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Abstract

Permutation Flow Shop Scheduling refers to the process of allocating operations of jobs to machines

such that an operations starts to process on machine j only after the processing completes in j-1

machine. At a time a machine can process only one operation and similarly a job can have only

one operation processed at a time. Finding a schedule that minimizes the overall completion times

for Permutation Flow Shop problems is NP Hard if number of machines is greater than 2. So

we concentrate on approaches with approximate solutions that are good enough for the problems.

Heuristics is one way to find the approximate solutions for a problem.

For our thesis, we have used two heuristics - NEH and Simulated Annealing, both individually

and in a combined form, to find the solutions for Permutation Flow Shop problems. We have

compared NEH and Simulated Annealing algorithm based on result and execution time and also

compared the combined algorithm with existing ones. Standard benchmarks are used to evaluate

the performances of the implemented algorithm.
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Chapter 1

Introduction

Scheduling is the process of managing tasks to utilize resources for an effective outcome. Making

up a schedule is an important part in every ones daily life. Flow Shops are scheduling problem

with a set of jobs and machines. A job has set of operations that needs to be processed in given

machines. At a time, processing of an operations of a job can be done on only one machine. Simi-

larly a machine is able to process only one job operations at one time. The scheduling problem is

to specify order of the processing for each operation Oik of Job Ji such that an operation Oik−1 in

k-1 machine needs to be completed before starting processing on machine k. This problem seems

simple but is NP- Hard if number of resources are greater than 2. The number of order that can

be obtained from Flow Shop Scheduling problem is (n!)m. Flow Shop problem can be represented

by n/m/F/Cmax [RWCM67] or F//Cmax [RK79].

Flow Shop problems have history of more than 50 years of research. We have included some

of the history of Flow shop referenced from Hejazi et.al. [HS05]. In classic Flow Shop described by

Allahverdi et.al [TAA99], a job may wait on or between machines with infinite buffer. One variant

of this problem is where job cannot form queues, e.g. Zero-buffer and no-wait Flow Shop problems.

This means jobs Ji in machine k-1 cannot advance to machine k until machine k has completed the

processing of jobs before in sequence. Abadi and Sriskandarajah [IAS96] described blocking Flow

Shop problem where a machine can leave a machine only after next machine is free. Aldowaisan and

Allahverdi [AA88] described no wait Flow Shop problem in which each job needs to be processed

in line without delay from machine 1 to m. They also proposed Simulated Annealing and Genetic

Algorithm for same problem [AA03].

Gangadharan and Rajendran [GR93] and Rock [Roc84] discussed problems based on three
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machine no-wait flow shop NP- completeness. Hall and Sriskandarajah described the same in the

survey [HS96] . Some earlier researchers - Stafford and Tseng [ST90], and Wismer [D.A72], called

this No-Intermediate Queues(NIQ) Flow Shop problem.

Lee et al. [CLL93] and Potts et al. [CPZ95] initiated the concurrency concept in a flow shop en-

vironment. Koulamas and Kyparisis [KK04] extended the concept of concurrency with makespan

criterion by introducing new shop. Guinet [Gui00] studied job shop problems. Nagar et al. [ANH96]

proposed branch and bound by combining with genetic algorithm to solve two machine Flow Shop

problem. Similarly Neppalli et al. [VNG96] applied genetic algorithms to solve the same problem.

To solve n=m=F=Cmax, Rajendran and Gangadharan [GR94] used Simulated Annealing.

A Special case of the Flow Shop problem is Permutation Flow Shop problem. In Permutation

Flow Shop, the job order is the same for all machines, that reduces the number of sequences to n!.

Due to many real world application and decreased number of sequences, a lot of research is now fo-

cused on Permutation Flow Shop problems. With two machines, Johnson’s algorithm [Joh54] solves

the problem. However, when the machine size is greater than 2; the problem is NP-Hard [MGR76].

Exact algorithms, heuristics, and meta heuristics, are mostly used to find solutions for Permuta-

tion Flow Shop problems ( [RR05], [JXG14]). Exact algorithms find the optimal solution, but are

computationally expensive as the problem size gets bigger. Branch and bound [CSC02], Dynamic

Programming are examples of exact algorithms. For some, the solution doesn’t even exists. On the

other hand, Heuristics and meta heuristics are cost effective and feasible. However, the solution

obtained from Heuristics is not always optimal. Heuristics provide an approximate solution which

are still a good solution for the problems.

The heuristics can be divided as Constructive heuristics and Improvement heuristics. A non

reversible sequence is made for Constructive heuristics. An improvement heuristics or descent

method is an iterative method that starts with any sequences and attempts to improve the value

of objective functions by modifying the sequence. Only improved sequences that decrease the cost

are accepted and even constructive sequences can be used for improvement. Several Constructive

heuristics( [HCS70], [Dan77], [MN83], [Pal65]) are proposed and the number of heuristics are in-

creasing every year. Dannenbring [Dan77] proposes an improvement method in which adjacent

job interchanges are attempted. Similarly, Simulated Annealing is also a randomized improvement

method but it also accepts non improved sequences with some probability [IOR89].

For our thesis, we are using two heuristics- NEH and Simulated Annealing. Also we have com-
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bined both algorithms for the improvements of the solution. Comparisons are done between both

algorithms and with the combined ones using standard benchmarks.

1.1 Outline

Chapter 2 discusses in detail about Scheduling: Terms used in Scheduling, Classes of Scheduling,

Flow Shop Problems and Permutation Flow Shop problems. Chapter 3 discuss about Problem

Statement, Simulated Annealing Algorithm and its Implementation. Chapter 4 is about NEH

algorithm, its variations and combination of NEH and Simulated Annealing algorithm. Chapter 5

lists out the results with algorithm implemented in Chapter 3 and Chapter 4. It also also contains

results of the comparisons between the two algorithms. Chapter 6 gives the conclusion and probable

future improvements.

3



Chapter 2

Background and Shop Problems

This chapter includes some of the fundamental concepts of Scheduling.

2.1 Scheduling

Scheduling is the branch of science that deals with the allocating tasks to the available resources such

that the resources are utilized in optimal manner. Suppose we have m resources M1,M2,M3, ...,Mm

called machines and n jobs J1, J2, ..., Jn. Allocation of the operations of n jobs on the m machines

such that at a time a job is processed by only one machine and a machine process only one operation

of a job is called Scheduling [Bru04].

2.1.1 Terms in Scheduling

Job

A job is group of tasks or operations that needs to be processed by machines. Each operation has

processing time corresponding to each machine. Throughout the thesis,a job is represented by Ji

and operations by Oij where i denotes the job and j denotes machine.

Processing Time

The time taken by an operation of a job to complete processing in a machine is called Processing

time. For an operation Oij , processing time is represented as pij and is always positive number.

Idle Time

The time where a machine does nothing is Idle time for the machine i.e the time where a machine

doesn’t have any job for processing.
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Makespan

Makespan for a schedule is the time duration between the start of first job and completion of last

job. It is the time where all machines have completed processing of all the given jobs and is denoted

as Cmax.

The optimal makespan is the one that is minimum among all the possible schedules for the

given problem.

2.2 Classes of Scheduling

Scheduling problem can be classified in different categories based on the attributes associated with

jobs and machines. According to Peter Brucker [Bru04], scheduling problems can be defined with

three fields namely α|β|γ. The first symbol α defines the machine environment, β defines the job

characteristics and γ represents the optimality. All the terms and definition included in this chapter

are adapted from Peter Brucker’s book named ”Scheduling Algorithms”.

2.2.1 Machine Environment

Based on the serving purpose, different types of the machines are used for Scheduling environment.

It is denoted by the string α which contains α1α2, each with own meaning. α1 can have any of {o,

P, Q, R, PMPM, QMPM, G, X, O, J, F} values and α2 represent number of machines. If machine

number is fixed for any problem, then it is represented as α2 = y, where y is a random positive

number. α2=o means that the number of machines present is arbitrary. o denotes void(empty)

symbol. If α1=o, then α = α2.

Each symbols in α1 implies different meaning when used alone or with combinations. We have dif-

ferent cases for the symbol and each case explains how the operations are performed in a schedule.

Case 1 α1 = o, then each job has only one operation and needs to be processed in dedicated

machine. Hence this is called dedicated Machine Environment.

Case 2 α1 ∈ {P,Q,R}, then jobs run on parallel machines. Any job in our given schedule can

process on any of the available machine M1,M2, ...,Mm. The job are said to run on parallel ma-

chines but a machine can process only one job at a time and a job can be processed on more than

one machine. This case can be subdivided into three new parts based on the symbol taken into

considerations.

• α1 = P
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In this case the job processing is done on Identical Parallel machine and processing time of a

job is same on every machine M1,M2, ...,Mm. Here, pij = pi for all machines Mj .

• α1 = Q

In this case, the processing is on Uniform Parallel Machines with speed associated with each

machine. For all jobs in machine j, the speed of the machine sj is uniform . Suppose if pij is

the processing time of job Ji in machine j, then pij = pi/sj .

• α1 = R

In this case, the processing is on unrelated machine with speed associated with each jobs

instead of machine. The processing pij time for a job Ji in machine Mj with speed sij is

given by, pij = pi/sij .

Case 3 α1 = PMPM or α1=QMPM represents multipurpose machines. PMPM in the scheduling

means each job Ji have same speed across all the machines but different jobs can have different

speed. QMPM refers to the machines where all jobs in a machine have same speed. For PMPM,

the speed of one job may vary from another where in QMPM, a machine will process all jobs with

same speed and speed of a machine may differ from one another.

Case 4 α1in{G,X,O, J, F}, then it is multi operational model. Each job Ji has set of operations

Oij that needs to be processed on dedicated set µij ⊆ {M1,M2, ...,Mm}. These are called shop

problems.

• α1 = G represents General Flow Shop. The processing time pij of each job is given and each

job consists a set of operations Oij . Precedence needs to be followed by operations in every

job. A job can be processed by only one machine at a time. Similarly a machine can only

process one job at a time. After altering certain conditions, the problem can be altered to

some other shop problem like below.

• α1 = J represents Job Shop. For Job shop all the operations Oik of job Ji need to follow

predefined precedence for processing in any machine Mj . The precedence is of the form

Oik−1 → Oik i.e an operation Oik−1 must be completed before Oik. Each job follows its own

route of visiting the machine

• α1 = F represents Flow Shop. This is similar to Job Shop but with number of operations

in a job equals to the number of machines. Each operation is processed on one machine.

While visiting the machine, all jobs have same machine sequence but the job sequence in each

machine can be different.
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For a schedule, if the job sequence for all machine is same along with machine sequence, then

it is Permutation Flow Shop. We use the notation F-perm for Permutation Flow Shop.

• α1 = O, represents Open Shop. This is similar to Flow Shop in that the number of operations

in each job Ji is equal to number of Machines m. But the difference from Flow Shop is, there

is no precedence relationship between operations. Thus job order as well as machine order is

needed for Open Shop.

• α1 = X, represents Mixed Shop. Mixed Shop sometimes behaves as Open Shop and some

times as Job Shop. As in Job Shop, some of the jobs follow specified machine order while

some jobs doesn’t need to follow any order as in Open Shop.

2.2.2 Job Characteristics

This refers to the characteristics associated with job and is represented by β. β ∈ {β1, β2.β3, β4, β5, β6},

each with their own property. Following are six cases, one with each symbol.

Case 1 β = β1, represents preemption is allowed for a schedule. Preemption means any job can

be removed or paused for a while and later started on same or different machine. β1 = pmtn when

preemption is allowed for a schedule.

Case 2 β = β2 represents precedence relationship exists between jobs in a schedule. The jobs

and operations need to follow the precedence defined if β2 exists in the set β. A job Ji−1 must be

completed before Ji and needs to be followed throughout the schedule.

Case 3 β = β3 represents release date associated with each job. Release date is the time when the

processing starts for a schedule. If release date is included for a schedule then β3 = ri.

Case 4 β = β4 is associated with restriction on processing time pij . When processing time for all

jobs pi=1 then it is unit processing requirement. If operation of all job have value k then pi = k.

Case 5 β = β5 is associated with deadline for the job and is represented as β5 = di. The deadline

for a job is the time by which the job needs to be completed in that machine.

Case 6 β = β6 is associated with processing jobs in batches. Batching means grouping of jobs that

needs to be proceeded together without any setup before all jobs processing is completed.
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2.2.3 Optimality Criterion

γ represents Optimality Criterion. Optimality criterion is associated with cost function. The pa-

rameter may vary from one to another. Some of the optimality criterion that can be considered are:

Case 1: One optimality criterion is to minimize the total completion time of the schedule. This is

called Bottleneck Objective Function.

Case 2: Another optimality criterion is to minimize overall sum of completion time of all jobs

for a schedule. This is called Sum Objective Function.

Apart from above two, other parameter can be used for optimality criterion. Below are some

of them:

Lateness

Lateness is the time duration by which a job is late in completing the processing of the schedule.

Ci is the time of completion of Job Ji with deadline di, then Lateness Li is obtained as a difference

of Completion time and deadline. This can be written as:

Li = Ci − di

Earliness

Earliness can be defined as the time duration by which a schedule is completed before estimated

completion time. This is just opposite of Lateness. Lateness finds how late the job is where earliness

calculates how early the job completes. For Ci completion time and di deadline, Earliness Ei is the

difference of deadline and Completion and is 0 if the difference is negative. Mathematically this

can be represented as:

Ei = di − Ci

Tardiness

Tardiness is Lateness if Li is non-negative i.e the difference of Completion time and duration should

be positive value for Tardiness. For job Ji, Tardiness Ti is calculated as:

Ti = Ci − di, ifCi − di > 0

Ti = 0, ifCi − di ≤ 0

Deviation

Deviation are of two types;
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• Squared Deviation is the square of the lateness values and is represented by Si.

Si = L2
i = (Ci − di)2

• Absolute Deviation is absolute value of lateness and is represented by Di.

Di = |Li| = |Ci − di|

Unit Penalty

This is associated with lateness. If lateness is positive value, then penalty is 1. Otherwise it’s 0.

Unit penalty is denoted by Ui.

2.3 Flow Shop Problems

We have already discussed Flow Shop while explaining Machine Environment properties. This

section includes Flow Shop in detail with an example and then Permutation Flow Shop problem

with example in next section.

We have n jobs J1, J2, ..., Jn and m machinesM1,M2, ..,Mm. Each job have m operationOi1, Oi2, ..., Oik.

Operation Oik for a job Ji needs to be processed on kth machine. Flow Shop problem can be defined

as scheduling problem where precedence is maintained between each operation i.e Oi1 needs to be

completed in machine 1 before starting operation Oi2 on second machine for job Ji. This sequence

is followed by all jobs in the schedule. For each job the first operation will start processing from

machine 1 and mth operation will be on mth machine. The job sequence can be different for each

machine.

The goal is to minimize the makespan of a schedule. The total sequences for Flow Shop with n job

and m machine is (n!)m. Finding the optimal schedule that minimizes makespan we need to check

all (n!)m, which is hard as the job size and machine size got bigger and bigger. The problem is

NP- Hard if machine size is greater than 2. Therefore we concentrate on Permutation Flow Shop

Problems.

2.3.1 Example

Consider example with two machine and 3 jobs in 2.1 with the processing time given for all jobs.

In Flow Shop, the machine sequence should be same but the job sequence can be different in each

machine. For this example, the machine sequence is M1M2 and job sequence is J1J2J3 on M1

and J2J3J1 on M2. Gantt chart is used for visual representation of jobs over different machines.

Gantt charts are of two types - Machine Oriented Gantt Chart and Job Oriented Gantt chart. The
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J1 J2 J3

M1 3 1 4

M2 2 3 5

Table 2.1: Example with 3 jobs 2 machine

horizontal axis represent the time frames in both charts. The vertical axis represent machine in

Machine Oriented Gantt chart while the axis represent Job for Job Oriented Gantt Chart. We will

use Machine oriented Gantt chart for this example and further examples in this Thesis.

The Gantt chart for problem in table 2.1 with schedule J1J2J3 on M1 and J2J3J1 on M2 is repre-

sented in figure 2.1

Figure 2.1: Example of Flow Shop scheduling

Flow Shop Scheduling process includes below steps.

1. The schedule for Machine M1 is J1J2J3. At time t=0, J1 starts on machine M1. No jobs can

start at t=0 on machine M2 since the execution for J2 is not completed in M1. J1 runs for

three units on M1.

2. J2 starts at t=3 and runs for 1 unit on M1. At t=4, J2 starts on machine M2 and runs for 2

units.

3. J3 starts at t=4 on M1 and run till t=8. From t=6 to t=8, M2 remain idle. At t=9, J3 starts

processing on M2 for 3 units.

4. All jobs have completed processing on M1 so, M1 remain idle from t=8. Also M2 remains

idle from t=6 to t=8 until J3 completes processing on M1.J3 completes at t=11 and then J1

starts processing on M2. J1 runs for 5 units.

2.4 Permutation Flow Shop problem(PFSP)

Permutation Flow Shop is Flow Shop problem with restriction on order of jobs across machines.

The job sequence can be different across machines for Flow Shop but for Permutation Flow Shop

problem, the sequence of jobs need to be same across all machine. The sequence or permutation is
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the schedule for the problem.

Different schedules are obtained by exchanging the jobs order. Each permutation is denoted by

π. With n jobs, the number of permutation is n! as oppose to Flow Shop where the number of

sequences is (n!)m. For m > 2, the problem is NP Hard but if the processing time of all jobs is

same then the problem is not NP Hard. All the permutation will have same sequence no matter

which permutation is selected.

The objective of the algorithms implemented in this thesis, is to find approximate result that is

near to optimal solutions for Permutation Flow Shop problem. The optimization is obtained by

minimizing the makespan i.e. Cmax. We have used two heuristics to obtain a solution for the

problems.

2.4.1 Example

Below is the example for demonstration of PFSP with five jobs and four machines. The processing

time of each job is given.

For five jobs, we will have 5! =120 different sequences.

J0 J1 J2 J3 J4

M0 10 8 4 12 5

M1 2 8 7 10 4

M2 6 12 4 2 8

M3 4 5 7 10 11

Table 2.2: Example for Permutation Flow Shop

Calculating Makespan(Cmax)

The procedure for calculating Cmax is same for all scheduling problem. As defined earlier, makespan

of a schedule is the finishing time of last operation of last job on last Machine. The sequence that

make the minimum makespan of all possible sequence is the optimal sequence and the Cmax for the

sequence is optimal solution. The sequence that makes the maximum of all possible sequence for

the given problem is worst sequence and makespan value is the worst solution. Makespan for some

of sequences obtained from problem in Table 2.2:
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Figure 2.2: PFSP with schedule J0-J1-J2-J3-J4

Figure 2.3: PFSP with schedule J1-J2-J3-J4-J0

Figure 2.4: PFSP worst schedule J0-J3-J2-J1-J4

Figure 2.5: PFSP best schedule J2-J4-J1-J3-J0

Above figure 2.2, 2.3, 2.4 and 2.5 are the gantt chart showing the processing of the problem in

Table 2.2 for four different schedules. The completion time of of last job J4 in 2.2 is 71. Hence the

makespan(Cmax) for schedule J0J1J2J3J4 is 71. Similarly, the Cmax in figure 2.3, 2.4 and 2.5 is

65, 78 and 56 respectively. The best solution for the problem is 56 which is obtained with sequence
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J2J4J1J3J0 as in figure 2.5. The worst solution for the problem is 78 with sequence J0J4J1J3J0

and is shown in figure 2.4
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Chapter 3

Simulated Annealing

3.1 Introduction

Simulated Annealing is one of the heuristics for Permutation Flow Shop problem. The name orig-

inates from its use in understanding metals behavior as they heat and cool. This includes heating

the metal at extreme high temperature and afterward cooling gradually until it get its minimum

energy state which is most regular possible configuration for the metal. If the metal is cooled too

rapidly, it will end up in useless form since the heating process will move the atoms randomly

changing the internal structure. This analogy can be used with job scheduling with state of the

solid as feasible solutions and final form of the solid, as optimal solution. The concept was first

introduced by Metropolis et al.[NM53] and then further studied by Kirkpatrick et al. [SK83] and

Fetterolf and Anandalingam [PCF91] for discrete optimization models[AS96].

Simulated Annealing depends on the randomization techniques. It additional joins several per-

spective of iterative improvement algorithms known as neighborhood search or local search. Neigh-

borhood search implies that there’s only one thing that contrasts between the old solution and the

new solution. At each iterations, two solutions are generated [H.S11] - current solution and new

solution. If the solution improves, it is always accepted while some worse solutions within accep-

tance probability are also accepted occasionally to reach global minima by escaping local minima.

The initial solution is chosen at random and the probability of accepting worse solutions depends

on acceptance probability and cooling temperature.

3.1.1 Acceptance probability

Simulated Annealing occasionally accepts worse solutions within an acceptance probability. The

acceptance probability depends on the temperature used and how worse the solution is. If the

14



temperature is high, the algorithm is likely to accept all the solution while the acceptance probability

decreases with decrease in temperature and with freezing temperature, only improved solutions are

accepted. The acceptance probability AP is,

AP = e−(∆
T

) (3.1)

where ∆ is difference of the new solution and old solution and T is the current temperature. If

value from equation 3.1 > Random[0, 1], then new solution is accepted otherwise it is rejected.

3.1.2 Temperature

Temperature plays an essential role in getting way from local minima. The algorithm is kept

running against different temperature to find the solution. At first, the algorithm is run at very

high temperature which allows the algorithm to search in an large solution space. The temperature

is then decreased gradually also called cooling rate which narrows down the solution space to allow

only the improving solution.The stopping temperature also plays an importance for finding good

solution. If we stop at very high temperature, we may not get a good solution and depending on

problems, the stopping temperature can be different.

Simulated Annealing works in following way:

1. Set a very high temperature.

2. Select a random sequence and find the solution for the random sequence.

3. Find a new solution with neighbor sequence and compare with old solution.

4. If new solution is better accept the sequence.

5. Else calculate Acceptance probability(AP) using equation 3.1

(a) If AP> Random[0, 1], accept the new solution and sequence

(b) Else reject the solution

6. Repeat the step from 2 to 5

7. Decrease the temperature and repeat all the above steps until desired solution is obtained

The algorithm is also described with a flow chart.
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Figure 3.1: Flow chart for Simulated Annealing

3.2 Implementation

Simulated annealing is one of the heuristic to find approximate solution for Permutation Flow Shop

problem. Simulated Annealing doesnt necessarily find the optimal solution, but it tries to obtain

good result. Simulated annealing receives processing time of n jobs in m machine as input and gives

best possible solution. The algorithm run continuously for a set of iterations to find the solution
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with varying range of the temperature. The initial temperature, the cooling rate and stopping

criteria play an important role to find a good solution. Initial temperature should be high to allow

enough sequences to escape local minima and better the cooling rate and stopping criteria, better

will be the result. If the algorithm is run for i iteration and t temperature, then total number of

iterations run for Simulated Annealing is i*t.

In our implementation for Simulated Annealing, the rate at which temperature T is decreased

is 0.8% and algorithm stops when temperature reaches 0. This algorithm iterates over certain

number of iterations for each temperature T. The next iteration is obtained by interchanging the

neighbors. Suppose initial sequence is 12345 then the next sequence is obtained by interchanging

two neighbors 1 and 2 and the sequence would be 21345. At a time only two jobs would be changed,

and the solution will be the smallest Cmax value among all the temperature.

3.2.1 Terms used in the Algorithm

T- temperature

Tmax Initial temperature

Smax A high number that will be greater than largest value of the problem.

oldSequence Accepted Sequence

oldVal- Cmax obtained from oldSequence.

newSequence new Sequence obtained with exchanging with neighbor

newVal- Cmax for newSequence

noOfIter no of Iteration

bestSolution Best Cmax value among all the temperature.

bestSequence - Sequence that return bestSolution

3.2.2 Algorithm

3.2.3 Assumptions

The initial value for oldSequence is {1,2, 3, n}. The algorithm maintains job sequence in an array

and new sequence is created by interchanging positions of two jobs. Duplicate sequences are avoided

within the same temperature. The rate for temperature decrease is 80%.
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Algorithm 1 Implementation of SA algorithm

function SA()
T= Tmax , bestSolution = Smax
while (T > 0) do

while (iterations > noOfIter) do
oldSequence = A random sequence , find oldVal for oldSequence.
Find newVal from newSequence.
if (newSequence is not duplicate) then

Compare oldVal and newVal
if (newV al < oldV al) then

oldSequence = newSequence
oldVal = newVal

else
∆ = newVal - oldVal
p = Random[0, 1]

if ( p <= e−(∆
T

)) then
oldSequence = newSequence
oldVal = newVal

T= 0.8*T
if (bestSolution > oldVal) then

bestSolution = oldVal
bestSequence = oldSequence

J0 J1 J2 J3 J4

M0 10 8 4 12 5

M1 2 8 7 10 4

M2 6 12 4 2 8

M3 4 5 7 10 11

Table 3.1: Example with 5 jobs and 4 machines

3.2.4 Example

Table 3.1 is a Flow Shop problem with five jobs and four machines. The processing time of each

jobs in different machine is given as input to Algorithm 1. The initial temperature is set to 100,

and best solution is set to 1000. Algorithm 1 is run for 6 iteration for each temperature. The

temperature is decreased by 80%. Below is the screenshot showing how algorithm works for two

temperatures.

The initial sequence for each temperature is 12345 which is the oldSequence as well as the

newSequence for the algorithm. The sequence represents job sequence in current iteration and

Cmax is calculated for each iteration. At each iteration oldVal and newVal are compared; if newVal

is smaller, newSequence is accepted; otherwise Acceptance probability is calculated for accepting
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Figure 3.2: Screenshot demonstrating how SA works

or rejecting the sequence. The acceptance probability is given as:

AP = e(−∆/T ), where ∆ = newVal oldVal

Iteration 1:

Job Sequence J1 J2 J3 J4J5 and Cmax: 71. As this is first sequence, this is accepted, and we obtain

next sequence by exchanging jobs at position 1 and 2.

Iteration 2:

Job Sequence J2 J1 J3 J4J5 and Cmax: 67. As Cmax for this sequence is less than the first sequence,

this is accepted. Now the oldSequence is 2,1,3,4,5 and oldVal is 67. Position 1 and 2 are swapped

but since this generates the same sequence as iteration 1, it is discarded, and next swapping is done
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between position 1 and 3.

Iteration 3. Job Sequence J3 J1 J2 J4J5 and Cmax:68. As Cmax of this sequence is greater than

last sequence, we calculate acceptance probability P for this sequence and compares with random

value between 0 and 100 is generated by program.

∆ = 68− 67 = 1, T = 100

AP = e−(∆
T

) = 0.99

AP is then converted to whole number by multiplying with 100. Random value generated by the

program is 41 which is less than AP. Hence sequence is accepted. The next sequence is obtained

by interchanging two number in the sequence J3 J1 J2 J4J5.

Iteration 4:

Job Sequence J1 J3 J2 J4J5 and Cmax:68. The Cmax of this sequence is same as old sequence. The

value of P is 100 and Random number generated is 85. Hence this sequence is accepted. The next

sequence is obtained by exchanging two number in the sequence.

Iteration 5:

Job Sequence J2 J3 J1 J4J5 and Cmax:67. The Cmax of this sequence is smaller than the old se-

quence. Hence this is accepted.

Iteration 6: Job Sequence J3 J2 J1 J4J5 is obtained by exchanging first two jobs from Itera-

tion 5 and Cmax:67.This is the last iteration for the temperature so bestSolution is the Cmax value

obtained at last iteration, which is 67.

The next temperature is 80 which is 80% of the initial temperature. Again same process is re-

peated and the algorithm is run for 6 iterations for this temperature. After the 6th iteration, the

existing best solution is compared with Cmax value of the 6th iteration. If the Cmax is better, then

Cmax will be the new bestSolution. This process is repeated until temperature reaches 0 and the

best solution obtained is the best Value obtained from the algorithm.

The algorithm occasionally accepts worse value to escape local minima. In our case it has accepted

all the sequences since Acceptance Probability is really high with a difference not greater than

1. Since, the algorithm runs only for 6 iterations, the sequences with both temperature is the

same. But if we change the iteration count, the sequence would be different, with high temperature

accepting almost all sequences and lower temperature accepting only the improving sequence.
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Chapter 4

NEH

4.1 Introduction

NEH named after Nawaz, Encore and Ham [MN83] is one of the best constructive method for

Permutation Flow Shop Problem [JMF04]. NEH consists of two steps. First, it find the initial

sequence using some criteria and for second steps involve making final sequences by taking partial

sequences from initial sequence and then reordering sequences based on makespan. Below is the

algorithm for NEH:

1. Find sum of processing time of operations of jobs and then sort based on the decreasing order

of the sum. This is the initial order.

2. Iteratively add jobs to partial sequence from initial order for which the makespan is minimum.

This can be further divided in two steps

(a) Choose first two jobs and find the sequence for these two jobs that minimizes the

makespan.

(b) For k=3 to n, insert kth job to the sequence without altering the relative position of k-1

jobs and minimizing the partial makespan.

Assume first k-1 jobs are already sequenced. We need to add kth job from initial sequence to

sequenced jobs such that the relative position of k-1 jobs is not altered and also makespan is

minimum. For kth jobs, we can place at k different places. The best of these sequence is kept as

input for next iteration. This sequence is repeated until all jobs have been ordered. The total no

of the sequences that need to be generated for the NEH is [n(n+1)
2 − 1]. The working process of the

NEH algorithm is explained with example in section 4.1.1.
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4.1.1 Example

J0 J1 J2 J3 J4

M0 10 8 4 12 5

M1 2 8 7 10 4

M2 6 12 4 2 8

M3 4 5 7 10 11

Table 4.1: Example with 5 jobs and 4 machines

There are 5 jobs J0, J1, J2, J3, J4 and 4 machines M0,M1,M2,M3 and each block represent the

processing time of jobs in that machine. We have calculated optimal solution for the problem using

brute force algorithm which is 56. We have implemented NEH for the above problem. Below is the

process for finding solution with NEH for above problem.

The first step involves finding sum of jobs across all the machines.

J0 = 10 + 2 + 6 + 4 = 22

J1 = 8 + 8 + 12 + 5 = 33

J2 = 4 + 7 + 4 + 7 = 18

J3 = 12 + 10 + 2 + 10 = 34

J4 = 5 + 4 + 8 + 11 = 28

The next step involves sorting the job in descending order of the sum. i.e. J3, J1, J4, J0, J2.

Choose first two jobs and find the sequence J3 J1 or J1 J3 which minimizes the makespan.
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Figure 4.1: Makespan with two jobs

For two jobs J1, J3, J1J3 sequence has minimum makespan, so J1J3 job sequence is selected.

Now, adding third highest job i.e. J4 to sequence J1J3 by keeping the position of J1andJ3 with

respect to each other constant. J4 will be added to the position that minimizes makespan for these

three jobs.
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Figure 4.2: Makespan with three jobs - 1st sequence

Figure 4.3: Makespan with three jobs - 2nd sequence

Figure 4.4: Makespan with three jobs - 3rd sequence

Among the sequence J1J3J4, J1J4J3 and J1J3J4; J4J1J3 has lowest makespan. Hence J4J1J3

sequence is selected. Now adding fourth highest job J0 in sequence J4J1J3.
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Figure 4.5: Makespan with four jobs - 1st sequence

Figure 4.6: Makespan with four jobs - 2nd sequence

Figure 4.7: Makespan with four jobs - 3rd sequence

Figure 4.8: Makespan with four jobs - 4th sequence

With four jobs, J4J1J3J0 has lowest makespan. So accepting sequence J4J1J3J0 for four jobs.

Adding last job J2 to find the final sequence and solution.
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Figure 4.9: Makespan with five jobs - 1st sequence

Figure 4.10: Makespan with five jobs - 2nd sequence

Figure 4.11: Makespan with five jobs - 3rd sequence
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Figure 4.12: Makespan with five jobs - 4th sequence

Figure 4.13: Makespan with five jobs - 5th sequence

J2J4J1J3J0 and J4J2J1J3J0 have same Cmax value of 56 which is optimal value. Choosing

either sequence as final sequence for NEH and Cmax for the final sequence is the solution of the

problem.This is the working process of NEH. It starts with two jobs, find sequence with minimum

makespan from two jobs which is input for next step. Iteratively adds new jobs to the ordered

sequence and finally return the sequence with shortest makespan. The value with the final sequence

is the solution for this problem

4.2 Variations of NEH

Taillard [A.B16] studied the complexity and quality of different heuristics and conclude that NEH

algorithm is better for problem of job size 9 to 50 jobs. NEH performance mainly depends on

the initial order according to which jobs are ordered for insertion. A number of variation were

developed after initial release of the NEH algorithm by modifying the initial sequence and sorting

procedure. Dong et. al. [XD08] develop a heuristic NEH-D based on Deviation that work better

than NEH with same time complexity. Similarly Kalczynski and Kamburowski [PK08] developed

a tie-break rule that improved the performance of NEH and was named NEH-KK. The algorithm
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which works better for small problems but took more time for tie breaking rule during insertion.

Framinan et. al. [JF03] construct 177 different initial orders and evaluated the performance. In

this thesis we are comparing NEH result with various variation of NEH in terms of accuracy. All

of the variation in this thesis has these two steps.

1. Find initial sequence based on some criterion.

2. Iteratively insert jobs to partial sequence from initial sequence.

We have used following variation of NEH

1. First variation for NEH is same as original NEH. It first find the sum of processing time of

jobs. But it sorts in increasing order of jobs instead of decreasing order [JF03]. The second

step is same.

2. Second variation involve calculating standard deviation for jobs in different machine [XD08].

Standard deviation is calculated for each job and then jobs are sorted on the decreasing order

of standard deviation. The insertion process is same as original NEH.

3. Third form of NEH is calculated same as second but we just sort the jobs based on increasing

order of the deviation.

4. Fourth NEH variation is calculated by using sum of average and standard Deviation [LSW11].The

standard deviation and average of jobs is calculated for all jobs which are added. And then

jobs are sorted on descending order of the sum.This is the initial sequence. The second step

is same as original NEH.

4.3 NEH and Simulated Annealing combined

Modification are done to improve the results from Simulated Annealing and NEH heuristics. We

changed the initial sequence for both the algorithm. At first we use the solution sequence of

NEH in Simulated Annealing. Then second modification was done by using Simulated Annealing

bestSequence as NEH initial sequence. The detailed process is explained in subsection 4.3.1

for using NEH final sequence in Simulated Annealing and 4.3.2 for using Simulated Annealing

bestSequence in NEH.

4.3.1 Using NEH result in Simulated Annealing

1. Find the resulting sequence for given problem using NEH algorithm.
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2. Use that sequence as initial oldSequence in Simulated Annealing algorithm.

3. Run the Simulated Annealing algorithm and find the solution.

4.3.2 Using Simulated Annealing result in NEH

1. Find the bestSequence using Simulated Annealing algorithm.

2. Skip first step of NEH algorithm. Instead hard code the sequence from step 1.

3. Run the NEH algorithm and find the solution.
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Chapter 5

Results

Many Permutation Flow Shop problems are used to test the performance and optimality of Simu-

lated Algorithm, NEH algorithm, variations of NEH and combination of Simulated Annealing and

NEH. To test the performance of the algorithm, result obtained from the algorithms needs to be

compared with Optimal Solution for the problem. For NP Hard problems, optimal solutions are

not always known. For this thesis we are using the problems for which optimal solution are known.

We have used VFR instances by Eva Vallada, Roben Ruiz, Jose M. Framinan [EV15] and Taillard

instances [E.T93]. All the coding is done in C++ using Intel Core i7 processor and 8 GB RAM.

5.1 Performance testing parameters

Execution Time

It is the time taken by the implemented algorithms to find the final solution in the machine.

Optimal Solution

Optimal Solution is the minimum Cmax that can be achieved from a given Permutation Flow Shop

problems. For n job problem, there are n! total sequences in Permutation Flow Shop. After getting

Cmax for all the sequences, the minimum Cmax is optimal solution and the sequence for which we

get optimal value is Best Sequence.

Approximate Ratio

ApproximateRatio =
Solution

Optimal Solution

Solution is the final Cmax value returned from the algorithm implemented. Approximate ratio is

used to analyze the performance of algorithm mentioned in chapter 3 and chapter 4 and is the
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percentage deviation from the optimal value. Algorithms implemented in this thesis are heuristics

to find approximate solution. Approximate ratio calculates the percentage of increase from optimal

solution.

5.2 VRF Instances

Vallada et. al. [EV15] created benchmark for Flow Shop scheduling problems with 480 instances;

240 large instances and 240 small instances. Benchmark generation and analysis took around

six year of CPU time effort. Extensive generations and computational experiments were done to

demonstrate that the propose benchmark is harder than most of the instances proposed before.

Small instances are set of 240 with machine size as {5,10,15,20} and job size as {10, 20, 30, 40, 50,

60}. Similarly large instances are set of 240 with machine size as {20,40,60} and job size {100, 200,

300, 400, 500, 600, 700, 800}. The lower bound and upper bound of all the instances are provided

and a website is also available to record all the instances, solutions and bounds.

The upper bound provided for the problem is Optimal Solution for Permutation Flow Shop problem

which we have checked by using Brute Force algorithm. For this thesis we are only using Optimal

solution for comparison of our result. We have selected 20 instances, 4 of them are from Large

Instance set and remaining from Small Instances. The results is divided into four section. First

section involve results using Simulated Annealing algorithm implemented in chapter 3. Second

section include result with NEH and all the variation of NEH in chapter 4. In the third section

we have have done comparison of Simulated Annealing and NEH side by side based on Execution

time and Approximate Ratio. The last section includes the result from the combined algorithm in

section 4.3 of Chapter 4.

The results are obtained based on the absolute Cmax value as well as Approximate Ratio.

5.2.1 Observations

Simulated Annealing results with different iterations

The first column in all the tables are the Instance name with job size and machine size. E.g. For

VFR20 10 10 Gap, first number after VFR is job size, the second number is machine size and third

number represents instance number. Second column in the Table 5.1 represents the optimal solution

for the problem. Third column, fourth and fifth column in Table 5.1 represent the absolute value

using Simulated Annealing algorithm with 500, 1000 and 2500 iterations(noOfIter) respectively.
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The second, third and fourth column in Table 5.2 shows the approximate ratio of the S.A with

different iterations.The value 1.09 for first instance means the absolute value deviates the optimal

solution by 9%.

Instance OptimalVal 500iters 1000iters 2500iters

VFR10 10 1 Gap 1097 1199 1173 1165

VFR10 10 10 Gap 1099 1164 1149 1150

VFR10 15 1 Gap 1307 1423 1414 1414

VFR10 15 10 Gap 1461 1567 1566 1566

VFR20 10 10 Gap 1489 1628 1623 1619

VFR20 10 2 Gap 1525 1777 1764 1706

VFR20 15 1 Gap 1936 2191 2179 2131

VFR20 20 10 Gap 2199 2543 2544 2503

VFR30 5 1 Gap 1805 2080 1993 1976

VFR30 20 10 Gap 2805 3375 3372 3299

VFR40 20 9 Gap 3335 4333 4159 4165

VFR40 20 10 Gap 3122 3897 3871 3774

VFR50 10 10 Gap 3056 3811 3811 3701

VFR50 20 10 Gap 3769 4865 4755 4677

VFR60 5 1 Gap 3350 3948 3948 3948

VFR60 20 1 Gap 4163 5236 5168 5082

VFR100 20 10 Gap 6145 7619 7502 7475

VFR200 40 10 Gap 13228 16706 16474 16165

VFR300 20 10 Gap 16899 20111 19951 19906

VFR400 20 6 Gap 21214 25062 24856 24778

Table 5.1: Absolute value using Simulated Annealing algorithm with different number of iterations
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Instance 500iters 1000iters 2500iters

VFR10 10 1 Gap 1.093 1.069 1.062

VFR10 10 10 Gap 1.059 1.045 1.046

VFR10 15 1 Gap 1.089 1.082 1.082

VFR10 15 10 Gap 1.073 1.072 1.072

VFR20 10 10 Gap 1.093 1.090 1.087

VFR20 10 2 Gap 1.165 1.157 1.119

VFR20 15 1 Gap 1.132 1.126 1.101

VFR20 20 10 Gap 1.156 1.157 1.138

VFR30 5 1 Gap 1.152 1.104 1.095

VFR30 20 10 Gap 1.203 1.202 1.176

VFR40 20 9 Gap 1.299 1.247 1.249

VFR40 20 10 Gap 1.248 1.240 1.209

VFR50 10 10 Gap 1.247 1.247 1.211

VFR50 20 10 Gap 1.291 1.262 1.241

VFR60 5 1 Gap 1.179 1.179 1.179

VFR60 20 1 Gap 1.258 1.241 1.221

VFR100 20 10 Gap 1.240 1.221 1.216

VFR200 40 10 Gap 1.263 1.245 1.222

VFR300 20 10 Gap 1.190 1.181 1.178

VFR400 20 6 Gap 1.181 1.172 1.168

Table 5.2: Approximate ratio of Simulated Annealing with different iterations

Figure 5.1: Approximate ratio for Simulated Annealing by changing the number of iterations
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From the results obtained, it can be observed as the problem size gets bigger, the solution becomes

worse. For Simulated Annealing, the number of neighbor observed is the iteration count and is

always same no matter how big the problem size is; so it might never meet the optimal solution.

But as we increase the number of iterations from 500 to 2500, the result got better and better as

Simulated Annealing is able to search larger solution space. We have plotted the result in figure

5.1 for visual representation. The lowest deviation among three is with Iteration count 2500, then

with 1000 and Simulated Annealing with iterations count 500 deviates the most from the optimal

solution. Even though Simulated Annealing with iteration count 2500 beats the other two, the

value is far from the optimal result.

Results from NEH and its Variation

Instance SumDes SumAsc StdDes StdAsc Std+Avg

VFR10 10 1 Gap 1.118 1.081 1.118 1.081 1.118
VFR10 10 10 Gap 1.086 1.138 1.086 1.096 1.067
VFR10 15 1 Gap 1.082 1.118 1.082 1.121 1.082
VFR10 15 10 Gap 1.075 1.086 1.075 1.089 1.078
VFR20 10 10 Gap 1.117 1.179 1.117 1.125 1.086
VFR20 10 2 Gap 1.079 1.082 1.079 1.095 1.077
VFR20 15 1 Gap 1.111 1.106 1.111 1.133 1.089
VFR20 20 10 Gap 1.128 1.160 1.128 1.146 1.129
VFR30 5 1 Gap 1.016 1.022 1.016 1.028 1.017

VFR30 20 10 Gap 1.107 1.183 1.107 1.164 1.111
VFR40 20 9 Gap 1.103 1.139 1.103 1.147 1.113
VFR40 20 10 Gap 1.116 1.142 1.116 1.135 1.120
VFR50 10 10 Gap 1.067 1.062 1.067 1.098 1.053
VFR50 20 10 Gap 1.115 1.145 1.115 1.127 1.099
VFR60 5 1 Gap 1.003 1.037 1.003 1.027 1.003
VFR60 20 1 Gap 1.123 1.131 1.123 1.122 1.102

VFR100 20 10 Gap 1.094 1.104 1.094 1.104 1.091
VFR200 40 10 Gap 1.113 1.124 1.113 1.116 1.119
VFR300 20 10 Gap 1.028 1.042 1.030 1.039 1.028
VFR400 20 6 Gap 1.038 1.051 1.035 1.049 1.038

Table 5.3: Approximate ratio obtained using various variation of NEH
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Figure 5.2: NEH and its variation

Table 5.3 shows the approximate ratio for NEH and its variation with VFR instances. The second

column in Table represents NEH result. Third, fourth, fifth and sixth column shows the result with

NEH variation 1, 2, 3, 4 respectively from Chapter 4.

Comparing NEH and its various variation based on approximate ratio, variations for which initial

sequence is obtained by sorting in ascending order i.e. variation 1 and variation 3 works poorly

compared to the initial sequence obtained by sorting in descending order. The results are plotted in

figure 5.2. In the figure as well as Table 5.3, NEH and NEH variation 2(StdDesc) have almost same

values and are overlapping. Also, the result from NEH variation 4, obtained as sum of Standard

Deviation and Average performed better than original NEH for most of the cases. Hence, while

comparing NEH and all its variation for the given problem, variation 4 performed the best for VFR

instances.

Simulated Annealing and NEH results

In this section, we are comparing performance of Simulated Annealing and NEH algorithm based on

approximate ratio as well as execution time. The second column in Table 5.5 shows the approximate

ratio from Simulated Annealing algorithm with 500 iterations, third column is approximate ratio for

NEH, fifth and sixth column shows the Execution time of Simulated Annealing and NEH algorithm

respectively. The execution time is in milliseconds.
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Instance SA NEH SA
time(milisecs)

NEH
time(milisecs)

VFR10 10 1 Gap 1.093 1.118 26826 22

VFR10 10 10 Gap 1.059 1.086 25332 23

VFR10 15 1 Gap 1.089 1.082 25622 33

VFR10 15 10 Gap 1.073 1.075 36661 35

VFR20 10 10 Gap 1.093 1.117 72762 114

VFR20 10 2 Gap 1.165 1.079 45181 122

VFR20 15 1 Gap 1.132 1.111 55881 139

VFR20 20 10 Gap 1.156 1.128 57727 187

VFR30 5 1 Gap 1.152 1.016 70825 184

VFR30 20 10 Gap 1.203 1.107 62092 446

VFR40 20 9 Gap 1.299 1.103 87480 781

VFR40 20 10 Gap 1.248 1.116 98672 760

VFR50 10 10 Gap 1.247 1.067 93922 817

VFR50 20 10 Gap 1.291 1.115 104816 1309

VFR60 5 1 Gap 1.179 1.003 127997 880

VFR60 20 1 Gap 1.258 1.123 135068 2092

VFR100 20 10 Gap 1.240 1.094 202314 7527

VFR200 40 10 Gap 1.263 1.113 374608 152823

VFR300 20 10 Gap 1.190 1.028 426026 315313

VFR400 20 6 Gap 1.181 1.038 543329 351587

Table 5.4: NEH and Simulated Annealing with approximate ratio and completion time

Figure 5.3: Approximate ratio with Simulated Annealing and NEH
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Figure 5.4: Time taken by NEH and Annealing for VFR Instances

Observing the result based on the approximate ratio, NEH algorithm performs much better than

Simulated Annealing in solution as well as execution time. Initially for some small problem size,

Simulated Annealing results are nearly same as NEH. However when the problem size increases, the

performance of Simulated Annealing goes worse. For e.g. for VFR40 20 9, Simulated Annealing is

off by 30% where NEH is off with only 10% which is much lesser than Simulated Annealing. Some

of the NEH results are near to the Optimal Solution but Simulated Annealing results are farther

from Optimal and NEH solutions. The comparison between the two can be visually represented in

the figure 5.3.

Also, comparing NEH and Simulated Annealing based on the execution time, NEH outperforms

Simulated Annealing. The difference is more than 100 times on average for VFR instances. This

is visually represented in figure 5.4.

Result with Simulated Annealing and NEH combined

We tested the VFR instances using modification algorithm implemented in subsection 4.3.1 and

4.3.2 of Chapter 4. In this section we have compared modified algorithm with original algorithm

and observed the improvement. Table 5.5 shows the result with respect to the absolute value and

Figure 5.5 and figure 5.6 shows the improvement with respect to original algorithm.
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Instance SA SA using
NEH

NEH NEH using
SA

VFR10 10 1 Gap 1199 1199 1226 1239

VFR10 10 10 Gap 1164 1161 1194 1164

VFR10 15 1 Gap 1423 1425 1414 1414

VFR10 15 10 Gap 1567 1567 1570 1597

VFR20 10 10 Gap 1628 1635 1663 1654

VFR20 10 2 Gap 1777 1677 1645 1668

VFR20 15 1 Gap 2191 2189 2150 2095

VFR20 20 10 Gap 2543 2574 2480 2518

VFR30 5 1 Gap 2080 1900 1833 1909

VFR30 20 10 Gap 3375 3259 3106 3205

VFR40 20 9 Gap 4333 3698 3680 3749

VFR40 20 10 Gap 3897 3570 3483 3541

VFR50 10 10 Gap 3811 3321 3262 3298

VFR50 20 10 Gap 4865 4401 4204 4168

VFR60 5 1 Gap 3948 3431 3360 3374

VFR60 20 1 Gap 5236 4764 4677 4672

VFR100 20 10 Gap 7619 6794 6720 6698

VFR200 40 10 Gap 16706 16627 14718 14812

VFR300 20 10 Gap 20111 17391 17376 17474

VFR400 20 6 Gap 25062 22119 22025 22036

Table 5.5: Simulated Annealing and NEH solution along with combined results

Figure 5.5: Graph with Approximate ratio of SA and modified SA
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Figure 5.6: Graph with Approximate ratio of NEH and modified NEH

In table 5.5 the first column is the instance name, second is the result using Simulated An-

nealing algorithm with 500 iterations, third column is the result with modification of Simulated

Annealing algorithm with initial sequence from NEH final sequence, fourth column is result from

NEH algorithm and fifth column is the result from NEH modification i.e. NEH using bestSequence

of Simulated Annealing algorithm. While comparing the results of Simulated Annealing with and

without modification, Simulated Annealing result improves a lot with the modification and is near

to NEH result.

However same thing cannot be said for NEH. The result for NEH with modification is worse com-

pared to NEH in most of the cases. The comparison for Simulated Annealing and NEH can be

visually seen from figure 5.5 and 5.6 respectively.

5.3 Taillard’s Instances

Taillard is well known researcher in the field of Shop Problems. He have performed several exper-

iments on shop problems. He has created benchmark for many hard instances Shop problems. In

this thesis, we have selected 20 instances of hard problems in category of Flow Shop problems. He

has provided upper bound and lower bound for the problems. We have used modified Simulated

Annealing algorithm for the instances and discarded the modified NEH algorithm as no improve-

ment was seen with modified NEH algorithm. We have used our modified algorithm and with

Taillard’s standard result along with NEH and Simulated Annealing results.
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5.3.1 Observations

First column in Table 5.6 is the Taillard instance number with job size and machine size. We have

taken 20 jobs problem with 5 and 10 machines. We have 10 instances with 20 jobs 5 machines and

10 instances from 20 jobs 10 machines. Second and Third column is the Upper and Lower bound of

Taillard’s experiment. Column 4 and column 5 are the solution obtained by using NEH algorithm

and Simulated Annealing with 500 iterations. The last column is the result obtained using modified

Simulated Annealing algorithm.

Instances Upper
Bound

Lower
Bound

NEH SA Modified
SA

20 5 1 1278 1232 1286 1344 1286

20 5 2 1359 1290 1365 1406 1365

20 5 3 1081 1073 1159 1459 1159

20 5 4 1293 1268 1325 1534 1325

20 5 5 1236 1198 1305 1431 1305

20 5 6 1195 1180 1228 1498 1224

20 5 7 1239 1226 1278 1267 1251

20 5 8 1206 1170 1223 1374 1223

20 5 9 1230 1206 1291 1334 1277

20 5 10 1108 1082 1151 1297 1151

20 10 1 1582 1448 1680 1775 1651

20 10 2 1659 1479 1729 1852 1729

20 10 3 1496 1407 1557 1660 1531

20 10 4 1378 1308 1439 1565 1406

20 10 5 1419 1325 1502 1578 1493

20 10 6 1397 1290 1453 1877 1433

20 10 7 1484 1388 1562 1726 1526

20 10 8 1538 1363 1609 1743 1609

20 10 9 1593 1472 1647 1735 1631

20 10 10 1591 1356 1653 1802 1653

Table 5.6: Results with Taillard Instances
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Figure 5.7: Graph with results for Taillard instances

The results shows that the modified algorithm for NEH have worked really well for Taillard’s

instances as well. Figure 5.7 shows the comparison of original Simulated Annealing, NEH and

modified Simulated Annealing with Taillard result. Simulated Annealing still works poorly even for

Taillard instances. NEH and modified Simulated Annealing worked really well with some instances

overlapping with Upper bound. However, both NEH and modified Annealing are close to Upper

bound but still away from the lower bound.The improvement percentage of modified Simulated

Annealing over Simulated Annealing is shown in the figure 5.8.

Figure 5.8: Percentage improvement of Simulated Annealing after modifying initial sequence
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Chapter 6

Conclusion and Future Work

In this thesis, we have implemented Simulated Annealing algorithm in Chapter 3, NEH algorithm

and its variation in Chapter 4 and combined Simulated Annealing and NEH in Chapter 4. Chapter 5

includes the findings with the algorithms implemented. We have tested the efficiency of algorithm

implemented with the standard results. We compared existing algorithms Simulated Annealing

and NEH based on final result and execution time and also compared combined algorithm with the

existing.

The first comparison is done with Simulated Annealing by changing the number of iterations.

The comparison in subsection 5.2.1 shows that as we increase the number of the iterations, better

is the result. However execution time also increases as number of iterations increases. Even the

solution improved by increasing the iterations but still with highest iteration, the result is far from

optimal solution. Second comparison is with the NEH and its variation .NEH variation where the

initial sequence is sorted in ascending order perform worse than the variation where initial sequence

are sorted in descending order in subsection 5.5. Among all the NEH variation, NEH where initial

sequence is obtained by finding sum of Standard Deviation and Average performed best.

Third comparison is between Simulated Annealing and NEH based on the final result as well

as execution time. Comparison of NEH and Simulated Annealing with VFR problems in 5.2.1

as well as Taillard’s instances in 5.3.1 shows that NEH outperforms Simulated Annealing in both

Cmax value as well as execution time. However, we are able to improve the solution of Annealing

algorithm using NEH sequence. Improved Simulated Annealing works really well when tested with

VRF instances 5.2.1 as well as Taillard instances 5.3.1. The result obtained with modified Simu-

lated Annealing and NEH are almost similar and sometimes better than NEH. We tried to improve
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NEH with Simulated Annealing result. But, the result 5.2.1 is worse( 5.2.1) when compared to

original NEH.

From all the comparisons between Annealing and NEH, NEH beats Annealing. Simulated An-

nealing result got improved after using NEH sequence and results were similar with NEH but

execution time was same. Hence, NEH worked best with the problems included in this thesis.

Further improvement can be done with both Simulated Annealing and NEH. For Simulated Anneal-

ing, further improvement can be done in terms of execution time. Simulated Annealing is taking

long time to complete the execution. As the number of iterations increases, the execution time also

increases at the same level. The temperature and cooling rate plays a vital role in determining the

execution time. For this thesis, the temperature and cooling rate are constant for all the problems.

So, we can change temperature and cooling rate to reduce execution time without impacting the

result.

We modified NEH by combining Annealing result but it couldn’t improve the solution for NEH.

For future, we can combine NEH with some other algorithms like Genetic Algorithm, Tabu Search,

Branch and Bound, etc. for improving the result.
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Appendix A

Selected Code

\section{NEH}

This is used to find the partial makespan of a schedule. This takes partial matrix and column size as input and returns

int find_makespan(vector<vector<int>> matrix, int val) {

int i, j;

int column = val + 1; //

int** makespan_matrix = new int*[rows];

for (int i = 0; i < rows; ++i)

makespan_matrix[i] = new int[column];

makespan_matrix[0][0] = machinejobs[0][permutation[0] - 1];

//Calculates the completion time of jobs in first machine;

for (j = 1; j < cols; j++)

makespan_matrix[0][j] = m[0][j - 1] + machinejobs[0][permutation[j] - 1];

//calculates the completion time of first job in all machine

for (j = 1; j < rows; j++) {

makespan_matrix[j][0] = makespan_matrix[j - 1][0] + machinejobs[j][permutation[

}
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//calculates the completion time for all the machines

for (i = 1; i < rows; i++) {

makespan_matrix[i][1] = makespan_matrix[i - 1][1] + machinejobs[i][permutation[

for (j = 1; j < cols; j++) {

if (makespan_matrix[i - 1][j] >= makespan_matrix[i][j - 1]) {

makespan_matrix[i][j] = makespan_matrix[i - 1][j] + machinejobs[i][permutation[j]
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}

else {

makespan_matrix[i][j] = makespan_matrix[i][j - 1] + machinejobs[i][permutation[j]

}

}

}

return makespan_matrix[rows - 1][cols - 1];

}

// First step of NEH

// Finding sum of the jobs

for (int i = 0; i < cols; i++) {

int sum = 0;

for (int j = 0; j<rows; j++)

sum += machinejobs[j][i];

job_sum.push_back(sum);

}

//Find the initial sequence by sorting in descending order of the sequence

std::multimap<float, int, std::greater <float>> mm;

for (std::size_t i = 0; i != job_sum.size(); ++i)

mm.insert(make_pair(job_sum[i], i));

std::vector<std::size_t> permutation;

for (const auto & kv : mm) {
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permutation.push_back(kv.second);

}

for (int i = 0; i < rows; i++) {

for (int j = 0; j <cols; j++) {

initial_matrix[i][j] = machinejobs[i][permutation[j]];

}

}

for (int i = 0; i<cols; i++) {

find_result(i, permutation[i], initial_matrix);

}

//This finds the partial sequence
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//Final_matrix, sequence and C_max are global variable. This function takes the length of partial sequence, job order for additional job and initial matrix as input and returns the partial sequence.

void find_result(int val, int perm, int**m) {

std::vector<int>temp_sequence;

vector<vector<int>> t(cols, vector<int>(val + 1));

int bestsolution = MAX;

int position = 0;

int currentsolution;

if (val != 0) {

for (int iter = 0; iter <= val; iter++) {

partial_matrix = final_matrix;

for (int i = 0; i < rows; i++)

partial_matrix[i].insert(partial_matrix[i].begin() + iter, m[i][val]);

currentsolution = calculate_val(t, val);

if (bestsolution > currentsolution) {

bestsolution = currentsolution;

position = iter;

}

}

}

for (int i = 0; i < rows; i++) {

final_matrix[i].insert(final_matrix[i].begin() + position, m[i][val]);

}

sequence.insert(sequence.begin() + position, perm);

Cmax = bestsolution;

}

// Initial Sequence for NEH variation 1 i.e sorting the jobs in ascending order

// Finding sum of the jobs

for (int i = 0; i < cols; i++) {

int sum = 0;

for (int j = 0; j<rows; j++)

sum += machinejobs[j][i];

job_sum.push_back(sum);

}
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//Find the initial sequence by sorting in ascending order of the sequence

std::multimap<float, int, std::less <float>> mm;

for (std::size_t i = 0; i != job_sum.size(); ++i)

mm.insert(make_pair(job_sum[i], i));

std::vector<std::size_t> permutation;

for (const auto & kv : mm) {

permutation.push_back(kv.second);

}

//Remaining part i.e finding partial sequence is same for this variation

//Final initial sequence as Variation 2 i.e sorting the initial sequence in descending order of standard deviation.

for (int i = 0; i < cols; i++) {

for (int j = 0; j < rows; j++)

sum += machinejobs[j][i];

avg = (float)sum / rows;

for (int j = 0; j < rows; j++)

variance += pow(machinejobs[j][i] - avg, 2);

variance = variance / rows;

stdDev = sqrt(variance);

job_sum.push_back(stdDev);

}

//Initial permutation or sequence by Sorting in descending order

std::multimap<float, int, std::greater <float>> mm;

for (std::size_t i = 0; i != job_sum.size(); ++i)

mm.insert(make_pair(job_sum[i], i));

std::vector<std::size_t> permutation;

for (const auto & kv : mm) {

permutation.push_back(kv.second);

}

//The variation3 is obtained by sorting jobs on ascending order of standard deviation.

std::multimap<float, int, std::less <float>> mm;

for (std::size_t i = 0; i != job_sum.size(); ++i)

mm.insert(make_pair(job_sum[i], i));

std::vector<std::size_t> permutation;

for (const auto & kv : mm) {

47



permutation.push_back(kv.second);

}

//The variation 4 is obtained by finding sum of sum and standard deviation and then sorting in descending order

for (int i = 0; i < cols; i++) {

for (int j = 0; j < rows; j++)

sum += machinejobs[j][i];

avg = (float)sum / rows;

for (int j = 0; j < rows; j++)

variance += pow(machinejobs[j][i] - avg, 2);

variance = variance / rows;

stdDev = sqrt(variance);

add=stdDev+sum

job_sum.push_back(stdDev+sum);

}

//Initial permutation or sequence by Sorting in descending order

std::multimap<float, int, std::greater <float>> mm;

for (std::size_t i = 0; i != job_sum.size(); ++i)

mm.insert(make_pair(job_sum[i], i));

std::vector<std::size_t> permutation;

for (const auto & kv : mm) {

permutation.push_back(kv.second);

}
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