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Abstract 

As computers become larger, more powerful, and more connected, many challenges arise 

in implementing and maintaining a secure computing environment. Some of the challenges come 

from the exponential increase of unstructured messages generated by the computer systems and 

applications. Although these data contain a wealth of information that is useful for advanced threat 

detection and prediction for future anomalies, the sheer volume, variety, and complexity of data 

make it difficult for even well-trained analysts to extract the right information. While conventional 

SIEM (Security Information and Event Management) tools provide some capability to collect, 

correlate, and detect certain events from structured messages, their rule-based correlation and 

detection algorithms fall short in utilizing information in unstructured messages.  This study 

explores the possibility of utilizing techniques for text mining, natural language processing, and 

machine learning to detect security threat by extracting relevant information from various 

unstructured log messages collected from distributed non-homogeneous systems. The extracted 

features are used to run a number of experiments on the Packet Clearing House SKAION 2006 

IARPA Dataset, and the performance of prediction is evaluated. In comparison to the base case 

without feature extraction, an average of 16.73% of accumulated performance gain and 84% of 

time reduction was achieved using extracted features only, while a 23.48% performance gain with 

82.39% of time increase was attained using both unstructured free-text messages and extracted 

features. The results display strong potential for further increase in performance by using larger 

size of training sets and extracting more features from the unstructured log messages.     
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Chapter 1. Introduction 

 Security Information and Event Management (SIEM) 

The term Security Information and Event Management (SIEM) is fairly generic, and 

seemingly referencing any technology or practice that aims to manage any information and events 

related to information security. However, in our current security technology landscape, this term 

commonly refers to one specific type of technology whose main functions are to collect, store, 

search and correlate system-generated log messages. System-generated log messages here refer to 

the messages generated by a machine in a human-readable format, in order to support maintenance, 

trouble-shooting, surveillance, or audit activities.  

The functions of SIEM become essential in an architecture where applications are 

distributed among many specialized devices. In the architecture of the earlier computing era, where 

there was one central computer and many consoles connected to it, almost all important messages 

were logged centrally and the administrator could easily find all the sequences of transactions in 

one log repository in that central computer. However, this is not the case in most computing 

environments today. For example, to support one small commercial web application, we usually 

provision at minimum two webservers, one to two application server(s), and two database servers 

for redundancy and load balancing. Besides servers, there would be a few desktops or laptops and 

wireless devices connected to the system, along with several switches, firewalls, and routers to 

connect them all. If all these devices generated logs that are meant to be used for support, 

maintenance, security, or audit, and stored them locally, we can easily see the inefficiencies 

involved with accessing each device individually and digging for the right information. We can 
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also imagine what it might be like to run a few hundreds or thousands of devices connected in a 

large computing environment.  

The amount of messages generated is also an important justification for SIEM. The devices 

in our connected environment today tend to be small but very chatty, because many applications 

running on these devices need to log additional inter-device communications. This log verbosity 

could be adjusted for some logs, but not all. For example, many financial transaction logs are 

required to be generated at a level that can provide complete audit traces of an auditable transaction 

and must be stored for many years for compliance reasons. With limited memory and storage in 

these devices, it makes sense to store only small portions of recent logs locally and send the 

majority to a central location for storage and archiving. 

The most popular justification for SIEM has to do with the concept of correlating logs that 

are collected from many dispersed devices in order to detect events that are normally unnoticeable 

if each log is checked separately. This is the reason SIEM has “Security” in its name, rather than 

being called a simple log management system. This function is a powerful tool in a security-

sensitive context, where an adversary often “moves around” different devices attempting to gain 

unauthorized access in multiple different ways or compromises a series of devices in order to reach 

a target. 

Figure 1 shows the typical SIEM architecture, where the remote log collectors or local log 

agents collect logs and send them to a central log repository. The log search and correlation engine 

provides search, correlation, detection, alert services for the administrator/operator. 
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 Limitations of Current SIEM Technology  

Although event detection is the most unique and powerful function of SIEM systems for 

security [27], in many cases, it is largely under-utilized [39]. The most obvious cause for this lack 

of implementation is the high cost associated with utilizing correlation and detection features with 

sufficiently high accuracy and specificity for security operations. This high cost is caused by 

indirect causes such as complexity and inflexibility of rule-based detection strategies, and 

deterministic parsing schemes in which  only certain logs that follow a specific logging protocol 

are understood.  

The complexity of detection rules stems from the rule-based correlation/detection strategy 

employed by most traditional SIEM systems. The correlation/detection rules are pre-configured 

based on knowledge of previous attacks and their log traces. We will illustrate this through the 

following example: One very common rule accompanying most SIEM systems is “to create an 

Log Collection 
Service

Log Repository

Administrator

Devices

Servers

Remote Log 
Collector

Local Log 
Agent

Log Search  
& Correlation 

Engine

 
 

[Listing 1] Windows Event Log Entry - Example 

[Figure 1] SIEM Architecture - Example 
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alert if there is a successful login after some number of consecutive failed login attempts.” This 

rule is intended to detect a password-guessing or brute-force attack and when active, triggers an 

alarm for an operator to investigate further. The limit for failed login attempts, the time window 

for “consecutiveness,” and some other parameters need to be configured by the administrator. This 

sounds simple enough if we have a few machines in one location. But if we have a few thousand 

machines across the globe that are used by people with a diverse range of technical abilities, this 

problem becomes much more complex. First, we must decide which devices should have this rule 

active and determine the number of average failed login attempts for normal usage on each of these 

devices. Due to the fact that most organizations do not have this type of information on hand, the 

system must first be run for a period of time using default values. During this tuning period, the 

operator is required t to investigate each alert generated by this rule and label it as normal or 

malicious. When this tuning period ends, all alerts generated by the rule must be analyzed, 

thresholds must be adjusted, and the tuning process needs to be repeated. This tuning process is 

not completed until nearly all alerts triggered by this rule are indeed malicious. If all this effort is 

required for one rule, then we can imagine the effort required for a few hundred rules and the 

thousands of alerts generated by them.  

Another limitation of rule-based detection is the fact that it is not adaptable. As new threats 

and attack tactics are discovered, SIEM rules also need to be updated to detect these new threats. 

Unlike anti-viruses where the new signatures can be injected remotely to all instances, SIEM’s 

rules are heavily dependent on the environment’s architecture and the applications existing within 

it. For the rule “successful login after a number of unsuccessful attempts” in the previous example 

to work, the device needed to run the Windows O/S and a member of a Windows domain. If we 

want to correlate the rule with logs from Ubuntu Linux servers, then a number of custom rules 
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must be written. If we added a few more Solaris Linux servers into the environment, the custom 

rules may need to be further re-written, tested and tuned. The larger the organization, the more 

changes occur daily - new users are added, devices are removed, traffic is rerouted, and vendors 

come and go. These changes require almost constant reconfiguration and adjustment of the SIEM 

rules in order to maintain effective operations. 

The second reason for the under-utilization of the log correlation functionality of SIEM is 

deterministic parsing schemes. Parsing is the process by which SIEM systems read log entries and 

populate  databases, so that the database can then be queried by the rules. Since the parser needs 

to understand different parts of log entries, a specific parser is used for a specific logging protocol. 

Popular logging protocols such as SNMP, Syslog, or Windows Event Logs are processed through 

SNMP parsers, Syslog parsers, etc. The contents of less common or less structured logs such as 

many application logs are largely ignored and stored as free-text content with some meta-data only. 

In order to parse an unstructured or uncommon log properly, a custom parser must be developed. 

In order to use the data stored by the custom parser, new database structures, new queries, and/or 

new correlation rules also need to be developed. The complexity and inflexibility of these 

processes drive up the cost for fully utilizing the SIEM’s log correlation function. 

 Unstructured Messages and Hidden Information  

Unstructured messages are free-text contents in log entries that are generated by software. 

These are actual messages to the reader regarding the status of the program which were written by 

the programmers and included as useful information for the users and administrators of the system.   



6 

 

For example, in a Windows Event Log Entry message in Listing 1 below, the unstructured 

message is the grey-highlighted portion starting from “The IP address...” It is not difficult to see 

that this section contains vital information that is relevant to the error. The structured parts are 

meta-data added by the Windows Event Log framework, such as “Error,” “3/10/2011 2:29:01 PM” 

above.  In most current SIEM implementations, the correlation/detection rules only utilize the 

structured parts of the log entry such as the time, source, and event type, and ignore most 

information stored in the unstructured message. This is due to the SIEM vendor’s preference to 

develop rules that work out-of-box in almost all instances. If a rule uses only meta-data, it is almost 

guaranteed to work with any logs using Windows Event Log facilities, which avoids the high cost 

associated with customization.  

This approach, however, puts a significant limitation on what we can do with the 

information stored in the log for obvious reasons. In the given example, all we can work with is 

the information that at 1:29:01 PM, the Microsoft-Windows-Dhcp-Client has an error with Event 

ID 1002-Address Configuration State Event. We cannot use the information in the unstructured 

part, such as the IP addresses, MAC addresses, or the error code from the DHCP Server.  

The difficulty of parsing unstructured messages comes from the fact that they are at least 

partially written in natural language. These phrases are formed by the human developers of the 

program in order to communicate with the human users of the system. Therefore, the challenges 

Error 3/10/2011 2:29:01 PM Microsoft-Windows-Dhcp-Client 1002 Address 

Configuration State Event The IP address lease 10.18.25.108 for the 

Network Card with network address 0x801934C9D8E9 has been denied by the DHCP 

server 10.5.18.11 (The DHCP Server sent a DHCPNACK message). 

 
[Listing 2] Windows Event Log Entry - Example 
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regarding the automatic processing of logging messages also partially involve natural language 

processing.   

 Research Objectives and Contributions  

This research explores the possibility of harnessing recent developments in machine 

learning in order to exploit the hidden information within unstructured messages to detect events. 

This is to augment the limitations of current SIEM technology and the experiment results would 

contribute the improvement of limitations mentioned above. For example, if the detection rules are 

automatically generated through supervised or unsupervised learning and can be self-adjusted to 

changes in the environment, then the time-consuming process of initial configuration and 

subsequent updates can be minimized. Also, if there is a generic parser that can recognize and 

understand key information in uncommon or unstructured logs through the techniques of text 

mining and natural language processing, the task of custom parser development for such logs could 

be reduced to the simple task of training the parser with the sample logs of the environment. These 

two improvements, if properly implemented, would eliminate a large portion of manual coding 

and tuning, resulting in increased accuracy and a reduced cost.  

Moreover, we believe this approach has the benefit of pushing the limits of the traditional 

SIEM by utilizing information that is currently ignored. We hope that the extra information will 

not only improve the performance of SIEM, but also be able to detect events that were previously 

impossible to notice due to a lack of information. There is also the  potential to be able to detect 

anomalies which were previously unseen by means of pattern recognition and auto-tuning. 

Nevertheless, it should be emphasized that this study alone in no way resolves all the 

problems and improvements discussed above, nor does it provide an alternative solution to the 
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current SIEM. This study is a preliminary step towards using machine learning in order to take 

advantage of information that is already collected by SIEM and aims to gauge its feasibility and 

future directions.  

  Similar Works 

One early effort for unstructured log analysis was done by Qiang Fu et al.  [1]. In this paper, 

Fu et al. introduced an algorithm to detect execution anomalies through unstructured logs of 

Hadoop and SILK. The main difference of this study from ours is that Fu et al. used  regular 

expression to extract specific “log keys” which are predefined based on specific applications. That 

is, the information extractor already knows what to search for. On the other hand, our approach 

focuses on extracting “all relevant information” for detection from any unstructured log using 

natural language processing. This generality is the key concept of our research.  

Wei Xu et. al also presented an application of using data mining and statistical learning 

methods to detect abnormal execution traces from console logs [2]. In this paper, the authors 

present the method of using frequent pattern mining and distribution estimation techniques to 

discover a dominant pattern, and then, use principal component analysis for anomaly detection. 

An unusual approach of this work is that the authors suggested the analysis of source code to 

eliminate the uncertainty inherent in parsing application logs. Although this method will give 

highly accurate results in unstructured log analysis, it is not easily adopted to general cases where 

the log analyzer does not have access to the source code. 

Azodi et al. presents a method to improve IDS/SIEM performance by detecting the input 

log type and format using regular expression and normalizing log entries [3]. The philosophy 

behind this approach is very similar to ours. The difference is that their normalized logs are still 
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fed into rule-based detection, whereas we are exploring the use of machine-learning detection, in 

a more concerted effort towards a generic parser and detector.  

Many other studies related to more specific topics are discussed in the different sections of 

this report. 
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Chapter 2. SKAION 2006 IARPA Dataset 

 Description 

The dataset used for the experiments is from the Packet Clearing House SKAION 2006 

IARPA Dataset1 [4, 5]. This dataset consists of various logs and network traces captured from a 

simulated network environment, where benign user activities and malicious attacks are emulated 

by computer programs [4]. The malicious attacks are of various levels of sophistication ranging 

from a simple CGI Overflow to attacks involving email phishing [5]. The dataset also includes 

data related to the normal level of background activities, including probing and unsuccessful attack 

attempts. The distribution of these background activities are statistically modeled after the traffic 

observed at the Air Force Research Laboratory [4]. 

The total size of the dataset is 119.2 TB, and a large portion of it contains network traffic 

traces. For this research, approximately 15 GB of text data from release 4 is used. The data for this 

study consists mainly of logs collected from 136 sources for different attack scenarios and 

background traffic. Listings 2-6 are examples of raw logs (IP addresses are replaced with random 

strings). 

                                                
1 Support for the Packet Clearing House SKAION 2006 IARPA Dataset is provided by the U.S. Department of 

Homeland Security, Science and Technology Directorate, PREDICT project. 

Thu Sep 22 14:27:41 2005 1 XXX.XXX.XXX.XXX 18 495489 

/var/ftp/ftp.sgc.osis.gov/pub/foia/txt/ERKS.pdf b _ o a res@XXX.XXX.XXX.XXX ftp 0 * c 

Thu Sep 22 14:28:16 2005 1 XXX.XXX.XXX.XXX 495489 

/var/ftp/ftp.sgc.osis.gov/pub/foia/txt/ERKS.pdf b _ o a res@XXX.XXX.XXX.XXX ftp 0 * c 

Thu Sep 22 14:28:54 2005 1 XXX.XXX.XXX.XXX 1491 

/var/ftp/ftp.sgc.osis.gov/pub/foia/graphics/stars.jpg b _ o a res@XXX.XXX.XXX.XXX ftp 0 * c 

[Listing 3] FTP Log 
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[Listing 4] UNIX Log 

 

[Listing 4] Web Access Log 

Sep 22 15:05:51 www kernel: NETDEV WATCHDOG: eth1: transmit timed out 

Sep 22 15:05:51 www kernel: eth1: Transmit timed out, status 0000, PHY status 786d, resetting... 

Sep 22 15:06:23 www kernel: NETDEV WATCHDOG: eth1: transmit timed out 

Sep 22 15:06:23 www kernel: eth1: Transmit timed out, status 0000, PHY status 786d, resetting... 

Sep 22 15:06:27 www kernel: NETDEV WATCHDOG: eth1: transmit timed out 

Sep 22 15:06:27 www kernel: eth1: Transmit timed out, status 0000, PHY status 786d, resetting... 

Sep 22 15:06:31 www kernel: NETDEV WATCHDOG: eth1: transmit timed out 

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:39:41 -0400] "GET / HTTP/1.1" 304 - "-" "Mozilla/4.0 

(compatible; MSIE 5.01; Windows NT 5.0)" 

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:40:32 -0400] "GET /180.html HTTP/1.1" 200 3558 "-" "TGS Web 

Bot" 

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:40:32 -0400] "GET /0010.jpg HTTP/1.1" 200 5310 "-" "TGS Web 

Bot" 

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:45:41 -0400] "GET /100.html HTTP/1.1" 200 3004 "-" 

"Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)" 

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:45:55 -0400] "GET /1320.html HTTP/1.1" 200 3054 "-" "TGS 

Web Bot" 

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:45:55 -0400] "GET /0044.jpg HTTP/1.1" 200 4249 "-" "TGS Web 

Bot" 

[Listing 5] Windows Log 

[**] [104:3:1] Spade: Non-live dest used: local dest, est. flags: 1.0000 [**] 

09/22-14:26:20.871503 XXX.XXX.XXX.XXX:52734 -> YYY.YYY.YYY.YYY:80 

TCP TTL:114 TOS:0x0 ID:37695 IpLen:20 DgmLen:40 

***A**** Seq: 0x23BFAB1E  Ack: 0xC0FFAB1E  Win: 0x400  TcpLen: 20 

 

[**] [104:3:1] Spade: Non-live dest used: non-err icmp, local dest: 1.0000 [**] 

09/22-14:26:26.885387 XXX.XXX.XXX.XXX -> YYY.YYY.YYY.YYY 

ICMP TTL:114 TOS:0x0 ID:33547 IpLen:20 DgmLen:28 

Type:8  Code:0  ID:63603   Seq:44542  ECHO 

[Listing 6] Snort Alert 

8/6/2005 4:57:00 AM 4 0 420 NNTPSVC N/A HOST23 Pickup Directory 

Status Report.  In the last 60 minutes, the pickup directory for   virtual server 1 has 

successfully received 0 articles.       

8/6/2005 5:36:26 AM 2 0 8021 BROWSER N/A HOST23 The browser was 

unable to retrieve a list of servers from the browser master \\OSIRIS on the network 

\Device\NetBT_Tcpip_{78BEE437-352C-477E-9372-546DF7B52119}.  The data is the error code.   

8/6/2005 5:57:00 AM 4 0 421 NNTPSVC N/A HOST23 Post Status Report.  

In the last 60 minutes, the virtual server 1   has successfully received 0 posts.     

8/6/2005 5:57:00 AM 4 0 420 NNTPSVC N/A HOST23 Pickup Directory 

Status Report.  In the last 60 minutes, the pickup directory for   virtual server 1 has 

successfully received 0 articles.       

8/6/2005 6:52:39 AM 2 0 8021 BROWSER N/A HOST23 The browser was 

unable to retrieve a list of servers from the browser master \\ HOST23 on the network 

\Device\NetBT_Tcpip_{78BEE437-352C-477E-9372-546DF7B52119}.  The data is the error code.   

8/6/2005 6:57:00 AM 4 0 421 NNTPSVC N/A C-HOST3 Post Status Report.  

In the last 60 minutes, the virtual server 1   has successfully received 0 posts.     
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 Attack Scenarios 

Release 4 includes data from ten different attack scenarios. Since the logs included for each 

scenario are not consistent for all scenarios, only the following five shown in Table 1 were included 

in this study.  

Attack ID Scenario 
Background 

Attack Scale 
Description 

4s1 CGI Overflow 50% 
Attacker passes an overflow string to a 
CGI script on webserver 

4s3 
CGI Overflow 

with Decoys 
50% 

Same as 4s1, but there are many decoys 

that produce the same footprints in IDS 

before and after the attack 

4s4 
Word Macro 

Exfiltration 
50% 

Attack involves a Word document with a 

malicious macro sent through email. The 

macro is activated by one user and 
uploads all files in the “Recent Files” list 

to a remote ftp server  

4s13 
Firewall 

Misconfiguration 
None 

An administrator accidentally brings 
down the firewall, allowing 

unauthorized traffic to get through to the 

internal network for a couple of minutes 

4s14 Phishing and PNP None 

A user is lured to register a malicious 
website and he uses the same 

username/password to the Windows 

machine on the network. The attacker 
ssh to the Windows machine and 

downloads a PNP exploit executable, 

gaining a command shell. The attacker 
then uploads all files to a remote ftp site.  

[Table 1] Attack Scenarios [4] 

 

Attacks 4s1, 4s3 and 4s4 have a background attack scale of 50%, which means that similar 

attempts were observed and recorded in background data. This will make it harder to distinguish 

the alerts and log entries of these three attacks from that of background data. Also, 4s3 involves 

decoy attacks which produce the same footprints in the intrusion detection system (IDS).  
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Chapter 3. Text Classification of SKAION Log Messages 

 Log Classification and Threat Detection  

The problem of detecting malicious activities using unstructured log messages can be seen 

as a problem of text classification. If we have a classifier that can determine with reasonable 

accuracy whether a given log message is from normal data or intrusion data, then we can assume 

that the same classifier can predict the class of an unseen future log entry as well. To build such a 

classifier, we would need to extract the right information from the logs and feed them into the right 

classification algorithm.  

There have been many previous studies on text classification of standard natural language 

corpus [20, 21, 22, 23, 24, 25], scanned OCR documents [28, 29], and social media data [30, 31, 

32, 33]. System-generated messages, however, have a few different characteristics to the natural 

language text that was analyzed extensively in the aforementioned studies. Some of these 

characteristics are: 

 A large portion of the message is repeated many times in a set of log entries 

 The number of natural language words used in the text are relatively small 

 Actual vocabulary size is large since log messages contain a large number of tokens 

that are not words, but numbers or codes, such as the name of executables, status 

codes, and error codes. Some are in binary, octal, or hexadecimal number formats.  

 The messages may not follow standard grammar rules 
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Therefore, a careful examination is required in selecting the right algorithms and features 

for the classification of machine-generated unstructured messages.  With these differences in mind, 

we approached this study through the following three steps: 

1) Apply different classification algorithms on message text and measure the performance 

of each algorithm. This will help determine which algorithm performs well for this task 

and establish a baseline performance. 

2) Identify features that may be useful for classification and extract those features from 

the unstructured message. Repeat the same experiments as in (1) using a) the extracted 

features only, and b) both features and the message together. 

3) Analyze the results to determine which features and algorithms perform well in 

problems of threat detection using unstructured log analytics.   

 Classification Algorithms 

Since text can be modeled as quantitative data with word frequencies, (we will see how 

this is done in detail in Section 3.3), a wide variety of classification algorithms developed for 

numerical or categorical data can also be applied to text classification. However, the high 

dimensionality and sparsity characteristics of text data makes certain algorithms more suitable for 

text data [13]. Among the common classification algorithms surveyed by different researchers [13, 

14, 15] for text classification, three classification algorithms, the Naïve Bayes Multinomial (NBM), 

Support Vector Machine (SVM), and Random Forest (RF) generally performed better in terms of 

accuracy, precision and speed on the SKAION dataset (Section 5.3) The following sections briefly 

describes the inner workings of these algorithms.  
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 Naïve Bayes Multinomial (NBM) 

The Naïve Bayes is a probabilistic classifier 

that models the distribution of the documents in each 

class using a model based on independence 

assumptions about the distributions of different 

terms. Essentially, it computes the posterior 

probability of a class based on the distribution of the 

words in the document and ignores the actual position of these words [13]. The Bayes Multinomial 

Model captures the frequencies of terms in a document and calculates the conditional probability 

that the document D is from class 𝑐𝑖, using Bayes rule: 

𝑃(𝐶𝐷 = 𝑐𝑖  | 𝐷 = (𝑇, 𝐹)) =
𝑃(𝐶𝐷=𝑐𝑖)∗𝑃(𝐷=(𝑇,𝐹) | 𝐶𝐷=𝑐𝑖)

𝑃(𝐷=(𝑇,𝐹))
   (Eq. 3.5.1.1) 

≊ 𝑃(𝐶𝐷 = 𝑐𝑖) ∗  𝑃(𝐷 = (𝑇, 𝐹) | 𝐶𝐷 = 𝑐𝑖), 

                  𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝐷, 𝐹 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑜𝑓 𝑇 𝑖𝑛 𝐷.   

and,  

𝑃(𝐷 = (𝑇, 𝐹) | 𝐶𝐷 = 𝑐𝑖) =
|𝐷|!

∏ 𝐹𝑖!𝑚
𝑖=1

∗ ∏ 𝑃(𝑡𝑗 ∈ 𝐷 | 𝐶𝐷 = 𝑐𝑖)
𝐹𝑗

𝑡𝑗∈𝑇 .       (Eq. 3.5.1.2) 

Compared to the multi-variate Bernoulli model, another model in the Naïve Bayes 

classifier family, the Multinomial model, is known to work well with data of a large vocabulary 

size [13].  

 Support Vector Machine (SVM) 

The main principle of SVM is to determine the separators in the search space which can 

best separate the different classes. In Figure 2, there are three hyperplanes separating two classes, 

 
[Figure 2] Hyperplanes separating two 

classes [13] 

 

 

 
[Figure 3] Hyperplanes separating two 

classes [13] 
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represented by x and o. It is clear that hyperplane A provides the best separation because the normal 

distance of any of the data points from it is the largest. The separator which represents the 

maximum margin of separation has the most discriminating power [13]. The advantage of the 

SVM method for text classification is that it is robust to high dimensionality [15]. Although it is 

not necessary to use a linear function for an SVM classifier [16], it is very often used in practice 

for its simplicity [13].  

 Random Forest (RF) 

The Random Forest is an ensemble classifier consisting of a collection of tree-structured 

base classifiers. Let D be a set of documents, and Nf, features. The following algorithm builds a 

Random Tree classifier [17]: 

1. Generate k subsets of D { D1, D2, … Dk} by random sampling 

2. For each dataset Dk, build a decision tree model by randomly sampling a subspace of 

m dimension (m < Nf) from the features at each node. Compute all possible splits based 

on those m features. The data partitions from the best split (e.g. the largest Gini measure) 

are used to generate child nodes. Repeat until the stopping criterion is reached. 

3. Combine k unpruned trees into a Random Forest ensemble and use the majority votes 

among the trees to reach a classification decision. 

The Random Forest ensemble method is known to increase the accuracy of single-decision 

tree classifiers by returning a classification decision based on decisions from all decision trees [17].  
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 Text Transformation  

In order to classify a log message using machine learning, the log message has to be 

transformed into a numeric vector that can be used by classification algorithms. Without any 

specific feature extraction, the message can be transformed into a word vector representation, [6] 

where each log entry is represented as a vector of bits or integers that indicate whether the message 

contains a specific word (a bit) or the frequency of occurrence of a word in the message (an integer).  

In our experiments with the SKAION dataset using the WEKA machine learning tool [8],  some 

common text transformation techniques such as stemming, removing stop words, or using n-gram 

features have no positive impact on the performance of the classifier with log messages. On the 

other hand, TF-IDF transformation generally has a positive impact on classifier performance, as 

long as it is used with appropriate attribute selection strategies. (Figure 3-7) 

TF-IDF transformation is a common technique to compute the weighting of words. The TF-IDF 

score of the word, j, in a document, d, is calculated with the following formula (Eq. 3.3.1 and  Eq. 

3.3.2) or some variation [8]. In our case, a document is a log entry and a word is any tokenized 

string occurring in the set of log entries. 

𝑇𝐹_𝐼𝐷𝐹 (𝑗, 𝑑) = 𝑇𝐹(𝑗, 𝑑) ∗ 𝐼𝐷𝐹(𝑗).                         (Eq. 3.3.1) 

𝐼𝐷𝐹(𝑗) = log (
𝑁

𝐷𝐹(𝑗)
) .                            (Eq. 3.3.2) 

𝑤ℎ𝑒𝑟𝑒, N is the total number of documents, DF(j)is the number of documents containing the word j,  
and TF(j, d)is the frequency of the word j in a document d.  

 

In the experiment with SKAION log data, the average precision of the three classifiers 

improves by 2.3-2.7% if TF-IDF measures are used with attribute selection (Figure 3, 

message_with_tf-idf_and_ig versus message_no_tf-idf_no_select). A 0.23% increase in precision 
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is observed when the TF-IDF measure is used with attribute selection based on Information Gain 

(IG) compared to using attribute selection alone (Figure 3, message_with_tf-idf_and_ig versus 

message_no_tf-idf_with_ig). The TF-IDF measure’s impact on classification performance is also 

dependent on the classification algorithm. Figure 5-7 shows it has greater impact on the Naïve 

Bayes Multinomial (NBM) and Random Tree (RT) algorithm than Support Vector Machine 

(SVM). For NBM, using the TF-IDF measure increased precision and decreased recall (Figure 5, 

message_with_tf-idf_and_ig versus message_no_tf-idf_with_ig), whereas the opposite effects are 

observed for RT (Figure 7, message_with_tf-idf_and_ig versus message_no_tf-idf_with_ig). SVM 

did not show significant changes in performance, based on the TF-IDF transformation (Figure 6). 

 Attribute Selection   

Attribute Selection is a technique for reducing dimensionality by removing non-

informative attributes selectively. Yang and Pederson report in their comparative study, that 

attribute selections based on Information Gain and the chi-squared test are most effective for text 

classification [9]. In our experiment with the SKAION dataset unstructured log analysis, both the 

Information Gain attribute selection and chi-squared test increased the performance and reduced 

the training and testing time by a similar level (Figures 3, 4). 

 Information Gain  

Information Gain measures the number of bits of information obtained for category 

prediction by knowing the presence or absence of a term in a document [9, 10] (a log entry in our 

case). For a classification with m classes (𝑐𝑖…𝑚) the Information Gain of term t is defined to be [9, 

11]: 

𝐺(𝑡) =  − ∑ 𝑃(𝑐𝑖) ∗ log 𝑃 (𝑐𝑖)
𝑚
𝑖=1    
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                +𝑃(𝑡) ∗  ∑ 𝑃(𝑐𝑖|𝑡) ∗ log 𝑃 (𝑐𝑖|𝑡) 𝑚
𝑖=1     (Eq. 3.4.1) 

                 +𝑃(𝑡) ∗ ∑ 𝑃(𝑐𝑖|𝑡) ∗ log 𝑃 (𝑐𝑖|𝑡).  𝑚
𝑖=1    

For each unique term in a set of log messages, we can calculate Information Gain and select 

only the terms that are above a pre-defined threshold.  

 Chi-squared Test  

The Chi-squared statistic measures the dependency between a feature and the target and 

can be compared to the chi-square distribution with one degree of freedom to judge extremeness 

[9, 12]. Let 𝑡 be the term and 𝑐𝑖be the class. Then the Term Goodness measure is defined to be [9]: 

𝜒2(𝑡, 𝑐𝑖) =  
𝑁[𝑃(𝑡,𝑐𝑖)∗𝑃(𝑡, 𝑐𝑖)−𝑃(𝑡,𝑐𝑖)∗𝑃(𝑡,𝑐𝑖)]

2

𝑃(𝑡)∗𝑃(𝑡)∗𝑃(𝑐𝑖)∗𝑃(𝑐𝑖)
 ,                          (Eq. 3.4.2) 

  𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠.   

This value is zero when t and 𝑐𝑖  are independent. To select a feature, the chi-squared value 

is calculated for each unique term and ranked. Figure 3 and 4 show the relative gain of time and 

accuracy for a chi-test attribute selection (message_with_tf-idf_and_chi). 

 Experimental Results – Text Transformation and Attribute Selection 

Figures 3-7 are the results of experiments with different combinations of TF-IDF 

transformations and attribute selections on unstructured log messages from the SKAION dataset. 

The sample includes 500 log samples from each attack type and the same number of logs from 

background data. Three classifiers, NBM, SVM, RT, were used in order to gauge the impact to 

different classifiers.  
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Figure 3 shows the average performance of all three over five attack types. Overall, the 

precision increased by 2.5% and recall decreased by 3.0% using TF-IDF measures with attribute 

selection. A more significant impact on dimensionality reduction was observed in elapsed time for 

training and testing. As shown in Figure 4, both IG (Information Gain) and the Chi-squared test 

achieved about a 63% reduction in time. Time was measured by elapsed time for training the model 

and 10-fold testing.  

 
[Figure 3] Average Performance Based on TF-IDF and Attribute Selection. 
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[Figure 4] Average Time in ms for Training and testing (10 folds) 
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[Figure 5] Average Performance - NBM 

 
[Figure 6] Average Performance - SVM 
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[Figure 7] Average Performance - RT 
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Chapter 4. Feature Extraction 

 SKAION Log Meta-data 

Meta-data for a log message collected by SIEM typically consists of the time of collection, 

source device, source application, collection agent ID, and other information related to the 

collection and transfer of log entries to the central repository. Some meta-data, such as the source 

device and application are important features in correlation and detection of security threats. 

Conversely, collection time (the time at which the log entry is collected by the agent) is usually 

used as a secondary time reference when generation time (time at which the log entry is generated 

at the source) is not available.  

The SKAION data is collected off-line using scripts and, thus includes little meta-data. 

During aggregation and sampling of the log entries, the following meta-data (Table 2) are kept for 

reference purposes. Only two of them: log source and message length, were used for classification.  

 

 Named Entity Recognition (NER) 

Named entity recognition in natural language processing refers to the process of 

recognizing (or tagging) a sequence of words in a text that are names of things, such as people and 

 
Feature Source Used for Classification 

file_name Full path of the raw log file  No 

line_number Line number of the log entry in the raw log file No 

message_length Number of characters in message in its original format Yes 

log_source 
Source device name concatenated by system, o/s or application 
name 

Yes 

[Table 2] SAKION Log Meta-data 
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company names [18, 19]. In our context, we are interested in recognizing the things that can be 

found in log messages that may help us to detect the security threats. For example, user name, 

application name, host name, IP addresses, or any keywords indicating the status of the application 

would be good indicators for log correlation and threat detection. In order to extract relevant 

information from unstructured log messages, we first identified the category of things to be 

recognized, and created the training data by manually tagging a set of sampled logs. Table 3 

describes the entities of interest. 

The CRF classifier from the Stanford NLP library [19] is used to create and train the model. 

Tested on ten separately-sampled test data, the classifier tagged the interested entities with an 

average accuracy of 0.9886. Table 4 shows the average performance per entity category. 

Using a Conditional Random Field (CRF)-based statistical NER system to extract entities 

has certain advantages over using pattern matching through regular expression. The CRF classifier 

models the sequence of words, rather than individual words separately. Therefore, it recognizes 

Entity Description 
Used for 

Classification 

TIME 
Date or time: year, month, day, hour, minutes, second, pre/post fix (AM, 

PM) or time zone 
No 

APP 
Any component of a program or system: o/s, application, session, function 
name, etc. 

Yes  

USER User name, email address or other string containing user name Yes 

HOST Host name, computer name or IP address Yes 

KEYWORD 
Words indicating the state or event: success, error, completed, started, failed, 
etc. 

Yes 

[Table 3] Entities of Interest 

 

Entity Class TP Rate  FP Rate Precision Recall F Measure 

APP 0.9853 0.01238 0.9789 0.9853 0.9821 

HOST 0.9966 0.00073 0.9966 0.9966 0.9966 

KEYWORD 0.979 0.00324 0.9906 0.979 0.9848 

TIME 1 0 1 1 1 

USER 1 0 1 1 1 

Weighted Avg. 0.9886 0.0055 0.9886 0.9886 0.9886 

[Table 4] Feature Extraction Performance using Stanford NER 
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the patterns of words occurring around the entity we are interested in. This allows the classifier to 

also recognize the entity by the patterns of the sequence containing it, even if the word itself does 

not exactly match the pattern of training data.  

For example, if the CRF classifier is trained to recognize the grey parts in Listing 7 as 

application names, then with high chance it also recognize “SNMP event log extension agent” as 

an application name in Listing 8 even if the log entry was not included in the training data. 

 Log Type Classification 

Log type is a generic classification of log entry that indicates the purpose or logging level, 

such as information, error, audit, warning, etc. This can be useful information for threat detection. 

For example, we can have a hypothesis that if the number of error logs or alerts increases 

significantly, then the system is not in a normal state. Two problems were found in the SKAION 

dataset to determine log types reliably. First, some free text logs did not have this information at 

all, whereas some structured logs contain log type as meta-data, such as Windows Event Type, or 

Syslog Priority. Second, there is no standard way of labeling a log entry as one of the log types. 

For example, Windows Event Type 1180 cannot be normalized as a category that is similar to a 

 
[Listing 7] CRF Classifier Training Log Entries 

 

 

 

 
[Listing 7] CRF Classifier Training Log Entries 

 

 

The Windows Media Unicast Service started 

The database engine 6.00.3940.0013 started 

The File Server for Macintosh service was unable to contact a 

domain controller 

WMI ADAP was unable to process the PerfDisk performance library 

due to a time violation in the open function 

The Windows Media Unicast Service started 

The database engine 6.00.3940.0013 started 

The File Server for Macintosh service was unable to contact a 

domain controller 

WMI ADAP was unable to process the PerfDisk performance library 

due to a time violation in the open function 

 
[Listing 8] CRF Classifier Test Log Entry 

 

 

 
[Listing 8] CRF Classifier Test Log Entry 

 

 SNMP event log extension agent is starting 

 SNMP event log extension agent is starting 
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Syslog Priority level, error. Therefore, we cannot reliably interpret the real importance, or priority 

based on the meta-data.  

To overcome these problems, this study determines the log types from the log message 

using an SVM classifier. 200 log entries were sampled from each of the different class (five attack 

data and one background data) and manually labeled. Using the WEKA machine learning library 

[8], the SVM model is trained. In a standard 10-fold test, an average of 98.5% log messages were 

labeled correctly. (See Table 5) 

Log Type Class TP Rate  FP Rate Precision Recall F Measure 

AUDIT 0.998 0.013 0.986 0.998 0.992 

INFO 0.971 0.007 0.966 0.971 0.968 

ERROR 0.833 0.003 0.938 0.833 0.882 

WARN 1 0 1 1 1 

ALERT 0.984 0 1 0.984 0.992 

Weighted Avg. 0.985 0.007 0.985 0.985 0.985 

[Table 5] Log Type Classification 
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Chapter 5. Performance Analysis  

 Tools, Libraries, and Programs 

A custom-developed application written in Java, Generic Log Analyzer (GLA) is used to 

perform all experiments described in this section. Figure 8 summarizes the data flow and 

components of GLA, showing how the raw log files are processed, parsed, and sampled for the 

training and testing of classifiers. 

Meta-data, 
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Log 
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Log Type 
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[Figure 8] Log Aggregation, Sampling, & Classification by GLA 

 

 
[Figure 4] Log Aggregation, Sampling, & Classification by GLA 
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Other than JavaSE-1.8, the following external libraries and tools were used in the various 

stages of the experiment and analysis: 

 Stanford NER 3.5.22 (Command-Line Utilities, and Java-API) 

 WEKA v.3.6.133 (GUI, Command-Line Utilities, and Java-API) 

 R v. 3.2.04 

 Rattle v.3.4.15 

 Log Aggregation and Sampling  

The collection of log data was pre-processed and aggregated into six different consolidated 

log data files: one per attack scenario, and one background data without any successful attack. 

Each line of the data file contains one log entry, including a text message and meta-data such as 

the source file name, line number and message length. Each entry is also labeled with an attack ID.  

The aggregated files are then parsed for feature extraction using NER and a log type classifier. The 

models for the classifiers are trained separately, as described in Chapter 4.      

To train and test the classifier, random samples of size ranging from 500 to 2000 were 

selected from each attack type, and samples of the same size were selected from background data. 

For example, a data file of sample size 500 contains 500 log samples from one of the attack types 

                                                
2Licensed under the GNU General Public License (v2 or later) 
3 © 1999-2015 The University of Waikato, Hamilton, New Zealand 
4 © 2015 The R Foundation for Statistical Computing 
5 © 2006-2014 Togaware Pty Ltd. 
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and 500 log samples from background traffic data. Table 6 shows the proportion of the sample size 

to the population size. 

Attack ID 
Population 

Size 

Sample Size 

500 1000 1500 2000 

4s1 115242 0.43% 0.87% 1.30% 1.74% 

4s3 112532 0.44% 0.89% 1.33% 1.78% 

4s4 178895 0.28% 0.56% 0.84% 1.12% 

4s13 146163 0.34% 0.68% 1.03% 1.37% 

4s14 174450 0.29% 0.57% 0.86% 1.15% 

b2 (background – 

no attacks) 149284 0.33% 0.67% 1.00% 1.34% 

[Table 6] Sample Size Proportion per Attack ID 

 

The sampled logs are further processed into three different data sets:  

1. Message-only data: contains a labeled free-text message from the log file. The 

message is stripped of any string indicating time or date to remove the strong 

correlation between the label and the time variable. This correlation is intuitive since 

the log collection for a particular attack is a snapshot at a particular time during that 

attack. However, we do not want the classifier model to fit to time/date strings. 

2. Features-only data: contains the extracted features (user, application, host keywords) 

and meta-data (message length, source system) without any original free-text message. 

All features indicating time or file locations are removed for classification. 

3. Message and Features data: contains the extracted features, meta-data, and free-text 

messages. Both time/date strings within the message and the time variable extracted 

from the messages are removed for classification.       
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 Classifier Performance  

In order to find the best performing classification algorithms for unstructured log analysis, 

a number of experiments were conducted with 12 different classifiers from the WEKA library [8] 

over 3 different types of datasets: message-only, features-only, and both message and features. To 

evaluate performance, the following five statistics were used: 

 Accuracy = 
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

∑ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

 Precision = 
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 Recall = 
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 Specificity = 
∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 Time = elapsed time for training and 10 fold testing 

Recall and Specificity are negatively related. Therefore, there would be a trade-off if we 

focused more on one of these two measures. On the other hand, accuracy and precision are 

positively related. For our evaluation, we preferred classifiers with little variance among the four 

performance indicators, since larger variance means that a good performance in one of these 

measures may lead to a larger error in the other measure. Time represents the relative complexity 

of the classification algorithm and does not show any relation to other performance indicators in 

terms of evaluation of the classification algorithm.  Therefore, a complex classification algorithm 

that takes longer to build and classify does not necessarily perform better.  
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Figure 9 and Table 7 show that the Naïve Bayes Multinomial (NBM), Voted Perceptron 

(VP), and AD Tree (ADT) algorithms perform best for message-only data. These three algorithms 

display high values of performance statistics with little variances among them. As expected, the 

recall rate (red line) and specificity (black line) show a reverse correlation, while time (purple 

dotted line) does not show any relation to performance.  

 
[Figure 9] Classifier Performance – Message-only 

Classifier Time (ms) Rank Avg. Perf Rank StdDev Rank 

BayesNet 725.4 4 0.62718 6 0.13091 12 

NaiveBayes 813.6 5 0.60039 11 0.03925 5 

NaiveBayesMultinomial 543.8 2 0.63933 3 0.02054 2 

SMO (SVM) 1862.2 7 0.65392 1 0.05622 10 

VotedPerceptron 491.2 1 0.63341 4 0.02040 1 

KStar 24293.2 11 0.63150 5 0.04439 8 

JRip 3704.8 9 0.59777 12 0.02825 3 

PART 2891.0 8 0.62200 9 0.02898 4 

ADTree 5567.0 10 0.64516 2 0.04379 7 

J48 1430.8 6 0.62205 8 0.04701 9 

RandomForest 27013.4 12 0.62290 7 0.04183 6 

RandomTree 718.8 3 0.61729 10 0.07722 11 

Max 27013.4   0.65392   0.13091   

Min 491.2   0.59777   0.02040   

[Table 7] Performance Ranking – Message-only data 
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For features-only data, (Figure 10) Bayes Net (BN), Random Forest (RF) and Random 

Tree (RT) show strong performance. Average time for training and testing is significantly less 

when we use feature only data than when data is classified with free-text messages. Free-text 

messages generally yield a large number of feature sets with counts of 120-160 after attribute 

selection in 1000 sample entries, whereas features-only data has 12-18 attributes after the selection. 

Both the NBM and VP algorithms which performed well for message-only data, can handle only 

numerical data and therefore, was not tested for features-only or message-and-features data, as 

they contain a large amount of categorical data.   

 
[Figure 5] Classifier Performance - Features Only Data 

   Time (ms) Rank Avg. Perf Rank StdDev Rank 

BayesNet 107.2 1 0.64849 4 0.01826 5 

NaiveBayes 126.2 2 0.65033 3 0.02408 6 

SMO (SVM) 2822.4 5 0.63909 8 0.02987 7 

KStar 3612.2 10 0.63727 9 0.03228 8 

JRip 543.2 6 0.63344 10 0.00580 2 

PART 583.4 7 0.64291 6 0.03508 9 

ADTree 629.8 8 0.64610 5 0.09681 10 

J48 126 4 0.64247 7 0.01552 4 

RandomForest 3870.6 9 0.67660 1 0.01549 3 

RandomTree 127.8 1 0.66212 2 0.00130 1 

Max 3870.6   0.67660   0.09681   

Min 107.2   0.63344   0.00130   

[Table 8] Performance Ranking – Features-only 
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For data with both messages and extracted features (Figure 11 and  Table 9), tree-based 

algorithms such as Random Tree (RT), J48 Tree (J48), and Random Forest (RF), performed better 

than others. Generally, classifiers performed best on this type of dataset. As shown in Table 9, the 

maximum performance reached 0.7054 for this dataset, compared to 0.6766 and 0. 6539 for 

feature-only and message-only datasets, respectably. On the other hand, the classification of these 

data sets took an average of 19.6% longer than classifying message-only data and 140% longer 

than features-only data.  

 
[Figure 6] Classifier Performance – Message-and-Features 

  
Avg Time 

(ms) Rank Avg. Perf Rank StdDev Rank 

BayesNet 782.2 3 0.65171 8 0.03867 8 

NaiveBayes 694.2 2 0.61956 10 0.01812 4 

SMO (SVM) 4263.0 5 0.66904 6 0.03409 7 

KStar 28340.2 10 0.65139 9 0.04034 9 

JRip 4290.2 6 0.65369 7 0.03319 6 

PART 5553.4 7 0.67764 5 0.02622 5 

ADTree 6819.0 8 0.70541 1 0.16163 10 

J48 1086.2 4 0.68278 3 0.00805 2 

RandomForest 18604.0 9 0.69942 2 0.01480 3 

RandomTree 678.8 1 0.67972 4 0.00274 1 

Max 28340.2   0.70541   0.16163   

Min 678.8   0.61956   0.00274   

[Table 9] Performance Ranking – Message-and-Features 
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 Performance by Sample Size 

If the size of training data increases, would the classification performance increase as well? 

To answer this question, we ran the classification with four different sample sizes: 500, 1000, 1500, 

and 2000. It should be noted that the sample size refers to the number of log entries from each 

attack type, and the same number from background data. That means the 4s1 attack type data with 

sample size 500 contains 1000 log samples, half of which is from 4s1 and the other half from b1 

(background data). Experimental data contained both message and extracted features. The Random 

Tree classifier was used with an Information Gain attribute selection of threshold value 0 (only 

features with a positive IG were selected).  

Figure 12 displays the average performance for all five attack types. Generally, the 

performance statistics increase from 500 to 1500, but fall at 2000 in average data. The reason for 

 
[Figure 7] Performance by Sample Size, Avg. of 5 attack types 
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the degradation at 2000 is not clear. The cause could be that the classifiers reached their maximum 

predictive power on a given dataset between 1500 and 2000, or that the WEKA software reached 

its maximum capacity in handling larger data. Time, shown in the purple line, seems to increase 

exponentially. The four performance measures show different trends for each attack type, as shown 

in Figures 13-18. The general trend of decrease at 2000 is consistent, except in 4s4, which 

increased slightly at 2000 (Figure 15). The variance among the performance measures decrease as 

sample size increases with the exception of 4s14. 4s14 shows the lowest level of variance at 500 

and fluctuations as the sample size increases (Figure 17).  

 
[Figure13] 4s1 

 
[Figure 15] 4s4 
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[Figure 14] 4s3 

 
[Figure 16] 4s13 
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 Performance Gain by Feature Extraction 

Feature extraction is the process through which we can attain more obscure information 

from unstructured logs. With the techniques described in Chapter 4, we extracted relevant 

information from free-text messages, such as the application name, host, user name, time, and 

keywords (Section 4.2). We also determined if the log message was an audit log, error log, 

 
[Figure 18] Performance by Data Type 
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[Figure 17] 4s14 
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information, warning or alert (Section 4.3). Using these features with the unstructured message 

generally seemed to increase the classification performance as shown in Section 5.2 and 5.3. In 

this section, we will more closely examine the performance gain achieved by feature extraction.  

In order to compare the best performers among different data types, we selected only the 

classifiers that performed best for specific data types: NBM and VT for message-only data, RT 

and RF for feature-only data, and J48 and RT for the data with both message and features. We 

used a sample size of 1500 which gave the best measures in previous experiments (Section 5.4). 

For all data types, we used TF-IDF measures and IG attribute selection as it is shown to improve 

performance (Sections 3.2 and 3.3). Figure 18 shows the average performance of the two classifiers 

for each data type. As expected, using both a message and features still achieved the highest rate 

of accuracy, recall, specificity and precision. Figure 19 details the differences between pairs of 

data types. Compared with message-only data, data with both a message and features gained an 

 
[Figure 19] Performance Gain by Feature Extraction 
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average of 6.82% accuracy, 8.49% recall, 2.86% precision, and 5.30% specificity. This is a 23.5% 

cumulative gain. However, this gain in performance came with the cost of time. As shown in 

Figure 20, the data set with both features and messages took approximately 95% longer to build a 

model and perform a 10-fold test with 3000 log entries.  The values for features-only data in Figure 

21 is biased because one of the algorithms used for the data type was RF, which usually takes 

about 10 times longer than other algorithms when used on other data types. Figure 20 shows the 

distribution excluding the time for RF, which is more comparable to other data types. The features-

only data contains only 19 to 33 attributes, allowing it to run much faster than other data types 

with which the number of attributes range from 261 to 320. As shown in Figure 20, features-only 

data shows a large improvement from message-only data and takes only a fraction of the time. 

This is an important characteristic to consider for real-time analytics.  

In the Receiver Operating Characteristic (ROC) curves in Figure 22, the curve for the data 

type with both messages and features (red) exhibits the largest area under the curve, signifying a 

 
[Figure 21] Avg. Time by Data Type  
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[Figure 20] Avg. Time by Data Type - RF 
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stronger predictive power. The features-only data type (blue) is next, while the message-only data 

type (purple) has the smallest ROC area.  

 
[Figure 22] ROC Curve by Data Types 
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Chapter 6. Summary and Discussions 

 Summary 

From the experiments described in Chapter 3, 4 and 5 we know the following factors affect 

classification performance for unstructured log analysis:  

1) A classification algorithm’s performance is significantly affected by the nature of the 

data preparation. If the prepared data contains only free-text log messages, algorithms 

such as NBM or VT work well. If the data contains categorical features or is a mixture 

of features and free-text messages, RT or RF show a robust performance. (Section 5.3) 

2) Generally, the size of the training data is positively related to the classification 

performance, until a peak is reached. This peak observed in the SKAION dataset is 

between sample sizes of 1500 and 2000 for binary classification. (Section 5.4) 

3) Identifying, extracting, and using features such as the application name, host name, IP 

addresses, user name, and keywords from the unstructured log messages increased the 

classification performance by 2.8-8.5%. (Section 5.5) 

4) Using extracted features only, we can improve the classification performance by 0.93-

5.21%, and decrease time by 87%. These are useful characteristics in real-time 

analytics (Section 5.5) 
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5) An attribute selection algorithm based on Information Gain or the chi-squared test 

increased the average precision by 2.5% but decreased the average recall by 3.0%. This 

also reduced time for training and testing by 63%.  (Section 3.3) 

6) TF-IDF transformation of the free-text messages has a small but positive impact if it is 

used with the attribute selection algorithm. (Section 3.2) 

 Discussion 

Through this study, we discovered many factors that affect unstructured log analysis using 

machine learning. Still, the results raise some questions: Is a 70-73% predictive performance 

sufficient for security threat detection? Is a 2.8-8.5% performance gain worth the time and effort 

of feature extraction? Is the performance peak with the training data size shown in Section 5.4 

artificial or natural? We will discuss these questions in detail in this section. 

1) Is a 70-73% predictive performance enough for security threat detection?  

It is difficult to find a reliable SIEM benchmark for security threat detection, primarily 

because SIEM is primarily used as a log collection and archiving tool as stated in Chapter 1. The 

most common benchmarking metric for SIEM is Event Per Second (EPS), which indicates how 

many logs the system can handle per second [38]. Since the availability of the KDD99 dataset in 

1999 [35], more benchmarking studies have been done on network-based security detection 

through the Intrusion Detection/Prevention System (IDS/IPS). [34, 36, 37]. Lippmann et al. found 

18% of attacks were completely missed by a signature-based Network-based Intrusion Detection 

System (NIDS) [34]. A more recent study with the same dataset reports detection rates ranging 

from 5.4 to 99.4%, suggesting network-based IDS performs well for certain security threats, but 

had little success on others [38]. This is because NIDS relies solely on network traffic analysis and 
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has little insight into the events occurring locally within a computer or non-network based attacks 

such as email phishing or misconfiguration. On the other hand, SIEM can handle information from 

almost any system, application, or connected device. Considering we achieved a 70-73% 

prediction using unchartered information within free-text data for a very diverse range of systems, 

it would not be a large stretch to assume that this approach has even more potential. With further 

studies on intelligent correlation with the NIDS alerts, email filter logs, or a configuration 

management system, the overall detection performance could improve significantly.  

2) Is a 2.8-8.5% gain in performance worth the time and effort of going through feature extraction?  

Many statistical analytics experts in the marketing area agree that using non-traditional 

data sources such as social networks improved their predictions by 0.5-1.5% [39]. When analytics 

have reached their maximum predictive potential with the existing data and techniques, adding 

more data to gain another 1 or 2% could be a potential a competitive edge. Therefore, the 23.5% 

of cumulative performance gain is not negligible. For our purposes, however, there are two more 

important benefits of feature extraction, beyond the gain in performance metrics:  

a. As described in (4) in Section 6.1, using features alone, we have better prediction than 

message-only data and decreased the time by 87%. This opens up the possibility of real-

time unstructured log analysis using classifiers with a continuous learning capability.  

b. The extracted features are important keys for the normalization of log messages and the 

analysis of the relationships between log entries. This may allow us to further improve the 

detection rate. 

3) Is the performance peak with the training data size shown in Section 5.4 a natural limit for data?  
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In Section 5.4, we observed that a peak was reached at 1500 for most attack types. If this 

is the natural limit for this type of data, adding more training data would not improve performance. 

However, if this limitation is imposed by the software or hardware, then by using infrastructure 

specialized for Big Data analytics, we may further improve the classification performance. Further 

work is necessary to answer this question, because there currently seem to be no general rules or 

guidelines on this subject. The relationship between training data size and performance appears to 

be highly dependent on the specific dataset being studied [7, 26]. 

In general, performance analysis indicates a good potential for further studies. The 

performance test results as well as the techniques described in this study should be useful 

information to design more sophisticated feature extraction methodologies and algorithms that are 

specialized in log classification for threat detection.  
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Chapter 7. Conclusions 

This study systematically explores the possibility of utilizing techniques for text 

classification, natural language processing, and machine learning in mining unstructured log 

messages for the purposes of security threat detection.  A number of experiments were conducted 

on simulated attack data from SKAION datasets. In order to extract the relevant information from 

the unstructured message, named entity recognition and generic text classification were used. The 

extracted information was preprocessed into three different formats: free-text messages, extracted 

features, and both messages and features. Through a number of experiments, the best classification 

performance metrics (70-73%) were achieved on data including both free-text messages and 

extracted features by using the Random Tree and J48 Tree algorithms along with TF-IDF 

transformation and IG attribute selection. Using features only, we also achieved a similar 68-71% 

performance metric, but in only 5.3% of the time duration. Therefore, feature extraction and text 

classification of unstructured log messages demonstrate high potential for real-time log analysis 

using machine learning in SIEM data. Moreover, the methods used this this study produces 

encouraging results for  further studies on automatic log normalization, intelligent feature 

extraction and entity relationship analysis using Big Data analytics. 
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