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Abstract

Problems dealing with the generation of random polygons has important applications for evaluating

the performance of algorithms on polygonal domain. We review existing algorithms for generating

random polygons. We present an algorithm for generating polygons admitting visibility properties.

In particular, we propose an algorithm for generating polygons admitting large size kernels. We

also present experimental results on generating such polygons.
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Chapter 1

Introduction

Development of efficient algorithms for generating simple polygonal shapes has wealth of applica-

tions in applied computational geometry. Any algorithm that takes input a simple polygon should

be tested for its performance by executing on several polygons with different numbers of vertices.

What is really needed is a set of randomly generated polygons of various shapes and structures.

While there are several algorithms for generating pseudo-random integers [Leh92], papers, and re-

search outlets addressing the issue of generating random polygons are very rare. Only a few papers

on generating simple polygons has been reported [ZSSM96, AH98, Soh99]. Since no polynomial

time algorithm for generating random polygon is known, researchers either use heuristics [AH98]

or generate the restricted classes of polygons [ZSSM96, Soh99]. In this thesis, we consider the

problem of generating simple polygons that satisfy certain visibility properties. Specifically, we

examine the problem of generating polygons that are star-shaped. In a star-shaped polygon P ,

there is a connected set k called kernel such that any point inside P is visible to all points inside k.

The thesis is organized as follows. In Chapter 2, we present a condensed review of algorithms

for generating simple polygons. We also review several results dealing with the computation of

kernel and techniques for searching kernels. We next review algorithms for constructing kernels

under stair-case visibility which has applications in VLSI design.

In Chapter 3, we present the main contribution of the thesis. We introduce the problem of

generating simple polygons that admit large size kernel. For this, we investigate the applicability of

the Voronoi diagram induced by the candidate polygonal vertices. We present a space decomposition

approach for searching and constructing polygons that are guaranteed to admit a kernel. Our

technique is based on applying quad-tree decomposition for searching the candidate kernel points.

The approach can be used to generate pseudo-random star-shaped polygons.
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In Chapter 4, we present an implementation of the proposed algorithm for random generation

of visibility aware simple polygons. The prototype program is developed by using the Python

programming language. The prototype software supports a user-friendly graphical interface. Users

can execute the program by entering data by mouse click and by reading pre-generated vertices from

the input file. Chapter 4 also contains several experimental results on the generation of visibility

aware simple polygons.

Finally, in chapter 5, we examine several scope of extending and generalizing the algorithms

proposed in this research.
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Chapter 2

Visibility Properties of 2D Shapes

In this chapter, we review existing algorithms for constructing and recognizing two aspects of

polygonal shapes. In the first part, we review methods for constructing 2D shapes (simple polygons)

from a given set of input points. In the second part, we review the visibility properties of polygons

under standard and stair-case visibility.

2.1 Preliminaries

Generating two-dimensional shapes and structures of a given set of points is a central problem area

in computational geometry. One such problem is connecting points to form a simple polygon. A

few algorithms have been reported for constructing a simple polygon from a given set of points

[ZSSM96, AH98]. It is remarked that a simple polygon consists of a set of line segments enclosing

a connected area that partition the plane into three parts (i) Polygon boundary (ii) unbounded

exterior, and (iii) bounded connected interior [O’R87]. A very simple way of generating a simple

polygon from a given set of points is to angularly sort and connect. This is illustrated in Figure

2.1. To sort the points angularly, an axis point is picked inside the convex hull of input points. In

the left side of the Figure 2.1, a given input points are shown. The axis point is marked as ’x’.

The integers adjacent to input points represent the ordering of the angularly sorted (about x) list.

In the right part, the polygon implied by the sorted list is displayed. Since sorting is used in this

procedure, this approach of constructing polygon needs O(n log n) time.

3



(a) (b)

Figure 2.1: Generating Simple Polygon by Angular Sort

2.2 Generation of Random Polygons

An efficient algorithm for generating x-monotone polygon uniformly at random has been proposed

in [ZSSM96]. It is remarked that a simple polygon is called monotone with respect to a given

direction ~d, if the polygon boundary consists of two chains (top chain and bottom chain) each of

which is monotone with respect to ~d. Without loss of generality, we assume that direction ~d is

x-axis. Alternatively, an x-monotone polygon is such that its intersection with any vertical line is

either empty or one line segment as shown in Figure 2.2. The top chain and bottom chain of this

polygon are vertices 1, 2, 3, 5, 7, 8 and 1, 4, 6, 8 respectively.

In [ZSSM96], it is argued that if one can count the number of monotone polygons that can

be formed (for a given set of vertices Sk = {s1, s2, ..., sk} with k > 2) then a formal method for

random generation is applicable. The counting is done by observing that a given input point can

be present either in the top chain or in the bottom chain. The authors arrive at a relationship for

counting the number of monotone polygons in terms of a recurrance relation given below.

TN(k) =
∑

j∈VT (k)

BN(j + 1)

BN(k) =
∑

j∈VB(k)

TN(j + 1)

Where, TN(k) is the number of x-monotone polygons with vertex set Sk that have edge (sk−1, sk)

on their top chain. BN(k) is the number of x-monotone polygons with vertext set Sk that have

edge (sk−1, sk) on their bottom chain. VT (k) is the set of points that are above visible from the

4



Figure 2.2: Illustrating x-Monotone Polygon

point sk and VB(k) is the set of points that are below visible from the point sk. The details are in

[ZSSM96]

The time complexity of the algorithm is bound by O(n2), where n is the number of input

vertices. The recursive relation counts the number of monotone polygons with the given set of

vertices Sk by scanning the vertices in the forward direction. A random number between 1 and

the total count is picked and the x-monotone polygon corresponding to the selected number is

constructed by scanning the vertices in the backward direction. The execution trace for generating

an example x-monotone polygon is shown in eight parts of Figure 2.3. The execution can proceed

in several construction paths. Each of these paths lead to a particular x-monotone polygon. One

such parths results in the x-monotone polygon shown in Figure 2.3h. Other monotone polygons (five

more) generated by following admittable paths are shown in Figure 2.4. The authors in [ZSSM96]

formally prove that after a pre-processing step needing O(n2) time, a random x-monotone polygon

can be generated in O(n) time. This paper also sketches an approach for generating random convex

polygon of time complexity O(n3).

Algorithms for generating random star-shaped polygons has been given in [AH98, Soh99]. Auer

and Held [AH98] gave an algorithm to enumerate all the star-shaped polygons from a given set

5



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.3: An Execution Trace of the x-Monotone Polygon Generation.
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Figure 2.4: All Six x-monotone Polygons Generated from the Vertex Set in Figure 2.3a

of points S. The algorithm takes O(n4) time and generates polygons uniformly at random. The

authors use the fact that a star-shaped polygon is fixed once the kernel of the polygon has been

specified. That means each star-shaped polygon has a unique kernel. Once we find the kernel of

the polygon, we can sort the vertices angularly around the kernel and construct the polygon in

O(n log n) time. Auer and Held showed that for point sites of size n there can be at most O(n4)

kernels. This can be verified by drawing the lines through each pair of points and counting the

number of regions induced by the lines that lie inside the convex hull of the point sites S. This is

illutrated in Figure 2.5. The total number of such lines is in the order of
(
n
2

)
= O(n2). Therefore,

the total number of regions (cells) can be at most O(n4). In other words, there can be at most O(n4)

kernels. One possible arrangement of points that achieve this bound can be obtained by placing

n − 2 points on the parabola y = x2 equally in either side of y-axis and placing the remaining 2

points at (−∞,−∞) and (∞,−∞) [Soh99].

As we see in Figure 2.5, the lines passing through each pair of points create cells. These cells

can be computed in O(n4) time [O’R87]. More than one cells may belong to the same kernel. Auer

and Held gave a depth-first search technique to find the kernels from the cells. This runs in O(n)

time where n is the number of cells.

Sohler’s [Soh99] algorithm generates a star-shaped polygon uniformly at random that runs in

O(n2 log n) time and O(n) space. Instead of generating all the star-shaped polygons as in [AH98],

7



Figure 2.5: Lines Passing Through Each Pair of Points and Induced Cells
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the algorithm generates one polygon at a time. A downside of this approach is that it only works

for non-degenerate star-shaped polygons. Non-degenerate polygon is a polygon having the kernel

of size > 0. The algorithm starts by creating line segments T that partition the convex hull of S

as follows.

1. Compute the convex hull of S i.e. compute CH(S).

2. For every pair of points, take two half-lines defined by the line through these points without

the segment connecting them. Intersect the half-lines with CH(S) to get two line segments.

3. These line segments and the bounding segments of CH(S) constitute T .

Line segments in T induce the regions that define all the kernels of S. An example of regions

defined by six points is given in Figure 2.6.

Figure 2.6: An Example of Kernel Subdivision Induced by the Line Segments

Since there are O(n2) line segments and the intersection of a segment with the convex hull can

be computed in logarithmic time, the running time of computing T is O(n2 log n). The algorithm

then selects a random cell and constructs the polygon defined by the cell in O(n2 log n) time.

9



Furthermore, Sohler showed that the number of star-shaped polygons formed from n input points

can be counted in O(n5 log n)

2.3 Visibility Properties of Polygons

Understanding the visibility properties of polygonal shapes is perhaps the most widely investigated

area of computational geometry [O’R87]. While exploring visibility properties of simple polygons,

the boundary of the polygon is taken as an opaque wall: a polygon is viewed as a room with walls

as a boundary. Under the standard definition of visibility, two points p and q inside the polygon

are mutually visible if the straight line segment connecting p and q does not intersect with the

boundary. Under this definition, many practical algorithms having application in robotics and

computer-aided manufacturing have been developed. One such algorithm is the computation of

visibility polygon induced by a point q inside the polygon. The visibility polygon for an interior

point q is the set of points visible from q. Figure 2.7 is an example of a visibility polygon. Visibility

Figure 2.7: Illustrating Visibility Polygon

polygons can be computed in O(n) time for simple polygons and for polygons with holes, algorithms

for time complexity O(n log n) is known [Asa85, Lee83, EA81].

10



Another useful visibility property of a simple polygon is the concept of Kernel. The Kernel of

a simple polygon is the set of points from which the polygon is visible. Not every simple polygon

admit kernel. Those simple polygons that admit kernel are usually called star-shaped polygons.

Figure 2.8 illustrates an example of a simple polygon admitting kernel.

Figure 2.8: Illustrating Kernel of a Simple Polygon

Lee and Preparata [LPP79] gave an algorithm that runs in linear time in the number of the

edges for finding the kernel. The authors took advantage of the order of the edges in the polygons

to find the linear time algorithm. The algorithm given in [LPP79] scans in order the vertices of

the polygon P and construct kernel chains K0,K1,K2, ...,Kn−1. A kernel chain Ki bounds the

intersection of half-planes defined by edges e0 to ei. The algorithm first finds K0 and proceeds

incrementally to find K1,K2, ...,Kn−1. Finally, using Kn−1, it finds the intersection of all the

half-planes. The algorithm is optimal for finding the kernel of a star-shaped polygon.

The notion of visibility has been generalized [Vas15, Gew95]. One such generalization is the

introduction of stair-case visibility [Vas15, Gew95]. Two points p and q inside an orthogonal

polygon are called s-visible if p and q can be connected by a stair-case path. It is remarked

that in an orthogonal polygon the boundary edges are parallel to x- and y- axis. A path p’ is a

stair-case path if its edges are parallel to x- or y- axis and if it is monotone with respect to one of

the co-ordinate axes. Intuitively a stair-case path does not back-up. Under s-visibility, the problem

of determining and recognizing s-star have been considered [Gew95]. An example of s-star polygon

11



is shown in figure 2.9.

Figure 2.9: An Example of a S-Star Polygon

An algorithm for computing s-kernel in an orthogonal polygon is reported in [Vas15]. The time

complexity of this algorithm is O(n2), where n is the number of vertices in the polygon. It is

interesting to note that while polygons with holes never admit kernel under the standard notion

of visibility, there could be s-kernels for s-star polygons with holes [Gew95]. Even though a s-

kernel could have Ω(n2) components, such polygon can be recognized in O(n) time [Gew95]. It is

known that the problem of computing visibility polygon under stair-case visibility inside a polygon

containing holes has a lower bound of Ω(n log n) [Gew95]. This result is extended to orthogonal

polygons with holes in [Gew95]. This result is established by reducing sorting problem to the

problem of computing s-visibility polygon [Gew95].
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Chapter 3

Star Shaped Polygons with Large

Kernels

In this chapter, we study the development of an efficient algorithm for generating polygons (for

given point sites) that tend to have a large area kernel.

3.1 Preliminaries

Given a set S of n points v0, v1, ..., vn−1, our objective is to construct a star-shaped polygon whose

vertices are exactly the points in S. A very simple method for generating a star-shaped polygon

is to use the technique described in Chapter 2. Specifically, a reference point r0 is picked inside

the convex hull of points in S. All points are angularly sorted to obtain an order list L′. The

vertices are connected in the order implied by L′ to obtain polygon Q. The star-shaped polygon so

constructed admits a region called kernel kr such that any point inside Q is visible from all points

in kr. It is straightforward to observe that the shape of the kernel kr is convex. An example of the

generated polygon, picked reference point, and the admitted kernel is shown in Figure 3.1. One

interesting question arises for picking the reference point. If we pick another reference point, the

admitted kernel will be much larger as shown in Figure 3.2. These observations motivate us to

look for an algorithm that generates a star-shaped polygon that maximizes the area of the implied

kernel. The problem can be formally stated as follows.

13



(a) Given point sites S
(b) Generated polygon, picked reference
point (shown by ’x’) and kernel

Figure 3.1: Illustrating Kernel

Figure 3.2: Another Instance of Kernel

14



Max Kernel Polygon (MK) Problem

Given: A set of points S = {v0, v1, ..., vn−1}

Question: Construct a star-shaped polygon with vertices in S that maximizes the implied kernel.

It is not clear how to pick the reference point. We need to perhaps exploit structural, proxim-

ity, and distribution properties of points in S. A proximity structure widely used in computational

geometry and robotics [O’R87] is the Voronoi diagram induced by the point sites. The Voronoi

diagram of n point sites captures the proximity of point distribution. In fact, the region around

Voronoi vertices tends to be void of point sites. The Voronoi diagram induced by point sites (filled

dots) is shown in Figure 3.3. In order to get some clue about the relationship between Voronoi

Figure 3.3: Illustrating Voronoi Diagram

vertices and family of kernels, we generated all possible kernels implied by the point sites in Figure

3.1a. The superimposition of Voronoi vertices and the family of kernels shows that some kernels

may contain more than one Voronoi vertex and some may not contain any of them. An illustration

of the superimposition is shown in Figure 3.4.

This example implies that the Voronoi vertices do not necessarily capture the position of refer-

ence point for maximizing the kernel area.
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Figure 3.4: Superimposition of Voronoi Vertices and Family of Kernels

3.2 Quadtree Based Searching

We propose to use the quadtree technique introduced by Raphel Finkel and J.L. Bently [FB74].

In this technique, a two-dimensional bounded rectangular region R is orthogonally partitioned into

four ortho-rectangular subregions which we refer as quadruplets. The process of partitioning into

quadruplets proceeds recursively to arrive at a small region of interest. The implied result of this

recursive partitioning is the formation of a quadtree where each internal node has four children.

In our kernel search context, the point of interest occurs when a small region is found that

results in a large kernel. We illustrate this quadtree based kernel search with a running example.

Figure 3.5a shows randomly generated seven-point sites with the smallest enclosing axis parallel

rectangle (drawn by the dashed line). The edges of the resulting polygon implied by the angular

sorting of the point sites are drawn by the solid lines. The corresponding kernel by selecting the

axis point at the center of the bounding rectangle is shown shaded. The algorithm next proceeds

to search for the other kernels in each of the quadruplets inside the current region R. The kernel

corresponding to the north-east sub-region (child) is shown in figure 3.5b. This process is continued

recursively until the region of interest is reached. A sequence of resulting kernels found in this way

are shown in Figure 3.5b - 3.5i. Figure 3.6 shows the quad tree curresponding to Figure 3.5. The

recursive partitioning stops whenever conditions A1 and A2 are satisfied. Based on the working of

the above running example, the kernel searching algorithm can be described as follows.
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The smallest ortho-rectangle R0 enclosing all input vertices is determined. The first candidiate

kernel point is the center c(R0) of R0. The star-shaped polygon and corresponding kernel k(R0) are

computed. Next, R0 is partitioned into four parts (NE, NW, WS, SE) of equal areas. Star-shaped

polygon construction, and the corresponding kernel construction is repeated recursively on each

of the four NE-, NW-, WS-, and SE-parts. The recursion stops when the following condtions are

satisfied.

Sub-condition A1: The height of the quadtree is no more than the pre-determined integer value.

Sub-condition A2: Area of running max kernel must be at least twice the area of the next can-

didate node of the quadtree.A formal sketch of the kernel searching algorithm is listed as Algoritm

1.

Algorithm 1 Kernel Searching Algorithm

1: Input: Point sites P = p0, p1, p2, ..., pn−1
2: Output: Star-shaped polygon S with large kernel
3: Compute enclosing ortho-rectangle R0

4: Find kernel k0 corresponding to R0

5: Q← Empty Queue
6: Push R0 into Q
7: GlobalMaxKer ← k0
8: while Q is not empty do
9: Ri ← Pop node from Q

10: Partition Ri into four children Ri1 , Ri2 , Ri3 , and , Ri4

11: Push those children into Q that satisfy condition A1 and A2
12: Compute kernels ki1 , ki2 , ki3 , and ki4 corresponding to four children
13: MaxKer ← Kernel with maximum area among ki1 , ki2 , ki3 , and ki4
14: if area(MaxKer) > area(GlobalMaxKer) then
15: GlobalMaxKer = MaxKer
16: S ← Ordered vertices corresponding to GlobalMaxKer

Complexity Analysis

The complexity analysis of Algorithm 1 can be done in a straightforward manner. In the while

loop, the dominant step is finding the kernel (step 12). One execution of step 12 can be done in

O(n) time by using the algorithm given in [LPP79]. The while loop executes t times, where t is

the total count of nodes in the quadtree constructed during the recursive partitioning in step 10.

Hence the execution time of algorithm 1 is O(tn).
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3.3 Sensitivity Analysis

Let P (l) denote the polygon that maximizes the kernel as obtained by Algorithm 1. Consider the

polygon P
′
(l) obtained by deleting a reflex vertex from P (l). It can be observed that the kernel of

P
′
(l) is at least as large as kernel of P (l). This is stated in the following lemma.

Lemma 3.1: The polygon P
′
(l) obtained by deleting a reflex vertex from P (l) is such that its

kernel is no less than the kernel of P (l).

Proof : Consider the boundary and the kernel of the polygon P ′(l) as shown in Figure 3.7. With

respect to any point q inside the kernel, the vertices of P ′(l) are angularly sorted in the same order.

By the definition of star-shaped polygon, the deleted vertex v’ is in one of the angular edges formed

by q, vi, and vi+1. We can distinguish the followng two cases.

Case 1: Vertex v’ does not alter the existing reflex vertex or a new reflex vertex is not formed (as

shown in Figure 3.7a). In this situation the kernel of P ′(l) and P (l) are identical.

Case 2: Vertex v’ alters an existing reflex vertex or creates a new reflex vertex (as shown in Figure

3.7b). In this situation, the reflex chord emanating from the new reflex vertex may chop off part

of the kernel. This implies that the kernel of P (l) is a subset of the kernel of P ′(l).

We illustrate this process by an example. Figure 3.8 is a randomly generated star shaped polygon

(with indicated kernel) of 30 vertices. If reflex vertex V10 is deleted, a polygon of 29 vertices with

much larger kernel is found which is shown in Figure 3.9.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Illustrating the QuadTree Based Searching
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Figure 3.6: A QuadTree Corresponding to Figure 3.5

(a) (b)

Figure 3.7: Proof of Lemma 3.1
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Figure 3.8: A Star Shaped Polygon Showing the Most Sensitive Vertex

Figure 3.9: The Polygon After the Removal of the Most Sensitive Vertex
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Chapter 4

Implementation and Experimental

Results

In this chapter we present the implementation of some of the algorithms from chapter 2 and 3. This

includes (i) algorithm for generating random x-monotone polygons, (ii) algorithm for calculating the

kernel of a polygon, (iii) algorithm for generating a polygon with largest kernel, and (iv) algorithm

to find the most sensitive vertex.

4.1 General Principles

We implemented the algorithms in Python programming language. Python is an interpreted, high

level, object-oriented programming language with dynamic type checking. The version of the

Python we used is 2.7. There are a couple of reasons for choosing Python over other programming

languages. First, Python is good at building prototypes in a short period of time. Second, it offers

a plethora of libraries for GUI and scientific computation. Third, it is a platform independent

language which means the same code runs everywhere without any modification to the source code.

For generating a user interface, we used wxPython library. wxPython is a Python wrapper of

wxWidget which is a C++ library for building GUI components. It has built-in support for most of

the GUI components like Buttons, Textboxes, Labels, Menus, Drawing canvas, etc, and has an easy

to understand event handling mechanism. wxPython is a cross-platform and open source library

with a large and active developer community. In addition, it gives a native look and feel to the

application across all the major platforms.

For computing the Voronoi vertices and intersection of halfplanes needed for two of our algo-
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rithms, we used the QHull (http://www.qhull.org) library [BDH96]. QHull provides a fast, efficient

and accurate implementation of many computational geometric algorithms including convex hull,

Voronoi diagram, Delaunay triangulation, and halfspace intersection.

4.1.1 User Interface

As mentioned in section 4.1, we implemented the GUI using the wxPython library. The GUI

allows us to interactively add point sites S and apply the algorithms on S. There is also an option

for generating S randomly for some algorithms. Figure 4.1 shows the layout sketch of the main

application window. It consists of seven container parts: menus, drawing controls, status bar,

program handles, coordinates, results, and drawing canvas.

Figure 4.1: Structure of the Main Window

1. Menus Dropdown menus (”File”, ”Edit”, ”Polygon”, and ”Algorithms”) are on the top of

the window. The ”File” menu has the following operations.
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(a) Open loads the drawing items (points, lines, and texts) onto the drawing canvas.

(b) Save stores the drawing items on a text file.

(c) Export saves the canvas in other file formats. Currently it has options to export in

PNG and xFig file format.

(d) Quit exits the application and returns the control to the calling program.

The ”Edit” menu supports the following operations.

(a) Clear clears the drawing canvas. It clears all the temporary variables and resets the

program.

Next, the ”Polygon” menu offers the following options.

(a) Random x-monotone generates the x-monotone polygon from the point site S ran-

domly. It draws the generated polygon one at a time.

(b) Star shaped polygon generates the star-shaped polygon from the given point site S

and a reference point R. It also computes the kernel K of the generated polygon.

The ”Algorithms” menu supports the following operations.

(a) Voronoi Diagram computes the Voronoi diagram from the point sites S and draws the

diagram on the canvas.

(b) Bucketing generates the star-shaped polygon from the point sites S that has the largest

kernel area using the bucketing algorithm presented in section 3.2.

(c) Convex hull computes and draws the convex hull of the given point sites S using the

Graham scan algorithm.

2. Drawing controls This panel consists of four items. Three of them are the radio buttons:

”Draw Point”, ”Draw Line”, and ”Draw Text”. When the ”Draw Point” is selected, only

points can be drawn on the canvas. Similarly, when ”Draw Line” is selected, only line

segments can be drawn and so on. The last item is a checkbox. When the checkbox is

ticked, we can only edit the existing items on the canvas but cannot draw the item. We can

modify the properties, move the item around the canvas and remove it.

3. Status Bar The left part of the status bar displays the status of the operations we perform

in various colors depending upon whether the operation succeeds or fails. For example, if the
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operation is successful, it displays the message in a green color. Likewise, if the operation fails,

it displays the message in a red color. The right part of the status bar prints the coordinates

of the current mouse position.

4. Program Handles The contents on this panel are dynamic and specific to the algorithm

being executed. It displays options available to the particular algorithm under execution.

5. Coordinates It presents the coordinates of the point sites drawn on the canvas. The coor-

dinates can also be modified by double-clicking the respective coordinate.

6. Results After the computation is successful, the result of the computation are presented in

this panel. It shows the necessary information needed for the computed algorithm.

7. Drawing Canvas The last and the most important part is the drawing canvas. The canvas

allows us to interactively add drawing components, move them around, modify their proper-

ties, and remove them. It currently supports point, line, and text. The point is a filled circle

with a specified radius. These items should be confined to the boundary of the panel. The

implementation does not support the items that are out of the boundary.

Figure 4.2: A Screen Shot of the Main User Interface
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4.1.2 File Format

Our application allows us to export points, lines, and texts to a text file and to import them from

the text file. Even though we save the file in .rpg extension, it is basically a standard text file.

Each line of the file represents an item. The content of the line is separated by spaces. The line

starts with a number that denotes the type of the item.

To save a point, we save its x coordinate, y coordinate, radius, and the color. The color

is represented by RGB value. The line representing point always starts with 1 followed by x-

coordinate, y-coordinate, radius, red value, a green value, and blue value respectively as shown

below.

1 x y Radius Red Green Blue

Similarly, to save a line segment, we save the xy coordinates of both the endpoints, a width of the

line, color, and the style. The style offers two choices: solid and dotted. The line starts with 2

followed by x and y coordinates of one end, x and y coordinates of the other end, width, red value,

green value, a blue value, and style respectively.

2 x1 y1 x2 y2 width Red Green Blue style

Finally, to save the text, we save the x and y coordinates of the starting letter and the actual raw

text. The actual text is stored by replacing space by \w. The line starts with a number 3 followed

by x and y coordinates, and raw text respectively as follows.

3 x y text

The coordinates are integer numbers. Our implementation does not support floating point coordi-

nates. Similarly, the color values must be an integer value between 0 to 255. The style is either 100

or 103; 100 denotes the solid line and 103 denotes the dotted line. A sample output file is given

below.

3 312 485 A1

3 294 277 B2

1 219 202 5 140 154 82

1 452 153 5 0 0 0

1 497 284 5 0 0 0

1 379 410 7 127 0 127
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1 377 271 5 0 0 0

1 268 348 5 0 0 0

1 307 558 5 0 0 0

1 451 528 5 0 0 0

2 175 357 307 144 1 0 0 0 100

2 322 314 569 394 5 251 2 254 103

In addition to the .rpg format, we can export the items in two additional file formats. The first is

the PNG format which is a widely supported image format, and the second is the format that is

required by a graphics editor called xFig.

4.2 Data Structures

In this section, we discuss the data structure that we created to model the drawing components

like point, line segment, polygon, etc.

4.2.1 Drawable Point

Drawable Point is used to model a point/vertex that can be drawn on the canvas. It is a derived class

inherited from the Point data type. It inherits all the mathematical computations and coordinates

from the Point data type and adds new methods so that the point can be shown on the drawing

panel. The class interface diagram of DrawablePoint is shown in Figure 4.3.

4.2.2 Drawable Segment

Drawable Segment models the line segment that can be drawn and shown on the drawing panel. The

DrawableSegment extends from the base class Segment. The base class specifies the coordinates

of the endpoints as instances of the class Point. It also provides methods that are needed to perform

the computations corresponding to the mathematical properties of line segments. The derived class

DrawableSegment derives all these properties and methods from Segment class and provides

additional functionality in order to give it a visual appearance. Figure 4.4 shows the class diagram

of DrawableSegment.
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Figure 4.3: A Class Interface Diagram of DrawablePoint

4.2.3 Polygon

A polygon is represented by an array of points ordered in an anticlockwise fashion. The Polygon

data structure is used to model the polygon. At present, it does not offer the rich set of operations

as in Point and Segment but it can be easily extended to include additional properties. Figure

4.5 shows the class interface diagram of Polygon.

4.2.4 QuadTree

A quadtree is used in the implementation of the algorithm described in Section 3.2. A node in

a quadtree has at most four children. We divide the region of context into four parts recursively

and each part is represented by a child node. This is described in detail in Section 3.2. Figure 4.6

shows the class interface diagram of a node. The first four properties are self-explanatory. They

describe the rectangular region of given height and width with the coordinates of the center. Level

holds the level of the node in the quadtree, the kernel is the kernel area of the star-shaped polygon

taking the reference point at (x, y), and children holds the four child nodes.
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Figure 4.4: A Class Interface Diagram of Drawable Segment

4.3 Implementation of Random Generation of x-Monotone Polygon

We implemented the random generation of an x-monotone polygon discussed in Section 2.2. The x-

monotone polygon is a combination of top and bottom monotone chains. We store top and bottom

chains on separate linked lists and combine them to make a polygon afterward.

The first phase of the implementation is the counting. We count how many x-monotone polygons

can be generated with a given set of vertices. We start by computing the above-visible (VT ) and

below-visible (VB) sets. We use a brute-force approach to find these sets even though a much more

efficient approach exists to do the same as described in [ZSSM96]. Once we have VT and VB, we

can calculate TN and BN by calling the method calc TN and BN as given in Listing 4.1.
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Figure 4.5: A Class Interface Diagram of Polygon

Figure 4.6: A Class Interface Diagram of Node

30



def calc TN and BN (n)

TN[ 1 ] = 1

BN[ 1 ] = 1

for i in range (2 , n + 1 ) :

TN[ i ] = 0

BN[ i ] = 0

for j in VB[ i ] :

TN[ i ] += BN[ j + 1 ]

for j in VT[ i ] :

BN[ i ] += TN[ j + 1 ]

Listing 4.1: A Python Program to Compute the Set TN and BN

The total number of polygons generated is the sum of TN(n) and BN(n), where n is the index of

the rightmost vertex. The second phase of the implementation is the generation of the polygons.

We generate the top chain and the bottom chain separately and combine them to generate the final

monotone polygon. The algorithm generates one polygon at a time based on the random number

picked between 1 and n. The Python implementation is given in the Listing 4.2. The total number

of polygons generated is the sum of TN(n) and BN(n), where n is the index of the rightmost

vertex.
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def generate ( ) :

# t o t a l number o f po lygons t ha t can be genera ted

N = BN[ n ] + TN[ n ]

# pick random number between 1 and N

x = random . rand int (1 , N)

# the r i g h t most po in t shou ld be both in

# top chain and bottom chain

top cha in . append ( po in t s [ n ] )

bottom chain . append ( po in t s [ n ] )

# genera te top and bottom chain

i f x <= TN[ n ] :

top cha in . append ( po in t s [ n − 1 ] )

gene ra t e top (n , x )

else :

x = x − TN[ n ]

bottom chain . append ( po in t s [ n − 1 ] )

generate bottom (n , x )

# in s e r t the l e f t most po in t in both the chain

# i f i t i s not a l r eady the r e .

i f top cha in [−1] != po in t s [ 0 ] :

top cha in . append ( po in t s [ 0 ] )

i f bottom chain [−1] != po in t s [ 0 ] :

bottom chain . append ( po in t s [ 0 ] )

Listing 4.2: A Python Program to Generate the x-Monotone Polygon

Figure 4.7 shows the x-monotone polygon with 50 vertices generated using the implementation

discussed above.
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Figure 4.7: A x-Monotone Polygon with 50 Vertices

4.4 Finding the Kernel of a Polygon

Two of the algorithms discussed in Chapter 3 need the area of the kernel. Before finding the area,

we need to first find the kernel itself. Using the fact that a kernel is a convex polygon, we can then

use the Shoelace formula [Wik19] given below to find the area.

A =
1

2

∣∣∣∣∣
n−1∑
i=1

xiyi+1 + xny1 −
n−1∑
i=1

xi+1yi − x1yn

∣∣∣∣∣
Where, (x0, y0), (x1, y1), ..., (xn−1, yn−1) are the coordinates of the vertices ordered in an anti-

clockwise direction.

A kernel of a star-shaped polygon can be calculated in O(n) time using the approach proposed

by Lee et al. [LPP79]. We followed a different approach where the kernel is calculated by computing

the intersection of half-planes. We used the method HalfspaceIntersection provided by the Qhull

library. This method requires two parameters: one is the equations of all the half-planes and another

33



is a reference point R. Given two vertices V1(x1, y1) and V2(x2, y2), the equation of the half-plane

passing through these points is,

Ax1 + By1 + C = 0 Where, A = −(y2 − y1) and B = x2 − x1

In a computer program, we represent the half plane by the list [A, B, C]. Listing 4.3 shows the

Python program that computes the kernel.

def compute kerne l ( po ints , r e f p o i n t ) :

# angu l a r l y s o r t the po in t wrt the r e f e r ence po in t

s p o i n t s = a n g u l a r s o r t ( po ints , r e f p o i n t )

# s to r e the c o e f f i c i e n t s A, B, C fo r a l l the h a l f p l a n e s

c o e f f s = [ ]

for i in range ( len ( s p o i n t s ) ) :

p1 = s p o i n t s [ i ]

p2 = s p o i n t s [ ( i + 1) % len ( s p o i n t s ) ]

# ca l c u l a t e A, B and C

a = −(p2 . y − p1 . y )

b = p2 . x − p1 . x

c = −(a ∗ p1 . x + b ∗ p1 . y )

c o e f f s . append ( [ a , b , c ] )

h a l f s p a c e s = np . array ( c o e f f s )

# compute the i n t e r s e c t i o n o f h a l f p l a n e s

hs = H a l f s p a c e I n t e r s e c t i o n ( ha l f space s , np . array ( [ f loat ( r e f p o i n t . x )

, f loat ( r e f p o i n t . y ) ] ) )

ke rne l po lygon = hs . i n t e r s e c t i o n s . t o l i s t ( )

# angulary s o r t the k e rne l v e r t i c e s again

ke rne l po lygon = a n g u l a r s o r t ( kerne l po lygon , r e f p o i n t )

Listing 4.3: A Python Program to Compute the Kernel of a Star-Shaped Polygon

The vertices need to be angularly sorted with respect to the reference point R before finding the

coefficients A, B, and C. The method HalfspaceIntersection returns the vertices of the kernel.
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These vertices should be sorted angularly with respect to R in order to get the correct polygon.

The Python implementation of the Shoelace formula is given in Listing 4.4.

def po ly a r ea ( v e r t i c e s ) :

psum = 0

nsum = 0

for i in range ( len ( v e r t i c e s ) ) :

s index = ( i + 1) % len ( v e r t i c e s )

prod = v e r t i c e s [ i ] . x ∗ v e r t i c e s [ s index ] . y

psum += prod

for i in range ( len ( v e r t i c e s ) ) :

s index = ( i + 1) % len ( v e r t i c e s )

prod = v e r t i c e s [ s index ] . x ∗ v e r t i c e s [ i ] . y

nsum += prod

return int (abs (1/2∗ (psum − nsum) ) )

Listing 4.4: A Python Program to Find the Area of a Polygon

Figure 4.8 shows an example of output of the implementation. The boundary of the halfplanes are

shown by the dotted lines and the reference point is shown by a red circle.

4.5 Implementation of QuadTree Based Searching

We implemented the quadtree-based searching described in Section 3.2. In this approach, we draw

the smallest iso-rectangle enclosing the point sites and find the center point M of the rectangular

region. We compute the midpoint M(xmid, ymid) of the rectangular region as follows.

xmid = (xlow + xhigh)/2

ymid = (ylow + yhigh)/2

Where, xlow is the x-coordinate of the left-most point, xhigh is the x-coordinate of the right-most

point, ylow is the y-coordinate of the top-most point and yhigh is the y-coordinate of the bottom-

most point. We take the midpoint M as a reference point and compute the kernel of the resulting
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Figure 4.8: A Star-Shaped Polygon with the Kernel Computed by Our Implementation

star-shaped polygon. The rectangular region is divided into four equal small rectangular regions

and we repeat the same process recursively in all of them updating the largest kernel every time

we find one. Each rectangular region acts as a node of the quadtree and has four child nodes. As

mentioned in section 4.2.4, the node has seven properties. The Python implementation of a node

is given in listing 4.5.
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class Node ( ) :

def i n i t ( s e l f , x0 , y0 , w, h , l e v e l , handle ) :

s e l f . x0 = x0 # x mid

s e l f . y0 = y0 # y mid

s e l f . width = w # width o f the r e c t angu l a r reg ion

s e l f . he ight = h # he i g h t o f the r e c t angu l a r reg ion

s e l f . l e v e l = l e v e l # l e v e l o f the node

s e l f . handle = handle # handle f o r computing the k e rne l

s e l f . k e rne l = s e l f . handle . compute kerne l ( ) # compute k e rne l

t a k ing ( x0 , y0 ) as a r e f po in t

s e l f . c h i l d r e n = [ ] # ch i l d nodes

Listing 4.5: A Python Class That Models the Node Data Type

The partitioning follows the breadth-first order i.e. we compute the kernel on the sibling nodes

before going to the child nodes. We use the queue data structure from the python Queue library.

Every time we pop a node, we push its child nodes into the queue. This process goes on as long as

the queue is not empty. The method subdivide which finds the largest kernel by partitioning the

rectangle is given in Listing 4.6.
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def subd iv ide ( node , k , max kernel , handle ) :

queue = Queue . Queue (0 )

queue . put ( node )

while (not queue . empty ( ) ) :

node = queue . get ( )=

i f max kernel [ 1 ] < node . k e rne l [ 1 ] :

max kernel [ 0 ] = node . k e rne l [ 0 ]

max kernel [ 1 ] = node . k e rne l [ 1 ]

max kernel [ 2 ] = node . k e rne l [ 2 ]

max kernel [ 3 ] = node . k e rne l [ 3 ]

i f max kernel [ 1 ] < 2 ∗ node . width ∗ node . he ight :

w = f loat ( node . width /2)

h = f loat ( node . he ight /2)

# Top− l e f t reg ion

x1 = Node ( node . x0 − w /2 , node . y0 − h /2 , w , h , node .

l e v e l + 1 , handle )

queue . put ( x1 )

# Top−r i g h t reg ion

x2 = Node ( node . x0 + w /2 , node . y0 − h /2 , w , h , node .

l e v e l + 1 , handle )

queue . put ( x2 )

# buttom− l e f t reg ion

x3 = Node ( node . x0 − w /2 , node . y0 + h /2 , w , h , node .

l e v e l + 1 , handle )

queue . put ( x3 )

# buttom−r i g h t reg ion

x4 = Node ( node . x0 + w /2 , node . y0 + h /2 , w , h , node .

l e v e l + 1 , handle )

queue . put ( x4 )

node . c h i l d r e n = [ x1 , x2 , x3 , x4 ]

Listing 4.6: A Python Program that Finds the Largest Kernel
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The result of the implementation for four randomly generated point sites with size 10, 20, 30, and

40 are given in Figure 4.9. The grids in the figures are the partitioning of the region produced by

the implementation.

(a) (b)

(c)

(d)

Figure 4.9: The Star Shaped Polygons with Largest Kernel Produced by Our Implementation

We did some experiments with the largest kernel for a given set of points. We randomly

generated points and computed the area of the maximum kernel, a ratio of the area of the maximum

kernel to the area of the generated polygon, the type of the kernel whether it is floating (F) or a
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Figure 4.10: Change in Ratio of Kernel Area to Polygon Area with respect to the Change in Number
of Vertices

boundary (B) kernels and the height of the QuadTree. Table 4.1 shows the result of the experiment.

As we see in the table, the size of the kernel decreases with the increase in the number of point

sites provided the area on which the point sites lie remain the same. The graph in Figure 4.10

illustrates this where we plot the number of vertices in x-axis and ratio of kernel area to polygon

area in y-axis. We also notice that the height of the tree increases as the ratio decreases. This

is an expected behaviour as the kernel size tends to decrease with the increase in height. This is

illustrated in Figure 4.11. Another thing we notice from the table is the type of the kernel. The

kernel tends to become floating a kernel as the number of point sites grow.

4.6 Finding the Most Sensitive Vertex

We introduced the concept of the most sensitive vertex in Section 3.3. In this section, we discuss

the implementation. Once we have a polygon P with the largest kernel, we perfom the following

steps to find the most sensitive vertex.

1. Pick the left-most vertex v0.

2. Remove v0, join the anti-clockwise neighbour v−1 and clockwise neightbour v1 of v0 to make

the polygon P1.
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Figure 4.11: Change in Height of QuadTree with respect to the Change in Ratio of Kernel Area to
Polygon Area

3. Find the kernel of P1 and the area (A0) of the kernel.

4. Store the area A0 and the vertex v0 temporarily.

5. Put back v0 in P1 to get the original polygon P .

6. Pick the next clockwise vertex of v0 and repeat steps 2 - 5. Continue this until all the vertices

have been processed.

7. Find the maximum area Amax = max(A0, A1, ..., An−1). The corresponding vertex is the most

sensitive vertex.
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No of vertices Set Kernel area (sq. unit) Ratio Type of Kernel Height

20

Set 1 6573 0.027 B 4
Set 2 9279 0.039 B 4
Set 3 11202 0.037 F 3
Set 4 25147 0.080 B 3
Set 5 11181 0.056 F 3

30

Set 1 2862 0.009 F 4
Set 2 5891 0.014 F 4
Set 3 5932 0.022 F 4
Set 4 7260 0.025 F 4
Set 5 3549 0.012 B 4

40

Set 1 1525 0.0059 F 5
Set 2 955 0.0040 F 5
Set 3 1272 0.0053 F 5
Set 4 1570 0.0047 F 5
Set 5 1535 0.0051 F 5

50

Set 1 489 0.0016 B 6
Set 2 337 0.0014 F 6
Set 3 536 0.0017 F 6
Set 4 780 0.0034 F 5
Set 5 575 0.0018 F 6

60

Set 1 446 0.0015 F 6
Set 2 342 0.0013 F 6
Set 3 301 0.0019 F 6
Set 4 613 0.0019 F 6
Set 5 570 0.0020 F 6

70

Set 1 267 0.00089 F 6
Set 2 146 0.00049 F 7
Set 3 135 0.00052 F 7
Set 4 145 0.00043 F 7
Set 5 175 0.00060 F 6

80

Set 1 179 0.00065 F 6
Set 2 130 0.00039 F 7
Set 3 140 0.00048 F 7
Set 4 68 0.00027 F 7
Set 5 105 0.00037 F 7

90

Set 1 56 0.00022 F 7
Set 2 167 0.00042 F 6
Set 3 62 0.00020 F 7
Set 4 64 0.00025 F 7
Set 5 149 0.00057 F 7

100

Set 1 71 0.00024 F 7
Set 2 63 0.00022 F 7
Set 3 61 0.00020 F 7
Set 4 54 0.00021 F 7
Set 5 31 0.00012 F 8

Table 4.1: The Result of the Experiemnt with the Largest Kernels for a Given Set of Vertices
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The corresponding python implementation is given in Listing 4.7.

max area = handle . compute kerne l ( )

temp points = copy . deepcopy ( po in t s )

max v = po in t s [ 0 ]

for i in range ( len ( po in t s ) ) :

del temp points [ i ]

area = ssp . compute kerne l ( po in t s = temp points )

i f area > max area :

max area = area

max v = po in t s [ i ]

temp points = copy . deepcopy ( po in t s )

Listing 4.7: A Python Program to Find the Most Sensitive Vertex

Figure 4.12 shows the execution of our implementation before and after the removal of the most

sensitive vertex.

Figure 4.12 shows that we can increase the area of the kernel significantly by just removing a

single vertex. We did an experiment with randomly generated star-shaped polygons with largest

kernel. We removed the most sensitive vertex and noted the percentage change in the kernel. Table

4.2 shows this result along with the type of vertex and type of the kernel.
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No of vertices Set Before After Change Vertex Type

10

Set 1 252203 273535 +8% Reflex

Set 2 122608 158255 +29% Reflex

Set 3 261508 381782 +46% Reflex

Set 4 27563 543784 +97% Reflex

Set 5 43766 207916 +375% Reflex

20

Set 1 20955 33182 +58% Convex

Set 2 31595 43368 +38% Reflex

Set 3 16233 31166 +92% Reflex

Set 4 9270 11908 +28% Convex

Set 5 12497 26478 +112% Convex

30

Set 1 4496 9289 +107% Reflex

Set 2 3898 5130 +32% Reflex

Set 3 6230 8563 +37% Reflex

Set 4 1777 2444 +38% Convex

Set 5 1657 3845 +132% Reflex

40

Set 1 905 1355 +50% Reflex

Set 2 1010 1693 +68% Reflex

Set 3 1104 2307 +109% Reflex

Set 4 1978 3437 +74% Convex

Set 5 1882 3957 +110% Convex

Table 4.2: Percentage Change in the Area of the Kernel with the Removal of the Most Sensitive
Vertex.

44



(a) (b)

Figure 4.12: Illustrating the Most Sensitive Vertex (a) The Kernel Before the Removal of Most
Sensitive Vertex and (b) The Kernel After the Removal.
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Chapter 5

Conclusion

We summarized a critical review of existing algorithms for random generation of polygonal shapes.

We also reviewed algorithms related to visibility properties (particularly kernel counting and detec-

tion) of simple polygons. We proposed an algorithm for generating random polygons that tend to

have large size kernels. The algorithm for generating such polygons is based on quad-tree searching.

We performed a thorough experimental investigation of an algorithm for generating kernel-

aware random polygons. As expected the size of the kernel decreases as the number of vertices

increases. This is depicted in Table 4.1 and Figure 4.10. We tried to use the Voronoi Diagram to

look for the position of a large-size kernel. It appears that the Voronoi diagram is not capable of

computing the large-size kernel positions. But this issue needs further investigation. For certain

distributions of input nodes, the Voronoi diagram may be able to spot large-size kernel positions.

this is an interesting question for further work.

The proposed quad-tree based algorithm stops after reaching a certain value for the height of

the implied quad-tree. How to pick the bound for such height is an important question in itself.

In our experimental investigation, the algorithm stops after reaching the height in the range 6 - 8.

How to determine this stopping height range is a very critical question which also needs further

exploration.

An important related question is the selection of a sub-set Q of input node set S such that the

corresponding polygon has large size kernel. One possible way of selecting such sub-set is using the

convex layers of S. We recursively find the convex hull of S as illustrated in Figure 5.1. We can

use the following greedy strategy to remove the layers.

1. Remove the innermost layer l1 from S and compute the largest kernel K1 on the remaining
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points.

2. Put l1 back in S. Remove the next layer in an outward direction and repeat the same process.

3. Remove the layer li corresponding to the maximum value of Ki from S to get Q.

We can use the above strategy multiple times to remove more than one layer.

(a) (b)

Figure 5.1: Illustration of Convex Layers (a) Given set of points S and (b) Corresponding Convex
Layers
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