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Abstract

This dissertation examines the concurrency approaches for a standard, unmodified B-Tree which

is  one  of  the  more  complex  data  structures.   This  includes  the  coarse  grained,  fine-grained

locking, and the lock-free approaches.  The basic industry standard coarse-grained approach is

used as a base-line for comparison to the more advanced fine-grained and lock-free approaches.

The fine-grained approach is explored and algorithms are presented for the fine-grained B-Tree

insertion and deletion.  The lock-free approach is addressed and an algorithm for a lock-free B-

Tree  insertion  is  provided.   The  issues  associated  with  a  lock-free  deletion  are  discussed.

Comparison trade-offs are presented and discussed.  As a final part of this effort, specific testing

processes are discussed and presented.
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1.0  Chapter 1,

Introduction

 1.0 Chapter 1, Introduction

The  ubiquitous  available  multi-core  resources  must  be  effectively  applied  to  the  increasing

demand  brought  on  by  the  performance  requirements  from more  complex  applications  and

expanding  data  sets.   Such  applications  are  often  heavily  dependent  upon  concurrent  data

structures.   To meet  this  demand,  effectual  concurrency must  be applied to  more efficiently

utilize the applicable data structures.

This effort focuses on concurrency approaches for implementation of a B-Tree [1][2] which is a

fairly complex data structure.  In their 1992 text, J. Gray and A. Reuter claim that B-Trees are

the most important access path structure in database and file systems  [3].  In this context, the

complexity of the B-Tree data structure is associated with the localization of the changes when

modifying the data structure.  A more straight-forward data structure, such as a linked list or

hash-table,  can  be altered  (i.e.,  insertion  or  deletion)  by modifying a  very limited  subset  of

directly  adjacent elements.   For a more complex data structure,  such modify operations may

impact  additional  elements  at  multiple,  varying  non-adjacent  levels  within  the  hierarchical

structure.   The  specifics  of  B-Tree  modification  processes  are  addressed  in  the  subsequent

sections.

There are many variants for B-Trees (B+-Trees  [2], B*-Trees  [4], and Blink-Trees  [5])  and this

effort  focuses on the standard, unmodified B-Tree structure as fully described in subsequent

sections.  B-Trees are typically used for large-block storage systems including file and database
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systems.  Concurrent operations on B-Trees have been studied to improve overall performance

and  address  multi-user  functionality.   A  B+-Tree  is  a  B-Tree  to  which  an  additional  level

containing all the keys is added at the bottom level with those leaves forming a linked-list.  The

redundant  copies  of  the  keys  in  the  interior  of  the  B+-Tree  provide  additional  options  for

addressing concurrency at the cost of additional space.

The  concurrency  environment  being  addressed  herein  is  multiple,  simultaneously  executing

threads on a shared memory machine.  The specific concurrency approaches for this environment

are summarized in the following sections.

 1.1 B-Tree Description

A B-Tree is  a  self-balancing tree-based data  structure that  stores  sorted data  and allows the

standard search, insert, and delete operations in logarithmic time.

The literature is not consistent regarding the terminology associated with B-Tree definitions [6].

Some researchers define a B-Tree in terms of the minimum numbers of keys, referred to as order

[7].   Other  researches,  particularly for concurrent  research activities,  have define B-Trees in

terms  of  the  maximum  number  of  child  pointers  referred  to  as  degree  [8].   To  maintain

consistency with similar research, the B-Tree definition herein uses the degree terminology.

The degree,  degree, of a B-Tree is the maximum number of links (pointers) per node.  The B-

Tree maintains the basic binary search tree properties with the primary generalization that a node

can have degree-1 keys with up to degree links.  Once instantiated, the degree is fixed.

For example, the layout for a partially populated B-Tree with a degree of six is as follows:

2



In a more populated B-Tree,  there could be many additional levels than shown in the figure

above.  The B-Tree always has a single root node.

The degree is configurable, but fixed in a specific implementation.

The minimum degree for a B-Tree is not explicitly defined in the technical literature.  From a

practical standpoint, a degree of one would be a linked list, and a degree of two would be a

standard binary tree.  A degree of three would could be considered a B-Tree, however such a

3

Figure 1: Simple B-Tree Example
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The complete properties for a standard B-Tree include:

• All the leaf nodes must be at same level

• All nodes except root must have at least (degree/2-1) keys and maximum of 

degree-1 keys

• All non-leaf nodes except root (i.e., all internal nodes) must have at least degree/2

children

• If the root node is a non leaf node, then it must have at least ⌈ degree /2 ⌉−1  

children

• A non-leaf node with k keys must have k+1 number of children

• All the key values within a node must be in order, typically ascending

• The height of a B-Tree is:

height:   height ≤ ⌊ log degree ( degree + 1
2 ) ⌋



configuration is typically referred to as a 2-3 tree [9] and a degree of four is usually referred to as

a 2-3-4 tree  [9].  While such smaller degree B-Tree’s would be technically valid, they do not

represent the more general case.  In this effort, a more practical minimum is considered five.

In the face of active on-going modify operations, B-Trees typically do not require re-balancing

as  frequently  as  other  types  of  self-balancing  trees  (i.e.,  Red-Black  trees  and  AVL  trees).

However, re-balancing may require access to nodes at multiple non-adjacent levels which can

present additional challenges for concurrent implementations.

 1.2 Previous Work

The initial approach for concurrency in B-Tree’s was proposed by Samdi  [10].  A variant on

coarse-grained locking which uses semaphores with the impacted section of the B-Tree being

exclusively locked.  This approach blocks all other operations including searching.

More  recent  work  on  concurrent  operations  for  B-Trees  have  primarily  focused  on  B-Tree

variants:  B*-Trees,  B+-Trees,  Blink-Trees,  and  prefix  B-Trees  [11].   Such  variants  alter  the

problem and require that, in addition of the B-Tree structure, all the keys be stored in leaf nodes

(often redundantly).   The non-leaf internal  nodes contain  key values and applicable  pointers

which are used in traversing downward.  As another variant, the leaf nodes (all at the same level)

form a linked list.  Broadly, these approaches trade additional memory for implementation speed

and simplification of concurrency by allowing concurrent threads the option of “going-around”

by taking a path from a previous nodes unblocked left link down to the bottom of the tree and

then using the linked list to find the key.   This allows updates to be done to the internal node

structure while still allowing access to all the keys contained at the leaf level.
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For example, the layout for a B+-Tree with a degree of six would be as follows:

In a more populated B+-Tree, there would be many additional levels than shown.  This approach

uses additional memory related to the redundant storage of keys and the associated pointers.

Ellis [12] presented a concurrency solution for 2-3 trees.  Several methods are used to increase

the concurrency possible, and it was claimed these are extendable to B-trees.  No algorithms for

concurrent B-Trees were presented.

The Blink-Trees [13] also use an additional pointer field to each node that points to the next node

at the same level of the tree forming a linked-list.  However, the algorithms were simplified and

latches used, instead of locks, to improve performance.

Previous work on lock-free trees include Fraser’s  lock-free balanced tree  [14] which utilizes a

transactional memory subsystem.  This effort simulated the transactional memory in software

which incurred a performance penalty.

Braginsky and Petrank present a lock-free B+-Tree [15].  For a B+-Tree, the leaves contain all

the keys.  The redundant copies of the keys in the internal nodes are used for navigating through

the tree.  Keys in internal nodes are used only as guides to the correct leaf nodes.  This redundant

storage simplifies the B+-Tree concurrency operations by allowing changes to the internal nodes

and changes to the leaf nodes to be performed independently.

5
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 1.3 Contributions

In this effort, a series of algorithms and implementations for concurrent B-Tree’s are provided.

Due to the relative complexity, B-Tree implementations are not commonly available.  As such, a

fully  polymorphic  coarse-grained  B-Tree  implementation  using  C++11/17  primitives  was

developed and is provided as a reference.

The fine-grained locking approach is thoroughly explored and also includes a fully polymorphic

coarse-grained B-Tree  implementation  using  C++11/17 primitives  for  both  the  insertion  and

deletion operations.

A lock-free insertion algorithm and fully polymorphic coarse-grained B-Tree implementation

using C++11/17 primitives is provided.

A series  of  performance  comparisons  are  presented.   This  addresses  the  trade-offs  between

algorithm complexity, implementation ease, and overall performance and throughput.

To complete the overall effort, a comprehensive testing methodology is presented.
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2.0  Chapter 2,

Summary of Concurrency Approaches

 2.0 Chapter 2, Summary of Concurrency Approaches

Broadly speaking, there are two distinct approaches for concurrency.  The distributed approach

moves  parallel  computations  to  different,  connected  computers  [16].   This  has  some  key

advantages including access to a potentially extremely large number of different computers.  The

code and the applicable  data  must  be passed between the various  computers  performing the

calculations.  The communication speed becomes a limiting factor in the distributed approach.

Shared data structures also present additional challenges.  The application interface has been

well-developed and embedded into libraries such as the Message Passing Interface (MPI) [17].

The other common approach is a shared memory environment on a multi threaded processor.  In

such an environment, a processor will simultaneously issue instructions from multiple threads in

a  single  cycle  [18].   This  approach  is  limited  by  the  number  of  available  cores.   Each

simultaneously executing thread has immediate access to shared memory data structures.  Such

access  presents  challenges  for  ensuring  safe  access  and  correct  manipulation  during

modifications.

For this research project, the focus is a shared memory environment (i.e., multi-core computing).

A  shared  memory,  concurrent  data  structure  object  must  allow  safe  access  for  multiple,

simultaneously executing threads performing an on-going series of various operations (search,

insert, and/or delete) that may alter the data structure in indeterminate ways.
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The approaches to shared memory concurrency [19] include

• Coarse-Grained Locking

• Fine-Grained Locking

• Lock-Free

• Transactional Memory

The coarse-grained [20] and fine-grained [21] locking are traditional approaches with the lock-

free [22] approach being relatively new and a current research focus.  These approaches are often

implemented for basic data structures such as linked lists, queues, and stacks.

The transactional memory [23]  approach typically relies on hardware to assist with the locking

of  low-level  load  and  store  operations  to  support  the  higher-level  more  complex  software

operations.   Such exotic hardware is  not generally available.   A software implementation of

transactional memory is possible with a significant performance penalty.   Due to the lack of

accessible hardware, the transactional memory approach is not addressed in this effort.

 2.1 Coarse-Grained Locking

The most basic approach for handling concurrent data structure access is coarse-grained locking.

This approach involves locking the entire data structure,  performing the operation, and when

complete, unlocking the entire data structure.  This approach is fairly straight-forward and is

commonly used.

A coarse-gained polymorphic implementation was completed.  The implementation is done in

C++11/17 using  the  relatively  new concurrency  features  (e.g.,  threading library,  mutexes  as

primitives).  There are no known C++11/17 reference implementations.  Such a coarse-grained

implementation is not new work and is not a core part of the research.  It is only included for a

baseline  reference  and  for  further  comparisons.   Additionally,  the  typical  implementation

approach  will  be  adjusted  from  a  recursion  to  a  top-down,  proactive  splitting  process  as

suggested by Cormen [24].
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 2.2 Fine-Grained Locking

The next approach is fine-grained locking.  This approach locks a minimal subset of the data

structure  [18].   As such,  operations  on different  subtrees  of the data  structure may continue

simultaneously  unimpeded.   Fine-grained  locking  can  improve  the  overall  throughput  of  a

concurrent system.  However, this increases the complexity and requires addressing potential

deadlock, live-lock, and starvation issues.  For a B-Tree, the scope of that locking may be a non-

trivial subsection of the data structure which negatively impacts the performance and adds to the

overall  complexity.   Additionally,  fine-grained locking adds additional  run-time overhead as

compared to coarse-grained locking due to the lock acquire and lock release operations.  For a no

or limited contention environment this additional locking overhead typically causes the coarse-

grained implementation to provide better performance.

A  complete  custom,  fine-grained  polymorphic  implementation  is  given  that  addresses  the

potential  deadlock,  live-lock, and starvation issues.  The implementation will  be done in C+

+11/17  using  the  relatively  new  concurrency  features  (e.g.,  threading  library,  mutexes  as

primitives).  This is compared with the coarse-grained locking implementation to determine and

quantify the performance and complexity trade-offs associated with such complex concurrent

data  structure  implementations.   There  are  no  known  B-Tree  fine-grained  reference

implementations.

 2.3 Lock-Free

The previously outlined approaches for handling concurrency use locks to synchronize access to

the data structure or subsections of the data structure.  If one thread attempts to acquire a lock

that is already held by another thread, the thread will block until the lock is free.  This blocking

can be undesirable.  When a thread is blocked, it cannot accomplish useful work.

Lock-free programming is concurrent programming without locks.  More formally, a lock-free

implementation  of  a  concurrent  data  structure  is  one  that  guarantees  that  some  thread  can

complete an operation in a finite number of steps regardless of the execution of the other threads.

Lock-free  programming  uses  atomic  operations,  such  as  compare-and-swap  to  maintain  a
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consistent state.  The lock-free approach has the potential to improve overall system throughput,

especially for high contention environments and has the desirable liveness property.  A lock-free

data structure can improve performance on multi-core processors because access to the shared

data structure does not need to be serialized to stay coherent.  Lock-free implementations are

very  difficult  and  not  always  possible.   The  complexity  of  lock-free  can  negatively  impact

performance, particularly for no or limited contention environments.

A polymorphic  lock-free  B-Tree  insertion  algorithm was  developed  and  implemented.   The

implementation will be done in C++11/17 using the relatively new concurrency features.  The

issues associated with a lock-free delete are addressed.  This implementation will be compared

with  the  coarse-grained  and  fine-grained  implementations  to  quantify  the  performance  and

complexity trade-offs associated with the lock-free approach.  There are no known lock-free B-

Tree implementations.

 2.3.1 Lock-Free Primitive

The primary primitive for lock-free algorithms is the compare-and-swap (CAS) instruction [22].

The CAS instruction is atomic in that no other concurrently executing instructions can interrupt

or interfere with this operation.  More specifically, the CAS instruction compares the contents of

a single memory location with an expected value and, only if the expected value and current

value are the same, modify the contents of the single memory location to the set the new value.

If the actual value does not match the expected value,  another thread has changed the value

which indicates the status of the current has been changed.  The change means the current action

must be re-evaluated before proceeding.  This typically requires repeating the in-process action

from the beginning.

 2.3.2 Levels of Lock-Freedom

Maurice  Herlihy  introduced  a  wait-free  hierarchy  [22] which  classifies  multiprocessor

synchronization primitives and is further detailed in his text [19].  The hierarchy is summarized

in the following sections.
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 2.3.2.1 Wait-Free

A wait-free concurrent implementation guarantees that any thread can complete an operation in a

finite number of steps, fully independent of other on-going concurrent operations.  This is the

strongest level of lock-freedom, but is often not possible.  Wait-freedom provides guaranteed

system-wide  throughput  and  starvation-freedom.   Since  there  is  no  locking,  the  inherent

problems of locks, including deadlock and priority-inversion, are avoided.

 2.3.2.2 Lock-Free Approach

A lock-free or non-blocking approach to addressing shared access to mutable objects guarantees

that if there is an active thread performing an operation on the object, some operation, by the

same or another thread, will complete within a finite number of steps regardless of other threads’

actions.  Wait-freedom provides guaranteed system-wide throughput.  The lock-free approach is

inherently immune to deadlock and priority inversion.  A wait-free algorithm is lock-free but a

lock-free algorithm may not be wait-free.

 2.3.2.3 Obstruction-Free

An implementation is  obstruction-free if, starting from any reachable configuration, any thread

can finish in a bounded number of steps if all of the other processes stop [25].  No thread can be

blocked by delays or failures of other threads.   Obstruction-free does not guarantee progress

while  two  or  more  threads  run  concurrently  so  while  deadlock  is  not  possible,  livelock  is

possible.  This is the weakest form of lock-freedom.  A lock-free algorithm is obstruction-free

but an obstruction-free algorithm may not be lock-free.

 2.3.3 ABA Problem

The ABA problem [26] can occur in multi-threaded algorithms, especially lock-free algorithms,

particularly in high-contention environments.  The ABA problem can happen when two threads

that are attempting to simultaneously alter a mutable shared data object interleave execution.
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For example,

• An initial thread, ti, begins the process of updating a node, n0, in a data structure and is

preempted before completing its action.

• Another thread, tn, finds and deletes node, n0, from the data structure.

• Thread, tn, or possibly another thread, allocates a new node, n1, and inserts the new node

into  the  data  structure.   The  new node is  placed  into  the  data  structure  at  the  same

location as the previously deleted node.

◦ By chance, the new node has the same address as the old node.

• The  initial  thread,  ti,  resumes  execution  and  sees  the  same address  and  is  unable  to

determine  that  the  data  structure  has  been  changed  during  it  preemption,  potentially

resulting in invalid operations (since the node has been changed).

The common methods to address the ABA problem include [27]:

• Tagging

• Intermediate Nodes

• Deferred Deletion

The deferred deletion is utilized as the most straight-forward and robust technique in this specific

application.
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3.0  Chapter 3,

B-Tree Operations

 3.0 Chapter 3, B-Tree Operations

This chapter outlines the standard B-Tree insert, search, and delete operations.  These basic non-

concurrent approaches form the foundation for the concurrent algorithms.  Specific algorithms

for each operation and locking strategy are provided in the applicable subsequent sections.

 3.1 Standard Insertion Approach

The standard B-Tree insertion approach uses a typical  recursive descent process in a similar

manner as a Binary Search Tree insertion [28].  This involves recursively traversing the B-Tree

to the appropriate leaf node.  As needed, split the node and move a value up to the preceding

node progressing all the way to the root if needed.

A simple sketch of the standard B-Tree insertion approach to insert a value, key, into a B-Tree of

degree, degree, is as follows:

1. If empty, create new root, insert key and terminate.

2. From the root node, traverse the B-Tree to find the leaf node to which key should should

be added.

3. Add key to this node in the appropriate place among the existing values (sliding existing

keys as needed).  Since this is a leaf node, there are no child pointers to adjust.

4. Check key count
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1. If the leaf node is not full (e.g., all key slots filled), then terminate.

2. If the leaf node is full (e.g., all key slots filled), split the node into three parts:

1. Left: the first (degree-1)/2 values

2. Middle: the middle value (position 1+((degree-1)/2)

3. Right: the last (degree-1)/2 values

The  left  and  right  will  have  the  minimum  necessary  number  of  key  values

(degree-1)/2 required and made into individual nodes.  Additionally, the middle

value is placed in the parent.  The parent node is adjusted to reflect these updates.

Due  to  the  recursive  descent,  the  parent  node  is  accessible  as  the  recursion

unwinds.

This process is continued until a non-full node is found or until the root itself overflows.  If the

root overflows, it is split in this manner and a new root is created containing only the middle

value.  As such, a B-Tree grows in height only at the root.

 3.2 Proactive Insertion Approach

The  standard  recursive  descent  insertion  approach  is  especially  challenging  for  concurrent

operations due to the large number of nodes that are essentially locked, including the root.  This

effectively blocks other concurrent operations until the insertion process is completely finished.

Additionally, stack space is used for the recursion which requires additional memory resources

resulting in extra overhead.  In no or very low-contention environments this is acceptable.  In

high-contention environments, the top-down recursive approach effectively limits concurrency to

single threaded.

To address these issues, Corman [24] suggested a top-down proactive splitting approach.  During

the top-down traversal, if a node is encountered that is full, it is split immediately or proactively.

When the final leaf node insertion is performed, this ensures that the parent is not full and can

accept a key if the leaf node must be split.
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A simple sketch of the proactive B-Tree insertion approach is as follows:

1. If empty, create new root, insert key and terminate.

2. If root node is full, split root node.

3. Initialize current node to root.

4. While the current node is not a leaf.

1. Find the appropriate child that is going to to be traversed next.

2. If that child node is full.

1. Split child node into three parts:

1. Left: the first (degree-1)/2 values

2. Middle: the middle value (position 1+((degree-1)/2)

3. Right: the last (degree-1)/2 values

The left and right will have the minimum necessary number of key values (degree-1)/

2 required and made into individual nodes.  Additionally, the middle value is placed

in the parent.  The parent node is adjusted to reflect these updates.

3. Set current node to applicable child.

5. Inset key into non-full leaf node.

The process ensures that the final insertion into the leaf node can be performed directly without

splitting since if the leaf node was full, it would have already been split in the previous step.

 3.3 Search Approach

The B-Tree search uses a modified descent process in a similar manner as a binary tree.  The

search  is  started  at  the  root  and  progresses  downward  until  either  the  key  is  found  or  the

downward path is exhausted (i.e., a NULL is found).
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A simple sketch of the general B-Tree search approach is as follows:

1. If root empty

1. Return key is not found.

2. Terminate.

2. Initialize current node to root.

3. While the current node is not a leaf.

1. Find first key greater than or equal to the key

2. If key is found

1. Return key found

3. Set current node to applicable child.

4. Return key not found.

A simple approach would be for the search to return either true or false if the key is found or not

found.  Depending on the specific requirements, the key node itself may be returned or a boolean

returned.

 3.4 Deletion Approach

Deletion of a key from a B-tree is more complicated than insertion.  The additional complexity is

primarily because a key cannot be directly deleted when it is in an internal (i.e., a non-leaf node).

Deletion from an internal node requires rearranging the node’s children which may involve a

traversal to the applicable leaf node in that subtree.  A further complication is that as keys are

removed, nodes may lose keys and the key count could fall below the (degree/2-1) property

which must be addressed by either borrowing keys from neighboring nodes or merging sibling

nodes and then deleting the freed node.  The merging must maintain consistency for the key

values and the applicable child points.
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The general deletion approach is as follows:

1. If tree is empty, terminate.

2. Initialize current node to root.

3. While the current node is not NULL.

1. Find the appropriate key array index based on key value.

2. Check if the key is in current node.

1. If node is a leaf, delete key and slide remaining key as needed and terminate.

2. If non-leaf node

1. Case A: If the child, y, that precedes the key index in the current node has at

least degree/2 keys, then;

1. Find the predecessor in the subtree rooted at y.  Note, k0 can be found in a

single downward pass.

2. Replace the key value with the predecessor value

3. Change the key value to be deleted to the predecessor value and continue

the deletion process from the applicable current node child (in order to

remove the duplicate key).

2. Case B: If the child, z, that succeeds the key index in the current node has at

least degree/2 keys, then;

1. find the successor in the subtree rooted at  z.  Note,  k0 can be found in a

single downward pass.

2. Replace the key value with the successor value

3. Change the key value to be deleted to the successor value and continue the

deletion  process  from  the  applicable  current  node  child  (in  order  to

remove the duplicate key).
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3. Case C: If both y and z have only less than (degree/2) keys, merge z into y and

delete z when done pushing the key into the updated y node.  Note, this moves

the key down one level.

3. If current node is a leaf

1. Report key not found and terminate.

4. If the applicable child has less than degree/2 keys, fill the child node.

1. If the left sibling exists and has at least degree/2 keys, then borrow a key from

the previous node.

2. If the right sibling exists and has at least  degree/2 keys, then borrow a key

from the next node.

3. If  both  left  and right  siblings  have  less  than (degree/2)  keys,  merge  right

sibling into the left sibling and and delete the right sibling.

5. Set current node to applicable child node based on index.

Due to the general structure, the majority of the keys in a B-Tree are in the leaves, deletion

operations are most often deleted from keys in leaf nodes.  When deleting a key in an internal

node, the general approach is to make a downward pass through the tree to replace the key with

its predecessor or successor (cases A and B) key values (from an applicable leaf node).  This

process  may impact  a  series  of  non-adjacent  nodes  which presents  additional  challenges  for

concurrency.
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4.0  Chapter 4,

Coarse-Grained B-Tree Algorithms

 4.0 Chapter 4, Coarse-grained B-Tree Algorithms

This chapter presents the specific customized coarse-grained B-Tree insert, search, and delete

algorithms.  The general approach for coarse-gained locking is to use a single, globally shared

lock at the beginning of each function.  The proactive node splitting approach is used which

eliminates the recursive element.  This is advantageous since a node is never traversed twice and

no additional stack space is required.  A disadvantage of the proactive insertion approach is that

some unnecessary splits may be performed.

This  coarse-grained  approach  and  implementation  is  fully  polymorphic  using  the  C++11/17

mutex primitives and used as a baseline.  Available existing reference implementations do not

use the more current C++11/17 (or better) standard, are not polymorphic, and typically use the

recursive descent approach.

 4.1 Main Ideas

This section presents a conceptual overview of the algorithms and the coarse-grained locking

strategy.   By using a single global coarse-gained lock,  only one operation (insert,  search,  or

delete) is being performed at any given time.  This ensures that the modify operations cannot

interfere with each other.  The search thread also requires the lock in order to ensure that a search

cannot not performed while the data structure is being modified and thus not be in a valid state.

For  modifying  operations,  once  the  lock  is  obtained,  the  changes  to  the  data  structure  are

identified  and performed.   Subsequent  operations  are  only  allowed to  start  after  the  current
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operation has fully  completed.   The contention  point  is  at  the main global  lock.   For no or

minimal contention, this works very well and represents the least amount of additional overhead.

However, as the contention increases, more threads will be competing for the single lock.  A

mutex does not provide any fairness, so if a set of threads are waiting to obtain the lock causing a

hot spot, the selected thread will be chosen arbitrarily instead of a more fair first come, first

served order.

The  following  sections  provide  the  technical  details  of  the  insertion,  search,  and  deletion

algorithms including the specific lock acquire point for each algorithm.

 4.2 Coarse-Grained B-Tree Configuration

This  section summarizes  the coarse-grained B-Tree configuration  with regard to the specific

structure fields and the sentinel root node.

 4.2.1 B-Tree Node Definition

The B-Tree node definition includes fields for the count, leaf status (true/false), a pointer to an

array for the keys, and a pointer to an array of pointers for the child pointers.

The myType is the passed type for the polymorphic implementation.
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struct treeNode
{

myType *keys; // key values
treeNode<myType> **ptrs; // child ptrs
int cnt; // current number of keys
bool leaf; // true if leaf, else false

};

Figure 3: Coarse-Grained B-Tree Node Configuration



Visually, a node of degree 6 can be logically viewed as shown below.

In addition to the node structure, some global class variables include the instantiated degree,

root, and the single mutex.  These are individual global variables defined for the entire class (and

not available external to the class).

 4.2.2 Sentinel Node

A sentinel node is used in this implementation.  The sentinel node is the root node which is

created as part of the initialization process (i.e., in the constructor).  This simplifies the insertion

algorithm by eliminating the need to check for the existence of a root node, and if not found,

creating  one.   The use of  a  sentinel  node in  a  coarse-gained implementation  is  a  matter  of

convenience  and provides some consistency with the fine-grained approach.  Since keys are

stored in the sentinel node, it does not use any additional space for a non-empty B-Tree.

 4.3 Insertion Algorithm

The  coarse-grained  B-Tree  insertion  algorithm uses  a  root  to  leaf-node  downward  traversal

algorithm with proactive splitting during the traversal for the final leaf node insertion.

To ensure there is no interference from other active threads, a global lock is obtained.  Once the

lock is obtained, the insertion is allowed to proceed.  Other threads will wait until the lock is

released before continuing.  In this implementation, the C++11/17 lock guard mechanism [29] is

used to improve safety and correctness by automatically releasing the lock when the applicable
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mutex goes out of scope.  This is an accordance with C++11/17 recommended coding standards

[29].

As part of the downward traversal, a node discovered containing the maximum allowed keys is

split into two nodes.  This includes the splitting the root node if needed.  The root split is a

special operation and is how the B-Tree grows in height.  Keys are always added to a leaf node.

If that fills the leaf node, it would be split by a subsequent insertion operation (if there is one).

Below is the coarse-grained B-Tree insertion algorithm.

1. void bTree<myType>::insert(myType key)  {
2. treeNode<myType> *curr, *currChld;
3. int idx, nIdx;
4. bool insertDone = false;
5.
6. // coarse-gained lock
7. lock_guard<std::mutex> lock(cgMtx);
8.
9. // if root full, must split
10. if (root→cnt == degree-1)
11. splitRootNode(root);
12.
13. curr = root;
14. while (!insertDone) {
15.
16. //  traverse downward to find applicable leaf node, split full nodes along the way
17. while (!curr→leaf) {
18. // find next ptr based on key
19. idx = 0;
20. while ((idx < curr→cnt) && (key > curr→keys[idx]))
21. idx++;
22.
23. currChld = curr→ptrs[idx];
24.
25. // if that child is full, split it...
26. if (currChld != NULL && currChld→cnt == (degree-1)) {
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27. splitChildNode(curr, currChld);
28.
29. // re-find where key goes (due to split)
30. nIdx = 0;
31. while ((nIdx < curr→cnt) && (key > curr→keys[nIdx]))
32. nIdx++;
33.
34. if (idx != nIdx)
35. idx = nIdx;
36. }
37. curr = curr→ptrs[idx];
38. }
39.
40. //  insert key into non-full leaf node, slide all keys > k over one place over
41. idx = curr→cnt - 1;
42. while (idx >= 0 && curr→keys[idx] > key) {
43. curr→keys[idx+1] = curr→keys[idx];
44. idx--;
45. }
46.
47. // insert the new key at appropriate location
48. curr→keys[idx+1] = key;
49. curr→cnt = curr→cnt + 1;
50.
51. insertDone = true;
52. }  // end main while
53. }

During the update operation, the data structure may not be in a valid, traversable state.  As such,

other  threads,  including  search,  must  be  and  are  blocked  (Coarse-grained  B-Tree  Insertion

Algorithm, line 7).

Each of the major insertion operations are explained in the following sections.

 4.3.1 Leaf Node Insertion

For insertion into a non-full leaf node, the keys may need to shifted as required in order to place
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the new key into the appropriate position.  A lock is required since the during this process the

node may not be in a valid state.

For example, inserting 250 into the following leaf node would be performed as shown.

Keys are shifted within the node in order to place the new key into the correct position.  Since

this is a leaf node, there are no child pointers.

If a leaf node already has the maximum number of allowable keys, it will have been previously

split during the while loop by the  splitChildNode() function (Coarse-grained B-Tree Insertion

Algorithm,  line  27).   This  proactive  approach  ensures  that  when  the  final  key  insertion  is

performed, the leaf node will always have space for the new key.

 4.3.2 Split Root Node Operation

If the root node has the maximum number of allowable keys (degree-1), it must be split.  Since it

is the root node, the B-Tree will grown in height.  Upon completion, this operation allows a

single key to be in the root node, an exception to the invariant of (degree/2-1) keys per node.

The key count for the root node is checked (Coarse-grained B-Tree Insertion Algorithm, line 10)

before the downward traversal is initiated.
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The coarse-grained split root operation algorithm is shown below.

1. void bTree<myType>::splitRootNode(treeNode<myType> *currRoot)  {
2. treeNode<myType> *lftSib=NULL, *rhtSib=NULL;
3. int siz;
4.
5. // create new sibling nodes
6. lftSib = makeNewNode();
7. lftSib→leaf = currRoot→leaf;
8. rhtSib = makeNewNode();
9. rhtSib→leaf = currRoot→leaf;
10.
11. // set size based on degree
12. siz = (degree-1) / 2;
13.
14. // copy the first (degree-1)/2 keys of current root left sibling
15. for (int j = 0; j < siz; j++)
16. lftSib→keys[j] = currRoot→keys[j];
17.
18. // copy the first degree/2 ptrs of current root over to left sibling
19. if (!currRoot→leaf)
20. for (int j=0; j < degree/2; j++)
21. lftSib→ptrs[j] = currRoot→ptrs[j];
22.
23. // copy the last (degree-1)/2 keys of current root to right sibling
24. for (int j = 0; j < siz; j++)
25. rhtSib→keys[j] = currRoot→keys[j+siz+1];
26.
27. // copy the last degree/2 ptrs of current root over to right sibling
28. if (!currRoot→leaf)
29. for (int j=0; j < degree/2; j++)
30. rhtSib→ptrs[j] = currRoot→ptrs[j+degree/2];
31.
32. // set sibling sizes
33. lftSib→cnt = siz;
34. rhtSib→cnt = siz;
35.
36. // update root, shift key
37. currRoot→leaf = false;
38. currRoot→cnt = 1;
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39. currRoot→keys[0] = currRoot→keys[siz];
40. for (int i=1; i<degree-1; i++)
41. currRoot→keys[i] = 0;
42.
43. // set root pointers
44. currRoot→ptrs[0] = lftSib;
45. currRoot→ptrs[1] = rhtSib;
46. for (int i=2; i<degree; i++)
47. currRoot→ptrs[i] = NULL;
48. }

If the root is full, it will be split.  This ensures the traversal is initiated from a non-full node.

The split root operation is only initiated after the primary lock is obtained (Coarse-grained B-

Tree Insertion Algorithm, line 7).  Since this is a global lock, no additional locking is required.

 4.3.3 Split Child Node Operation

The split of a full non-root node is referred to as split-child node since only the child on the

direct traversal path of the current node is checked.  The split operation updates the parent by

moving a key up to the parent and thus requires the parent to have space for a key (i.e., must not

be full).  The traversal is initiated from a non-full root node which is ensured by the Split Root

Node Operation, 4.3.2.  As the traversal progresses, only the applicable child node is checked for

key count.   Other  nodes,  not  in  the  traversal  path,  are  not  checked as  they  are not  directly

impacted.

The coarse-grained split child operation algorithm is shown below.

1. void bTree<myType>::splitChildNode(treeNode<myType> *parnt,
2.  treeNode<myType> *chld)  {
3. int siz, idx;
4. treeNode<myType> *sib = NULL;
5.
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6. // create a new sibling node
7. sib = makeNewNode();
8. sib→leaf = chld→leaf;
9.
10. // set size based on degree
11. siz = (degree-1) / 2;
12. sib→cnt = siz;
13.
14. // copy the last (degree-1)/2 keys of child to sibling
15. for (int j=0; j < siz; j++)
16. sib→keys[j] = chld→keys[j+siz+1];
17.
18. // copy the last degree/2 ptrs of child over to sibling
19. if (!chld→leaf) {
20. for (int j=0; j < degree/2; j++) {
21. sib→ptrs[j] = chld→ptrs[j+degree/2];
22. chld→ptrs[j+degree/2] = NULL;
23. }
24. }
25.
26. // reduce the number of keys in child
27. chld→cnt = chld→cnt / 2;
28.
29. // find where new key is going in parent
30. idx = 0;
31. while ((idx < parnt→cnt) && (parnt→keys[idx] < chld→keys[siz]))
32. idx++;
33.
34. // slide parent child ptrs over to make room for new child
35. for (int j = parnt→cnt; j >= idx+1; j--)
36. parnt→ptrs[j+1] = parnt→ptrs[j];
37.
38. // add new child to parent
39. parnt→ptrs[idx+1] = sib;
40.
41. // slide parent child keys over to make room for new key
42. for (int j = parnt→cnt-1; j >= idx; j--)
43. parnt→keys[j+1] = parnt→keys[j];
44.
45. // copy middle key of child to parent
46. parnt→keys[idx] = chld→keys[siz];
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47.
48. // increment count of keys in this node
49. parnt→cnt += 1;
50. }

In this manner, keys are gradually moved up from lower nodes to higher nodes.  This will occur

more frequently during a heavy insert load.

The split child node operation splits the child node into two nodes, moving the middle key up to

the parent.  The parent is updated accordingly which includes shifting the keys and impacted

child pointers to make room for the new key and the new child node pointer.  Once the split is

completed, the traversal is resumed.  This process ensures that the applicable leaf node is not full

(since it would have been split if it was full).  At the end of the traversal, the new key is added to

the applicable non-full leaf node.  For example,  given the below configuration,  and an insert

operation of key 525, the current node and applicable child node pointers are shown.  Since the

child node is full, it will be split before the leaf insertion as shown.
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In this example, the middle key, 550, is moved up to the parent.  This requires an additional

pointer to be inserted into the parent node (as shown in the “after split” configuration).  If the

child node is not a leaf node, the traversal would continue.  Here, the child node is a leaf node, so

the traversal loop is ended at the leaf node and the leaf node insertion is performed.

The split child operation is only initiated after the global lock is obtained.  No additional locking

is required.

 4.4 Search Algorithm

The coarse-grained search algorithm is shown below.

1. bool bTree<myType>::search(myType key) const  {
2. treeNode<myType> *curr;
3. int i;
4.
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5. // coarse-gained lock
6. lock_guard<std::mutex> lock(cgMtx);
7.
8. curr = root;
9. if (curr == NULL)
10. return false;
11.
12. while (curr != NULL) {
13. // find the first key greater than or equal to key
14. i = 0;
15. while ( (i < curr→cnt) && (key > curr→keys[i]) )
16. i++;
17.
18. // see if key is found
19. if (i < curr→cnt && curr→keys[i] == key)
20. return true;
21.
22. // traverse downward
23. curr = curr→ptrs[i];
24. }
25. return false;
26. }

In-process  insertion  and  deletion  operations  may  cause  the  B-Tree  to  temporarily  be  in  an

invalid,  illegal state.  As such, the search algorithm requires locking (Coarse-Grained B-Tree

Search Algorithm, line 6) since traversing the data structure while it is being updated could result

in  an  exception.   The  lock  is  automatically  released  after  the  key  is  either  found  or  it  is

determined that they is is not in the B-Tree.

 4.5 Deletion Algorithm

As the deletion process continues, some nodes key counts may be decreased to the minimum

number of keys allowed (degree/2-1).  In a similar manner to the insertion, the deletion process

checks for and, as needed,  performs a proactive adjustment  of such nodes.   The adjustment

options include borrowing a key from the right or left sibling if either has sufficient keys (e.g.,
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greater than the minimum number of keys allowed).  If neither sibling has sufficient keys, it is

possible to merge two nodes into a single node, releasing a node and reducing the width of the

tree.  The merge operation also moves a key down from the current node into child node.  In this

manner, under repetitious deletions, keys will be gradually migrated downward in the B-Tree.

This process can eventually drain the root the of keys.  If the root node key count is depleted to

0, the empty root node will be deleted and a child node prompted to root.  In this manner, the B-

Tree will shrink in height.

When deleting keys, the key might be found in either a leaf node or an internal node.  Deletion of

a key from a leaf node can be performed directly.  Due to the proactive adjustment, a leaf node

containing the key to be deleted will have sufficient keys for the deletion operation to proceed.

If a key to be deleted is identified in a internal node, it must be replaced.  Removing the key

directly is not possible due to the child pointers.  The process of obtaining a replacement key

involves  identifying  and  relocating  a  key from a  successor  or  predecessor  leaf  node.   This

process is fully explained in section 4.5.2, Internal Node Deletion Operation.

The coarse-grained deletion algorithm is shown below.

1. void bTree<myType>::remove(myType key)  {
2. treeNode<myType> *curr, *cTmp, *rTmp, *tmpChld;
3. int idx, pred, succ, t=degree/2;
4. bool wasLastChild;
5.
6. lock_guard<std::mutex> lock(cgMtx);
7.
8. if (root == NULL) {
9. cout << "Tree is empty." << endl;
10. return;
11. }
12.
13. curr = root;
14. while (curr != NULL) {
15. idx=0; // find appropriate index for key
16. while ((idx < curr→cnt) && (curr→keys[idx] < key))
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17. idx++;
18.
19. // does this node contain the key?
20. if ((idx < curr→cnt) && (curr→keys[idx] == key)) {
21. if (curr→leaf) {
22. // leaf node, just remove key, slide keys backwards one place
23. for (int i=idx+1; i < curr→cnt; i++)
24. curr→keys[i-1] = curr→keys[i];
25. curr→cnt--;
26. curr = NULL;
27. } else {
28. // key found, but not leaf
29. cTmp = curr→ptrs[idx];
30. rTmp = curr→ptrs[idx+1];
31.
32. if (cTmp→cnt >= t) { // case A
33. pred = getPred(curr, idx);
34. curr→keys[idx] = pred;
35. key = pred;
36. curr = curr→ptrs[idx];
37. } else if (rTmp→cnt >= t) { // case B
38. succ = getSucc(curr, idx);
39. curr→keys[idx] = succ;
40. key = succ;
41. curr = curr→ptrs[idx+1];
42. } else { // case C
43. merge(curr, idx);
44. curr = curr→ptrs[idx];
45. }
46. }
47. } else {
48. // key not found yet, keep going down...
49.
50. // check for not in tree
51. if (curr→leaf) {
52. cout << "Key " << key << " does not exist in the tree." << endl;
53. return;
54. } else {
55. wasLastChild = ( (idx == curr→cnt) ? true : false );
56.
57. // if the child has less than t keys, fill child
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58. if (curr→ptrs[idx]→cnt < t)
59. fill(curr, idx);
60.
61. // keep traversing downward
62. if ( wasLastChild && (idx > curr→cnt) )
63. curr = curr→ptrs[idx-1];
64. else
65. curr = curr→ptrs[idx];
66. }
67. }
68. } // end main while
69.
70. // if root is leaf with no keys, empty tree
71. if (root→cnt==0 && root→leaf)
72. return;
73.
74. // if root has no keys, tree shrinks -> move up info from child
75. if (root→cnt == 0) {
76. tmpChld = root→ptrs[0];
77.
78. // copy keys up
79. for (int i=0; i < tmpChld→cnt; i++)
80. root→keys[i] = tmpChld→keys[i];
81.
82. // copy child pointers up
83. if (!tmpChld→leaf)
84. for(int i=0; i <= tmpChld→cnt; i++)
85. root→ptrs[i] = tmpChld→ptrs[i];
86. root→cnt = tmpChld→cnt;
87. root→leaf = tmpChld→leaf;
88.
89. if (tmpChld→keys != NULL)
90. delete [] tmpChld→keys;
91. if (tmpChld→ptrs != NULL)
92. delete [] tmpChld→ptrs;
93. delete tmpChld;
94. }
95. }
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During this process, the B-Tree may be temporarily in an invalid state.  To ensure no interference

from other active simultaneously executing threads (insertion or deletion), the deletion process

must be locked.  Before the process is allowed to proceed, the lock is obtained (Coarse-Grained

B-Tree Deletion Algorithm, line 6).

Each of the major deletion operations are explained in the following sections.

 4.5.1 Key Deletion from Leaf Node

The most straight-forward case is when a key is removed from a leaf node.  For deletion from a

leaf  node with greater  than (degree/2) keys,  the key is  removed and the remaining keys are

shifted as required.  This represents the most basic and straightforward possibility.  For example,

deleting 500 from the following subtree would be performed as shown.

The entire B-Tree data structure is locked (Coarse-Grained B-Tree Deletion Algorithm, line 6) so

no other threads are allowed to access the data structure until the changes are completed.  As

such, no additional locking is required as part of this operation.
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 4.5.2 Internal Node Deletion Operation

If a key is found in an internal node, the key cannot be removed directly as this would create an

illegal imbalance in the key and child pointers.  The key must be replaced with either a successor

or predecessor key value from a corresponding leaf node.  The algorithm checks for a potential

predecessor  (Coarse-Grained  B-Tree  Deletion  Algorithm,  line  32)  or  a  potential  successor

(Coarse-Grained B-Tree Deletion Algorithm, line  37).  Once the key in the internal node has

been  replaced,  the  predecessor  or  successor  replacement  key  is  in  the  tree  twice  and  the

redundant, second key in the leaf node must be removed.  This is accomplished by updating the

key to be deleted and continuing the downward traversal from the current location ensuring that

only the second one will be deleted.

The internal node deletion can potentially make significant changes in the data structure.  While

the changes are in process, the data structure may not be in a valid, traversalable state.  Other

active threads are already blocked and as such no additional locking is required.

 4.5.2.1 Predecessor Operation

From the  deletion  algorithm,  (Coarse-Grained  B-Tree  Deletion  Algorithm,  line  32),  case  A

occurs  when  the  child  that  precedes  the  key  index  in  the  current  node  has  more  than  the

minimum number of keys (i.e., > degree/2-1) in which case the predecessor can be found in the

predecessor subtree.

The predecessor operation algorithm is shown below.
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1. myType bTree<myType>::getPred(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *cur = nd→ptrs[idx];
3.
4. // keep moving to the right-most until leaf
5. while (!cur→leaf)
6. cur = cur→ptrs[cur→cnt];
7.
8. return cur→keys[cur→cnt-1];
9. }

For example, to delete the key 900 from the internal node in the below figure, a predecessor key

value must be found as a replacement.  This involves a right-most traversal from the current node

to the right-most key value, 890 in the below example.  The traversal is initiated from the key

value left child pointer (as shown).
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While only six levels are shown in this example, there could be arbitrarily many.

The  predecessor  key  value,  890  in  the  example  figure,  is  used  to  overwrite  the  900,  thus

removing 900 from the B-Tree as shown in the following figure.  By using this predecessor

value, it ensures that the child pointers are still valid and thus no further re-structuring of the B-

Tree  is  required.   Such  restructuring  would  not  be  efficiently  feasible  given  the  overall

complexity of the B-Tree data structure.
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After  the replacement  has been performed,  the key to  be deleted is  changed to 890 and the

deletion traversal continues from the current node to the leaf node.   The continuation of the

downward traversal is required in order to ensure that the leaf node still contain the minimum

number of keys even after the key deletion.  The duplicate key, 890 here, is deleted from the leaf

node as outlined in Section 4.5.1, Key Deletion from Leaf Node.

 4.5.2.2 Successor Operation

From the  deletion  algorithm,  (Coarse-Grained  B-Tree  Deletion  Algorithm,  line  37),  case  B

occurs  when  the  child  that  precedes  the  key  index  in  the  current  node  has  more  than  the

minimum number of keys (i.e., > degree/2-1) in which case the predecessor can be found in the

successor subtree.

The successor algorithm is similar and is shown below.
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1. myType bTree<myType>::getSucc(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *cur = nd→ptrs[idx+1];
3.
4. // keep moving the left until leaf
5. while (!cur→leaf)
6. cur = cur→ptrs[0];
7.
8. return cur→keys[0];
9. }

For example, to delete the key 900 from the internal node in the below figure, a sucessor key

value must be found as a replacement.  This involves a left-most traversal from the current node

to the left-most key value. 325 in this example.  The traversal is initiated from the key value right

child pointer (as shown).
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While only six levels are shown in this example, there could be arbitrarily many.

The successor key value, 325 in the example figure, is used to overwrite the 300, thus removing

300 from the B-Tree  as shown in the following figure.   By using this  predecessor  value,  it

ensures that the child pointers are still valid and thus no further re-structuring of the B-Tree is

required.  Such restructuring would not be efficiently feasible given the overall complexity of the

B-Tree data structure.

After  the replacement  has been performed,  the key to  be deleted is  changed to 325 and the

deletion traversal continues to the leaf node.   The continuation of the downward traversal is

required in order to ensure that the leaf node still contain the minimum number of keys even

after the key deletion.  The duplicate key, 325 here, is deleted from a leaf node as outlined in

section 4.5.1, Key Deletion from Leaf Node.
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 4.5.3 Merge Operation

From the deletion algorithm (Coarse-Grained B-Tree Deletion Algorithm, line 43), case C occurs

when  both  the  left  and  right  siblings  have  the  minimum  number  of  allowable  keys  (each

degree/2-1 keys).  Upon completion of the merge, the removed unnecessary right node is deleted

and the memory recovered.

The coarse-grained merge nodes algorithm is shown below.

1. void bTree<myType>::merge(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *leftChld = nd→ptrs[idx],  *rightChld = nd→ptrs[idx+1];
3. int t = degree / 2;
4.
5. // put key from the current node to left child
6. leftChld→keys[t-1] = nd→keys[idx];
7.
8. // copy keys from right to left
9. for (int i=0; i < rightChld→cnt; i++)
10. leftChld→keys[i+t] = rightChld→keys[i];
11.
12. // copy the child pointers from right to left
13. if (!leftChld→leaf)
14. for(int i=0; i <= rightChld→cnt; i++)
15. leftChld→ptrs[i+t] = rightChld→ptrs[i];
16.
17. // slide keys after idx one step before
18. for (int i=idx+1; i < nd→cnt; i++)
19. nd→keys[i-1] = nd→keys[i];
20.
21. // slide child pointers one step before
22. for (int i=idx+2; i <= nd→cnt; i++)
23. nd→ptrs[i-1] = nd→ptrs[i];
24.
25. nd→ptrs[nd→cnt] = NULL;
26.
27. // update key counts
28. leftChld→cnt += rightChld→cnt+1;
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29. nd→cnt--;
30.
31. // free memory
32. if (rightChld→keys != NULL) {
33. delete [] rightChld→keys;
34. rightChld→keys = NULL;
35. }
36. if (rightChld→ptrs !=NULL) {
37. delete [] rightChld→ptrs;
38. rightChld→ptrs = NULL;
39. }
40. delete rightChld;
41. rightChld = NULL;
42.
43. return;
44. }

The case C occurs when both child nodes have the minimum allowable keys.  This allows the

two nodes to be merged into a single node.

To delete 650 in the following example,  the two child nodes are merged and the parent key

values updated (removing the 650) and the child pointers are shifted to reflect the node removal.
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The removed right-node, originally containing the 700 and 800 keys, must be deleted.

 4.5.4 Node Fill Operation

In accordance with the B-Tree definition, a B-Tree node should have a minimum number of keys

(degree/2-1) in each node.  During a traversal, when a child node is found to have the minimum

number of keys, it will be addressed pro-actively (Coarse-Grained B-Tree Deletion Algorithm,

line 58) by calling the fill() routine.  The coarse-grained node fill operation will either add a key

to the current child node by borrowing a key from a sibling node with excess keys (> degree/2-1)

or by merging the node with another child node that also has the minimum number of keys.  The

left sibling node and then right sibling node are checked to see if either has excess keys that can

be borrowed or shifted into the current child node.  If a borrow is possible, the parent node and

applicable child pointers must be updated accordingly.

It may not be possible to borrow key if the the left or right siblings either do not exist or do not

have more than the minimum number of key values.  If the applicable child node is the left-most

or right most child, it will only have one left or right sibling.  If no borrow is possible, two nodes
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are merged into a single node, thus contracting the width of the B-Tree.

The coarse-grained node fill algorithm is shown below.

1. void bTree<myType>::fill(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *prevSib = NULL, *nextSib = NULL;
3. int t = degree / 2;
4.
5. if (idx > 0)
6. prevSib = nd→ptrs[idx-1];
7. if (idx < nd→cnt)
8. nextSib = nd→ptrs[idx+1];
9.
10. if (idx != 0 && prevSib→cnt >= t) {
11. borrowFromPrev(nd, idx);
12. } else if (idx != nd→cnt && nextSib→cnt>=t) {
13. borrowFromNext(nd, idx);
14. } else {
15. if (idx != nd→cnt)
16. merge(nd, idx);
17. else
18. merge(nd, idx-1);
19. }
20. return;
21. }

Initially, the previous or left sibling node is checked.  The left sibling node might not exist if the

current child node is already the left-most key.  If the left sibling node exists and has excess

keys, the  borrowFromPrev() routine will shift a key from the previous child node.  This will

move a key from the left sibling into the parent and the key from the parent into the applicable

child node.

If the left sibling does not exist or does not have more than the minimum number of keys, the

right sibling node is checked.  The right sibling node might not exist if the current child node is
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already  the  right-most  node.   If  the  right  sibling  node  exists  and  has  sufficient  keys,  the

borrowFromNext() routine will shift a key from the right sibling child node.  This will move a

key from the right sibling into the parent and the key from the parent into the applicable child

node.

In accordance with the B-Tree invariants, a child node will always have at least a right sibling or

a left sibling.

If neither the left or right sibling nodes has more than the minimum number of keys, then a

merge operation is possible.   The merge operation is fully described in section  4.5.3, Merge

Operation.

The borrow operation is fully described in the following section 4.5.4.1, Borrow Key Operation.

 4.5.4.1 Borrow Key Operations

The coarse-grained borrow key operations perform the borrowing or shifting of a key from a left

or right sibling with more than the minimum number of keys into the current child node.  When

shifting a key, the applicable child node pointers, if they exist, must also be shifted.  While the

shifting is in process, the data structure may not be traversable.  As such, other threads must be

and are blocked.

The coarse-grained borrow from previous (left sibling node) algorithm is shown below.

1. void bTree<myType>::borrowFromPrev(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *currChld = nd→ptrs[idx],  *rightChld = nd→ptrs[idx-1];
3.
4. // slide all keys in current child node one step
5. for (int i=currChld→cnt-1; i >= 0; i--)
6. currChld→keys[i+1] = currChld→keys[i];
7.
8. // if current child node is not a leaf, slide child pointers one step
9. if (!currChld→leaf)
10. for(int i=currChld→cnt; i >= 0; i--)
11. currChld→ptrs[i+1] = currChld→ptrs[i];
12.
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13. // set current child's first key to keys[idx-1] from parent node
14. currChld→keys[0] = nd→keys[idx-1];
15.
16. // moving sibling's last child as ptrs[idx]'s first child
17. if (!nd→leaf)
18. currChld→ptrs[0] = rightChld→ptrs[rightChld→cnt];
19.
20. // moving the key from the sibling to the parent
21. // this reduces the number of keys in the sibling
22. nd→keys[idx-1] = rightChld→keys[rightChld→cnt-1];
23.
24. currChld→cnt++;
25. rightChld→cnt--;
26.
27. return;
28. }

As shown in the following figure with a degree of 6, the current child has the minimum number

of  keys  and  the  left  sibling  has  more  than  the  minimum number  of  keys  which  meets  the

conditions for a borrow from the left sibling node operation.  After the borrow, both nodes will

still meet the basic B-Tree invariant for minimum number of keys.

For example, given the following initial configuration, the key 550 can be borrowed from the left

sibling.
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In order to ensure the B-Tree invariants are maintained, the key must be shifted through the

parent node.  The keys, and if needed the child pointers, of the current child are shifted one place

to the right in order to make room for the new key.  The current key, and if needed the associated

child  pointer,  from the  parent  is  moved  into  the  current  child  node  (600  in  this  example).

Finally, the last or right most key of the left sibling node is move into the parent, replacing the

previous  key value which was moved down to the current  child  node.   The key counts  are

updated for both the left sibling and current child nodes.

The coarse-grained borrow from next (right sibling node) algorithm is shown below.

1. void bTree<myType>::borrowFromNext(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *currChld = nd→ptrs[idx], *rightChld = nd→ptrs[idx+1];
3.
4. // copy key from parent to current child node
5. currChld→keys[currChld→cnt] = nd→keys[idx];
6.
7. // current child insert as the last into left child
8. if (!currChld→leaf)
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9. currChld→ptrs[currChld→cnt+1] = rightChld→ptrs[0];
10.
11. // first key from right child is inserted into parent
12. nd→keys[idx] = rightChld→keys[0];
13.
14. // slide keys in sibling one step
15. for (int i=1; i < rightChld→cnt; i++)
16. rightChld→keys[i-1] = rightChld→keys[i];
17.
18. // slide child pointers one step
19. if (!rightChld→leaf)
20. for(int i=1; i <= rightChld→cnt; i++)
21. rightChld→ptrs[i-1] = rightChld→ptrs[i];
22.
23. // update counts
24. currChld→cnt++;
25. rightChld→cnt--;
26.
27. return;
28. }

As shown in the following figure, the current child has the minimum number of keys and the

right  sibling has more than the minimum number of keys  which meets  the conditions  for  a

borrow from the right sibling node operation.  After the borrow, both nodes will still meet the

basic B-Tree invariant for minimum number of keys.

For example, given the following configuration,  the key 700 can be borrowed from the right

sibling.
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As per the B-Tree invariants, the key must be shifted through the parent node.  The current key,

and if needed the associated child pointer, from the parent are copied into the current child node

(600 in this example).  The first key of the right child node is moved into the parent (700 in this

example), replacing the key previously moved down.  The keys, and if needed the child pointers,

of the right child node are shifted one place to the left in order fill the hole from the key that was

moved up.  The key counts are updated for both the current child and right sibling nodes.

 4.6 Correctness

This section addresses correctness issues for the algorithms.

 4.6.1 Deadlock Freedom

The single global lock provides the necessary functionality to ensure freedom from deadlock.

The lock is either acquired or the process is blocked waiting for that single lock.   The lock

acquire operation is limited to the initial steps of the insert, search, and delete operations.  None

of the associated sub-functions perform any lock operations.  As no other resources are sought by
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the thread, once the single lock is acquired the process can complete is intended operation thus

ensuring deadlock freedom.

 4.6.2 Starvation Freedom

In a high contention environment, many threads may be competing for the single global lock.

The final selected thread that obtains the lock is chosen arbitrarily.  This allows the possibility

that  under  a  constant  sustained  load  a  specific  thread  may  be  repeatedly  not  be  chosen

indefinitely.  When the load is decreased the thread will be selected.
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5.0  Chapter 5,

Fine-Grained B-Tree Algorithms

 5.0 Chapter 5, Fine-Grained B-Tree Algorithms

This  chapter  presents  the  fine-grained  B-Tree  insert,  search,  and  delete  algorithms.   The

approach for fine-gained locking is to only lock a minimal subset of the data structure.   By

locking a limited subset of the data structure, other concurrent operations in different parts of the

data structure can be processed simultaneously.  The proactive node splitting approach is used

which eliminates the recursive element and ensures that nodes are not traversed twice.  This also

eliminates use of additional stack space.

The repeated lock acquire and lock release overhead during the traversal increases the run-time

overhead.   Due  to  this  overhead,  in  no  or  low  contention  environments,  the  fine-grained

approach is slower than the coarse-grained approach.  A fine-grained implementation is more

appropriate in a concurrent environment with a high degree of contention.

The  fine-grained  implementation  presented  is  fully  polymorphic  using  the  C++11/17  mutex

primitives.   There  are  no  known  existing  C++11/17  fine-grained  locking  reference

implementations.  The coarse-gained implementation is used as a performance base-line.

 5.1 Main Ideas

This  section  presents  a  conceptual  overview  of  the  B-Tree  fine-grained  algorithms  and  a

summary of the specific locking strategy.  As detailed in subsequent sections, a sentinel root

node is used.  All nodes include a field for a node lock (node specific mutex).  This node specific

lock allows nodes to be locked individually providing the fundamental technical functionality for
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the fine-grained approach.  All operations always start from the root.  As the initial step, all

threads must compete for the root node lock.   The use of a sentinel  node ensures that  even

operations on an empty B-Tree will compete for the root lock in a consistent manner.  

A parent then child lock-coupling technique [30] is used requiring that a thread must acquire a

parent node lock before being allowed to attempt a lock acquire for a child node in a strictly

enforced parent then child manner.   As a thread proceeds on its downward traversal,  it  will

release the previous node lock (above the parent).  This allows a thread to release node locks that

are no longer necessary.  For example, once the root lock is released, another thread may obtain

the root lock and proceed down a different traversal path.  If the subsequent thread is attempting

to traverse the same path, it will be blocked from overtaking.  For high contention environments,

this will allow more concurrency.  For no or minimal contention environments, the additional

lock acquire/release requirements will increase overhead.

Broadly, the insertion algorithm traverses downward and inserts all new keys into a leaf node.

During the downward traversal, if a child node is found to be full (i.e., already has the maximum

allowed keys), it is split into two nodes.  The split node process will move one of the keys from

the child into the parent.  The proactive split node process starts at the root.  If the root is full, it

will be split which increases the height of the tree.  This ensures that if a full child node is found,

the parent will have room for the additional key.  The specific technical details of the root and

internal  node  split  operations  are  detailed  in  the  following  sections.   When  the  insertion

operation finds the applicable leaf node and it  is  not full  it  will  insert  the new key into the

appropriate location and terminate.  If that leaf node is full, the leaf must be split into two nodes.

Once the split is performed and the middle child key is moved up to the parent, the new key is

inserted into the appropriate new child node (left or right).  Once the new key is placed in the

leaf  into  its  proper  position,  the  process  is  complete.   In  this  manner,  successive  insertion

operations gradually move keys up from leaf to root in the B-Tree.  Since the keys only move

one level at a time (to parent from child), the fine-grained locking is sufficient.

Since the modify operations change the data structure, any search threads must also acquire and

release the locks in the same parent then child manner during their traversals.  This ensures that

52



any in-process modifications do not impact the search threads.

The deletion process starts from the root and traverses downward searching for the key to be

deleted.  A proactive node fill process is used that will continue downward (no changes), borrow

a key, or merge nodes as required.  The merge operation combines two sibling nodes that both

contain the minimum number of keys allowed (degree-1/2) and moves a key down one level

from the parent  to the child.   To ensure that  this  is  possible  and does not violate  the basic

invariants, the child node must have one key more than the minimum.  During the traversal, if a

node is found to have the minimum number of keys allowed, and its right or left sibling nodes, if

they exist, also have the minimum number of allowed keys, only then are the two nodes merged

into a single node.  If a sibling has excess keys (i.e., greater than the minimum allowed), a key

can be borrowed from a left or right sibling.  The borrow operation will ensure that the child on

the  direct  traversal  path  has  at  least  the  minimum number  of  keys  plus  one  which  may be

required for a subsequent merge operation one level down.  The borrow operation moves a key

from the sibling (left or right) up to the parent and a key from the parent is moved to the target

child node.  The associated pointers are shifted as part of this operation.  A merge or borrow

operation may move a key one level (from child to parent and/or parent to child).  While node

locks are required on the parent and child, the nodes above the parent node are released for other

threads  to  potentially  acquire.   This  allows other  threads  to  proceed as  long as  they  are on

different paths.

If the key to be deleted is found in a leaf node, the key is deleted and the process terminates.  The

proactive node fill process ensures that the leaf node will have the minimum plus one number of

keys so that deleting a key will not violate the B-Tree invariants.

If the key to be deleted is in an internal node, it must be replaced.  Simply removing the key

would result in a subtree being disconnected from the data structure.  The key must be replaced

with either the first key from the left-most leaf node, the predecessor node, or the last key from

the right-most leaf node, the successor node.  During the successor or predecessor operations, all

nodes between the current  parent/child and the final successor/predecessor node must be locked.

This  ensures  that  other  threads  cannot  make  changes  that  would  alter  the  selection  of  the
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successor/predecessor  key value.   This  additional  lock  acquire  and lock  release  does  create

additional overhead when required.  These operations are described in detail in the following

sections.

 5.2 Fine-Grained B-Tree Configuration

This section summarizes the fine-grained B-Tree node configuration with regard to the specific

structure fields and the sentinel root node.

 5.2.1 Fine-Grained B-Tree Node Definition

The specific node definition includes fields for the count, leaf status (true/false), a pointer to an

array of keys, and a pointer to an array of pointers (for the child pointers).  In addition to the

fields  of  the  the  coarse-grained  node  definition  (Figure  3,  Coarse-Grained  B-Tree  Node

Configuration), a mutex for the specific node is included.  This is the locking mechanism for the

individual node.  Based on the required changes, additional nodes may need to be locked.

The myType is the passed type for the polymorphic implementation.

In addition to the node structure,  class global variables include the declared degree and root

pointer.  There are no global mutexes used.

 5.2.2 Sentinel Node

A sentinel node is used in this implementation.  In the context of a fine-grained implementation,
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struct treeNode
{

myType *keys; // key values
treeNode<myType> **ptrs; // child ptrs
int cnt; // current number of keys
bool leaf; // true if leaf, else false
mutex nodeLock; // lock for node

};

Figure 15: Fine-Grained B-Tree Node Configuration



this eliminates some potential complications associated with the insertion algorithm.  By using a

sentinel node, the simultaneously executing threads can directly compete for the root node lock.

If the root did not exist, all threads would be required to check for, and if necessary, create the

root node.  Once the root is created, such a check could not be skipped which would add extra

overhead  to  the  insertion  algorithm.   The  sentinel  node  is  used  to  store  key  values  so  no

additional space is required for a non-empty B-Tree.

 5.3 Insertion Algorithm

The  fine-grained  B-Tree  insertion  algorithm  uses  a  node-by-node  locking  and  unlocking

downward  traversal  algorithm  with  proactive  splitting.   All  keys  are  added  to  a  leaf  node.

During the traversal,  nodes discovered containing  the maximum allowed keys (based on the

instantiated degree) are pro-actively split into two nodes.  This ensures that the node above a leaf

node is not full.   The term full used to to to denote when a node has the maximum allowed

number of keys based on the degree.  If the insertion into a leaf node fills that leaf node, it would

be split by a subsequent insertion operation.  The split node operation will bring a key value up

one level in the B-Tree.  The proactive splitting will ensure that there is always key space in a

parent node for a key from a child node that might be required to be moved up one level (from

child to parent).

The initial step is locking the root node.  The thread that successfully obtains the root lock will

initially  check if  a root split  operation is  required.   If  the root  is  full,  the root split  will  be

performed.  The specific details of the root split algorithm are detailed in Section  5.3.2, Split

Root Node Operation.  At this point, all other threads are blocked on the root node.

As the thread continues its downward traversal, the root lock is released allowing another thread

to obtain the root lock and proceed.  The node-by-node locking blocks other threads on the same

traversal path from overtaking any preceding threads.  Once past the root node, if the subsequent

thread follows a different traversal path, it will not be blocked by the previous thread.  Since the

two threads are on different paths, both threads can simultaneously modify the different sections

of the data structure.  This may apply even for two threads on the same path if the initial thread’s

intended modifications are further down in the B-Tree than the subsequent thread.  Again, the
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data  structure  modifications  can  occur  simultaneously.   The  simultaneous  modifications  in

different sections of the data structure is the key advantage of fine-grained locking.

Simultaneous operations are not always possible.  For example, if two threads start and a second

thread’s intended modifications are beyond the first thread’s modifications, the second will be

blocked until the first thread’s operations are fully completed.

The fine-grained B-Tree insertion algorithm is shown below.

1. void bTree<myType>::insert(myType key, int th)  {
2. treeNode<myType> *curr, *prev, *old, *currChld;
3. int idx, nIdx;
4. bool insertDone = false;
5.
6. root->nodeLock.lock();
7. curr = root;
8.
9. while (!insertDone) {
10. // if root full, must split
11. if (root→cnt == degree-1)
12. splitRootNode(root);
13.
14. //  traverse downward to find applicable leaf node,
15. // split full nodes along the way
16.
17. prev = NULL;
18. while (!curr→leaf) {
19.
20. // find next ptr based on key
21. idx = 0;
22. while ((idx < curr→cnt) && (key > curr→keys[idx]))
23. idx++;
24.
25. curr→ptrs[idx]→nodeLock.lock();
26. currChld = curr→ptrs[idx];
27.
28. // if that child is full, split it.
29. if (currChld != NULL && currChld→cnt == (degree-1)) {
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30. splitChildNode(curr, currChld);
31.
32. // re-find where key goes (due to split)
33. nIdx = 0;
34. while ((nIdx < curr→cnt) && (key > curr→keys[nIdx]))
35. nIdx++;
36.
37. if (idx != nIdx) {
38. curr→ptrs[nIdx]→nodeLock.lock();
39. curr→ptrs[idx]→nodeLock.unlock();
40. idx = nIdx;
41. }
42. }
43.
44. old = prev;
45. prev = curr;
46.
47. curr = curr→ptrs[idx];
48. if (old != NULL)
49. old→nodeLock.unlock();
50. }
51.
52. //  insert key into non-full leaf node, slide existing keys
53. idx = curr→cnt - 1;
54. while (idx >= 0 && curr→keys[idx] > key) {
55. curr→keys[idx+1] = curr→keys[idx];
56. idx--;
57. }
58.
59. // insert the new key at appropriate location
60. curr→keys[idx+1] = key;
61. curr→cnt = curr→cnt + 1;
62.
63. insertDone = true;
64. if (prev != NULL)
65. prev→nodeLock.unlock();
66. curr→nodeLock.unlock();
67. }  // end main while loop
68. }
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Due to the node changes during the insert operation, the data structure may not be in a valid,

traversable  state  until  the  applicable  insertion  is  fully  completed.   As  such,  other  threads,

including search threads, are blocked from overtaking this thread.

Each of the major operations of the insertion is explained in the following subsections.

 5.3.1 Leaf Node Insertion

For insertion into a non-full leaf node, the keys may need to be shifted in order to place the new

key into the appropriate position.  The leaf will have room for the new key due to the proactive

splitting  since  the  node would  already  have  been  split  if  it  was  full.   The  process  is  fully

described in Section 4.3.1, Leaf Node Insertion.

In this algorithm, the parent node and the current leaf node are locked during the traversal.  Once

the key is  inserted into its  appropriate  location,  the locks  are released (Fine-Grained B-Tree

Insertion Algorithm, lines 64 and 66).

 5.3.2 Split Root Operation

When the root node has the maximum number of allowable keys, it will be split.  Special care

must be taken with the root node since another thread may already be locked on the root node.

Since the current thread holds the lock for the root, that node must be maintained as the root and

the new nodes be created as children to the current root.  The B-Tree will grow in height by

adding a level between the current root and the original set of child nodes.  In accordance with

the B-Tree invariants, a single key is allowed to be in the root node.  When needed, the fine-

grained split root operation is initiated (Fine-Grained B-Tree Insertion Algorithm, line 11).

The fine-grained split root operation algorithm is shown below.

1.  void bTree<myType>::splitRootNode(treeNode<myType> *currRoot)  {
2. int siz;
3. treeNode<myType> *lftSib=NULL, *rhtSib=NULL;
4.
5. // create new sibling nodes
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6. lftSib = makeNewNode();
7. lftSib→leaf = currRoot→leaf;
8. rhtSib = makeNewNode();
9. rhtSib→leaf = currRoot→leaf;
10.
11. // set size based on degree
12. siz = (degree-1) / 2;
13.
14. // copy the first (degree-1)/2 keys of current root left sibling
15. for (int j = 0; j < siz; j++)
16. lftSib→keys[j] = currRoot→keys[j];
17.
18. // copy the first degree/2 ptrs of current root over to left sibling
19. if (!currRoot→leaf)
20. for (int j=0; j < degree/2; j++)
21. lftSib→ptrs[j] = currRoot→ptrs[j];
22.
23. // copy the last (degree-1)/2 keys of current root to right sibling
24. for (int j = 0; j < siz; j++)
25. rhtSib→keys[j] = currRoot→keys[j+siz+1];
26.
27. // copy the last degree/2 ptrs of current root over to right sibling
28. if (!currRoot→leaf)
29. for (int j=0; j < degree/2; j++)
30. rhtSib→ptrs[j] = currRoot→ptrs[j+degree/2];
31.
32. // set sibling sizes
33. lftSib→cnt = siz;
34. rhtSib→cnt = siz;
35.
36. // update root, shift key
37. currRoot→leaf = false;
38. currRoot→cnt = 1;
39. currRoot→keys[0] = currRoot→keys[siz];
40. for (int i=1; i<degree-1; i++)
41. currRoot→keys[i] = 0;
42.
43. // set root pointers
44. currRoot→ptrs[0] = lftSib;
45. currRoot→ptrs[1] = rhtSib;
46. for (int i=2; i<degree; i++)
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47. currRoot→ptrs[i] = NULL;
48. }

The split root operation is only initiated after the lock is obtained and as such, no additional

locking is required.  If another thread currently holds the root lock, it will not be released until

that thread has proceeded in its traversal and no longer needs the root.

The initial configuration for a full root of degree 6 is shown for reference.

Once the root lock is obtained, if the root is full, it will be split as shown in the following figure.
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The root lock ensures that if other threads are attempting to obtain a root lock, they are blocked

until all potential changes are completed.  If this locking does not occur, it would be possible for

other threads to simultaneously alter the root, possibly corrupting the B-Tree.

 5.3.3 Split Child Operation

A split operation for a full non-root node is referred to as split-child node operation.  Checking

for full non-root nodes is done only after the root has been checked.   If the root was full, it will

have been split and the algorithm proceeds with the assurance of a non-full root.  Starting from

the non-full root, only the child node directly in the downward traversal path is checked.  Other

child nodes not in the traversal path are not checked.  If that child node is full, the split child

node operation is performed which will move up a key from the child to the parent.  This is why

the parent node, even if it is the root node, is not allowed to be full.  Other nodes, not in the

current traversal path, are not checked since they are not directly impacted or altered.

The fine-grained split child node algorithm is shown below.

1. void bTree<myType>::splitChildNode(treeNode<myType> *parnt,
2. treeNode<myType> *chld)  {
3. int siz, idx;
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4. treeNode<myType> *sib = NULL;
5.
6. // create a new sibling node
7. sib = makeNewNode();
8. sib→leaf = chld→leaf;
9.
10. // set size based on degree
11. siz = (degree-1) / 2;
12. sib→cnt = siz;
13.
14. // copy the last (degree-1)/2 keys of child to sibling
15. for (int j=0; j < siz; j++)
16. sib→keys[j] = chld→keys[j+siz+1];
17.
18. // copy the last degree/2 ptrs of child over to sibling
19. if (!chld→leaf) {
20. for (int j=0; j < degree/2; j++) {
21. sib→ptrs[j] = chld→ptrs[j+degree/2];
22. chld→ptrs[j+degree/2] = NULL;
23. }
24. }
25.
26. // reduce the number of keys in child
27. chld→cnt = chld→cnt / 2;
28.
29. // find where new key is going in parent
30. idx = 0;
31. while ((idx < parnt→cnt) && (parnt→keys[idx] < chld→keys[siz]))
32. idx++;
33.
34. // slide parent child ptrs over to make room for new child
35. for (int j = parnt→cnt; j >= idx+1; j--)
36. parnt→ptrs[j+1] = parnt→ptrs[j];
37.
38. // add new child to parent
39. parnt→ptrs[idx+1] = sib;
40.
41. // slide parent child keys over to make room for new key
42. for (int j = parnt→cnt-1; j >= idx; j--)
43. parnt→keys[j+1] = parnt→keys[j];
44.
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45. // copy middle key of child to parent
46. parnt→keys[idx] = chld→keys[siz];
47.
48. // increment count of keys in this node
49. parnt→cnt += 1;
50. }

The basic algorithm contains only minor updates from the algorithm and process presented in

Section 4.3.3, Split Child Node Operation.  The data structure changes are only allowed after the

parent and child node locks are acquired, thus blocking other threads from potentially interfering

with the operation.

 5.4 Search Algorithm

During the insertion or deletion operations, the data structure may not be in a valid, traversalable

state due to the in-process node configuration changes.  As such, the fine-grained search requires

acquisition and release of the node-locks as the search traversal proceeds.

The fine-grained search algorithm is shown below.

1. bool bTree<myType>::search(myType key) const  {
2. treeNode<myType> *curr, *prev;
3. int i;
4.
5. root→nodeLock.lock();
6. curr = root;
7. if (curr == NULL)
8. return false;
9.
10. while (curr != NULL) {
11.
12. // find the first key greater than or equal to key
13. i = 0;
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14. while ( (i < curr→cnt) && (key > curr→keys[i]) )
15. i++;
16.
17. // see if key is found
18. if (i < curr→cnt && curr→keys[i] == key) {
19. curr→nodeLock.unlock();
20. return true;
21. }
22.
23. prev = curr;
24. curr = curr→ptrs[i];
25.  curr→nodeLock.lock();
26. prev→nodeLock.unlock();
27. }
28. return false;
29. }

If a search thread is following the same traversal as another thread performing a search, deletion,

or insertion operation, the search thread will be blocked from overtaking.  If at some point the

search thread traversal path differs from a preceding thread, it will no longer be blocked.  There

is overhead associated with the lock acquire and lock release operations.  In no or low contention

environments this reduces performance as compared to a coarse-gained approach.

 5.5 Deletion Algorithm

The deletion operation will remove a key from the B-Tree.  The traversal is initiated from the

root.   Like the insertion,  a proactive  approach is  used.   Specifically,  as  the thread traversal

proceeds, any node on the direct traversal path with a key count at the minimum (degree/2-1),

will be adjusted or merged as appropriate.  The adjustment may borrow a key from an adjacent

node.   If  both the  right  and left  siblings  also have  the  minimum number  of  keys,  a  merge

operation is performed.  Multiple delete operations will gradually contract the width and height

of the B-Tree.  Since the root is not subject to the minimum key requirement, as keys in the root

are removed, the B-Tree will shrink in height.

64

Algorithm 15: Fine-Grained B-Tree Search Algorithm



Deletion of a key in a leaf node can be performed directly with no impacts on other nodes.  The

parent and leaf nodes are locked during the traversal and no additional locking is required.

Deletion of a key in an internal node may require more extensive modifications to other, possibly

non-locked nodes.  Simply removing the key directly would invalidate or lose some of the child

pointers.  A replacement must be identified.  This process is fully explained in Section  4.5.2,

Internal Node Deletion Operation.

The fine-grained deletion algorithm is shown below.

1. void bTree<myType>::remove(myType key)  {
2. treeNode<myType> *curr, *prev=NULL, *old=NULL, *tmpChld;
3. int idx, pred, succ, t = degree / 2;
4. bool wasLastChild;
5.
6. if (root == NULL) {
7. cout << "Tree is empty." << endl;
8. return;
9. }
10.
11. root->nodeLock.lock();
12. prev = NULL;
13. curr = root;
14. while (curr != NULL) {
15.
16. // find appropriate index for key
17. idx=0;
18. while ((idx < curr→cnt) && (curr→keys[idx] < key))
19. idx++;
20.
21. // does this node contain the key?
22. if ((idx < curr→cnt) && (curr→keys[idx] == key)) {
23. if (curr→leaf) {
24. // leaf node, just remove key, slide keys backwards
25. for (int i=idx+1; i < curr→cnt; i++)
26. curr→keys[i-1] = curr→keys[i];
27. curr→cnt--;
28. if (prev != NULL)
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29. prev→nodeLock.unlock();
30. curr→nodeLock.unlock();
31. curr = NULL;
32. } else {
33. // key found, but not leaf
34. auto tmp = curr->ptrs[idx];
35. auto tmp1 = curr->ptrs[idx+1];
36.
37. old = prev;
38. prev = curr;
39. if (tmp→cnt >= t) { // case A
40. pred = getPred(curr, idx);
41. curr→keys[idx] = pred;
42. key = pred;
43. curr = curr→ptrs[idx];
44. curr→nodeLock.lock();
45. } else if (tmp1→cnt >= t) { // case B
46. succ = getSucc(curr, idx);
47. curr→keys[idx] = succ;
48. key = succ;
49. curr = curr→ptrs[idx+1];
50. curr→nodeLock.lock();
51. } else { // case C
52. tmp→nodeLock.lock();
53. tmp1→nodeLock.lock();
54. merge(curr, idx);
55. curr = curr→ptrs[idx]; // already locked
56. }
57. if (old != NULL)
58. old→nodeLock.unlock();
59. }
60. } else {
61. // key not found yet, keep going down...
62.
63. // check for not in tree
64. if (curr→leaf) {
65. cout << "Key " << key << " does not exist in the tree." << endl;
66. if (prev != NULL)
67. prev→nodeLock.unlock();
68. curr→nodeLock.unlock();
69. return;
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70. } else {
71. wasLastChild = ( (idx==curr→cnt)? true : false );
72.
73. // if the child has less than t keys, fill child
74. curr→ptrs[idx]→nodeLock.lock();
75. if (curr→ptrs[idx]→cnt < t) {
76. fill(curr, idx);
77. }
78.
79. if (curr→ptrs[idx] != NULL)
80. curr→ptrs[idx]→nodeLock.unlock();
81.
82. old = prev; // keep traversing downward
83. prev = curr;
84.
85. if ( wasLastChild && (idx > curr→cnt) )
86. curr = curr→ptrs[idx-1];
87. else
88. curr = curr→ptrs[idx];
89.
90. curr→nodeLock.lock();
91. if (old != NULL)
92. old→nodeLock.unlock();
93. }
94. }
95. } // end main while
96.
97. // if root has no keys, tree shrinks -> move up info from child
98. root→nodeLock.lock();
99.
100. // if root is leaf with no keys, empty tree
101. if (root→cnt == 0 && root→leaf)
102. return;
103.
104. if (root→cnt == 0) {
105. root→ptrs[0]→nodeLock.lock();
106.
107. // copy keys up
108. tmpChld = root→ptrs[0];
109. for (int i=0; i < tmpChld→cnt; i++)
110. root→keys[i] = tmpChld→keys[i];
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111.
112. // copy child pointers up
113. if (!tmpChld→leaf)
114. for(int i=0; i <= tmpChld→cnt; i++)
115. root→ptrs[i] = tmpChld→ptrs[i];
116. root→cnt = tmpChld→cnt;
117. root→leaf = tmpChld→leaf;
118.
119. if (tmpChld→keys != NULL)
120. delete [] tmpChld→keys;
121. if (tmpChld→ptrs != NULL)
122. delete [] tmpChld→ptrs;
123. delete tmpChld;
124. }
125. root→nodeLock.unlock();
126.}

The leaf node deletion and internal node deletion are addressed in the following sections.

 5.5.1 Key Deletion from Leaf Node

Both the parent and leaf nodes are locked during the traversal.  Since they are locked, the leaf

node deletion can be performed as described in Section  4.5.1, Key Deletion from Leaf Node.

Once the leaf-node key deletion is completed, the nodes are unlocked.

 5.5.2 Internal Node Deletion Operation

Keys that  are  found in an internal  (non-leaf)  node cannot  be removed directly  since such a

removal would orphan the subtree associated with the excess child pointer.  A replacement is

obtained  from  either  a  left-most  predecessor  or  right-most  successor  node.   This  creates  a

temporary  duplicate  key.   The second duplicate  key,  which will  be in  a leaf  node,  must  be

deleted by the current thread.  Other threads must be blocked during such an operation.  Since

this can only occur in the current subtree, others threads operating in a different part of the data

structure can proceed unimpeded.
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If a search thread coincidentally is looking for the chosen predecessor or successor key, it will be

blocked from overtaking the delete thread.  If that search thread was ahead of the deleted thread,

the delete thread is blocked from overtaking the search thread which ensures that the search will

be able to find the appropriate key without interfering from the delete or other insertion threads.

The predecessor and successor operations are detailed in the following section.

 5.5.2.1 Predecessor and Successor Operations

The  predecessor  and  successor  operations  are  similar  to  the  coarse-gained  successor  and

predecessor operations.  However, the nodes must be locked and unlocked during the successor

and predecessor traversals.

The fine-grained predecessor operation algorithm is shown below.

1. myType bTree<myType>::getPred(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *cur = nd→ptrs[idx], *pre = NULL;
3.
4. // keep moving to the right-most until leaf
5. while (!cur→leaf) {
6. pre = cur;
7. cur = cur→ptrs[cur→cnt];
8. cur→nodeLock.lock();
9. pre→nodeLock.unlock();
10. }
11. cur→nodeLock.unlock();
12.
13. // return the last key of the leaf
14. return cur→keys[cur→cnt-1];
15. }
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The fine-grained successor operation algorithm is shown below.

1. myType bTree<myType>::getSucc(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *cur = nd→ptrs[idx+1], *pre = NULL;
3.
4. // keep moving the left-most until leaf
5. while (!cur→leaf) {
6. pre = cur;
7. cur = cur→ptrs[0];
8. cur→nodeLock.lock();
9. pre→nodeLock.unlock();
10. }
11. cur→nodeLock.unlock();
12.
13. // return the first key of the leaf
14. return cur→keys[0];
15. }

Once the locks are acquired, the predecessor operation proceeds as described in Section 4.5.2.1,

Predecessor  Operation  or  the  successor  operation  proceeds  as  described  in  Section  4.5.2.2,

Successor Operation.

The locking during the predecessor or successor traversals  is  required in  order to ensure no

interference from other threads traversing the data structure ahead of the current thread.  If this is

not performed, a race conditions could be created.

For example, a possible race condition may occur between multiple simultaneously executing

delete threads.  To illustrate, assume that thread, tadel, is performing a delete operation for key ka

and that thread, tbdel, performing a delete operation for key kb.  Further assume that ka, in thread

tadel is being deleted and is in an internal node, that the key kb, in thread tbdel is being deleted and

is in a leaf node, and that kb happens to be the successor key value for thread tadel.  If thread tadel

overtakes tbdel due to an inopportune preemption, thread tbdel could select kb as its predecessor or
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successor key value.  As thread  tbdel resumes, it will successfully delete  kb from the leaf.  As

thread tadel proceeds, it will replace ka with kb successfully deleting ka and continue in an attempt

to delete is predecessor or successor key value, kb which has already been deleted generating an

error.  While this error could be ignored, the key kb which was successfully deleted by tbdel is still

in the data structure.

The potential two delete thread race condition is summarized in the following figure.

While  the  predecessor  example  is  shown,  a  similar  race condition  could occur  with the get

successor function if the lock is not performed.

If some specialized blocking for only delete threads was implemented, it would not be sufficient

to solve the race condition issue.  Specifically, without the predecessor and successor locking,

there could be another possible race condition between multiple simultaneously executing insert

and delete threads.  To illustrate, assume thread  tdel is performing a delete operation for key ka

where ka is found in an internal node, thus requiring a predecessor or successor key value to be

obtained.  If thread  tins is inserting key  kb into the leaf node where either the predecessor or
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successor key will  be obtained and  tins overtakes  tdel after  the selection of the predecessor or

successor  value  but  before  the  key  replacement,  an  error  may  occur.   Specifically,  for  the

predecessor case if  kb is greater than  ka, or for the successor case, if  kb is less than  ka, it will

violate the B-Tree invariants and corrupt the data structure.

The potential insert and delete thread race condition is summarized in the following figures.

Assume  tdel is deleting key 900 and that thread  tins is inserting key 895.  As each thread starts

executing, the applicable subtree could be configured as shown.  As tdel executes, it selects the

predecessor key value of 890 from the right-most leaf node in that subtree (as shown).  If thread

tins is allowed to overtake thread tdel passing the node with the 900 key and does so after thread tdel

has selected the predecessor key of 890, the 890 will be used to overwrite the deleted key of 900.

As thread tins completes, the key 895 will be added to the leaf node that the predecessor key was

just obtained from.  The resulting subtree would be configured as shown.
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Since the newly inserted key value of 895 is greater than the 890 it is a violation of the B-Tree

invariants.  A search traversal for the key 895 would would follow the right child key (from top

node shown) and thus not be found.

Locking  the  nodes  during  the  predecessor  or  successor  traversal  solves  these  types  of  race

conditions.  The additional lock acquire and lock release overhead does degrade performance

especially in a heavy delete load environment.

 5.5.3 Merge Operation

The merge operation will combine two nodes with the minimum number of keys (degree/2-1)

into  a  single  node.   The  merge  is  only  initiated  after  the  applicable  node  locks  have  been

acquired and the locks are not released until the merge operation, if initiated, is completed.  The

merge may be called directly from the remove (Fine-Grained B-Tree Deletion Algorithm, line

54) or indirectly during a node fill operation (Fine-Grained B-Tree Node Fill Algorithm, line 21

or line 24).  In either case, all locking is performed prior to the merge call.  Once the locking is

complete, the fine-grained merge operation is the same as the coarse-gained merge operation

from Section 4.5.3, Merge Operation.
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 5.5.4 Node Fill Operation

The fine-grained node fill  operation  is  similar  to  the  coarse-gained node fill  operation  from

Section  4.5.4, Node Fill Operation.  During the traversal, if a node on the direct traversal path

has the minimum number of keys (Fine-Grained B-Tree Deletion Algorithm, line 75), it will be

adjusted pro-actively by adding a key or merging nodes.  In order to accomplish this, the node

fill operation might borrow a key from either a left or a right sibling node.  If either a merge or a

borrow operation occurs, some additional locking is required.  If a merge or a borrow operation

is performed, the parent node and applicable sibling nodes must be updated accordingly.  This

requires that an additional lock be acquired for either the left or the right sibling node to ensure

that the changes can be performed without any potential interfere with other active threads.

The fine-grained node fill algorithm is shown below.

1. void bTree<myType>::fill(treeNode<myType> *nd, int idx)  {
2. treeNode<myType> *prevSib = NULL, *nextSib = NULL;
3. int t = degree / 2;
4.
5. if (idx > 0)
6. prevSib = nd→ptrs[idx-1];
7. if (idx < nd→cnt)
8. nextSib = nd→ptrs[idx+1];
9.
10. if (idx != 0 && prevSib→cnt >= t) {
11. prevSib→nodeLock.lock();
12. borrowFromPrev(nd, idx);
13. prevSib→nodeLock.unlock();
14. } else if (idx != nd→cnt && nextSib→cnt>=t) {
15. nextSib→nodeLock.lock();
16. borrowFromNext(nd, idx);
17. nextSib→nodeLock.unlock();
18. } else {
19. if (idx != nd→cnt) {
20. nextSib→nodeLock.lock();
21. merge(nd, idx);
22. } else {
23. prevSib→nodeLock.lock();
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24. merge(nd, idx-1);
25. prevSib→nodeLock.unlock();
26. }
27. }
28. return;
29. }

Should another simultaneous active thread be traversing the same path, that thread would require

a lock on the parent node before checking any of the child nodes.  The consistent ordering of

lock acquires ensures that a deadlock does not occur due to the additional locking associated

with child sibling nodes.

The locking will block a search thread from traversing any path, even an unrelated path, in the

subtree being updated.  Potentially, this could degrade performance of a search operation in the

impacted  subtree.   Other  insert,  search,  or  delete  operations  in  other  subtrees  will  not  be

impacted.

 5.5.4.1 Borrow Key Operations

The fine-grained borrow key operations are the same as the coarse-gained locking algorithms

from  Section  4.5.4.1,  Borrow  Key  Operations.   This  includes  both  the  predecessor  node

(Algorithm  10,  Coarse-Grained B-Tree  Borrow from Previous  Algorithm)  and the  successor

node (Algorithm 11, Coarse-Grained B-Tree Borrow from Next Algorithm) borrow operations.

All applicable locking is performed prior to the the borrow key operations.

 5.6 Correctness

This section addresses correctness issues for the fine-grained algorithm.

 5.6.1 Deadlock Freedom

The basic required structure of the B-Tree supports freedom from deadlock.  The node locks are

always acquired using a parent then child, root-to-leaf process.  All threads compete for a lock on
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the single, shared root node.  From the root, a thread can only attempt to acquire node locks on

child nodes (i.e., nodes that are on the next lower level in the B-Tree).  Update operations require

successful  acquisition  of  the  parent  node  lock  first  and  only  then  can  the  thread  attempt

acquisition of the applicable child node.  Once the parent node lock is acquired the lock-coupling

approach ensures that subsequent threads will not be allowed to overtake.  If an insert thread

inserting  key0 acquires the initial root lock prior to a search for  key0, the inability to overtake

ensures that the search will succeed even in the event of inopportune preemption’s.  Conversely,

if a search thread searching for key0 acquires the initial root lock prior to an insert for key0, the

inability to overtake ensures that the search will fail regardless of the preemption pattern.

At some point, if the thread eventually takes a different path, a different child will be selected.

Since the parent lock must be acquired prior to the child, that different path cannot be selected

until  the  parent  lock  is  released.   The locking also  ensures  that  a  thread  cannot  overtake  a

previous thread until the traversal paths diverge.  There is no circumstance where the insert or

delete algorithms traverse up the B-Tree.  The algorithms are deadlock free.

 5.6.2 Starvation Freedom

When there is heavy contention multiple threads will be competing for the root node lock.  The

selection of the thread that is granted the lock is chosen arbitrary.  This allows the possibility that

the under a persistent heavy load, a specific thread may be repeatedly not be chosen indefinitely.

When the load subsides, the thread will be eventually be selected.

 5.6.3 Linearizability

The linearizability [31] of the algorithm is based on the linearization point and the lock-coupling

approach for both the insertion and deletion algorithms.  The linearization point for the insertion

algorithm is when the root lock is acquired (Fine-Grained B-Tree Insertion Algorithm, line  6).

The linearization point for the search algorithm is when the root lock is acquired (Fine-Grained

B-Tree Search Algorithm, line 5).  The linearization point for the deletion algorithm is when the

root  lock  is  acquired  (Fine-Grained  B-Tree  Insertion  Algorithm,  line  11).   Simultaneously

executing threads will contend on the linearlization point for the applicable algorithm.
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6.0  Chapter 6,

Lock-Free B-Tree Algorithms

 6.0 Chapter 6, Lock-Free B-Tree Algorithms

This chapter presents the lock-free approach as applied to the B-Tree.  Multi-threaded concurrent

access to mutable shared critical sections must be synchronized.  The typical synchronization

methods  use  either  coarse-grained  or  fine-grained  mutual  exclusion  locking.   Both  these

approaches have been explored in the previous chapters.

These lock-based approaches suffer significant performance degradation when faced with the

possible delay (e.g., preemption) of a thread that is currently holding a lock.  While the thread

with the lock is delayed, other active threads that request access to the locked critical section are

blocked from making progress until the lock is released by the delayed thread.

In general,  lock-free programming  is  a  way to safely  share  changing data  between multiple

threads without the cost of acquiring and releasing locks.

 6.1 Main Ideas

This  section  presents  a  conceptual  overview  of  the  B-Tree  lock-free  algorithmic  approach.

Changes to the data structure are performed using the CAS operation which will make a change

atomically visible to the data structure (as described in Section 2.3, Lock-Free Approach).

The  lock-free  insertion  algorithm initiates  at  the  root  and  traverses  downward.   During  the

traversal, if a child node is found to have the maximum possible number of keys (i.e., degree-1

keys), referred to as full, it will be split.  In order to accomplish the split in a lock-free manner, a
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copy of the parent and child nodes are made and the applicable changes are made to the copies.

Once the changes are completed, an attempt is made to include the new nodes into the B-Tree by

using a CAS operation on the pointer in the node above the parent (i.e., the previous node).  If

another thread is performing an operation that impacts the same parent/child nodes, they will

both attempt a CAS operation on the same previous node.  Only one thread will succeed and

others will fail.   The failed threads will  delete the local copies and re-attempt the applicable

operations re-starting from the root.  This approach is also used for a leaf key insertion operation.

Copies of the parent and child nodes are made, the changes are performed on the copies (e.g.,

insertion of the key into the leaf node), and a CAS operation is attempted on the previous node.

If the CAS operation succeeds, the operation is complete.  The CAS operation will only fail if

another thread succeeds.  A thread that fails the CAS operation will re-start from the root trying

again until it succeeds.  A node split operation will move a key from the child to the parent node.

In this manner, keys are gradually moved up the B-Tree.  A key is only moved up one level per

CAS operation.  This limits the scope of allowed changes.  As such, insertion related movement

of keys up in the tree is very gradual.

During an insertion operation, when a CAS operation fails, the newly created nodes were never

available to other threads and can be immediately deleted.  When a CAS operation succeeds, the

nodes that have been removed from the tree may be referenced by another thread that may have

been preempted while referencing the newly deleted node (before it was removed from the B-

Tree).  This possibility is accommodated by queuing the nodes that are being removed from the

B-Tree  for  deletion  which  maintains  the  node for  a  short  period  of  time  after  the  intended

deletion ensuring preempted threads will not encounter a dangling pointer.  This approach also

addresses the ABA problem (as outlined in Section 2.3.3, ABA Problem).

When an node split operation is identified, the applicable nodes are immediately marked as being

modified  (using  the  ‘marked’  field  in  B-Tree  Node  Definition)  before  any  changes  are

performed.   Another  thread working at  this  level  will  re-mark the impacted  nodes,  possibly

redundantly.   This marking allows threads operating at  the next level  down to recognize in-

process changes at the next higher level and thus not interfere.  This helps reduce conflicts and
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increase performance by not performing CAS operations that will fail.

In the case of the search algorithm, since no locking is used, the algorithm can proceed from the

root node downward until either the key is found or a NULL is found at a leaf node (i.e., key not

found).   No additional  overhead is  required  for  lock  operations.   As such,  the  search  is  as

efficient as possible.  However, if a key search for key0 is initiated after a key insertion for key0,

it is possible that the search operation may overtake the insertion operation and report that key0 is

not found.  A subsequent search for key0 would succeed.

The delete operation presents some specialized challenges.  Specifically, during the downward

traversal, a proactive merge of nodes is performed when necessary.  A merge operation can be

performed  when  two  sibling  child  nodes  each  containing  the  minimum  number  of  keys

(degree/2-1) are found in the traversal path.  The merge operation will move a key one level

down in the B-Tree.  Since a merge operation will move a key down a level, the parent node

must contain at least one more than the minimum number of keys.  The root is excluded from

this requirement which will allow the root to be fully depleted of keys (one key at a time).  When

this occurs, the root will  be removed and the tree will  shrink in height.   From the root,  the

applicable child node is selected based on the key value.  If that child does not have at least one

more than the minimum number of keys, it must be addressed.  This is accomplished by first

checking the key counts for the left and right child sibling nodes.  If they have more than the

minimum number of keys, a merge operation is not possible and a key will  be borrowed or

shifted from one of the siblings.  If the siblings also have the minimum number of keys, a merge

is performed.  The key borrow operation will move a key from a left or right sibling into the

parent node and a key from the parent is moved into the applicable child node.  If two or more

threads simultaneously attempt similar conflicting operations on the same set of child nodes,

only  one  would  succeed.   However,  if  multiple  threads  attempt  such an  operation  in  rapid

succession, a conflict can arise.  In such a case, a key could be moved into and then out of the

applicable child node and a subsequent merge operation on the next level down would violate the

B-Tree invariants potentially corrupting the data structure.   Additionally, an internal node delete

key operation requires a predecessor or successor key from the applicable leaf node (Section
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5.5.2.1, Predecessor and Successor Operations).  Relocating the key across multiple levels in the

B-Tree cannot be done in a single CAS operation since there is no single linearization point.

Successive  CAS operations  create  a  possible  race  condition.   This  type  of  conflict  between

simultaneously executing delete operations only occurs during heavy contention.  The potential

inconsistent  multi-level  movement  of  keys  right,  left,  up,  and  down  presents  significant

challenge for the lock-free approach.  To circumvent  this  problem, the fine-grained deletion

operation is used which employs localized fine-grained locking.  The lock-free node definition

(Section 6.2.1, Lock-Free B-Tree Node Definition) uses atomic fields which ensure that the fine-

grained deletion operations do not conflict with the lock-free insertion algorithm, though this

approach does hamper performance especially during heavy deletion loads.

 6.2 Lock-Free B-Tree Configuration

This section summarizes  the lock-free B-Tree node configuration with regard to the specific

structure fields.

 6.2.1 Lock-Free B-Tree Node Definition

The specific node definition includes fields for the count, leaf status (true/false), a pointer to an

array of keys, and a pointer to an array of pointers (for the child pointers).  A mutex for the

specific node is included which is used during the deletion operation.  The keys and child pointer

arrays are marked as atomic which is required for the CAS operation.
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struct treeNode
{

atomic<myType> *keys; // key values
atomic<treeNode<myType> **> ptrs; // child ptrs
atmoic<int> cnt; // current number of keys
atmoic<bool> leaf; // true if leaf, else false
atmoic<bool> marked; // node is being modified
mutex nodeLock; // lock for node (delete)

};

Figure 21: Lock-Free B-Tree Node Configuration



The  myType is the passed type for the polymorphic implementation.  In addition to the node

structure, class global variables include the declared degree and root pointer.  There are no global

mutexes used.

 6.3 Insertion Algorithm

The insertion initiates from the root and traverses down using the applicable child pointer based

on the new key value (i.e.,  key to be inserted).  Duplicate keys are checked for prior to the

insertion, however it would be possible to verify as an initial step in the insertion algorithm if

desired (based on implementation design parameters).

The proactive node splitting process starts at the root.  If the root is full, it will be split.  The root

split operation (detailed in Section 6.3.1, Split Operation, Root Node) will add a new level to the

B-Tree and assign a new root.  While configuration of the root is altered, none of the key values

nor child nodes are changed.  The old root is queued for deletion which ensures that should a

preempted thread awake with a reference to the old root, it does not find a dangling pointer.

While similar, a root split operation and an internal node split operation do differ and are split

into different functions.

The lock-free B-Tree insertion algorithm is presented below.

1. void bTreeInsert(key) {
2.
3. treeNode<myType> *currPtr=NULL, *prevPtr=NULL, *newRoot=NULL
4. treeNode<myType> *currChild=NULL, *newCurrChild=NULL
5. treeNode<myType> *newCurrPtr=NULL, *newLeafPtr=NULL
6. treeNode<myType> *sib1=NULL, *sib2=NULL
7. int currIndex=0, prevIdx=0
8. bool insertDone
9.
10. insertDone = false
11. while not insertDone {
12.
13. // if root is NULL, create new root
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14. if (root  ==  NULL)
15. // create and populate newRoot
16. newRoot = makeNewNode()
17. CAS in newRoot
18. // fail => delete newRoot, continue from top
19. // success => enqueue released node for deletion,  exit function
20.
21. // if root is full, tree grows in height (figures 23 and 24)
22. if (root→cnt  ==  (degree-1))
23. // split root into two nodes, move middle element up to new root
24. newRoot = splitRootNode(root)
25. CAS in newRoot
26. // fail => delete new nodes
27. // continue from top (while insert not done)
28. // success => enqueue released node for deletion
29.
30. // traverse downward to find applicable leaf node, split full nodes along the way
31. currPtr = root
32. prevPtr = NULL  and  prevIdx = -1
33.
34. while currPtr is not a leaf node {
35.
36. // find/set  currIndex  for appropriate child based on key
37. currChild = currPtr[currIndex]
38.
39. if  currChild  node is full  // must split child node (figure 25)
40.
41. // set flags for impacted nodes to indicate updates in process
42. set  currPtr→marked  and  currChild→marked
43.
44. // split child node (figure 26)
45. // creates new current and child nodes
46. newCurrPtr = splitChildNode(currPtr, currChild, sib1, sib2)
47.
48. // attempt to cut-in split node into previous level (figure 27)
49. // if at root, must update at root
50. if (prevPtr == NULL) // at root?
51. CAS in new  newCurrNode  into root
52. // fail => delete nodes newCurrPtr, newChild,
53. //   sb1, and sb2
54. // continue from top (while insert not done)
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55. // success => enqueue old nodes for deletion
56. else // not at root
57. // note, if marked, abandon changes, continue from top
58. if  prevPtr→marked  ||
59.     CAS in new  newCurrPtr  into  prevPtr[prexIdx]
60. // fail => delete newCurrPtr and newChild
61. // continue from top
62. // success => enqueue related nodes for deletion
63. // re-find currIndex for appropriate child based on key
64.
65. // move down tree to next level, track previous level
66. prevPtr = currPtr
67. prevIdx = currIndex
68. set  currNode  to appropriate child based on currIndex
69.
70. }  // end while
71.
72. // insert key into non-full leaf (figure 28)
73. newLeafPtr = insertNonFull(key)
74.
75. // attempt to cut-in split node into previous level (figure 29)
76. // if at root, must update at root
77. if (prevPtr == NULL) // at root?
78. CAS in  newLeafPtr  into  root
79. fail => delete  newLeafPtr
80. continue from top (while insert not done)
81. success => set  insertDone=true
82. else
83. // note, if marked, abandon changes, continue from top
84. if  prevPtr→marked  || 
85.       not CAS in newLeafPtr into prevPtr at prevIdx
86. // fail => delete newLeafPtr
87. //   continue from top (while insert not done)
88. // success => enqueue released nodes for deletion
89. set insertDone=true
90.
91. }  // end while not insertDone
92.
93. }  // end insert
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Each of the major operations is explained in the following sections.

 6.3.1 Split Operation, Root Node

A B-Tree only grows from the root, not the leaf nodes.  This only occurs when the root node

becomes full (i.e.,  has the maximum number of key values).  One of the initial  steps in the

algorithm is to check if the root node is full, and if so, call the function to split the root node.

The algorithm for handling a root split operation is shown below.

1. treeNode<myType> *bTree<myType>::splitRootNode(treeNode<myType> *currRoot,
2. treeNode<myType> *sib1, treeNode<myType> *sib2)  {
3. int siz=0;
4. treeNode<myType> *newRoot = NULL;
5.
6. // create new sibling nodes
7. sib1 = makeNewNode();
8. sib1->leaf = currRoot→leaf;
9. sib2 = makeNewNode();
10. sib2->leaf = currRoot→leaf;
11.
12. // set size based on degree
13. siz = (degree-1) / 2;
14.
15. // copy the first (degree-1)/2 keys of current root to sibling 1
16. for (int j = 0; j < siz; j++)
17. sib1→keys[j] = currRoot→keys[j];
18.
19. // copy the last (degree-1)/2 keys of current root to sibling 2
20. for (int j = 0; j < siz; j++)
21. sib2→keys[j] = currRoot→keys[j+siz+1];
22.
23. // copy the first degree/2 ptrs of current root over to sibling 1
24. if (!currRoot→leaf)
25. for (int j=0; j < degree/2; j++)
26. sib1→ptrs[j] = currRoot→ptrs[j];
27.
28. // copy the last degree/2 ptrs of current root over to sibling 2
29. if (!currRoot→leaf)
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30. for (int j=0; j < degree/2; j++)
31. sib2→ptrs[j] = currRoot→ptrs[j+degree/2];
32.
33. // set sibling sizes
34. sib1→cnt = siz;
35. sib2→cnt = siz;
36.
37. // create and populate new root
38. newRoot = makeNewNode();
39. newRoot→leaf = false;
40. newRoot→ptrs[0] = sib1;
41. newRoot→ptrs[1] = sib2;
42. newRoot→keys[0] = currRoot→keys[siz];
43. newRoot→cnt = 1;
44.
45. return newRoot;
46. }

The following figure shows a full root of degree 6 which must be split.

In order to split the root in a lock-free context, a new set of nodes (root, left, and right) must be

85

Figure 22: Lock-Free Full Root Example
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created and populated.  The new root will contain the middle key, the new left node will contain

the left most keys and associated child pointers, and the new right node will contain the right

most keys and the associated child pointers.

The following diagram shows the set-up.

Once  the  set-up  is  complete,  the  CAS  operation  will  be  performed  on  the  root  node.

Specifically, the current value of the root node obtained at the beginning of the loop prior to the

set-up operations (expected value) is compared to the current value of the root.

If the expected value does not match the current value, another thread has already performed and

completed the split-root operation.  If this occurs, the newly created nodes (new root, new left,
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Figure 23: Lock-Free Split Root, Initial Configuration
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and new right) can be immediately deleted and the algorithm re-started from the beginning of the

loop.  Since the root is now split, the operation will continue its downward traversal.

If the expected value does match the current value, the CAS will change the root pointer to the

new root node thus updating the data structure atomically.  A successful CAS operation is shown

as follows.

Since  the  CAS operation  is  atomic,  the  switch  between  the  old  and  newly  configured  data

structure appears instantly to all new threads.  After a successful CAS operation, the old root is

queued for deletion.  This ensures that any preempted threads awaking to the updated structure

will not crash based on a deleted node.
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Figure 24: Lock-Free Split Root, Final Configuration
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 6.3.2 Split Operation, Child Node

One of the more complex steps in the algorithm is to check if a child node is full, and if so, split

the child node into two nodes.  The following figure shows a full child node, in context, which

must be split.  Local pointers to the previous node and current node are shown for reference.  In

this example, during the traversal the applicable child node is determined to be full and must be

split.  The child node split will divide the full node into two nodes and move one key value up

into the parent node.

The algorithm for splitting a full child node is shown below.

1. treeNode<myType> *bTree<myType>::splitChildNode(treeNode<myType> *parent,
2. treeNode<myType> *child,
3. treeNode<myType> *sib1,
4. treeNode<myType> *sib2)  {
5. int siz, idx;
6. treeNode<myType> *newParent = NULL;
7.
8. newParent = cloneNode(parent);
9.
10. // create new sibling nodes
11. sib1 = makeNewNode();
12. sib1→leaf = child→leaf;
13.
14. sib2 = makeNewNode();
15. sib2→leaf = child→leaf;
16.
17. // set size based on degree
18. siz = (degree-1) / 2;
19.
20. // copy the first (degree-1)/2 keys of child to sibling 1
21. for (int j = 0; j < siz; j++)
22. sib1→keys[j] = child→keys[j];
23.
24. // copy the last (degree-1)/2 keys of child to sibling 2
25. for (int j = 0; j < siz; j++)
26. sib2→keys[j] = child→keys[j+siz+1];
27.
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28.
29. // copy the first degree/2 ptrs of child over to sibling 1
30. if (!child→leaf)
31. for (int j=0; j < degree/2; j++)
32. sib1→ptrs[j] = child→ptrs[j];
33.
34. // set sibling size
35. sib1→cnt = siz;
36.
37. // copy the last degree/2 ptrs of child over to sibling 2
38. if (!child→leaf)
39. for (int j=0; j < degree/2; j++)
40. sib2→ptrs[j] = child→ptrs[j+degree/2];
41.
42. // set sibling size
43. sib2→cnt = siz;
44.
45. // find where new key is going in new parent
46. idx = 0;
47. while ((idx < newParent→cnt) && (newParent→keys[idx] < child→keys[siz]))
48. idx++;
49.
50. // slide new parent child ptrs over to make room for new child
51. for (int j = newParent→cnt; j >= idx+1; j--)
52. newParent→ptrs[j+1] = newParent→ptrs[j];
53.
54. // slide new parent child keys over to make room for new key
55. for (int j = newParent→cnt-1; j >= idx; j--)
56. newParent→keys[j+1] = newParent→keys[j];
57.
58. // add new siblings to new parent
59. newParent→ptrs[idx] = sib1;
60. newParent→ptrs[idx+1] = sib2;
61.
62. // copy middle key of child to new parent
63. newParent→keys[idx]  = child→keys[siz];
64.
65. // increment count of keys in new parent
66. newParent→cnt += 1;
67.
68.
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69. return newParent;
70. }

Due to the proactive splitting on the downward traversal, the current node and nodes above the

current node, including the root, will not be full.  For example, the process for a full child node

split operation is shown in the following figures.
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For the child node split operation, it does not matter if the lowest level of nodes shown above are

leaf nodes or have extensive subtrees as they are not altered in this operation.
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Figure 25: Lock-Free Split Full Child Node, Initial Configuration
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Once the new nodes have been created and populated, the new structure can be swapped into the

data structure by changing the single pointer in the previous node to point to the new current

node with a CAS operation.   Once this  is  successfully completed,  the new structure is fully

available to all threads.
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Figure 26: Lock-Free Split Full Child Node, Intermediate Configuration
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If the CAS operation fails, the new current node, new left sibling, and new right sibling nodes are

deleted and the operation is re-started from the root.  An unsuccessful CAS operation will occur

only when some other thread has succeeded in performing the same operation, invalidating the

need for this operation.
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Figure 27: Lock-Free Split Full Child Node, Final Configuration
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After a successful CAS operation, the old current node root is queued for deletion.  This ensures

that any preempted threads awaking to the updated structure will not crash due to a non-existent

node.

A key advantage of this approach is that if one thread starts the operation and is preempted, then

another thread also starts the same operation and is also preempted, another thread may start and

complete the operation.  A preempted thread will not block other threads.

 6.3.3 Leaf Node Insertion

The insertion of a key into a leaf node is fairly straight-forward.  Due to the proactive splitting

during the downward traversal, a leaf node is guaranteed to be not full.  Insertion into a non-full

leaf node involves swapping the old leaf for a newly configured leaf.  For example, given the

initial configuration shown below and assuming that the key value to 75 is to be inserted.

A new leaf node will be created and populated with the existing keys and the new key value in

the appropriate order as shown below.
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Figure 28: Lock-Free Leaf Node Insertion, Initial Configuration
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The CAS operation is performed on the previous node.  If the CAS operation is unsuccessful,

another thread has succeeded in updating the node.  Since the node has been changed by another

thread, the current changes must be abandoned by deleting the new local leaf node and restarting

the traversal from the root.  Due to the relatively shallow nature of B-Tree’s, restarting from the

root is not a significant detriment.

After a successful CAS operation, the new node with the new key value is immediately available

in the data structure.  The old leaf node is queued for deletion.  This will ensure that if another,

preempted thread operating on this node, awakes to the updated structure that it will not crash

due to a non-existent node.

 6.4 Search Algorithm

The lock-free search algorithm starts at the root and follows a basic downward traversal until the

key is either found or a leaf node is found without the key (e.g., key not found).  The search

operation does not alter any nodes and does not create any conflicts with other operations.  Any

in-process modifications are not visible to the search thread.  If another thread is modifying the

data structure, the search will only see that modifications after they are fully complete which

only occurs after a successful CAS operation.
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Figure 29: Lock-Free Leaf Node Insertion, Final Configuration
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The search operation is a direct top to bottom traversal.

1. bool search(myType key) const {
2.
3. curr = root;
4. if (curr == NULL)
5. return false;
6.
7. while (curr != NULL) {
8. // find/set  idx  for appropriate child based on key
9. // see if key is found
10. if ( idx < curr→cnt && curr→keys[idx] == key)
11. return true;
12. curr = curr→ptrs[idx];
13. }
14. return false;
15. }

Due to the lock-free approach, there is no possibility of blocking.  However, if an insertion of

key,  k1, and a search for key,  k1, are simultaneously initiated,  it  is possible that the insertion

process may be delayed and the key reported as not found.  A subsequent search would find the

key.

 6.5 Deletion Algorithm

For key deletion, during the downward traversal, a proactive merge of nodes is performed which,

over-time, gradually contracts the B-Tree size as more and more deletes are performed.  The

proactive merge process will move a key down in the B-Tree which requires that the parent node

contain at least one more than the minimum number of keys.  This requirement does not apply to

the root node which allows the root to be gradually depleted of keys.  When the root contains no

keys, it can be removed from the B-Tree thus decreasing the height by one.  Starting form the

root, the deletion will check the current node, and if the key is not found, select the appropriate
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child  node to  continue  the  traversal.   Before  the  traversal  continues,  the  child  key count  is

checked to ensure that the child has at least one more than the minimum number of keys.  If the

child has only the minimum number of keys, it must be addressed.  That child’s existing sibling

nodes key counts are checked and if a sibling has excess keys (i.e., at least one more than the

minimum  required),  a  key  may  be  borrowed  from a  sibling.   If  the  siblings  also  have  the

minimum number of keys, a merge operation is performed.  The key borrow operation will move

a key from a left or right sibling into the parent node and a key from the parent is moved into the

applicable child node.   This provides the required excess key in the applicable child node.  This

process is fully detailed in Section 5.55.5, Fine-Grained Deletion Algorithm.

For  this  type  of  operation,  if  a  CAS  operation  is  used  two  or  more  delete  threads  could

simultaneously attempt conflicting operations on the same set of nodes, the CAS operation will

ensure that only one succeeds.  A conflicting operation might include moving a key into and then

out of a adjacent sibling nodes.  If multiple threads attempt conflicting operations in succession,

they may both succeed resulting a potential violation of the B-Tree invariants from a subsequent

merge operation on that child that moves a key down.  A key in a leaf node can be removed

directly since there are no child pointers to update.  A key in an internal node cannot be deleted

without  extensive  restructuring  of  the  B-Tree  or  replacement.   Restructuring  would  require

rebuilding the subtree rooted that node and is not feasible.  A replacement can be obtained from a

predecessor or successor key from the applicable leaf node (Section  5.5.2.1, Predecessor and

Successor Operations).  Since there is no single linearization point, the multi-level relocation of

a key across in the B-Tree cannot be done in a single CAS operation.  Immediately successive

CAS operations create a possible race condition.  The current lock-free primitives do not provide

the functionality required for this type of operation due to the multi-level movement of keys.

The address the problem, the fine-grained deletion algorithm is used which employs localized

fine-grained locking.  The deletion algorithm uses the fine grained deletion algorithm detailed in

Section 5.5, Deletion Algorithm (Algorithm 16, Fine-Grained B-Tree Deletion Algorithm) which

uses fine-grained locking.  The lock-free B-Tree Node configuration (Figure 21, Lock-Free B-

Tree Node Configuration) includes atomic fields which ensures that the fine-grained locking for
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the deletion can work with the lock-free CAS operations.  The ‘marked’ field is used to mark

nodes that are being updated to eliminate conflicts with the insertion operation.

Overall, the use of a fine-grained deletion approach hampers the overall performance especially

during heavy deletion loads. 

 6.6 Correctness

This section addresses correctness issues for the lock-free algorithms.

 6.6.1 Deadlock Freedom

With regard  to  deadlock,  the  lock-free  insertion  approach neither  requires  nor  performs any

locking and is thus free from deadlock.  Since no locking is performed multiple simultaneously

executing threads could potentially perform operations on the same node.  This potential conflict

is handled by the CAS instruction as described in Section 2.3.1, Lock-Free Primitive.

The deadlock freedom for  the  fine-grained deletion  is  addressed  in  Section  5.6.1,  Deadlock

Freedom.

 6.6.2 Linearization

The linearization point for the lock free insertion approach is established at the CAS location.

The insertion routine has multiple linearization points depending on the specific operation being

performed.  The details are outlined in the following sections.

Since the search algorithm does not alter the data structure, there is no linearization point.

The  linearization  point  for  the  fine-grained  deletion  approach  is  detailed  in  Section  5.6.3,

Linearizability.

 6.6.3 Insertion Algorithm Correctness

The primary initial step for the insertion algorithm is the creation of a root node in an empty tree.

With  no  contention,  this  is  fairly  straight-forward.   If  multiple  threads  are  simultaneously

attempting to insert a key into an empty tree, each thread could find the tree empty and attempt

to create the new root.  Each thread will create a new potential root node, populate it with the
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applicable key, and attempt the CAS operation (Lock-Free B-Tree Insertion Algorithm, line 17).

One thread will succeed and a new root will be created.  The other threads will fail, restart, will

find  an existing  root  (i.e.,  the  new one)  and continue  to  insert  the key into the appropriate

location.

As keys are added, the root node will be filled with keys values and need to be split.  Each thread

will check for a full root, and if found, attempt to split to the root node.  If multiple threads

simultaneously attempt to perform the root split operation and attempt the CAS operation (Lock-

Free B-Tree Insertion Algorithm, line 25), only one will succeed.  The other threads will fail, re-

start, and now that the root is split, they will be able to continue.

The next operation is insertion of a key into a leaf node.  If multiple threads are attempting to

insert different keys into the same leaf node, each will create a copy of the current leaf node and

attempt the CAS operation (Lock-Free B-Tree Insertion Algorithm, line 78 and 85).  The CAS

operation uses the previous node (i.e., node above) as the linearization point.  If that node is the

root, the root must be updated directly and is the CAS location.  Otherwise, the previous node is

the CAS location.  If multiple threads simultaneously operate on the same leaf node, one thread

will  succeed  and the  others  will  fail.   The  threads  that  fail  will  only  fail  if  another  thread

succeeds which ensures that progress is made.  The threads that fail will re-start the insertion

process from the root.  Since B-Tree’s are generally comparatively shallow, such a re-start is not

a performance bottleneck.

The insertion  approach includes  a  proactive  node splitting  during the  traversal.   If  multiple

simultaneous threads attempt to split the same node, each creates a new split node and attempts

the CAS operation (Lock-Free B-Tree Insertion Algorithm, line 51 and 59).  If that node is the

root, the root must be updated directly and is the CAS location for this operation and otherwise,

the previous node is the CAS location.  One thread will succeed and the others will fail ensuring

progress.
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 6.6.4 Search Algorithm Correctness

The search algorithm performs a direct root to leaf traversal.  The search neither blocks nor alters

the data structure.  However, since there is no locking, a search thread searching for keyn may

overtake a thread inserting keyn and report that keyn is not found.  Subsequent searches for keyn

will find  keyn.

 6.6.5 Deletion Algorithm Correctness

The correctness for the deletion algorithm is outlined in Section 5.6, Correctness.
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7.0  Chapter 7,

Empirical Results

 7.0 Chapter 7, Empirical Results

This chapter presents the empirical results from the implementations of the algorithms presented

in  the  previous  sections.   A  detailed  explanation  of  the  testing  methodologies  is  presented

including  the  testing  environment.   The  performance  results  are  presented  comparing  the

baseline coarse-gained implementation to the fine-grained and lock-free implementations.

 7.1 Testing Methodologies

A specialized sequential insertion and deletion methodology was used during the initial testing.

This  approach is  not  representative  of  typical  workloads,  but  helps  to  identify  problems by

maximizing the contention.  For the primary testing and performance analysis, a more standard

methodology  was  utilized.   The  primary  testing  methodology  follows  the  general  testing

techniques utilized for various concurrent data structures, including skip-lists [32], binary search

trees  [33],  other  balanced  trees  [34][35],  and B+-Trees/B*-Trees/Blink-Trees  [4][5][36].   This

involves a random permutation of key values which is more representative of typical expected

workloads.

Both the initial and primary testing approaches are outlined in the following sections.

 7.1.1 Testing Environment

Testing was performed on various Ubuntu 18.04 LTS systems using the GNU G++ Compiler

version 7.3.0.  Various systems with both AMD and Intel processors with processors ranging
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from 8 to 16 cores, representing commonly available hardware were used.  All codes are C+

+11/17 compliant with no external or specialized libraries.  Only basic compiler options were

used including -Wall, -pedantic, -Werr, and -std=c++11.  The standard thread library,

POSIX pthread, was used (which is fully supported in the C++11/17 standard).

 7.1.2 Initial Testing Process

A custom initial testing methodology involves inserting and deleting sequential  values across

multiple threads.  Each thread is assigned a thread number 0, the thread threadCount-1.  The key

value inserted by each thread starts at an initial value, 0 for simplicity.  Each thread inserts a key

value of the initial  value plus the thread number.  The next value inserted by each thread is

defined as:

keyValue = PreviousValue + threadNumber + STEP

The STEP value must be greater than the number of threads used in the testing process.

The following figure shows the assignment visually based on an initial starting value of 0 and a

STEP value of fifty.  The STEP can be easily adjusted as needed.

102

Figure 30: Maximize Thread Overlapping Testing

t
0

Insert 0, 50, 100, 150, ...

t
1

Insert 1, 51, 101, 151, ...

t
n

Insert n, 50+n, 100+n, 150+n, ...

t
2

Insert 2, 52, 102, 151, ...



With a STEP value of fifty, the number of concurrent threads must be less than fifty.

The key reason for using this testing technique is that threads will generally attempt to perform

operations, insert or delete, depending on the specific test scenario, in the same subtrees of the

data structure.  This maximizes the contention and conflict between simultaneously executing

threads providing a more comprehensive test for concurrent threads.  As the execution continues

and the data structure grows, the contention will decrease.  Overall, this testing approach results

in significantly more contention than the more typical random processes.

No examples of this testing technique were found in the literature, likely as this approach does

not represent a realistic or typical expected load.  Additionally, this approach results in a worst-

case performance scenario due to the maximization of the concurrency.

 7.1.3 Primary Testing Process

The primary testing process uses a random permutation of key values across a defined range.

The values were generated using the modern version of Fisher-Yates Algorithm [37] popularized

by Donald Knuth  [7].  The number of threads, range of keys, and number of keys used are

configurable.   The  total  number  of  keys  used  for  this  testing  effort  was  30,000,000  which

ensured a large enough data set to ensure concurrent operations for all simultaneously executing

threads.

In order to ensure the appropriate overlapped execution, a three phase execution process was

used.  In the first or set-up phase, a configurable number of insert threads were initiated as a

group.  Once complete, phase two used a configurable number of threads with a configurable

combination of insert, search, and delete operations initiated as a group.  In phase two, the search

threads searched for key values inserted during the first phase which ensures that they will be

successfully found.  The delete threads also deleted key values inserted in phase one, ensuring

that the keys will be available for deletion.  This process is used in order to ensure that if a search

or delete thread cannot find a key, it would signify an error.  The insert threads inserted values

not already inserted.  In this manner, a final verification phase can ensure that all insertions and

deletions were correctly performed.  The final phase removes the key values inserted in phase
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two and verifies the final status of the data structure for validity.

A visual summary of the process is shown below.

The number of thread performing insert, search, and delete operations is how the load mix is

controlled during phase two.

 7.2 Performance Comparisons

The coarse-gained implementation was used as a base-line for the comparison to the fine-grained

and  lock-free  implementations.   The  performance  comparisons  were  done  over  a  series  of

different concurrency levels (1, 3, 6, 9, and 12 simultaneous threads).  Since the degree of a B-

Tree data structure is configurable, tests were completed with a mix of different degrees (6, 8,

10, and 12).  The performance of a data structure is also impacted by the specific job mix of

simultaneous insertion,  search,  or deletion operations  being performed.   In general,  a search

operation will  perform better than an insert or delete  operation since no changes in the data

structure are required.   Different  environments  will  generate  different  workloads.   Following

processes established in the literature [10][36][38][39], and in order to provide a balanced testing
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process, different typical workloads were used.  The specific workload used is presented in the

corresponding section.  To ensure consistent testing, all tests were executed on one machine.

The specific machines was  an Intel core i7-8700 12 cores running Ubuntu 18.04 LTS.  This

represents a current machine in the target environment as outlined in Section 1.0, Introduction.  

While  different  machines  will  generate  different  timings,  the  comparative  results  would  be

consistent.

The  performance  comparisons  are  presented  in  terms  of  the  relative  performance  of  two

implementations processing the same data set in the same concurrency configuration in the same

hardware environment.  It is the improvement in speed of execution of a set of tasks executed

with different  implementations.   The formula used is  the ratio  of the baseline coarse-gained

implementation to the fine-grained or lock-free implementation [40].

 7.2.1 Coarse-Grained vs Fine-Grained

The coarse-gained and fine-gained implementations were executed using both an even job mix

and a heavy search load mix.  The specific job mixes used are as follows:

• Even Job Mix – Insertion (33.3%), Search (33.3%), and Deletion (33.3%)

• Heavy Search Mix – Insertion (10%), Search (80%), and Deletion (10%)

The even load job mix (33.3%, 33.3%, 33.3%) results are shown in the following figures.
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Figure 33: Performance: CG vs FG,
Degree 8, Load (33.3%, 33.3%, 
33.3%)

Figure 32: Performance: CG vs FG,
Degree 6, Load (33.3%, 33.3%, 
33.3%)



The heavy search job mix (10%, 80%, 10%) results are shown in the following figures.

106

Figure 34: Performance: CG vs FG,
Degree 10, Load (33.3%, 33.3%, 
33.3%)

Figure 35: Performance: CG vs FG,
Degree 12, Load (33.3%, 33.3%, 
33.3%)

Figure 37: Performance: CG vs FG,
Degree 8, Load (10%, 80%, 10%)

Figure 36: Performance: CG vs FG,
Degree 6, Load (10%, 80%, 10%)

Figure 38: Performance: CG vs FG,
Degree 10, Load (10%, 80%, 10%)

Figure 39: Performance: CG vs FG,
Degree 12, Load (10%, 80%, 10%)



The following section presents an analysis of the testing results.

 7.2.1.1 Performance Analysis

As can be seen in all tests, for a single threaded environment, the performance of the fine-grained

implementation was below the performance of the coarse-gained implementation.  This is due to

the fine-grained lock acquire and lock release overhead of nodes in all traversals.  For the coarse-

gained implementation, a single lock was used.  With a single thread, there is no opportunity for

performance gains associated with concurrent operations.

As the concurrency increased, the speed-up increased and the fine-gained implementation out-

performed  in  the  coarse-gained  implementation.   Based  on  the  workload  and  job  mix,  the

performance speed-up was between 1.25 and nearly 3 (2.9) times.  The heavy search job mix

provided the best performance.  The lock duration associated with the search is less than the

insert and delete operations as the search does not make any changes to the data structure.  While

still better than the coarse-grained, the fine-grained locking algorithms performance decreased as

the B-Tree degree increased.  As the degree increased, the number of key values tied up during a

lock operation is increased which has a negative impact on the overall amount of concurrent

actions possible.  This is more impacting when such locking is near the B-Tree root.

 7.2.2 Coarse-Grained vs Lock-Free

The coarse-gained and lock-free implementations were executed using both an even job mix and

a heavy search load mix.  Since the lock-free implementation required a fine-grained delete, a set

of tests was performed using only the search and lock-free insertion.  An additional set of tests

was performed using the lock-free insertion with the fine-grained deletion algorithm.

The specific job mixes are as follows:

• Even Job Mix (without delete) – Insertion (50%) and Search (50%)

• Heavy Search Mix (without delete) – Insertion (20%) and Search (80%)

• Even Job Mix (with delete) – Insertion (33.3%), Search (33.3%), and Deletion (33.3%)

• Heavy Search Mix (with delete) – Insertion (10%), Search (80%), and Deletion (10%)
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The even load job mix without delete (50%, 50%) results are shown in the following figures.

The heavy search job mix without delete (20%, 80%) results are shown in the following figures.
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Figure 40: Performance: CG vs LF, 
Degree 6, Load (50%, 50%)

Figure 41: Performance: CG vs LF, 
Degree 8, Load (50%, 50%)

Figure 42: Performance: CG vs LF, 
Degree 10, Load (50%, 50%)

Figure 43: Performance: CC vs LF, 
Degree 12, Load (50%, 50%)



The even load job mix with delete (33.3%, 33.3%, 33.3%) results are shown in the following

figures.

109

Figure 44: Performance: CG vs LF, 
Degree 6, Load (20%, 80%)

Figure 45: Performance: CG vs LF, 
Degree 8, Load (20%, 80%)

Figure 46: Performance: CG vs LF, 
Degree 10, Load (20%, 80%)

Figure 47: Performance: CG vs LF, 
Degree 12, Load (20%, 80%)

Figure 48: Performance: CG vs LF, 
Degree 6, Load (33.3%, 33.3%, 
33.3%)

Figure 49: Performance: CG vs LF, 
Degree 8, Load (33.3%, 33.3%, 
33.3%)



The heavy search job mix with delete  (10%, 80%, 10%) results  are shown in the following

figures.
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Figure 50: Performance: CG vs LF, 
Degree 10, Load (33.3%, 33.3%, 
33.3%)

Figure 51: Performance: CG vs LF, 
Degree 12, Load (33.3%, 33.3%, 
33.3%)

Figure 52: Performance: CG vs LF, 
Degree 6, Load (10%, 80%, 10%)

Figure 53: Performance: CG vs LF, 
Degree 8, Load (10%, 80%, 10%)

Figure 54: Performance: CG vs LF, 
Degree 10, Load (10%, 80%, 10%)

Figure 55: Performance: CG vs LF, 
Degree 12, Load (10%, 80%, 10%)



The following section presents an analysis of the testing results.

 7.2.2.1 Performance Analysis

As can be seen in all tests, the performance in a single threaded environment for the lock-free

implementation was below the performance of the coarse-gained implementation.  This is due to

the added complexity of the lock-free algorithm and overhead of the CAS operations for data

structure updates.  A single threaded implementation does not allow potential efficiencies from

concurrency which is why the coarse-gained implementation outperforms the lock-free in a no or

minimal contention environment.

As the concurrency increased,  the speed-up increased and the lock-free implementation  out-

performed the coarse-gained implementation.  Based on the no delete operation and different job

mixes, the performance speed-up was between 1.25 and over 9 (9.09) times.  The heavy search,

no delete  job mix provided the best performance.   The non-blocking nature of the lock-free

approach reduces interference with other simultaneously executing threads.

With the delete operation included, the results show that the lock-free with fine-grained locking

approach  outperforms  the  all  fine-gained  approach  especially  for  higher  concurrency

environments.
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8.0  Chapter 8,

Conclusion

 8.0 Chapter 8, Conclusion

 8.1 Summary

Due to  the  comparative  flat  tree  structure  and  sub-logarithmic  search  time,  a  B-Tree  is  an

especially ideal data structure for searching large-scale data sinks.  The B-Tree data structure is

commonly used in databases and file systems and is well  suited for use with any large data

repository.  The inherent complexity of a standard B-Tree makes it a challenge for concurrent

implementations.  This dissertation examined the concurrency approaches for a standard B-Tree

including the coarse grained, fine-grained locking, and the lock-free techniques.  A reference

implementation for the standard coarse-grained approach was developed and used as a base-line.

A  complete  customized  fine-grained  algorithm  was  developed  and  presented.   A  lock-free

implementation was developed and presented.  A comprehensive review of the lock-free issues

as applied to the implementation was discussed including how the ABA problem was addressed.

A  comparison  of  the  trade-offs  was  presented  and  discussed.   The  final  part  of  this  effort

addresses the specific testing processes which were discussed and presented.

 8.2 Future Work

The primary future work should focus on a lock-free deletion algorithm.  This should be possible

when a practical double compare-and-swap operation [41] becomes available.  Furthermore, the

existing implementations should be extended in order to add support for other tree operations

such as shadowing and cloning [42] and snapshots [43].
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The existing work should be expanded to support external data structures in a lock-free efficient

manner.   It  is  hoped  that  this  work  can  be  expanded  into  more  general  techniques  for

implementing  concurrent  approaches  for  other  highly  complex  data  structures.   A  general

process  for  addressing  concurrency  for  more  complex  data  structures  would  ease  the

implementation burden.
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