
UNLV Theses, Dissertations, Professional Papers, and Capstones

August 2019

Static Malware Detection using Deep Neural Networks on Static Malware Detection using Deep Neural Networks on

Portable Executables Portable Executables

Piyush Aniruddha Puranik

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Puranik, Piyush Aniruddha, "Static Malware Detection using Deep Neural Networks on Portable
Executables" (2019). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3744.
https://digitalscholarship.unlv.edu/thesesdissertations/3744

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3744?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

STATIC MALWARE DETECTION USING DEEP NEURAL NETWORKS ON PORTABLE

EXECUTABLES

By

Piyushaniruddha Puranik

Bachelor of Engineering - Computer
Savitribai Phule Pune University, India

2015

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science

Department of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
August 2019

c© Piyushaniruddha Puranik, 2019

All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

Date

This thesis prepared by

Piyushaniruddha Puranik

entitled

Static Malware Detection Using Deep Neural Networks on Portable Executables

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Justin Zhan, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Dean

Hal Berghel, Ph.D.
Examination Committee Member

Kazem Taghva, Ph.D.
Examination Committee Member

Tiberio Garza, Ph.D.
Graduate College Faculty Representative

Abstract

There are two main components of malware analysis. One is static malware analysis and the other

is dynamic malware analysis. Static malware analysis involves examining the basic structure of

the malware executable without executing it, while dynamic malware analysis relies on examining

malware behavior after executing it in a controlled environment. Static malware analysis is typically

done by modern anti-malware software by using signature-based analysis or heuristic-based analysis.

This thesis proposes the use of deep neural networks to learn features from a malware’s portable

executable (PE) to minimize the occurrences of false positives when recognizing new malware. We

use the EMBER dataset for training our model and compare our results with other known malware

datasets. We show that using a simple deep neural network for learning vectorized PE features is not

only effective, but is also less resource intensive as compared to conventional heuristic detection

methods. Our model achieves an Area Under Curve (AUC) of 99.8% with 98% true positives

at 1% false positives on the Receiver Output Characteristics (ROC) curve. We further propose

the practical implementation of this model to show that it can potentially compliment or replace

conventional anti-malware software.

iii

Acknowledgements

I would like to thank Dr. Justin Zhan for his help in guiding me towards picking a topic and

completion of this thesis. I have always been interested in data science, and I am grateful that

under the guidance of Dr. Zhan, I was able to achieve my goals and learn the fundamentals of

quality research.

I am grateful to Dr. Berghel for his insights into the ethics of computing, and for putting up

with all trouble I have caused him over the course of my research for this thesis. I would like to

thank Dr. Taghva for introducing me to probabilistic models and the real world problems in data

science. His classes have always motivated me towards exploring more in this field. I would like

to thank Dr. Tiberio Garza for being a part of my thesis committee and for investing his time

towards the completion of this thesis. For all the professors who’ve made learning at University of

Nevada, Las Vegas a pleasure and have inspired me to learn, I am eternally grateful.

My mother, Vijaya Puranik, has always been a pillar of strength for me and has taught me

how to face life unwavering in times of turmoil and difficulty. I want to thank, Saniya Puranik,

my sister, for her sound and logical advice which has kept me grounded through my time here at

UNLV.

Lastly, I would like to thank Amruta, my fiancee, who has supported me throughout all the

difficult times in my life and has never stopped believing in me.

Piyushaniruddha Puranik

University of Nevada, Las Vegas

August 2019

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Algorithms ix

Chapter 1 Introduction 1

1.1 Objective . 2

1.2 Outline . 2

Chapter 2 Literature Review 4

2.1 Static Malware Analysis . 4

2.1.1 Signature Avoidance . 4

2.1.2 Code Obfuscation . 5

2.1.3 Software Packing . 6

2.2 Machine Learning for Malware Detection . 6

2.2.1 Feature Selection . 7

2.2.2 Boosted Decision Trees and Artificial Neural Networks 8

Chapter 3 Background 9

3.1 Portable Executable Format . 9

3.1.1 MS-DOS Stub . 9

3.1.2 COFF Header . 11

v

3.1.3 Optional Header . 11

3.1.4 Section Table . 14

3.2 Training Dataset . 14

3.2.1 Byte Histogram . 15

3.2.2 Byte Entropy Histogram . 17

Chapter 4 Proposed Model 18

4.1 Feature Extraction and Hashing . 18

4.1.1 Parsed Information . 18

4.1.2 Raw Byte Information . 21

4.2 Scaling and Normalization . 24

4.3 Neural Network Classifier . 25

4.4 Model Summary . 27

Chapter 5 Experiments and Results 29

5.1 Experimental Setup . 29

5.2 Metrics for Model Testing . 30

5.3 Test Results . 30

5.4 Real World Testing . 31

5.5 Source Code Availability . 37

Chapter 6 Conclusion and Future Work 38

Bibliography 39

Curriculum Vitae 44

vi

List of Tables

3.1: COFF Structure [Cen19] . 11

3.2: COFF: Machine Types [Cen19] . 12

3.3: COFF: Attribute Flags Available [Cen19] . 13

3.4: Optional Header Magic Number [Cen19] . 13

3.5: Optional Header Parts [Cen19] . 13

3.6: Section Header [Cen19] . 15

5.1: Summary of results for neural networks based classifiers, and for decision tree based

classifier . 30

5.2: Results from real world testing . 37

vii

List of Figures

3.1: PE File Format [Com16] . 10

3.2: JSON Sample . 16

4.1: Example of Byte Histogram . 22

4.2: Example of Byte-Entropy Histogram . 23

4.3: Line graph of raw sample . 24

4.4: Scatter plot of normalized sample . 25

4.5: Summary of neural network . 26

4.6: Summary of neural network with dropout layers . 26

4.7: Flow diagram of the model . 28

5.1: ROC Curve of model using Neural Network (Sigmoid) 31

5.2: Confusion Matrix of model using Neural Network (Sigmoid) 32

5.3: ROC Curve of model using Neural Network with Dropout (Sigmoid) 32

5.4: Confusion Matrix of model using Neural Network with Dropout (Sigmoid) 33

5.5: ROC Curve of model using Neural Network (ReLU) 33

5.6: Confusion Matrix of model using Neural Network (ReLU) 34

5.7: ROC Curve of model using Neural Network with Dropout (ReLU) 34

5.8: Confusion Matrix of model using Neural Network with Dropout (ReLU) 35

5.9: ROC Curves of model using Neural Network (ReLU) and using Decision Tree 35

5.10: ROC Curves of model using Neural Network with Dropout (ReLU) and using Deci-

sion Tree . 36

5.11: Confusion Matrix of model using Decision Tree . 36

viii

List of Algorithms

1 Compute Byte Histogram . 22

ix

Chapter 1

Introduction

The concept of malware detection mainly deals with analyzing executable files to establish malicious

intent. Since the advent of anti-malware software, we have seen a rise in sophisticated malware

which are specifically designed to circumvent this software. This in turn has spearheaded research

into more advanced detection techniques. Malware analysis or malware detection can be performed

in two ways: statically, and dynamically.

Static Malware Detection: Static malware detection is the process of analyzing a binary

file without executing it. This can involve disseminating the file entirely and examining every

component, using a disassembler to reverse engineer it, or converting it into assembly code to

examine its flow [SH12]. It can also extend to the original source code of the software if available

[ESKK12]. This is usually the first line of defense against malware used by all anti-malware software.

Dynamic Malware Detection: Dynamic malware detection uses behavior analysis while a

malware is running to determine malicious intent. Usually, this is done in a sandbox environment

to ensure that the executable does not cause any harm to the target system. This form of analysis

is usually resource intensive and can be circumvented in various ways. Debuggers can also be used

to analyze system calls or other behavioural patterns which cannot otherwise be detected using

black box testing [Ker16].

For the scope of this thesis, we will be focusing only on static malware detection.

Machine learning has long been used for classifying data with complex characteristics that

cannot be easily determined using mathematical functions. Deep neural networks are used today

for various different applications including (but not limited to) data classification, data prediction,

image recognition, natural language processing, and so on. This versatility of neural networks is

perfect for something like big data where large amounts of data is available, but processing it to

1

obtain a specific result is computationally expensive.

Until recently, the lack of availability of labeled datasets for supervised learning had slowed

down progress in using machine learning or deep learning for malware detection. Igor Santos et

al. proposed OPEM [SDB+13] as static-dynamic approach to use machine learning for detecting

unknown malware. They proposed analyzing operational codes obtained from disassembly of exe-

cutables and analyzing their execution trace to determine malicious intent. Similarly, a dynamic

malware detection framework for Android called DroidDolphin managed to achieve 86.1% accuracy

[WH14] using dynamic malware analysis. Both methods are generally computationally expensive

and suffer from limited availability of labeled data.

1.1 Objective

The main objective of this thesis is to design and evaluate a deep neural network for statically

analyzing portable executable files to classify them as malicious or benign. For this purpose we use

the EMBER dataset [AR18] containing data extracted from portable executables of known malicious

and benign files. We use the hashing-trick [WDA+09] for creating a mathematical summary of the

features and standardizing our input vector.

We proceed to compare our model to similar models proposed previously for tackling static

analysis of malware. We show a model simulating practical implementation of such a model for

further research. We provide complete sources for reproducing the proposed model and the derived

results.

1.2 Outline

• Chapter 1 introduces the concepts covered in this thesis.

• Chapter 2 talks about previous work done in the fields of static malware analysis and the

machine learning approach used in malware detection.

• Chapter 3 describes the various aspects of portable executable files which need to be studied

before understanding the proposed model. It briefly covers the dataset used for our model

and how it relates the portable executable file format.

• Chapter 4 describes in detail the steps and processes involved in implementing our model

along with the entire structure of the final model.

2

• In Chapter 5 we discuss the experiments conducted on our model and their implications in the

real world. Resources to access the source code for the model and all experiments conducted

are included in the chapter.

• Chapter 6 summarizes the contents of the thesis, the model, and areas of research that have

not been covered in this thesis. It also talks about potential gaps in this thesis and research

that could be done to bridge these gaps.

3

Chapter 2

Literature Review

In this section, we cover work published in using machine learning for malware detection. Some

implementations are similar to the ones covered in this thesis, but are not reproducible due to the

lack of availability of the data set used, or the use of proprietary frameworks for obtaining results.

We also cover some related work in this field which deals with malware detection on other platforms

using static as well as dynamic analysis of files.

2.1 Static Malware Analysis

There are various challenges involved with static malware analysis. Most of these problems can

be solved by using dynamic malware analysis such as file corruption during runtime, code obfus-

cation or encrypted binary executable files. Below, we explore some of these problems and the

shortcomings of semantic-analyzers in solving them.

2.1.1 Signature Avoidance

Typically, anti-virus software use a signature based method to detect malware. The instructions

present in the malware executable are parsed to obtain a unique signature identifying the malware

which is then compared to a large database of known malware signatures [EMO12, OSM11]. Bon-

fante et al. proposed a control flow graph method to combat this problem [BKM07]. They used

a graph with nodes for all commonly used assembly instructions, and then used a reduced version

of this graph as a signature to classify malware. According to their tests, this form of detection

resulted in better overall detection accuracy when the graphs were larger (for larger executables).

4

2.1.2 Code Obfuscation

Static malware analysis has mainly been studied from the perspective of semantic analysis and

source code analysis for classification. Moser et al. proposed a method for obfuscating code from

semantic analysis [MKK07] simply by using opaque constants to obscure program control flow.

This highlights a significant flaw in static malware analysis techniques present today with semantic-

aware analysis wherein semantic analysis can be beaten by introducing a randomized approach to

calculating constants in real time. One such method mentioned is to use a random seed to generate

addresses where variables are stored, or to daisy-chain the process and store variables in addresses

present in other addresses. The introduction of a NP-hard algorithm to determine the value of

certain constants in the code was also discussed in this paper. For example, implementing a 3SAT

problem in code such that the input variables to this section code will always return a static value

(say 0). This means that the program will always generate a value of 0 during run time when any

variable is assigned to the 3SAT algorithm. Although this is easy to determine by a human reading

the code, it is very difficult for a semantic-aware analyzer to determine all possible outputs of this

algorithm and finally determine that the output of this is always 0, since the algorithm cannot be

computed in polynomial time. Code obfuscation using encryption on binary files multiple times

and then bundling a tool for decryption was discussed by Christodorescu and Jha [CJ06]. This

form of obfuscation is easy to catch during runtime by analyzing the decrypted file in memory, but

it is difficult to determine the level of encryption of the file without first decryption and analyzing

it dynamically.

A semantics based approach which proposed a metric for gauging the similarity between original

malware code and obfuscated malware code was proposed by Preda et al. [PCJD07]. It also

discussed methods to detect the inclusion of constant obfuscation (by adding NP-hard computation

or similar such methods) in malware code, NOP insertion, command substitution, and variable

renaming. However, the practical implementation of this approach has not been fully realized.

There are plenty of dynamic malware detection methods including call graph analysis [EMO12] and

identifying behaviour based on triggers [BHL+08]. However, these methods are computationally

expensive and require a sandbox infrastructure where malware can be safely executed and analyzed.

5

2.1.3 Software Packing

File packing is a common technique used when bundling large software in a small, compact package

[OSM11]. Such packaging techniques usually involve some form of encryption which can potentially

prevent easy identification of malware. One such tool called PolyPack [OBJ09] is specifically

designed to prove that packers are an effective method of evading anti-virus and anti-malware

software. They provide 10 packers which all independently pack the data provided to them, and

then scan the packed data with 10 well known anti-virus scanners. The packer with the best result

is picked. Their studies established that this improved evasion rates by 2.58 times against most

anti-virus software.

2.2 Machine Learning for Malware Detection

The fact that machine learning performs better with larger datasets is well established [BB01].

Several studies have been published which use machine learning for malware classification. Various

methods such as dynamic analysis of system calls [KZWE16], registry access monitoring [HSKS03],

hidden Markov model based analysis [AMS09] have been proposed for dynamic malware analysis.

Kolter and Maloof [KM04] proposed the use of n-grams by combining 4 byte sequences to

produce approximately 255 million distinct n-grams. This paper proposed the use of a probabilistic

approach for determining which features were relevant and used the top 500 n-grams for analysis.

The paper proposed the use of Naive Bayes, Support Vector Machine (SVM), and J48 decision tree

for analyzing their data. Data used for analysis was primarily sourced from Sourceforge and VX

Heavens (actual data not disclosed) with 1971 benign executables and 1651 malicious executables

tested. The small sample set used in this research, and the fact that the exact dataset used by

the authors is not available, it is difficult to ascertain the accuracy of these results when used with

larger datasets. A similar study was done by Bagga [Bag17] using this approach with the Microsoft

Malware Classification [RRF+18], which is an arguably large dataset. However, this study focused

on the malware classification problem rather than the malware detection problem.

Raman, from the Product Incident Response Team at Adobe Systems Inc. proposed a method

to classify malware by extracting seven least correlated features from portable executables [R+12].

The features extracted were DebugSize, ImageVersion, IatRVA, ExportSize, ResourceSize, Virtu-

alSize, NumberOfSections. A dataset containing 100,000 malicious executables and 16,000 benign

executables was used for experimentation. Various models were tested using this data. Amongst

6

the models tested, the J48 decision tree [Qui93] obtained the best results: a true positive rate of

0.986 with a false positive rate of 0.057. The resulting trained model was released as a free tool

for malware classification, but the dataset was not published to perform any form of comparative

research. Anderson and Roth further tested this trained model with the EMBER dataset [AR18]

and found that it exhibited a false positive rate of 0.53 and a false negative rate of 0.08.

A dynamic malware classification model using deep neural networks called MtNet was proposed

by Huang and Stokes in 2016 [HS16]. The dataset used for this study was provided by Microsoft

Corporation containing 6.5 million sample files. From this dataset, 2.85 million malicious and 3.65

million benign files were extracted. Training features were extracted during file execution at runtime

consisting of mainly two types of data: system function calls and null-terminated objects. Feature

selection was performed using mutual information proposed by Manning et al. [MRS10] to get a

total of 50,000 input features. The final goal was to classify malware first as benign or malicious, and

then classify the malicious malware into one of 100 known malware families. The ReLU activation

function was used along with dropout layers added for better model performance. Although this

model shows impressive results of under 0.07% false positive rates, the lack of availability of the

test data set and the model code used for testing makes reproducing these results impossible.

Echo state network and recurring neural network based malware classifiers have also been tested

for dynamic analysis of malware by Pascanu et al. [PSS+15]. Their research established the use

of an echo state network based recurrent model with the sigmoid (logistic regression) activation

function for dynamic analysis of malware. The exact input vector was not disclosed, however it

was derived from the API calls performed by files during runtime execution. The model achieved

a true positive rate of 0.983 with a false positive rate of 0.001. The authors acknowledge that the

dataset used in this research was sourced internally, and is not publicly available. The purpose

of this research was to establish that recurrent neural networks can be used for dynamic malware

analysis. However, due the the dataset not being available, and the steps required to reproduce

the proposed model not provided, it is difficult to verify these results and conduct further research

based off of it.

2.2.1 Feature Selection

Machine learning is very sensitive to the feature set being used for training. Various studies have

established certain features to be beneficial for effective training of machine learning based malware

classifiers. We discuss some of these approaches.

7

Divandari et al. proposed extracting opcode data from files and using a Markov Blanket ap-

proach to summarizing the feature set [DPJ15]. Since opcodes themselves are a significant portion

of executables, they have been considered as reliable features for malware detection [Bil07]. The

proposed model uses a Hidden Markov Model (HMM) for malware classification.

The byte histogram approach proposed by Saxe and Berlin in their research [SB15] introduced a

format-agnostic method of extracting features from a file. This method is an innovative approach to

extracting byte information as features from a file without requiring information about the actual

function of those bytes. It proposes to extract a histogram of all byte values present in the binary

file along with a 2 dimensional byte-entropy histogram to establish an understanding of potential

encryption or compression used in the file. We use this method in our model to complement the

header extraction method such that we achieve high accuracy without the high overheads required

for vectorizing all bytes in the portable executable.

The feature hashing trick proposed by Weinberger et al. [WDA+09] has been frequently cited

and used for machine learning models. The input vector for most machine learning based models is

static and cannot be increased in size depending upon input size. Therefore, we need a method to

effectively summarize large input features into a static size which is more manageable for training.

The feature hashing trick proposes a method to effectively reduce the dimensionality of data such

that it still sufficiently represent the original intended data, but offer linear separable features for

training a model effectively.

2.2.2 Boosted Decision Trees and Artificial Neural Networks

Decision tree have been around for a long time. However, with the recent advancement in the

boosting method for decision tree models, they have proved to be similar or better in performance

than artificial neural networks. They are relatively easier to tune and work well with large number

of variables [RYZ+05]. With the advent of AdaBoost, boosting of decision tree models has managed

to go from binary classification to multi-category classification [HRZZ09, Sch03]. This spurred the

use of boosted decision tree based models as alternatives for artificial neural networks. The model

we propose in this thesis is compared to an existing boosted decision tree model for the same dataset

that we use for our model. Caruana and Niculescu-Mizil established in their paper [CNM06] that

state vector machines, boosted decision trees and neural nets have comparable performance in most

scenarios with variance mainly limited to hyper-parameter tuning.

8

Chapter 3

Background

This section briefly describes the portable executable (PE) file format and its header. We discuss

the methodology used in extracting data from the portable executable file and generating input for

our model. Section summarizes the structure of the EMBER dataset used for training our model.

The methods used for hashing and standardizing the data are summarized in section.

3.1 Portable Executable Format

The portable executable (PE) format (Figure 3.1) was introduced by Microsoft with the Windows

NT 3.1 operating system. Since its inception, it has seen several improvements to incorporate it

into newer versions of Windows. Unix uses the ELF format which is analogous to the Windows PE

format.

The scope of this thesis is limited to Windows executables since data available for malware

running on Unix based operating systems is limited. However, the COFF header found in PE

files is common to both Unix and Windows environments [Kat93]. Our proposed model analyzes

features extracted from PE files to determine whether the file is malicious or benign. This section

describes the information that can be obtained from PE files.

3.1.1 MS-DOS Stub

This stub is executed whenever the file is executed in an MS-DOS environment. Its only purpose is

to print a message indicating that the file cannot be run in the MS-DOS environment. A signature

added after the MS-DOS Stub indicates that the file is in PE format. [Cen19]

9

Figure 3.1: PE File Format [Com16]

10

3.1.2 COFF Header

The Common Object File Format (COFF) header exists right after the MS-DOS Stub. The COFF

Header structure is defined in Table 3.1. All possible values for the Machine field and Characteristics

field in the COFF header are defined in Table 3.2 and Table 3.3 respectively.

Offset Size Field Description

0 2 Machine Identifies the target machine that the executable can
run on. Refer to Table 3.2

2 2 NumberOfSections Size of the section table. (follows the header table)

4 4 TimeDateStamp Date of Creation. Represented as seconds after January
1, 1970.

8 4 PointerToSymbolTable File offset of COFF symbol table. 0 for no table.

12 4 NumberOfSymbols Number of entries in the symbol table.

16 2 SizeOfOptionalHeader Size of the optional header (required for executables)

18 2 Characteristics Indicates the attributes of the file. Refer to Table 3.3.

Table 3.1: COFF Structure [Cen19]

A file can only be executed on a machine if the machine field matches the target machine the

file is to be executed on.

3.1.3 Optional Header

Files which are considered as executables (images) have an additional optional header. This header

provides information to the loader present in the operating system which is responsible for handling

execution of executable files. Although this header is required for executable files, it can also be

present in object files. Optional headers in object files serve no purpose except to increase file size.

Size of the optional header is defined in the SizeOfOptionalHeader field in the COFF header. A

magic number present in the optional header determines whether the executable is PE32 or PE32+

as is shown in table 3.4.

PE32+ executables allow 64-bit memory address space, but can be no more than 2 gigabytes

in size. The optional header is split into 3 major parts defined in Table 3.5.

Standard fields in the optional header are defined for every COFF implementation (Windows

and Unix). Following is a summary of the information contained in the section:

• Magic number indicating whether the file is a normal executable (0x10B), a ROM image

(0x107), or a PE32+ executable (0x20B).

• Linker version to be used for this PE file.

11

Constant Value Description

IMAGE FILE MACHINE UNKNOWN 0x0 Applicaple to any machine

IMAGE FILE MACHINE AM33 0x1d3 Matsushita AM33

IMAGE FILE MACHINE AMD64 0x8664 x64

IMAGE FILE MACHINE ARM 0x1c0 ARM little endian

IMAGE FILE MACHINE ARM64 0xaa64 ARM64 little endian

IMAGE FILE MACHINE ARMNT 0x1c4 ARM Thumb-2 little endian

IMAGE FILE MACHINE EBC 0xebc EFI byte code

IMAGE FILE MACHINE I386 0x14c Intel 386 or equivalent

IMAGE FILE MACHINE IA64 0x200 Intel Itanium processor family

IMAGE FILE MACHINE M32R 0x9041 Mitsubishi M32R little endian

IMAGE FILE MACHINE MIPS16 0x266 MIPS16

IMAGE FILE MACHINE MIPSFPU 0x366 MIPS with FPU

IMAGE FILE MACHINE MIPSFPU16 0x466 MIPS16 with FPU

IMAGE FILE MACHINE POWERPC 0x1f0 Power PC little endian

IMAGE FILE MACHINE POWERPCFP 0x1f1 Power PC with floating point support

IMAGE FILE MACHINE R4000 0x166 MIPS little endian

IMAGE FILE MACHINE RISCV32 0x5032 RISC-V 32-bit address space

IMAGE FILE MACHINE RISCV64 0x5064 RISC-V 64-bit address space

IMAGE FILE MACHINE RISCV128 0x5128 RISC-V 128-bit address space

IMAGE FILE MACHINE SH3 0x1a2 Hitachi SH3

IMAGE FILE MACHINE SH3DSP 0x1a3 Hitachi SH3 DSP

IMAGE FILE MACHINE SH4 0x1a6 Hitachi SH4

IMAGE FILE MACHINE SH5 0x1a8 Hitachi SH5

IMAGE FILE MACHINE THUMB 0x1c2 Thumb

IMAGE FILE MACHINE WCEMIPSV2 0x169 MIPS little-endian WCE v2

Table 3.2: COFF: Machine Types [Cen19]

12

Flag Value Description

IMAGE FILE RELOCS STRIPPED 0x0001 The file must be loaded at its
preferred base address because it
does not allow base relocation.

IMAGE FILE EXECUTABLE IMAGE 0x0002 Set for valid files. Linker error if
this is not set.

IMAGE FILE LINE NUMS STRIPPED 0x0004 Deprecated. Set to zero.

IMAGE FILE LOCAL SYMS STRIPPED 0x0008 Deprecated. Set to zero.

IMAGE FILE AGGRESSIVE WS TRIM 0x0010 Obsolete for Windows 2000 and
later. Set to zero.

IMAGE FILE LARGE ADDRESS AWARE 0x0020 Capable of handling addresses
more than 2GB.

0x0040 Reserved.

IMAGE FILE BYTES REVERSED LO 0x0080 Little Endian. Deprecated. Set
to zero.

IMAGE FILE 32BIT MACHINE 0x0100 Machine uses 32-bit architec-
ture.

IMAGE FILE DEBUG STRIPPED 0x0200 File does not have debug infor-
mation.

IMAGE FILE REMOVABLE RUN FROM SWAP 0x0400 Copy the image to memory if it
is on removable media.

IMAGE FILE NET RUN FROM SWAP 0x0800 Copy the image to memory if it
is on network media.

IMAGE FILE SYSTEM 0x1000 System File

IMAGE FILE DLL 0x2000 DLL File. Cannot be executed.

IMAGE FILE UP SYSTEM ONLY 0x4000 Only support uniprocessor ma-
chine.

IMAGE FILE BYTES REVERSED HI 0x8000 Big Endian. Deprecated. Set to
zero.

Table 3.3: COFF: Attribute Flags Available [Cen19]

Magic number PE format

0x10b PE32

0x20b PE32+

Table 3.4: Optional Header Magic Number [Cen19]

Offset
(PE32/PE32+)

Size
(PE32/PE32+)

Header part Description

0 28/24 Standard fields Common for Windows and Unix
COFF implementations.

28/24 68/88 Windows-specific fields Defines windows specific features.

96/112 Variable Data directories Address and size of special tables
used by OS.

Table 3.5: Optional Header Parts [Cen19]

13

• Size of the code section. Code section refers to the text section of a PE file which contains

the actual software that will be run when the file is executed. There can be multiple such

code sections within the file, in which case, the header field will indicate the total size of all

the code sections combined. Code sections are also referred to as the .text section of a PE

file.

• Size of initialized and uninitialized data contained with the file. This is also referred to as

the .data section of a PE file.

• Address of the entry point of the file. This is where the instruction pointer will start when

the PE file is loaded into memory. [Cen19]

Windows specific fields contain certain information required specifically for Windows environ-

ments. It contains operating system version, image version (for example Word version 8.0), size

of the headers, size of the image, DLL characteristics, loader flags, length of the data directory,

the data directory itself, and the checksum. Size of the image determines how much address space

must be reserved by the operating system for the image to run. [Kat93]

The data directories give the address and size of directories required by Windows. This includes,

but is not limited to, import/export tables, resource table, exception table, etc. [Cen19]

3.1.4 Section Table

Every section in the PE file contains a section header which is 40 bytes in size. This defines the

name of the section, virtual size, number of lines, and various pointers (lines, raw data, relocations,

etc.) [Cen19].

Besides the sections described above, the PE file contains the software executable code. There

are a few other miscellaneous sections that can be included depending upon the file, but that is

beyond the scope of this thesis.

3.2 Training Dataset

Since our model analyzes PE files, the first challenge was to find a dataset that provides PE files

labeled to be malicious or benign. Up until the EMBER dataset was released in April 2018, it was

difficult to find datasets which classify malware as malicious or benign. This dataset is 9.1 GB in

size and provides 900K training samples with 300K malicious, 300K benign, and 300K unlabeled

14

Offset Size Field Description

0 8 Name Name of the section represented as an 8-byte UTF-8
string.

8 4 VirtualSize Size of the section in memory.

12 4 VirtualAddress Refers to the address of the first byte when loaded to
memory.

16 4 SizeOfRawData Size of the uninitialized data on disk.

20 4 PointerToRawData File pointer to the first page of the section.

24 4 PointerToRelocations Set to zero for executable files.

28 4 PointerToLinenumbers Deprecated. Set to zero.

32 2 NumberOfRelocations Set to zero for executable files.

34 2 NumberOfLinenumbers Deprecated. Set to zero.

36 4 Characteristics Characterstic Flags

Table 3.6: Section Header [Cen19]

samples. It also contains 200K test samples. The publishers of this dataset have also released the

source code that they used for creating this dataset. We use this code as a basis for extracting

features from binary files. [AR18]

The data is provided in JSON files in which every line is one sample. Each sample contains

parsed features, which are essentially features extracted from the PE header described in section

3.1, and format agnostic features as described below.

• SHA 256 Checksum.

• When was this file first seen.

• Label (0 for benign, 1 for malicious, -1 for unlabeled).

• Histogram of the raw bytes in the file.

• Entropy of the raw bytes in the file.

A summarized view of a sample from the training set is shown in Figure 3.2.

The inclusion of byte histogram and byte entropy histogram as seen in Figure 3.2 has previously

been seen in [SB15] for including format agnostic features as part of the data set.

3.2.1 Byte Histogram

The byte histogram is essentially a vector of size 256 with each index representing the frequency

of the corresponding byte value. For example, if there are 11203 occurrences of the byte value 200,

15

Figure 3.2: JSON Sample

16

then the value present at index 200 of the histogram vector would be 11203 [AR18]. A detailed

explanation of this process can be found in section 4.1.1.

3.2.2 Byte Entropy Histogram

To compute the byte entropy histogram, a window of size 2048 bytes is moved over the input bytes

with a step size of 1024 bytes. The entropy of the entire 2048 byte window with the occurrence of

each individual byte in the window is computed and stored as a pair. This results in a total of 2048

pairs. Bins of size 16 x 16 are used to quantize the entropy and byte values [SB15, AR18]. These

values are normalized before training. Details of the byte histogram extraction process is given in

section 4.1.1 and the the normalization process is described in section 4.2.

17

Chapter 4

Proposed Model

The model has 3 major components. They are as follows:

1. Feature Extraction and Hashing

2. Scaling and Normalization

3. Neural Network Classifier

We use Python for implementing our model due to its simplicity and flexibility of use in machine

learning applications [Oli07]. We leverage the Nvidia CUDA architecture [NBG08] for high speed

parallel computation using the Keras library [C+15] for implementing our neural network model.

4.1 Feature Extraction and Hashing

There are two main components of the PE file we extract in order to train our model:

1. Parsed Information

2. Raw Byte Information

The EMBER dataset [AR18] used in our model provides a convenient module to extract the

required data from any given PE file. We describe the processes involved in this module. In total,

our model uses 2351 input vectors for classification.

4.1.1 Parsed Information

Every PE file contains header information as described in Section 3.1. These features are extracted

in python using the LIEF library for parsing PE files [Tho17]. However, this information is not all

18

numerical and not always the same size. Our model uses input vectors of fixed size for training.

This means that all features extracted from the PE file must be brought to a standard size before

they can be used for model training. To achieve this, we use the FeatureHasher module from

the scikit-learn library [PVG+11] to implement the feature hashing trick [WDA+09] with a set

number of bins per header feature. Five groups of features are extracted from the PE file.

General Information

General features obtained from the PE file include:

• Virtual size

• Imported functions

• Exported functions

• Presence of debug section

• Resources

• Relocations

• Number of Symbols

This is basic information obtained from the PE header [AR18].

Header Information

We obtain specific information from the headers present in the PE file. From the COFF header,

we obtain the following information:

• Timestamp

• Target Machine (string)

• List of Image Characteristics (list of strings)

From the optional header we obtain the following:

• Target Subsystem (string)

• DLL Characteristics (list of strings)

19

• Magic Number

• Major Image Version

• Minor Image Version

• Linker Version

• System Versions

• Subsystem Versions

• Code Size

• Header Size

• Commit Size

Features involving strings are first converted to their byte representation and then parsed through

the FeatureHasher to get 10 bins of summarized data. This ensures that the data is vectorized

and is of a fixed size [AR18].

Imported Functions

Imported address tables from the optional headers along with the imported function sorted by li-

brary are extracted from the PE file. This data is summarized using the FeatureHasher. 256

bins are used for summarizing all unique libraries and 1024 bins are used to represent every

library:FunctionName pair.

Exported Functions

All exported functions are extracted as strings and then summarized with 128 bins using the

FeatureHasher.

Section Information

Section tables are extracted with the following information:

• Section Name

• Virtual Size

20

• Size

• Entropy

• Virtual Size

• Section Characteristics (list of strings)

• Entry Point

The hashing trick is used on the Name:Value pairs. The name being the section name, and the

values being section size, section entropy and virtual size, each paired individually with a name.

These pairs are summarized using the FeatureHasher with each value set allotted 50 bins. Section

characteristics are captured separately using the same hashing trick as mentioned previously [AR18].

4.1.2 Raw Byte Information

Raw-byte information is included for platform agnostic analysis of the PE files. This means that

malware not designed for a Windows environment can also potentially be classified. We do not test

the accuracy of this model for non-Windows malware, so the effectiveness of this method for such

cases is not discussed.

Byte information extracted from files is not dependent on the type of file. It is simply the

representation of all bytes comprising the file. Since the size of these bytes is variable, we use a

method proposed by Saxe and Berlin [SB15] to summarize this data. This method has also been

implemented in the feature extraction module of the EMBER dataset [AR18].

Byte Histogram

Byte histogram is essentially the frequency of the occurrence of each byte value in a file. A byte

can have a value from 0 to 255, which means a histogram of these bytes will contain the frequency

of occurrence of 256 possible integer values. Algorithm 1 defines the steps involved in this process.

A graphical representation of a sample byte histogram is shown in Figure 4.1.

Byte-Entropy Histogram

Assuming a window size of 2048 bytes and a stride of 1024 bytes, we compute the entropy histogram

by sliding this window over the entire file, computing the Shannon entropy H of the 2048 byte

window, and plotting the joint distribution of this window with every byte present in it. For all

21

Algorithm 1: Compute Byte Histogram

Result: List of size 256 containing Byte Histogram
1 Initialize file
2 Initialize list count[256]
3 while file 6= EOF do
4 bytes← file.read(bufsize)
5 foreach value in bytes do Increment count[value]
6

7 end

Figure 4.1: Example of Byte Histogram

22

bytes in the window such that X = {X1, X2....Xn}, where P (Xi) is the probability of the occurrence

of Xi in the proposed window, the entropy H(X) of the window to the base b is calculated as:

H(X) = −
n∑

i=1

P (Xi)logbP (Xi)

Here we will be calculating the entropy of the window to the base 2. Then we create a pair

P (H,X) where H is the entropy of the window, and X is the occurrence of the every byte in the

window. An example of a byte entropy histogram is given in Figure 4.2.

Figure 4.2: Example of Byte-Entropy Histogram

Printable Strings

Most PE files contain strings which are a valuable source of data. We are mainly interested in all

printable characters. All strings containing more than 5 printable characters are extracted from

the file. Extracted strings are categorized based on what they contain to create a group of features

which provide a statistical summary of the string contents of the file. Only the number of elements

contained in each category are used as model features. The categories are as follows:

• C:\ (case sensitive) indicating a Windows path

• http:// or https:// indicating a URL

• HKEY_ indicating a Windows registry key

23

This serves two purposes: it can reveal certain characteristics of a file which are not revealed from

header information, and it protects the privacy of benign files since we are only creating a summary

of the string data. [AR18].

4.2 Scaling and Normalization

After extracting features from the PE file, we obtain 2351 features per sample. However, these

feature values are widely scattered with a large number of values being close to 0 and some of them

being over 109 and some of them being under −104. This phenomenon is shown as a line graph for

one of the test samples in Figure 4.3. A scatter plot of this phenomenon made it difficult to see

the extreme points which made it necessary to plot a line graph.

Figure 4.3: Line graph of raw sample

When attempting to train our model with this kind of data, we saw that the model would not

converge and resulted in an AUC of 0.5. This was clearly due to the widely varying scales of the

extracted features which needed some form of normalization before being used in our model. We

use the statistical or Z-score normalization for this purpose [JS11].

Let the input sample be X = {X1, X2, X3....X2351} where Xi represents the ith feature within

the sample. The statistical normalization of the sample X for each feature Xi is performed using

the equation:

X ′
i =

Xi − X̄
σ(X)

24

Figure 4.4: Scatter plot of normalized sample

Where X̄ is the arithmetic mean of the sample X and σ(X) is the standard deviation of the

sample X. The arithmetic mean X̄ of X is calculated using the equation:

X̄ =
1

2351

2351∑
i=1

Xi

Where 2351 is the cardinality of the sample X. The standard deviation σ(X) of X is calculated

using the equation:

σ(X) =

√√√√ 1

2351

2351∑
i=1

(Xi − X̄)2

A scatter plot of the normalized sample is given in Figure 4.4. We use the StandardScalar func-

tion provided in the scikit-learn library [PVG+11] for normalizing our samples. This function

performs the exact same calculations as explained above.

4.3 Neural Network Classifier

We use a deep neural network for analyzing our data. There were two neural networks constructed,

one with dropout layers, and one without dropout layers. We tested the logistic activation function

and the rectified linear unit (ReLU) activation function for both these networks. The Adam op-

timizer [KB14] implemented in the Keras library was used for gradient-based optimization of our

classifiers. A summary of both neural networks are shown in Figure 4.5 and Figure 4.6, respectively.

The network without dropout layers contains 1 input layer which accepts an input vector of size

2351, 1 dense layer with 2400 neurons, 3 dense layers with 1200 neurons, and a binary output layer.

25

Figure 4.5: Summary of neural network

Figure 4.6: Summary of neural network with dropout layers

26

The second network with 2 dropout layers and 2 dense layers was proposed to test any potential

measurable improvements in performance when reducing the number of layers and introducing

dropout.

4.4 Model Summary

A summarized diagram of the model is shown in Figure 4.7. The entirety of the model consists of

the following:

• Extract header and platform agnostic features from the PE file.

• Use the hashing trick [WDA+09] to summarize header features.

• Flatten the features into a one dimensional input vector of size 2351.

• Normalize the features using statistical or z-score normalization.

• Feed the input vector through a densely connected deep neural network to obtain a binary

output.

The final output of this model is either a 0 or a 1. Where 0 indicates that the PE file being

tested is benign, and 1 indicates that the file is malicious.

27

Figure 4.7: Flow diagram of the model

28

Chapter 5

Experiments and Results

Here, we cover all experiments performed on our models and the steps taken to implement a working

classifier. We discuss the performance of our model and compare it to other models.

5.1 Experimental Setup

Our model was trained on a Dell Precision Tower with an Intel Xeon E3 processor, Nvidia GeForce

GTX 1080 Ti graphics card and 64GB of RAM. We implemented it in Python with the following

libraries installed:

• TensorFlow [ABC+16]

• Keras [C+15]

• NumPy [VDWCV11]

• scikit-learn [PVG+11]

• LIEF [Tho17]

• Pandas [M+10]

• MatPlotLib [Hun07]

There are also packages and libraries which the above libraries depend on, but are typically installed

automatically as part of the installation process. We use Anaconda Python [Ana16] with Python

3.6.7 for all experiments.

29

5.2 Metrics for Model Testing

Before testing the model, it was important to identify the metrics to be used for this purpose. In

our case, we are testing the accuracy and diagnostic ability of our model. For this purpose, we

derive the receiver output characteristic (ROC) curve and find the area under curve (AUC). This

method generally provides a better measure of the diagnostic ability of a classifier as compared to

simply stating the overall accuracy of the model against a given test set [Faw06, Met78]. We also

derive the confusion matrix of the neural network based models and the decision tree based model

to make it easy to spot cases of misclassification which are not visible clearly from the ROC curve.

The ROC curve is derived by plotting the true positive rate (TPR) of a classifier against the

false positive rate (FPR). The TPR and FPR are calculated using the following equations:

TPR =
TP

P
=

TP

TP + FN

FPR =
FP

N
=

FP

FP + TN

Where TP is true positives, P is the total positive samples present in the test set, and FN is

false negatives. FP is false positives, N is the total negative samples present in the test set, and

TN is true negatives. We use the roc_curve, auc, and modules from scikit-learn.metrics to

obtain the ROC curve, and the confusion_matrix module from the same library to obtain the

confusion matrix. All data is plotted using MatPlotLib.

We used 200K test samples provided in the EMBER dataset [AR18] to test our model and

then compared our results to a decision tree based model created by the authors of EMBER using

LightGBM [KMF+17].

5.3 Test Results

Classifier Type AUC TPR @ FPR = 0.01

Neural Network (Sigmoid) 0.998 0.981

Neural Network with Dropout (Sigmoid) 0.998 0.978

Neural Network (ReLU) 0.997 0.982

Neural Network with Dropout (ReLU) 0.997 0.989

Decision Tree using LightGBM 0.999 0.982

Table 5.1: Summary of results for neural networks based classifiers, and for decision tree based
classifier

30

We tested our model using 4 different neural network based classifiers, and then we tested it

using a decision tree based classifier. A summary of the results can be found in table 5.1.

As is evident from table 5.1 and from the ROC curves in Figures 5.1, 5.3, 5.5, and 5.7, the AUC

of neural networks using the ReLU activation function is slightly lower than that of the ones using

the sigmoid activation function. Moreover, although the AUC of the decision tree classifier is the

highest, the true positive rate of this model is same or lower when capped at 1% false positive rate

as compared to the ReLU based neural networks. The confusion matrices for the models in Figures

5.2, 5.4, 5.6, 5.8, 5.11 show a better visualization of the classification performance of each model.

Since ReLU appears to obtain the best results, we compare the ROC curve of the ReLU based

neural network, and the decision tree classifier in Figures 5.9 and 5.10.

Figure 5.1: ROC Curve of model using Neural Network (Sigmoid)

5.4 Real World Testing

The final step in testing whether a model is effective or not is to attempt to test it in real world

scenarios. We tested the best performing model of our proposed models (Neural Network with

Dropout (RelU)) against the decision tree model to check how well they perform in detecting

actual malicious PE files. The results are summarized in Table 5.2.

We used a sample set of 997 samples from VirusShare.com [Rob11] for testing. Unfortunately,

the samples on VirusShare.com are accessible by registration only, hence the sample set itself cannot

be shared publicly. The file name of the sample set is: VirusShare_x86-64_WinEXE_20130711.zip

The results obtained from the neural network based model are as expected based on the results

we saw before. Of the 997 samples tested, 994 were correctly classified. The decision tree based

31

Figure 5.2: Confusion Matrix of model using Neural Network (Sigmoid)

Figure 5.3: ROC Curve of model using Neural Network with Dropout (Sigmoid)

32

Figure 5.4: Confusion Matrix of model using Neural Network with Dropout (Sigmoid)

Figure 5.5: ROC Curve of model using Neural Network (ReLU)

33

Figure 5.6: Confusion Matrix of model using Neural Network (ReLU)

Figure 5.7: ROC Curve of model using Neural Network with Dropout (ReLU)

34

Figure 5.8: Confusion Matrix of model using Neural Network with Dropout (ReLU)

Figure 5.9: ROC Curves of model using Neural Network (ReLU) and using Decision Tree

35

Figure 5.10: ROC Curves of model using Neural Network with Dropout (ReLU) and using Decision
Tree

Figure 5.11: Confusion Matrix of model using Decision Tree

36

Model Classifier Execution Time (seconds) Accuracy

Neural Network with Dropout (ReLU) 128.2 0.997

Decision Tree 133.6 0.117

Table 5.2: Results from real world testing

model however, was only able to classify 117 of the 997 samples. It is difficult to determine the

cause of this result without further testing.

5.5 Source Code Availability

All source code used for creating the model, experimentation, and testing is available to download

on https://github.com/preppie22/malware-classifier. The dataset used for training and testing the

models is available at https://github.com/endgameinc/ember. Please refer to the guide published

on their page to reproduce the result of the LightGBM model discussed above.

37

https://github.com/preppie22/malware-classifier
https://github.com/endgameinc/ember

Chapter 6

Conclusion and Future Work

In our research, we demonstrate that the use of deep neural networks for static malware detection

is viable and has potential for further improvement. Our experiments show that even in situations

involving structured data, the use of neural networks can still be more efficient compared to decision

trees. We established a method of file vectorization that can effectively summarize large files

for classification. The importance of availability of a large dataset in such domains cannot be

overlooked. This research shows that static malware analysis can be an effective tool in malware

classification in spite of the existence and established detection rates of dynamic malware analysis

Further research in this area will be required the establish how efficient neural networks can be

as classifiers for structured data as compared to decision tree models. Real world testing has shown

that there are still gaps in this area that have not been explored and will require further testing

for practical implementation.

38

Bibliography

[ABC+16] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In 12th {USENIX} Symposium on Oper-

ating Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[AMS09] Srilatha Attaluri, Scott McGhee, and Mark Stamp. Profile hidden markov models

and metamorphic virus detection. Journal in computer virology, 5(2):151–169, 2009.

[Ana16] Anaconda. Anaconda software distribution version 2-2.4.0, November 2016.

[AR18] Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe

malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.

[Bag17] Naman Bagga. Measuring the effectiveness of generic malware models. Master’s

thesis, San Jose State University, 2017.

[BB01] Michele Banko and Eric Brill. Scaling to very very large corpora for natural lan-

guage disambiguation. In Proceedings of the 39th annual meeting on association for

computational linguistics, pages 26–33. Association for Computational Linguistics,

2001.

[BHL+08] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and

Heng Yin. Automatically identifying trigger-based behavior in malware. In Botnet

Detection, pages 65–88. Springer, 2008.

[Bil07] Daniel Bilar. Opcodes as predictor for malware. International Journal of Electronic

Security and Digital Forensics, 1(2):156–168, 2007.

[BKM07] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Control flow

graphs as malware signatures. In International workshop on the Theory of Computer

Viruses, 2007.

[C+15] François Chollet et al. Keras. https://keras.io, 2015.

[Cen19] Windows Dev Center. Pe format - windows applications, Mar 2019. https://docs.

microsoft.com/en-us/windows/desktop/debug/pe-format.

[CJ06] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect mali-

cious patterns. Technical report, WISCONSIN UNIV-MADISON DEPT OF COM-

PUTER SCIENCES, 2006.

39

https://keras.io
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format

[CNM06] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised

learning algorithms. In Proceedings of the 23rd international conference on Machine

learning, pages 161–168. ACM, 2006.

[Com16] Wikimedia Commons. Portable executable 32 bit structure in svg fixed, 2016.

https://commons.wikimedia.org/wiki/File:Portable Executable 32 bit Structure in

SVG fixed.svg.

[DPJ15] Hamid Divandari, Bassir Pechaz, and Majid Vafaie Jahan. Malware detection us-

ing markov blanket based on opcode sequences. In 2015 International Congress on

Technology, Communication and Knowledge (ICTCK), pages 564–569. IEEE, 2015.

[EMO12] Ammar AE Elhadi, Mohd A Maarof, and Ahmed H Osman. Malware detection

based on hybrid signature behaviour application programming interface call graph.

American Journal of Applied Sciences, 9(3):283, 2012.

[ESKK12] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on

automated dynamic malware-analysis techniques and tools. ACM computing surveys

(CSUR), 44(2):6, 2012.

[Faw06] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–

874, 2006.

[HRZZ09] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics

and its Interface, 2(3):349–360, 2009.

[HS16] Wenyi Huang and Jack W Stokes. Mtnet: a multi-task neural network for dynamic

malware classification. In International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 399–418. Springer, 2016.

[HSKS03] Katherine Heller, Krysta Svore, Angelos D Keromytis, and Salvatore Stolfo. One

class support vector machines for detecting anomalous windows registry accesses. In

ICDM Workshop on Data Mining for Computer Security, 2003.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007.

[JS11] T Jayalakshmi and A Santhakumaran. Statistical normalization and back propaga-

tion for classification. International Journal of Computer Theory and Engineering,

3(1):1793–8201, 2011.

[Kat93] Randy Kath. The portable executable file format from top to bottom. MSDN Library,

Microsoft Corporation, 1993.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[Ker16] Dilshan Keragala. Detecting malware and sandbox evasion techniques. SANS Insti-

tute InfoSec Reading Room, 16, 2016.

40

https://commons.wikimedia.org/wiki/File:Portable_Executable_32_bit_Structure_in_SVG_fixed.svg
https://commons.wikimedia.org/wiki/File:Portable_Executable_32_bit_Structure_in_SVG_fixed.svg

[KM04] Jeremy Z Kolter and Marcus A Maloof. Learning to detect malicious executables

in the wild. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 470–478. ACM, 2004.

[KMF+17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei

Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.

In Advances in Neural Information Processing Systems, pages 3146–3154, 2017.

[KZWE16] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. Deep learn-

ing for classification of malware system call sequences. In Australasian Joint Confer-

ence on Artificial Intelligence, pages 137–149. Springer, 2016.

[M+10] Wes McKinney et al. Data structures for statistical computing in python. In Pro-

ceedings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin,

TX, 2010.

[Met78] Charles E Metz. Basic principles of roc analysis. In Seminars in nuclear medicine,

volume 8, pages 283–298. Elsevier, 1978.

[MKK07] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for

malware detection. In Twenty-Third Annual Computer Security Applications Con-

ference (ACSAC 2007), pages 421–430. IEEE, 2007.

[MRS10] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

information retrieval. Natural Language Engineering, 16(1):100–103, 2010.

[NBG08] John Nickolls, Ian Buck, and Michael Garland. Scalable parallel programming. In

2008 IEEE Hot Chips 20 Symposium (HCS), pages 40–53. IEEE, 2008.

[OBJ09] Jon Oberheide, Michael Bailey, and Farnam Jahanian. Polypack: an automated

online packing service for optimal antivirus evasion. In Proceedings of the 3rd USENIX

conference on Offensive technologies, pages 9–9. USENIX Association, 2009.

[Oli07] Travis E Oliphant. Python for scientific computing. Computing in Science & Engi-

neering, 9(3):10–20, 2007.

[OSM11] Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfuscation: The hidden mal-

ware. IEEE Security & Privacy, 9(5):41–47, 2011.

[PCJD07] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray. A

semantics-based approach to malware detection. ACM SIGPLAN Notices, 42(1):377–

388, 2007.

[PSS+15] Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil

Thomas. Malware classification with recurrent networks. In 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1916–1920.

IEEE, 2015.

41

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning

research, 12(Oct):2825–2830, 2011.

[Qui93] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,

San Mateo, CA, 1993.

[R+12] Karthik Raman et al. Selecting features to classify malware. InfoSec Southwest, 2012,

2012.

[Rob11] J-Michael Roberts. Virus share.(2011). URL https://virusshare. com, 2011.

[RRF+18] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi.

Microsoft malware classification challenge. arXiv preprint arXiv:1802.10135, 2018.

[RYZ+05] Byron P Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGre-

gor. Boosted decision trees as an alternative to artificial neural networks for parti-

cle identification. Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, 543(2-3):577–584,

2005.

[SB15] Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection

using two dimensional binary program features. In 2015 10th International Confer-

ence on Malicious and Unwanted Software (MALWARE), pages 11–20. IEEE, 2015.

[Sch03] Robert E Schapire. The boosting approach to machine learning: An overview. In

Nonlinear estimation and classification, pages 149–171. Springer, 2003.

[SDB+13] Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo Garcia Bringas.

Opem: A static-dynamic approach for machine-learning-based malware detection.

In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions,

pages 271–280. Springer, 2013.

[SH12] M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software. No Starch Press, 2012.

[Tho17] Romain Thomas. Lief - library to instrument executable formats.

https://lief.quarkslab.com/, April 2017.

[VDWCV11] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a

structure for efficient numerical computation. Computing in Science & Engineering,

13(2):22, 2011.

[WDA+09] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex

Smola. Feature hashing for large scale multitask learning. arXiv preprint

arXiv:0902.2206, 2009.

42

[WH14] Wen-Chieh Wu and Shih-Hao Hung. Droiddolphin: A dynamic android malware

detection framework using big data and machine learning. In Proceedings of the

2014 Conference on Research in Adaptive and Convergent Systems, RACS ’14, pages

247–252, New York, NY, USA, 2014. ACM.

43

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Piyush Aniruddha Puranik

piyushpuranik@gmail.com

Degrees:

Bachelor of Engineering - Computer (2015)

Savitribai Phule Pune University, Pune, India

Thesis Title: Static Malware Detection using Deep Neural Networks on Portable Executables

Thesis Examination Committee:

Chairperson, Dr. Justin Zhan, Ph.D.

Committee Member, Dr. Hal Berghel, Ph.D.

Committee Member, Dr. Kazem Taghva, Ph.D.

Graduate Faculty Representative, Dr. Tiberio Garza, Ph.D.

44

	Static Malware Detection using Deep Neural Networks on Portable Executables
	Repository Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Chapter Introduction
	Objective
	Outline

	Chapter Literature Review
	Static Malware Analysis
	Signature Avoidance
	Code Obfuscation
	Software Packing

	Machine Learning for Malware Detection
	Feature Selection
	Boosted Decision Trees and Artificial Neural Networks

	Chapter Background
	Portable Executable Format
	MS-DOS Stub
	COFF Header
	Optional Header
	Section Table

	Training Dataset
	Byte Histogram
	Byte Entropy Histogram

	Chapter Proposed Model
	Feature Extraction and Hashing
	Parsed Information
	Raw Byte Information

	Scaling and Normalization
	Neural Network Classifier
	Model Summary

	Chapter Experiments and Results
	Experimental Setup
	Metrics for Model Testing
	Test Results
	Real World Testing
	Source Code Availability

	Chapter Conclusion and Future Work
	Bibliography
	Curriculum Vitae

