
UNLV Theses, Dissertations, Professional Papers, and Capstones

December 2018

Scheduling Two Machines with Dissimilar Costs Scheduling Two Machines with Dissimilar Costs

Madhurupa Moitra
madhurupamoitra@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Moitra, Madhurupa, "Scheduling Two Machines with Dissimilar Costs" (2018). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 3507.
https://digitalscholarship.unlv.edu/thesesdissertations/3507

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3507?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

i

SCHEDULING TWO MACHINES WITH DISSIMILAR COSTS

By

Madhurupa Moitra

Bachelor of Technology, Computer Science

Budge Budge Institute of Technology

West Bengal University of Technology, India

2016

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

December 2018

©Madhurupa Moitra, 2018

All Rights Reserved

ii

Thesis Approval

The Graduate College
The University of Nevada, Las Vegas

November 15, 2018

This thesis prepared by

Madhurupa Moitra

entitled

Scheduling Two Machines with Dissimilar Costs

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science

Wolfgang Bein, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Lawrence L. Larmore, Ph.D.
Examination Committee Co-Chair

Laxmi Gewali, Ph.D.
Examination Committee Member

Venkatesan Muthukumar, Ph.D.
Graduate College Faculty Representative

iii

ABSTRACT

Scheduling Two Machines with Dissimilar Costs

By

Madhurupa Moitra

Dr. Wolfgang Bein

Committee Chair
Professor

Department of Computer Science

University of Nevada, Las Vegas

Dr. Lawrence L. Larmore
Committee Co-Chair

Professor

Department of Computer Science

University of Nevada, Las Vegas

We consider two devices, which has states ON and OFF. In the ON state, the devices use

their full power whereas in the OFF state the devices consume no energy but a constant

cost is associated with switching back to ON. Such two devices are configured with

different run and power-up costs on which a sequence of jobs must be processed. The object

is to minimize the cost. Such systems are widely used to conserve energy, for example, to

speed scale CPUs, to control data centers, or to manage renewable energy.

The problems are studied in the framework of online competitive analysis and we analyze

a number of online algorithm and give lower bounds. The objective of the algorithm is to

optimize the budget and analyzing how effectively it works.

iv

ACKNOWLEDGEMENT

No endeavor is effort of an individual. I would like to thank my advisor, Dr. Wolfgang

Bein with all of his mentorship throughout this entire process. His dedication, guidance,

and friendly demeanor inspired me to strive ahead in my research and also inspired me to

grow as a person. I would like to thank my co-mentor Dr. Lawrence L. Larmore, who not

only provided his support but also provided his valuable guidance on the research. His

willingness to always give me advice in various stages of my research and my academic

career will not be forgotten and I will always be grateful.

I am also grateful to the members of my committee for their patience and support in

overcoming numerous obstacles I have been facing through my research. I am extremely

grateful to Dr. Laxmi Gewali too, with his direction, support and good nature, pursuing my

graduate studies seemed easier. Anytime I required his advice he was always present no

matter how busy he was. I would also like to thank Dr. Venkatesan Muthukumar upon

agreeing to be on my thesis committee in spite of his extremely busy schedule.

I would also like to express my deep gratitude towards my parents Mrs. Mira Moitra and

Mr. Moloy Kumar Moitra who has provided moral and emotional support in my life and

non-stop encouragement throughout my years of study. I would also like to thank my sister

Satarupa and my brother-in law Supratik for their consistent enthusiasm no matter what,

without their support it all would have been a different story.

v

TABLE OF CONTENTS

ABSTRACT ………………………………………………………………………..……iii

ACKNOWLEDGEMENTS……………………………………………………….........iv

TABLE OF CONTENTS…………………………………………………………...........v

LIST OF TABLES………………………………………………………………...........vii

LIST OF FIGURES…………………………………………………………....................x

CHAPTER 1 INTRODUCTION…………………………………………………..……1

1.1 Problem Definition…………..…………………………………….........1

1.2 Motivation……………………...………………………………….……4

1.3 Contribution..…………………………………………………………...5

1.4 Outline………………………………………………………….……….5

CHAPTER 2 OFFLINE ALGORITHM…………….……………………………........7

2.1 Definition…………..……………………………………......................7

2.2 No-Overlap Pre-processing…………………………………..……8

2.3 The Offline Two Machine Scheduling Problem ..…………………….10

2.4 Dynamic Program Layered Graph…………………………………….13

2.5 Calculating Minimum Path for each Critical Point using Layered Graph

Approach……………………………………………………………...15

CHAPTER 3 ONLINE ALGORITHM………………………………..………………19

3.1 Ski Rental Problem……………………..……………………………...19

vi

3.2 Online Algorithm……………………………….……………………..20

3.3 Online vs OPT …………………………………………………….......24

3.4 Key Terms……………………………………………………………..25

3.4.1 Competitive Analysis………………………………………...25

3.4.2 Competitive Ratio……………………………………………26

3.4.3 Adversary…………………………………………………….27

3.4.4 Lower Bound…………………………………………………27

3.4.5 Upper Bound…………………………………………………28

CHAPTER 4 COMPARISON BETWEEN OPT AND ONLINE ALGORITHM..…29

4.1 The Simple Lower Bound……………………….……………………..30

4.2 Proposed Online Scheduling Algorithms……………………………...31

4.3 Simulation Results……………………….…………………………...34

4.3.1 Canonical Online Algorithm versus Offline Algorithm………34

4.3.2 Improved Online Algorithm versus Offline Algorithm………49

CHAPTER 5 CONCLUSION..………………………………………………………...62

5.1 Summary……………………….……………………………………...62

5.2 Future Work…………………………………………………………...63

REFRENCES………………………………………………………………………...…64

CURRICULUM VITAE…………………………………………………………...…...66

vii

LIST OF TABLES

Table 4.3.1.1 Parameters set I……………………………….…………………………...34

Table 4.3.1.2 Input Sequence 1……………………………….………………………….34

Table 4.3.1.3 Cost comparison and competitive ratio based on Input Sequence 1………35

Table 4.3.1.4 Input Sequence 2……………………………….………………………….36

Table 4.3.1.5 Cost comparison and competitive ratio based on Input Sequence 2………36

Table 4.3.1.6 Input Sequence 3……………………………….………………………….37

Table 4.3.1.7 Cost comparison and competitive ratio based on Input Sequence 3………38

Table 4.3.1.8 Input Sequence 4……………………………….………………………….39

Table 4.3.1.9 Cost comparison and competitive ratio based on Input Sequence 4………39

Table 4.3.1.10 Input Sequence 5……………………………….………………………...40

Table 4.3.1.11 Cost comparison and competitive ratio based on Input Sequence 5……..41

Table 4.3.1.12 Parameters set II……………………………….…………………………42

Table 4.3.1.13 Input Sequence 6……………………………….………………………...42

Table 4.3.1.14 Cost comparison and competitive ratio based on Input Sequence 6……..42

Table 4.3.1.15 Input Sequence 7……………………………….………………………...44

Table 4.3.1.16 Cost comparison and competitive ratio based on Input Sequence 7……..44

Table 4.3.1.17 Input Sequence 8……………………………….………………………...45

viii

Table 4.3.1.18 Cost comparison and competitive ratio based on Input Sequence 8……..45

Table 4.3.1.19 Input Sequence 9……………………………….………………………...46

Table 4.3.1.20 Cost comparison and competitive ratio based on Input Sequence 9……..47

Table 4.3.1.21 Input Sequence 10……………………………….……………………….48

Table 4.3.1.22 Cost comparison and competitive ratio based on Input Sequence 10…....48

Table 4.3.2.1 Parameters set I……………………………….……………………….......49

Table 4.3.2.2 Input Sequence 1……………………………….……………………….....49

Table 4.3.2.3 Cost comparison and competitive ratio based on Input Sequence 1………50

Table 4.3.2.4 Input Sequence 2……………………………….……………………….....51

Table 4.3.2.5 Cost comparison and competitive ratio based on Input Sequence 2………51

Table 4.3.2.6 Input Sequence 3……………………………….……………………….....52

Table 4.3.2.7 Cost comparison and competitive ratio based on Input Sequence 3……....52

Table 4.3.2.8 Input Sequence 4……………………………….……………………….....53

Table 4.3.2.9 Cost comparison and competitive ratio based on Input Sequence 4…..…..54

Table 4.3.2.10 Input Sequence 5……………………………….………………………...55

Table 4.3.2.11 Cost comparison and competitive ratio based on Input Sequence 5……..55

Table 4.3.2.12 Parameters set II……………………………….…………………….…...56

Table 4.3.2.13 Input Sequence 6……………………………….………………………...56

Table 4.3.2.14 Cost comparison and competitive ratio based on Input Sequence 6……..56

Table 4.3.2.15 Input Sequence 7……………………………….………………………...57

Table 4.3.2.16 Cost comparison and competitive ratio based on Input Sequence 7……..57

Table 4.3.2.17 Input Sequence 8……………………………….………………………...58

ix

Table 4.3.2.18 Cost comparison and competitive ratio based on Input Sequence 8……..58

Table 4.3.2.19 Input Sequence 9……………………………….………………………...59

Table 4.3.2.20 Cost comparison and competitive ratio based on Input Sequence 9……..59

Table 4.3.2.21 Input Sequence 10……………………………….……………………….60

Table 4.3.2.22 Cost comparison and competitive ratio based on Input Sequence 10..…..60

x

LIST OF FIGURES

Fig 1.1: Power generation by renewable sources …………………………………………1

Fig 1.2: Power generation lags fulfilled by non-renewable sources……………………....2

Fig 1.3: Power generation lag as power assignments based on fig 1.2……………….…...2

Fig 2.1: Request interval for each job, which begins at si and ends at fi……….………..10

Fig 2.2: Machine state changes marked by critical points ………………………..……..11

Fig 2.3: Maximal time intervals marked by ∆……………………………………….…..11

Fig 2.4a: Weighted Layered Graph R for the request sequence at fig 2.1………...……..12

Fig 2.4b: Weighted Layered Graph R for the request sequence at fig 2.1(contd.)………12

Fig 2.5: Adjoined vertices, where ∆ is the length of the time interval, for C1, C2 and

C3…………………………………………………………………………………………13

Fig 2.6: Construction of layered graph G ……………………………………...………..14

Fig 2.7: Shortest distance from L3 to L4…………………………………………..……..15

Fig 2.8: Vertical arcs between layers Lc
- and Lc

+ for each of the five types of critical

points……………………………………………………………………………………..16

Fig 3.1: Always OFF approach for the worst-case analysis …………….……….……...22

Fig 3.2: Always ON approach for the worst-case analysis …………………..………….22

Fig 4.3.1.1 OPT for Input Sequence 1…………………………………………………...35

Fig 4.3.1.2 Canonical Online Algorithm for Input Sequence 1………………………….35

Fig 4.3.1.3 OPT for Input Sequence 2…………………………………………………...36

xi

Fig 4.3.1.4 Canonical Online Algorithm for Input Sequence 2………………………….37

Fig 4.3.1.5 OPT for Input Sequence 3…………………………………………………...38

Fig 4.3.1.6 Canonical Online Algorithm for Input Sequence 3………………………….38

Fig 4.3.1.7 OPT for Input Sequence 4…………………………………………………...39

Fig 4.3.1.8 Canonical Online Algorithm for Input Sequence 4………………………….40

Fig 4.3.1.9 OPT for Input Sequence 5…………………………………………………...41

Fig 4.3.1.10 Canonical Online Algorithm for Input Sequence 5………………………...41

Fig 4.3.1.11 OPT for Input Sequence 6………………………………………………….43

Fig 4.3.1.12 Canonical Online Algorithm for Input Sequence 6………………………...43

Fig 4.3.1.13 OPT for Input Sequence 7………………………………………………….44

Fig 4.3.1.14 Canonical Online Algorithm for Input Sequence 7………………………….45

Fig 4.3.1.15 OPT for Input Sequence 8…………………………………………………...46

Fig 4.3.1.16 Canonical Online Algorithm for Input Sequence 8………………………….46

Fig 4.3.1.17 OPT for Input Sequence 9…………………………………………………..47

Fig 4.3.1.18 Canonical Online Algorithm for Input Sequence 9………………………….47

Fig 4.3.1.19 OPT for Input Sequence 10…………………………………………………48

Fig 4.3.1.20 Canonical Online Algorithm for Input Sequence 10……………………….49

Fig 4.3.2.1 OPT for Input Sequence 1…………………………………………………….50

Fig 4.3.2.2 Improved Online Algorithm for Input Sequence 1……………………………50

xii

Fig 4.3.2.3 OPT for Input Sequence 2…………………………………………………….51

Fig 4.3.2.4 Improved Online Algorithm for Input Sequence 2……………………………52

Fig 4.3.2.5 OPT for Input Sequence 3…………………………………………………….53

Fig 4.3.2.6 Improved Online Algorithm for Input Sequence 3……………………………53

Fig 4.3.2.7 OPT for Input Sequence 4…………………………………………………….54

Fig 4.3.2.8 Improved Online Algorithm for Input Sequence 4……………………………54

Fig 4.3.2.9 OPT for Input Sequence 5……………………………………………….……55

Fig 4.3.2.10 Improved Online Algorithm for Input Sequence 5…………………………55

Fig 4.3.2.11 OPT for Input Sequence 6…………………………………………………...56

Fig 4.3.2.12 Improved Online Algorithm for Input Sequence 6…………………………..57

Fig 4.3.2.13 OPT for Input Sequence 7……………………………………………...……57

Fig 4.3.2.14 Improved Online Algorithm for Input Sequence 7…………………………..58

Fig 4.3.2.15 OPT for Input Sequence 8……………………………………………..……58

Fig 4.3.2.16 Improved Online Algorithm for Input Sequence 8…………………………..59

Fig 4.3.2.17 OPT for Input Sequence 9…………………………………………...………59

Fig 4.3.2.18 Improved Online Algorithm for Input Sequence 9…………………………..60

xiii

Fig 4.3.2.19 OPT for Input Sequence 10………………………………………………….61

Fig 4.3.2.20 Online Algorithm for Input Sequence 10……………………………………61

 1

CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Let us consider a scenario where there is a moderately populated town. In order to meet

their demand for power supply, the town uses renewable sources such as the wind energy

and solar energy. However, such sources are not always consistent as shown in fig 1.1.

fig 1.1 Power generation by renewable sources

In the figure, the power generation via the renewable sources are shown, where the green

dotted line is the power consumption demand by the town, which is assumed to be constant

for simplification purposes. As we can see the power demand supply is not properly met

in some cases. Therefore, a power plant, using non-renewable sources, is used in case of

any power shortage. Let us say there are 2 generators at the power plant, G1 and G2. On

sunny and windy days when the power generation is high as shown in fig 1.2, the power

plant is not used. However, on other days, when either of the renewable energy sources are

not enough, due to the low power generation, G1 and G2 are put to use.

 2

fig 1.2 Power generation lags fulfilled by non-renewable sources

Both the generators are scheduled according to the power generation lag. For example,

when either of the energy sources fail to meet the consumption line, either of the two

generators would be used. Similarly, in the figure above, the usage of the generators is not

consistent and is required to make decision of which generator is to be used, hence the

power generation lag can be treated as power assignments for the generators. Such as,

fig 1.3 Power generation lag as power assignments based on fig 1.2

Where ji is a set of n power assignments to be assigned to the generators, G1 and G2. This

is a typical problem in machine scheduling. It is modeled as follows: For the processing of

such assignments; the 2 machines are available from time zero onwards that can handle

only one assignment at a time. Each ongoing assignment cannot be stopped or be

interrupted but has to be passed on to the next available machine, such that no two jobs

would be handled by the same machine at the same time. Each machine has different startup

costs (1,2) and runtime costs(1, 2). Let us say, one machine’s startup cost is expensive

 3

than the other, (1<=2). We are looking for a feasible solution for the schedule of the

machines, that is, allocating each job J of a time interval of tj, so that no two jobs would be

handled by the same machine at the same time. Where online scheduling algorithm would

mean, the machines have no knowledge of the upcoming inputs, and process accordingly.

Given a feasible schedule, the objective is to find such an online algorithm where all the

jobs are completed at the lowest possible cost.

To define the problem, in other words, let us consider a set of requests defined by:

J(n) = j1, j2, j3, j4, j5, …., jn,

where n is the number of requests and the time interval,

ji = (ai, li),

where ji is the ordered pair (ai, li) that is, the arrival timestamp and the length of the job for

the ith interval and such that ai <= aj for all i<j. With the pair, we will compute the si and fi,

where si is the start time and fi is the finish time for the ith job. There are two machines:

Machine 1 and Machine 2 on which every ji on the request sequence are to be processed.

Also, every request sequence J(n) must have the property such that no three jobs should

overlap, that means [si, fi[∩ [sj, fj[∩ [sk, fk[= ∅ for any three distinct indices i, j, k.

Initially, every machine is assumed to be off, and that a machine must be turned on in order

to accept a job. After the job is finished, the machine can be turned off immediately or left

running idle, after which it will eventually accept another job or be turned off. We assume

that Machine 1 costs σ1 to turn on and ρ1 per unit time to run, either with or without a job,

while Machine 2 costs σ2 to turn on and ρ2 per unit time to run. It costs nothing to load a

 4

new job onto an idle machine, and nothing to turn a machine off. The objective is to find

such an online algorithm which gives out the lowest possible cost with every input

adversary throws in.

1.2 Motivation

The challenge of solving environmental issues has changed many aspects of the way things

operate. Power consumption in day to day life has become mandatory to us and is

increasing. Even though the use of non-renewable sources is being rapidly being replaced

with alternate sources. While there have been studies with exploring options for integrating

sustainable and renewable energy into new or existing power grid models. Smart grid

infrastructure is being designed and introduced to reduce the dependence on conventional

power generation sources. However, minimizing the power consumption is still the main

concern.

According to an IEA estimate, there has been a usage of 567 x 1020 joules of energy in

2013, equivalent to about 18.0 terawatt-hour(TWh). In this paper, given the set of incoming

requests, given the idle times, the goal is to minimize the total power consumption of

machines working from turning on until it shuts down while processing all the jobs in line.

While scheduling the requests onto the machines is quite trivial when the given set of

requests are already known. However, for this paper, we will be considering the online

model, where the set of requests are unknown to the machines until it arrives. And we must

decide which machine should be processing the current request.

 5

What drives the research for this paper is that we need such an online algorithm which

when compared with the optimal offline algorithm, during the competitive analysis, the

lower bound and the upper bound are closer, hence providing the minimal cost at every set

of inputs the adversary throws in.

1.3 Contribution

In this paper, we are considering two machines with different run and power-ups costs on

which a sequence of jobs must be processed. The object is to minimize the cost. We develop

a dynamic program to solve this problem optimally. However, in practice, the sequence of

jobs is not known in advance; instead, the jobs arrive one at a time, and a decision as to

which machine will process the jobs has to be made online, i.e., before the next job arrives.

The problem is a generalization of the noted one machine power-down problem, which is

important in the area of green computing. We analyze a number of online algorithms and

give lower bounds. We also present a number of open problems. The sole objective of the

algorithm is to optimize the budget and to analyze how effectively it works and determining

the lower bound on the performance of the algorithm to that of the optimal offline and

extensive simulation to find the upper bound on the worst-case scenario that the adversary

can put in.

1.4 Outline

In chapter 2, we discuss offline algorithm at length, how the offline task allocation takes

place. Furthermore, we will introduce a mechanism of scheduling the requests using

effective scheduling techniques, such as the dynamic offline scheduling using layered

 6

graph approach and backtracking, to obtain the minimal optimal cost for every said request.

Chapter 3 stresses the online algorithm to show how different it is from offline algorithm,

we describe more about the algorithm and how they difference. The chapter is more on the

theoretical analysis of the online algorithms with certain useful key terms.

Chapter 4 discusses the bounds for the competitiveness, most importantly the simple lower

bound. Then we propose a canonical form of the online algorithm and furthermore, provide

an improved version of the same algorithm. In the later section of the chapter, it consists

of extensive simulation using different criterions and inputs to finally compare the

performance of the online algorithm and that of the optimal offline algorithm. Chapter 5

reflects the conclusion and future work. It emphasizes the accomplishments achieved and

possible future work at the same.

 7

CHAPTER 2

OFFLINE ALGORITHM

2.1 Definition

Let us consider two machines each with an ON state and an OFF state. ON is such a state

where the machine is working until turned OFF. Each state has a base cost or unit cost.

Each machine, in the OFF state, consumes zero energy; whereas it consumes up to the full

energy potential in the ON state. The running cost of the machines in the ON state is

proportional to the usage of the time. The machines must be in the ON state in order to

process a demand. However, if one machine is in some other state while a request arrives,

and the other machine is not available, it needs to control up to the ON state, else the request

can be processed by the other machine. After the fulfillment of the demand, the machine

can revert back to being idle or the OFF state yet will bring about a power-up cost each

time a demand touches base after the machine changed to the lower control state. Moreover,

when the machine is in ON state processing a request, it cannot be interrupted by another

incoming request. The request may have to be delayed for processing or passed to the next

available machine.

In between the two states ON and OFF, the machines can process as many requests as they

arrive. With all the pointers keeping in mind, the objective is to limit the power utilization

expected to process all the demands. There are two types of algorithms dedicated to

 8

machine scheduling; one being the offline algorithm. Offline schedule algorithms are often

applied to such set of inputs already given, in which we already are aware of what is yet to

come. Offline algorithms or also called OPT to give the optimal schedule results since the

set of inputs are already known, hence is easier to strategize the inputs accordingly for

processing such that the power utilization is minimum at the optimal condition. In this

paper, we will discuss more the offline optimal algorithm, and how the algorithm schedules

each input request sequence at length using layered approach.

In this algorithm, we assume that there are two machines A and B, where the startup or the

ignition cost for the machines is defined by , more likely as A and B without loss of

generality A = B. Each machine has a runtime cost which we name as ρ, which is the

usual cost bore by the machines while being turned on and running. We name the runtime

cost for machine A and machine B as ρA and ρB. As we already know about the set of

requests arrive it is easier to determine how the incoming requests can be distributed.

Following on, we will discuss the offline scheduling algorithm at length.

We first redefine the input sequence in such a way that there are only two machines

required at any given time.

2.2 No-Overlap Pre-processing

Let us consider a set of requests defined by:

J(n) = j1, j2, j3, j4, j5, …., jn,

where n is the number of requests and the time interval,

ji = (ai, li),

 9

where ji is the ordered pair (ai, li) that is, the arrival timestamp and the length of the job for

the ith interval. With the pair, we will compute the si and fi, where si is the start time and fi

is the finish time for the ith job.

J is a set of jobs <si, fi> with the following operators:

o makeempty(J) initializes J to be empty.

o min(J) returns the finishing time of the item on J having minimum finish time but

does not delete it.

o deletemin(J) deletes the item of J having minimum finish time, but does not return

a value.

o size(J) returns the number of items in J. The size of J is never more than 3, the

number of machines plus 1.

o insertJ(s, l) inserts a job <s, s+l> into J

This algorithm schedules the jobs and computes the values of si and fi:

makeempty(J)

 insertJ(0, infinity)

 for i := 1 to n do

 if min(J) le ai

 then si := ai

 deletemin(J)

 insertJ(si, li)

 else if size(J) < 3

 then si := ai

 10

 insertJ(si, li)

 else

 si := min(J)

 deletemin(J)

 insertJ(si, li)

The above algorithm redefines the input sequence in such a way that at any given time

there are only two machines required. In the next section, we will discuss weighted layered

graph and its applications on the optimal scheduling with certain examples.

2.3 The Offline Two Machine Scheduling Problem

We consider a sample request sequence J, which is a set of jobs ji = (si, li) and is defined

by:

J(n) = j1, j2, j3, j4,

Where fi = si + li,

fig 2.1 Request interval for each job, which begins at si and ends at fi.

At any given time, each machine, say Machine 1 and Machine 2, is in one of the three

states: off, idle or working. We introduce critical points, ck, which defines the change in

the machine states, where k is the number of state changes, as shown fig 2.2 below:

 11

fig 2.2 Machine state changes marked by critical points

such that,

s1 = c1 < s2 = c2 < s3 = c3 < s4 = c4 < s5 = c5 < s6 = c6 < s7 = c7 < s8 = c8

If ck and ck+1 are consecutive critical points, and corresponds to the length of the maximal

time interval during which the machine configuration does not change, such that,

k = ck+1 - ck

fig 2.3 Maximal time intervals marked by ∆

The machine states: off, idle and working can be abbreviated as F, I and W. Since there are

two machines, there are nine combinations of states of the two machines, abbreviated as

FF, IF, WF, FI, II, WI, FW, IW and WW, where the first letter refers to Machine 1.

However, we split the state WW into two configurations, which we call as AB and BA.

For example, if two jobs running are ji and jy, where i < y, we say ji is the older job and jy

is the newer job. Such that, AB refers to such a configuration if the older job is on Machine

1 and BA, when the older job is on machine 2. Thus there are ten machine configurations.

 12

There are five types of critical points:

o A critical point c has type 01 if there is no job running before c and one job starts at

c.

o A critical point c has type 10 if there is one job running before c and that job finishes

at c.

o A critical point c has type 12 if there is one job running before c and another job

starts at c.

o A critical point c has type 21A if there are two jobs running before c and the older

job finishes at c.

o A critical point c has type 21B if there are two jobs running before c and the newer

job finishes at c.

fig 2.4a Weighted Layered Graph R for the request sequence at fig 2.1

fig 2.4b Weighted Layered Graph R for the request sequence at fig 2.1(contd.)

 13

In the figure above, L represents layers of the graph. Graph R has two consecutive layers

for each critical point c, Lc
- and Lc

+. Each layer is a copy of Cm, where Cm be the set of

machine configurations for m jobs running. For m = 0, 1, 2, C0=[FF, IF, F1, II], C1=[WF,

FW, WI, IW] and C2 = [AB, BA].

o If c has type 01, then Lc
- is a copy of C0 and Lc

+ is a copy of C1.

o If c has type 10, then Lc
- is a copy of C1 and Lc

+ is a copy of C0.

o If c has type 12, then Lc
- is a copy of C1 and Lc

+ is a copy of C2.

o If c has type 21A or 21B, then Lc
- is a copy of C2 and Lc

+ is a copy of C1.

The weights of the vertices joining Lck
- and Lck+1

+ is

o 0 if the machine configuration is FF during the interval.

o ∆1 if the machine configuration is IF or WF during the interval.

o ∆2 if the machine configuration is FI or FW during the interval.

o ∆1 + ∆2 if the machine configuration is II, WI, IW, AB or BA during the interval.

fig 2.5 Adjoined vertices, where ∆ is the length of the time interval, for C1, C2, and C3

2.4 Dynamic Program Layered Graph

In this section, we discuss weighted layered graph, in order to reduce the optimal schedule

problem to the minimum path problem. We define a layered graph to be a directed graph

 14

G whose set of vertices is the union of a sequence of layers, L1, L2,…,Ln, such that every

arc of G is between consecutive layers, i.e., every arc is of the form (x,y) where x Li and

y Li+1 for some i. A weighted layered graph is a layered graph G together with a weight

on each arc. If |Li| = O(1) and a start vertex in L1 is given, the minimum path problem for

G can be solved in O(k) time by dynamic programming.

fig 2.6 Construction of layered graph G

Each arc connects vertices of successive layers. The arcs from Lck
- to Lck+1

+ as shown in

fig 2.6, are called horizontal, they correspond to intervals between critical points. Whereas

the arcs from Lc
- and Lc

+ we call vertices, they correspond to the change of the machine

state configurations, which we assume takes zero time. In the fig above, there are seven

layers Li, consisting of nodes or vertices V1, V2, V3, V4, and V5. Since layered graphs are

used to find the minimum path between each layer. It is defined as,

E[V] = Shortest path from a to b

Let us assume, we already found the minimum path till L3, and the node l has been found

to be among the nodes in the minimum path. Let us particularize from node l to the next

shortest path node:

 15

fig 2.7 Shortest distance from L3 to L4

Assuming we know the weights of each arcs connecting between the two layers. In the fig

above, node l is connected to 3 more nodes, therefore,

Let u be the next node containing the minimum path amongst the three nodes, and let d[l,Vi]

be the weight of the arc. That is,

E[u]= min{E[l]+ d [l, V1], E[l]+ d [l, V2], E[l]+ d [l, V3]}

Calculating the above formula would provide the minimum path from node l to node u.

This is, however, a small snippet of how layered graph are useful in determining the

shortest distance from one layer to another. In the next section, we will try to determine

minimum path using the previous example as discussed in section 2.3.

2.5 Calculating Minimum Path for each Critical Point using Layered

Graph Approach

So far we have discussed how the layered graph approach works, and how can it be applied

to determine the shortest path between each layer, we have also discussed various key terms

 16

used in the graph. Arcs, as discussed earlier, are such lines which connect each vertex of

successive layers. We also specified the weights of each arc as seen in the example in

section 2.3. A vertical arc is between a node of Lc
- and Lc

+. Each such arc corresponds to a

change of machine state configurations. Taking the same weights specified, the cost of the

arc is 1 if Machine 1, but not Machine 2 is turned on, similarly, 2 is Machine 2, and not

Machine 1, is turned on, and 0 if neither of the Machines is turned on. The 28 possible

changes of the states, along with weights of corresponding arcs, as shown in fig 2.8. For

each critical point c, the subgraph of R consisting of Lc
- and Lc

+ and the arcs between them

are illustrated as one of the five subfigures, one corresponding to each of the five types of

critical point.

fig 2.8 Vertical arcs between layers Lc
- and Lc

+ for each of the five types of critical points

The formulations for the shortest distance of the vertical arcs is as below:

For Type 01:

E[WF] =min{E[FF]+ 1 , E[IF]}

 17

E[FW] =min{E[FF]+ 2 , E[FI]}

E[WI] =min{E[FI]+ 1 , E[II]}

E[IW] =min{E[IF]+ 2 , E[II]}

For Type 12:

E[AB] =min{E[WF]+ 2 , E[WI]}

E[BA] =min{E[FW]+ 1 , E[IW]}

For Type 10:

E[FF] =min{E[WF], E[FW]}

E[IF] =min{E[WF], E[IW]}

E[FI] =min{E[FW], E[WI]}

E[II] =min{E[WI], E[IW]}

For Type 21A:

E[WF] =min{E[BA]}

E[FW] =min{E[AB]}

E[WI] =min{E[BA]}

E[IW] =min{E[AB]}

For Type 21B:

E[WF] =min{E[AB]}

E[FW] =min{E[BA]}

E[WI] =min{E[AB]}

E[IW] =min{E[BA]}

 18

Given the shortest paths for each critical point, one can successfully backtrack from the

FF, as in fig 2.4b, that is the destination, to FF, as in fig 2.4a, that is the source.

 19

CHAPTER 3

ONLINE ALGORITHM

In this chapter, we give an informal introduction to the online competitive model. We begin

by revisiting a classical problem in the area of online competitive algorithms: The Ski

Rental Problem. This problem is related to the one-machine version of the problem studied

in this thesis. The chapter then continues to elaborate further on the one-machine problem

and uses this scenario to illustrate the terminology around online competitive analysis.

3.1 Ski Rental Problem

We consider such a machine with two states, that are the ON and OFF state. The problem

we will be referring to is to a well-known problem: ski-rental problem. [1, 5, 6] The ski-

rental problem introduces a scenario where you are new to skiing, and you ask yourself if

you are to buy or rent the skis. Ignoring the other factors, such as which model are you

going for, or which ski place you want to go, the problem arises when you are not aware

of how often will you go skiing. Since the future is quite unclear, you must make a decision

which would seem viable in terms of being financially better off at that point.

In this problem, we need to decide whether one should keep on renting every time, or

switch to buying the skis irrespective of the frequency one goes for skiing. The decision

we take affects how the present works out and how the future will turn out to be. The basic

version of the problem can be explained as that you are suddenly invited by a friend for

 20

skiing, who by instance did not inform you about the days you will be staying and skiing,

due to a number of factors such as extremely bad weather.

Since you are going skiing for an unknown number of days, let us assume, if one chooses

to rent skis, they have to pay $30, whereas buying them costs $300. If you know how many

times you would go skiing, making the decision would have been clearer. If you are to ski

at least 10 times, buying the pair of skis would seem to be a viable option, whereas, if you

are to go less than 10 times, you would be financially better off renting the skis every time.

But due to the uncertainty in the future, how would you proceed with the decision, and

what decision would it be?

3.2 Online Algorithm

[10] In other words, you are faced with an online problem, as the problem arrives without

any knowledge of future events. Offline problems are such problems where we already

know what is yet to come, hence makes it easier to react at the present point of time. These

problems are somehow of ideal conditions and give out the optimal solution. Here the other

type of power down strategy comes in, online problems dealing with real time. In an online

problem, data is continuously supplied as the input; data supplied at time i, would give out

the ith output. Since outputs are formed without complete knowledge of the future inputs,

online algorithms cannot produce the optimal solution. The main goal of an online

algorithm is to approximate the performance by an offline algorithm, which gives out the

optimal results. Thus, online algorithms are said to be competitive if its performance is

close to that of the optimal offline algorithm on each input.

 21

An online algorithm is such an algorithm which should satisfy an online problem. Online

algorithms are in a way approximation algorithms, where they tend to approximate the

performance of an optimal offline algorithm for the same problem. An optimal offline

algorithm is an algorithm which is aware of the future events in its entirety and deals with

the problem at a better financial position.

In the ski rental problem, one needs to choose whether to rent the skis or to buy them,

depending on how frequent one is to go skiing. The online algorithm tries to determine

whether to rent the ski or to buy them, that is whether to pay a small chunk every time one

goes for skiing or to pay a hefty sum of money and be as is. When an online algorithm is

analyzed, the performance of the algorithm will be gauged with the help of competitive

analysis. Since competitive analysis is a method for worst-case analysis, the adversary is

called in.

Regardless of any strategies used, the adversary determines exactly at what point you will

never go skiing again. Hence, making the online algorithm to pay more than what the

optimal offline algorithm. Below are two such online algorithm strategies where the

adversary makes the frequency of skiing more or less with a view to creating the worst

possible outcomes by the online algorithm.

A. Always OFF Algorithm

In an online algorithm scheduling, since we are not always sure about the future events that

might take place. [3] One approach is to always turn off the machine after every other

processing of requests coming in. This has a competitive ratio of infinity. Though it works

 22

perfectly fine if the interval between the requests is quite apart. The algorithm falls apart

when the requests are consecutive.

Fig 3.1 Always OFF approach for the worst-case analysis

In the fig above, it shows how every job after its completion, the machine switches to its

OFF state. If we are to apply the ski rental problem to the algorithm and increasing the

frequency of the above set of requests or skiing, for example, if renting a pair of ski costs

$30 and buying costs $300, and Always OFF algorithm in relation to the problem means

renting the ski every time. So the adversary increases the frequency of going for skiing.

Let the frequency be j. If j <= 10, the cost of renting would be 30j, which is, 30j <= 300.

But if j>10, instead of paying 300, the algorithm ends up paying 30j which twice than that

of the optimal offline algorithm.

B. Always ON Algorithm

While scheduling an online algorithm, another strategy is to keep the machines on after

they have been turned on. Staying ON between the requests has a competitive ratio of

infinity. With requests being consequent that provide for the best case. But the worst-case

would when the interval between the requests is quite big.

Fig 3.2 Always ON approach for worst-case analysis

 23

The Always ON algorithm works in opposition to the previous algorithm, the fug above

shows that after processing every job request in the sequence, the machine is kept ON.

Though it works perfectly fine for the first six incoming sequences. However, the algorithm

completely falls apart when there are no incoming requests. In the ski rental scenario, when

renting a pair of skis is $30 and buying them is $300, the online algorithm decides to buy

the ski, the adversary now makes sure that one never goes skiing.

In other words, let the frequency be j. If j <= 10, the cost of renting would be 30j, which

is, 30j<=300. According to the optimal offline cost, one can pay min (30j, 300), since the

algorithm ends up paying 300, the adversary makes it a point of never going skiing. If j =

1, instead of paying 30, the algorithm pays 300, ten times what the optimal offline

algorithm paid.

We can clearly see that for a machine with 2 states, OFF and ON, the power-down problem

has a competitive ratio of 2. The worst-case occurs when:

o The machine turns off just before the next request.

o The machine stays on and requests do not arrive.

Optimal offline algorithms due to their added advantage of having knowledge on the future.

It provides the minimum cost possible. Since we mostly deal with real-time situations, we

are always faced with online problems. Although it may seem like a good idea for the

online algorithm to take such an action which is cheaper in the short term, however, the

algorithm might have to pay more with all the cheaper actions taken together. Or it may

take an expensive action, and pay less in the future activities. This principle underlying the

algorithm can also be called the ski principle. The principle also says once the online

 24

algorithm has incurred enough cost taking up cheaper decisions, the algorithm can also

afford to take expensive decisions in that essence.

3.3 Online vs OPT

The optimal offline algorithm or OPT can be contrasted to online algorithms, as such an

algorithm which already has full knowledge of the entire set of requests. Since it has the

entire set of the incoming requests, it already knows how long it would require to process

each request and how can it schedule it so that it can the minimum cost possible. An offline

algorithm also is required to take an action in response to each request, but the choice of

each action can depend on either the entire set of request sequence or the request itself. In

other words, an offline algorithm knows the future whereas, the online algorithm does not.

For example, if we take sorting algorithms into consideration; say, selection sort. Selection

sort repetitively takes the minimum element from the remaining unsorted set of inputs and

places it at the beginning, which demands access to the entire input. It is thus an offline

algorithm. An offline algorithm is given the entire problem data from the start and is

expected to provide an output which solves the problem at hand.

Taking the same example for sorting algorithms, as explained earlier selection sort work

as an offline algorithm. On the other thing, insertion sort deems only one element at a time

every iteration giving out partial output every time until the entire set of future inputs are

met. Hence, insertion sort is typically an online algorithm. Even though, insertion sort gives

out the optimal solution in this case. However, this may not be the case for every problem,

where online algorithms cannot compete with the performance of an offline counterpart.

 25

We use the term competitive if the ratio of the performance of an online algorithm to the

performance of an optimal offline algorithm is bounded.

3.4 Key Terms

3.4.1 Competitive Analysis

[10,11] Defining a measure of performance of any online algorithm is more challenging,

since whatever decision the algorithm takes, usually ends up affecting the rest of the unseen

incoming requests. One approach is to evaluate online algorithms is to assume a specific

stochastic model of the source of requests. With such models, online algorithms may

perform optimally, if it chooses its actions so as to minimize the cost, where the cost

depends on the set of requests generated by the stochastic source and the decisions taken

by the online algorithm as it proceeded. However, stochastic models are not always

consistent with their generation of requests and the choice on the model depends on the

data that may not be readily available about the request sequence observed in the past.

This paper stresses the alternative to the stochastic models, a worst-case approach in which

online algorithm is evaluated by comparing its cost with that of an offline counterpart

processing the same set of sequence optimally. We follow, which we define as the

competitive ratio of an online algorithm, over all possible input sequences, of the ratio

between the cost incurred by the online algorithm and the cost incurred by the optimal

offline algorithm. Though the approach of competitive ratio avoids the commitment to any

stochastic models. However, the approach is always cynical about the performance of the

 26

online algorithm inducing the minimax regret concept in game theory, in effect the set of

requests would be chosen by an all-knowing clever adversary.

For many algorithms, performance is dependent not only on the size of the inputs but on

their values. For example, a quicksort algorithm, such data-dependent algorithms are

analyzed for their average case and worst-case data. Competitive analysis is a method for

worst-case analysis for online and randomized algorithms, which are usually data-

dependent. In other words, competitive analysis is a method invented for analyzing data-

driven algorithms such as online algorithms, which must satisfy an unpredictable sequence

of requests, as compared to the performance of an optimal offline algorithm that can view

the sequence of the incoming requests in advance. An online algorithm is said to be

competitive if its competitive ratio, which is further discussed in 3.4.2, is bounded.

3.4.2 Competitive Ratio

As discussed in 3.4.1, to check if the online algorithm is competitive, we need to evaluate

the performance of the algorithm with that of an optimal offline algorithm. The idea of

computing the competitive ratio is to place an online algorithm in competition with such

an algorithm that receives more information. A competitive ratio can be defined as,

where the cost is defined as the total resource usage by both the algorithms in order to

process any given set of requests.

 27

3.4.3 Adversary

When an online algorithm compares its competitiveness, that is when an adversary comes

in. The adversary generates a request sequence for both the online algorithm and itself. For

the type of algorithms, the competitiveness can depend on the adversary models used.

There are three common adversaries:

The oblivious adversary is also referred to as the weak adversary. This adversary knows

how the online algorithm works or is coded but does not get to know the randomized results

of the algorithm. Whereas, the adaptive online adversary or the medium adversary, must

make its own decision before it is allowed to know the decision of the algorithm. And

lastly, the adaptive offline adversary, also known as the strong adversary, knows

everything, even the arbitrary number generator. The adversary is so strong that

randomization does not help against it.

3.4.4 Lower Bound

While performing the competitive analysis of the algorithms, since we work on the data-

driven algorithms, competitive ratios are different for every set of inputs. Determining the

best-case, average-case and the worst-case ratios will help us determine the actual

performance of the online algorithm we are dealing with. Therefore, we take bounds. Being

lower bounded on an algorithm is used to indicate the lowest growth rate. In other words,

lower bound on an algorithm is how it would perform in any scenario with least amount of

resources, that is, in terms of cost, it will produce (at least) no less than the given bound.

 28

3.4.5 Upper Bound

Though, lower bound is important to be taken into account, but we will, however, know

how the algorithm works in the worst possible cases, and this paper will stress on the upper

bound on an algorithm. Upper bounds on an algorithm mean, the algorithm solves a set of

requests (at most) no more than the given bound, that is, the best the algorithm can do.

 29

CHAPTER 4

COMPARISON BETWEEN OPT AND ONLINE

ALGORITHM

So far we have discussed about both the types of algorithms. Offline problems are such

problems where we already know what is yet to come, hence makes it easier to react at the

present point of time. These problems are somehow of ideal conditions and give out the

optimal solution. Whereas, online problems deal with real time. In an online problem, data

is continuously supplied as the input; data supplied at time i, would give out the ith output.

Since outputs are formed without complete knowledge of the future inputs, online

algorithms cannot produce the optimal solution. The main goal of an online algorithm is to

approximate the performance by an offline algorithm, which gives out the optimal results.

Thus, online algorithms are said to be competitive if its performance is close to that of the

optimal offline algorithm on each input.

In this chapter, we use both the algorithms to show experimental results depending on the

schedules of the two machines resulting in the final costs respectively. Both the Online

algorithm and Optimal Offline algorithm OPT are run against a set of arbitrary set of

request sequence

 30

4.1 The Simple Lower Bound

Let us first consider the case that the execution lengths li of a job ji is not known in advance.

The standard 2-machine scheduling problem with start costs 0 already gives a lower bound

depending on the ratio between the execution costs of both machines, which is as

Theorem 5.1 The competitiveness of any online algorithm S is at least max{ρ1/ρ2,ρ2/ρ1}.

Proof: Without loss of generality one may assume ρ1 ≥ ρ2. We define a simple request

sequence I of 2 jobs and an adversary A against which no online algorithm S can be less

than ρ1/ ρ2 -competitive. Both jobs start almost simultaneously and overlap. S has to decide

whether to schedule j1 on Machine 1 or Machine 2 and then j2 has to go to the other

machine. Depending on this decision A then chooses li to be very large for the job executed

on Machine 1 and lj very small for the other job. A schedules both jobs just the other way

around.

This gives costS (I) ≥ σ1 + σ2 + ρ1l + ρ2l′, where l >> l′, and costA(I) = σ1 + σ2 + ρ1l′ + ρ2l .

Since l can be chosen arbitrarily large the ratio costS (I)/ costA (I) cannot be bounded by

anything less than ρ1 / ρ2.

This lower bound can be extended to the case of known execution lengths by introducing

a third job j0 of small fixed length l0 that starts before the two other jobs. j1 starts shortly

before j0 is finished, and j2 shortly after the execution of j0. Now, the decision where to

schedule j0 determines the machines for j1, j2, but at that time their execution lengths are

not known to S.

 31

4.2 Proposed Online Scheduling Algorithms

As discussed, an online algorithm is one that can process its input one by one in a sequential

manner. An online algorithm can be implemented in several other ways. Some examples

include insertion sort, greedy algorithm, page replacement algorithm and so on. Let us now

define a new online algorithm for which we will later provide simulation results with a

contrast to its offline counterpart.

We consider two machines: Machine 1 and Machine 2. Each machine has their own

respective startup costs named as (1, 2) without loss of generality 1 <= 2; and runtime

costs namely, (ρ1, ρ2). Let us a naïve approach for the scheduling algorithm. We will name

the algorithm as the canonical online scheduling algorithm, the pseudocode is defined as

below:

Some definitions:

 dt1 and dt2 = difference

 temp1 and temp2 = e[i] (the end time of the processed job)

 span1 and span2 = e[i] + idle time

 s[i] = start time of the current job

o If Machine 1 is OFF, 2 is running, turn on Machine 1

o If Machine 2 is OFF, 1 is running, turn on Machine 2

o If Machine 1 is OFF, 2 is idle, use Machine 2

o If Machine 2 is OFF, 1 is idle, use Machine 1

o If Machine 1 is idle, machine 2 is running, use Machine 1

 32

o If machine 2 is idle, machine 1 is running, use machine 2

o if machine 1 and machine 2 are OFF, use machine 1

o if machine 1 and machine 2 are idle,

▪ Check the duration since the last processed job

 { if((s[i]<= span1) && (s[i]<= span2))

 dt1=s[i]- temp1

 dt2=s[i]- temp2

 if (dt1<= dt2)

 use machine 1

 else

 use machine 2 }

o if machine 1 and machine 2 is working, a new job arrives

▪ Check the duration of the jobs:

 { if((s[i]<= temp1) && (s[i]<= temp2))

 dt1= temp1-s[i]

 dt2= temp2-s[i]

 if (dt1<= dt2)

 use machine 1 (after it has finished processing

the current job)

 else

 use machine 2 (after it has finished processing

the current job) }

 33

Since the idle time value is always an arbitrary number, we introduce another algorithm

where we can always determine the idle to be constant corresponding to the startup and the

runtime costs. The pseudocode of the new improved scheduling algorithm is defined as

below:

o If machine 1 is available, use that machine.

o If machine 2 is available, use that machine.

o If machine 1 is idle, 2 is OFF: use machine 1.

o If machine 2 is idle, 1 is OFF: use machine 2.

o If both machine 1 and machine 2 are idle, then:

▪ Compare the runtime cost for the machines, that is,

If ρ1 > ρ2, use machine 2.

If ρ1 <= ρ2, use machine 1.

o If both machine 1 and machine 2 are OFF, then:

▪ Compare the start-up cost for the machines, that is,

If ρ1 = ρ2, use machine 1

If ρ1 > ρ2,

If ρ1/ρ2 >= 1/2, use machine 1

If ρ1/ρ2 < 1/2, use machine 2

o For all jobs, once the job ends, then after job on machine 1, machine 1 runs idle for

1/ρ1.

o For all jobs, once the job ends, then after job on machine 2, machine 2 runs idle for

2/ρ2.

 34

In the following section, we will take a look at the different algorithms through extensive

simulations.

4.3 Simulation Results

4.3.1 Canonical Online Algorithm versus Offline Algorithm

We will take a look at the comparison of the performance of the canonical online algorithm

with the OPT, and how it behaves when introduced different set of idle time values:

With the parameters set as,

1 2 ρ1 ρ2

1.00 1.50 1.00 1.00

Table 4.3.1.1 Parameters set I

The Lower Bound for this parameter should be at least max{ρ1/ρ2,ρ2/ρ1}

Therefore, the competitive ratio should be at least 1.

Input Sequence 1:

si ei

0.00 5.00

0.10 0.20

1.80 1.90

3.50 3.60

Table 4.3.1.2 Input Sequence 1

Below is the cost comparison and competitive ratio based on the idle times taken, we will

be generating the idle time values using arbitrary values and /ρ respectively,

 35

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.00 14.80 9.80 1.510

1.00 1.50 16.30 9.80 1.663

Table 4.3.1.3 Cost comparison and competitive ratio based on Input Sequence 1

Fig 4.3.1.1 OPT for Input Sequence 1

Fig 4.3.1.2 Canonical Online Algorithm for Input Sequence 1

 36

Input Sequence 2:

si ei

0.00 5.00

0.01 0.02

2.03 2.04

4.05 4.06

Table 4.3.1.4 Input Sequence 2

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.00 14.53 9.53 1.524

1.00 1.50 16.03 9.53 1.682

Table 4.3.1.5 Cost comparison and competitive ratio based on Input Sequence 2

Fig 4.3.1.3 OPT for Input Sequence 2

 37

Fig 4.3.1.4 Canonical Online Algorithm for Input Sequence 2

Input Sequence 3:

si ei

4.00 10.00

4.10 4.20

5.80 5.90

7.50 7.60

9.20 9.30

Table 4.3.1.6 Input Sequence 3

 38

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.00 18.40 11.90 1.546

1.00 1.50 20.40 11.90 1.714

Table 4.3.1.7 Cost comparison and competitive ratio based on Input Sequence 3

Fig 4.3.1.5 OPT for Input Sequence 3

Fig 4.3.1.6 Canonical Online Algorithm for Input Sequence 3

 39

Input Sequence 4:

si ei

0.00 6.00

0.10 0.20

1.80 1.90

3.50 3.60

5.20 5.30

Table 4.3.1.8 Input Sequence 4

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.00 18.40 11.90 1.546

1.00 1.50 20.40 11.90 1.714

Table 4.3.1.9 Cost comparison and competitive ratio based on Input Sequence 4

Fig 4.3.1.7 OPT for Input Sequence 4

 40

Fig 4.3.1.8 Canonical Online Algorithm for Input Sequence 4

Input Sequence 5:

si ei

0.00 5.00

0.01 0.02

1.53 1.54

3.05 3.06

4.57 4.58

Table 4.3.1.10 Input Sequence 5

 41

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.00 17.04 10.54 1.616

1.00 1.50 19.04 10.54 1.806

Table 4.3.1.11 Cost comparison and competitive ratio based on Input Sequence 5

Fig 4.3.1.9 OPT for Input Sequence 5

Fig 4.3.1.10 Canonical Online Algorithm for Input Sequence 5

 42

With the parameters set as,

1 2 ρ1 ρ2

1.00 2.00 1.00 1.00

Table 4.3.1.12 Parameters set II

The Lower Bound for this parameter should be at least 1.

Input Sequence 6:

si ei

0.00 1.00

0.50 1.00

3.01 5.00

3.02 3.03

Table 4.3.1.13 Input Sequence 6

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.50 14.5 9.50 1.526

1.00 2.00 15.5 9.50 1.631

Table 4.3.1.14 Cost comparison and competitive ratio based on Input Sequence 6

 43

Fig 4.3.1.11 OPT for Input Sequence 6

Fig 4.3.1.12 Canonical Online Algorithm for Input Sequence 6

 44

Input Sequence 7:

si ei

0.00 1.00

0.50 1.50

3.40 3.68

5.60 5.80

Table 4.3.1.15 Input Sequence 7

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.50 11.98 7.48 1.601

1.00 2.00 12.30 7.48 1.644

Table 4.3.1.16 Cost comparison and competitive ratio based on Input Sequence 7

Fig 4.3.1.13 OPT for Input Sequence 7

 45

Fig 4.3.1.14 Canonical Online Algorithm for Input Sequence 7

Input Sequence 8:

si ei

0.00 5.00

0.01 0.011

2.10 2.11

4.30 5.00

Table 4.3.1.17 Input Sequence 8

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.50 18.211 10.81 1.684

1.00 2.00 19.811 10.81 1.832

Table 4.3.1.18 Cost comparison and competitive ratio based on Input Sequence 8

 46

Fig 4.3.1.15 OPT for Input Sequence 8

Fig 4.3.1.16 Canonical Online Algorithm for Input Sequence 8

Input Sequence 9:

si ei

0.00 5.00

0.01 0.02

2.03 2.04

4.05 4.06

Table 4.3.1.19 Input Sequence 9

 47

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.50 17.53 10.03 1.747

1.00 2.00 19.03 10.03 1.897

Table 4.3.1.20 Cost comparison and competitive ratio based on Input Sequence 9

Fig 4.3.1.17 OPT for Input Sequence 9

Fig 4.3.1.18 Canonical Online Algorithm for Input Sequence 9

 48

Input Sequence 10:

si ei

0.00 5.00

0.01 0.09

2.10 2.11

4.12 4.30

6.21 10.00

6.22 6.30

8.50 9.00

Table 4.3.1.21 Input Sequence 10

Generating the idle time values using arbitrary values and /ρ,

w1 w2 Canonical

Online

Algorithm

OPT CR

1.00 1.50 31.14 17.35 1.795

1.00 2.00 33.54 17.35 1.933

Table 4.3.1.22 Cost comparison and competitive ratio based on Input Sequence 10

Fig 4.3.1.19 OPT for Input Sequence 10

 49

Fig 4.3.1.20 Canonical Online Algorithm for Input Sequence 10

4.3.2 Improved Online Algorithm versus Offline Algorithm

With the parameters set as,

1 2 ρ1 ρ2

1.00 1.50 1.00 1.00

Table 4.3.2.1 Parameters set I

The Lower Bound for this parameter should be at least 1.

Input Sequence 1:

si ei

0.00 1.00

0.99 2.01

3.52 5.00

6.03 9.00

Table 4.3.2.2 Input Sequence 1

 50

Below is the cost comparison and competitive ratio based on the idle times taken, we will

be generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 1.50 15.47 10.97 1.410

Table 4.3.2.3 Cost comparison and competitive ratio based on Input Sequence 1

Fig 4.3.2.1 OPT for Input Sequence 1

Fig 4.3.2.2 Improved Online Algorithm for Input Sequence 1

 51

Input Sequence 2:

si ei

0.00 5.00

0.01 0.02

1.53 1.54

3.05 3.06

4.99 5.00

6.01 10.00

6.02 6.03

7.54 7.55

9.06 9.07

Table 4.3.2.4 Input Sequence 2

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 1.50 30.07 18.57 1.619

Table 4.3.2.5 Cost comparison and competitive ratio based on Input Sequence 2

Fig 4.3.2.3 OPT for Input Sequence 2

 52

Fig 4.3.2.4 Improved Online Algorithm for Input Sequence 2

Input Sequence 3:

si ei

0.00 10.00

0.10 0.20

1.80 1.90

3.50 3.60

5.20 5.30

6.90 7.00

8.60 8.70

Table 4.3.2.6 Input Sequence 3

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 1.50 30.60 18.10 1.690

Table 4.3.2.7 Cost comparison and competitive ratio based on Input Sequence 3

 53

Fig 4.3.2.5 OPT for Input Sequence 3

Fig 4.3.2.6 Improved Online Algorithm for Input Sequence 3

Input Sequence 4:

si ei

0.00 1.00

0.50 1.00

2.51 2.75

3.78 3.79

3.781 3.782

Table 4.3.2.8 Input Sequence 4

 54

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Algorithm

OPT CR

1.00 1.50 13.751 7.75 1.774

Table 4.3.2.9 Cost comparison and competitive ratio based on Input Sequence 4

Fig 4.3.2.7 OPT for Input Sequence 4

Fig 4.3.2.8 Improved Online Algorithm for Input Sequence 4

 55

Input Sequence 5:

si ei

0.00 5.00

0.01 0.02

1.53 1.54

3.05 3.06

4.57 4.58

Table 4.3.2.10 Input Sequence 5

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 1.50 19.04 10.54 1.806

Table 4.3.2.11 Cost comparison and competitive ratio based on Input Sequence 5

Fig 4.3.2.9 OPT for Input Sequence 5

Fig 4.3.2.10 Improved Online Algorithm for Input Sequence 5

 56

Now, setting the parameters as,

1 2 ρ1 ρ2

1.00 2.00 1.00 1.00

Table 4.3.2.12 Parameters set II

The Lower Bound for this parameter should be at least 1.

Input Sequence 6:

si ei

0.00 1.00

0.50 1.00

3.01 5.00

3.02 3.03

Table 4.3.2.13 Input Sequence 6

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 2.00 15.5 9.50 1.632

Table 4.3.2.14 Cost comparison and competitive ratio based on Input Sequence 6

Fig 4.3.2.11 OPT for Input Sequence 6

 57

Fig 4.3.2.12 Improved Online Algorithm for Input Sequence 6

Input Sequence 7:

si ei

0.00 1.00

0.50 1.50

3.40 3.68

5.60 5.80

Table 4.3.2.15 Input Sequence 7

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 2.00 12.30 7.48 1.644

Table 4.3.2.16 Cost comparison and competitive ratio based on Input Sequence 7

Fig 4.3.2.13 OPT for Input Sequence 7

 58

Fig 4.3.2.14 Improved Online Algorithm for Input Sequence 7

Input Sequence 8:

si ei

0.00 5.00

0.01 0.011

2.10 2.11

4.30 5.00

Table 4.3.2.17 Input Sequence 8

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 2.00 19.811 10.81 1.832

Table 4.3.2.18 Cost comparison and competitive ratio based on Input Sequence 8

Fig 4.3.2.15 OPT for Input Sequence 8

 59

Fig 4.3.2.16 Improved Online Algorithm for Input Sequence 8

Input Sequence 9:

si ei

0.00 5.00

0.01 0.02

2.03 2.04

4.05 4.06

Table 4.3.2.19 Input Sequence 9

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 2.00 19.03 10.03 1.897

Table 4.3.2.20 Cost comparison and competitive ratio based on Input Sequence 9

Fig 4.3.2.17 OPT for Input Sequence 9

 60

Fig 4.3.2.18 Improved Online Algorithm for Input Sequence 9

Input Sequence 10:

si ei

0.00 5.00

0.01 0.09

2.10 2.11

4.12 4.30

6.21 10.00

6.22 6.30

8.50 9.00

Table 4.3.2.21 Input Sequence 10

Generating the idle time value at /ρ,

w1 w2 Improved

Online

Cost

OPT CR

1.00 2.00 33.54 17.35 1.933

Table 4.3.2.22 Cost comparison and competitive ratio based on Input Sequence 10

 61

Fig 4.3.2.19 OPT for Input Sequence 10

Fig 4.3.2.20 Online Algorithm for Input Sequence 10

 62

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary

In this paper, we analyzed the costs incurred by two machines with dissimilar costs when

scheduled with an unknown set of requests. We first presented the motivation which drove

the research of the paper. We framed our analysis through the types of algorithmic models;

online and offline. Given a sequence I of jobs, we define, say, costopt(I) to be the minimum

cost of any schedule for I. A schedule minimizing costopt(I) can easily be constructed in

linear time since knowing the finish time of a job scheduled on a machine and the start time

of the next job on this machine one can then decide whether the cost is lower to keep it on

in between or to turn it off and then restart. Whereas, in real-life situations, the request

sequence of jobs is not known beforehand. n online algorithm S must decide at time si,

which machine to assign to job ji, if both machines are available, and must also decide for

a machine after it has executed a job how long to let it run idle before turning it off.

We propose a naïve approach to the problem definition and then improve the existing

algorithm for a better result. We did extensive simulations and compared it with the

costopt(I), and checked for the simple lower bounds for each.

 63

5.2 Future Work

Our future work will consist of refining and combing our ideas from this thesis. In no way

have we solved the problem in theoretical terms, and we have not given any general upper

bounds. It would be desirable to devise an online algorithm with provable competitive ratio.

However, in this thesis we have seen that there are strategies that work well under various

simulations. The work done on the dissimilar cost problem is quite sparse, since not much

work has been done on that subject. We will continue to develop new strategies to attempt

to come up with upper or lower bounds. Another line of investigation would be to devise

upper or lower bounds for more than two machines with dissimilar costs. Also, tapering

down strategy techniques have been considered (see [3]) and we suggest applying such

techniques in the case of multiple machines. Such problem is an applicable problem in

many areas, even beyond the area of information technology, and we seek to gain a great

deal of understanding of this problem and how it can be used in many areas of study.

 64

REFERENCE:

[1]. Sandy Irani and Anna R. Karlin. 1996. Online computation.

In Approximation algorithms for NP-hard problems, Dorit S. Hochbaum (Ed.).

PWS Publishing Co., Boston, MA, USA 521-564.

[2]. Karp, Richard M. (1992). "On-line algorithms versus off-line algorithms:

How much is it worth to know the future?". IFIP Congress (1). 12: 416–429.

Retrieved 17 August 2015.

[3]. J. Andro-Vasko, W. Bein, D. Nyknahad, and H. Ito. Evaluation of online

power-down algorithms. In 2015 12th International Conference on Information

Technology - New Generations, pages 473–478, April 2015  

[4]. https://en.m.wikipedia.org/wiki/

[5]. Sandy Irani and Gaurav Singh. An overview of the competitive and

adversarial approaches to designing dynamic power management strategies. IEEE

Transactions Very Large Scale Integration. 13(12). December 2005.

[6]. Susanne Albers. Energy-efficient algorithms. Communications Of The

ACM, 53:86–96, 2010.

[7]. Mumey, Brendan & Tang, Jian & Hashimoto, Saiichi. (2012). Enabling

green networking with a power down approach. 2867-2871.

10.1109/ICC.2012.6364006.

[8]. Y. Wati and C. Koo, "The Green IT Practices of Nokia, Samsung, Sony, and

Sony Ericsson: Content Analysis Approach," 2010 43rd Hawaii International

http://www.icsi.berkeley.edu/pubs/techreports/TR-92-044.pdf
http://www.icsi.berkeley.edu/pubs/techreports/TR-92-044.pdf
https://en.m.wikipedia.org/wiki/

 65

Conference on System Sciences, Honolulu, HI, 2010, pp. 1-10.doi:

10.1109/HICSS.2010.480

[9]. Bonichon, Nicolas & Bose, Prosenjit & De Carufel, Jean-Lou & Perkovic,

Ljubomir & Van Renssen, André. (2015). Upper and Lower Bounds for

Competitive Online Routing on Delaunay Triangulations. 10.1007/978-3-662-

48350-3_18.

[10]. Allan Borodin and Ran El-Yaniv. 1998. Online Computation and

Competitive Analysis. Cambridge University Press, New York, NY, USA

[11]. S. Phillips and J. Westbrook. chapter 10 of Algorithms and Theory of

Computation Handbook, chapter On-line algorithms: “Competitive analysis and

beyond”. CRC Press, Boca Raton, 1999.

[12]. Pathak, Govind. “Analysis of power-down systems with five states.”

University of Nevada, Las Vegas, 2016.

 66

CURRICULUM VITAE

Graduate College

University of Nevada, Las Vegas

Madhurupa Moitra

madhurupamoitra@gmail.com

Degrees:

Bachelor of Technology in Computer Science, 2016

Budge Budge Institute of Technology, Kolkata, India

West Bengal University of Technology, Kolkata, India.

Master of Science in Computer Science, 2016

University of Nevada Las Vegas

Thesis Title: Scheduling Two Machines with Dissimilar Costs.

Thesis Examination Committee:

Chair Person, Dr. Wolfgang Bein, Ph.D.

Co-Chair Person, Dr. Lawrence L. Larmore, Ph.D.

Committee Member, Dr. Laxmi Gewali, Ph.D.

Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D.

	Scheduling Two Machines with Dissimilar Costs
	Repository Citation

	SCHEDULING TWO MACHINES WITH DISSIMILAR COSTS
	Madhurupa Moitra
	Bachelor of Technology, Computer Science
	A thesis submitted in partial fulfillment
	Master of Science in Computer Science
	Department of Computer Science
	University of Nevada, Las Vegas
	CHAPTER 1
	INTRODUCTION
	1.1 Problem Definition
	1.2 Motivation
	1.3 Contribution
	1.4 Outline

	CHAPTER 2
	OFFLINE ALGORITHM
	2.1 Definition
	2.2 No-Overlap Pre-processing
	2.3 The Offline Two Machine Scheduling Problem
	2.4 Dynamic Program Layered Graph
	2.5 Calculating Minimum Path for each Critical Point using Layered Graph Approach

	CHAPTER 3
	ONLINE ALGORITHM
	In this chapter, we give an informal introduction to the online competitive model. We begin by revisiting a classical problem in the area of online competitive algorithms: The Ski Rental Problem. This problem is related to the one-machine version of t...
	3.1 Ski Rental Problem
	3.2 Online Algorithm
	A. Always OFF Algorithm

	3.3 Online vs OPT
	3.4 Key Terms
	3.4.1 Competitive Analysis
	3.4.2 Competitive Ratio
	3.4.3 Adversary
	3.4.4 Lower Bound
	3.4.5 Upper Bound

	CHAPTER 4
	COMPARISON BETWEEN OPT AND ONLINE ALGORITHM
	4.1 The Simple Lower Bound
	4.2 Proposed Online Scheduling Algorithms
	4.3 Simulation Results
	4.3.1 Canonical Online Algorithm versus Offline Algorithm

	Fig 4.3.1.1 OPT for Input Sequence 1
	Fig 4.3.1.2 Canonical Online Algorithm for Input Sequence 1
	Fig 4.3.1.3 OPT for Input Sequence 2
	Fig 4.3.1.4 Canonical Online Algorithm for Input Sequence 2
	Fig 4.3.1.5 OPT for Input Sequence 3
	Fig 4.3.1.6 Canonical Online Algorithm for Input Sequence 3
	Fig 4.3.1.7 OPT for Input Sequence 4
	Fig 4.3.1.8 Canonical Online Algorithm for Input Sequence 4
	Fig 4.3.1.9 OPT for Input Sequence 5
	Fig 4.3.1.10 Canonical Online Algorithm for Input Sequence 5
	Fig 4.3.1.11 OPT for Input Sequence 6
	Fig 4.3.1.12 Canonical Online Algorithm for Input Sequence 6
	Fig 4.3.1.13 OPT for Input Sequence 7
	Fig 4.3.1.14 Canonical Online Algorithm for Input Sequence 7
	Fig 4.3.1.15 OPT for Input Sequence 8
	Fig 4.3.1.16 Canonical Online Algorithm for Input Sequence 8
	Fig 4.3.1.17 OPT for Input Sequence 9
	Fig 4.3.1.18 Canonical Online Algorithm for Input Sequence 9
	Fig 4.3.1.19 OPT for Input Sequence 10
	Fig 4.3.1.20 Canonical Online Algorithm for Input Sequence 10
	4.3.2 Improved Online Algorithm versus Offline Algorithm

	Fig 4.3.2.1 OPT for Input Sequence 1
	Fig 4.3.2.2 Improved Online Algorithm for Input Sequence 1
	Fig 4.3.2.3 OPT for Input Sequence 2
	Fig 4.3.2.4 Improved Online Algorithm for Input Sequence 2
	Fig 4.3.2.5 OPT for Input Sequence 3
	Fig 4.3.2.6 Improved Online Algorithm for Input Sequence 3
	Fig 4.3.2.7 OPT for Input Sequence 4
	Fig 4.3.2.8 Improved Online Algorithm for Input Sequence 4
	Input Sequence 5:
	Fig 4.3.2.9 OPT for Input Sequence 5
	Fig 4.3.2.10 Improved Online Algorithm for Input Sequence 5
	Fig 4.3.2.11 OPT for Input Sequence 6
	Fig 4.3.2.12 Improved Online Algorithm for Input Sequence 6
	Fig 4.3.2.13 OPT for Input Sequence 7
	Fig 4.3.2.14 Improved Online Algorithm for Input Sequence 7
	Fig 4.3.2.15 OPT for Input Sequence 8
	Fig 4.3.2.16 Improved Online Algorithm for Input Sequence 8
	Fig 4.3.2.17 OPT for Input Sequence 9
	Fig 4.3.2.18 Improved Online Algorithm for Input Sequence 9
	Fig 4.3.2.19 OPT for Input Sequence 10
	Fig 4.3.2.20 Online Algorithm for Input Sequence 10
	CHAPTER 5
	CONCLUSION AND FUTURE WORK
	5.1 Summary
	5.2 Future Work

	REFERENCE:
	CURRICULUM VITAE
	Graduate College
	Bachelor of Technology in Computer Science, 2016

