Ji2	–	1	s	Ji2	.	.	.	Ji3	–	1	s	Ji3	.	.	.	Jik	–	1	s	Jik	.	.	.	Jn	

where solution B has k number of batches, 

There is jth batch, where the first job has index ij	, 

1 = 𝑖C < 𝑖D < 𝑖H <	. . . < 𝑖W 	≤ 𝑛 

The processing time of jth batch is given by 

𝑃\ = s	+	^ 𝑝_
,`ab	cC

_d,`
 

Objective function for B	is computed as 

𝑇f(𝐵) =^ 𝑊,𝐶,
E

,dC
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																														= ^ j^ 𝑤_
E

_d,
k Pj

W

\dC
 

																																																																= ^ m^ 𝑤_
E

_d,\
n m𝑠 +	^ 𝑝_

,`abcC

_d,`
n

W

\dC
 

We compute a constant k and a sequence of indices 1 = 𝑖C < 𝑖D < 𝑖H <	. . . < 𝑖W 	≤ 𝑛 

such that the above 𝑇f(𝐵)	 is minimized and thereby solves the batch sizing 

problem. 

This issue can be diminished to a shortest path problem. All solutions for B 

can be represented: 

    Ci1, i2      Ci2, i3             Ci(k-1),ik    Cik, i(n+1) 

 

B = s Ji1 . . .Ji2 – 1 s Ji2 . . . Ji3 – 1 s Ji3. . . Jik – 1 s Jik . . . Jn Jn+1 
 

Here 𝐽EoC is a dummy job. Edge (𝐽,, 𝐽\) has length 𝐶,,\ , which has costs generated 

as 𝐽,, 𝐽,oC, . . . , 𝐽\cC.	

𝐶,,\ = j^ wv
E

_d,
k m𝑠 +	^ pv

\cC

_d,
n 

Let	i	<	j	<	k	then	

𝐶,,W − 𝐶,,\ = j^ wv
E

_d,
k m^ pv

WcC

_d\
n 

We note that	(∑ wv
E
_d, ) is a monotone decreasing function and t∑ pvWcC

_d\ u	is a 

positive integral value for any 1	≤	j	<	k	≤	n+1. This dialog focuses to the issue of 

finding a most brief way from vertex 1 to vertex n+1 in a system N = (V, E, C) 

with the highlights as given below: 
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1. The set of vertices, 𝑉 = {1, 2, . . . , 𝑛 + 1}. 

2. An edge (𝑖, 𝑗)	𝜖	𝐸 if and only if i	<	j. 

3. The edge length 𝐶 = 𝐶,\	should satisfy  

𝐶,,W − 𝐶,,\ = (∑ wv
E
_d, )t∑ pvWcC

_d\ u	 	 for all	i	<	j	<	k 

here	(∑ wv
E
_d, ) is a monotonic decreasing function and t∑ pvWcC

_d\ u	>	0	for 

all	j	<	k.	

Coffman et al. [2] explained an algorithm using a dynamic programming 

approach to solve such problems in polynomial time. The algorithm works only 

if each of the values	(∑ wv
E
_d, )	and		t∑ pvWcC

_d\ u	>	0,	j	<	k	can be calculated in linear 

time as a preprocessing step. 

2.2 LIST BATCHING  

Jobs Ji	=	J1,	J2,	.	.	.,	Jn define the list version of the batching problem with processing 

time pi	=	p1,	p2,	.	.	.	,	pn and weight wi	=	w1,	w2,	.	.	.	,	wn respectively. We must process 

the jobs in same sequence as given in the list. These jobs are scheduled on a 

single machine in distinct batches. Every batch uses a setup time of s	=	1. The 

completion time Ci is the completion time of job Ji in a given schedule.  

Naturally, the jobs are considered according to the sequence of priorities ~�
��
		such 

as ~b
�b
	≥ 	~�

��
	 . . . ≥ 	~�

��
		 . Figure 3 shows four different ways to schedule 5-jobs Ji(pi,	

wi) sequence as J1(2,	3),	J2(1,	2),	J3(1,	1),	J4(4,	3),	J5(3,	1).	These jobs are ordered based 

on decreasing priority as 3/2	≥	2/1	≥	1/1	≥	3/4	≥	1/3. 
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        Figure 3: An example of list batching problem 

 

2.3 LIST BATCHING PROBLEM REDUCTION TO PATH PROBLEM  

The list batching problem can be reduced to a shortest path problem in the 

following manner:  

Consider the jobs Ji from i	=	1,	.	.	.	,n in this order. A weighted directed acyclic graph 

G is constructed with one node for each job (node Ji		where i	=	1,	.	 .	 .	 ,	n). Add a 

dummy node 0 in the beginning of the list. We can form an edge (i,	j) if and only 

if i	<	j, see Figure 4. The edge cost Ci,j for i	<	j is defined as 

𝐶,,\ = j^ wl
E

�d,oC
k m𝑠 +	^ pl

\

�dC
n 
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Figure 4: Reduction of the list batching problem to a shortest path problem 

 

We briefly note: 

Lemma 2 (from [3]) The matrix C	=	Ci,j	 (as described in 2.1) is Monge (refer to 4 

for definition) for all pi,	wi	 	≥	0. Additionally, this matrix C can be computed in 

constant time given the linear time preprocessing. 

Proof Let W, = ∑ 𝑤_,
_dC  	and		P, = ∑ 𝑝_,

_dC 	be the partial sum of the pi and wi	

values. So, we have  

𝐶[𝑖, 𝑗] = 𝐶,,\ = 	 (𝑊E −𝑊,)t𝑠 + 𝑃\ − 𝑃,u 

For i	<	i`	and	j	<	j`	

𝐶[𝑖, 𝑗] + 𝐶[𝑖`, 𝑗`] 	− 𝐶[𝑖`, 𝑗] − 𝐶[𝑖, 𝑗`] = 	 t𝑃\` − 𝑃\`u(𝑊,` − 𝑊,) 	≥ 0	
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Furthermore, observe that these values of matrix can be computed in constant 

time after linear time preprocessing by setting up arrays of partial sums for Wi 

and Pi in linear time. 

 

Going back to description of the reduction, it is clearly seen (see Albers and 

Brucker (1993) [1] for details) that the ∑Ciwi	value of the schedule is given by the 

cost of path <	0,	i1,	i2,	.	.	.,	ik,	n	> which batches at each job i1,	i2,	.	.	.,	ik.	Conversely, 

any batching with cost A corresponds to a path in graph G	with path length A.	

 

Following dynamic algorithm can be used to compute the shortest path in time 

O(n2): 

Let 

𝐸[𝑚] = 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡	𝑝𝑎𝑡ℎ	𝑓𝑟𝑜𝑚	𝑛𝑜𝑑𝑒 − 𝑡𝑜	𝑛𝑜𝑑𝑒	𝑚 

then  

𝐸[𝑚] = min
C�W��

�𝐸[𝑘] + 𝐶W,�� 	𝑤𝑖𝑡ℎ	𝐸[0] = 0 

As a result of above equation, we get a table shown in Figure 5, where elements 

can be generated row by row. 
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Figure 5: Dynamic programming tableau for list batching problem. 

 

We see that this dynamic program can calculate the minima of each row of n×n 

matrix E, such that 

𝐸[𝑚] = 	 � 𝐸[𝑘] + 𝐶W,�													𝑖𝑓	𝑘 < 𝑚
																						∞														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

with	k	=	0,	.	.	.	,	m	–	1	and	m	=	1,	.	.	.	,	n.	

All row minima values obtained from the shortest path matrix E,	are used to form 

the final shortest path graph. 

 

Lemma 3 (from [3]) The matrix E	=	Em,k is Monge.  

Proof Monge property of matrix E	is preserved under addition and finding the 

minimum. 

2.4 ILLUSTRATION OF THE LIST BATCHING PROBLEM REDUCED TO 

SHORTEST PATH PROBLEM  

We are given a list of 9-jobs Ji(pi,	wi) in decreasing order as J1	(4,	1)	>	J2	(4,	2)	>	J3	(2,	

1)	>	J4	(3,	2)	>	J5	(4,	3)	>	J6	(2,	2)	>	J7	(2,	3)	>	J8	(2,	4)	>		J9	(1,	3).	
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The setup time is s	=	1.	

Partial sum of the processing times 𝑃, = ∑ 𝑝_
,	
_dC 	for all	i	=	1,	2,	.	.	.,	9	and	P0	=	0	is  

P1	=	1	 P2	=	3	 P3	=	4	 P4	=	6	 P5	=	9	 P6	=	11	 P7	=	14	 P8	=	18	 P9	=	21	

 

Partial sum of the weights 𝑊, = ∑ 𝑤_
,	
_dC , for all	i	=	1,	2,	.	.	.,	9	and	W0	=	0	is		

W1	=	4	 W2	=	8	 W3	=	10	 W4	=	13	 W5	=	17	 W6	=	19	 W7	=	21	 W8	=	23	 W9	=	24	

 

Completion times of the jobs = Cost matrix = C,,\ 

														= j^ wm
E

�d,oC
k m𝑠 +	^ pm

\

�dC
n 

= t𝑊E −𝑊\ut𝑤 + 𝑃\ − 𝑃,u 

Cost of edge from ith node to jth node is given by Ci,j, where i	<	j, i	=	0,	2,	.	.	.,	8, and 

j	=	1,	2,	.	.	.,	9	as 

 

 

C01	 48	

C02	 96	 C12	 60	

C03	 120	 C13	 80	 C23	 32	

C04	 168	 C14	 120	 C24	 64	 C34	 42	

C05	 240	 C15	 180	 C25	 112	 C35	 84	 C45	 44	

C06	 288	 C16	 220	 C26	 144	 C36	 112	 C46	 66	 C56	 21	

C07	 360	 C17	 280	 C27	 192	 C37	 154	 C47	 99	 C57	 42	 C67	 20	

C08	 456	 C18	 360	 C28	 256	 C38	 210	 C48	 143	 C58	 63	 C68	 40	 C78	 15	

C09	 528	 C19	 420	 C29	 304	 C39	 252	 C49	 176	 C59	 91	 C69	 55	 C79	 24	 C89	 4	
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Shortest path can be computed using dynamic program depicted in Figure 6 

E[m]	=	cost	of	the	shortest	path	from	node	0	to	node	m	

= min
C�W��

�𝐸[𝑘] + 𝐶W,��		

	

𝑤ℎ𝑒𝑛	𝑘 < 𝑚, 𝑘 = 0, . . . , 8	𝑎𝑛𝑑	𝑚 = 1, . . . , 9.	

E[0]	=	0.	

 

Figure 6: E	=	Emin matrix with the highlighted value as each row minima. 

 

Figure 7 represents the graph with final shortest path after we have reduced the 

9-jobs list batching problem to shortest path problem with a dummy node 0.  

 

Figure 7: Shortest path graph for the given 9-jobs list batching problem. 
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CHAPTER 3 

 

 BATCHING WITH CONSTRAINTS 

 

We now turn to the list batching problems with constraints. The solution to this 

is very useful in modern day batching problems which differ from the traditional 

ones in complexity. 

 

3.1 BATCHING WITH BOUNDED NUMBER OF JOBS IN A BATCH  

The list batching problem in which every batch has at least k number of jobs. 

We can compute cost matrix Ci,j (as defined in 2) by making edge cost Ci,j	=	∞ for 

batches where 

|	i	–	j	|	<	k,		 	 for	i	<	j,	i	=	0,	1,	.	.	.	,	n-1	and	j	=	1,	2,	.	.	.	,	n.	

 

Another list batching problem with constraint is the one in which every batch 

has at most k number of jobs. Cost matrix Ci,j		can be calculated using edge cost 

Ci,j	=	∞ for the batches where  

|i	–	j|	>	k,		 	 for	i	<	j,	i	=	0,	1,	.	.	.	,	n-1	and	j	=	1,	2,	.	.	.	,	n.	

 

3.2 BATCHING WITH A FIXED NUMBER OF BATCHES (k-BATCH) 

In this paper, a list batching problem with the condition that there must be 

exactly k	number of batches is named as k-Batch problem. Each batch can have 
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any number of jobs from 1,	.	.	.	,	n . We can schedule the list of jobs by reducing 

this batching problem to a path problem (discussed in 2.3). 

 

Consider a sequential list of jobs as J1(p1,	w1),	J2(p2,	w2),	.	.	.	,	Jn(pn,	wn). The jobs J1,	J2,	

.	.	.,	Jn can be depicted by nodes 1,	2,	.	.	.	,	n. We must add a dummy node 0 so that 

the path starts from 0th node. Cost matrix C	=	Ci,j is determined by the process 

explained in 2.2. The total number of batches is fixed to exactly k. Thus the k 

will be the total number of edges in graph. When number of batches k equals 1 

then we have only one edge from source node 0 to destination node i. So, we 

evaluate minimum cost matrix Ek[i] as 

E1[i]	=	C0,i	,	 	 where	i	=	1,	2,	.	.	.	,	n	and	k	=1.	

The matrix of minimum cost of paths from dummy node 0 to every other node 

can be calculated as 

E	=	Ek[m,	i]	=	(cost	of	path	from	node	0	to	node	m,	with	k-1	number	of	edges)	

+	(cost	of	one	edge	from	node	m	to	last		node	i).	

i.e.,	

𝐸W[𝑚, 𝑖] = 	 �
											∞																																														𝑖𝑓	𝑚 ≤ 𝑖 < 𝑘
			𝐸WcC[𝑚] + 𝐶�,,																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

with k	=	1,	2,	.	.	.	,	n. Since m	is the last but one node, m	=	0,	1,	.	.	.	,	n-1	and i	is the 

last node, i	=	1,	2,	.	.	.	,	n.	These properties form a directed acyclic graph G	such that 

the mth node is always less than the ith node. Starting from 0th node to ith node, 

the total number of edges is equal to k.  



 

 
 

18 

Figure 8 depicts the minimum cost matrix of paths formed by ‘path	from	node	0	to	

node	 m	 with	 k-1	 edges	 and	 last	 edge	 from	 node	 m	 to	 node	 i’. Such matrix can be 

constructed for every k number of batches where k	=	1,	.	.	.,	n. 

	 0	 1	 2	 .		.			.			.			.			.				 n-1	

1	 	 	 	 	 	

2	 	 	 	 	 	

.	

.	

.	

.	

.	

.	

	 	 	 	 	

n	 	 	 	 	 	

	

Figure 8: Minimum cost matrix of paths to node i with m as last but one node. 

 

We can get the matrix Emin	=	Ek[i]min by consolidating the minima for all k	=	1,	.	.	.,	

n number of batches having last node i	=	1,	.	.	.,	n. Each cell value in a row of the 

matrix E can be evaluated using the minima of its previous row. This is depicted 

with the equation as 

𝐸�,E = 𝐸𝑘[𝑖]𝑚𝑖𝑛 = min
¤��¥,

𝐸WcC[𝑚, 𝑖],	  

for	all	i	=	1,	2,	.	.	.	,	n	and	k	=	1,	2,	.	.	.	,	n	such	that	i	≥	k, see Figure 9. 

Lemma 4 (from [3]) The matrix 𝐸�,E = 𝐸W[𝑖]�,E is Monge.  

i m 

 Ek[1]min 

 Ek[2]min 

Ek[n]min 
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Proof Monge property of matrix is preserved under addition and finding the 

minimum. 

 

Figure 9: Minimum cost matrix Emin shows the shortest path to node i with 

exactly k	number of edges, where k =	1,	.	.	.,	n. 

 

3.3 ILLUSTRATION OF A k-BATCH PROBLEM REDUCED TO SHORTEST 

PATH PROBLEM  

Consider a list of 5-jobs Ji(wi,	pi) in the same sequence as J1	(1,	3)	>	J2	(1,	2)	>	J3	(2,	

3)	>	J4	(1,	1)	>	J5	(2,	1). We will find the optimal solution to schedule these jobs into 

batches when the number of batches k is fixed. 

 

The setup time s is 1. 

 

Partial sum of the processing times 𝑃, = 	∑ 𝑝_,
_dC 	,		for	all	i	=	1,	2,	.	.	.,	5	and	P0	=	0	is		
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P1	=	1	 P2	=	2	 P3	=	4	 P4	=	5	 P5	=	7	

 

Partial sum of the weights 𝑊, = 	∑ 𝑤_,
_dC 	,	for	all	i	=	1,	2,	.	.	.,	5	and	W0	=	0 is  

W1	=	3	 W2	=	5	 W3	=	8	 W4	=	9	 W5	=	10	

 

The cost of each edge from ith node (for all i	=	0,	2,	.	.	.,	8) to jth node (for all j	=	1,	2,	.	

.	.,	9) is given by Ci,j as 

 

 

 

 

 

 

We will now compute a matrix for minimum cost paths from dummy node 0 to 

node i, where i	=	1,	2,	.	.	.,	5, given a fixed number of edges k. We will generate n 

such matrices taking into consideration each value of k as 1,	2,	.	.	.,	5. 

 

For the case when k	=1, the matrix E1[i]min	means the minimum costs of one edge 

from node 0 to node i. This is obtained from C0,i	,	for	i	=	1,	.	.	.,	5	as 

 

	

𝐸C[𝑖]�,E =	 

 

C01	 20	

C02	 30	 C12	 14	

C03	 50	 C13	 28	 C23	 15	

C04	 60	 C14	 35	 C24	 20	 C34	 4	

C05	 80	 C15	 49	 C25	 30	 C35	 8	 C45	 3	

i	=	1	 i	=	2	 i	=	3	 i	=	4	 i	=	5	

20	 30	 50	 60	 80	
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Now for cases when 1	<	k	≤	5, we can do the calculations using 

 

𝐸W[𝑚, 𝑖] = 	 �
											∞																																														𝑖𝑓	𝑚 ≤ 𝑖 < 𝑘
			𝐸WcC[𝑚] + 𝐶�,,																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

with	k	=	1,	2,	.	.	.	,	5,		

m	is the last but one node thus m	=	0,	1,	.	.	.	,	4, node 0	is the dummy node, 

i is the last node so i	=	1,	2,	.	.	.	,	5.	

 

When k	=	2	then E2[i]min represents the minimum costs of path with 2	edges from 

node 0	to node i. Each path consists of one edge from dummy node 0	to node m	

and the last edge from node m	to node i, for	i	=	1,	2,	.	.	.,	5.	

 

The minima of each row of matrix E2[m,	i] is responsible to form the row 2 of the 

matrix Ek[i]min. Thus 

 

𝐸D[𝑖]�,E =	 

 

i	=	1	 i	=	2	 i	=	3	 i	=	4	 i	=	5	

∞	 34	 45	 50	 58	
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Similarly, when k	=3 then E3[i]min represents the minimum costs of path with 3 

edges from node 0 to node i. Each path consists of two edges from dummy node 

0 to node m and the last edge from node m to node i, for i	=	1,	2,	.	.	.,	5.	

 

The minima of each row of matrix E3[m,	i] is responsible to form the row 3 of the 

matrix Ek[i]min. Thus 

	

𝐸H[𝑖]�,E =	 

 

When k	=4 then E4[i]min represents the minimum costs of path with 4 edges from 

node 0 to node i. Each path consists of three edges from dummy node 0 to node 

m and the last edge from node m to node i, for i	=	1,	2,	.	.	.,	5.	

 

i	=	1	 i	=	2	 i	=	3	 i	=	4	 i	=	5	

∞	 ∞	 49	 49	 53	
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The minima of each row of matrix E4[m,	i] is responsible to form the row 4 of the 

matrix Ek[i]min. Thus 

 

 

𝐸J[𝑖]�,E =	 

 

When k	=5 then E5[i]min represents the minimum costs of path with 5 edges from 

node 0 to node i. Each path consists of four edges from dummy node 0 to node 

m and the last edge from node m to node i, for i	=	1,	2,	.	.	.,	5.	

 

The minima of each row of matrix E5[m,	i] is responsible to form the row 5 of the 

matrix Ek[i]min. Thus 

 

𝐸K[𝑖]�,E =	 

 

We can get the final Emin	=	Ek[i]min matrix, see Figure 10, by putting together all 

the minima matrices computed earlier when k	=	1,	2,	.	.	.,	5. The shaded parts in 

i	=	1	 i	=	2	 i	=	3	 i	=	4	 i	=	5	

∞	 ∞	 ∞	 53	 52	

i	=	1	 i	=	2	 i	=	3	 i	=	4	 i	=	5	

∞	 ∞	 ∞	 ∞	 56	
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Figure 10 represent shortest path from node 0 to node i with exactly k number 

of edges. 

  

Figure 10: Dynamic programming tableau of Ek[i]min. Each row minima is 

highlighted in gray color. 
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CHAPTER 4 

 

 SPEEDING UP WITH LARSCH/ SMAWK ALGORITHM 

 

The dynamic programming speedup can be illustrated by two important 

properties: total monotonicity and the Monge property.  

Definition 1 A Monge matrix X is defined as  

𝑋[𝑖, 𝑗] 	+ 	𝑋[𝑖`, 𝑗`] 	≤ 	𝑋[𝑖`, 𝑗] + 	𝑋[𝑖, 𝑗`]								𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 < 𝑖`	𝑎𝑛𝑑	𝑗 < 𝑗`	 

	

Definition 2 A 2	×2 matrix ©𝑝 𝑞
𝑟 𝑠« is monotone if q	≤	p implies that s	≤	r. In other 

words, a matrix is considered to be a monotone if following conditions hold true. 

We have the right-most minima of the upper row say RUR and right-most minima 

of the lower row say RLR, such that RUR is not to the right of RLR. 

 

Definition 3 If all the 2	×2 submatrices of a matrix X are monotone, then the 

matrix X is called totally monotone. 

 

Observation All instances of every Monge matrix is a total monotone. Refer to 

the Figure 11. Thus, Monge matrices has tendency to occur routinely. This is 

evident from example, where we are trying to reduce the batching problem to the 

shortest path in section 2.3, the cost matrix C (see figure 5) is a Monge matrix 

with total monotonicity. 
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Figure 11: Monge property is shown in top left of the figure. This forbid the 

instance in top right. Top-left shows the Monge property, which prohibits the 

situation in top-right. This is evident at the bottom of figure where the row 

minima is inclined towards the right 

 

The non-speedup method calculates all row minima of a totally monotone or 

Monge matrix in the runtime efficiency of O(n2). This runtime can be improved to 

O(n	log n) as depicted in Figure 12.  

The trivial O(n	log	n) algorithm works only when the entire matrix is available 

offline. This algorithm takes linear time to find  the minimum value in the middle 
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row of given matrix. Then row minima is computed by using recursion which is 

done on upper left and lower right matrix considering all rows have a minima 

Refer to Figure 12.  

 

Figure 12: Computation of row minima for a Monge matrix. Time taken is O(n	log	

n). 

We can use a complex recursive algorithm by Shor, Moran, Agarwal, Wilber, 

Klawe [3] known as SMAWK algorithm to further increase the speed. This can 

find all row minima in O(n) time. This method also requires the matrix to be 

ready offline as a pre-computational step. 

The k-Batch problem discussed in 3.2, is one of the applications of the offline 

algorithms. As the first computational step we find all row minima in matrix Ek[m,	

i]. Perform first step for all values of k, where k	=	1,	.	.	.,	n in runtime O(n). Finally 

generate matrix Ek[i]min using SMAWK algorithm to improve overall runtime to 

O(n2) from O(n3), when using non-speedup algorithm. 

Figure 13 demonstrates an online protocol which can be used to query every 

element: It will take constant time to generate elements in column 1, provided 
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minima of row 1 is computed; following on, columns 1 and 2 can be easily 

generated if we can compute minima of row 2, and so forth. 

  

Figure 13: Online protocol tableau. Column 3 is ‘knowable’ if minimum of row 3 

can be computed. 

 

LARSCH an algorithm developed by Larmore and Schieber [4], can process the 

elements of matrix one-by-one in a serial manner, without having the entire 

matrix available from the start. The LARSCH algorithm generalizes SMAWK, 

which can be executed as an online algorithm with O(n) time. This runtime is 

greatly improved from the non-speedup online algorithm to find all row minima 

taking O(n2) time. 

Note that because of the previous Lemma construction, the following theorem is 

true. 

Theorem 1 If the number of jobs is n, then it will take O(n2) time to solve the k-

Batch problem.	

Proof  Refer to Lemma 2 in section 2 
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CHAPTER 5 

 

BATCHING WITH ARBITRARY ORDER 

 

The problems in which there is no priority among the jobs to be batched, are 

categorized in this paper under general batching problems. 

General batching problems have the following properties: 

1. A fixed but random number of jobs are given in the problem. 

2. The jobs can be independently scheduled irrespective of any order. There 

are no restrictions to batch and process any job. 

The solution to general batching problems must have the given threshold value 

T as upper bound of the objective value. 

Brucker and Albers [1] proved these general batching problems to be NP-hard 

and proved it by reduction from the 3-PARTITION	problem.  

 

Definition 4 A 3-PARTITION	problem can be defined with a positive integer bound 

P	and 3a non-negative integers m1,	m2,	.	.	.,	m3a	which satisfy the conditions  

𝑃
4
< 𝑚, < 	

𝑃
2

 

and 

^ 𝑚, = 𝑎𝑃
H´

,dC
 

 

where the integers mi	for i	=	1,	2,	.	.	.,	3a.	

 



 

 
 

30 

Definition 5 For an instance of 3-PARTITION, the general batching problem X	can 

be defined as follows: 

1. A job to be partitioned Ji	(processing time pi	=	mi,	weight wi	=	pi)		

for	i	=	1,	2,	.	.	.,	3a.	

2. A ‘dummy’ job J3a+i	(p4a+1	=	2P,	w4a+1	=	p4a+1)	for	i	=	1,	2,	.	.	.,	3a.	

3. Machine setup/delay time is s	=	2P.	

4. The optimal objective function TF	of the problem with P(a+1)(a+2)	number 

of jobs gives Threshold value T. Each job is independent with processing 

time of 1,	pi	=	1	and flow time of fi.	This is the problem of ∑fi	with setup time 

s	=	2P.	

The problem X has a solution S with TF(S)	≤	T only when there exists a solution 

to the 3-PARTITION	problem. If it has the solution then every batch must have 

one dummy job along with all partition jobs Ji	where	i∈Ij	disjoint batches with 1	≤	

j	≤	a.	

For example, for a problem X we have an arbitrary solution S. Consider	Ij	 which 

is set of jobs in batch j,	and total K		batches: 

Ij	:=	{v	|	Jv	is	in	batch	j}		 where	j	=	1,	2,	.	.	.,	K.	

It is known 

m^ 𝑤_
·`

_d·b
n = 	m^ 𝑝_

·`

_d·b
n 
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and for j	=	1,	2,	.	.	.,	K  these aggregations end up as positive integer values. The 

solution S contains n jobs scheduled with processing time p	=	1 and weight w	=	

1 such that 

𝑛 = 	^ m^ 𝑤_
·`

_d·b
n

¸

\dC
= 	^ m^ 𝑝_

·`

_d·b
n

¸

\dC
= 𝑃(𝑎 + 1)(𝑎 + 2) 

and	jth	batch	contains	©∑ 𝑤_
·`
_d·b

« = 	 ©∑ 𝑝_
·`
_d·b

« jobs,	for	all		j	=	1,	2,	.	.	.,	K. 

 

Lemma 5 Assume X` is a general batching problem with setup time of	2P. An 

optimal solution SK to the problem X` is unique, when number of batches K	=	a	+	

1 and batch sizes 

𝑛\ = (𝑎 + 2 − 𝑗)2𝑃,									𝑓𝑜𝑟	𝑎𝑙𝑙	𝐽 = 1, 2, . . . , 𝐾 

Proof The solution Sk is an optimal solution of problem X`, as described in 

Proposition 2 by Dobson, Karmarkar and Rummel [5]. We must show that there 

is no other optimal solution than Sk.	

 Another optimal solution SL to the problem X` with	L number of batches 

such that SL	≠	SK		and batch sizes mj,	for	all	j	=	1,	2,	.	.	.,	L.		

If K	<	L then in that case nj	>	mj should exist with index 1	<	j	<	K. 

 

At the point when a job in batch set j is planned for another group K + 1 then SK` 

is solution acquired from SK. Due to the optimality of SK we have, 

𝑇f(𝑆¸`) 	− 	𝑇f(𝑆¸) = (𝐾 + 1 − 𝑗)2𝑃 − t𝑛\ − 1u ≥ 0 

Similarly, for SL` we have,  

𝑇f(𝑆¼`) 	− 	𝑇f(𝑆¼) = −(𝐿 − 𝑗)2𝑃 + 𝑚\ − (𝑚¼ − 1) ≥ 	0 
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Two inequalities above, if added leads to, 

(𝐾 + 1 − 𝐿)2𝑃 + (𝑚\ + 2 − 𝑚¼ − 𝑛\ ≥ 0	

The inequality mj	+	2	–	mL	–	nj	=	mj	–	mL	+	1–	nj	+	1	≤	0 holds true because of our 

assumption of L	>	K leading to K	+	1	–	L	≤	0,	nj	>	mj and mL	≥	1. Thus, K	+	1	=	L and 

mj	–	(mL	–	1)	=	nj	–	1. Substituting these terms in the two inequalities and solving 

them further we obtain, 

(𝐾 + 1 − 𝑗)2𝑃 = 𝑛\ − 1 

put the first values for K and nj we get we get a contradiction by the following 

equation,  

(𝑎 + 2 − 𝑗)2𝑃 = (𝑎 + 2 − 𝑗)2𝑃 − 1 

If we compare another parameter, given L	≤	K	,	 nj	<	mj holds true, which has index 

as 1	≤	j	≤ L. If L	=	K holds true, it will cause nk	>	mk which will have index of 1	≤	k	

≤	L.	For the case when L	<	K we set k	=	L	+	1 and mk	=	0 for the rest of this proof. 

Let SK` be the solution we get from SK  when a job in batch k is planned to run in 

batch j. Also, let SL` be the solution acquired from SL if a job in batch j is planned 

to run  in batch k. 

For j	<	k  we have, 

𝑇f(𝑆¸`) 	− 	𝑇f(𝑆¸) = −(𝐾 − 𝑗)2𝑃 + 𝑛\ − (𝑛¸ − 1) ≥ 	0 

And 

𝑇f(𝑆¼`) 	− 	𝑇f(𝑆¼) = (𝐾 − 𝑗)2𝑃 − t𝑚\ − 1u + 𝑚W ≥ 0 

After adding these two inequalities and using our assumption of 𝑛\ + 1 − 𝑚\ ≤

0	and	𝑚W + 1 − 𝑛W 	≤ 0	we	get	



 

 
 

33 

(𝐾 − 𝑗)2𝑃 − 𝑛\ + (𝑛W − 1) ≥ 0	

We conclude that 0 = (𝐾 − 𝑗)2𝑃 − 𝑛\ + (𝑛¸ − 1) = (𝐾 − 𝑗)2𝑃 + (𝑗 − 𝐾)2𝑃 −

1 = −1, resulting in a contradiction. 

For k	<	j then 

𝑇f(𝑆¸`) 	− 	𝑇f(𝑆¸) = (𝑗 − 𝑘)2𝑃 − (𝑛¸ − 1) + 𝑛\ ≥ 0 

and 

𝑇f(𝑆¼`) 	− 	𝑇f(𝑆¼) = −(𝑗 − 𝐾)2𝑃 + 𝑚W − (𝑚W − 1) ≥ 0	

We add these two inequalities. Then if we apply resultant equation to summed 

up inequalities we have 

(𝑗 − 𝐾)2𝑃 − (𝑛W − 1) + 𝑛\ = 0 

Substituting nk and nj by original values to get 

0 = (𝑗 − 𝐾)2𝑃 − (𝑛¸ − 1) + 𝑛\ = (𝑗 − 𝐾)2𝑃 + (𝐾 − 𝑗)2𝑃 + 1 = 1 

The above equation is a contradiction. Hence proved that SK is the only optimal 

solution of X`. 

Theorem 2 If and only if 3-PARTITION has a solution then the problem X has a 

solution S such that 𝑇f(𝑆) ≤ 𝑇	

Proof Consider X		has an arbitrary solution which is S and the count of batches 

in S be K and batch j has set of job indices which are Ij   

𝐼\ ≔ {𝑣	|	𝐽_	𝑖𝑠	𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑	𝑖𝑛	𝑏𝑎𝑡𝑐ℎ	𝑗}						𝑤ℎ𝑒𝑟𝑒	𝑗 = 	1, 2, . . . , 𝐾 

Solution S is assumed to be a solution with scheduled n	=	P(a	+	1)(a	+	2) jobs 

which have running times of pi	=	1 with job weights as wi	=	1,	i	=	1,	2,		.	.	.,	n.  
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As per the Lemma 5, S is a solution of X, given TF(S)	≤	T. This condition holds 

true only in the event that it is conceivable to plan the dummy jobs along with 

partition jobs such that the subsequent solution comprises of precisely a	+	1 

groups and the accompanying condition is fulfilled for j	=	1,	2,	.	.	.,	a	+	1	

^ 𝑝_
·`

_d·b
= (𝑎 + 2 − 𝑗)2𝑃	

In order to get the solution discussed above, it is mandatory to schedule the 

dummy job J3a+i in batch i	=	1,	2,	.	.	.,	a	+	1. Also, it is mandatory to schedule the 

batch on the first position, which has total processing time of P. 3-PARTITION  

should have a solution for above to hold true. Say we have a total sum of weights 

P for given sets I1,	I2,	.	.	.,	Ia, then partition jobs Ji which have i∈Ij	,	1	≤	j	≤	K can be 

put together with jth batch. 

3-PARTITIO when transformed to X takes O(a) steps. Hence, for the given general 

batching problem NP-hardness proof is complete. 

 

Bein, Noga and Wiegley [6] explained the approximation algorithm to solve the 

general batching problems. One way is to re-organize the jobs according to 

their priorities 
~�
��
	, where n is total number of jobs and i	=	1,	2,	.	.	.,	n. When the 

order of jobs is adjusted based on their priorities such that 
~b
�b
≥ ~�

�� 	
. . . ≥ 	~�

��
, 

then the jobs are said to be in canonical order. CANONICALBEST 

approximation algorithm are those which can schedule the given jobs in their 

respective canonical order.  
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Quality of approximation by CANONICALBEST is measured by its approximation 

ratio AR. For an optimization problem OP, an algorithm C has approximation ratio 

AR if for every instance i	∈	OP, 

𝐴Ä ≤
𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑔𝑖𝑣𝑒𝑛	𝑏𝑦	𝐶	𝑓𝑜𝑟	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	𝑖
𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑜𝑝𝑡𝑖𝑚𝑎𝑙	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒	𝑖

 

Approximation ratio is AR of 2,	for the given priority algorithm. In this algorithm 

batches are made such that they have decreasing order of priority. It was also 

discussed that approximation ratio on any priority algorithm will have a lower 

bound of 
Do√Ç
J

≈ 1.1124. There exists a conjecture that matches this bound. As 

the algorithm requires the priorities to be sorted firth, this will have a runtime of 

at least O(n	log	n). 

 

We can solve the prioritized (canonical order) list of jobs in runtime of O(n) using 

the List batching process as discussed in 2.2. Only the order of jobs in the 

optimal solution should be known for the list batching process. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

In many practical situations, batching the problem and scheduling helps in 

processing efficiently. Though, there are much faster ways to solve such 

problems efficiently, but generally these are solved by simple- dynamic 

programming methodologies.  We have studied here a one-machine list batching 

problem where the number of batches is arbitrary but fixed. We have given the 

algorithm to solve an offline form of this problem. The solution uses a dynamic 

program that has improved the speed to a runtime of O(n2). It is often realized, 

that while solving extremely big real world problems, having an algorithm with 

solution, which works in cubic time is equivalent to having no solution at all. 

 

However, it is an interesting open research problem to find an optimal and 

feasible solution to the k-Batch problems with additional constraints, for example, 

when each batch can have a given fixed number of jobs, when the setup time is 

included as a part of each batch, etc. Another thought-provoking topic to 

investigate would be the problems where structure of batch is predefined. For 

example, a given batch structure allows to have two jobs with processing time < 

2 and other two jobs with processing time > 2. The applications to these kinds 

of problems will also be of great interest. These problems have a relationship to 

knapsack and bin packing. Dynamic programming plays a vital role in the 

optimal solution to such problems. 
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APPENDIX A 

 

SELECTED SOURCE CODE  

 

'''	Calculate	initial	cost	matrix,	i.e.	cost	from	node	0	to	node	i'''	
								#	s	--	selection	time	
								s	=	1	
	
								#	n	--	number	of	jobs	
								n	=	int(input('\nEnter	the	total	number	of	jobs:'))	
								self.n	=	n	
	
								#	p	--	matrix	of	processing	times	of	jobs	
								p	=	[int	(x)	for	x	in	input('\nEnter	the	processing	time	for	each	job:').split()]	
	
								#	w	--	matrix	of	weights	of	jobs	
								w	=	[int	(x)	for	x	in	input('\nEnter	the	weight	for	each	job:').split()]	
	
								#	P	--	partial	sum	of	processing	times	p	
								P	=	[0]	*	(n+1)	
								for	i	in	range(1,	n+1):	
												sum	=	0	
												for	j	in	range(i):	
																sum	+=	p[j]	
												P[i]	=	sum	
								print	('\nP	--	partial	sum	of	processing	times	p:',	P)	
	
								#	W	--	partial	sum	of	weights	w	
								W	=	[0]	*	(n+1)	
								for	i	in	range(1,	n+1):	
												sum	=	0	
												for	j	in	range(i):	
																sum	+=	w[j]	
												W[i]	=	sum	
								print	('\nW	--	partial	sum	of	weights	w:',	W)	
	
								#	C	--	matrix	of	edge	costs;	C[i,j]	--	cost	of	edge	(i,j)	
								#	C[i,j]	=	(Wn	-	Wi)(s	+	Pj	-	Pi)	
								C	=	dict()	
								print('\nInitial	Matrix	of	edge	costs:')	
								for	i	in	range(n+1):	
												for	j	in	range(i+1,	n+1):	
																C[i,j]	=	((W[n]	-	W[i])	*	(s	+	P[j]	-	P[i]))	
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																print	('cost	of	edge	(',i,	',',	j,	')	:',C[i,j])	
	
								#	Path	always	start	from	0	
								self.cost_zero_to_i	=	C	
	

'''	Compute	the	minimum	cost	matrix	Emin	of	shortest	path	to	last	node	i	with	exactly	k	
number	of	edges'''	
def	minimum_cost(self):	
								#	map	to	store	the	minimum	value	of	E	in	each	k	
								minimumE	=	dict()	
								#	map	to	store	current	calculations	for	E	
								currentE	=	dict()	
	
								for	y	in	range(1,	self.n+1):	
												minimumE[1,y]	=	self.cost_zero_to_i[0,y]	
	
								#	iterate	to	increment	number_of_edges(k)	by	one	till	k<=n,	start	with	k=2	
								for	k	in	range(2,	self.n+1):	
	
												#	iterate	to	increment	last_node_number(i)	by	one	till	i<=n,	start	with	i=2	
												for	i	in	range(1,	self.n+1):	
	
	#	iterate	to	increment	last_but_one_node_number(l)	by	one	till	l<=n,	start	with	l=1	
																for	l	in	range(1,	self.n+1):	
																				if	i	<	k	or	l	>=	i:	
																								currentE[i,l]	=	float('inf')	
																				else:	
																								currentE[i,l]	=	minimumE[k-1,l]	+	self.cost_zero_to_i[l,i]	
	
												#	add	next	row	to	minimum_E	matrix	
												for	y	in	range(1,	self.n+1):	
																minimumE[k,	y]	=	self.find_minimum(currentE,	y)	
	
								return	minimumE	
	
				def	find_minimum(self,curr_E,	row):	
								mini	=	float('inf')	
								for	i	in	range(1,	self.n+1):	
												if	curr_E[row,	i]	<	mini:	
																mini	=	curr_E[row,	i]	
	
								return	mini	
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