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ABSTRACT 

Message queues are queues of messages that facilitate communication between applications. A 

queue is a line of messages or events waiting to be handled in a sequential manner. A message 

queue is a queue of messages sent between applications. It includes a sequence of work objects 

that are waiting to be processed. For a distributed system to work, it needs to pass information 

between various machines. No single machine is responsible for the entire system, but all 

information is interrelated. Hence a major concern of distributed systems is this transfer of data. 

Which also proves to be one of the most significant challenges. Message Queues provide this 

asynchronous communication between applications. Major factors behind the success of an 

application is the ability to decouple and scale it.  

In this thesis, we focus on analyzing and comparing the performance of three most widely used 

open source message brokers namely Apache ActiveMQ, RabbitMQ and Apache Kafka which 

help in creating a distributed system. An end to end message queuing model is setup for each of 

the brokers to mimic real world application models. The producers, consumers and brokers that 

make up the message queuing system are then put through rigorous benchmarking tests to analyze 

their performance. The performance is evaluated based on major factors like throughput, latency 

and total time taken by the transaction. Based on the benchmarking results, it was observed that 

Apache Kafka which was initially developed to be a message queue but later enhanced to be a 

streaming platform outdid RabbitMQ and Apache ActiveMQ in almost all the performance factors. 

It was also observed that the larger the message size, more constant is the performance of all 

message brokers. Hence, for gauging the performance in hard times, the message sizes considered 

for the experiments is very small. This gives us a glimpse of the actual performance capabilities 

of the message queuing brokers.  
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CHAPTER 1. 

INTRODUCTION 

Message queuing has been used in processing of data for many years. One of its most common 

and widespread use is in E-mails. When you talk with someone on the phone, it is a synchronous 

communication.  Both parties must be present and have a connection end to end for that to 

work.  On the other hand, sending emails is asynchronous.  The message is handed off to an 

intermediary who manages transport, routing, storage and delivery. Message queuing allows 

communication between applications by exchanging messages. It provides a place to store 

messages temporarily when the destination is busy or not connected.  [1]. 

Message Queuing is part of a larger Message Oriented Middleware (MOM). Message Oriented 

Middleware (MOM) is a crucial part when it comes to the development of distributed applications. 

For an e-business to be successful it is important that applications that are based on different 

architectures seamlessly integrate with each other. MOM is used to help applications across 

multiple platforms communicate with one another, creating a much more seamless business 

operation [2]. 

Message queues facilitate asynchronous communication between applications. This means that 

applications can communicate with each other without having to be online attached to the queue 

at the same time. Once a message is pushed onto a queue, it stays there till the receiver connects 

and consumes it. 

Queuing is the mechanism which keeps the messages stored onto a queue till a receiver connects 

to the queue and pulls it. Queuing allows you to: 
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• Communicate between programs without having to write any logic that connects the programs. 

These programs may or may not be built in the same environment. 

• The order of messages to be processed in can be selected. 

• When the number of messages exceed a threshold limit load balancing can be done. 

• Create master slave architecture of senders and receivers to increase the availability of your 

applications [3]. 

1.1 Objective 

When multiple software applications are connected via a network, there comes a time when there 

is a need for the clients and servers to communicate with each other. Moreover, the clients and 

servers may always not be available. This is where message queues come into picture. But every 

application has different needs and it is important to evaluate different message queuing 

technologies to find one that best fits your needs. The objective of this thesis is to study the various 

message queuing applications available and evaluate them based on their performance. 

1.2 Outline 

In Chapter 2, we will present some basic background of Message Queues and all the information 

required to better understand them, why are they needed and why will they be relevant in the future 

as well. Chapter 3 discusses Open Source Message Queues in depth as the focus of this study is to 

better understand open source message queues. Chapter 4 explains the setup and underlying 

environment used to test the various applications of message queues. In Chapter 5, the results of 

the test are mapped and explained. Chapter 6 draws the conclusion based on the results. 
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CHAPTER 2. 

BACKGROUND 

For a distributed system to work, it needs to pass information between the machines. No single 

machine is responsible for the entire system, but all information is interrelated. Hence a major 

concern of distributed systems is this transfer of data. Which also proves to be one of the most 

significant challenges. 

2.1  What are Message Queues 

In simple words, message queues are queues of messages that facilitate communication between 

applications. A queue is a line of things waiting to be handled in a sequential manner. A message 

queue is a queue of messages sent between applications. It includes a sequence of work objects 

that are waiting to be processed [4]. A message is the actual data that is transported between 

applications. For example, it can be a start process command for a task. 

Figure 1 shows the basic architecture of a message queue. The producer, which is the client 

application, creates messages and pushes them onto a queue. The consumer on the other end of the 

queue receives the message that is to be processed. Messages stay on the queue till the consumer 

receives them. It acts a s a buffer between the applications, to queue messages coming from the 

source application until the destination application is ready to receive them. 
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Figure 1. Message Queue Architecture. 

 

 

2.2 Before Message Queues 

Message Queues work on peer to peer communication model. This allows programs to operate 

independently and use message queues to exchange information. The communication can be either 

synchronous or asynchronous. Before the use of message queues, communication between 

programs happened mainly using the client server communication model. 

2.2.1 Client Server Communication Model 

The client server model was developed in the 1980s. It was one way of achieving distributed 

systems. Following this model, two programs are used in creating a distributed system; one 

programs is assigned to generate requests and the other programs fulfills those requests [5]. Client 

programs provide an interface to the user to request for information or services. The Server 

processes the request and sends back information. This provides synchronous communication. 

Client server model has technologies like Remote Procedural calls that is used for building 

distributed architecture. 

Producers Consumers 

Queue 
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Figure 2. Client Server Communication Model. 

 

 

Remote Procedural Call 

A remote procedural call is the simplest way to exchange information between two applications. 

The way functions in a program are called is modeled by RPC. A packet of information is passed 

to the recipient as parameters. It then waits for a response from a recipient. It is not concerned with 

what the recipient does.  The recipient then returns a result to the sender as a packet of information. 

Even though this model works well for normal programs, it has some drawbacks when it comes to 

distributed systems [6]. 

 

 

 

Figure 3. Remote Procedural Call. 
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One major drawback being that RPCs are synchronous. Both the participating applications need 

to assign dedicated resources that wait listening for a response from either end. The request can be 

a query for which the resource needs a result, or it can be a command asking the resource to act on 

it. The call can even be a command that returns a void and the resource must listen dedicatedly for 

it. If it does not receive a response, it does not know if the recipient receives the call or not. So, it 

must either fail the request or retry the RPC. 

RPCs cannot be relied on. As opposed to a local method call that cannot fail to reach the receiver, 

an RPC can get dropped, timed out or corrupted. This can happen to both the request and response. 

If there is a failure, there is no way to find out if it’s a request or response that is lost. A request 

can be re-sent but a response can lead to duplicate data. 

2.3  What is the need for Message Queues? 

In today’s application development, decoupling and scalability are of utmost importance. Instead 

of building one large application, it is beneficial to decouple various parts of it and establish an 

asynchronous communication between them. This helps each part of the application to evolve 

independently, be developed in different environments that are more efficient for the application 

module and be self-contained in its functionality. 

Decoupling is a sign of an application that is well structured which makes it easier to maintain, 

extend and debug [7]. Decoupling of systems can be achieved when the systems can be completely 

autonomous and unaware of each other but are still able to communicate without being connected. 

When the system is decoupled, communication needs to be asynchronous. 

Message queues provide asynchronous communication. Once the producer sends a message to the 

queue, the consumer consumes the message when it starts. The message remains in the buffer till 
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the consumer is ready. Once the producer sends a message onto the queue, it need not follow up 

on the status of the message and can continue with its next process. If the message does not go 

through, it can be redelivered until it is processed.  

2.4  Advantages of Message Queues 

• Asynchronous Messaging 

When an application needs a task to be done but its not needed immediately or if the result doesn’t 

matter, Queues are very useful. Instead of waiting for that task to complete, a message can be 

added to the queue to perform the task later. 

• Decoupling by Data Contracts 

Hard dependencies can be decoupled by using a queue between different parts of the applications. 

The message in the queue becomes a data contract and any application that understands it, can 

process the transaction. 

• Concurrency 

If multiple producers are sending messages at a time, there could be a problem with concurrency 

to ensure that the first message is consumed first. By using a queue, it guarantees that the first 

message is the first to be consumed. 

• Scalability 

Message queues facilitate decoupling of applications. This helps in improving the scalability of 

the application. 
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• Monitoring 

Message queuing systems enable you to monitor queues. This helps to know how many items are 

in the queue, the rate at which messages are processed and other statistics. 

• Break large tasks into small ones 

A large task can be divided into much smaller tasks and pushed onto the queue to occur in a 

sequence on the other system. 

• Persistence 

One of the most important things in asynchronous communication is to make sure that messages 

are received by the receiver. Queues make sure that the transaction has gone through and it is not 

safe to discard a message. 

• Guarantee that transaction occurs once 

As a message queue waits to confirm that a transaction has been processed before deleting the 

message, this helps to ensure that the transaction has happened only once. 

2.5  Types of Message Queue Implementations 

Message queuing can be implemented as a Service, Hardware or Open Source. 

• Hardware: Vendors like Solace, Apigee and Tervela provide hardware-based messaging 

middleware. Queuing is offered through silicon data paths [8]. 

• Service (SaaS): Cloud based message services include IronMQ, StormMQ and Amazon 

Simple Queue Service (SQS).  
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• Open Source: Most widely used open source message queues are Apache ActiveMQ, Apache 

Qpid, Apache RocketMQ, RabbitMQ. Apache Kafka is primarily a streaming tool that also 

can be implemented as a message queue. 

2.6  Message Queuing Protocols 

Message Queuing protocols started being implemented when Open Source Message Queues came 

into existence. The stages of standardization and adoption for these protocols is different. The first 

two operate at the same level as HTTP, MQTT at the level of TCP/IP [9]. The three main protocols 

are: 

• Advanced Message Queuing Protocol (AMQP) – This message queuing protocol is rich in 

features. It has been approved since April 2014 as ISO/IEC 19464. 

• Streaming Text Oriented Messaging Protocol (STOMP) – It is text oriented and simple. 

• MQTT (formerly MQ Telemetry Transport) – Used specially for embedded devices and is 

lightweight.  

2.7  Message Queues Model 

Message Queues can be modeled in two basic ways. They can have a Broker, or they can be Broker 

less. 

2.7.1 Brokered Message Queues 

Most messaging systems have a broker i.e., a messaging server in the middle. This is like a hub or 

star architecture. No two applications connect directly to each other. They all connect through the 

broker [10].  
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This model has various advantages. Applications do not need to now the actual location of the 

other applications. Just knowing the queue or topic name and network IP is enough. The sender 

and receiver lifetimes do not need to overlap. The application that sends message to broker can 

push the message and terminate. The pushed message is available to be received anytime. As 

brokers store data on the disk, messages are never lost and can be available even after a failure. 

The two main drawback of brokered system are that it requires a lot of network bandwidth for 

communication and there can be a traffic bottleneck at the broker. The broker will be overworked 

as all applications connect to it but the application themselves maybe idle. 

Types of Brokered Message Queues 

• ActiveMQ and RabbitMQ 

They are both based on AMQP. They make sure that the message is delivered as they are brokers. 

Persistent and non-persistent delivery and synchronous and asynchronous messaging is supported 

by both the brokers. A server restart does not result in loss of data as by default messages are 

written to the disk. The latency is high when using synchronous messaging. To add to it, latency 

increases as the brokers use message acknowledgement to guarantee message delivery. Clustering 

is supported through shared storage and shared nothing for fault tolerance. To ensure that there is 

no message loss or failure, queues can be replicated across clustered nodes [11]. 

• NATS and Ruby NATS 

NATS is a pure Go implementation of the ruby-nats messaging system. It is fast and simple to use. 

Message transactions and persistence are not done by NATS. However, it does support clustering 

https://github.com/apcera/gnatsd
https://github.com/derekcollison/nats
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so you can build the system keeping in mine high availability and failover. TLS and SSL are 

supported in ruby nats but not NATS. 

• Kafka 

Kafka has been developed by LinkedIn. It makes use of a distributed commit log which is 

persistent to implement publish-subscribe messaging. It is specially designed to operate in clusters 

so that multiple clients can access it. It makes use of ZooKeeper which helps the brokers to 

integrate seamlessly and it internally take care of cluster rebalancing. Messages can be easily 

replayed if there is a failure at the customer end. Kafka clusters can be easily maintained using 

ZooKeeper but that also means that we have an additional module to maintain [12]. 

• Kestrel 

Kestrel is developed by Twitter. It is a distributed, open source message queue. As it intends to be 

lightweight and fast there is no failover or clustering implemented. There is no cross-

communication between nodes. Its queues are durable. There is item expiration and reads for every 

transaction. 

• NSQ 

NSQ is a messaging platform built by Bitly. The daemon is NSQD and is standalone. It is 

responsible for receiving, queueing and delivering messages to the client. The topology on which 

NSQ runs is decentralized and distributed. This is achieved by another daemon called nsqlookupd. 

This acts like a service discovery mechanism. It also provides nsqadmin. It acts as a front end to 

display real-time cluster statistics. It also executes tasks like managing topics and clearing queues. 

Messages are non-durable by default. It is an in-memory message queue. The size of the queue 

http://twitter.github.io/kestrel/
http://nsq.io/
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can be configured. This means that after a certain point, messages will be written to the disk. There 

is no built-in message replication. In order to guarantee delivery of messages, it makes use of 

acknowledgements. But this does not guarantee the order of messages delivered. Idempotency is 

the responsibility of the develop as messages can be delivered more than once. NSQ provides the 

functionality of adding clusters just like Kafka 

• Redis 

Transient storage and lightweight messaging are provided by Redis. Even though its publish and 

subscriber capability is fast, its capability is limited. 

2.7.2 Broker-less Message Queues 

In Broker less messaging there is no broker meaning the queues connect the two peers directly. 

There is no involvement of a middleman. As seen in Figure 4, the number of hops decreases as 

there are no brokers. There is no bottleneck on the network. It is ideal when there is more emphasis 

on low latency but high transaction rate. This leads the system to not be easily managed. Each 

application must know the network address of each application it wishes to communicate with. 

This model looks good on paper but is not easily managed in the real world. 
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Figure 4. Broker-less system. 

 

 

Types of Broker less Message Queues 

• ZeroMQ and Nanomsg 

Nanomsg is a socket style library that makes use of convenient patters to perform distributed 

messaging. This means that, apart from embedding the library, there is nothing to deploy. The 

working of Nanomsg is similar to that of ZeroMQ as it is written by one of its authors and provides 

a cleaner API. Unlike ZeroMQ, there is no notion of a context in which sockets are bound to. 

Nanomsg is more open to extension as it also provides pluggable transport and messaging 

protocols. It also has built in scalability protocols. Like ZeroMQ, it guarantees the delivery of 

messages in the given order but there is no guarantee of delivery itself.  

Input 

Output 
1 

2 3 
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ZeroMQ has been around since 2007 and is battle tested. Like nanomsg, ZeroMQ acts as a socket 

abstraction and is not a message-oriented middleware. It is almost similar to Nanomsg when it 

comes to usability. 

  

http://zeromq.org/
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CHAPTER 3. 

OPEN SOURCE MESSAGE QUEUES 

3.1  Apache ActiveMQ 

Apache ActiveMQ is an open source message broker written in Java together with a full Java 

Message Service (JMS) client. The latest version appeared in March 2019. Its basic function is to 

send messages between various applications and help them communicate with each other. It also 

includes additional features like OpenWire, STOMP and JMS. ActiveMQ is written in Java and it 

translates and passes messages between the sender and receiver. 

3.1.1 ActiveMQ working 

ActiveMQ sends messages between applications and has three main components.  

• Producers: Client applications that create and send messages. 

• Consumers: Application that receives and processes the message 

• Destination: ActiveMQ broker routes messages between from producers to consumers through 

two types of destinations: 

o Queue: Used in point to point setup. 

o Topic: Used in Publisher Subscriber setup. 
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Figure 5. ActiveMQ Architecture. 

 

 

Messages can be sent over either a queue or topic based on the ActiveMQ setup. In point to point 

messaging, one queue has one or more consumers attached to it. The broker acts as a load balancer 

and routes messages to consumers in a round robin fashion. In Publisher Subscriber setup, broker 

delivers each message to all consumers attached to that topic. 

A simple ActiveMQ connection can be setup between two applications using the steps given in 

Figure 6. One Queue or Topic can have multiple producers and/or consumers attached to it at the 

same time. 

Producer Producer 

Broker Queue Topic 

Consumer Consumer Consumer 

Consumer Consumer 

Round Robin 

Point to Point Publisher-Subscriber 
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Figure 6. Steps to create basic ActiveMQ Application. 

 

 

3.1.2 Why ActiveMQ 

ActiveMQ is one of the most widely used brokers when creating a distributed system. Following 

are some of the reasons why ActiveMQ is popular. 

• Transactional Messaging 

ActiveMQ is persistent when it comes to messages.  Irrespective of system failures, it processes 

each message exactly once and does not miss a single message. 

Persistence is achieved through servers and availability is achieved through clustering of servers. 

Create a Connection Factory 

Instance 

Create a Connection 

Create a Session 

Create a Queue/Topic 

Create a Producer Create a Consumer 
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If a node is offline, the message remains in the queue the entire time till the node comes back 

online. 

• High Performance Market Data Distribution 

ActiveMQ is highly efficient in its routing and throughput. It provides a very high sender and 

receiver throughput.  

• Asynchronous Messaging Model 

ActiveMQ provides low latency for bigger messages. Its latency is challenged a little when the 

messes are small and larger in number. 

• Web Streaming Data 

ActiveMQ has AJAX support. This helps to integrate ActiveMQ with a web container. This helps 

in publishing messages using Http Post. 

• RESTful API 

The message broker can be provided with an Http interface. This allows simple cross language 

APIs to exchange messages. An Http Post request is made to post a message to the broker and an 

Http Get request is made to receive messages from the broker. The destination is specified using 

the URI and its associated parameters. 

3.1.3 Who Uses ActiveMQ? 

• FuseSource: FuseSource provides enterprise class training, mentoring ans support for 

ActiveMQ 

• Dopplr: ActiveMQ is used as a message provider at Dopplr. 
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• Gnip: Low latency MOM messaging at Gnip is achieved using ActiveMQ. 

• RomTrac:  Load balancing of requests across a server cluster is achieved using ActiveMQ. 

• University of Washington: Uses ActiveMQ as a backend layer of messaging for distributed 

applications. 

• Daugherty Systems: used within in-house application for reliable, asynchronous messaging. 

• Document archiving/flow systems: Use ActiveMQ for connectivity between front and back 

end. Once frontend receives a message it processes it and sends it forward to the backend. It 

then creates an ID and sends it to the user. 

• CSC: the Finnish IT center for science is building a bioinformatics system for DNA-

microarray data storage and analysis. System contains rich graphical clients, a large database 

and heavy server machinery for processing analysis jobs. We are trying to use ActiveMQ as a 

JMS implementation to shuttle data between the servers and clients in an event-based manner. 

• Gather Place: use ActiveMQ to gather billing and usage data that is real time from servers 

that are distributed across the world.  

• Golconde: A distributed postgresql replication system is implemented using ActiveMQ. 

3.2  RabbitMQ 

RabbitMQ is an open source message broker written in Erlang. It implements message queuing 

protocols such as AMQP, STOMP and MQTT. The latest version appeared in March 2019. Its 

basic function is to send messages between various applications and help them communicate with 

each other. 
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3.2.1 RabbitMQ Working 

Like ActiveMQ, RabbitMQ acts as a middleman to exchange messages between various 

applications. It consists of three main components: Producer, Consumer and Queue. Unlike 

ActiveMQ, it does not directly push messages onto queues, instead, producers send message to an 

exchange. Messages from the producer application are accepted by an exchange. This message is 

then routed to the message queue. Binding and routing keys are used to achieve this.  A link 

between an exchange and queue is the binding [13]. 

 

 

 

Figure 7. RabbitMQ Architecture. 
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Direct: Based on a message routing key, a direct exchange delivers messages to queues. The 

binging and routing key should match in order to perform a direct exchange. 

Topic: For a topic exchange, the routing patter specified in the binding is patter matched against 

the routing key. 

Fanout: A fanout exchange is like a publisher-subscriber setup. All the queues attached to it 

receive the message. 

A simple RabbitMQ connection can be setup between two applications using the steps given in 

Figure 8. One Queue or Topic can have multiple producers and/or consumers attached to it at the 

same time. 

 

 

 

Figure 8. Steps to create RabbitMQ Application. 

 

Create a Connection Factory Instance 

Create a Host 

Create a Connection 

Create a Channel for the Connection 

Create a Queue 
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3.2.2 Why RabbitMQ 

• RabbitMQ helps to facilitate in connecting and scaling applications. Applications connect to 

form a larger application or connect to user devices. Messaging is asynchronous, decoupling 

applications by separating sending and receiving data. 

• RabbitMQ is a messaging broker - an intermediary for messaging. It gives your applications a 

common platform to send and receive messages, and your messages a safe place to live until 

received. 

Feature Highlights 

• Reliability 

RabbitMQ is highly reliable. It provides features like persistence of messages achieved using 

delivery acknowledgements and high availability. 

• Flexible Routing 

Messages first route through exchanges and then arrive at the queue. Various exchange types are 

built-in within RabbitMQ for simple routing. When it comes to complex routing, you can write 

your own exchange type and use it as a plugin. 

• Clustering 

A single logical broker can be created by clustering several RabbitMQ servers on a local network. 

• Federation 

A federation model is available is servers need to be loosely and unreliably connected. 
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• Highly Available Queues 

To ensure the safety of messages during a hardware failure, queues can be mirrored across multiple 

machines in a cluster. 

• Multi-protocol 

Messages are supported over a number of messaging protocols. 

• Many Clients 

RabbitMQ clients are available across multiple clients. 

• Management UI 

The management UI available along with RabbitMQ allows the control and monitoring of every 

aspect of the message broker. 

• Tracing 

Tracing support is available within RabbitMQ. 

• Plugin System 

RabbitMQ comes with a lot of plugins, you can also customize plugins or create them from scratch. 

3.2.3 Who uses RabbitMQ 

Many companies make use of RabbitMQ such as: 

• The Deutsche Börse 

RabbitMQ is used as a standard protocol on their system. It helps in monitoring the positions and 

risk related data of its members. 
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• JPMorgan 

JPMorgan sends billions of AMQP data per day. 

• National Science Foundation 

RabbitMQ is also used by The Ocean Observatories Initiative infrastructure in their sensors. 

AMQP to bring readings ashore from ocean platforms and a global pub-sub network to disseminate 

readings. 

• NASA 

It is used in the control plane of the Nebula Cloud Computing. 

• Red Hat 

RedHat uses RabbitMQ to control all its internal operations. 

• VMware 

RabbitMQ is used in cloud services and virtualization of their product. 

• Google 

Google has a project called Rocksteady that makes use of RabbitMQ to analyze user defined 

metrics. The goal of the service is to allow diagnosis of root causes. 

• UIDAI, Government of India 

UIDAI is the largest online identity project in the world aiming to provide each of India's 1.2 

billion residents with a unique identity number. UIDAI uses RabbitMQ to decouple sub-

components of its application allowing it to scale. 
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• Mozilla 

RabbitMQ is used in their in-house eventing called Pulse. 

• OpenStack 

Openstack uses RabbitMQ for messaging. 

• AT&T 

The local search provides, AT&T interactive makes use of RabbitMQ. 

• INETCO 

It uses RabbitMQ to pass real time data in cloud environments. 

• Smith Electric Vehicles 

SmithLink service uses RabbitMQ to transfer 2 billion data points per day for automotive based in 

90 countries across the world. 

3.3  Apache Kafka 

Apache Kafka is a distributed streaming platform. It has the following three capabilities: 

• Publish and subscribe to streams of records, like a message queue or enterprise messaging 

system. 

• Storage of streams of records in a fault-tolerant durable way. 

• Processing of streams of records as they occur. 

Kafka is generally used for two broad classes of applications: 
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• Building real-time streaming data pipelines that reliably get data between systems or 

applications 

• Building real-time streaming applications that transform or react to the streams of data 

3.3.1 Kafka Working 

Kafka topics are divided into several partitions as shown in Figure 8. You can parallelize a topic 

using partitions. This lets you split the data across multiple brokers. Partitions can be placed on 

different machines. This allows the consumers to read topics in parallel. Parallelizing of consumers 

is also possible. This lets multiple consumers to read from multiple partitions. This gives a high 

throughput for message processing.  

An offset is assigned to each message that is within a partition. This message ordering is 

maintained by Kafka. Consumers can read messages starting from a specific offset and can read 

from any offset point they choose, allowing consumers to join the cluster at any point in time they 

see fit [14]. 
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Figure 9. Kafka Architecture. 

 

 

3.3.2 Why Kafka 

To provide real-time analytics, Kafka is often used in real time streaming of data architectures. 

There are cases when ActiveMQ and RabbitMQ are not considered for message queueing, but 

Kafka is. This is because Kafka is comparatively reliable and has a higher throughput. Kafka is 

used for metrics collection and monitoring, log aggregation, real-time analytics, stream processing, 

website activity tracking, CEP, ingesting data into Spark, ingesting data into Hadoop, CQRS, 

replay messages, error recovery, and guaranteed distributed commit log for in-memory computing. 

[15]  
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3.3.3 Who Uses Kafka 

Large companies that handle tons of data use Kafka. It was developed at LinkedIn where it was 

used to track data and operational metrics. In order to provide stream processing infrastructure, it 

is used by Twitter as a part of Storm. Square uses Kafka as a bus to move all system events to 

various Square data centers (logs, custom events, metrics, and so on), outputs to Splunk, for 

Graphite (dashboards), and to implement Esper-like/CEP alerting systems. It's also used by other 

companies like Goldman Sachs, Spotify, Cisco, Uber, PayPal, Tumbler, Netflix, Box and 

CloudFlare.  

3.4 Comparison of Open Source Message Queues 

 Apache ActiveMQ RabbitMQ Apache Kafka 

Main Concept One of the most often 

used open source 

products for messaging. 

ActiveMQ is commonly 

used in enterprise 

projects, due to its 

support of advanced 

features such as multiple 

instances for storing 

messages, and clustering 

environments. 

RabbitMQ is a 

messaging broker, 

implementing low-level 

AMQP protocol and 

Producer-Consumer 

pattern. It is 

intermediary between 

two applications when 

in the procedure of 

processing 

communication.  

Apache Kafka is a 

community distributed 

event streaming 

platform capable of 

handling trillions of 

events a day. Initially 

conceived as a 

messaging queue, 

Kafka is based on an 

abstraction of a 

distributed commit 
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 Apache ActiveMQ RabbitMQ Apache Kafka 

The basis of ActiveMQ 

is JMS – the Java 

Messaging Service. JMS 

is an API 

implementation within 

J2EE (Java Enterprise). 

 

log. Kafka has quickly 

evolved from 

messaging queue to a 

full-fledged event 

streaming platform, 

since its creation by 

LinkedIn in 2011. [16] 

Language Java Erlang Scala 

Cross 

Platform 

Yes Yes Yes 

Opensource Yes Yes Yes 

Multiple 

Languages 

Yes, it supports Pearl, 

Ruby on Rails, C++, C, 

C#, Jekejeke Prolog, 

Haskell, Go, Erlang, 

Python, Pike, Racket, 

Netlogo, Haxe, Node.js 

Yes, it supports C, C++, 

PHP, Python, Ruby, 

Erlang, Objective-C, 

Perl, Haskell, Go, Java, 

Javascript, Rust 

Yes, it supports Go, 

Haskell, OCaml, 

Python, PHP, C#, 

Node.js, Ruby 

Protocols XMPP, WS, 

WebSocket, WSIF, 

OpenWire, MQTT, 

AMQP, REST, RSS, 

HTTP, MQTT, AMQP, 

STOMP 

Does not support 

message protocols 
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 Apache ActiveMQ RabbitMQ Apache Kafka 

Stomp, Atom, AUTO, 

WS Notification 

Brokers Can be deployed with 

P2P topologies as well 

as brokers. 

Only Broker Only Broker 

Tools ActiveMQ Admin The RabbitMQ admin 

which is a browser 

based UI management 

plugin and command 

line tool 

 

Synchronous/ 

Asynchronous 

By default it is 

synchronous. It can be 

made asynchronous by 

setting the 

useAsyncSend property 

Supports both 

asynchronous and 

synchronous methods 

Inherently 

asynchronous 

Basic Message 

Patterns 

Publisher – Subscriber 

and Queues 

Message Queue, PUB-

SUB, ROUTING, RPC 

like REQ-REP, but not 

the same. 

Publisher - Subscriber 

Who uses it FuseSource, Dopplr, 

gnip, RomTrac, 

University of 

Reddit, Vine, CircleCI, 

Trivago, 9GAG, Code 

Linkedin, Spotify, 

Uber, Tumbler, 

Goldman Sachs, 
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 Apache ActiveMQ RabbitMQ Apache Kafka 

Washington, CSC, STG 

Technologies. 

School, 500px, 

HeadHunter 

 

PayPal, Box, Cisco, 

CloudFlare, and 

Netflix 

Table 1. Comparison between ActiveMQ, RabbitMQ and Kafka. 
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CHAPTER 4. 

PERFORMANCE TEST ENVIRONMENT 

This chapter explains the various environments that are setup for measuring the performance of 

the message queuing brokers. The hardware used in the setup along with how the software 

environment was setup is explained. The various performance measurement parameters used to 

evaluate the performance have been explained. The performance of the brokers is evaluated across 

different model architectures that can be setup for the brokers. The brokers are evaluated based on 

all the above-mentioned factors. 

4.1 Hardware Environment 

The underlying environment is common for all the three message Queues: 

• Operating System - Ubuntu (64 bit) 

• RAM – 4 GB  

• Hard Drive – 32 GB 

4.2  Software Environment 

The setup of the brokers and all the supporting tools used for the benchmarking is explained in this 

section. 

4.2.1 ActiveMQ 

• Version: 5.15.9 

• Setup: For the setup of ActiveMQ, the broker as well as the Producers and Consumers were 

setup on the same machine. The model used for passing messages is Publisher-Subscriber. In 

a Publisher-Subscriber model, the producers are decoupled from the consumer. This means 
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that the producer does not know how many consumers are interested in the message that it has 

published [17]. 

4.2.2 RabbitMQ 

• Version: 3.7.14 

• Setup: The broker, producers and consumers for RabbitMQ were all setup on a single machine. 

The publisher-subscriber model is used. This a pattern in which an application publishes 

messages which are consumed by several subscribers [18]. RabbitMQ is developed using 

Erlang and is required to run the tool. 

• Erlang Version: 21.3 

4.2.3 Kafka 

• Version: 2.2.0 

• Setup: For Kafka, the broker, producers and consumers are setup on a single machine. Kafka 

supports only the publisher-subscriber model. It also requires Zookeeper. 

• Zookeeper Version: 3.4.13 

4.3 Performance Measurement Parameters 

To measure the performance of a broker, four aspects where considered: 

A. Throughput 

Throughput is measured as the total number of messages produced or consumed per second. Here 

the message size and number of messages passed is constant across the three brokers as 50B and 

1000000 messages respectively. There is no delay between the production of two messages. 
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B. Latency by Number of Messages 

Latency is the mean latency in milli-seconds for a message of 50B and is calculated over the 

number of messages sent. 

C. Latency by Message Size 

Latency by message size is the mean latency in milli seconds for a total of 1GB data distributed 

according to message sizes of 256 Bytes, 1 Kilo Byte, 5 Kilo Byte and 1 MB. Unlike the previous 

latency, the number of messages is not constant across all message sizes. Instead, it is 3906250, 

1000000, 200000, 1000 messages respectively. 

D. Total time taken for the entire transfer 

Total time taken for the entire transfer of data is the time measured in seconds for the entire 

transaction of 1 GB data. 

4.4 Latency Calculation 

HDR Histogram is used for the calculation of Latency. Coordinated omission is attempted to be 

corrected by filling in additional samples when a request falls outside of its expected interval. 

For example, latency is normally calculated as follows: 

1. Timestamp before request is noted, t0. 

2. Synchronous request is made. 

3. Take a note of the timestamp after request, t1. 

4. Calculate Latency t1-t0. 

5. Repeat as needed for request schedule. 
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This approach works as expected if our requests fit within the specified request schedule. Suppose 

we are issuing 100 requests per second and each request takes 10 ms to complete, it works. 

However, if one request takes 100 ms to complete, this means only one request was issued during 

those 100 ms when, according to our schedule, we should have issued 10 requests in that window. 

Nine other requests should have been issued, but the benchmark effectively coordinated with the 

system under test by backing off. Those nine requests waited in line—one for 100 ms, one for 90 

ms, one for 80 ms, etc. Most benchmarks don’t capture this time spent waiting in line, yet it can 

have a dramatic effect on the results. HDR Histogram handles this issue. 

4.5  Performance evaluation against various models 

Along with the Performance Measurement Parameters mentioned in Section 4.4, the performance 

of the brokers was also evaluated against various types of models that the brokers support namely: 

• Single Producer and Consumer 

 

 

 

Figure 10. Single Producer-Consumer Setup. 

 

Producer Consumer 

Queue 
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Here, as shown in Figure 10 a queue/topic has a single pair of producer and consumer attached to 

it. This model can be used when there is not much data to be passed between two applications. 

• Single Producer – Multiple Consumers 

Here as shown in Figure 11, a queue/topic has two or more consumers listening to it. Once a 

message is pushed to the queue, both the consumers pull the same message. This model is useful 

when the same message needs to go to two separate applications. 

 

 

 

Figure 11. Single Producer-Multiple Consumer Setup. 

 

 

• Multiple Producers – Single Consumer 

Here as shown in Figure 12, two or more producers push messages onto the queue and there is one 

consumer that pulls all the data. This model is used when the listening application works with 

multiple other applications and needs data from them. 

Producer Consumers 

Queue 
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Figure 12. Multiple Producers-Single Consumer Setup. 

 

 

• Multiple Producer and Consumer 

Here as shown in Figure 13, there are multiple producers pushing messages to the queue and 

multiple consumers listening and consuming all the incoming messages. This is needed when there 

are multiple applications working with each other. There is no limit to the number of producers 

and consumers that can be attached to a queue. 

 

 

 

Figure 13. Multiple Producer-Consumer Setup. 

Producers Consumer 

Queue 

Producers Consumer 

Queue 
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CHAPTER 5. 

PERFORMANCE ANALYSYS 

 

5.1  Single Producer and Consumer 

In Single Producer-Consumer model, one producer pushes messages to the queue and at the other 

end there is only one consumer listening at a time. There can be multiple consumers at the other 

end, but they will be configured as master-slave i.e. the secondary consumer only listens to the 

queue when its master shuts down thus becoming the master itself. 

 

 

 

Figure 14. Single Producer-Consumer Throughput. 
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Figure 14 shows the throughput for producers and consumers. For measuring the throughput 

1000000 messages each of 50 Bytes are sent in succession without any delay. As the graph shows, 

for ActiveMQ the throughput for sending and receiving messages is lower than the other two 

message queues. Kafka sends the highest number of messages sent per second, but the 

consumption of messages is not as fast as pushing messages to the topic. Even though RabbitMQ 

does not publish messages as fast as Kafka, the sending and receiving throughput is almost the 

same. 

 

 

 

Figure 15. Latency by Number of Messages 1:1. 

 



40 

 

Figure 15 measures the latency of the message queues based on the number of messages it sends 

over the queue/topic. Here, each message sent is of 50 Bytes. As shown in the chart, the mean 

latency for ActiveMQ goes on increasing as the number of messages increases. The Latency for 

Kafka is somewhat constant and the latency for RabbitMQ fluctuates initially but becomes 

constant with the increase in the number of messages. 

 

 

 

Figure 16. Latency by Message Size 1:1. 
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Figure 16 Measures the latency based on the size of the message. Here, messages of various sizes 

namely, 256B, 1KB, 5KB and 1MB are taken into consideration. The total size of data sent over 

is 1 GB. Hence, the number of messages sent for each message size varies i.e. 3906250, 1000000, 

200000, 1000 respectively. The Mean Latency for ActiveMQ decreases with an increase in the 

message size. This is because of the increased number of overheads associated with smaller size 

data and its respective number of messages. The latency for Kafka and RabbitMQ remains constant 

irrespective of the message size. 

 

 

 

Figure 17. Time Taken by Message Size 1:1. 
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Figure 17 shows the time taken for an entire exchange of messages to happen based on the message 

size and number of messages. In this, the total data transferred between the producer and consumer 

is 1GB hence the number of messages sent varies depending on the size of the message. As shown 

in the chart, the time taken is maximum for ActiveMQ when the size of the message is the smallest 

i.e. 256 Bytes. As the size of the messages increase the difference between the time is not much 

for all three brokers. 

5.2  One Producer – Two Consumers 

In One Producer - Two Consumers model, one producer pushes messages to the queue and at the 

other end there are two consumers listening at a time. This means that any message pushed to the 

queue, will be consumed by both the consumers. 
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Figure 18. One Producer- Two Consumer Throughput. 

 

 

Figure 18 shows the throughput for single producer and two consumers. For measuring the 

throughput 1000000 messages each of 50 Bytes are sent in succession without any delay. The 

throughput at consumer end is the average throughput of the two consumers. As the graph shows, 

for ActiveMQ the throughput for sending and receiving messages is lower than the other two 

message queues. Kafka sends the highest number of messages sent per second, but the 

consumption of messages is not as fast as pushing messages to the topic. Even though RabbitMQ 

does not publish messages as fast as Kafka, the sending and receiving throughput is almost the 

same. 
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Figure 19. Mean Latency by Number of Messages 1:2. 

 

 

Figure 19 measures the latency of the message queues based on the number of messages it sends 

over the queue/topic. Here, each message sent is of 50 Bytes. The mean latency calculated in the 

average latency between the two consumers. The Mean Latency for ActiveMQ increases up to a 

certain number of messages and then starts decreasing. The latency for Kafka is constant whereas 

RabbitMQ like ActiveMQ shows a decrease after an initial increase. 
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Figure 20. Mean Latency by Message Size 1:2. 

 

 

Figure 20 Measures the latency based on the size of the message. Here, messages of various sizes 

namely, 256B, 1KB, 5KB and 1MB are taken into consideration. The total size of data sent over 

is 1 GB hence the number of messages sent for each message size varies. The mean latency 

calculated in the average latency between the two consumers. The Mean Latency for ActiveMQ 

decreases with an increase in the message size. The latency for Kafka and RabbitMQ remains 

constant irrespective of the message size. 
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Figure 21. Time taken by Message Size 1:2. 

 

 

Figure 21 shows the time taken for an entire exchange of messages to happen based on the message 

size and number of messages. In this, the total data transferred between the producer and consumer 

is 1GB hence the number of messages sent varies depending on the size of the message. As shown 

in the chart, the time taken is maximum for ActiveMQ when the size of the message is the smallest 

i.e. 256 Bytes. As the size of the messages increase the difference between the time is not much 

for all three brokers. 

5.3  Two Producers – One Consumer 

In Two Producer - One Consumers model, two producers push messages to the same queue and at 

the other end there is only one consumer listening. In this case, both the producers push the same 

message onto the queue. 
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Figure 22. Two Producer - One Consumer Throughput. 

 

 

Figure 22 shows the throughput for two producers and one consumer. For measuring the 

throughput 1000000 messages each of 50 Bytes are sent in succession without any delay. The 

throughput at producer end is the average throughput of the two producers. As the graph shows, 

for ActiveMQ the throughput for sending and receiving messages is lower than the other two 

message queues. Kafka sends the highest number of messages sent per second, but the 

consumption of messages is not as fast as pushing messages to the topic. Even though RabbitMQ 

does not publish messages as fast as Kafka, the sending and receiving throughput is almost the 

same. The sender throughput is the average throughput of the two producers. 
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Figure 23. Mean Latency by Number of Messages 2:1. 

 

 

Figure 23 measures the latency of the message queues based on the number of messages it sends 

over the queue/topic. Here, each message sent is of 50 Bytes. The mean latency calculated is the 

average latency between the two producers. The Mean Latency for ActiveMQ increases up to a 

certain number of messages and then starts decreasing. The latency for Kafka shows a linear 

increase whereas RabbitMQ shows fluctuations. 
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Figure 24. Mean Latency by Message Size 2:1. 

 

 

Figure 24 Measures the latency based on the size of the message. Here, messages of various sizes 

namely, 256B, 1KB, 5KB and 1MB are taken into consideration. The total size of data sent over 

is 1 GB hence the number of messages sent for each message size varies. The mean latency 

calculated in the average latency between the two producers. The Mean Latency for ActiveMQ 

decreases with an increase in the message size. The latency for Kafka and RabbitMQ remains 

constant irrespective of the message size. 



50 

 

 

Figure 25. Time taken by Message Size 2:1. 

 

 

Figure 25 shows the time taken for an entire exchange of messages to happen based on the message 

size and number of messages. In this, the total data transferred between the producer and consumer 

is 1GB hence the number of messages sent varies depending on the size of the message. As shown 

in the chart, the time taken is maximum for ActiveMQ when the size of the message is the smallest 

i.e. 256 Bytes and decreases as the message size increases. As the size of the messages increase 

the difference between the time is not much for all three brokers. 

5.4  Two Producers – Two Consumers 

In Two Producer - Two Consumers model, two producers push messages to the same queue and 

at the other end there are two consumers listening. In this case, both the producers push the same 

message onto the queue and both the consumers consume the same message. 



51 

 

 

Figure 26. Multiple Producer – Consumer Throughput. 

 

 

Figure 26 shows the throughput for two producers and one consumer. For measuring the 

throughput 1000000 messages each of 50 Bytes are sent in succession without any delay. The 

throughput at producer end is the average throughput of the two producers. As the graph shows, 

for ActiveMQ the throughput for sending and receiving messages is lower than the other two 

message queues. Kafka sends the highest number of messages sent per second, but the 

consumption of messages is not as fast as pushing messages to the topic. Even though RabbitMQ 

does not publish messages as fast as Kafka, the sending and receiving throughput is almost the 

same. The sender throughput is the average throughput of the two producers. 



52 

 

 

Figure 27. Latency by Number of Messages 2:2. 

 

 

Figure 27 measures the latency of the message queues based on the number of messages it sends 

over the queue/topic. Here, each message sent is of 50 Bytes. The mean latency calculated is the 

average latency between the two producers. The Mean Latency for ActiveMQ increases up to a 

certain number of messages and then starts decreasing. The latency for Kafka shows a linear 

increase whereas RabbitMQ shows fluctuations. 
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Figure 28. Latency by Message Size 2:2. 

 

 

Figure 28 Measures the latency based on the size of the message. Here, messages of various sizes 

namely, 256B, 1KB, 5KB and 1MB are taken into consideration. The total size of data sent over 

is 1 GB hence the number of messages sent for each message size varies. The mean latency 

calculated in the average latency between the two producers. The Mean Latency for ActiveMQ 

decreases with an increase in the message size. The latency for Kafka and RabbitMQ remains 

constant irrespective of the message size. 



54 

 

 

Figure 29. Time taken by Message Size 2:2. 

 

 

Figure 29 shows the time taken for an entire exchange of messages to happen based on the message 

size and number of messages. In this, the total data transferred between the producer and consumer 

is 1GB hence the number of messages sent varies depending on the size of the message. As shown 

in the chart, the time taken is maximum for ActiveMQ when the size of the message is the smallest 

i.e. 256 Bytes and decreases as the message size increases. As the size of the messages increase 

the latency is almost the same for RabbitMQ and Kafka but higher for ActiveMQ. 
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CHAPTER 6. 

CONCLUSION AND FUTURE WORK 

 

On studying the graphs in Chapter 5, the following things have come forward for each of the 

message broker. 

6.1  ActiveMQ 

ActiveMQ is an implementation of AMQP. It ensures message delivery. Supports both persistent 

and non-persistent message delivery. By default, it is asynchronous but can be setup as 

synchronous. Delivery of messages is guaranteed by using acknowledgements due to which its 

latency is high. The sender and receiver throughput are good as it does not have much of a 

difference across all four models. However, as compared to Kafka the number of messages sent 

per second is very low. Due to guaranteed acknowledgements, the latency is higher for smaller 

size messages with many messages. The latency goes on decreasing as the message size increases 

and the total number of messages to be exchanged is less. This is observed across all the four 

models. 

6.2  RabbitMQ 

RabbitMQ is an implementation of AMQP. It ensures message delivery. Supports both persistent 

and non-persistent message delivery. By default, it is asynchronous but can be setup as 

synchronous. The sender and receiver throughput almost match hence making it fast. But like 

ActiveMQ, due to guaranteed acknowledgement the throughput is not a match to Kafka. Latency 

keeps fluctuating when the message size is low, and the number of messages goes on increasing 
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across all the four models. Latency is also high when the number of producers increases, 

irrespective of the number of consumers listening. Performs best when the message size is high 

and the total number of messages to be sent is comparatively lower. 

6.3  Kafka 

Kafka was originally developed by LinkedIn for Message Queuing but was later built up to be a 

data streaming platform. It is specially designed to operate in clusters so that multiple clients can 

access it. It makes use of ZooKeeper which helps the brokers to integrate seamlessly and it 

internally take care of cluster rebalancing. Messages can be easily replayed if there is a failure at 

the customer end. Kafka clusters can be easily maintained using ZooKeeper but that also means 

that we have an additional module to maintain. Although the receiver lags in consuming messages 

as compared to the producer, the throughput of Kafka is unmatched. This is not hindered by the 

size of the message no matter how small or larger or the total number of messages. The latency for 

smaller messages can show a slight linear increase as the number of messages increase but is still 

way less than ActiveMQ or RabbitMQ. The latency is almost constant as the message size 

increases. 

The performance tests conducted in this thesis do not include adding any restrictions onto the 

brokers or the queues to test performance. There are various ways to hinder the performance of 

message queues and then benchmark them. There is a lot of scope to explore and work on those 

aspects of Message Queues. 
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