
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2015 

Situational Assessment using graph comparison Situational Assessment using graph comparison 

Pavan Kumar Pallapunidi 
University of Nevada, Las Vegas, pallapun@unlv.nevada.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Applied Mathematics Commons, Computer Sciences Commons, Mathematics Commons, 

and the Military and Veterans Studies Commons 

Repository Citation Repository Citation 
Pallapunidi, Pavan Kumar, "Situational Assessment using graph comparison" (2015). UNLV Theses, 
Dissertations, Professional Papers, and Capstones. 2407. 
https://digitalscholarship.unlv.edu/thesesdissertations/2407 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/396?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2407?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


 
 

SITUATIONAL ASSESSMENT USING GRAPH 

COMPARISON 

 

By 

 

Pavan Kumar Pallapunidi 

Bachelor of Technology, Information Technology  

Jawaharlal Nehru Technological University, India 

2010 

 

A thesis submitted in partial fulfillment of the requirements 

 for the 

 

Master of Science - Computer Science 

 

Department of Computer Science  

Howard R. Hughes College of Engineering  

The Graduate College 

 

 

University of Nevada, Las Vegas  

May 2015 



 
 

 

  

 

 

We recommend the thesis prepared under our supervision by  

Pallapunidi Pavan Kumar 

entitled  

Situational Assessment Using Graph Comparison 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science in Computer Science 

Department of Computer Science  

 

 

Wolfgang Bein, Ph.D., Committee Chair 

Ju-Yeon Jo, Ph.D., Committee Member 

Ajoy K. Datta, Ph.D., Committee Member 

Venkatesan Muthukumar , Ph.D., Graduate College Representative 

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College 

 

May 2015 

 

 



iii 
 

 

 

ABSTRACT 

 

Situational Assessment using Graph Comparison 

 

by 

 

Pallapunidi Pavan Kumar 

 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor, Department of Computer Science 

University of Nevada, Las Vegas. 

 

 In strategic operations, the assessment of any given situation is very important 

and may trigger the development of a mission plan. The mission plan consists of various 

actions that should be executed in order to successfully mitigate the situation. For a new 

mission plan to be designed or implemented, the effect of the previous mission plan 

should be accessed. These mission plans use various sensors to collect the data which can 

be very large and aggregate them to obtain detailed information of the situation. In order 

to implement an effective mission plan the current situation has to be assessed 



iv 
 

effectively. We propose to model the situation as a graph in which the nodes denote the 

participants and edges denotes relationships between participants.  

 Situational assessment for a given situation consists of identifying the current 

participants and the relationships between current participants. We model these 

participants as vertices of a graph and the relationships between the participants as 

weighted arcs. As events happen the situation changes, so does the graph. Changes in the 

graph can be dramatical or negligible. We derive the similarity between the two graphs at 

different moments of time. By doing so we will be able to see the effect of the event that 

caused the change in the graph structure. 

 We are comparing the similarities of the graphs using the concept of minimum 

spanning tree. The minimum spanning tree of a graph is a rough estimate of the details of 

the nodes and the edges of the graph. We therefore propose a new way of assessing a 

situation and a new way of analyzing the differences between the same set of participants 

at various intervals of time. 

 

 

 

 

 

 

 



v 
 

 

 

 

ACKNOWLEDGEMENTS 

 

 I would like to sincerely thank Dr. Wolfgang Bein for inspiring , motivating 

and supporting me in successful completion of my thesis. His support was always 

there during my difficult times and constantly motivated me. I would like to 

extend my thankfulness to Dr. Doina Bein for her guidance whenever I required. 

 It has been an honor to have Dr. Ajoy K. Datta, Dr. Ju-Yeon Jo, Dr.  

Venkatesan Muthukumar in this committee and my sincere thanks to all of them. 

 I would like to specially thank Dr. Ajoy K. Datta for his support throughout 

my masters degree at UNLV. He is the first person I go to when in need and he 

guided me through the right path. I cannot say enough words to appreciate his 

help. 

 I would like to take this opportunity to convey my deepest gratitude to my 

parents Mr. P Ranga Rao, Mrs. Pushpa, my uncle and aunt  Mr. Venu Gopal and 

Mrs. Vijaya Lakshmi, my brother Durga Kiran and all my friends for all their 

support and love in every walk of my life. 

 



vi 
 

 

 

TABLE OF CONTENTS 

ABSTRACT……………………………………………………………......…. i 

ACKNOWLEDGEMENTS…………………………..……..…………..…...iii 

TABLE OF CONTENTS………………………………………………....… iv 

LIST OF FIGURES……………………………………..…………...…...…viii 

CHAPTER 1 INTRODCUTION……………………….......…………….......1 

1.1 Motivation........……………………………….….………………...3 

1.2 Related Work...............................……………….….……………..7 

CHAPTER 2 BACK GROUND......................……………...…...……….…11 

 2.1 Undirected Graph.....................………………....…………...........11 

 2.2 Minimum Spanning Tree....................................….……………...12 

 2.3 Leader Node...............................……………...……..…………....13 

 2.4 Kruskal's Algorithm........................................………..…………..14 

 2.5 Comparing Two Nonrooted Unoriented Minimum Spanning  

  Trees.........................................................................................15 

 2.6 Comparing Two Rooted Unoriented Minimum Spanning Trees....16 



vii 
 

 2.7 Situational Assessment.......................................................……...17 

 2.8 Edit Distance......................................................................……...19 

 

CHAPTER 3 ALGORITHMIC APPROACH.....…………..………….....21 

 3.1 Algorithm to Find the Minimum Spanning Tree......................…21 

 3.2 Algorithm to Compare Two Minimum Spanning Trees  

  Without a Leader Node..........................................................24 

 3.3 Algorithm to Compare Two Minimum Spanning Trees  

  with Leader Nodes....................................................…….….26 

CHAPTER 4 IMPLEMENTATION..........................................................29 

 4.1 Programming Environment and Setup.................................…..29 

  4.2 Code Structure........……………………………..………...........30 

  4.2.1 Vertex Class File......................................…….….....31 

4.2.2 Main Program without a Leader Node.................…….31 

 4.2.2.2 Class Edge..................................................31 

 4.2.2.2 Class MinimumSpanningTree........................31 

 4.2.2.3 minTree Function.........................................32 

 4.2.2.4 Main Function..............................................33 

4.2.3 Main Program File with Leader Node.................…......34 



viii 
 

 4.2.3.1 check_equal Function....................................34 

 4.2.3.2 Main Function..............................................35 

  4.3 Input Files......................…………………………..………........35 

 

CHAPTER 5 RESULTS ............................................................………......37 

 5.1 Comparing Two Trees without Leader Node...............................37 

  5.1.1 Two Graphs are Same..........................…..…………....38 

  5.1.2 Two Graphs with Same Minimum Spanning Trees.......39 

  5.1.3 Two Graphs with Different Minimum Spanning  

   Trees...........................................................................40 

 5.2 Comparing Two Trees with Leader Nodes..................................41 

  5.2.1 Two Graphs with Different Minimum Spanning  

   Trees...........................................................................42 

  5.2.2 Two Same Graphs.................................…………..…..44  

  5.2.3 Two Graphs with Same Minimum Spanning Trees.......45 

CHAPTER 6 DOCUMENTATION................................……..……...…...47 

 6.1 Configuring and Running the Project...........................................47 

 6.2 Code Structure and Flow...............................................................49 

CHAPTER 7 CONCLUSION AND FUTURE WORK.……...….…….....50 



ix 
 

APPENDIX A CODE SNIPPET FOR THE CLASS VERTEX................52 

APPENDIX B CODE SNIPPET FOR COMPARING TWO TREES  

        WITHOUT A LEADER NODE......................................55 

 

APPENDIX C CODE SNIPPET FOR COMPARING TREES  

        WITH LEADER NODE................................................65 

BIBLIOGRAPHY………………………………….......…………………...78 

VITA..............................................................................................................81 

  



x 
 

LIST OF FIGURES 

 

Figure 1.1: An example for a military scenario...............................................4 

Figure 2.2: Result in scenario after mission plan A…....................................5 

Figure 3.3: Result in scenario after mission plan B........................................6 

Figure 2.1: Undirected Graph........................................................................12 

Figure 2.2: Minimum Spanning Tree............................................................13 

Figure 2.3: Leader Node...............................................................................14 

Figure 2.4: Comparing two non rooted trees...……………………...………16 

Figure 2.5: Comparing two rooted trees…………..…………………...……17 

Figure 2.6: Situational Assessment……..................................................…18 

Figure 2.7: Edit distance.…….…………………………………………......20 

Figure 5.1: Result of comparing two same graphs………………………....38 

Figure 5.2: Results for comparing two graphs with same minimum     

spanning tree……........……………………………………………………..40 

Figure 5.3: Results of comparing two graphs with different minimum  

spanning trees…………………………………......………………………...41 

Figure 5.4: Results of comparing two graphs with leader nodes with  

different minimum spanning trees…………………….…………………….43 

Figure 5.5: Results of comparing two same graphs with leader nodes….....44 

Figure 5.6: Results of comparing two graphs with leader nodes with  

same minimum spanning trees……………………………………………...45 

Figure 6.1: Screen shot of configuring the project……….…………………48



1 
 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 In the scenarios like military operations, assessing the condition of the enemy 

camp is very important. To make a plan for handling the situation effectively, the 

participants in the situation and the relationships between them (such as communication 

methods, relative position) are to be discovered and assessed. Getting the accurate picture 

of the current situation is an important milestone in deciding which action to be taken 

among all the possible actions and also prioritizing the tasks that have to be handled once 

such an action is to be executed. Once each task is executed we would want to assess the 

situation again to prioritize the tasks and also to know the effect of the previous action. 

 For example let us consider two competing teams were involved in a military 

operation, generally referred as blue team and the red team. The goal of every team is to 

design plans and execute them to destroy other team's properties and render its 

communication channels useless. The best plan that maximizes the destruction of the 

opposite camp would be opted for the final execution. In this stage the entire operation 

will be monitored by the personnel to analyze the effect of the executions performed so 

far. This situation analysis is very important, because the forthcoming plans have to be 



2 
 

improved or altered according to the analysis from the monitoring personnel. This 

analysis may include comparisons between the planned results and the actual results of 

the actions. The deviation of actual results from the planned results describes the effect of 

the action taken. In general this analysis should answer questions like: Are we doing the 

right things? Are we doing the things right? 

 Lanchester was the first researcher that developed the theory of MOE[15].  It was 

dependent on differential equation based modeling of the World War I air craft combat. 

Basing on the work by Lanchester, Brown, Washburn & Kress and Hester & Tolk added 

stochastic behaviors to account for random and unpredictable behaviors of the military 

operations. Washburn & Kress developed Continuous Time Markov Chain(CTMC) 

model. This is two dimensional. In this the present state or condition is defined by a pair 

(m,n), in which m denotes the number of assets owned by a blue force and n is the 

number of assets owned by the red force. In this model for example a transition from 

(m,n) to (m,n-1) indicate there is a loss of 1 asset in the red force and the no of assets of 

blue force is same compared to the previous situation. In the same way if the transition is 

from (m,n) to (m-1,n) indicate there is a loss of 1 asset in blue force and no difference in 

the number of assets owned by red force. The transition from (m,n) to (m',0) indicates the 

victory of blue force because the no of assets currently in the red force is zero and there is 

difference in the number of assets of blue force  and the transition from (m,n) to (0,n') 

indicate the victory of red force because the number of assets currently in blue force is 

zero and there are few number of assets remaining in red force. 

 

 



3 
 

1.1 Motivation 

 

 The above mentioned model assumes that all the assets in the situation are 

identical like, all are soldiers or tanks or anything. But all are identical and hence a total 

number m or n could give the analysis of situation. But in the real war case scenario it is 

not so. There can be combinations of many different items. For the example instead of 

considering m identical items in blue force, we should consider there are M types and 

some specific number of each type like m1, m2,...... In the same way instead of 

considering n identical items in red force, we should consider there are N types and some 

specific number of each type like n1, n2,...... This real case scenario cannot be handled by 

the model described above. It has to be extended to a 3 dimensional model by considering 

a 2xMxN matrix for each state. This would increase the calculations and complexity 

enormously. 

 In military missions, time is also an important factor to be considered. If M and N 

are very large (for example in the order of thousands) the time used for calculations and 

the space complexity also will be very high. Accordingly the time taken to design an 

effective mission plan is also very large. Even if an effective mission plan is designed, if 

it is not executed with in time constraints, the effect is reduced drastically or negligible 

depending on the condition. We do not want a mission plan that has negligible effect. So 

we have to increase the quality of the process being followed or design a new, faster way 

of analyzing the data. 

 



4 
 

 To reduce the complexities, calculations and assessing the situation, we propose 

this new model based on graph comparisons. This model assumes that the objects in the 

situation to be modeled as nodes and relationships between them to be modeled as the 

edges connecting these nodes. The situations will be compared depending on the 

minimum spanning trees of graphs got from both the situations i.e. same situation at 

different times. 

 

For example let us consider a military war field scenario. 

 

  Figure 4.1: An example for a military scenario. 

 

 In the figure 1.1 let us consider Hub as the central repository for collecting the 

data. T1 and T2 are the tanks in the war field connected to each other using 

communication channel. They are also connected to the hub transferring the data in both 

the directions. S1 and S2 are the soldiers in the battle field connected to the hub and S1 is 



5 
 

also in connection with T2. There is a monitor for the entire process who is also 

connected to the hub. We also assume that the number present on each of the edge is the 

time taken for the communication to transfer between their nodes. This is the situation at 

enemy's camp. Now we have to design a mission plan which effects the situation. 

 Let us assume that a mission plan is executed, and we collected the details of the 

situation again and modeled as the graph. The new graph is as follows. 

 

 

  Figure 1.2: Result in scenario after mission plan A. 

We observe 3 differences in the new graph compared to the old graph. 

 The connection between T2 and Hub is lost. 

 The connection between T2 and S1 is lost. 

 A new connection between T1 and M. 

 



6 
 

 The graphs for both the situations are different. But the mission had no effect 

because there was no change in the minimum spanning tree for both the cases. The 

communication from T2 will be T2-T1-Hub. In both the cases the length of minimum 

spanning tree is 15 and the edges of minimum spanning tree are T2-T1, T1-Hub, S1-Hub, 

S2-Hub, M-Hub. So the mission failed in handling the situation. 

 

If the graph that is modeled for the situation after the mission is 

 

 

  Figure 1.3: Result in scenario after mission plan B. 

 

We observe 3 differences compared to the original graph. 

 The connection between T2 and T1 is lost. 

 The connection between T2 and S1 is lost. 

 A new connection between T1 and M. 



7 
 

 In this case the mission is successful in handling the situation. There is a 

difference in the spanning tree of the graph. Now the total weight of the minimum 

spanning tree is 22 which was 15 in the previous situation. The new connection between 

T1 and M, the lost connection between T2 and S1 did not affect the mission. 

 

1.2  Related Work 

 

 The comparison of readability of two graph representations i.e. matrix based 

representations and node link based diagrams is addressed in [1]. The evaluation in this 

model is based on seven generic tasks. It also recommends the representation depending 

on the size and density of the graphs involved in the comparison. The node link 

representation is very familiar as it is often used in representing the graphs. It concludes 

that, the matrix representation gives better results if the size is more. For example, if a 

graph has large number of vertices like twenty or more, matrix representation gives better 

performance over node link diagrams. The matrix based representation has quick layout 

and superior readability with regard to many tasks. A wider use of this representation will 

result in it being more familiar. For the real time monitoring, where the graphs evolve 

dynamically, the matrix representations seem to be very helpful. 

 A graph type called maximum common subgraph is discussed in [2]. A graph can 

be called a maximum common subgraph g of two graphs A and B, if there exists no other 

subgraph of those two graphs A and B that has more number of nodes than g. Graphs are 

very powerful and versatile. In applications like pattern recognition, the objects can be 

represented as graphs. Comparison between the structured objects can be obtained from 



8 
 

comparing the graphs of these structured objects. This paper proposes the comparison 

between two exact algorithms that can be used to find the maximum common subgraph. 

One is Space State Search algorithm for finding the maximum common subgraph in 

which all the sub graphs of the given two graphs are taken and the one with high value is 

chosen as the maximum common sub graph. The other is deriving the maximum common 

subgraph by first obtaining the association of the given two graphs and then detecting 

using maximum clique of the second graph. The algorithm required for a purpose is 

randomly selected from the set of data input values. So in order to compare the two 

algorithms, a large database of randomly selected sets were used to compare all the 

possibilities In order to compare the two algorithms, their implementations were 

generated in C++. The results from the implementation concluded that for the graphs 

with low density, the first algorithm is more convenient. But for the high edge density, 

the second algorithm is more favorable. 

 The algorithm to find the largest approximately common substructure for trees is 

described in [3]. Finding the common substructure when comparing two trees is similar 

to the common subgraph discussed in [2], except for the edit distance between the trees 

being compared comes to play. The common substructure for trees T1 and T2  are the 

substructures S1 and S2, if S1 is in edit distance d from S2 and there is no other 

substructure that is greater than S1 and S2 and matches the edit distance constraint. The 

algorithm discussed here uses the dynamic programming. 

 The importance of situational assessment reasoning and user awareness of the 

situation is addressed in [4]. The differences that stressed up between the sensor 

management and fusion with the revisions in JDL model were addressed in this work. 



9 
 

This paper also highlights role of the user in managing the system and control, assessing 

the quality of information i.e. metrics to support situation awareness, evaluation of fusion 

systems to deliver user info needs, planning delivery of knowledge for updating 

dynamically, designing the interfaces of the SA to support user reasoning. 

 A method of forming synthetic aperture radar images (SAR) of the moving targets 

without having any knowledge about the movement of the targets is discussed in [5]. A 

method called keystone formatting is also discussed in which a unique kernel processing 

is used involving a one-dimensional interpolation. This preprocessing removes the effects 

of the linear range migration of the moving targets even without any knowledge on the 

velocity of the target moving. The quadratic range migration errors will be removed by 

involving two dimensional focusing of the moving targets. 

 Tracking of multiple moving targets by using a mobile robot is presented in [6]. 

Particle filters and statistical data association are used for this purpose. A sample based 

variant of joint probabilistic data association filters were introduced for tracking the 

features originating from individual objects. It is also used to solve the correspondence 

problem between the detected features. Even if the trajectories of the moving targets 

cross each other, this method will be able to handle the situation. 

 A new graph similarity calculation procedure to compare the labeled graphs is 

introduced in [7]. This method initially screens to determine if it is possible to measure 

the similarity between the two graphs and if it exceeds the given minimum similarity 

threshold. After the initial screening process, rigorous maximum common edge subgraph 

(MCES) detection algorithms follows to compute the degree and similarity. A new 

MCES algorithm is also proposed. The new algorithm is based on maximum clique 



10 
 

formulation of the problem. It also presents new approaches to both lower and upper 

bounding as well as vertex location. 

 The graph search based on structural similarity is discussed in [8]. There are many 

network components in the real world that can be represented as graphs. For example 

consider a road network. All the intersections of the roads can be considered as vertices 

of the graph and the roads connecting the vertices as the edges of the graph. The authors 

proposed an effective graph manipulation techniques to use them in the graph similarity 

searches. Given a graph G1, if we want to find the graphs that are similar to G1 in the 

database available with respect to similarity measure. After studying the similarity 

measure between the two graphs, by using multi dimensional vectors, the graph 

representation techniques will be discussed. Finally they illustrate representative queries 

that are handled by the approach proposed. The results also showed that saving of 

computational effort when compared with the traditional searching algorithms. 

 All the details related to a situation are collected through various sensors and are 

aggregated using some data fusion models. The sensor data serves like back bone to any 

of surveillance and monitoring systems. The Data Fusion Information Group (DFIG) has 

proposed a seven layer model for this purpose[9]. The seven stages are Data Assessment, 

Object Assessment, Situation Assessment, Impact Assessment, Process Refinement, User 

Refinement, Mission Management.  

 

 

 



11 
 

 

 

 

CHAPTER 2 

 

BACK GROUND 

 

2.1  Undirected Graph 

 

 A graph is a representation of a set of objects where some pairs of objects are 

connected by links. The interconnected objects are represented by mathematical 

abstractions called vertices, and the links that connect some pairs of vertices are called 

edges. An undirected graph is one in which edges have no orientation. The edge (a, b) is 

identical to the edge (b, a), i.e., they are not ordered pairs, but sets {u, v} (or 2-multisets) 

of vertices. The maximum number of edges in an undirected graph without a self-loop is 

n(n - 1)/2. In the graph, weights can be assigned to edges of the graph indicating the 

relationship between the nodes connected by that edge. 

 A directed graph or digraph is an ordered pair D = (V, A) with V a set whose 

elements are called vertices or nodes, and A is a set of ordered pairs of vertices, called 

arcs, directed edges, or arrows. An arc a = (x, y) is considered to be directed from x to y; 

y is called the head and x is called the tail of the arc; y is said to be a direct successor of 

x, and x is said to be a direct predecessor of y. If a path leads from x to y, then y is said to 



12 
 

be a successor of x and reachable from x, and x is said to be a predecessor of y. The arc 

(y, x) is called the arc (x, y) inverted. 

                                

   Figure 5.1: Undirected Graph. 

 

2.2  Minimum Spanning Tree 

 

 For a given connected graph that is undirected, a spanning tree is a tree that 

connects each and every node of the graph. In the graph, weights can be assigned to 

edges of the graph indicating the relationship between the nodes connected by that edge. 

Sum of all the weights of a spanning tree gives its total weight. Among all the spanning 

trees a graph can have, the spanning tree that has least weight is called the minimum 

spanning tree for that graph.  

 Minimum spanning tree is used in the network design. For example you have a 

business with several offices. You want to lease them up to connect with each other. As 

the investment cost depends on the length of cables used in this process, we can use the 

minimum spanning tree method to connect the offices: the offices represent nodes of the 



13 
 

graphs and the distance between the offices represent edges. Thus the cost can be 

minimized using the minimum spanning tree method.                   

 

   Figure 2.2: Minimum Spanning Tree. 

            

The edges with dark lines in the figure 2.2 above forms the minimum spanning tree. 

 

2.3  Leader Node 

 

 In a graph, the leader node is considered as the organizer that coordinates the 

activity of the other nodes in the graph. Leader node concept need not be applicable to all 

graphs. But for the graphs with leader nodes, they are the task leaders. In the distributed 

environment, many algorithms can be executed in order to elect the organizer or task 

leader for rest of the nodes. In our thesis requirement we assign some vertex as leader 

node in the input files being passed to compare the graphs. In our thesis when comparing  

two graphs with leader nodes, along with checking if the same set of edges in both their  



14 
 

minimum spanning trees are having similarity in the common point, it should be checked 

if the leader nodes are formed by same set of edges in both the trees.  

For example, let us consider the following two trees. 

 

   Figure 2.3: Leader Node. 

 

 If the leader node in first tree is A and the leader node in the second tree is D, 

though the trees look similar they are not similar. If the leader nodes are also same, only 

then we can conclude that the graphs are similar. 

 

2.4  Kruskal's Algorithm 

 

 Kruskal's algorithm is a minimum-spanning-tree algorithm that finds an edge of 

the least possible weight that connects any two trees in the forest[24]. It is a greedy 

algorithm as it finds a minimum spanning tree for a connected weighted graph at each 

step. This means it finds a subset of the edges that forms a tree that includes every vertex, 



15 
 

where the total weight of all the edges in the tree is minimized. We use Kruskal’s 

algorithm by first sorting the edges and then proceed to other edges in order to eliminate 

edges that form cycle with the previous edges.  

 In this algorithm the edge with least weight is part of the minimum spanning tree 

and from then, each edge is processed to see if that edge can cover other vertices and not 

forming a cycle. The edges being processed first has more priority over the edges 

processed later as they have least weight as the edges are arranged in the ascending order. 

 

The complexity of Kruskal's algorithm is m log n or m log m  

where m is number of edges in the graph and 

 n is the number of nodes in the graph. 

 m log m is almost equivalent to m log n as a graph can have at most    edges. 

m log m = m log    

m log m = 2m log n (equivalent to m log n). 

 

2.5  Comparing Two Nonrooted Unoriented Minimum Spanning Trees 

 

 The two minimum spanning trees that are being compared are unoriented and not 

rooted, that is we do not have to take care about the leader node. The first criteria that 

should be satisfied in order for the comparison to move forward is that, there should be 

equal no of nodes in both the trees and should have same set of weights of edges. The 



16 
 

comparison says the trees are similar depending on the same condition that is, existence 

of common vertex or not between any selected pair of edges in both the trees. If this 

condition holds good we can conclude that the trees being compared are similar. 

 

 

  Figure 2.4: Comparing two non rooted trees. 

 

 In the Figure 2.4 two trees being compared, they are similar as they follow the 

rule of availability of common point for all the set of edges. As they are non rooted, we 

need not check the leader node similarity also. 

 

2.6 Comparing Two Rooted Unoriented Minimum Spanning Trees 

 

 The two minimum spanning trees that are being compared here are also 

unoriented but rooted, that is we should consider the equality at leader node also. This 

comparison also follows the same initial criteria and the further comparison process is 

same. In addition to it there should be another check for the similarity at leader node. For 



17 
 

both the trees the leader node should be from the same set of edges. Only then we can say 

that rooted minimum spanning trees are similar. 

 

 

  Figure 2.5: Comparing two rooted trees. 

 

 In the above two trees that are rooted at L and unoriented, these trees are similar, 

if we do not consider the leader node. But the leader nodes in the first tree is from the 

intersection of edges of length 2 and 4, in the second one the leader node is at the 

intersection of edges of length 2,3, and 7. So these two trees are not similar. 

 

2.7  Situational Assessment 

 

 Identifying objects that are participants in a situation and the relationship between 

these objects. Model situational assessment as a undirected graph in which the objects are 

the nodes and the relationships are the edges. Because the situational assessment may not 



18 
 

be completely discovered, the graph itself may have missing edges. So when comparing 

two situations we do not compute the isomorphism of the two graphs modeling the 

situations respectively, but we compare the minimum spanning trees of the two graphs. 

That way even if sometimes the graphs are not isomorphic the two situations are deemed 

similar due to the fact that the minimum spanning trees are the same. 

 

 

 

  Figure 2.6: Situational Assessment. 

 

 In the figure 2.6, there are two graphs which are different from each other. But the 

similarity between these two graphs is, their minimum spanning trees are made with the 

same set of edges. The situations are similar, even if the edges that are not needed are 

removed or new edges that do not alter the spanning tree are added.  

 In the Data Fusion Information Group's seven layer model for data fusion, the 

Situational Assessment layer objectives to predict and estimate the relations among 



19 
 

entities that are identified at the objective level [9] where the fusion of information first 

occurs and it is prior to the Situational Assessment layer. The predictions are used for 

scene analysis and understanding. 

 

2.8 Edit Distance 

 

 Edit distance is used to find the dissimilarity between the trees [3]. The three edit 

operations that are considered are relabeling, insert and delete operations of the nodes. In 

relabeling, the label of the node is changed. If a node is deleted, its children are 

connected to the parent node of deleted node. If a node n is inserted as child of m, n may 

be parent of the consecutive subsequence of the current children of m. For simplicity the 

cost of each of these edit operations are considered one. So the minimum sequence of the 

total no of operations required to convert one tree structure to other becomes the edit 

distance from one tree to the other. Finding the graph edit distance and find the maximum 

common subgraph are related. Under some particular cost functions, they are 

computationally equivalent [23].  



20 
 

 

  Figure 2.7: Edit distance. 

 

In the figure 2.7 all the edit operations were performed. Node b is relabeled to f. Node e 

is deleted from node b and inserted to node c. So the edit distance is 3. 

 

 

 

 

 

 

 

 

 

 



21 
 

 

 

 

CHAPTER 3 

 

ALGORITHMIC APPROACH 

 

3.1  Algorithm to Find the Minimum Spanning Tree 

 

 In the situational assessment, we model the situation as a graph in which the 

objects are considered as nodes and the relationships between them as weighted edges. 

By finding the minimum spanning tree of the graph, we are considering all the objects in 

the situation and the crucial relationships consume least amount of effort. There are many 

algorithms to find the minimum spanning tree with various complexity. But we are using 

Kruskal's algorithm to find the minimum spanning tree for the given edges and vertices 

because of its time complexity which is m log n where m is no of edges and n is no of 

vertices of the graph. 

 The detailed steps of the algorithm are 

 Arrange the edges of the given graph in increasing order of their weights. 

 Consider the least weighted edge as part of the minimum spanning tree. 



22 
 

 As we progress by the increased order of the edges, compare the parental vertices 

of both the end points of the edge. Parental vertex of a set of vertices, is the vertex 

that has maximum edges connected to it. 

 If the parental vertices of both the end points of the edge are equal, it means the 

new edge is forming a cycle and has to be ignored. 

 If they are not equal Then include that edge in to minimum spanning tree. 

 Once they are added to the minimum spanning tree, the rank of the vertices 

should be increased by 1 and combine the set of vertices of both the end points of 

the edge into one set. 

 Once all the edges are read, we get the minimum spanning tree of all the edges. 

 This a greedy algorithm, as it wants to find the minimum spanning tree at each 

level of edge being read. 

 

 

 

 

 

 

 

 

 



23 
 

 

 



24 
 

3.2 Algorithm to Compare Two Minimum Spanning Trees Without a Leader Node 

 

 After finding the minimum spanning tree of the situation before and after a 

mission plan, we now have to find the differences between these two situations, which 

gives the effect of the mission plan executed. To compare the two situations, we have the 

corresponding minimum spanning trees to compare. The algorithm checks for the 

equality condition with respect to the existence of the common point between the same 

set of edges in both the spanning trees. This algorithm is to compare the tress that do not 

have leader node.  The detailed steps of the algorithm to compare two trees without a 

leader node is the following 

 Compare the no of nodes of each graph and exit if not equal. 

 Generate minimum spanning trees for both A and B graphs. 

 Add the weights of each min spanning tree separately and compare the sum. Exit 

if not equal. 

 In the generation of minimum spanning tree the weights are already arranged in 

increasing order. So check if the individual weights in the spanning tree of one 

graph is matching with the other graph and exit if not equal. 

 If it is matching, check if the pair of weights in one graph has a vertex in common 

or not and the same should be the result for the same pair in the other graph. 

 This check should be done for all the possible pairs of both the graphs. 

  If it violates for at least one pair, we can declare that the graphs are not similar. 

 If all the pairs have same condition in both the graphs, then we can conclude that 

the graphs are similar. 



25 
 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

3.3  Algorithm to Compare Two Minimum Spanning Trees with Leader Nodes 

 

 The comparison between two graphs with a leader node follows a different 

approach. Along with the checking the similarity in existence of the common points, the 

leader node should also be checked in both the graphs. If both these conditions are valid, 

then the minimum spanning trees can be considered similar. The algorithm to find the 

similarity of the minimum spanning trees with leader node is following 

 In this type of problem the leader node in the graph should also be provided as 

part of input. 

 The initial criteria of matching the no of nodes should be valid to proceed 

forward. 

 Finding the minimum spanning trees follows the same algorithm as stated above. 

 Add the weights of each min spanning tree separately and compare the sum. Exit 

if not equal. 

 In the generation of minimum spanning tree the weights are already arranged in 

increasing order. So check if the individual weights in the spanning tree of one 

graph is matching with the other graph and exit if not equal. 

 Later the leader nodes are to be passed to the function that determines the 

similarity of the graphs. 

 The similarity function checks if the input arguments given to it are leaf nodes. 

 If yes then it returns true. 

 If not, then array of edges connected to the nodes should match in both the 

graphs. if it does not match, exit stating not similar. 



27 
 

 If matched, then the equality function is called recursively with the nodes 

connected by same weights in both the graphs and equality should hold good all 

over. 

 If the weight comparison of the input arguments fails the function returns false. 

 Thus we evaluate the similarity of the graphs with leader node. 

 

 

 



28 
 

 

 

 

 

 

 



29 
 

 

 

 

CHAPTER 4 

 

IMPLEMENTATION 

 

 In this chapter we present the details that are related to the actual coding, the 

description of the environment and the technology that are related to our thesis. 

 

4.1  Programming Environment and Setup 

 

 The coding for this thesis is implemented in Java programming language. Java is 

a high level programming language. The language's syntax is derived from C and C++ 

languages. It is platform independent which means the programs written in Java language 

must run similarly on any combination of operating system and hard ware. It is achieved 

by an intermediate representation called Java bytecode formed by compiling the Java 

language. A .java file is compiled into bytecode stored in .class file. The file is then 

executed by JVM(Java Virtual Machine) in any operating system at the end user. So the 

programs written and compiled in the Java language are portable. The Java version that is 

used for coding in our thesis is 1.8.0. 



30 
 

 The IDE (Integrated development environment) in which the code related to our 

thesis is developed is eclipse. The eclipse version that was being used is Luna. JavaFX 

the new framework for developing Java GUI programs is also used in our thesis. As our 

thesis is related to the similarity of graphs, a pictorial representation of the differences is 

needed. For this purpose we used the JavaFX framework. 

 

4.2  Code Structure 

 

 The code for two types that is with leader node and without leader node has the 

following 3 files. The Main program file's code and the input files data only changes in 

these two types. 

 

 a Class file named Vertex 

 a Main program file. 

 two input files representing two situations/ graphs. 

 

 All the three files are enclosed in a single package. The class file vertex is 

common in the two types of coding requirements i.e. with leader node and without leader 

node. 

 

 

 



31 
 

4.2.1 Vertex Class File 

 

 The class file vertex is created as a representation of nodes we are going to use in 

the main file. The two variables that are declared are unknown index and name. The class 

file has got constructors which gives values to these variables when the object of the class 

is created. The functions of the class file are to input the value to the variable name or 

return the value that is stored in the variable name and also to return the index. 

 

4.2.2  Main Program without a Leader Node 

 

4.2.2.1 Class Edge 

 

 We used a class called edge which represents the edge in the graph. The attributes 

of Edge are the vertices which in turn belong to class vertex defined in the class Edge, the 

weight of that edge and a flag con which describes if the edge is part of its minimum 

spanning tree. 

 

4.2.2.2 Class MinimumSpanningTree 

 

 All the coding that is required for the thesis is written in this class. The JavaFX 

code that is used to draw the graphs comparing the differences of the graphs being 

compared. It has a function that takes in the array of edges of a graph as input and returns 

the array of edges that forms the minimum spanning tree of the graph. It has the main 

function which will be discussed in detail below. 



32 
 

4.2.2.3 minTree Function 

 

 This function in the class MinimumSpanningTree gives the minimum spanning 

tree of the graph given as input to the function. We used Kruskal's algorithm for find the 

minimum spanning tree. As Kruskal's algorithm works on the sorted edges, the code for 

arranging the edges in sorted order is also written here. Every time when a new edge is 

read, it is checked if it is not forming a cycle. This function returns the array of Edges 

which represent the set of edges of the graph that forms minimum spanning tree that 

covers all the vertices of the graph. We also make use of two functions in deriving the 

minimum spanning tree in this function. We used Map data structure for storing the 

vertices and the rank of the vertices. 

 

 Find() 

  

  Find function is used to find the parental vertex of the vertex passed as the 

 parameter to the function. Parental vertex is the vertex that has maximum degree 

 (no of edges from the vertex) of the vertices connected till then. If a vertex is not 

 connected to any of the edge, the parental vertex of that vertex is itself. We used 

 hash maps to store these details. 

 

 Union() 

 

  Union function is used to join the set of vertices of both the endpoints of 

 the edge being read if their parental vertices are not same. This conveys that 

 the edge is part of minimum spanning tree. 



33 
 

 

 Before calling the functions described above, each vertex is made parent of itself 

and rank of each vertex is initialized to 0. It is the rank value that determines which 

vertex is parent among the set of vertices connected till then. 

 

4.2.2.4 Main Function 

 

 In this function the code to accept the input files and format them as per the 

variables in the classes described above the main function. Once the formatting is done, 

the minTree function is called with the array of edges as parameters to the function. Once 

the processing for first input file is completed, the same process is applied for the second 

graph. So we have two arrays of edges which represent the minimum spanning trees of 

the two graphs being compared. The coordinates of vertices from the input files are also 

stored in the array list and passed to the JavaFX code for marking the vertices on the 

graph. As per the algorithm described above, we check the common point availability of 

the same set of edges in both the graphs and they should match for all the set of edges. 

Once all the edges are completed, the flag is updated to display if the graphs are similar 

or not and the same will be displayed in the graphs that will be populated using the 

JavaFX code. 

 

 

 

 

 



34 
 

4.2.3 Main Program File with Leader Node 

 

 The main program file with leader node has some similar functionality when 

compared with the main program file without a leader node. It uses the same class file 

Edge which describes the edge of a graph with same attributes in the class file. The 

minTree function that takes in the input as array of edges of the graph and returns the 

minimum spanning tree edges as output. Even in the main program file without the leader 

node, we use the minimum spanning tree of the graphs and find the similarity between 

the graphs being compared. 

 

4.2.3.1 check_equal Function 

 

 This function is new when compared with the program file without a leader node. 

This function is defined as a recursive function. This function returns the Boolean value 

i.e. if the vertices that are passed as input and being compared are similar or not. If they 

are similar, it returns true and false if otherwise. This function is initiated by passing the 

leader nodes of both the graphs. This function checks if the edges of the minimum 

spanning tree that are connected to the vertices passed as input are common in both the 

graphs. If the vertices passed are leave nodes it returns true. If the array of weights that 

are connected to vertices are same, then the check_equal function is called 

correspondingly with the other vertices of the edges matched. If at any point the weights 

do not match, the function returns false stating the graphs are dissimilar. 

 

 



35 
 

4.2.3.2 Main Function 

 

 In the main function we have code to access the input files and also do the 

formatting of the to match the variables defined in the classes and functions defined 

previously. It initially calls the minTree function in order to get the minimum spanning 

trees of the graphs. The co ordinates of the vertices are also stored for creating the graph 

using JavaFX code. Once the initial process is done the later code follows the procedure 

described in the algorithms above. It calls the check_equal functions with leader nodes of 

both the graphs and the function is recursively executed and gives the result of the 

similarity of the graphs. 

 

4.3  Input Files 

 

 We have two input files related to the two graphs being compared without leader 

node. Both the files have same format of data but the values will be different. The input 

file has initially the number of vertices of the graph. It is followed by the number of the 

edges of the graph and then the labels of the vertices. Then we have the details of the 

edges of the graph. Depending on the order of labels of vertices, we use indices of the 

vertices between which the edge is and its weight as one per row. after all the edges are 

read, the coordinates of the vertices are given as ordered pairs in the same order as the 

labels were given initially. This input file format is to compare graphs that do not have 

leader nodes. 



36 
 

 For the input files that are given for comparing the graphs with leader nodes is 

almost same except for the indication of the label of the leader node. The leader node 

label is given after the number of edges and before the labels of the vertices. All the 

values in the input files for with or without leader nodes are arranged one per each line. 

The labels of the vertices can be alphabets but when describing the edges after the labels 

of the vertices, use numbers as they are indices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

 

 

 

CHAPTER 5 

 

RESULTS 

 

 This chapter describes the results that we have obtained for various types of 

inputs representing graphs with leader nodes and without leader nodes. We have 

implemented the code ion Java using Eclipse as an IDE. 

 

5.1  Comparing Two Trees without Leader Node 

 

In the graphs that are shown below there are few points that should be considered. 

 

 The graphical output displayed has two panes i.e. two graphs one on top of the 

other representing the graphs being compared. 

 The entire graph will be displayed i.e. it has edges that belong to the minimum 

spanning tree and edges that do not belong to minimum spanning tree. 

 The edges that belong to the minimum spanning tree are highlighted in blue. 

 The width of each edge is designed such that it is directly proportional to the 

weight of the edge. 



38 
 

  The title of the graphical popup window shows the result if the graphs are similar 

or different. 

 

5.1.1  Two Graphs are Same 

 

 If the graphs that are being compared are the same, meaning that that they have 

same number of vertices and the same weight for the set of edges, then the graphs are 

deemed similar per our algorithm. 

 

  Figure 5.1: Result of comparing two same graphs. 



39 
 

 The edit distance for the two trees in the figure 5.1 is 0. As the graphs are similar 

concluded by the same minimum spanning trees of the graphs, there is no need of 

additional deletions or insertions of the edges required. 

 

5.1.2  Two Graphs with Same Minimum Spanning Trees 

 

 If two graphs are different but the minimum spanning trees are the same (i.e. the 

minimum spanning trees have the same number of vertices and the same weight for the 

set of edges), then we consider the graphs to be similar per our algorithm. 

 The edit distance for the two trees shown in the figure 5.2 is 0. As no additional 

insertions or deletions or relabeling is not required. So when the graphs are similar, which 

will be concluded by similarity in minimum spanning trees their edit distance is zero.  

  In the figure 5.2, the edge from 1 to 4 is not present in second graph,  as it 

is not part of minimum spanning tree , it does not make any difference and concludes that 

the graphs are similar.  



40 
 

 

 Figure 5.2: Results for comparing two graphs with same minimum spanning tree. 

 

5.1.3  Two Graphs with Different Minimum Spanning Trees 

 

 This case is different from the previous one: the graphs are different and their 

minimum spanning trees are also different. Then our graph comparison algorithm 

concludes that they are not similar. 

  In the pop up window in figure 5.3, an edge from 4 to 5 is missing in second 

graph, which is part of minimum spanning tree. So the graphs are deemed not to be 

similar by our algorithm. 

 



41 
 

 

Figure 5.3: Results of comparing two graphs with different minimum spanning trees. 

 

 The edit distance for the figure 5.3 is two as only one delete operation and one  

insertion operations are required on first graph to form the second graph. The node 4 is 

removed from its parent 5 and inserted as child to node 3. This process involved two edit 

operations and hence the edit distance is 2. 

 

5.2  Comparing Two Trees With Leader Nodes 

 

 The comparison of the minimum spanning trees with leader nodes follows a 

different approach at coding level. In the graphical display of the results, there are few 

points that are to be considered. 



42 
 

 

 In the graphs the leader node is highlighted in red indicating the importance of 

that node as compared to the others. 

 The edges of the minimum spanning tree are highlighted in blue. 

 The width of edges are designed such that they are directly proportional to the 

weight of the edges. 

 The title of the popup window shows whether the graphs being compared are 

similar or different. 

 

5.2.1  Two Graphs with Different Minimum Spanning Trees 

 

 If the two graphs that are being compared are different and they have different 

minimum spanning trees then our algorithm concludes that the graphs are not similar. 

 For example, let us consider the graphs in the figure 5.4. The first graph is 

different from the second graph. The minimum spanning tree that is highlighted in blue in 

both the graphs are also different. The edge from 2 to 3 that is part of minimum spanning 

tree in the first graph is missing in the second graph. The edge from 2 to 4 that is part of 

minimum spanning tree in the first graph is also missing in the second graph. Thus the 

minimum spanning tree in second graph is longer than that of minimum spanning tree of 

the first graph. 



43 
 

 We are comparing the situations before and after a mission plan is executed. As 

the minimum spanning tree varied in the second graph indicates that the mission plan 

executed has effect on the situation.  

 

 The edit distance for the figure shown 5.4 is four. As the minimum spanning trees 

of both the graphs varied, there will be a positive value for the edit distance. In this 

example the nodes 4 and 3 are deleted from their parent 2. The node 4 is inserted as child 

to node 5 and  node 3 as child to node 1. This operation involves two insert operations 

and two delete operations making the edit distance as four. 

 

Figure 5.4: Results of comparing two graphs with leader nodes with different minimum 

spanning trees. 

 



44 
 

5.2.2  Two Same Graphs 

 

                    If the two graphs that are being compared are the same i.e. the nodes and the 

weight of edges among these nodes are the same, our algorithm concludes that the graphs 

are similar and this is reflected into the title of the popup window. 

 

 

Figure 5.5: Results of comparing two same graphs with leader nodes 

 

               The edit distance for the figure 5.5 is zero. As the graphs are same and have 

same minimum spanning trees, there is no need of additional edit operations making the 

edit distance zero. 

 



45 
 

5.2.3  Two Graphs with Same Minimum Spanning Trees 

 

  If the two graphs that are being compared are different but the set of edges that 

makes the minimum spanning tree and the weight of those edges are the same, then our 

algorithm concludes that they are similar even if they are different. 

 

 

Figure 5.6: Results of comparing two graphs with leader nodes with same minimum 

spanning trees. 

 

                      For example in the figure 5.6, the edge from 1 to 5 is missing which is not 

part of minimum spanning tree as it is not highlighted in blue. That edge is missing in the 



46 
 

second graph. We are concerned only with the edges of the minimum spanning tree and 

hence the graphs are similar.  

  The edit distance in the figure 5.6 is zero as the minimum spanning trees 

are same, no additional operations are required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

 

 

 

CHAPTER 6 

 

DOCUMENTATION 

 

6.1 Configuring and Running the Project 

 

 In this section we describe how we have configured the project. The project name 

is Rooted_Spanning. The coding for the project is done in Java. The integrated 

development environment (IDE) is eclipse and the version we used is Luna. As we need 

JavaFX for display of the graphs, we should ensure that appropriate packages also should 

be installed. After opening eclipse, to open the project, click the following menus in the 

sequence: File > New > Java Project. This opens the new Java project dialog box. 

Uncheck the use default location checkbox and browse for the location of the project. 

Once it is done, click on the Finish button to open the project. See the figure 6.1 for hints. 

 Once the project is brought in to the work space, we should select the Run option 

from the Run menu. We can also press the Run icon present on the window. On a 

windows operating system, we can use ctrl + F11 to run the file. The sample input files 

required to run the project are already available in the package. By following the format, 



48 
 

the data can be altered to monitor different results. The description and format of the 

input files that should be used are briefly mentioned in 4.3. 

 

 

 

 Figure 6.1: Screen shot of configuring the project 

 



49 
 

6.2 Code Structure and Flow 

 

 The execution of the first project starts at the main() and reads the data from the 

input files and stores in the arrays. These arrays are passed to minTree() for finding the 

minimum spanning tree of the data from input files. The minimum spanning trees are 

used to compare for the existence of common points between edges in the main(). The 

results and the input values are passed to the JavaFX coding part in the class file and it 

displays the graph with result as title of the pop up window. 

 In the second project with leader nodes, the execution till finding the minimum 

spanning trees is same. Then the leader nodes are passed to check_equal() which is a 

recursive function and gives the result about the similarity of the graphs. The results, 

coordinates and minimum spanning tree edges are passed to JavaFX code for displaying 

the graph. 

 

 

 

 

 

 

 

 



50 
 

 

 

 

CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 

 

 

 In this thesis, we modeled a situation like battle field in to a graph with nodes and 

edges. The objects in the battle field are the nodes and relationships between them are the 

edges of the graph. By proposing an algorithm to find the similarity between the same 

situation at different intervals of time, we are able to determine the effect of the a mission 

plan executed. For designing an effective mission plan, this analysis of the previous 

mission plan is very important. Thus helping in successful designing of the mission plan. 

 This approach is applicable to the situation with a leader or without a leader. In 

scenarios like battle field, the object that is organizer and controller of other objects in the 

same field are considered as the leader and are given more priority in determining the 

effect of the mission plan. For example if there is a central hub that communicates 

information to other objects and controls them, if the mission plan is able to effect that 

central hub the loss is more concluding that the mission plan was every effective. 

 By using the concept of minimum spanning tree, we can reduce the calculations 

and complexity in comparing the situations at two different points of time to a very large 



51 
 

extent. Thus reducing the time taken for analyzing the data of the situation on which 

mission plan is going to be executed. For military mission plans, time is an important 

factor as the probability of situation to change increases with the increase of time. Thus 

effective mission plans can be made by reducing the time taken to analyze the data. 

 The enhancement that can be done to the thesis work is to give a measure like a 

degree of difference or the amount of difference between the two minimum spanning 

trees being compared. That helps in quantifying the effect of the mission plan 

implemented on a situation at various time intervals. 

 The thesis work can also be enhanced to compare the similarity of the situations if 

the relationships between objects in the situation are have one way communication. Such 

situations can be modeled as directional graphs in which the edges between vertices can 

be one directional. 

 

 

 

 

 

 

 

 

 



52 
 

 

 

 

APPENDIX A 

 

CODE SNIPPET FOR THE CLASS VERTEX 

 

package MainPackage; 

 

 

/**  

 * A class for vertices in graphs.  Every vertex has a name and an 

 * index in its graph. 

 * 

 */ 

 

public class Vertex 

{ 

    /** Value that indicates that this vertex does not yet have an 

     * index, i.e., the index is unknown. */ 

    public static final int UNKNOWN_INDEX = -1; 

 

    /** Index of this vertex in its graph, 0 to cardV-1. */ 

    private int index; 

 

    /** This vertex's name. */ 

    private String name; 

 

    /** 

     * Creates a vertex whose index is unknown. 

     * 

     * @param name This vertex's name. 

     */ 

    public Vertex(String name) 

    { 

 index = UNKNOWN_INDEX; 

 this.name = name; 



53 
 

    } 

 

    /** Creates a vertex with a given index and name. 

     * 

     * @param index This vertex's index. 

     * @param name This vertex's name. 

     */ 

    public Vertex(int index, String name) 

    { 

 this.index = index; 

 this.name = name; 

    } 

 

    /** 

     * Sets this vertex's index. 

     * 

     * @param index New value for this vertex's index. 

     */ 

    public void setIndex(int index) 

    { 

 this.index = index; 

    } 

 

    /** Returns this vertex's index. */ 

    public int getIndex() 

    { 

 return index; 

    } 

 

    /** 

     * Sets this vertex's name. 

     * 

     * @param name New value for this vertex's name. 

     */ 

    public void setName(String name) 

    { 

 this.name = name; 

    } 

 

    /** Returns this vertex's name. */ 

    public String getName() 

    { 

 return name; 

    } 

 

    /** Returns the <code>String</code> representation of this 



54 
 

     * vertex. */ 

    public String toString() 

    { 

 return name + " (index = " + index + ")";  

    } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 

 

 

APPENDIX B 

 

CODE SNIPPET FOR COMPARING TWO 

TREES WITHOUT A LEADER NODE 

 

 

package MainPackage; 

 

import java.io.*; 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Scanner; 

import java.util.Map; 

import java.util.HashMap; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.layout.Pane; 

import javafx.scene.layout.VBox; 

import javafx.scene.paint.Color; 

import javafx.scene.shape.Circle; 

import javafx.scene.shape.Line; 

import javafx.scene.text.Font; 

import javafx.scene.text.FontWeight; 

import javafx.scene.text.Text; 

import javafx.stage.Stage; 

 

class Edge 

{ 

 class vertex 

 { 

  int a; 

 } 

  vertex v1; 



56 
 

  vertex v2; 

  float wt; 

  int con; 

  Edge() 

  { 

   v1=new vertex(); 

  v2=new vertex(); 

  } 

} 

 

public class MinimumSpanningTree extends Application {  

 static List<java.awt.Point> gr; 

 static List<java.awt.Point> gr2; 

 static Edge min_ed[]=new Edge[200]; 

 static Edge min_ed2[]=new Edge[200]; 

 static Edge ed[]=new Edge[200]; 

 static Edge ed2[]=new Edge[200]; 

 static Map<Integer, Integer> PARENT= new HashMap(); 

 static Map<Integer, Integer> RANK= new HashMap(); 

 //create the set of vertices 

 static List<Vertex> SetVertices = new ArrayList<Vertex>(); 

 static List<Vertex> SetVertices2 = new ArrayList<Vertex>(); 

 private Pane pane; 

 private Pane pane2; 

 private VBox vertBox; 

 static int v,e,v2,e2,check=0; 

 @Override // Override the start method in the Application class 

 public void start(Stage primaryStage) { 

 // Create a pane to hold the graph 

 pane = new Pane(); 

 pane2=new Pane(); 

 vertBox = new VBox(10); 

 // retrieve the number of nodes 

 int totalVertices = gr.size(); 

 int totalVertices2 = gr2.size(); 

 // define the array of nodes as colored circles 

 Circle circ[] = new Circle[100]; 

 Circle circ2[] = new Circle[100]; 

 // define and draw each node in the graph  

 java.awt.Point node1; 

 for(int k=0; k<totalVertices; k++) 

 { 

  node1 = gr.get(k); 

  // define a generic circle for each node 

  circ[k] = new Circle(); 

  circ[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 



57 
 

  circ[k].setStroke(Color.BLACK); 

  circ[k].setFill(Color.BLACK); 

  circ[k].setCenterX(node1.x); 

  circ[k].setCenterY(node1.y); 

  // Add the circle to the pane 

  pane.getChildren().add(circ[k]);  

 } 

  

 java.awt.Point node2; 

 for(int k=0; k<totalVertices2; k++) 

 { 

  node2 = gr2.get(k); 

  // define a generic circle for each node 

  circ2[k] = new Circle(); 

  circ2[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

  circ2[k].setStroke(Color.BLACK); 

  circ2[k].setFill(Color.BLACK); 

  circ2[k].setCenterX(node2.x); 

  circ2[k].setCenterY(node2.y); 

  // Add the circle to the pane 

  pane2.getChildren().add(circ2[k]);  

 } 

  

 //draw the graph 

  

 Line line2 = new Line(); 

 for(int k=0; k<e; k++) 

 { 

  // create the arc between node k and its adjacent nodes 

  float w=ed[k].wt; 

  int n=ed[k].v1.a; 

  int l=ed[k].v2.a; 

  line2 = new Line(); 

  line2.startXProperty().bind(circ[n].centerXProperty()); 

  line2.startYProperty().bind(circ[n].centerYProperty()); 

  line2.endXProperty().bind(circ[l].centerXProperty()); 

  line2.endYProperty().bind(circ[l].centerYProperty()); 

  line2.setStrokeWidth(w); 

  line2.setStroke(Color.BLACK); 

  // Add the arc to the pane 

  pane.getChildren().add(line2); 

 } 

  

 Line line22 = new Line(); 

 for(int k=0; k<e2; k++) 

 { 



58 
 

  // create the arc between node k and its adjacent nodes 

  float w=ed2[k].wt; 

  int n=ed2[k].v1.a; 

  int l=ed2[k].v2.a; 

  line22 = new Line(); 

  line22.startXProperty().bind(circ2[n].centerXProperty()); 

  line22.startYProperty().bind(circ2[n].centerYProperty()); 

  line22.endXProperty().bind(circ2[l].centerXProperty()); 

  line22.endYProperty().bind(circ2[l].centerYProperty()); 

  line22.setStrokeWidth(w); 

  line22.setStroke(Color.BLACK); 

  // Add the arc to the pane 

  pane2.getChildren().add(line22); 

  

 } 

  

  

 // draw the edges in the graph 

 Line line1 = new Line(); 

 for(int k=0; k<totalVertices-1; k++) 

 { 

  // create the arc between node k and its adjacent nodes 

  float w=min_ed[k].wt; 

  int n=min_ed[k].v1.a; 

  int l=min_ed[k].v2.a; 

  line1 = new Line(); 

  line1.startXProperty().bind(circ[n].centerXProperty()); 

  line1.startYProperty().bind(circ[n].centerYProperty()); 

  line1.endXProperty().bind(circ[l].centerXProperty()); 

  line1.endYProperty().bind(circ[l].centerYProperty()); 

  line1.setStrokeWidth(w); 

  line1.setStroke(Color.BLUE); 

  // Add the arc to the pane 

  pane.getChildren().add(line1); 

 } 

  

 Line line12 = new Line(); 

 for(int k=0; k<totalVertices2-1; k++) 

 { 

  // create the arc between node k and its adjacent nodes 

  float w=min_ed2[k].wt; 

  int n=min_ed2[k].v1.a; 

  int l=min_ed2[k].v2.a; 

  line12 = new Line(); 

  line12.startXProperty().bind(circ2[n].centerXProperty()); 

  line12.startYProperty().bind(circ2[n].centerYProperty()); 



59 
 

  line12.endXProperty().bind(circ2[l].centerXProperty()); 

  line12.endYProperty().bind(circ2[l].centerYProperty()); 

  line12.setStrokeWidth(w); 

  line12.setStroke(Color.BLUE); 

  // Add the arc to the pane 

  pane2.getChildren().add(line12);  

 } 

  

 // re-draw the nodes in the graph to overlap over the edges 

 for(int k=0; k<totalVertices; k++){ 

  node1 = gr.get(k); 

  // re-define a generic circle for each node 

  circ[k] = new Circle(); 

  circ[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

  circ[k].setStroke(Color.BLACK); 

  circ[k].setFill(Color.WHITE); 

  circ[k].setCenterX(node1.x); 

  circ[k].setCenterY(node1.y); 

  // Add the circle to the pane 

  pane.getChildren().add(circ[k]);  

  } 

  

 for(int k=0; k<totalVertices2; k++){ 

  node2 = gr2.get(k); 

  // re-define a generic circle for each node 

  circ2[k] = new Circle(); 

  circ2[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

  circ2[k].setStroke(Color.BLACK); 

  circ2[k].setFill(Color.WHITE); 

  circ2[k].setCenterX(node2.x); 

  circ2[k].setCenterY(node2.y); 

  // Add the circle to the pane 

  pane2.getChildren().add(circ2[k]);  

  } 

  

 // Read and display the labels for the vertices 

 Text text1 = new Text(); 

 for(int k=0; k<totalVertices; k++){ 

  String node =String.valueOf(SetVertices.get(k)).substring(0,2); 

  text1 = new Text(); 

  text1.setText(node); 

  text1.xProperty().bind(circ[k].centerXProperty().subtract(6)); 

  text1.yProperty().bind(circ[k].centerYProperty().add(6)); 

  text1.setFont(Font.font("Courier",FontWeight.BOLD,20)); 

  pane.getChildren().add(text1); // Add text1 to the pane 

 } 



60 
 

  

 Text text2 = new Text(); 

 for(int k=0; k<totalVertices2; k++){ 

  String node_2 =String.valueOf(SetVertices2.get(k)).substring(0,2); 

  text2 = new Text(); 

  text2.setText(node_2); 

  text2.xProperty().bind(circ2[k].centerXProperty().subtract(6)); 

  text2.yProperty().bind(circ2[k].centerYProperty().add(6)); 

  text2.setFont(Font.font("Courier",FontWeight.BOLD,20)); 

  pane2.getChildren().add(text2); // Add text1 to the pane 

 } 

  

 vertBox.getChildren().add(pane); 

 vertBox.getChildren().add(pane2); 

 // Create a scene and place it in the stage 

 Scene scene = new Scene(vertBox, 720, 660); 

 if(check==1){ 

  primaryStage.setTitle("The two graphs are not similar"); // Set the stage 

title 

 } 

 else 
 { 

  primaryStage.setTitle("The two graphs are similar"); // Set the stage title 

 } 

 primaryStage.setScene(scene); // Place the scene in the stage 

 primaryStage.show(); // Display the stage 

} 

public static int Find (int vertex){ 

 if(PARENT.get(vertex)==vertex) 

  return PARENT.get(vertex); 

  

 else 
  return Find(PARENT.get(vertex)); 

} 

public static void Union(int root1, int root2) { 

 int num; 

 num=RANK.get(root2); 

 if( RANK.get(root1) > RANK.get(root2)) 

  PARENT.put(root1, root2); 

 else if(RANK.get(root1) < RANK.get(root2)) 

  PARENT.put(root2, root1); 

 else 
  PARENT.put(root2, root1);RANK.put(root2,num++);  

} 

 

public static Edge[] minTree(Edge[] ed,int v, int e) { 



61 
 

     //Sorting edges 

     for(int i=0;i<e;i++) 

     for(int j=0;j<e-1;j++) 

     { 

      if(ed[j].wt>ed[j+1].wt) 

       { 

       Edge t=new Edge(); 

          t=ed[j]; 

          ed[j]=ed[j+1]; 

          ed[j+1]=t; 

      } 

     } 

      

     for(int i=0;i<v;i++) { 

      int x=Integer.parseInt(String.valueOf(SetVertices.get(i)).substring(0,1)); 

      PARENT.put(x,x); 

      RANK.put(x,0); 

     } 

     for (int i=0;i<e;i++) { 

      int 
root1=Find(Integer.parseInt(String.valueOf(SetVertices.get(ed[i].v1.a)).substring(0,1))); 

      int 
root2=Find(Integer.parseInt(String.valueOf(SetVertices.get(ed[i].v2.a)).substring(0,1))); 

      if(root1!=root2){ 

       ed[i].con=1; 

       Union(root1,root2); 

      } 

     } 

      return ed; 

      } 

 

public static void main(String[] args) throws IOException{ 

              FileReader file = new FileReader("inputfile"); 

      BufferedReader in = new BufferedReader(file); 

      v=Integer.parseInt(in.readLine()); 

      e=Integer.parseInt(in.readLine()); 

      float w1=0,w2=0; 

      int common_chk1=0,common_chk2=2; 

      for(int j=0;j<v;j++){ 

       Vertex x = new Vertex(in.readLine()); 

   //add it one by one to the set of vertices 

       SetVertices.add(x); 

       } 

      for(int i=0;i<e;i++){ 

       ed[i]=new Edge(); 

       ed[i].v1.a=Integer.parseInt(in.readLine()); 



62 
 

       ed[i].v2.a=Integer.parseInt(in.readLine()); 

       ed[i].wt=Float.parseFloat(in.readLine()); 

       ed[i].con=0; 

       } 

      ed=minTree(ed,v,e); 

      int m=0; 

      for(int i=0;i<e;i++){ 

       if(ed[i].con==1){ 

        System.out.println(ed[i].v1.a + " "+ed[i].v2.a+" 

"+ed[i].wt); 

        min_ed[m]=ed[i]; 

        w1+=ed[i].wt; 

        m++; 

        } 

       } 

      //starting to draw the graph 

   

      Scanner sc = new Scanner(in); 

      List<java.awt.Point> graf = new ArrayList<java.awt.Point>(); 

      while (sc.hasNextInt()) { 

       graf.add(new java.awt.Point(sc.nextInt(), sc.nextInt())); 

       } 

      in.close(); 

      sc.close(); 

      gr=graf; 

       

      file = new FileReader("input"); 

      in = new BufferedReader(file); 

      v2=Integer.parseInt(in.readLine()); 

      e2=Integer.parseInt(in.readLine()); 

      for(int j=0;j<v2;j++){ 

       Vertex x = new Vertex(in.readLine()); 

       //add it one by one to the set of vertices 

       SetVertices2.add(x); 

      } 

     for(int i=0;i<e2;i++){ 

      ed2[i]=new Edge(); 

      ed2[i].v1.a=Integer.parseInt(in.readLine()); 

      ed2[i].v2.a=Integer.parseInt(in.readLine()); 

      ed2[i].wt=Float.parseFloat(in.readLine()); 

      ed2[i].con=0; 

      } 

     ed2=minTree(ed2,v2,e2); 

     m=0; 

     for(int i=0;i<e2;i++){ 

      if(ed2[i].con==1){ 



63 
 

       System.out.println(ed2[i].v1.a + " "+ed2[i].v2.a+" "+ed2[i].wt); 

       min_ed2[m]=ed2[i]; 

       w2+=ed2[i].wt; 

       m++; 

       } 

      } 

     //starting to draw the graph 

  

     sc = new Scanner(in); 

     List<java.awt.Point> graf2 = new ArrayList<java.awt.Point>(); 

     while (sc.hasNextInt()) { 

      graf2.add(new java.awt.Point(sc.nextInt(), sc.nextInt())); 

      } 

     in.close(); 

     sc.close(); 

     gr2=graf2; 

      

     check=0; 

     if(v!=v2){ 

      check=1; 

     } 

     else if(w1!=w2) { 

      check=1; 

     } 

     else { 

      for (int i=0;i<v-1;i++) 

      { 

       if(min_ed[i].wt!=min_ed2[i].wt) 

       { 

        check=1; 

        break; 

       } 

      } 

     } 

      

     if (check==0) 

     { 

      for (int i=0;i<v-1;i++) 

      { 

       for(int j=i+1;j<v-1;j++) 

       { 

        if(min_ed[i].v1.a==min_ed[j].v1.a || 

min_ed[i].v1.a==min_ed[j].v2.a || 

          min_ed[i].v2.a==min_ed[j].v1.a || 

min_ed[i].v2.a==min_ed[j].v2.a) 

         common_chk1=1; 



64 
 

        if(min_ed2[i].v1.a==min_ed2[j].v1.a || 

min_ed2[i].v1.a==min_ed2[j].v2.a || 

          min_ed2[i].v2.a==min_ed2[j].v1.a || 

min_ed2[i].v2.a==min_ed2[j].v2.a) 

         common_chk2=1; 

        else 
         common_chk2=0; 

        if(common_chk1!=common_chk2){ 

         check=1; 

         break; 

        } 

        common_chk1=0;common_chk2=2; 

       } 

      } 

       

     }      

  Application.launch(args); 

      } 

  } 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

 

 

 

APPENDIX C 

 

CODE SNIPPET FOR COMPARING TWO 

TREES WITH LEADER NODE 

 

This uses the same vertex class created above. 

package application; 

  

import java.io.*; 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Scanner; 

import java.util.Map; 

import java.util.HashMap; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.layout.BorderPane; 

import javafx.scene.layout.Pane; 

import javafx.scene.layout.VBox; 

import javafx.scene.paint.Color; 

import javafx.scene.shape.Circle; 

import javafx.scene.shape.Line; 

import javafx.scene.text.Font; 

import javafx.scene.text.FontWeight; 

import javafx.scene.text.Text; 

import javafx.stage.Stage; 

 

class Edge 

{ 

 class vertex 

 { 

  int a; 

 } 



66 
 

  vertex v1; 

  vertex v2; 

  float wt; 

  int con; 

  Edge() 

  { 

   v1=new vertex(); 

  v2=new vertex(); 

  } 

} 

 

 

public class Main extends Application { 

 static int v,e,v2,e2,check=0; 

 static int ar[][]= new int [3][100]; 

 static int ar2[][]= new int [3][100]; 

 static Edge min_ed[]=new Edge[200]; 

 static Edge min_ed2[]=new Edge[200]; 

 static List<java.awt.Point> gr; 

 static List<java.awt.Point> gr2; 

 static Edge ed[]=new Edge[200]; 

 static Edge ed2[]=new Edge[200]; 

 static Map<Integer, Integer> PARENT= new HashMap(); 

 static Map<Integer, Integer> RANK= new HashMap(); 

 static int ind1=-1,ind2=-1; 

 //create the set of vertices 

 static List<Vertex> SetVertices = new ArrayList<Vertex>(); 

 static List<Vertex> SetVertices2 = new ArrayList<Vertex>(); 

 private Pane pane; 

 private Pane pane2; 

 private VBox vertBox; 

 @Override 

 public void start(Stage primaryStage) { 

  // Create a pane to hold the graph 

  pane = new Pane(); 

  pane2=new Pane(); 

  vertBox = new VBox(10); 

  // retrieve the number of nodes 

  int totalVertices = gr.size(); 

  int totalVertices2 = gr2.size(); 

  // define the array of nodes as colored circles 

  Circle circ[] = new Circle[100]; 

  Circle circ2[] = new Circle[100]; 

  // define and draw each node in the graph  

  java.awt.Point node1; 

  for(int k=0; k<totalVertices; k++) 



67 
 

  { 

   node1 = gr.get(k); 

   // define a generic circle for each node 

   circ[k] = new Circle(); 

   circ[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

   circ[k].setStroke(Color.BLACK); 

   circ[k].setFill(Color.BLACK); 

   circ[k].setCenterX(node1.x); 

   circ[k].setCenterY(node1.y); 

   // Add the circle to the pane 

   pane.getChildren().add(circ[k]);  

  } 

   

  java.awt.Point node2; 

  for(int k=0; k<totalVertices2; k++) 

  { 

   node2 = gr2.get(k); 

   // define a generic circle for each node 

   circ2[k] = new Circle(); 

  

 circ2[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

   circ2[k].setStroke(Color.BLACK); 

   circ2[k].setFill(Color.BLACK); 

   circ2[k].setCenterX(node2.x); 

   circ2[k].setCenterY(node2.y); 

   // Add the circle to the pane 

   pane2.getChildren().add(circ2[k]);  

  } 

   

  //draw the graph 

   

  Line line2 = new Line(); 

  for(int k=0; k<e; k++) 

  { 

   // create the arc between node k and its adjacent nodes 

   float w=ed[k].wt; 

   int n=ed[k].v1.a; 

   int l=ed[k].v2.a; 

   line2 = new Line(); 

   line2.startXProperty().bind(circ[n].centerXProperty()); 

   line2.startYProperty().bind(circ[n].centerYProperty()); 

   line2.endXProperty().bind(circ[l].centerXProperty()); 

   line2.endYProperty().bind(circ[l].centerYProperty()); 

   line2.setStrokeWidth(w); 

   line2.setStroke(Color.BLACK); 

   // Add the arc to the pane 



68 
 

   pane.getChildren().add(line2); 

  } 

   

  Line line22 = new Line(); 

  for(int k=0; k<e2; k++) 

  { 

   // create the arc between node k and its adjacent nodes 

   float w=ed2[k].wt; 

   int n=ed2[k].v1.a; 

   int l=ed2[k].v2.a; 

   line22 = new Line(); 

   line22.startXProperty().bind(circ2[n].centerXProperty()); 

   line22.startYProperty().bind(circ2[n].centerYProperty()); 

   line22.endXProperty().bind(circ2[l].centerXProperty()); 

   line22.endYProperty().bind(circ2[l].centerYProperty()); 

   line22.setStrokeWidth(w); 

   line22.setStroke(Color.BLACK); 

   // Add the arc to the pane 

   pane2.getChildren().add(line22); 

  } 

   

   

  // draw the edges in the graph 

  Line line1 = new Line(); 

  for(int k=0; k<totalVertices-1; k++) 

  { 

   // create the arc between node k and its adjacent nodes 

   float w=min_ed[k].wt; 

   int n=min_ed[k].v1.a; 

   int l=min_ed[k].v2.a; 

   line1 = new Line(); 

   line1.startXProperty().bind(circ[n].centerXProperty()); 

   line1.startYProperty().bind(circ[n].centerYProperty()); 

   line1.endXProperty().bind(circ[l].centerXProperty()); 

   line1.endYProperty().bind(circ[l].centerYProperty()); 

   line1.setStrokeWidth(w); 

   line1.setStroke(Color.BLUE); 

   // Add the arc to the pane 

   pane.getChildren().add(line1); 

  

  } 

   

  Line line12 = new Line(); 

  for(int k=0; k<totalVertices2-1; k++) 

  { 

   // create the arc between node k and its adjacent nodes 



69 
 

   float w=min_ed2[k].wt; 

   int n=min_ed2[k].v1.a; 

   int l=min_ed2[k].v2.a; 

   line12 = new Line(); 

   line12.startXProperty().bind(circ2[n].centerXProperty()); 

   line12.startYProperty().bind(circ2[n].centerYProperty()); 

   line12.endXProperty().bind(circ2[l].centerXProperty()); 

   line12.endYProperty().bind(circ2[l].centerYProperty()); 

   line12.setStrokeWidth(w); 

   line12.setStroke(Color.BLUE); 

   // Add the arc to the pane 

   pane2.getChildren().add(line12); 

  } 

   

  // re-draw the nodes in the graph to overlap over the edges 

  for(int k=0; k<totalVertices; k++){ 

   node1 = gr.get(k); 

   // re-define a generic circle for each node 

   circ[k] = new Circle(); 

   circ[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

   circ[k].setStroke(Color.BLACK); 

   circ[k].setFill(Color.WHITE); 

   circ[k].setCenterX(node1.x); 

   circ[k].setCenterY(node1.y); 

   // Add the circle to the pane 

   pane.getChildren().add(circ[k]);  

   } 

   

  for(int k=0; k<totalVertices2; k++){ 

   node2 = gr2.get(k); 

   // re-define a generic circle for each node 

   circ2[k] = new Circle(); 

  

 circ2[k].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

   circ2[k].setStroke(Color.BLACK); 

   circ2[k].setFill(Color.WHITE); 

   circ2[k].setCenterX(node2.x); 

   circ2[k].setCenterY(node2.y); 

   // Add the circle to the pane 

   pane2.getChildren().add(circ2[k]);  

   } 

   

  // draw the leader node with red 

  node1 = gr.get(ind1); 

  circ[ind1] = new Circle(); 

  circ[ind1].radiusProperty().bind(vertBox.heightProperty().divide(45)); 



70 
 

  circ[ind1].setStroke(Color.RED); 

  circ[ind1].setStrokeWidth(2); 

  circ[ind1].setFill(Color.WHITE); 

  circ[ind1].setCenterX(node1.x); 

  circ[ind1].setCenterY(node1.y); 

  // Add the circle to the pane 

  pane.getChildren().add(circ[ind1]);  

 

  // draw the leader node with red 

    node2 = gr2.get(ind2); 

    circ2[ind2] = new Circle(); 

   

 circ2[ind2].radiusProperty().bind(vertBox.heightProperty().divide(45)); 

    circ2[ind2].setStroke(Color.RED); 

    circ2[ind2].setStrokeWidth(2); 

    circ2[ind2].setFill(Color.WHITE); 

    circ2[ind2].setCenterX(node2.x); 

    circ2[ind2].setCenterY(node2.y); 

    // Add the circle to the pane 

    pane2.getChildren().add(circ2[ind2]); 

  // Read and display the labels for the vertices 

  Text text1 = new Text(); 

  for(int k=0; k<totalVertices; k++){ 

   String node =String.valueOf(SetVertices.get(k)).substring(0,2); 

   text1 = new Text(); 

   text1.setText(node); 

   text1.xProperty().bind(circ[k].centerXProperty().subtract(6)); 

   text1.yProperty().bind(circ[k].centerYProperty().add(6)); 

   text1.setFont(Font.font("Courier",FontWeight.BOLD,20)); 

   pane.getChildren().add(text1); // Add text1 to the pane 

  } 

   

  Text text2 = new Text(); 

  for(int k=0; k<totalVertices2; k++){ 

   String node_2 =String.valueOf(SetVertices2.get(k)).substring(0,2); 

   text2 = new Text(); 

   text2.setText(node_2); 

   text2.xProperty().bind(circ2[k].centerXProperty().subtract(6)); 

   text2.yProperty().bind(circ2[k].centerYProperty().add(6)); 

   text2.setFont(Font.font("Courier",FontWeight.BOLD,20)); 

   pane2.getChildren().add(text2); // Add text1 to the pane 

  } 

   

  vertBox.getChildren().add(pane); 

  vertBox.getChildren().add(pane2); 

  // Create a scene and place it in the stage 



71 
 

  Scene scene = new Scene(vertBox, 720, 660); 

  if(check==1){ 

   primaryStage.setTitle("The two graphs are not similar"); // Set the 

stage title 

  } 

  else 
  { 

   primaryStage.setTitle("The two graphs are similar"); // Set the 

stage title 

  } 

  primaryStage.setScene(scene); // Place the scene in the stage 

  primaryStage.show(); // Display the stage 

 } 

  

 public static boolean check_equal(int a,int b) { 

  System.out.println("start  "+a+ "  "+b); 

  int index1=-1,index2=-1,other1=-1,other2=-1,index=0; 

  boolean result=true; 

  float chk1,chk2; 

  for(int i=0;i<v;i++) 

  { 

   if(ar[0][i]==a && ar[2][i]==0){ 

    index1=i; 

    ar[2][i]=1; 

    break; 

   } 

     

  } 

  for(int j=0;j<v;j++) 

  { 

   if(ar2[0][j]==b && ar2[2][j]==0){ 

    index2=j; 

    ar2[2][j]=1; 

    break; 

   } 

  } 

  if(index1==-1) { 

   return true; 

  } 

 

 System.out.println(String.valueOf(SetVertices.get(index1)).substring(0,1)); 

  if(ar[1][index1]==0 && ar2[1][index2]==0) 

   return true; 

  else { 

   for(int i=0;i<v-1;i++) 

   { 



72 
 

    chk1=-1;chk2=-1; 

   

 if(Integer.parseInt(String.valueOf(SetVertices.get(min_ed[i].v1.a)).substring(0,1))

==a){ 

     chk1=min_ed[i].wt; 

     other1=min_ed[i].v2.a; 

    } 

    else if 
(Integer.parseInt(String.valueOf(SetVertices.get(min_ed[i].v2.a)).substring(0,1))==a){ 

     chk1=min_ed[i].wt; 

     other1=min_ed[i].v1.a; 

    } 

   

 if(Integer.parseInt(String.valueOf(SetVertices.get(min_ed2[i].v1.a)).substring(0,1

))==b){ 

     chk2=min_ed2[i].wt; 

     other2=min_ed2[i].v2.a; 

    } 

    else if 
(Integer.parseInt(String.valueOf(SetVertices.get(min_ed2[i].v2.a)).substring(0,1))==b){ 

     chk2=min_ed2[i].wt; 

     other2=min_ed2[i].v1.a; 

    } 

    if(chk1!=chk2){ 

     index=1; 

     break; 

    } 

    else if(chk1!=-1) { 

     if(ar[2][other1]==0 && 

       ar2[2][other2]==0) 

       result=result && 

check_equal(Integer.parseInt(String.valueOf(SetVertices.get(other1)).substring(0,1)), 

        

 Integer.parseInt(String.valueOf(SetVertices.get(other2)).substring(0,1))); 

    } 

   } 

   if (index==1) 

    return false; 

   else  
    return result; 

  } 

 } 

  

 public static int Find (int vertex){ 

 if(PARENT.get(vertex)==vertex) 

  return PARENT.get(vertex); 



73 
 

  

 else 
  return Find(PARENT.get(vertex)); 

} 

public static void Union(int root1, int root2) { 

 int num; 

 num=RANK.get(root2); 

 if( RANK.get(root1) > RANK.get(root2)) 

  PARENT.put(root1, root2); 

 else if(RANK.get(root1) < RANK.get(root2)) 

  PARENT.put(root2, root1); 

 else 
  PARENT.put(root2, root1);RANK.put(root2,num++);  

} 

 

public static Edge[] minTree(Edge[] ed,int v, int e) { 

     //Sorting edges 

     for(int i=0;i<e;i++) 

     for(int j=0;j<e-1;j++) 

     { 

      if(ed[j].wt>ed[j+1].wt) 

       { 

       Edge t=new Edge(); 

          t=ed[j]; 

          ed[j]=ed[j+1]; 

          ed[j+1]=t; 

      } 

     } 

      

     for(int i=0;i<v;i++) { 

      int x=Integer.parseInt(String.valueOf(SetVertices.get(i)).substring(0,1)); 

      PARENT.put(x,x); 

      RANK.put(x,0); 

     } 

     for (int i=0;i<e;i++) { 

      int 
root1=Find(Integer.parseInt(String.valueOf(SetVertices.get(ed[i].v1.a)).substring(0,1))); 

      int 
root2=Find(Integer.parseInt(String.valueOf(SetVertices.get(ed[i].v2.a)).substring(0,1))); 

      if(root1!=root2){ 

       ed[i].con=1; 

       Union(root1,root2); 

      } 

     } 

      return ed; 

      } 



74 
 

  

 public static void main(String[] args) throws IOException { 

  int lead1=-1,lead2=-1; 

  int degree=0; 

  FileReader file = new FileReader("inputfile"); 

  BufferedReader in = new BufferedReader(file); 

  v=Integer.parseInt(in.readLine()); 

  e=Integer.parseInt(in.readLine()); 

  lead1=Integer.parseInt(in.readLine());   

  float w1=0,w2=0; 

  for(int j=0;j<v;j++){ 

   Vertex x = new Vertex(in.readLine()); 

 // add it one by one to the set of vertices 

   SetVertices.add(x); 

   ar[0][j]=Integer.parseInt(x.getName()); 

   if(ar[0][j]==lead1) 

    ind1=j; 

      } 

  for(int i=0;i<e;i++){ 

   ed[i]=new Edge(); 

   ed[i].v1.a=Integer.parseInt(in.readLine()); 

   ed[i].v2.a=Integer.parseInt(in.readLine()); 

   ed[i].wt=Float.parseFloat(in.readLine()); 

   ed[i].con=0; 

      } 

  ed=minTree(ed,v,e); 

  int m=0; 

  for(int i=0;i<e;i++){ 

   if(ed[i].con==1){ 

    System.out.println(ed[i].v1.a + " "+ed[i].v2.a+" 

"+ed[i].wt); 

    min_ed[m]=ed[i]; 

    w1+=ed[i].wt; 

    m++; 

       } 

      } 

   

  for(int i=0;i<v;i++){ 

   degree=0; 

   for(int j=0;j<v-1;j++) { 

   

 if(ar[0][i]==Integer.parseInt(String.valueOf(SetVertices.get(min_ed[j].v1.a)).subs

tring(0,1)) 

      || 

ar[0][i]==Integer.parseInt(String.valueOf(SetVertices.get(min_ed[j].v2.a)).substring(0,1)

)) 



75 
 

     degree++;      

   } 

   ar[1][i]=degree; 

   ar[2][i]=0; 

  } 

    // starting to draw the graph   

  Scanner sc = new Scanner(in); 

  List<java.awt.Point> graf = new ArrayList<java.awt.Point>(); 

  while (sc.hasNextInt()) { 

   graf.add(new java.awt.Point(sc.nextInt(), sc.nextInt())); 

      } 

  in.close(); 

  sc.close(); 

  gr=graf;   

  file = new FileReader("input"); 

  in = new BufferedReader(file); 

  v2=Integer.parseInt(in.readLine()); 

  e2=Integer.parseInt(in.readLine()); 

  lead2=Integer.parseInt(in.readLine()); 

  for(int j=0;j<v2;j++){ 

   Vertex x = new Vertex(in.readLine()); 

     // add it one by one to the set of vertices 

   SetVertices2.add(x); 

   ar2[0][j]=Integer.parseInt(x.getName()); 

   if(ar2[0][j]==lead2) 

    ind2=j; 

  } 

  for(int i=0;i<e2;i++){ 

   ed2[i]=new Edge(); 

   ed2[i].v1.a=Integer.parseInt(in.readLine()); 

   ed2[i].v2.a=Integer.parseInt(in.readLine()); 

   ed2[i].wt=Float.parseFloat(in.readLine()); 

   ed2[i].con=0; 

  } 

  ed2=minTree(ed2,v2,e2); 

  m=0; 

  for(int i=0;i<e2;i++){ 

   if(ed2[i].con==1){ 

    System.out.println(ed2[i].v1.a + " "+ed2[i].v2.a+" 

"+ed2[i].wt); 

    min_ed2[m]=ed2[i]; 

    //min_ed2[m].v1.a= 

    w2+=ed2[i].wt; 

    m++; 

   }  

  } 



76 
 

   

  for(int i=0;i<v2;i++){ 

   degree=0; 

   for(int j=0;j<v2-1;j++) { 

   

 if(ar2[0][i]==Integer.parseInt(String.valueOf(SetVertices.get(min_ed2[j].v1.a)).su

bstring(0,1)) 

      || 

ar2[0][i]==Integer.parseInt(String.valueOf(SetVertices.get(min_ed2[j].v2.a)).substring(0,

1)) 

      ) 

     degree++;      

   } 

   ar2[1][i]=degree; 

   ar2[2][i]=0; 

  } 

// starting to draw the graph 

 

  sc = new Scanner(in); 

  List<java.awt.Point> graf2 = new ArrayList<java.awt.Point>(); 

  while (sc.hasNextInt()) { 

   graf2.add(new java.awt.Point(sc.nextInt(), sc.nextInt())); 

  } 

  in.close(); 

  sc.close(); 

  gr2=graf2; 

   

  check=0; 

  if(v!=v2){ 

   check=1; 

  } 

  else if(w1!=w2) { 

   check=1; 

  } 

  else { 

   for (int i=0;i<v-1;i++) { 

    if(min_ed[i].wt!=min_ed2[i].wt) { 

     check=1; 

     break; 

    } 

   } 

  } 

  if (check==0) { 

   if (!check_equal(lead1,lead2)) 

    check=1;    

  } 



77 
 

  System.out.println(check); 

   

  Application.launch(args); 

  } 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



78 
 

 

BIBLIOGRAPHY 

 

[1] Ghoniem, M.; Fekete, J.; Castagliola, P., "A Comparison of the Readability of Graphs        

      Using Node-Link and Matrix-Based Representations," Information Visualization,     

      2004. INFOVIS 2004. IEEE Symposium on , vol., no., pp.17,24. 

 

[2] (Horst, et al., 2002, pp. 123-132) 

 

[3] Wang, J.T.L.; Shapiro, B.A.; Shasha, D.; Kaizhong Zhang; Currey, K.M., "An           

      algorithm for finding the largest approximately common substructures of two trees,"  

      Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.20, no.8,  

       pp.889,895, Aug 1998. 

 

[4] Blasch, E.; Plano, S., "DFIG Level 5 (User Refinement) issues supporting Situational    

      Assessment Reasoning," Information Fusion, 2005 8th International Conference on ,  

      vol.1, no., pp.xxxv,xliii, 25-28 July 2005. 

 

[5] Perry, R.P.; DiPietro, R.C.; Fante, R., "SAR imaging of moving targets," Aerospace  

      and Electronic Systems, IEEE Transactions on , vol.35, no.1, pp.188,200, Jan 1999. 

 

[6] Schulz, D.; Burgard, W.; Fox, D.; Cremers, A.B., "Tracking multiple moving targets  

      with a mobile robot using particle filters and statistical data association," Robotics  

      and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on ,  

      vol.2, no., pp.1665,1670 vol.2, 2001 

 

[7] Raymond; John, W.; Gardiner; Eleanor, J.; Willet; Peter,” Calculation of Graph  

      Similarity using Maximum Common Edge Subgraphs,” The Computer Journal, 2002,  

      vol.45, no.6, pp.631,644. 

 

[8] Papadopoulos, A.N.; Manolopoulos, Y., "Structure-based similarity search with graph  

      histograms," Database and Expert Systems Applications, 1999. Proceedings. Tenth  

      International Workshop on , vol., no., pp.174,178, 1999. 



79 
 

 

[9] Srivastav, A.; Yicheng Wen; Hendrick, E.; Chattopadhyay, I.; Ray, A.; Phoha, S.,  

      "Information fusion for object & situation assessment in sensor networks," American     

       Control Conference (ACC), 2011 , vol., no., pp.1274,1279, June 29 2011-July 1  

       2011. 

 

[10] Pek Hui, F.; Gee Wah, NG.,”High- level Information Fusion: An Overview,”   

        Advances in Information Fusion, 2013, vol.8, no.1, pp.33,72, 2013. 

 

[11] John Salerno; Mike Hinman; Dough Boulware; Paul Bello,”Information Fusion for          

        Situational Awareness,” ISIF, 2003, vol., no., pp.507,513, 2003. 

 

[12] Erick Blasch; Ivan Kadar; John Salerno; Mieczyslaw Kokar, M.; Subrata Das;  

        Gerald Powell , M.; Daniel Corkill D.; Enrique Ruspini H.,“ Issues and Challenges  

        in Situation Assessment (Level 2 Fusion),” Journal of Advances in Information  

        Fusion (JAIF), 2006, vol.1, no.2, pp.122,139, 2006. 

 

[13] Joint Operation Planning (JP 5-0), Washington, DC: US Government Publishing     

        Office, 2006. 

 

[14] E. Blasch, I. Kadar, K. Hintz, J. Bierman, C. Chong and S. Das, "Resource  

        Management Coordination with Level 2/3 Fusion Issues and Challenges," IEEE  

        Aerospace and Electronic Systems Magazine, vol. 23, no. 3, pp. 32-46, 2008. 

 

[15] F. Lanchester, "Aircraft in warfare: the dawn of the fourth arm," Engineering, pp.  

        422-423, 1914. 

 

[16] R. Brown, "Theory of Combat: The Probability of Winning," Operations Research,  

        vol. 11, no. 3, pp. 418-425, 1993. 

 

[17] D. Hall and J. Llinas, Multisensor Data Fusion Handbook, CRC Press, 2007. 

 

[18] P. Hester and A. Tolk, "Using Lanchester's equations for sequential battle prediction  

        enabling better military decision support," Int. Jorunal of Defense Support Systems,  

        vol. 2, pp. 76-90, 2009. 



80 
 

 

[19] K. Trivedi, Probability and Statistics with Reliability, Queing and Computer Science  

        Applications, New York: Wiley-Interscience, 2002.  

 

[20] A. Washburn and M. Kress, Combat Modeling, Springer, 2009. 

 

[21] X. Zhua, Y. Yuanb, C. Rorresc and M. Kamb, "Distributed M-ary hypothesis  

         testing with binary local decisions," Information Fusion, vol. 5, no. 3, pp. 157- 

         167, 2004. 

 

[22] M. L. Fernandez and G. Valiente, "A graph distance metric combining maximum  

         common subgraph and minimum common supergraph," Pattern Recognition     

         Letters, vol. 22, pp. 753-758, 2001. 

 

[23] Bunke, H.,” On a relation between graph edit distance and maximum common  

        subgraph,” Elsevier science, 1997. 

 

[24] http://en.wikipedia.org/wiki/Kruskal%27s_algorithm 

 

 

 

 

 

 

 

 

 

 



81 
 

 

 

VITA 

Graduate College 

University of Nevada, Las Vegas 

Pavan Kumar Pallapunidi 

 

Degrees: 

Bachelor of Technology in Information Technology, 2010 

Jawaharlal Nehru Technological University, Hyderabad, India. 

Master of Science in Computer Science, 2015 

University of Nevada Las Vegas 

Thesis Title: Situational Assessment using Graph Comparison 

Thesis Examination Committee: 

Chair Person, Dr. Wolfgang Bein, Ph.D. 

Committee Member, Dr. Ajoy K. Datta, Ph.D 

Committee Member, Dr. Ju-Yeon Jo, Ph.D. 

Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D. 


	Situational Assessment using graph comparison
	Repository Citation

	tmp.1443218406.pdf.PJCHW

