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Abstract

Clustering a set of points in Euclidean space is a well-known problem having applications in pattern recogni-

tion, document image analysis, big-data analytics, and robotics. While there are a lot of research publications

for clustering point objects, only a few articles have been reported for clustering a given distribution of ob-

stacles. In this thesis we examine the development of efficient algorithms for clustering a given set of convex

obstacles in the 2D plane. One of the methods presented in this work uses a Voronoi diagram to extract

obstacle clusters. We also consider the implementation issues of point/obstacle clustering algorithms.
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Chapter 1

Introduction

With the advent of mobile robots like drones, it becomes important to plan collision-free paths for their

motion. Robots cannot make intelligent decisions about where to move. Robots have to traverse paths that

do not collide with obstacles.

Several algorithms exist for path planning in the presence of obstacles [GM91][HS97][HSY13][O’R98]. Grid-

based search, interval-based search, geometric reasoning, potential fields, and sample-based constructions

are some of the widely used motion planning techniques [GO97][SU00].

In this thesis, we investigate the development of efficient algorithms for aggregating a given distribution of

polygonal obstacles into clusters, which has application in planning collision free paths.

Clustering is the process of organizing the given distribution of entities into a few groups such that members

in a group are closely related in some measure. The proximity measure to put two entities in the same

group depends on the intended applications. One of the most frequently used proximity measures is based

on Euclidean distance. In this approach, an entity x belongs to a group g if the Euclidean distance between

x and a member of g is small.

The most commonly used objects for clustering are the distribution of points in Euclidean space. While the

problem of clustering points in Euclidean space is a well-investigated problem [Lly82][GRS][KMN+02], only

a few authors have considered the clustering of polygonal obstacles [Jos11]. A simple illustration of obstacle

clustering is shown in Figure 1.1. This figure shows that obstacles could be clustered in more than one way.

This thesis is organized as follows. In Chapter 2, we present a critical review of i) geometric structures for

developing path planning algorithms and ii) widely used algorithms for clustering points distributed in two

dimensions. In particular, we closely examine the quality of solutions obtained by using k-means algorithms

and their variations. In Chapter 3, we describe the main contribution of this thesis. We discuss several

approaches for clustering a given set of obstacles. We first develop and present two obstacle clusterings using

Closest Neighbor Computation as a clustering algorithm. While the first one is based on direct computation

of shortest separation between all pair of obstacles, the second one uses a visibility graph induced by polyg-

onal obstacles to identify members belonging to the same cluster. The time complexity of these methods are

1



Figure 1.1: A Typical Obstacle Clustering Instance (Two Ways - or More)

rather high. We then present a faster algorithm based on the Voronoi diagram. To apply a Voronoi diagram

for identifying nearest obstacle pairs, sample points on obstacles are used as Voronoi Sites. This approach

leads to a faster algorithm for identifying obstacle clusters.

In Chapter 4, we address the implementation issues of obstacle clustering algorithms. The implementation

is done in C++ programming language using the Qt framework for graphical user interface (GUI) design.

The prototype program allows users to enter points interactively. It also allows users to save the entered

point distribution and obstacle distribution for future use. The implemented algorithms include i) Shortest

Distance Approach, ii) k-means Approach and iii) Voronoi Diagram Approach.

Finally, in Chapter 5, we present possible extensions for future research on problems and algorithms pre-

sented in this thesis. We also point out scopes for further improvement of implementation of the proposed

algorithms.

2



Chapter 2

Background and Preliminaries

In this chapter we present an overview of algorithmic tools that are useful for capturing a cluster of points

distributed in the two dimensional plane. The algorithmic tools we review include (i) Construction of

visibility graphs, (ii) computation of collision-free paths, and (iii) cluster identification for points distributed

in the two dimensional plane.

2.1 Visibility Graph

In Chapter 3, the visibility graph induced by a set of obstacles will be used to identify clusters of obstacles.

It is therefore very critical to understand techniques for constructing visibility graphs. With this motivation

we consider a brief review of algorithms for computing visibility graphs induced by polygonal obstacles.

If we have a set of polygonal obstacles, then the visibility graph induced by them can be defined in terms

of the vertices of the obstacles and visibility edges connecting them.

Let R = {O1, O2, ...Ok} be the given set of polygonal obstacles in the plane. The visibility graph induced

by R, denoted as VG(V, E) consists of vertices which are precisely the vertices of obstacles in R. That is,

the vertex set V is

V = {vi | vi ∈ Ok’s}

Two vertices vi, vj ∈ V are connected to form a visibility edge (vi, vj) if the line segment connecting vi to

vj does not intersect with any obstacle. So the set of visibility edges E is

E = {(vi, vj) | vi, vj ∈ V and line segment (vi, vj) does not intersect with any obstacles}

Figure 2.1 shows an example of a visibility graph. It is noted that the edges of obstacles are also edges

of the visibility graph.

3
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Figure 2.1: Example of Visibility Graph

2.1.1 Straightforward Computation of Visibility Graph

This is a rather brute force approach for computing visibility graphs. Any pair of vertices vi and vj can

be a candidate for the visibility graph. If the line segment connecting vi to vj does not intersect with any

obstacle then it is taken as a visibility edge. There can be
(
n
2

)
= O(n2) candidate line segments as possible

visibility edges. To verify one candidate segment we need to check its intersection with O(n) edges of the

obstacles. Hence verification from one edge takes O(n) time. There are O(n2) candidate segments and all

verification takes O(n3) time.

This approach is very simple to compute. However, this method is slow and therefore seldom used for com-

puting visibility graphs induced by large numbers of obstacles. A formal sketch of this algorithm is listed as

Algorithm 2.1.

4



Algorithm 2.1: Finds all the Visibility Graph Edges

Input: A finite set S = {O1, O2, . . . , Ok} of polygon obstacles with vertices vi, vj , . . . , vn

Output: A finite set of Visibility Edges E

1 V = {v1, v2, . . . , vk}, E = φ

2 for i← 1 to n do

3 for j ← 1 to n do

4 if i 6= j then

5 if (vi, vj) does not intersect any obstacle then

6 include (vi, vj) in E

7 return E

2.1.2 Lee’s Rotating Ray Algorithm

The trivial straightforward algorithm which runs in O(n3) is inefficient and is not used in practice. D.T.Lee

[Lee78][Kit] has given the first nontrivial solution to the computation of visibility graphs and it runs in

O(n2 log n)

Lee’s algorithm uses a rotating ray to determine vertices visible from an obstacle vertex as shown in
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Scan Line

Figure 2.2: Example of Lee Scan

Figure 2.2. From each obstacle vertex vi, a ray ri originating around vi scans other vertices by performing
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rotation around vi. During the rotation, the algorithm maintains the set of obstacle edges intersected by

the ray. The intersected edges are maintained in a height balanced search tree such as am AVL tree or a

Red-Black tree. This is done to attain the overall complexity of O(n2 log n). The list must support the

insertion and retrieval of edges in O(log n) time. This complexity is supported by the balanced search trees.

The edges are stored in the tree in order of their distances from the origin of the ray. During angular rotation,

the ray stops at the vertices of the obstacles. The events occurring when the ray stops at vertices can be

distinguished into three kinds. Let vj be the vertex on which ri stops. Type 1 event occurs when edges of

obstacles incident at vj are to the right side of the ray as shown in vertex vj = b in Figure 2.3. In Type 2

event, both obstacle edges incident on vj are on the left side of ri as shown in vertex vj = a in the figure.

Finally, in Type 3 event, one edge incident at vj is to the left of ri and the other is on the right as shown in

vertex vj = c in the figure. Edge insertion/deletion operations are performed during these events. In Type 1

event, both obstacle edges incident on the ray are deleted from the tree. On the contrary, in Type 2 event,

both obstacle edges incident on the ray are inserted into the tree. Finally, in Type 3 event, the obstacle

edge to the left of the ray is inserted into the tree while the edge to the right is deleted. The main working

principle of this algorithm is, at any of the event discussed above, if the vertex belongs to the first edge in

the tree, then that vertex is visible from the obstacle vertex around which the ray is rotating.
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Figure 2.3: Update of Edge List with Lee Scan

A formal sketch of Lee’s algorithm is listed as Algorithm 2.2.
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Algorithm 2.2: Finds all the Visibility Graph Edges

Input: A finite set S = {O1, O2, . . . , Ok} of polygon obstacles with vertices vi, vj , . . . , vn

Output: A finite set of Visibility Edges E

1 V = {v1, v2, . . . , vn}, E = φ

2 Let T be a height balanced empty search tree.

3 for each vertex vi ∈ V do

4 Sort vertices in {V - vi} in angular fashion around vi

5 Let W be the sorted vertices list.

6 for j ← 1 to n− 1 do

7 vj ← next vertex in W

8 Delete vj from W

9 Let e1 and e2 be obstacle edges incident at vj

10 if both e1 and e2 are to the right of the ray
−−−−→
(vi, vj) then

11 delete both e1 and e2 from the tree T

12 else if both e1 and e2 are to the left of the ray
−−−−→
(vi, vj) then

13 insert both e1 and e2 into the tree T

14 else

15 //one edge is to the left and other is to the right of the ray
−−−−→
(vi, vj)

16 delete the edge that is to the right of the ray

17 insert the edge that is to the left of the ray

18 if vj corresponds to the root of T then

19 include (vi, vj) in E

20 return E

Time Complexity

For processing one vertex (one execution of outer for loop), the algorithm performs at most O(n) inser-

tion/deletion operations. One insert/delete operation takes O(log n) time. This implies that the time for

one execution of outer for loop is O(n log n). The total time for processing rotation from all n vertices is

O(n2 log n) time.

2.1.3 Output Sensitive Algorithm

The fastest algorithm for computing the visibility graph of a polygon with holes was reported by Ghosh

and Mount [GM91]. This algorithm runs in time O(E + n log n) where E is the size of the visibility graph,

n is the number of vertices. The term n log n is the time needed for triangulating the polygon. The main

7



ingredient of the algorithm is its clever way for finding the relationship between vertices visible from some

point in a given edge and the structure of funnel. The concept of funnel can be understood by considering

an example. Consider vertices visible from some point along a given edge ei = (vi, vi+1). If we fix one of

the vertices vr in the set of visible vertices, then the shortest path connecting vi and vr forms a convex

chain shown by the dashed line in Figure 2.4. Similarly, the shortest path connecting vi+1 to vr is another

convex chain. It is noted that these convex chains can be simply single edges in some cases. The two convex

chains and the given edge ei form a structure called a funnel induced by apex vr and base line ei. When

polygon contains holes, there could be more than one funnel induced by a given edge and an apex as shown

in Figure 2.5

v

v

vr

i+1

i

Figure 2.4: Illustration of Funnel Structure

Ghosh and Mount have established that the total number of funnels in a visibility graph with E edges is

O(E). This observation is one of the key steps in developing the improved algorithm.

The visibility edges forming the funnels from an edge have the structure of trees. For a given edge ei =

(vi, vi+1), the tree induced by vi is called the lower tree and that induced by vi+1 is called the upper tree as

shown in the Figure 2.6.
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Figure 2.5: Formation of several Funnels

v

v

i

i+1 v

v
i

i+1

Figure 2.6: Illustration of Lower Tree (left) and Upper Tree (right)

Another key ingredient of their approach is that the clockwise pre-order traversal of the lower tree is the

same as the clockwise post-order traversal of the upper tree.

2.2 Clustering Point Sites

Clustering is the process of partitioning a set of objects, usually points, into clusters, such that members

close to each other are in the same group. Any member in a group should have its nearest neighbor in the

same group.

Figure 2.7 and Figure 2.8 show distribution of points in two dimensions. This example illustrates that
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Figure 2.7: Distinct Clusters

Figure 2.8: Non Distinct Clusters

in some cases there could be distinctly recognizable clusters (Figure 2.7), while in other cases the clusters

are not obviously visible (Figure 2.8). Given a set of points P distributed in Euclidean space, the clustering

problem is the identification of clusters in P. Clustering has important applications in various areas that

include pattern recognition, machine learning, image analysis and robotics.

Development of efficient algorithm for identifying clusters in Euclidean space has been considered by sev-

eral researchers [Lly82][GRS][KMN+02]. One of the earliest algorithms for identifying clusters in points
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distributed in two dimension is the K-means algorithm proposed by S.P. Lloyd[Lly82]. Many variations of

this algorithm have been reported [KMN+02][ARS].

K-means algorithm is an iterative algorithm in which clusters are progressively estimated by a series of

refinement. In this algorithm, the number of clusters K is assumed to be given. Furthermore, for each

cluster, a representative location is somehow estimated. The algorithm assigns input points to one of the

representative points. The points belonging to a particular representative are taken as members of that

cluster.

The location of the representative is updated by computing the mean of the locations of points in the cluster.

The updated point is next used to identify cluster membership.

The Euclidean distance between old location and new location of a representative point is taken as the mea-

sure of the progress of modification. The updating of cluster identification continues as long as the progress

of modification is more than a certain threshold value. The threshold value can be determined in terms of

the separation of the closest pair of input points. A formal sketch of K-means algorithm is written as follows

and listed as Algorithm 2.3

Algorithm 2.3: k-Means Algorithm

Input: A finite set of Points P = {p1, p2, . . . , pk} distributed in the plane
Output: Clusters C = {c1, c2, . . . , ck} which is a partitioning of input points

1 Let k be the input representing number of clusters in C
2 Let δ be a threshold value
3 Representative points m1,m2, . . . ,mk are somehow selected
4 Let CentroidMovement = δ + 1
5 while CentroidMovement >δ do
6 a. for i← 0 to n− 1 do
7 Let mj be the closest representative point to the point pi
8 Associate the point pi to the cluster cj

9 b. Compute new representative points new mj ’s as the centroids of the new points associated
with cj ’s

10 c. set CentroidMovement by comparing mj ’s and new mj ’s
11 d. Assign new cj ’s to cj ’s

12 return C

Figure 2.9 shows an example of cluster estimation by using the k-means algorithm. The progress of the

movement of cluster representatives is shown by directed line segments. It is observed that the extent of the

movement of a cluster’s representative becomes progressively smaller after each cluster refinement.

The k-means algorithm is fairly a simple algorithm to understand. However there are some limitations

to the algorithm. The main drawback of the algorithm is the estimation of number of clusters k and the

initial location of their center. For the given input set of points, the output of the algorithm depends upon

the initial location. Similarly, the determination of the value of the threshold to stop the iteration of the

algorithm is not quite clear. For certain data distributions, using the mean of the points may not be valid,

as in the Figure 2.10 (as observed in [GRS]).
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Figure 2.9: Clustering Example

Figure 2.10: Invalid Center

2.3 Shortest Path in the Presence of Obstacles

The Euclidean Shortest Path problem is defined as the problem of computing the shortest path between

the two points in a plane in the presence of polygonal obstacles such that the path does not intersect any

of the obstacles. It is one of the classical problems in computational geometry and has several important

applications.

Several research reports have been published on the efficient computation of the shortest path. One of the
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most popular methods for computing shortest paths in the presence of polygonal obstacles is based on the

use of a visibility graph induced by polygonal obstacles [HS97]. This method works correctly due to the

fact that the shortest path is contained in the visibility graph. The actual shortest path is obtained by

applying Dijkstra’s Algorithm on the visibility graph [CLRS09]. The time complexity of the shortest path

algorithm based on this method depends on the time complexity of the visibility graph which is O(log n). The

paper [HS97] gives the optimal-time algorithm known so far for computing shortest paths in the presence

of polygonal obstacles. This paper has presented a solution to the problem using the concept of Shortest

Path Map. For the given source point s and some polygonal obstacles, Shortest Path Map is defined as the

subdivision of free space into a certain number of regions such that the shortest path from s to any point in

the specific region has the same sequence of vertices. The paper discusses the construction of the map by

using an efficient implementation of wave front propagation among polygonal obstacles in O(n log n) time.

The map thus constructed can be used for computing shortest paths from the source point s to any point in

the free space in O(log n) time.
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Chapter 3

Obstacle Clustering

3.1 Problem Formulation

Consider a collection of polygonal obstacles in two dimensions. For the purpose of clarity of presentation,

we consider only convex obstacles. However, at the cost of some time complexity overhead, the algorithmic

techniques presented in this chapter are applicable even if the obstacles are not convex. A configuration of

around 240 polygonal obstacles is shown in Figure 3.1

A visual examination of the obstacles distribution in Figure 3.1 reveals five clusters. These clusters are

Figure 3.1: Distribution of Convex Obstacles

shown by boundary in Figure 3.2. The problem we investigate is the capturing of clusters of obstacles under
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a certain measure.

Broadly speaking, given a parameter δ, we want to group together obstacles whose distance to its nearest

Figure 3.2: Illustrating the boundaries of obstacle clusters

neighbor is no more than δ. The problem can be formally stated as follows.

Obstacle Clustering Problem (OCP)

Given,

i. A set of convex obstacles Q1, Q2, . . . , Qm in the plane,

ii. A constant parameter δ

Question: Find obstacle clusters such that any obstacle in a cluster has its nearest neighbor within distance

δ.

Remark 3.1: The distance between two obstacles Qi and Qj is the smallest distance between boundary

points in Qi and Qj . When we use the term distance, it is understood to be the Euclidean Distance, i.e. the

distance d(pi, pj) between two points pi(xi, yi) and pj(xj , yj) is given by d(pi, pj) = ((xi−xj)2+(yi−yj)2)1/2.

In some applications, distance between two obstacles is measured from their center of gravity. But in our

application we measure distance from boundary points.
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3.2 Shortest Distance Approach

A pair of obstacles Oi and Oj that are very close to each other should belong to the same cluster. Specifically,

if the Euclidean distance between Oi and Oj , denoted by d(Oi, Oj) is smaller than the predefined threshold

value δ then Oi and Oj are in the same cluster. We refer to such pairs of obstacles as δ-proximity pairs. We

can connect a δ-proximity pair by the edge e that corresponds to the shortest distance between them. So, to

identify all obstacle clusters we could begin by connecting proximity pairs by corresponding shortest edges

to obtain the δ-proximity graph (or δ-graph for short).

Each connected component in the δ-graph is a cluster component. Figure 3.3 and Figure 3.4 illustrate these

ideas. Figure 3.3 shows a distribution of convex obstacles with indicated value of predefined parameter δ.

The δ-graph for this distribution is shown in Figure 3.4. A straight forward connection obtained by con-

sidering all δ-proximity edges can lead to undesired consequences, which happens when a very small or thin

obstacle lies between two δ-proximity pairs. This is occurring in the top left corner of Figure 3.3, where the

min-separation edge between Oi and Oj intersect with obstacles Ok. We need to discard such edges. Rather

than considering all δ-proximity pairs we should consider only those that do not squeeze other obstacles in

between them. We refer to the graph obtained in this way as the δ-planar Graph.

An efficient algorithm for computing minimum distance between convex polygons is a well investigated prob-

lem in computational geometry [O’R98][BKOS97]. It is shown that the minimum distance can be computed

in O(log n) time after a pre-processing overhead of O(n). So, we can use one of these two algorithms for

computing minimum separation between a pair of convex obstacles.

A direct approach for computing the δ-planar graph is to first find the minimum distance between all
(
n
2

)
pairs and then check for intersection of min-separation edges with other polygons. A formal sketch of the

algorithm based on this approach is shown as Algorithm 3.1. Once we have the connecting lines we can run

the Breadth First Search (BFS) or Depth First Search (DFS) algorithm to find the connected components

and hence identify the obstacle clusters.

Algorithm 3.1: Algorithm to Capture Connecting Shortest Distances

Input: i) Obstacles Q1, Q2, . . . , Qm, ii) Parameter δ
Output: Connecting Shortest Edges List E

1 E = φ
2 Mark all pairs Unprocessed in M [][]
3 for all unprocessed pair Q[i]Q[j] do
4 Let e = distance(Qi, Qj)
5 if |e| < δ and e does not intersect with other obstacles then
6 E = E U e
7 Mark M[i][j] as Processed

8 return E

The time complexity of Algorithm 3.1 can be done in a straightforward way. Marking the n × n array
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Figure 3.3: Given Obstacles
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Figure 3.4: δ-Planar Graph

in step 2 takes O(n2) time. Step 3 executes in time O(n2) since there are O(n2) pairs. Checking the second

condition in the if statement (step 5) takes O(n) time. Hence the total time for the for-loop is O(n3). Thus

the overall time complexity for Algorithm 3.1 is O(n3).

The time complexity of Algorithm 3.1 is rather high. Repeatedly checking for intersection of candidate

edges with all obstacles is the reason for the high time complexity. With the motivation of developing a

faster algorithm, we next examine the feasibility of using a visibility graph (introduced in section 2.1) for

developing a better algorithm for capturing obstacle clusters.
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3.3 Visibility Graph Approach

The visibility graph induced by convex obstacles contains edges corresponding to all visible pairs. Nearer

obstacles will have the shorter edges. Depending on the shape of the obstacles, the nearer obstacles can also

have some edges which are very large. The edges of the visibility graph can be examined to discard those

whose corresponding separation length is longer than δ. Here the term separation length of a visibility edge

ei should be clarified further. Let ei connects obstacle vertices vr and vp and let obstacle edges incident on

vr and vp be e1, e2 and e3, e4 respectively as shown in Figure 3.5. Then the separation length corresponding

to ei is either projection to one of the obstacle edges (left part in Figure 3.5) or simply ei itself.

Oi

Oj

O
k

e’

Oi

Oj

O
k

e’

v1

es

Figure 3.5: Illustrating Separation Length of Visibility Edges

Let sep(ei) denote separation length corresponding to visibility edge ei. The elimination of visibility edge

ei whose separation length sep(ei) is larger than δ is illustrated in Figure 3.7 and Figure 3.8. Figure 3.7

shows all visibility edges induced by the convex obstacles. Most of the edges in the visibility graph in this

figure are such that their separation length is longer than δ and can be discarded. The reduced visibility

graph is shown in Figure 3.8. The visibility edges in the reduced visibility graph are not edges corresponding

to minimum distance. So it is not necessary that the shortest distance be present as the visibility edge of the

visibility graph. However, these edges can be examined locally to construct the corresponding separation

length. The actual separation edges are drawn thicker in Figure 3.9.

When separation edges are constructed, some of such separation edges could intersect obstacles. In such

situations we should be able to find shorter separation edges as stated in the following Lemma 3.3.1.

Lemma 3.3.1 The shortest visibility edge ei from a vertex of an obstacle is such that sep(ei) can not

intersect with another obstacle.

Proof: Let es be the shortest visibility edge emanating from vertex v1 of obstacle Oi. Let Oj be the

obstacle corresponding to other end points of es. Suppose sep(es) intersects with another obstacle Ok

(Figure3.6). Now we can observe that the visibility edge connecting v1 and a vertex of Ok is shorter than

es. Contradiction.
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Figure 3.6: Rotated Shortest Distance Edge should not intersect other obstacles

For the purpose of constructing a reduced visibility graph we can simply consider the shortest visibility edge

from each vertex and locally compute separation edges. The algorithm for capturing obstacle clusters from

a visibility graph can be formally sketched as shown in Algorithm3.2.

δ

Figure 3.7: Visibility Graph

The time complexity of Algorithm 3.2 can be done as follows. The visibility graph can be computed in

O(n2) time by using the algorithm reported by Ghosh and Mount [GM91]. Visibility edges having length

greater than δ can be discarded by examining each edges emanating from a vertex of the visibility graph.

Hence a reduced visibility graph can be constructed within O(n2) time. Furthermore, each visibility edge

and the incident obstacle edge can be used to find the possible min-distance edge within the same time

complexity. Hence the overall time complexity of Algorithm 3.2 is O(n2).
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δ

Figure 3.8: Reduced Visibility Graph

δ

Figure 3.9: Reduced Visibility Graph With Reduced Distance

3.4 Adapting K-means Approximation

As mentioned in Chapter 2, the problem of clustering points distributed in two dimensions is a well inves-

tigated problem and several algorithms for solving this problem have been reported. So we seek to apply

point clustering algorithms to develop obstacle clustering algorithms. For such application we need to find

ways of converting obstacle distribution into point distribution which is described next.

3.4.1 Converting Obstacles to grid points

Based on parameter δ, we can generate a group of points Pt(Qi) for each obstacle Qi. The conversion should

be such that the nearest neighbor of each point in Pt(Qi) is within distance δ. One approach for generating

such points is to consider equally separated parallel lines over obstacle Qi. The line segment inside the
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Algorithm 3.2: Capturing Obstacle Clusters via Visibility Graph

Input: i) Obstacles R = {Q1, Q2, . . . , Qm}, ii) Parameter δ
Output: Obstacle clusters C1, C2, . . . , CT

1 E = φ
2 Construct visibility graph G(V, E’)
3 for each vertex vr in e in V do
4 Let es be the shortest visibility edge originating from vr that connects Qi to Qj
5 if sep(es) < δ then
6 E = E U {es}

7 Let V δ = R U E be the reduced visibility graph

8 Use Depth First Search on V δ to identify and output each clusters C1, C2, . . . , CT

obstacle Qi is partitioned by equidistant points as shown in Figure 3.10

Figure 3.10: Obstacle/Point Conversion

This can be done in a straightforward way by using elementary geometry as follows. We can start with

the side of an obstacle triangle as a candidate line segment l. Let dl denote the length of segment l. Then

we need to generate K = dl/δ equally spaced points on l. If (x1, y1) and (x2, y2) are the coordinates of the

end points of l, then the coordinates of the point that divides l in the ratio 1 : k can be computed as follows:

xk = (x2 + k × x1)/(1 + k)

yk = (y2 + k × y1)/(1 + k)

We can repeat this process of computing k interior points for other parallel line segments to obtain the

required set of points.

We can also generate points by considering a smallest enclosing rectangle R(Qi) for obstacle Qi. We

require that R(Qi) is an isothetic rectangle, i.e. it has edges parallel to coordinate axes. This is illustrated

in Figure 3.11

The isothetic rectangle R(Qi) can be partitioned into a grid whose cells are of size within δ. Given

the coordinates of the vertices of R(Qi), the coordinates of grid points can be calculated easily. Once we

21



Figure 3.11: Conversion by Isothetic Grid

have the coordinates of the grid points, those that lie within the obstacle can be computed by using the

straightforward polygon/point inclusion test. This is listed as Point Generation Algorithm (Algorithm 3.3)

Algorithm 3.3: Point Generation Algorithm

Input: i) Obstacles Q1, Q2, . . . , Qm, ii) Parameter δ
Output: Grid points H for all m obstacles

1 H = φ
2 for each obstacle Qi ∈ V do
3 Let R(Qi) be the smallest enclosing isothetic rectangle for Qi
4 Generate grid points Gi by partitioning R(Qi) into cells of size δ × δ
5 for each point q in Gi do
6 if q is inside Qi then
7 add q to H

8 return H

Remark 3.2: while determining smallest enclosing isothetic rectangle R(Qi), we make the rectangle

slightly larger so that the length and width are each multiples of δ.

Once we convert obstacles into points we can apply k-means algorithm to obtain clusters. The cluster

of points can be converted back to a cluster of obstacles in a straightforward manner. An example of the

application of a grid-point approximation for clustering of obstacles in Figure 3.1 is shown in Figure 3.12

and Figure 3.13. Figure 3.12 shows generated grid points and Figure 3.13 shows the clustering obtained by

the k-means approach. The obstacle clusters extracted by using the guide line revealed by the point clusters

is shown in Figure 3.14. The details of the results on various obstacle clusters is presented in Chapter 4.

While grid-point approximation works pretty well to capture obstacle clusters, it fails in certain kinds of

distributions where the standard k-means algorithm does not produce good results [GRS]. If we consider
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Figure 3.12: Generated Points

Figure 3.13: k-means Captured Point Clusters

obstacle distributions that form concentric circles as shown in Figure 3.15, the k-means point approximation

algorithm fails to capture obstacle clusters. As observed in [GRS], k-means algorithm does not work properly

for such types of point distributions.
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Figure 3.14: Obstacle Clusters captured using k-means point-grid approximation

Figure 3.15: Obstacle distribution forming ring like clusters

3.5 Voronoi Diagram Based Approach

3.5.1 Introduction to Voronoi Diagram (VD)

The Voronoi Diagram (VD) is a partitioning of a plane into regions based on the euclidean distance from

some point sites such that any point in a region is nearer to the point site corresponding to the region. In

24



Figure 3.16: Digitization of ring like clusters

other words, VD of n point sites p0, p1, . . . , pn−1 partitions the plane into n convex cells v0, v1, . . . , vn−1 such

that any point in a cell vi is nearer to pi than any other site.

Figure 3.17 shows a basic example of VD. Here the small white circles represent the point sites. The

partitioning edges which in fact run perpendicularly between a pair of point sites are called Voronoi Edges.

The intersection points of the Voronoi edges are called Voronoi vertices.

In VD, the number of Voronoi edges and the number of Voronoi vertices are linearly dependent upon the

number of point sites.

Data Structure for Storing VD

In computational geometry, VD can be represented by a data structure known as a Doubly Connected Edge

List (DECL). Figure 3.18 shows the DCEL representation of the VD shown in Figure 3.17.

In DCEL representation of the VD, each Voronoi edge is represented by a pair of twin edges (or half edges)

as shown in the figure. We adopt the convention that bounded faces are traversed in a counter clockwise

direction. In programming, 3 arrays are used to store the complete information of DCEL. These are:

1. Half Edges

2. Faces

3. Vertices

The record for each half edge ei consists of 5 fields:
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Figure 3.17: Introduction to Voronoi Diagram

1. Twin: twin edge of ei which is ei

2. Prev: previous edge of ei when face bounded by ei is traversed

3. Next: next edge of ei when face bounded by ei is traversed

4. Face: the face bounded by ei

5. vertex: the vertex on which ei is incident

The record for each face is defined by any one of the bounding half edge and the record for each vertex

is defined by any one of the incident half edges.

Using the DCEL data structure, we can conveniently traverse along the faces of VD.

3.5.2 VD Induced by Vertices of Obstacles

The Voronoi Diagram is defined for a set of point sites, not for the objects. As we are attempting to cluster

the obstacles, our input is the set of polygonal obstacles. So we can not draw VD directly for our input.

But we can treat the vertices of the obstacles as the point sites and therefore draw VD across them. So, in

order to draw the VD corresponding to the input obstacles, we need to extract vertices from each obstacle

and feed them into the Voronoi Algorithm.

For the given obstacle distribution as shown in Figure 3.19, the Voronoi diagram can be seen in Figure 3.20
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Figure 3.18: Doubly Connected Edge List (DCEL) to represent Voronoi Diagram

Figure 3.19: Obstacle Distribution
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Figure 3.20: Overlay of VD and Obstacles

Overlay of VD and Obstacles

We can observe that VD induced by the vertices of obstacles (Figure 3.19) also consist of the edges which

intersect the obstacle edges. Our approach to cluster the obstacles using this approach is based on the

traversing of the VD edges. So it is necessary that before clustering the obstacles, we eliminate those VD

edges that intersect with the obstacles. We can then traverse along the non-intersecting VD edges to identify

the cluster of obstacles. Elimination of intersecting VD edges is discussed next in detail.

3.5.3 Identifying VD-Edges intersecting with Obstacles

As discussed in the previous section, for our primary purpose of clustering the obstacles, we need to eliminate

those VD edges which intersect with obstacles to get a modified VD. Let the modified VD be m-VD.

Identification of the intersecting VD edges is a crucial part of this approach because this process can determine

the time complexity of the whole process. We have studied two methods for this process. These are i) Straight

Forward Method (Brute Force Checking) and ii) Plane Sweep Method

Straight Forward Method

This is a simple to implement method that uses brute force checking of every possibility of intersection. This

method considers each VD edge one by one and checks with all obstacles whether it intersects with any one
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of the edges of any obstacle. If we find that an edge intersects with any obstacle edge, then we ignore this

edge from further processing. This brute force method is depicted by the Algorithm 3.4

Algorithm 3.4: Intersection detection of Voronoi Edges with Obstacles using Brute Force Method

Input: i) Obstacles Q1, Q2, . . . , Qm, ii) Voronoi edges E1, E2, . . . , En
Output: Mark those Voronoi edges Ei which intersect with obstacles

1 for each Voronoi edges Ei do
2 for each obstacle Qi do
3 if Ei intersects with Qi then
4 mark Ei as an intersecting edge

Time Complexity

Implementation of this algorithm is very simple. However its time complexity is quadratic. For the given

set of n obstacles, the number of VD edges is linear with n. So for each VD edge, as we need to check with

every obstacle, the average time complexity of the process will be O(n2).

Plane Sweep Method

Plane Sweep is an important technique in the field of Computational Geometry. It actually forms a program-

ming paradigm which can be used to solve several problems in Euclidean Space[O’R98]. Construction of the

Voronoi Diagram and identifying intersecting points for the given line segments are examples of application

of the Plane Sweep method.

The idea behind algorithms of this type is to imagine that a line (often a vertical line) is swept or moved

across the plane, stopping at some points. Geometric operations are restricted to geometric objects that

either intersect or are in the immediate vicinity of the sweep line whenever it stops, and the complete solution

is available once the line has passed over all objects.

With this Plane Sweep method, identification of intersecting points for the given set of line segments can be

done efficiently. This technique is what we use to identify the intersecting VD edges.

Consider the overlay of VD and convex polygons as shown in Figure 3.20. Some of the Voronoi edges do in-

tersect with obstacles. To develop a plane sweep algorithm, we use two data structures R and Y to maintain

vertices and edges respectively. R is a priority queue which can be used to store vertices in the priority of

smallest x-coordinates. Structure Y is a balanced tree that stores edge segments intersected by a sweeping

vertical line. The intersecting edges are stored in Y in order of the y-coordinates of the intersection points

of the vertical line and the edges. Whenever a Voronoi edge is detected between edges of the same obstacle,

that Voronoi edge is marked intersecting. A formal algorithm sketch based on this approach is listed as

Algorithm 3.5. This algorithm is described with some cases which occur during the sweeping of the vertical

line. During the process, 6 cases can be distinguished. The actions to be taken in these cases are explained

next with the help of Figure 3.21
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Figure 3.21: Different Cases in Sweep Line Algorithm

For the given obstacle distribution as shown in Figure 3.19, the Voronoi diagram can be seen in Figure 3.20

Case 1 : Sweep Line T1 is on the left support obstacle vertex v1

• insert the obstacle edges l1 and l2 into the tree Y.

• if the obstacle edges intersect with the neighbor Voronoi edges, then insert the intersection

vertices into the queue R

Case 2 : Sweep Line T2 is on the right support obstacle vertex v2

• remove the obstacle edges l3 and l4 from the tree Y.

Case 3 : Sweep Line T3 is on the non-supporting obstacle vertex v3

• remove the obstacle edge l1 which lies to the left of the sweep line from the tree Y.

• insert the obstacle edge l3 which lies to the right of the sweep line into the tree Y
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• if the obstacle edge l3 intersects with the neighbor Voronoi edge, then insert the intersection

vertices into the queue R

Case 4 : Sweep Line T4 is on the left Voronoi vertex v4

• insert the Voronoi edge l4 into the tree Y

• if the Voronoi edge intersects with the neighbor obstacle edge, then insert the intersection vertex

into the queue R

Case 5 : Sweep Line T5 is on the right Voronoi vertex v5

• remove the Voronoi edge l4 from the tree Y

Case 6 : Sweep Line T6 is on the intersection vertex v5 of Voronoi edge and obstacle edge

• swap the position of edges l4 and l1 in the tree Y.

Intersection Condition: During the process of sweeping, if we detect that the Voronoi edge qi in Y

lies between two obstacle edges of the same obstacle, then we can mark the Voronoi edge to be intersecting

edge. Let us refer this condition as Condition 1.

Time Complexity

The complexity of the sweep line algorithm depends upon the number of vertices (vertices of obstacles and

end vertices of Voronoi edges) and the number of intersection points. The number of vertices of obstacles

and end vertices of Voronoi edges are linearly related to the number of obstacles. By the nature of VD, the

number of intersection points of Voronoi edges and obstacles is also linear with the number of obstacles. At

each step when the sweep line steps, the balanced search tree Y has insertion and deletion complexity of

O(log n). So the total time complexity of the sweep line algorithm is O(n log n).

For the VD shown in Figure 3.20, m-VD is shown in Figure 3.20 where the intersecting VD edges are

represented by dashed lines.

3.5.4 Voronoi Aided Cluster Extraction

The Voronoi Diagram induced by obstacle vertices can be used to capture obstacle clusters. The idea is to

navigate the distribution of obstacles by following the Voronoi edges and examining the size of empty circles

at each Voronoi vertex. It is noted that the Voronoi edges intersecting with obstacles (call them cut edges)

should not be used for navigation of obstacles. The diagram obtained by removing the cut edges from the

Voronoi Diagram is called the Reduced Voronoi Diagram. In Figure 3.22 the edges of the reduced Voronoi

diagram are drawn by solid line segments. The edges drawn as dashed line segments are the cut edges. The

input parameter δ can be used to identify obstacles that are very close to each other and belong to the
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Algorithm 3.5: Intersection detection of Voronoi Edges with Obstacles using Sweep Line Algorithm

Input: i) Obstacles Q1, Q2, . . . , Qk, ii) Voronoi edges q1, q2, . . . , qm
Output: Mark those Voronoi edges qi which intersect with obstacles

1 Insert vertices of obstacles and Voronoi edges in a priority queue R in priority of smallest
x-coordinates.

2 Initialize a search tree structure Y to be empty.
3 while the queue R is not empty do
4 delete a vertex v from the queue R
5 if Case 1: v is type 1 then
6 Insert into Y both edges incident on v
7 If the incident edges intersect with neighbor Voronoi edges, insert the intersection vertices into

R if not already inserted

8 if Case 2: v is type 2 then
9 Delete from Y both the edges incident on v

10 if Case 3: v is type 3 then
11 Delete from Y the obstacle edge with v as right end.
12 Insert into Y the obstacle edge with v as left end.
13 If the obstacle edge with v as left end intersects with any neighbor Voronoi Edge, then insert

the intersection vertex into R if not already inserted and mark the Voronoi Edge as
intersecting if not already marked.

14 if Case 4: v is type 4 then
15 Insert Voronoi edge with v as left end into Y
16 If this Voronoi edge intersects with neighbor obstacle edge, insert the intersection vertex into

R if not already inserted

17 if Case 5: v is type 5 then
18 Remove the Voronoi edge with v as the right end from Y
19 Mark this Voronoi edge as intersecting if Condition 1 is true.

20 if Case 6: v is type 6 then
21 Swap the position of Voronoi edge and Obstacle edge which intersect at vertex v
22 Mark this Voronoi edge as intersecting if Condition 1 is true.

same cluster. During the navigation, by following the reduced Voronoi diagram edges, we can examine the

size of the empty circles. If the radius of an empty circle is smaller than δ then the separation between

corresponding obstacles is too small and the navigation should back-track from that vertex and proceed.

The navigation process can be explained in clearer terms by referring to the doubly connected edge list

representation (DECL representation) of the reduced Voronoi diagram.

Figure 3.23 shows the general structure of the reduced Voronoi diagram surrounding an obstacle cluster.

Figure 3.24 shows the DCEL representation of the diagram shown in Figure 3.23. This diagram can be

traversed in a counterclockwise direction by following the half-edges of the DCEL structure. During the

traversal, the empty circle at each vertex is examined and its radius is compared with δ to determine the

clearance. If the clearance radius is smaller than δ then the navigation proceeds by following the twin half

edge. During the clearance check, the obstacles in the left side of the traversal are marked as boundary

obstacles belonging to the same group. This process of i) clearance check ii) forward movement if possible

iii) twin flip is continued until the start point is encountered again to complete a cycle. The obstacles marked
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Figure 3.22: Reduced Voronoi Diagram and Cut-Edges

Figure 3.23: General Structure of Reduced Voronoi Diagram

during this cycle traversal are the boundary obstacles belonging to the same cluster.

A formal sketch of the algorithm is listed as Algorithm 3.6. In this algorithm, the sketch is described for
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Figure 3.24: DCEL Representation of Reduced Voronoi Diagram

identifying the cluster corresponding to the starting face. But we can repeat to identify all clusters. Also in

this algorithm, the method Clearance(vertex v) returns the radius of the empty circle at the Voronoi vertex

v.

Time Complexity

The complexity of the Voronoi Aided Cluster Extraction Algorithm 3.6 depends on how we construct the

VD and how we detect the intersecting Voronoi edges. VD construction in step 1 can be achieved in time

O(n log n) by using the Fortune’s Sweep-Line Algorithm. Step 2 uses Algorithm 3.5 to identify the cut-edges.

This process also takes O(n log n) time. The while loop in the step 4 visits the Voronoi edges in the reduced

Voronoi diagram for a constant number of times. Therefore the time complexity of the loop is O(n). So the

overall time complexity of the algorithm is O(n log n).
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Algorithm 3.6: Voronoi Aided Cluster Extraction

Input: i) A collection of obstacles Q1, Q2, . . . , Qm, ii) Threshold parameter δ
Output: Extraction of Obstacle Clusters

1 Obtain Voronoi diagram VD of the vertices of obstacles Q1, Q2, . . . , Qm
2 Use plane-sweep algorithm (Algorithm 3.5) to determine and delete/mark cut-edges of the VD. Let
V Dr be the reduced Voronoi diagram in DCEL representation.

3 Let e1 be a half edge of a face of V Dr, L1 = φ, eStart = e1, e1 = e1.next
4 while (e1 6= eStart) do
5 α = Clearance(e1.start)
6 if α < δ then
7 mark obstacles to the left of e1 and insert them to L1

8 e1 = e1.twin

9 else
10 e1 = e1.next

11 Output L1
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Chapter 4

Implementation

This chapter presents the implementation details of the selected algorithms proposed/reviewed in Chapter

2 and Chapter 3. The implementation was done in C++ programming language. For efficient implemen-

tation of common geometric algorithms, the CGAL (Computational Geometry Algorithms Library) is used

extensively. Using the geometric computational tools available in CGAL, the proposed clustering algorith-

mic methods, including Nearest Neighbor Approach, K-means Clustering and Voronoi Diagram Approach,

have been implemented. For implementation of the Graphical User Interface (GUI), the Qt programming

framework (http://www.qt.io/ ) was used.

4.1 Implementation Description

Qt is a cross platform development framework for Desktop and Mobile Applications. Qt is not a pro-

gramming language itself, but a framework written in C++ to develop GUI applications. Qt has extended

some features of other libraries like OpenGL (https://www.opengl.org/ ). One example of such a feature is

QGLWidget which we have used in this project.

CGAL is a software project that provides easy access to efficient and reliable geometric algorithms in the

form of a C++ library. CGAL is used in various areas needing geometric computation, such as geographic

information systems, computer aided design, molecular biology, medical imaging, computer graphics, and

robotics. CGAL provides several algorithms which can be efficiently used. Intersection detection of polygons,

Distance between polygons and Voronoi Diagram creation are some of the algorithms that are included in

CGAL and adopted in our implementation.

CGAL APIs are available only in C++. For this reason, we have done our implementation in C++.

We have used the Qt framework to develop the GUI, and CGAL to do the back-end processing of program

input/output.
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We have modeled obstacles by convex polygons. Obstacle polygons are represented by keeping records of

the coordinates of their vertices. The vertices are stored in an anticlockwise direction as they occur along the

boundary of the polygons. The implemented algorithms use these representations to obtain intended outputs.

The implementation of the k-means Clustering Approach is achieved by only considering the distribution of

the vertices of the obstacles. In the Voronoi Diagram based clustering algorithm, cluster identification is

done by considering (i) the Voronoi diagram of obstacle vertices and (ii) the intersection of obstacle edges

with Voronoi edges. Finally, in the Shortest Distance Approach, the clustering of obstacles is implemented

by computing the shortest distance between neighboring polygons directly.

4.2 Data Structures

The main data structures to model and implement the structure and distribution of obstacles was done by

designing a set of C++ classes described next.

CustomPoint

The class CustomPoint is used to model the vertices in the 2D. We have implemented this class by extending

the Polygon class from CGAL. It describes the x- and y- coordinates of a vertex. The class interface diagram

for CustomPoint is shown in the Table 4.1.

<< interface >>
CustomPoint

- x : double
- y : double

+ CustomPoint(double x, double y)

Table 4.1: Class Interface Diagram of CustomPoint

CustomLine

The class CustomLine describes any straight line segment in 2D plane connecting two given vertices. This

class stores the two end vertices as an instance of the class CGAL::Point. It also stores the squared distance

between these two vertices. We decided to store squared distance, rather than distance, to speed up execution

time as square root is an expensive operation. The class diagram for this class is shown in the Table 4.2.
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<< interface >>
CustomLine

- p : CustomPoint
- q : CustomPoint
- length : double

+ CustomeLine(Point p, Point q)
+ CustomeLine(Point p, Point q, double length)
+ getP() : Point
+ getQ() : Point
+ getSquaredDistance() : double

Table 4.2: Class Interface Diagram of CustomLine

CustomPolygon

The class CustomPolygon represents a polygon in the 2D plane modeled as an obstacle. It has been im-

plemented by extending the CGAL::Polygon class. It stores the vertices of the polygon in an anticlockwise

direction as they occur along the boundary. In addition to storing the vertices, some additional helper

functions are considered. For example, (i) the function computeDistance(Polygon p) returns the minimum

distance between the candidate polygon object and argument polygon p, where the returned minimum dis-

tance is an instance of CustomLine; (ii) the function doIntersect(Polygon p) detects whether the candidate

polygon intersects with the argument polygon p; and (iii) the function hasVertex(double x, double y) checks

whether the candidate polygon has the vertex with the coordinates (x, y). These helper functions have been

frequently used in our implementations. The class interface diagram for CustomPolygon is shown in the

Table 4.3.

QList

This is a built-in List data structure from the CGAL. We have used this data structure to store the sequence

of Vertices, Line Segments and Polygons wherever necessary.

These are the basic data structures used to model obstacles. Based on these data structures, we have

applied algorithms like Shortest Distance Approach, k-means Approach and Voronoi Diagram Approach.

Implementation of these approaches are explained in the Section 4.4, Section 4.5 and Section 4.6, respectively.
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<< interface >>
CustomPolygon

- vertices : QList<CustomPoint>
+ isSelected : bool

+ CustomPolygon()
+ CustomeLine* computeDistance(CustomPolygon p) : CustomLine*
+ bool doIntersect(CustomPolygon p) : bool
+ CustomPoint* getVertices() : CustomPoint*
+ int hasVertex(double x, double y) : int

Table 4.3: Class Interface Diagram of CustomPolygon

Figure 4.1: The Greeting Interface of the Program

4.3 Program Interface Description

As mentioned in the previous section, the GUI has been created using Qt. Figure 4.1 shows the main greeting

interface of the program. The components like Buttons, Sliders, Drop Down Boxes and Check-boxes are the

native components provided by the Qt Framework. The large gray rectangular area, which we call Stage,
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is where the user can draw the polygons to model obstacles. This rectangular area is also a Qt component

known as QGLWidget. However this is not a native component of Qt. It is built on the top of GLWidget

which is a component of the OpenGL library.

The Create button is used for drawing polygons on the stage. Once the Create button is clicked, the program

stays in Create Mode. In Create Mode the user can draw polygons on the Stage. Also, in this mode, the

Create button changes to a Done button which can be clicked to exit the Create Mode. We can draw polygons

by clicking on the Stage. A sequence of mouse clicks creates a series of vertices. When the user clicks back

near the first vertex, it completes one polygon. One can repeat this process to draw the desired number of

polygons. To exit the Create Mode, it is necessary to click the Done button.

The slider Threshold defines the threshold value denoted by δ. This value will determine whether two or

more polygons belong to the same group. This slider can select from the range of values between 10 and 500

pixels, inclusive.

The drop down menu Edit Mode defines the mode for constructed polygons. It defines five different modes.

These are:

• Normal Mode

• Edit Mode

• Add Vertex Mode

• Delete Vertex Mode

• Move Polygon Mode

In Normal Mode, we cannot make any changes to the polygons. All we can do is highlight selected

polygons. In Edit Mode, we can move the vertices of a selected polygon to change its shape. Add Vertex Mode

and Delete Vertex Mode, as their names imply, are used for adding and deleting the vertices, respectively.

Similarly, the Move Polygon Mode is used for moving the location of a polygon in the Stage.

In addition there are three check-boxes in the right panel. These are

• Border-D

• Vertices-D

• Edges-D

The Border-D check box is used for appearance/disappearance of polygons. While enabled, the Border-D

check-box displays the boundaries of all polygons; disabling it hides them. Vertices-D is used for a similar

function. However, in addition to hiding and showing vertices, there are also some background tasks going on

with the display of vertices. Specifically there are two different background tasks executed at different modes,

k-means and Voronoi Diagram modes. It can be used to toggle between i) display of generated obstacle
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vertices and ii) display of only the obstacle boundary. In case of k-means approach, when generated vertices

are displayed, a background process for computing clusters based on k-means algorithm is triggered. In the

case of Voronoi Diagram Approach, a background process to compute the Voronoi diagram is executed. The

Edges-D check-box is functional only with the Voronoi Diagram Approach. What it does is, upon enabling,

it displays all the Voronoi Edges, while disabling it will hide all the Voronoi Edges that intersect with any

one of the obstacle boundaries.

The bottom panel contains some buttons for I/O related tasks. Open button lets the user select a file from

the disk in a pop-up window and read the polygons data saved in the file. Save button can be used to save

the current configurations of the polygons so that it can be read later from the disk. Save As button is used

for assigning a new file name. Clear button erases all the polygons data from the stage. Exit button will exit

the program. The XFig File button can be used to export the current configuration into an XFig format

file, so that it can be worked into a XFig program, when necessary.

4.4 Implementation of Shortest Distance Approach

This is the implementation of the algorithm described in the Section 3.2. The obstacles are modeled as convex

polygons which are implemented as the class CustomPolygon by extending the features of CGAL::Polygon 2.

This class is used to calculate the shortest distance between selected pair of polygons. To calculate the

distance we have used CGAL function, Polytope distance::Coordinate iterator. The distance is taken into

consideration if the line segment corresponding to the shortest separation does not intersect any other

obstacle. Detection of the intersection of a line segment with a polygon is also done using the CGAL

function CGAL::do intersect(T1, T2). The distances which are longer than the threshold value δ are also

ignored. Once distances between desired pairs of obstacles are found, clustered obstacles are identified. For

the obstacle distributions shown in Figure. 4.2, edge segments corresponding to shortest distances are drawn

red in Figure 4.3.

Obstacles in a connected component (based on δ-max distance) form a cluster. To implement the grouping

of obstacles into a single cluster, we have used the Union-Find Data Structure [CLRS09]. As an input to

the Union-Find, we sequentially feed the indices of polygons connected by the shortest distance. At the end

Union-Find will have the connected components of the polygons which we treat as the separate clusters.

Now each cluster can be treated as a single obstacle wrapped by a convex hull. To compute the convex hull,

we have used the CGAL function CGAL::convex hull 2(). This function requires input vertices. The input

vertices are the vertices of all polygons in the cluster. Wrapped clusters are shown in Figure 4.4.

4.5 Implementation of k-means Approach

We have implemented the k-means approach by adopting the Algorithm 2.3 briefly described in Chapter 3.

This algorithm describes the clustering process for the input vertices. It accepts a collection of vertices and
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Figure 4.2: Obstacle Distribution

Figure 4.3: Obstacles Connected by Shortest Distances

clusters them based on the Euclidean Distance. To execute the k-means algorithm on selected obstacles, we

need to convert them into points. Specifically, the conversion is done by using a grid mask as described in

Chapter 3. This process is explained in detail in Section 3.4.1 and Algorithm 3.3. Once we have the grid

points, we feed them to Algorithm 2.3 as input to obtain clusters.

For the obstacle distribution shown in Figure 4.2, the converted grid points are displayed in Figure 4.5 and

the subsequent clustering is depicted in Figure 4.6.

The most basic version of k-means algorithm is used in our implementation. For better results improved
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Figure 4.4: Obstacles Clustered by Convex Hull

Figure 4.5: Grid Points of Obstacles

versions can be adopted.

4.6 Implementation of Voronoi Diagram Approach

We have implemented Voronoi diagrams with the help of CGAL. There are published algorithms for com-

puting Voronoi Diagrams of polygons. The implementation of these algorithms are very complex and not

available in the public domain. So we opted to approximate the Voronoi diagram of polygons by using the

Voronoi diagram of selected points on the polygons.
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Figure 4.6: K-means Clustering of Grid Points of Obstacles

We have created a separate utility class VDUtil to handle the computation of Voronoi diagrams. In this

class construct(QList<PointToCluster> vertices, bool constructWithoutIntersectingEdges) is the main utility

function to compute Voronoi diagrams. It takes a list of vertices as the input, whose Voronoi diagram can

then be computed. It also takes a Boolean variable constructWithoutIntersectingEdges. If it is true, it

will compute two separate set of edges. One set will contain the Voronoi edges which intersect with any

one of the input obstacles and the other contains the non-intersecting ones. This construct() function in

turn invokes the helper function from CGAL which actually computes the Voronoi diagram. For the given

obstacle distribution shown in Figure. 4.2, the Voronoi Diagram is shown in Figure 4.7.

The VDUtil class maintains two lists i) voronoiLineSegments and ii) intersectingVoronoiLineSegments.

If the construct() method is computing the Voronoi diagram without identifying intersecting edges, then

voronoiLineSegments stores all the Voronoi edges while intersectingVoronoiLineSegments remains empty.

If that is not the case then voronoiLineSegments stores only the non-intersecting edges and intersect-

ingVoronoiLineSegments stores all intersecting edges.

VDUtil class has functions to distinguish Voronoi edges that intersect with obstacles by using a helper func-

tion bool doesIntersect(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double

y4). This functions accepts the coordinates of four vertices representing the end points of two line segments.

It determines whether the two line segments intersect or not based upon the calculation of triangle areas.

Figure 4.7 shows all the Voronoi edges, both the intersecting and non intersecting. In Figure 4.8, non-

intersecting and intersecting (with obstacles) Voronoi edges are drawn differently for easier visual recogni-

tion. While the intersecting edges are drawn as dashed line segments, the non-intersecting ones are displayed

as the solid lines. For further clarification, Figure 4.9 shows only the non-intersecting Voronoi edges.
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Figure 4.7: Voronoi Diagram

Figure 4.8: Voronoi Diagram showing distinct sets of intersecting and non-intersecting Voronoi Edges

As already explained, the Voronoi diagram is computed for vertices only. It has nothing to do with the

polygon edges. Polygon edges are used only to identify the intersecting Voronoi edges. Figure 4.10 shows

the Voronoi diagram of obstacle vertices without displaying obstacle edges.

4.7 Benefits After Clustering the Obstacles

So far we have discussed about how we can cluster the given collection of obstacles. The objective of obstacle

clustering is to ease the path planning process in the presence of obstacles. If we start the path planning
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Figure 4.9: Voronoi Diagram showing only the non-intersecting Voronoi Edges

Figure 4.10: Voronoi Diagram with borders of obstacles hidden

process without clustering the obstacles, then we need to consider every single obstacles to consider a path.

To consider a path, we will need to check for the threshold distance δ from each of the individual obstacles.

This will lead to a very expensive computation. Our primary idea is to simplify the path planning process

and to reduce the number of obstacles so that we need to check a fewer number of obstacles to consider a

path. So the idea of clustering the obstacles is inspired by this objective.

Table 4.4 shows some results relevant to this. We can see that, after clustering of the obstacles, the

number of vertices and edges are significantly reduced. For the given distribution of obstacles in Figure 3.1
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Figure 4.11: Obstacle Distribution

and Figure 3.15, the number has been reduced by a factor of about 10. Similarly for the distribution shown

in Figure 4.11, the reduction factor is around 5. With such a reduction in number, the complexity of the

computation of paths will be improved significantly.

Table 4.4: Improved Number of Vertices and Edges as a result of Obstacle Clustering

Figure 3.1 Figure 4.11 Figure 3.15

Before
Clustering

After
Clustering

Before
Clustering

After
Clustering

Before
Clustering

After
Clustering

|E| 1026 142 571 97 863 113

|V | 1026 142 571 97 863 113
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Chapter 5

Conclusion and Discussion

The key idea that inspired us to write this thesis is that clustering polygonal obstacles can simplify the path

planning problem.

We examined the possibility of extending the k-means algorithm to cluster polygonal obstacles. We presented

a brief overview of one of the most cited methods for clustering point objects called k-means algorithm.

The first extension called masking is obtained by simply converting obstacles into points by using a grid

masking. This method works to a certain extent, but produces poor results for certain point distributions

where the regular k-means method fails. It would be interesting to explore further insight into removing

shortcomings of the masking method.

We explained how the Visibility Graph induced by polygonal obstacles can be used to design a faster version

of obstacle clustering. We showed that visibility edges can be examined locally to obtain closest obstacle

pairs. This approach exploits faster Visibility Graph construction algorithms to obtain closest obstacles

efficiently.

The direct separation method is rather ’brute force’ as it computes all pairs of closest obstacles by exhaustive

check and is very time consuming.

We presented how the Voronoi diagram induced by the vertices of the obstacles can be used to capture the

boundaries of obstacle clusters. We exploited the clearance property of the Voronoi diagram to realize this.

Our algorithm was developed by following the clearance corridors implied by Voronoi edges. Only those

edges of the Voronoi diagram are used that correspond to a clearance of more than the predetermined value

δ. We did not implement the clustering algorithm based on the Voronoi diagram due to lack of a time.

It would be interesting to investigate the performance of the proposed Voronoi-based obstacle clustering

algorithms on several randomly generated obstacle distributions. Random generation of convex obstacles is

itself an interesting problem worth further investigation.

In order to understand the effectiveness of an obstacle clustering algorithm, as a pre-processing step in path

planning, it would be necessary to count the number of edges in obstacles before and after the application

of clustering. We did obtain some results as reported in Chapter 4, Table 4.4. This investigation should be
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extended on convex obstacle distributions obtained by random generation.

In this thesis, we have represented obstacles by convex polygons. In real life, an obstacle can also by non-

convex. In such cases, the algorithms we have presented can still be usable, but with some modifications.

For example one modification could be to convert the non-convex polygons into convex by computing the

convex hull for each of the non-convex polygons. The lower bound for the computation of the convex hull is

O(n log n). So this conversion does not effect the complexity of the Voronoi approach which is the best we

have. Convex polygons and their corresponding Convex Hull representation is shown in Figure 5.1.

Figure 5.1: Conversion of Non-convex Polygons to Convex Polygons

Another extension of the proposed algorithm based on the Voronoi diagram would be to directly use the

Voronoi diagram of polygons rather than those of its vertices.
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