
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2016

Mining Unstructured Log Messages for Security
Threat Detection
Candace Suh-Lee
University of Nevada, Las Vegas, suhlee@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations,
Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

Repository Citation
Suh-Lee, Candace, "Mining Unstructured Log Messages for Security Threat Detection" (2016). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 2749.
https://digitalscholarship.unlv.edu/thesesdissertations/2749

http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2749?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2749&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

MINING UNSTRUCTURED LOG MESSAGES FOR SECURITY

THREAT DETECTION

By

Candace Suh-Lee

Bachelor of Science, Computer Science

University of Toronto, Canada

2002

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2016

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

April 21, 2016

This thesis prepared by

Candace Suh-Lee

entitled

Mining Unstructured Log Messages for Security Threat Detection

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Yoohwan Kim, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Kazem Taghva, Ph.D.
Examination Committee Member

Justin Zhan, Ph.D.
Examination Committee Member

Yahia Baghzouz, Ph.D.
Graduate College Faculty Representative

iii

Abstract

As computers become larger, more powerful, and more connected, many challenges arise

in implementing and maintaining a secure computing environment. Some of the challenges come

from the exponential increase of unstructured messages generated by the computer systems and

applications. Although these data contain a wealth of information that is useful for advanced threat

detection and prediction for future anomalies, the sheer volume, variety, and complexity of data

make it difficult for even well-trained analysts to extract the right information. While conventional

SIEM (Security Information and Event Management) tools provide some capability to collect,

correlate, and detect certain events from structured messages, their rule-based correlation and

detection algorithms fall short in utilizing information in unstructured messages. This study

explores the possibility of utilizing techniques for text mining, natural language processing, and

machine learning to detect security threat by extracting relevant information from various

unstructured log messages collected from distributed non-homogeneous systems. The extracted

features are used to run a number of experiments on the Packet Clearing House SKAION 2006

IARPA Dataset, and the performance of prediction is evaluated. In comparison to the base case

without feature extraction, an average of 16.73% of accumulated performance gain and 84% of

time reduction was achieved using extracted features only, while a 23.48% performance gain with

82.39% of time increase was attained using both unstructured free-text messages and extracted

features. The results display strong potential for further increase in performance by using larger

size of training sets and extracting more features from the unstructured log messages.

iv

Acknowledgments

I would first like to express my gratitude to my advisor, Dr. Yoohwan Kim for his excellent

guidance and assistance throughout my study. I would also like to thank Dr. Kazem Taghva, Dr.

Justin Zhan, and Dr. Yahia Baghzouz for their support. It is an honor to have them in my thesis

committee.

I am very grateful to Cassandra Lee for her enormous help in editing this thesis. Lastly, my

deepest gratitude goes out to my husband, Eric Eunmok Lee for his constant support and

encouragement. This work would not have been possible without his countless sacrifices.

Candace Suh-Lee

v

Table of Contents

Abstract .. iii

Acknowledgments .. iv

List of Tables .. viii

List of Figures .. ix

List of Listings ... xi

Chapter 1. Introduction ... 1

 Security Information and Event Management (SIEM) ... 1

 Limitations of Current SIEM Technology ... 3

 Unstructured Messages and Hidden Information ... 5

 Research Objectives and Contributions ... 7

 Similar Works ... 8

Chapter 2. SKAION 2006 IARPA Dataset .. 10

 Description ... 10

 Attack Scenarios ... 12

Chapter 3. Text Classification of SKAION Log Messages ... 13

 Log Classification and Threat Detection .. 13

 Classification Algorithms .. 14

 Naïve Bayes Multinomial (NBM) .. 15

 Support Vector Machine (SVM) .. 15

vi

 Random Forest (RF) .. 16

 Text Transformation ... 17

 Attribute Selection .. 18

 Information Gain.. 18

 Chi-squared Test .. 19

 Experimental Results – Text Transformation and Attribute Selection 19

Chapter 4. Feature Extraction .. 22

 SKAION Log Meta-data ... 22

 Named Entity Recognition (NER) ... 22

 Log Type Classification .. 24

Chapter 5. Performance Analysis .. 26

 Tools, Libraries, and Programs .. 26

 Log Aggregation and Sampling ... 27

 Classifier Performance .. 29

 Performance by Sample Size ... 33

 Performance Gain by Feature Extraction ... 35

Chapter 6. Summary and Discussions .. 39

 Summary .. 39

 Discussion... 40

Chapter 7. Conclusions ... 43

References .. 44

vii

Curriculum Vitae .. 50

viii

List of Tables

[Table 1] Attack Scenarios [4] .. 12

[Table 2] SAKION Log Meta-data .. 22

 [Table 3] Entities of Interest ... 23

 [Table 4] Feature Extraction Performance using Stanford NER .. 23

 [Table 5] Log Type Classification .. 25

[Table 6] Sample Size Proportion per Attack ID .. 28

[Table 7] Performance Ranking – Message-only data .. 30

[Table 8] Performance Ranking – Features-only .. 31

[Table 9] Performance Ranking – Message-and-Features .. 32

ix

List of Figures

[Figure 1] SIEM Architecture - Example ... 3

[Figure 2] Hyperplanes separating two classes [13] ... 15

[Figure 3] Average Performance Based on TF-IDF and Attribute Selection. 20

[Figure 4] Average Time in ms for Training and testing (10 folds) .. 20

[Figure 5] Average Performance - NBM ... 21

[Figure 6] Average Performance - SVM .. 21

[Figure 7] Average Performance - RT ... 21

[Figure 8] Log Aggregation, Sampling, & Classification by GLA ... 26

[Figure 9] Classifier Performance – Message-only .. 30

[Figure 10] Classifier Performance - Features Only Data ... 31

[Figure 11] Classifier Performance – Message-and-Features ... 32

[Figure 12] Performance by Sample Size, Avg. of 5 attack types ... 33

[Figure 13] 4s1 .. 34

[Figure 14] 4s3 .. 34

[Figure 15] 4s4 .. 34

[Figure 16] 4s13 .. 34

[Figure 17] 4s14 .. 35

[Figure 18] Performance by Data Type.. 35

[Figure 19] Performance Gain by Feature Extraction ... 36

[Figure 20] Avg. Time by Data Type - RF excluded .. 37

[Figure 21] Avg. Time by Data Type... 37

file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540283
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540284
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540285
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540286
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540287
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540288
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540289
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540290
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540291
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540292
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540293
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540294
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540295
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540295
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540295
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540295
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540295
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540295
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540295
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540296
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540296

x

[Figure 22] ROC Curve by Data Type ... 38

file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446540296

xi

List of Listings

[Listing 1] Windows Event Log Entry - Example .. 6

[Listing 2] FTP Log .. 10

[Listing 3] UNIX Log ... 11

[Listing 4] Web Access Log .. 11

[Listing 5] Windows Log .. 11

[Listing 6] Snort Alerts ... 18

[Listing 7]] CRF Classifier Training Log Entries .. 24

[Listing 8]] CRF Classifier Test Log Entry ... 24

file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512051
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512052
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512053
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512053
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512053
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512054
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512057
file:///D:/Projects/Big%20SIEM/Paper/MS_Thesis_CSL.docx%23_Toc446512058

1

Chapter 1. Introduction

 Security Information and Event Management (SIEM)

The term Security Information and Event Management (SIEM) is fairly generic, and

seemingly referencing any technology or practice that aims to manage any information and events

related to information security. However, in our current security technology landscape, this term

commonly refers to one specific type of technology whose main functions are to collect, store,

search and correlate system-generated log messages. System-generated log messages here refer to

the messages generated by a machine in a human-readable format, in order to support maintenance,

trouble-shooting, surveillance, or audit activities.

The functions of SIEM become essential in an architecture where applications are

distributed among many specialized devices. In the architecture of the earlier computing era, where

there was one central computer and many consoles connected to it, almost all important messages

were logged centrally and the administrator could easily find all the sequences of transactions in

one log repository in that central computer. However, this is not the case in most computing

environments today. For example, to support one small commercial web application, we usually

provision at minimum two webservers, one to two application server(s), and two database servers

for redundancy and load balancing. Besides servers, there would be a few desktops or laptops and

wireless devices connected to the system, along with several switches, firewalls, and routers to

connect them all. If all these devices generated logs that are meant to be used for support,

maintenance, security, or audit, and stored them locally, we can easily see the inefficiencies

involved with accessing each device individually and digging for the right information. We can

2

also imagine what it might be like to run a few hundreds or thousands of devices connected in a

large computing environment.

The amount of messages generated is also an important justification for SIEM. The devices

in our connected environment today tend to be small but very chatty, because many applications

running on these devices need to log additional inter-device communications. This log verbosity

could be adjusted for some logs, but not all. For example, many financial transaction logs are

required to be generated at a level that can provide complete audit traces of an auditable transaction

and must be stored for many years for compliance reasons. With limited memory and storage in

these devices, it makes sense to store only small portions of recent logs locally and send the

majority to a central location for storage and archiving.

The most popular justification for SIEM has to do with the concept of correlating logs that

are collected from many dispersed devices in order to detect events that are normally unnoticeable

if each log is checked separately. This is the reason SIEM has “Security” in its name, rather than

being called a simple log management system. This function is a powerful tool in a security-

sensitive context, where an adversary often “moves around” different devices attempting to gain

unauthorized access in multiple different ways or compromises a series of devices in order to reach

a target.

Figure 1 shows the typical SIEM architecture, where the remote log collectors or local log

agents collect logs and send them to a central log repository. The log search and correlation engine

provides search, correlation, detection, alert services for the administrator/operator.

3

 Limitations of Current SIEM Technology

Although event detection is the most unique and powerful function of SIEM systems for

security [27], in many cases, it is largely under-utilized [39]. The most obvious cause for this lack

of implementation is the high cost associated with utilizing correlation and detection features with

sufficiently high accuracy and specificity for security operations. This high cost is caused by

indirect causes such as complexity and inflexibility of rule-based detection strategies, and

deterministic parsing schemes in which only certain logs that follow a specific logging protocol

are understood.

The complexity of detection rules stems from the rule-based correlation/detection strategy

employed by most traditional SIEM systems. The correlation/detection rules are pre-configured

based on knowledge of previous attacks and their log traces. We will illustrate this through the

following example: One very common rule accompanying most SIEM systems is “to create an

Log Collection
Service

Log Repository

Administrator

Devices

Servers

Remote Log
Collector

Local Log
Agent

Log Search
& Correlation

Engine

[Listing 1] Windows Event Log Entry - Example

[Figure 1] SIEM Architecture - Example

4

alert if there is a successful login after some number of consecutive failed login attempts.” This

rule is intended to detect a password-guessing or brute-force attack and when active, triggers an

alarm for an operator to investigate further. The limit for failed login attempts, the time window

for “consecutiveness,” and some other parameters need to be configured by the administrator. This

sounds simple enough if we have a few machines in one location. But if we have a few thousand

machines across the globe that are used by people with a diverse range of technical abilities, this

problem becomes much more complex. First, we must decide which devices should have this rule

active and determine the number of average failed login attempts for normal usage on each of these

devices. Due to the fact that most organizations do not have this type of information on hand, the

system must first be run for a period of time using default values. During this tuning period, the

operator is required t to investigate each alert generated by this rule and label it as normal or

malicious. When this tuning period ends, all alerts generated by the rule must be analyzed,

thresholds must be adjusted, and the tuning process needs to be repeated. This tuning process is

not completed until nearly all alerts triggered by this rule are indeed malicious. If all this effort is

required for one rule, then we can imagine the effort required for a few hundred rules and the

thousands of alerts generated by them.

Another limitation of rule-based detection is the fact that it is not adaptable. As new threats

and attack tactics are discovered, SIEM rules also need to be updated to detect these new threats.

Unlike anti-viruses where the new signatures can be injected remotely to all instances, SIEM’s

rules are heavily dependent on the environment’s architecture and the applications existing within

it. For the rule “successful login after a number of unsuccessful attempts” in the previous example

to work, the device needed to run the Windows O/S and a member of a Windows domain. If we

want to correlate the rule with logs from Ubuntu Linux servers, then a number of custom rules

5

must be written. If we added a few more Solaris Linux servers into the environment, the custom

rules may need to be further re-written, tested and tuned. The larger the organization, the more

changes occur daily - new users are added, devices are removed, traffic is rerouted, and vendors

come and go. These changes require almost constant reconfiguration and adjustment of the SIEM

rules in order to maintain effective operations.

The second reason for the under-utilization of the log correlation functionality of SIEM is

deterministic parsing schemes. Parsing is the process by which SIEM systems read log entries and

populate databases, so that the database can then be queried by the rules. Since the parser needs

to understand different parts of log entries, a specific parser is used for a specific logging protocol.

Popular logging protocols such as SNMP, Syslog, or Windows Event Logs are processed through

SNMP parsers, Syslog parsers, etc. The contents of less common or less structured logs such as

many application logs are largely ignored and stored as free-text content with some meta-data only.

In order to parse an unstructured or uncommon log properly, a custom parser must be developed.

In order to use the data stored by the custom parser, new database structures, new queries, and/or

new correlation rules also need to be developed. The complexity and inflexibility of these

processes drive up the cost for fully utilizing the SIEM’s log correlation function.

 Unstructured Messages and Hidden Information

Unstructured messages are free-text contents in log entries that are generated by software.

These are actual messages to the reader regarding the status of the program which were written by

the programmers and included as useful information for the users and administrators of the system.

6

For example, in a Windows Event Log Entry message in Listing 1 below, the unstructured

message is the grey-highlighted portion starting from “The IP address...” It is not difficult to see

that this section contains vital information that is relevant to the error. The structured parts are

meta-data added by the Windows Event Log framework, such as “Error,” “3/10/2011 2:29:01 PM”

above. In most current SIEM implementations, the correlation/detection rules only utilize the

structured parts of the log entry such as the time, source, and event type, and ignore most

information stored in the unstructured message. This is due to the SIEM vendor’s preference to

develop rules that work out-of-box in almost all instances. If a rule uses only meta-data, it is almost

guaranteed to work with any logs using Windows Event Log facilities, which avoids the high cost

associated with customization.

This approach, however, puts a significant limitation on what we can do with the

information stored in the log for obvious reasons. In the given example, all we can work with is

the information that at 1:29:01 PM, the Microsoft-Windows-Dhcp-Client has an error with Event

ID 1002-Address Configuration State Event. We cannot use the information in the unstructured

part, such as the IP addresses, MAC addresses, or the error code from the DHCP Server.

The difficulty of parsing unstructured messages comes from the fact that they are at least

partially written in natural language. These phrases are formed by the human developers of the

program in order to communicate with the human users of the system. Therefore, the challenges

Error 3/10/2011 2:29:01 PM Microsoft-Windows-Dhcp-Client 1002 Address

Configuration State Event The IP address lease 10.18.25.108 for the

Network Card with network address 0x801934C9D8E9 has been denied by the DHCP

server 10.5.18.11 (The DHCP Server sent a DHCPNACK message).

[Listing 2] Windows Event Log Entry - Example

7

regarding the automatic processing of logging messages also partially involve natural language

processing.

 Research Objectives and Contributions

This research explores the possibility of harnessing recent developments in machine

learning in order to exploit the hidden information within unstructured messages to detect events.

This is to augment the limitations of current SIEM technology and the experiment results would

contribute the improvement of limitations mentioned above. For example, if the detection rules are

automatically generated through supervised or unsupervised learning and can be self-adjusted to

changes in the environment, then the time-consuming process of initial configuration and

subsequent updates can be minimized. Also, if there is a generic parser that can recognize and

understand key information in uncommon or unstructured logs through the techniques of text

mining and natural language processing, the task of custom parser development for such logs could

be reduced to the simple task of training the parser with the sample logs of the environment. These

two improvements, if properly implemented, would eliminate a large portion of manual coding

and tuning, resulting in increased accuracy and a reduced cost.

Moreover, we believe this approach has the benefit of pushing the limits of the traditional

SIEM by utilizing information that is currently ignored. We hope that the extra information will

not only improve the performance of SIEM, but also be able to detect events that were previously

impossible to notice due to a lack of information. There is also the potential to be able to detect

anomalies which were previously unseen by means of pattern recognition and auto-tuning.

Nevertheless, it should be emphasized that this study alone in no way resolves all the

problems and improvements discussed above, nor does it provide an alternative solution to the

8

current SIEM. This study is a preliminary step towards using machine learning in order to take

advantage of information that is already collected by SIEM and aims to gauge its feasibility and

future directions.

 Similar Works

One early effort for unstructured log analysis was done by Qiang Fu et al. [1]. In this paper,

Fu et al. introduced an algorithm to detect execution anomalies through unstructured logs of

Hadoop and SILK. The main difference of this study from ours is that Fu et al. used regular

expression to extract specific “log keys” which are predefined based on specific applications. That

is, the information extractor already knows what to search for. On the other hand, our approach

focuses on extracting “all relevant information” for detection from any unstructured log using

natural language processing. This generality is the key concept of our research.

Wei Xu et. al also presented an application of using data mining and statistical learning

methods to detect abnormal execution traces from console logs [2]. In this paper, the authors

present the method of using frequent pattern mining and distribution estimation techniques to

discover a dominant pattern, and then, use principal component analysis for anomaly detection.

An unusual approach of this work is that the authors suggested the analysis of source code to

eliminate the uncertainty inherent in parsing application logs. Although this method will give

highly accurate results in unstructured log analysis, it is not easily adopted to general cases where

the log analyzer does not have access to the source code.

Azodi et al. presents a method to improve IDS/SIEM performance by detecting the input

log type and format using regular expression and normalizing log entries [3]. The philosophy

behind this approach is very similar to ours. The difference is that their normalized logs are still

9

fed into rule-based detection, whereas we are exploring the use of machine-learning detection, in

a more concerted effort towards a generic parser and detector.

Many other studies related to more specific topics are discussed in the different sections of

this report.

10

Chapter 2. SKAION 2006 IARPA Dataset

 Description

The dataset used for the experiments is from the Packet Clearing House SKAION 2006

IARPA Dataset1 [4, 5]. This dataset consists of various logs and network traces captured from a

simulated network environment, where benign user activities and malicious attacks are emulated

by computer programs [4]. The malicious attacks are of various levels of sophistication ranging

from a simple CGI Overflow to attacks involving email phishing [5]. The dataset also includes

data related to the normal level of background activities, including probing and unsuccessful attack

attempts. The distribution of these background activities are statistically modeled after the traffic

observed at the Air Force Research Laboratory [4].

The total size of the dataset is 119.2 TB, and a large portion of it contains network traffic

traces. For this research, approximately 15 GB of text data from release 4 is used. The data for this

study consists mainly of logs collected from 136 sources for different attack scenarios and

background traffic. Listings 2-6 are examples of raw logs (IP addresses are replaced with random

strings).

1 Support for the Packet Clearing House SKAION 2006 IARPA Dataset is provided by the U.S. Department of

Homeland Security, Science and Technology Directorate, PREDICT project.

Thu Sep 22 14:27:41 2005 1 XXX.XXX.XXX.XXX 18 495489

/var/ftp/ftp.sgc.osis.gov/pub/foia/txt/ERKS.pdf b _ o a res@XXX.XXX.XXX.XXX ftp 0 * c

Thu Sep 22 14:28:16 2005 1 XXX.XXX.XXX.XXX 495489

/var/ftp/ftp.sgc.osis.gov/pub/foia/txt/ERKS.pdf b _ o a res@XXX.XXX.XXX.XXX ftp 0 * c

Thu Sep 22 14:28:54 2005 1 XXX.XXX.XXX.XXX 1491

/var/ftp/ftp.sgc.osis.gov/pub/foia/graphics/stars.jpg b _ o a res@XXX.XXX.XXX.XXX ftp 0 * c

[Listing 3] FTP Log

11

[Listing 4] UNIX Log

[Listing 4] Web Access Log

Sep 22 15:05:51 www kernel: NETDEV WATCHDOG: eth1: transmit timed out

Sep 22 15:05:51 www kernel: eth1: Transmit timed out, status 0000, PHY status 786d, resetting...

Sep 22 15:06:23 www kernel: NETDEV WATCHDOG: eth1: transmit timed out

Sep 22 15:06:23 www kernel: eth1: Transmit timed out, status 0000, PHY status 786d, resetting...

Sep 22 15:06:27 www kernel: NETDEV WATCHDOG: eth1: transmit timed out

Sep 22 15:06:27 www kernel: eth1: Transmit timed out, status 0000, PHY status 786d, resetting...

Sep 22 15:06:31 www kernel: NETDEV WATCHDOG: eth1: transmit timed out

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:39:41 -0400] "GET / HTTP/1.1" 304 - "-" "Mozilla/4.0

(compatible; MSIE 5.01; Windows NT 5.0)"

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:40:32 -0400] "GET /180.html HTTP/1.1" 200 3558 "-" "TGS Web

Bot"

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:40:32 -0400] "GET /0010.jpg HTTP/1.1" 200 5310 "-" "TGS Web

Bot"

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:45:41 -0400] "GET /100.html HTTP/1.1" 200 3004 "-"

"Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)"

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:45:55 -0400] "GET /1320.html HTTP/1.1" 200 3054 "-" "TGS

Web Bot"

XXX.XXX.XXX.XXX - - [22/Sep/2005:14:45:55 -0400] "GET /0044.jpg HTTP/1.1" 200 4249 "-" "TGS Web

Bot"

[Listing 5] Windows Log

[**] [104:3:1] Spade: Non-live dest used: local dest, est. flags: 1.0000 [**]

09/22-14:26:20.871503 XXX.XXX.XXX.XXX:52734 -> YYY.YYY.YYY.YYY:80

TCP TTL:114 TOS:0x0 ID:37695 IpLen:20 DgmLen:40

A* Seq: 0x23BFAB1E Ack: 0xC0FFAB1E Win: 0x400 TcpLen: 20

[**] [104:3:1] Spade: Non-live dest used: non-err icmp, local dest: 1.0000 [**]

09/22-14:26:26.885387 XXX.XXX.XXX.XXX -> YYY.YYY.YYY.YYY

ICMP TTL:114 TOS:0x0 ID:33547 IpLen:20 DgmLen:28

Type:8 Code:0 ID:63603 Seq:44542 ECHO

[Listing 6] Snort Alert

8/6/2005 4:57:00 AM 4 0 420 NNTPSVC N/A HOST23 Pickup Directory

Status Report. In the last 60 minutes, the pickup directory for virtual server 1 has

successfully received 0 articles.

8/6/2005 5:36:26 AM 2 0 8021 BROWSER N/A HOST23 The browser was

unable to retrieve a list of servers from the browser master \\OSIRIS on the network

\Device\NetBT_Tcpip_{78BEE437-352C-477E-9372-546DF7B52119}. The data is the error code.

8/6/2005 5:57:00 AM 4 0 421 NNTPSVC N/A HOST23 Post Status Report.

In the last 60 minutes, the virtual server 1 has successfully received 0 posts.

8/6/2005 5:57:00 AM 4 0 420 NNTPSVC N/A HOST23 Pickup Directory

Status Report. In the last 60 minutes, the pickup directory for virtual server 1 has

successfully received 0 articles.

8/6/2005 6:52:39 AM 2 0 8021 BROWSER N/A HOST23 The browser was

unable to retrieve a list of servers from the browser master \\ HOST23 on the network

\Device\NetBT_Tcpip_{78BEE437-352C-477E-9372-546DF7B52119}. The data is the error code.

8/6/2005 6:57:00 AM 4 0 421 NNTPSVC N/A C-HOST3 Post Status Report.

In the last 60 minutes, the virtual server 1 has successfully received 0 posts.

12

 Attack Scenarios

Release 4 includes data from ten different attack scenarios. Since the logs included for each

scenario are not consistent for all scenarios, only the following five shown in Table 1 were included

in this study.

Attack ID Scenario
Background

Attack Scale
Description

4s1 CGI Overflow 50%
Attacker passes an overflow string to a
CGI script on webserver

4s3
CGI Overflow

with Decoys
50%

Same as 4s1, but there are many decoys

that produce the same footprints in IDS

before and after the attack

4s4
Word Macro

Exfiltration
50%

Attack involves a Word document with a

malicious macro sent through email. The

macro is activated by one user and
uploads all files in the “Recent Files” list

to a remote ftp server

4s13
Firewall

Misconfiguration
None

An administrator accidentally brings
down the firewall, allowing

unauthorized traffic to get through to the

internal network for a couple of minutes

4s14 Phishing and PNP None

A user is lured to register a malicious
website and he uses the same

username/password to the Windows

machine on the network. The attacker
ssh to the Windows machine and

downloads a PNP exploit executable,

gaining a command shell. The attacker
then uploads all files to a remote ftp site.

[Table 1] Attack Scenarios [4]

Attacks 4s1, 4s3 and 4s4 have a background attack scale of 50%, which means that similar

attempts were observed and recorded in background data. This will make it harder to distinguish

the alerts and log entries of these three attacks from that of background data. Also, 4s3 involves

decoy attacks which produce the same footprints in the intrusion detection system (IDS).

13

Chapter 3. Text Classification of SKAION Log Messages

 Log Classification and Threat Detection

The problem of detecting malicious activities using unstructured log messages can be seen

as a problem of text classification. If we have a classifier that can determine with reasonable

accuracy whether a given log message is from normal data or intrusion data, then we can assume

that the same classifier can predict the class of an unseen future log entry as well. To build such a

classifier, we would need to extract the right information from the logs and feed them into the right

classification algorithm.

There have been many previous studies on text classification of standard natural language

corpus [20, 21, 22, 23, 24, 25], scanned OCR documents [28, 29], and social media data [30, 31,

32, 33]. System-generated messages, however, have a few different characteristics to the natural

language text that was analyzed extensively in the aforementioned studies. Some of these

characteristics are:

 A large portion of the message is repeated many times in a set of log entries

 The number of natural language words used in the text are relatively small

 Actual vocabulary size is large since log messages contain a large number of tokens

that are not words, but numbers or codes, such as the name of executables, status

codes, and error codes. Some are in binary, octal, or hexadecimal number formats.

 The messages may not follow standard grammar rules

14

Therefore, a careful examination is required in selecting the right algorithms and features

for the classification of machine-generated unstructured messages. With these differences in mind,

we approached this study through the following three steps:

1) Apply different classification algorithms on message text and measure the performance

of each algorithm. This will help determine which algorithm performs well for this task

and establish a baseline performance.

2) Identify features that may be useful for classification and extract those features from

the unstructured message. Repeat the same experiments as in (1) using a) the extracted

features only, and b) both features and the message together.

3) Analyze the results to determine which features and algorithms perform well in

problems of threat detection using unstructured log analytics.

 Classification Algorithms

Since text can be modeled as quantitative data with word frequencies, (we will see how

this is done in detail in Section 3.3), a wide variety of classification algorithms developed for

numerical or categorical data can also be applied to text classification. However, the high

dimensionality and sparsity characteristics of text data makes certain algorithms more suitable for

text data [13]. Among the common classification algorithms surveyed by different researchers [13,

14, 15] for text classification, three classification algorithms, the Naïve Bayes Multinomial (NBM),

Support Vector Machine (SVM), and Random Forest (RF) generally performed better in terms of

accuracy, precision and speed on the SKAION dataset (Section 5.3) The following sections briefly

describes the inner workings of these algorithms.

15

 Naïve Bayes Multinomial (NBM)

The Naïve Bayes is a probabilistic classifier

that models the distribution of the documents in each

class using a model based on independence

assumptions about the distributions of different

terms. Essentially, it computes the posterior

probability of a class based on the distribution of the

words in the document and ignores the actual position of these words [13]. The Bayes Multinomial

Model captures the frequencies of terms in a document and calculates the conditional probability

that the document D is from class 𝑐𝑖, using Bayes rule:

𝑃(𝐶𝐷 = 𝑐𝑖 | 𝐷 = (𝑇, 𝐹)) =
𝑃(𝐶𝐷=𝑐𝑖)∗𝑃(𝐷=(𝑇,𝐹) | 𝐶𝐷=𝑐𝑖)

𝑃(𝐷=(𝑇,𝐹))
 (Eq. 3.5.1.1)

≊ 𝑃(𝐶𝐷 = 𝑐𝑖) ∗ 𝑃(𝐷 = (𝑇, 𝐹) | 𝐶𝐷 = 𝑐𝑖),

 𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝐷, 𝐹 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑜𝑓 𝑇 𝑖𝑛 𝐷.

and,

𝑃(𝐷 = (𝑇, 𝐹) | 𝐶𝐷 = 𝑐𝑖) =
|𝐷|!

∏ 𝐹𝑖!𝑚
𝑖=1

∗ ∏ 𝑃(𝑡𝑗 ∈ 𝐷 | 𝐶𝐷 = 𝑐𝑖)
𝐹𝑗

𝑡𝑗∈𝑇 . (Eq. 3.5.1.2)

Compared to the multi-variate Bernoulli model, another model in the Naïve Bayes

classifier family, the Multinomial model, is known to work well with data of a large vocabulary

size [13].

 Support Vector Machine (SVM)

The main principle of SVM is to determine the separators in the search space which can

best separate the different classes. In Figure 2, there are three hyperplanes separating two classes,

[Figure 2] Hyperplanes separating two

classes [13]

[Figure 3] Hyperplanes separating two

classes [13]

16

represented by x and o. It is clear that hyperplane A provides the best separation because the normal

distance of any of the data points from it is the largest. The separator which represents the

maximum margin of separation has the most discriminating power [13]. The advantage of the

SVM method for text classification is that it is robust to high dimensionality [15]. Although it is

not necessary to use a linear function for an SVM classifier [16], it is very often used in practice

for its simplicity [13].

 Random Forest (RF)

The Random Forest is an ensemble classifier consisting of a collection of tree-structured

base classifiers. Let D be a set of documents, and Nf, features. The following algorithm builds a

Random Tree classifier [17]:

1. Generate k subsets of D { D1, D2, … Dk} by random sampling

2. For each dataset Dk, build a decision tree model by randomly sampling a subspace of

m dimension (m < Nf) from the features at each node. Compute all possible splits based

on those m features. The data partitions from the best split (e.g. the largest Gini measure)

are used to generate child nodes. Repeat until the stopping criterion is reached.

3. Combine k unpruned trees into a Random Forest ensemble and use the majority votes

among the trees to reach a classification decision.

The Random Forest ensemble method is known to increase the accuracy of single-decision

tree classifiers by returning a classification decision based on decisions from all decision trees [17].

17

 Text Transformation

In order to classify a log message using machine learning, the log message has to be

transformed into a numeric vector that can be used by classification algorithms. Without any

specific feature extraction, the message can be transformed into a word vector representation, [6]

where each log entry is represented as a vector of bits or integers that indicate whether the message

contains a specific word (a bit) or the frequency of occurrence of a word in the message (an integer).

In our experiments with the SKAION dataset using the WEKA machine learning tool [8], some

common text transformation techniques such as stemming, removing stop words, or using n-gram

features have no positive impact on the performance of the classifier with log messages. On the

other hand, TF-IDF transformation generally has a positive impact on classifier performance, as

long as it is used with appropriate attribute selection strategies. (Figure 3-7)

TF-IDF transformation is a common technique to compute the weighting of words. The TF-IDF

score of the word, j, in a document, d, is calculated with the following formula (Eq. 3.3.1 and Eq.

3.3.2) or some variation [8]. In our case, a document is a log entry and a word is any tokenized

string occurring in the set of log entries.

𝑇𝐹_𝐼𝐷𝐹 (𝑗, 𝑑) = 𝑇𝐹(𝑗, 𝑑) ∗ 𝐼𝐷𝐹(𝑗). (Eq. 3.3.1)

𝐼𝐷𝐹(𝑗) = log (
𝑁

𝐷𝐹(𝑗)
) . (Eq. 3.3.2)

𝑤ℎ𝑒𝑟𝑒, N is the total number of documents, DF(j)is the number of documents containing the word j,
and TF(j, d)is the frequency of the word j in a document d.

In the experiment with SKAION log data, the average precision of the three classifiers

improves by 2.3-2.7% if TF-IDF measures are used with attribute selection (Figure 3,

message_with_tf-idf_and_ig versus message_no_tf-idf_no_select). A 0.23% increase in precision

18

is observed when the TF-IDF measure is used with attribute selection based on Information Gain

(IG) compared to using attribute selection alone (Figure 3, message_with_tf-idf_and_ig versus

message_no_tf-idf_with_ig). The TF-IDF measure’s impact on classification performance is also

dependent on the classification algorithm. Figure 5-7 shows it has greater impact on the Naïve

Bayes Multinomial (NBM) and Random Tree (RT) algorithm than Support Vector Machine

(SVM). For NBM, using the TF-IDF measure increased precision and decreased recall (Figure 5,

message_with_tf-idf_and_ig versus message_no_tf-idf_with_ig), whereas the opposite effects are

observed for RT (Figure 7, message_with_tf-idf_and_ig versus message_no_tf-idf_with_ig). SVM

did not show significant changes in performance, based on the TF-IDF transformation (Figure 6).

 Attribute Selection

Attribute Selection is a technique for reducing dimensionality by removing non-

informative attributes selectively. Yang and Pederson report in their comparative study, that

attribute selections based on Information Gain and the chi-squared test are most effective for text

classification [9]. In our experiment with the SKAION dataset unstructured log analysis, both the

Information Gain attribute selection and chi-squared test increased the performance and reduced

the training and testing time by a similar level (Figures 3, 4).

 Information Gain

Information Gain measures the number of bits of information obtained for category

prediction by knowing the presence or absence of a term in a document [9, 10] (a log entry in our

case). For a classification with m classes (𝑐𝑖…𝑚) the Information Gain of term t is defined to be [9,

11]:

𝐺(𝑡) = − ∑ 𝑃(𝑐𝑖) ∗ log 𝑃 (𝑐𝑖)
𝑚
𝑖=1

19

 +𝑃(𝑡) ∗ ∑ 𝑃(𝑐𝑖|𝑡) ∗ log 𝑃 (𝑐𝑖|𝑡) 𝑚
𝑖=1 (Eq. 3.4.1)

 +𝑃(𝑡) ∗ ∑ 𝑃(𝑐𝑖|𝑡) ∗ log 𝑃 (𝑐𝑖|𝑡). 𝑚
𝑖=1

For each unique term in a set of log messages, we can calculate Information Gain and select

only the terms that are above a pre-defined threshold.

 Chi-squared Test

The Chi-squared statistic measures the dependency between a feature and the target and

can be compared to the chi-square distribution with one degree of freedom to judge extremeness

[9, 12]. Let 𝑡 be the term and 𝑐𝑖be the class. Then the Term Goodness measure is defined to be [9]:

𝜒2(𝑡, 𝑐𝑖) =
𝑁[𝑃(𝑡,𝑐𝑖)∗𝑃(𝑡, 𝑐𝑖)−𝑃(𝑡,𝑐𝑖)∗𝑃(𝑡,𝑐𝑖)]

2

𝑃(𝑡)∗𝑃(𝑡)∗𝑃(𝑐𝑖)∗𝑃(𝑐𝑖)
 , (Eq. 3.4.2)

 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠.

This value is zero when t and 𝑐𝑖 are independent. To select a feature, the chi-squared value

is calculated for each unique term and ranked. Figure 3 and 4 show the relative gain of time and

accuracy for a chi-test attribute selection (message_with_tf-idf_and_chi).

 Experimental Results – Text Transformation and Attribute Selection

Figures 3-7 are the results of experiments with different combinations of TF-IDF

transformations and attribute selections on unstructured log messages from the SKAION dataset.

The sample includes 500 log samples from each attack type and the same number of logs from

background data. Three classifiers, NBM, SVM, RT, were used in order to gauge the impact to

different classifiers.

20

Figure 3 shows the average performance of all three over five attack types. Overall, the

precision increased by 2.5% and recall decreased by 3.0% using TF-IDF measures with attribute

selection. A more significant impact on dimensionality reduction was observed in elapsed time for

training and testing. As shown in Figure 4, both IG (Information Gain) and the Chi-squared test

achieved about a 63% reduction in time. Time was measured by elapsed time for training the model

and 10-fold testing.

[Figure 3] Average Performance Based on TF-IDF and Attribute Selection.

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68

message_no_tf-idf_no_select

message_no_tf-idf_with_ig

message_with_tf-idf_and_chi

message_with_tf-idf_and_ig

message_no_tf-

idf_no_select

message_no_tf-

idf_with_ig

message_with_tf-

idf_and_chi

message_with_tf-

idf_and_ig

precision 0.63 0.66 0.66 0.66

specificity 0.59 0.60 0.62 0.62

recall 0.67 0.66 0.64 0.64

accuracy 0.63 0.63 0.63 0.63

precision specificity recall accuracy

[Figure 4] Average Time in ms for Training and testing (10 folds)

0.20 500.20 1000.201500.202000.202500.203000.203500.20

message_no_tf-idf_no_select

message_no_tf-idf_with_ig

message_with_tf-idf_and_chi

message_with_tf-idf_and_ig

message_no_tf-

idf_no_select

message_no_tf-

idf_with_ig

message_with_tf-

idf_and_chi

message_with_tf-

idf_and_ig

Total 2872.67 1018.60 1064.33 1034.27

message_with_tf-idf_and_chi

message_with_tf-idf_and_ig

21

[Figure 5] Average Performance - NBM

[Figure 6] Average Performance - SVM

0.50 0.60 0.70 0.80

message_no_tf-…

message_no_tf-…

message_with_tf-…

message_with_tf-…

precision specificity recall accuracy

0.50 0.55 0.60 0.65 0.70 0.75

message_no_tf-…

message_no_tf-…

message_with_tf-…

message_with_tf-…

precision specificity recall accuracy

[Figure 7] Average Performance - RT

0.50 0.55 0.60 0.65 0.70 0.75

message_no_tf-…

message_no_tf-…

message_with_tf-…

message_with_tf-…

precision specificity recall accuracy

22

Chapter 4. Feature Extraction

 SKAION Log Meta-data

Meta-data for a log message collected by SIEM typically consists of the time of collection,

source device, source application, collection agent ID, and other information related to the

collection and transfer of log entries to the central repository. Some meta-data, such as the source

device and application are important features in correlation and detection of security threats.

Conversely, collection time (the time at which the log entry is collected by the agent) is usually

used as a secondary time reference when generation time (time at which the log entry is generated

at the source) is not available.

The SKAION data is collected off-line using scripts and, thus includes little meta-data.

During aggregation and sampling of the log entries, the following meta-data (Table 2) are kept for

reference purposes. Only two of them: log source and message length, were used for classification.

 Named Entity Recognition (NER)

Named entity recognition in natural language processing refers to the process of

recognizing (or tagging) a sequence of words in a text that are names of things, such as people and

Feature Source Used for Classification

file_name Full path of the raw log file No

line_number Line number of the log entry in the raw log file No

message_length Number of characters in message in its original format Yes

log_source
Source device name concatenated by system, o/s or application
name

Yes

[Table 2] SAKION Log Meta-data

23

company names [18, 19]. In our context, we are interested in recognizing the things that can be

found in log messages that may help us to detect the security threats. For example, user name,

application name, host name, IP addresses, or any keywords indicating the status of the application

would be good indicators for log correlation and threat detection. In order to extract relevant

information from unstructured log messages, we first identified the category of things to be

recognized, and created the training data by manually tagging a set of sampled logs. Table 3

describes the entities of interest.

The CRF classifier from the Stanford NLP library [19] is used to create and train the model.

Tested on ten separately-sampled test data, the classifier tagged the interested entities with an

average accuracy of 0.9886. Table 4 shows the average performance per entity category.

Using a Conditional Random Field (CRF)-based statistical NER system to extract entities

has certain advantages over using pattern matching through regular expression. The CRF classifier

models the sequence of words, rather than individual words separately. Therefore, it recognizes

Entity Description
Used for

Classification

TIME
Date or time: year, month, day, hour, minutes, second, pre/post fix (AM,

PM) or time zone
No

APP
Any component of a program or system: o/s, application, session, function
name, etc.

Yes

USER User name, email address or other string containing user name Yes

HOST Host name, computer name or IP address Yes

KEYWORD
Words indicating the state or event: success, error, completed, started, failed,
etc.

Yes

[Table 3] Entities of Interest

Entity Class TP Rate FP Rate Precision Recall F Measure

APP 0.9853 0.01238 0.9789 0.9853 0.9821

HOST 0.9966 0.00073 0.9966 0.9966 0.9966

KEYWORD 0.979 0.00324 0.9906 0.979 0.9848

TIME 1 0 1 1 1

USER 1 0 1 1 1

Weighted Avg. 0.9886 0.0055 0.9886 0.9886 0.9886

[Table 4] Feature Extraction Performance using Stanford NER

24

the patterns of words occurring around the entity we are interested in. This allows the classifier to

also recognize the entity by the patterns of the sequence containing it, even if the word itself does

not exactly match the pattern of training data.

For example, if the CRF classifier is trained to recognize the grey parts in Listing 7 as

application names, then with high chance it also recognize “SNMP event log extension agent” as

an application name in Listing 8 even if the log entry was not included in the training data.

 Log Type Classification

Log type is a generic classification of log entry that indicates the purpose or logging level,

such as information, error, audit, warning, etc. This can be useful information for threat detection.

For example, we can have a hypothesis that if the number of error logs or alerts increases

significantly, then the system is not in a normal state. Two problems were found in the SKAION

dataset to determine log types reliably. First, some free text logs did not have this information at

all, whereas some structured logs contain log type as meta-data, such as Windows Event Type, or

Syslog Priority. Second, there is no standard way of labeling a log entry as one of the log types.

For example, Windows Event Type 1180 cannot be normalized as a category that is similar to a

[Listing 7] CRF Classifier Training Log Entries

[Listing 7] CRF Classifier Training Log Entries

The Windows Media Unicast Service started

The database engine 6.00.3940.0013 started

The File Server for Macintosh service was unable to contact a

domain controller

WMI ADAP was unable to process the PerfDisk performance library

due to a time violation in the open function

The Windows Media Unicast Service started

The database engine 6.00.3940.0013 started

The File Server for Macintosh service was unable to contact a

domain controller

WMI ADAP was unable to process the PerfDisk performance library

due to a time violation in the open function

[Listing 8] CRF Classifier Test Log Entry

[Listing 8] CRF Classifier Test Log Entry

 SNMP event log extension agent is starting

 SNMP event log extension agent is starting

25

Syslog Priority level, error. Therefore, we cannot reliably interpret the real importance, or priority

based on the meta-data.

To overcome these problems, this study determines the log types from the log message

using an SVM classifier. 200 log entries were sampled from each of the different class (five attack

data and one background data) and manually labeled. Using the WEKA machine learning library

[8], the SVM model is trained. In a standard 10-fold test, an average of 98.5% log messages were

labeled correctly. (See Table 5)

Log Type Class TP Rate FP Rate Precision Recall F Measure

AUDIT 0.998 0.013 0.986 0.998 0.992

INFO 0.971 0.007 0.966 0.971 0.968

ERROR 0.833 0.003 0.938 0.833 0.882

WARN 1 0 1 1 1

ALERT 0.984 0 1 0.984 0.992

Weighted Avg. 0.985 0.007 0.985 0.985 0.985

[Table 5] Log Type Classification

26

Chapter 5. Performance Analysis

 Tools, Libraries, and Programs

A custom-developed application written in Java, Generic Log Analyzer (GLA) is used to

perform all experiments described in this section. Figure 8 summarizes the data flow and

components of GLA, showing how the raw log files are processed, parsed, and sampled for the

training and testing of classifiers.

Meta-data,

Messages,

Features

Log

Aggregator

Parser
NER Model

Log Type

Classifier

Model

Sample

Generator

Sampled Log

– Messages

Only

Sampled Log

– Messages

and Features

Sampled Log

– Features

Only

Classifier

Training &

Testing Utility

Raw Log

Files

Cleaned,

Aggregated

Log Files

[Figure 8] Log Aggregation, Sampling, & Classification by GLA

[Figure 4] Log Aggregation, Sampling, & Classification by GLA

27

Other than JavaSE-1.8, the following external libraries and tools were used in the various

stages of the experiment and analysis:

 Stanford NER 3.5.22 (Command-Line Utilities, and Java-API)

 WEKA v.3.6.133 (GUI, Command-Line Utilities, and Java-API)

 R v. 3.2.04

 Rattle v.3.4.15

 Log Aggregation and Sampling

The collection of log data was pre-processed and aggregated into six different consolidated

log data files: one per attack scenario, and one background data without any successful attack.

Each line of the data file contains one log entry, including a text message and meta-data such as

the source file name, line number and message length. Each entry is also labeled with an attack ID.

The aggregated files are then parsed for feature extraction using NER and a log type classifier. The

models for the classifiers are trained separately, as described in Chapter 4.

To train and test the classifier, random samples of size ranging from 500 to 2000 were

selected from each attack type, and samples of the same size were selected from background data.

For example, a data file of sample size 500 contains 500 log samples from one of the attack types

2Licensed under the GNU General Public License (v2 or later)
3 © 1999-2015 The University of Waikato, Hamilton, New Zealand
4 © 2015 The R Foundation for Statistical Computing
5 © 2006-2014 Togaware Pty Ltd.

28

and 500 log samples from background traffic data. Table 6 shows the proportion of the sample size

to the population size.

Attack ID
Population

Size

Sample Size

500 1000 1500 2000

4s1 115242 0.43% 0.87% 1.30% 1.74%

4s3 112532 0.44% 0.89% 1.33% 1.78%

4s4 178895 0.28% 0.56% 0.84% 1.12%

4s13 146163 0.34% 0.68% 1.03% 1.37%

4s14 174450 0.29% 0.57% 0.86% 1.15%

b2 (background –

no attacks) 149284 0.33% 0.67% 1.00% 1.34%

[Table 6] Sample Size Proportion per Attack ID

The sampled logs are further processed into three different data sets:

1. Message-only data: contains a labeled free-text message from the log file. The

message is stripped of any string indicating time or date to remove the strong

correlation between the label and the time variable. This correlation is intuitive since

the log collection for a particular attack is a snapshot at a particular time during that

attack. However, we do not want the classifier model to fit to time/date strings.

2. Features-only data: contains the extracted features (user, application, host keywords)

and meta-data (message length, source system) without any original free-text message.

All features indicating time or file locations are removed for classification.

3. Message and Features data: contains the extracted features, meta-data, and free-text

messages. Both time/date strings within the message and the time variable extracted

from the messages are removed for classification.

29

 Classifier Performance

In order to find the best performing classification algorithms for unstructured log analysis,

a number of experiments were conducted with 12 different classifiers from the WEKA library [8]

over 3 different types of datasets: message-only, features-only, and both message and features. To

evaluate performance, the following five statistics were used:

 Accuracy =
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 Precision =
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 Recall =
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 Specificity =
∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 Time = elapsed time for training and 10 fold testing

Recall and Specificity are negatively related. Therefore, there would be a trade-off if we

focused more on one of these two measures. On the other hand, accuracy and precision are

positively related. For our evaluation, we preferred classifiers with little variance among the four

performance indicators, since larger variance means that a good performance in one of these

measures may lead to a larger error in the other measure. Time represents the relative complexity

of the classification algorithm and does not show any relation to other performance indicators in

terms of evaluation of the classification algorithm. Therefore, a complex classification algorithm

that takes longer to build and classify does not necessarily perform better.

30

Figure 9 and Table 7 show that the Naïve Bayes Multinomial (NBM), Voted Perceptron

(VP), and AD Tree (ADT) algorithms perform best for message-only data. These three algorithms

display high values of performance statistics with little variances among them. As expected, the

recall rate (red line) and specificity (black line) show a reverse correlation, while time (purple

dotted line) does not show any relation to performance.

[Figure 9] Classifier Performance – Message-only

Classifier Time (ms) Rank Avg. Perf Rank StdDev Rank

BayesNet 725.4 4 0.62718 6 0.13091 12

NaiveBayes 813.6 5 0.60039 11 0.03925 5

NaiveBayesMultinomial 543.8 2 0.63933 3 0.02054 2

SMO (SVM) 1862.2 7 0.65392 1 0.05622 10

VotedPerceptron 491.2 1 0.63341 4 0.02040 1

KStar 24293.2 11 0.63150 5 0.04439 8

JRip 3704.8 9 0.59777 12 0.02825 3

PART 2891.0 8 0.62200 9 0.02898 4

ADTree 5567.0 10 0.64516 2 0.04379 7

J48 1430.8 6 0.62205 8 0.04701 9

RandomForest 27013.4 12 0.62290 7 0.04183 6

RandomTree 718.8 3 0.61729 10 0.07722 11

Max 27013.4 0.65392 0.13091

Min 491.2 0.59777 0.02040

[Table 7] Performance Ranking – Message-only data

0

5000

10000

15000

20000

25000

30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average of accuracy Average of precision(0)

Average of truePositiveRate(0)=recall Average of trueNegativeRate(0)-specifity

Average of time

31

For features-only data, (Figure 10) Bayes Net (BN), Random Forest (RF) and Random

Tree (RT) show strong performance. Average time for training and testing is significantly less

when we use feature only data than when data is classified with free-text messages. Free-text

messages generally yield a large number of feature sets with counts of 120-160 after attribute

selection in 1000 sample entries, whereas features-only data has 12-18 attributes after the selection.

Both the NBM and VP algorithms which performed well for message-only data, can handle only

numerical data and therefore, was not tested for features-only or message-and-features data, as

they contain a large amount of categorical data.

[Figure 5] Classifier Performance - Features Only Data

 Time (ms) Rank Avg. Perf Rank StdDev Rank

BayesNet 107.2 1 0.64849 4 0.01826 5

NaiveBayes 126.2 2 0.65033 3 0.02408 6

SMO (SVM) 2822.4 5 0.63909 8 0.02987 7

KStar 3612.2 10 0.63727 9 0.03228 8

JRip 543.2 6 0.63344 10 0.00580 2

PART 583.4 7 0.64291 6 0.03508 9

ADTree 629.8 8 0.64610 5 0.09681 10

J48 126 4 0.64247 7 0.01552 4

RandomForest 3870.6 9 0.67660 1 0.01549 3

RandomTree 127.8 1 0.66212 2 0.00130 1

Max 3870.6 0.67660 0.09681

Min 107.2 0.63344 0.00130

[Table 8] Performance Ranking – Features-only

0

5000

10000

15000

20000

25000

30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average of accuracy Average of precision(0)

Average of truePositiveRate(0)=recall Average of trueNegativeRate(0)-specifity

Average of Time

32

For data with both messages and extracted features (Figure 11 and Table 9), tree-based

algorithms such as Random Tree (RT), J48 Tree (J48), and Random Forest (RF), performed better

than others. Generally, classifiers performed best on this type of dataset. As shown in Table 9, the

maximum performance reached 0.7054 for this dataset, compared to 0.6766 and 0. 6539 for

feature-only and message-only datasets, respectably. On the other hand, the classification of these

data sets took an average of 19.6% longer than classifying message-only data and 140% longer

than features-only data.

[Figure 6] Classifier Performance – Message-and-Features

Avg Time

(ms) Rank Avg. Perf Rank StdDev Rank

BayesNet 782.2 3 0.65171 8 0.03867 8

NaiveBayes 694.2 2 0.61956 10 0.01812 4

SMO (SVM) 4263.0 5 0.66904 6 0.03409 7

KStar 28340.2 10 0.65139 9 0.04034 9

JRip 4290.2 6 0.65369 7 0.03319 6

PART 5553.4 7 0.67764 5 0.02622 5

ADTree 6819.0 8 0.70541 1 0.16163 10

J48 1086.2 4 0.68278 3 0.00805 2

RandomForest 18604.0 9 0.69942 2 0.01480 3

RandomTree 678.8 1 0.67972 4 0.00274 1

Max 28340.2 0.70541 0.16163

Min 678.8 0.61956 0.00274

[Table 9] Performance Ranking – Message-and-Features

0

5000

10000

15000

20000

25000

30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average of accuracy Average of precision(0)

Average of truePositiveRate(0)=recall Average of trueNegativeRate(0)-specifity

Average of Time

33

 Performance by Sample Size

If the size of training data increases, would the classification performance increase as well?

To answer this question, we ran the classification with four different sample sizes: 500, 1000, 1500,

and 2000. It should be noted that the sample size refers to the number of log entries from each

attack type, and the same number from background data. That means the 4s1 attack type data with

sample size 500 contains 1000 log samples, half of which is from 4s1 and the other half from b1

(background data). Experimental data contained both message and extracted features. The Random

Tree classifier was used with an Information Gain attribute selection of threshold value 0 (only

features with a positive IG were selected).

Figure 12 displays the average performance for all five attack types. Generally, the

performance statistics increase from 500 to 1500, but fall at 2000 in average data. The reason for

[Figure 7] Performance by Sample Size, Avg. of 5 attack types

500 1000 1500 2000

_accuracy 0.6794 0.7058 0.7253 0.7071

_recall 0.6761 0.6800 0.7160 0.6911

_specificity 0.6826 0.7318 0.7345 0.7230

_precision 0.6807 0.7201 0.7295 0.7151

_time 688.8 2139.6 4814.6 7510.4

0

1000

2000

3000

4000

5000

6000

7000

8000

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

ti
m

e
in

 m
s

p
er

fo
rm

an
ce

sample size

_accuracy _recall _specificity _precision _time

34

the degradation at 2000 is not clear. The cause could be that the classifiers reached their maximum

predictive power on a given dataset between 1500 and 2000, or that the WEKA software reached

its maximum capacity in handling larger data. Time, shown in the purple line, seems to increase

exponentially. The four performance measures show different trends for each attack type, as shown

in Figures 13-18. The general trend of decrease at 2000 is consistent, except in 4s4, which

increased slightly at 2000 (Figure 15). The variance among the performance measures decrease as

sample size increases with the exception of 4s14. 4s14 shows the lowest level of variance at 500

and fluctuations as the sample size increases (Figure 17).

[Figure13] 4s1

[Figure 15] 4s4

0

1000

2000

3000

4000

5000

6000

7000

8000

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

500 1000 1500 2000

ti
m

e
in

 m
s

p
er

fo
rm

an
ce

sample size

_accuracy _recall _specificity

_precision _time

0

1000

2000

3000

4000

5000

6000

7000

8000

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

500 1000 1500 2000

ti
m

e
in

 m
s

p
er

fo
rm

an
ce

sample size

_accuracy _recall _specificity

_precision _time

[Figure 14] 4s3

[Figure 16] 4s13

0

1000

2000

3000

4000

5000

6000

7000

8000

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

500 1000 1500 2000

ti
m

e
in

 m
s

p
er

fo
rm

an
ce

sample size

_accuracy _recall _specificity

_precision _time

0

1000

2000

3000

4000

5000

6000

7000

8000

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

500 1000 1500 2000

ti
m

e
in

 m
s

p
er

fo
rm

an
ce

sample size

_accuracy _recall _specificity

_precision _time

35

 Performance Gain by Feature Extraction

Feature extraction is the process through which we can attain more obscure information

from unstructured logs. With the techniques described in Chapter 4, we extracted relevant

information from free-text messages, such as the application name, host, user name, time, and

keywords (Section 4.2). We also determined if the log message was an audit log, error log,

[Figure 18] Performance by Data Type

both features messages

_accuracy 0.72177 0.70567 0.65355

_recall 0.70502 0.68710 0.62014

_specificity 0.73820 0.72416 0.68518

_precision 0.73304 0.71363 0.70440

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

_accuracy _recall _specificity _precision

[Figure 17] 4s14

0

1000

2000

3000

4000

5000

6000

7000

8000

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

500 1000 1500 2000

ti
m

e
in

 m
s

p
er

fo
rm

an
ce

sample size

_accuracy _recall _specificity

_precision _time

36

information, warning or alert (Section 4.3). Using these features with the unstructured message

generally seemed to increase the classification performance as shown in Section 5.2 and 5.3. In

this section, we will more closely examine the performance gain achieved by feature extraction.

In order to compare the best performers among different data types, we selected only the

classifiers that performed best for specific data types: NBM and VT for message-only data, RT

and RF for feature-only data, and J48 and RT for the data with both message and features. We

used a sample size of 1500 which gave the best measures in previous experiments (Section 5.4).

For all data types, we used TF-IDF measures and IG attribute selection as it is shown to improve

performance (Sections 3.2 and 3.3). Figure 18 shows the average performance of the two classifiers

for each data type. As expected, using both a message and features still achieved the highest rate

of accuracy, recall, specificity and precision. Figure 19 details the differences between pairs of

data types. Compared with message-only data, data with both a message and features gained an

[Figure 19] Performance Gain by Feature Extraction

0.000% 5.000% 10.000% 15.000% 20.000% 25.000%

message to both

message to features

feature to both

message to both message to features feature to both

accuracy 6.822% 5.212% 1.610%

recall 8.488% 6.696% 1.792%

precision 2.864% 0.923% 1.941%

specificity 5.302% 3.898% 1.404%

accuracy recall precision specificity

37

average of 6.82% accuracy, 8.49% recall, 2.86% precision, and 5.30% specificity. This is a 23.5%

cumulative gain. However, this gain in performance came with the cost of time. As shown in

Figure 20, the data set with both features and messages took approximately 95% longer to build a

model and perform a 10-fold test with 3000 log entries. The values for features-only data in Figure

21 is biased because one of the algorithms used for the data type was RF, which usually takes

about 10 times longer than other algorithms when used on other data types. Figure 20 shows the

distribution excluding the time for RF, which is more comparable to other data types. The features-

only data contains only 19 to 33 attributes, allowing it to run much faster than other data types

with which the number of attributes range from 261 to 320. As shown in Figure 20, features-only

data shows a large improvement from message-only data and takes only a fraction of the time.

This is an important characteristic to consider for real-time analytics.

In the Receiver Operating Characteristic (ROC) curves in Figure 22, the curve for the data

type with both messages and features (red) exhibits the largest area under the curve, signifying a

[Figure 21] Avg. Time by Data Type

0

2000

4000

6000

8000

10000

12000

14000

4s1 4s13 4s14 4s3 4s4

both features messages

[Figure 20] Avg. Time by Data Type - RF

excluded

0

2000

4000

6000

8000

10000

12000

14000

4s1 4s13 4s14 4s3 4s4

both features messages

38

stronger predictive power. The features-only data type (blue) is next, while the message-only data

type (purple) has the smallest ROC area.

[Figure 22] ROC Curve by Data Types

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

FP

message features both

39

Chapter 6. Summary and Discussions

 Summary

From the experiments described in Chapter 3, 4 and 5 we know the following factors affect

classification performance for unstructured log analysis:

1) A classification algorithm’s performance is significantly affected by the nature of the

data preparation. If the prepared data contains only free-text log messages, algorithms

such as NBM or VT work well. If the data contains categorical features or is a mixture

of features and free-text messages, RT or RF show a robust performance. (Section 5.3)

2) Generally, the size of the training data is positively related to the classification

performance, until a peak is reached. This peak observed in the SKAION dataset is

between sample sizes of 1500 and 2000 for binary classification. (Section 5.4)

3) Identifying, extracting, and using features such as the application name, host name, IP

addresses, user name, and keywords from the unstructured log messages increased the

classification performance by 2.8-8.5%. (Section 5.5)

4) Using extracted features only, we can improve the classification performance by 0.93-

5.21%, and decrease time by 87%. These are useful characteristics in real-time

analytics (Section 5.5)

40

5) An attribute selection algorithm based on Information Gain or the chi-squared test

increased the average precision by 2.5% but decreased the average recall by 3.0%. This

also reduced time for training and testing by 63%. (Section 3.3)

6) TF-IDF transformation of the free-text messages has a small but positive impact if it is

used with the attribute selection algorithm. (Section 3.2)

 Discussion

Through this study, we discovered many factors that affect unstructured log analysis using

machine learning. Still, the results raise some questions: Is a 70-73% predictive performance

sufficient for security threat detection? Is a 2.8-8.5% performance gain worth the time and effort

of feature extraction? Is the performance peak with the training data size shown in Section 5.4

artificial or natural? We will discuss these questions in detail in this section.

1) Is a 70-73% predictive performance enough for security threat detection?

It is difficult to find a reliable SIEM benchmark for security threat detection, primarily

because SIEM is primarily used as a log collection and archiving tool as stated in Chapter 1. The

most common benchmarking metric for SIEM is Event Per Second (EPS), which indicates how

many logs the system can handle per second [38]. Since the availability of the KDD99 dataset in

1999 [35], more benchmarking studies have been done on network-based security detection

through the Intrusion Detection/Prevention System (IDS/IPS). [34, 36, 37]. Lippmann et al. found

18% of attacks were completely missed by a signature-based Network-based Intrusion Detection

System (NIDS) [34]. A more recent study with the same dataset reports detection rates ranging

from 5.4 to 99.4%, suggesting network-based IDS performs well for certain security threats, but

had little success on others [38]. This is because NIDS relies solely on network traffic analysis and

41

has little insight into the events occurring locally within a computer or non-network based attacks

such as email phishing or misconfiguration. On the other hand, SIEM can handle information from

almost any system, application, or connected device. Considering we achieved a 70-73%

prediction using unchartered information within free-text data for a very diverse range of systems,

it would not be a large stretch to assume that this approach has even more potential. With further

studies on intelligent correlation with the NIDS alerts, email filter logs, or a configuration

management system, the overall detection performance could improve significantly.

2) Is a 2.8-8.5% gain in performance worth the time and effort of going through feature extraction?

Many statistical analytics experts in the marketing area agree that using non-traditional

data sources such as social networks improved their predictions by 0.5-1.5% [39]. When analytics

have reached their maximum predictive potential with the existing data and techniques, adding

more data to gain another 1 or 2% could be a potential a competitive edge. Therefore, the 23.5%

of cumulative performance gain is not negligible. For our purposes, however, there are two more

important benefits of feature extraction, beyond the gain in performance metrics:

a. As described in (4) in Section 6.1, using features alone, we have better prediction than

message-only data and decreased the time by 87%. This opens up the possibility of real-

time unstructured log analysis using classifiers with a continuous learning capability.

b. The extracted features are important keys for the normalization of log messages and the

analysis of the relationships between log entries. This may allow us to further improve the

detection rate.

3) Is the performance peak with the training data size shown in Section 5.4 a natural limit for data?

42

In Section 5.4, we observed that a peak was reached at 1500 for most attack types. If this

is the natural limit for this type of data, adding more training data would not improve performance.

However, if this limitation is imposed by the software or hardware, then by using infrastructure

specialized for Big Data analytics, we may further improve the classification performance. Further

work is necessary to answer this question, because there currently seem to be no general rules or

guidelines on this subject. The relationship between training data size and performance appears to

be highly dependent on the specific dataset being studied [7, 26].

In general, performance analysis indicates a good potential for further studies. The

performance test results as well as the techniques described in this study should be useful

information to design more sophisticated feature extraction methodologies and algorithms that are

specialized in log classification for threat detection.

43

Chapter 7. Conclusions

This study systematically explores the possibility of utilizing techniques for text

classification, natural language processing, and machine learning in mining unstructured log

messages for the purposes of security threat detection. A number of experiments were conducted

on simulated attack data from SKAION datasets. In order to extract the relevant information from

the unstructured message, named entity recognition and generic text classification were used. The

extracted information was preprocessed into three different formats: free-text messages, extracted

features, and both messages and features. Through a number of experiments, the best classification

performance metrics (70-73%) were achieved on data including both free-text messages and

extracted features by using the Random Tree and J48 Tree algorithms along with TF-IDF

transformation and IG attribute selection. Using features only, we also achieved a similar 68-71%

performance metric, but in only 5.3% of the time duration. Therefore, feature extraction and text

classification of unstructured log messages demonstrate high potential for real-time log analysis

using machine learning in SIEM data. Moreover, the methods used this this study produces

encouraging results for further studies on automatic log normalization, intelligent feature

extraction and entity relationship analysis using Big Data analytics.

44

References

[1] FU, Q., LOU, J., WANG, Y. AND LI, J. 2009. Execution anomaly detection in distributed

systems through unstructured log analysis. In 2009 ninth IEEE international conference on data

mining, IEEE, 149-158.

[2] XU, W., HUANG, L., FOX, A., PATTERSON, D. AND JORDAN, M. 2009. Online system

problem detection by mining patterns of console logs. In Data Mining, 2009. ICDM'09. Ninth

IEEE International Conference on, IEEE, 588-597.

[3] AZODI, A., JAEGER, D., CHENG, F. AND MEINEL, C. 2013. A new approach to building

a multi-tier direct access knowledgebase for ids/siem systems. In Dependable, Autonomic and

Secure Computing (DASC), 2013 IEEE 11th International Conference on, IEEE, 118-123.

[4] Packet Clearing House, SKAION 2006 IARPA Dataset. http://pch.net.

[5] https://www.predict.org. Support for the Packet Clearing House SKAION 2006 IARPA

Dataset is provided by the U.S. Department of Homeland Security, Science and Technology

Directorate, PREDICT project.

[6] WEISS, S.M., INDURKHYA, N., ZHANG, T. AND DAMERAU, F. 2010. Text mining:

predictive methods for analyzing unstructured information. Springer Science & Business Media

[7] ZHU, X., VONDRICK, C., RAMANAN, D. AND FOWLKES, C. 2012. Do We Need More

Training Data or Better Models for Object Detection? In BMVC.

45

[8] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P. AND

WITTEN, I.H. 2009. The WEKA data mining software: an update. ACM SIGKDD explorations

newsletter 11, 10-18.

[9] YANG, Y. AND PEDERSEN, J.O. 1997. A comparative study on feature selection in text

categorization. In ICML, 412-420.

[10] MOULINIER, I., RASKINIS, G. AND GANASCIA, J. 1996. Text categorization: a

symbolic approach. In proceedings of the fifth annual symposium on document analysis and

information retrieval, 87-99.

[11] LEWIS, D.D. AND RINGUETTE, M. 1994. A comparison of two learning algorithms for

text categorization. In Third annual symposium on document analysis and information retrieval,

81-93.

[12] ZHENG, Z., WU, X. AND SRIHARI, R. 2004. Feature selection for text categorization on

imbalanced data. ACM Sigkdd Explorations Newsletter 6, 80-89.

[13] AGGARWAL, C.C. AND ZHAI, C. 2012. A survey of text classification algorithms. In

Mining text data, Springer, 163-222.

[14] KOTSIANTIS, S.B., ZAHARAKIS, I. AND PINTELAS, P. 2007. Supervised machine

learning: A review of classification techniques.

[15] JOACHIMS, T. 1997. Probabilistic of the Rocchio algorithm with TFIDF for text

categorization. In Proceedings of the 14th International Conference on Machine Learning,

Nashville, TN, USA

46

[16] AIZERMAN, A., BRAVERMAN, E.M. AND ROZONER, L. 1964. Theoretical

foundations of the potential function method in pattern recognition learning. Automation and

remote control 25, 821-837.

[17] WU, Q., YE, Y., ZHANG, H., NG, M.K. AND HO, S. 2014. ForesTexter: an efficient

random forest algorithm for imbalanced text categorization. Knowledge-Based Systems 67, 105-

116.

[18] FINKEL, J.R., GRENAGER, T. AND MANNING, C. 2005. Incorporating non-local

information into information extraction systems by gibbs sampling. In Proceedings of the 43rd

Annual Meeting on Association for Computational Linguistics, Association for Computational

Linguistics, 363-370.

[19] http://nlp.stanford.edu/software/CRF-NER.html

[20] AGGARWAL, C.C. AND ZHAI, C. 2012. Mining text data. Springer Science & Business

Media.

[21] BASU, T. AND MURTHY, C. 2012. Effective text classification by a supervised feature

selection approach. In Data Mining Workshops (ICDMW), 2012 IEEE 12th International

Conference on, IEEE, 918-925.

[22] MENG, W., LANFEN, L., JING, W., PENGHUA, Y., JIAOLONG, L. AND FEI, X. 2013.

Improving short text classification using public search engines. In Integrated Uncertainty in

Knowledge Modelling and Decision Making, Springer, 157-166.

47

[23] WEISS, S.M., INDURKHYA, N., ZHANG, T. AND DAMERAU, F. 2010. Text mining:

predictive methods for analyzing unstructured information. Springer Science & Business Media.

[24] YANG, Y. AND PEDERSEN, J.O. 1997. A comparative study on feature selection in text

categorization. In ICML, 412-420.

[25] ZHANG, W., YOSHIDA, T. AND TANG, X. 2011. A comparative study of TF* IDF, LSI

and multi-words for text classification. Expert Systems with Applications 38, 2758-2765.

[26] BANKO, M. AND BRILL, E. 2001. Mitigating the paucity-of-data problem: Exploring the

effect of training corpus size on classifier performance for natural language processing. In

Proceedings of the first international conference on Human language technology research,

Association for Computational Linguistics.

[27] ROSA, L., ALVES, P., CRUZ, T., SIMÕES, P. AND MONTEIRO, E. 2015. A comparative

study of correlation engines for security event management. In Iccws 2015-The Proceedings of

the 10th International Conference on Cyber Warfare and Security, Academic Conferences

Limited, 277.

[28] TAGHVA, K. 2009. Identification of Sensitive Unclassified Information. In Computational

Methods for Counterterrorism, Springer, 89-108.

[29] TAGHVA, K., BORSACK, J. AND CONDIT, A. 1996. Effects of OCR errors on ranking

and feedback using the vector space model. Information processing & management 32, 317-327.

[30] GATTANI, A., LAMBA, D.S., GARERA, N., TIWARI, M., CHAI, X., DAS, S.,

SUBRAMANIAM, S., RAJARAMAN, A., HARINARAYAN, V. AND DOAN, A. 2013. Entity

48

extraction, linking, classification, and tagging for social media: a wikipedia-based approach.

Proceedings of the VLDB Endowment 6, 1126-1137.

[31] AGICHTEIN, E., CASTILLO, C., DONATO, D., GIONIS, A. AND MISHNE, G. 2008.

Finding high-quality content in social media. In Proceedings of the 2008 International

Conference on Web Search and Data Mining, ACM, 183-194.

[32] BECKER, H., NAAMAN, M. AND GRAVANO, L. 2010. Learning similarity metrics for

event identification in social media. In Proceedings of the third ACM international conference

on Web search and data mining, ACM, 291-300.

[33] PANG, B. AND LEE, L. 2008. Opinion mining and sentiment analysis. Foundations and

trends in information retrieval 2, 1-135.

[34] LIPPMANN, R., HAINES, J.W., FRIED, D.J., KORBA, J. AND DAS, K. 2000. The 1999

DARPA off-line intrusion detection evaluation. Computer networks 34, 579-595.

[35] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[36] PFAHRINGER, B. 2000. Winning the KDD99 classification cup: bagged boosting. ACM

SIGKDD Explorations Newsletter 1, 65-66.

[37] ELKAN, C. 2000. Results of the KDD'99 classifier learning. ACM SIGKDD Explorations

Newsletter 1, 63-64.

[38] HOQUE, M.S., MUKIT, M., BIKAS, M. AND NASER, A. 2012. An implementation of

intrusion detection system using genetic algorithm. arXiv preprint arXiv:1204.1336.

49

[39] HILL, S., PROVOST, F. AND VOLINSKY, C. 2006. Network-based marketing:

Identifying likely adopters via consumer networks. Statistical Science 256-276.

50

Curriculum Vitae

Candace S. Suh-Lee

Department of Computer Science

Howard R. Hughes College of Engineering

University of Nevada, Las Vegas

Tel: (702) 912-8238

Email: suhlee@unlv.nevada.edu

Research Interest

Cybersecurity, Big Data Analytics, Security Information and Event Analysis, Security Metrics,

Network Security, Natural Language Processing, Predictive Analytics

Education

 M. Sc., Computer Science, University of Nevada, Las Vegas, (Expected Spring 2016)

Thesis topic: Mining Unstructured Log Messages for Security Threat Detection

Advisor: Dr. Yoohwan Kim, Dr. Ju-yeon Jo

 Hon. B.Sc., Computer Science, University of Toronto, Canada, 2002

Graduate with High-Distinction, University of Toronto Scholar, 2000, 2001, 2002

51

Publications

 Suh-Lee, Candace, and Ju-yeon Jo. "Quantifying security risk by measuring network risk

conditions." Computer and Information Science (ICIS), 2015 IEEE/ACIS 14th

International Conference on. IEEE, 2015.

Academic Positions

 Research Assistant, Department of Computer Science, University of Nevada, Las

Vegas, 2014-Current

Conduct research under the guidance of the faculty advisor on following areas:

Security Information and Event Analysis Using Big Data Analytics - the increase of system

complexity, data size, and processing power caused an explosive increase of amount of

system-generated log messages. Although the messages contains many useful information

for security threat detection, the complexity and volume make it very difficult for even

most trained analysts to find the right information. While the conventional security event

management tools fall short in terms of utility and cost-effectiveness, this research explores

a new paradigm in security event analysis using natural language processing, statistical

pattern recognition, machine learning and Big Data analytics. The aim is to increase

accuracy, sensitivity and specificity of the security tools and to make log analysis fast

enough for real-time processing.

Security Risk Quantification - no more "High/Medium/Low." After decades of intensive

investment and specialization, it is about the time that we have the meaningful and concise

numerical representation of the security risk. This research aims to come up with a set of

numbers that objectively represent various aspects of information security risk arising from

52

the underlying technologies. Much like ROI or ROE in the financial accounting, these

security indices can be tracked, compared, and analyzed providing essential information in

decision making.

Awards/Scholarship

 2nd Place, Poster Science and Engineering, Graduate and Professional Student

Association Research Forum, University of Nevada, Las Vegas, 2015

 GPSA Graduate Research Sponsorship Award, University of Nevada, Las Vegas, 2015

 University of Toronto Scholar’s Award, 2000, 2001, 2002

Posters/Presentations

 “Risk Prioritization of Network Vulnerabilities” Computer and Information Science

(ICIS), 2015 IEEE/ACIS 14th International Conference, Las Vegas, 2015

 “Quantifying security risk by measuring network risk conditions” GPSA Annual

Research Forum, University of Nevada, Las Vegas, 2015

 “Attack Simulation based on Network Vulnerability Risk” Howard R. Hughes College of

Engineering Graduate Poster Competition, University of Nevada, Las Vegas, 2015

Industrial/Consulting Positions

 Principal Consultant, CSL Security Consulting Co., 2014-Current

Developed a series of security questionnaires (740+ questions) for all levels of workforce,

in order to evaluate the efforts required to migrate to NERC CIP v.5 standards for a large

power generation client; Developed and documented IT Security roadmap for three year

horizon, discussing the risk management, IT governance, required technical controls, and

53

capital/operating cost projection; Established Information Security Programs by selecting

security frameworks (ISO/IEC 27001/2), developing policies, standards, and procedures,

and obtaining approvals from the senior management

 IT Security Manager, Liberty Algonquin Business Services, 2013-2014

Developed and documented IT Security roadmap for three year horizon, focusing on

technology risk management and capital/operating cost projection; Presented IT Security

roadmap to IT Steering Committee, securing 100% budget approval and senior

management support; Established 3-rd party 24/7 monitoring of network security events

with 3rd party SOC; Developed a comprehensive corporate-wide information security

program based on ISO27001/2 standards; Supported annual financial and SOX audit by

interfacing with external auditors and internal business units; Co-drafted the privacy policy

compliant with the different privacy regulations of 9 U.S. states and provinces.

 Manager, Network and Security Services, AESI Acumen Engineering Solutions

International Inc., 2011-2013

Developed Smart Grid Cyber Security Master Plan enabling the client to win the DoE’s

Smart Grid Stimulus Grant; executed the plan by implementing network segregation, SIEM,

AAA, Firewall and PKI. Conducted security risk assessment, vulnerability assessments,

and security reviews for all new devices and applications commissioned for the Smart Grid;

Developed on-going security programs for the risk management, identity and access

management, patch management, vulnerability management, and security incident

handling; Conducted Security Gap Assessment and Benchmarking Analysis for a large

power utility company; Conducted SCADA security assessment for a large power company

and benchmarked their security posture against 14 comparable entities. Conducted gap

54

analysis and program maturity assessment based on Electricity Sector Cyber Security

Capability Maturity Model issued by DoE; Collaborated in development of risk-based

assessment methodology for identifying critical assets and critical cyber asset for Montana-

Alberta 230Kv Tie-Line project; Developed an ICS (Industrial Control System) Security

Framework for the city transportation commission operating subway, bus, and light railway

system

 Senior IT Security Specialist, Hydro One Networks Inc., 2008-2011

Provided consulting to various business units in developing and maintaining the procedural

and technical controls for NERC CIP, Bill 198, ISO/IEC 27001/2 and NIST 800; Initiated

and ran security programs for information/system security, regulatory compliance, risk

management, and business continuity; Conducted periodic/ad-hoc IT security reviews and

reported results with metrics and recommendations; Provided project management support

for various security projects; Implemented a Compliance Management System for

regulatory compliance for transmission and distribution operation.

 Systems Engineer/Officer – Transmission Operating Tools, Hydro One Networks

Inc., 2004-2008

Provided day-to-day support for main computer system for power grid operation;

Responded to trouble calls and provided 2nd-level support for SCADA, ICCP, and FEP

components; Participated as the SCADA SME in Cyber Security Compliance Project, EMS

Software Upgrade, Control Room Hardware Refresh, and Backup Control Center

Activation.

 Assistant Systems Engineer/Officer - Operations Tools & Facilities, Hydro One

Networks Inc., 2002-2004

55

Developed real-time power system applications to increase the productivity and

operational accuracy in the Control Room, using Java, C++, J2EE, JMS and JRE

technologies (i.e. Automatic Capacitor Switching, Multiple Tap Changer Control, ICCP

Hold-offs, Historical Data Web-reporting, One-click Control Room Information System);

Enabled real-time data exchange with 25+ market participants (IESO, OPG, NYPA, and

other electricity distributors), by initiating, implementing, supporting, and troubleshooting

ICCP communication channels; Enhanced system availability for the in-house developed

power system applications, by creating configurable, transparent, automatic logging and

security frameworks, using Java, C++, JRE, JMS, JAAS, and AOP technologies

Professional Certifications/Memberships

 Member of American Gas Association Cyber Security Task Force 2013

 Certified Information System Auditor (CISA) 2012

 Certified Information System Security Professional (CISSP) 2009

 GIAC Security Essentials Certification (GSEC) 2009

Interests

 Safe and Secure Online: Volunteering to help children learn how to protect themselves

online

 Golf, Hiking, Kendo

	5-1-2016
	Mining Unstructured Log Messages for Security Threat Detection
	Candace Suh-Lee
	Repository Citation

	tmp.1473720850.pdf.dRYeT

