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Abstract

In this thesis, we report on the use of minhash techniques to improve the draft assembly of a

genome mapping. More specifically, we use minhash to compare the scaffolds of sea urchin and sea

cucumber genomes.

One of the main contributions of this thesis is the implementation of minhash with the Message

Passing Interface (MPI) utilizing Intel Phi co-processors. It is shown that our implementation

significantly reduces the processing time for identification of k-mer similarities.
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Chapter 1

Introduction

According to https://www.hgsc.bcm.edu/other-invertebrates/sea-urchin-genome-project, “Echin-

oderms occupy an important evolutionary position with respect to vertebrates and humans: they,

along with their sister phylum hemichordates, are the closest known relatives to chordates.” The

sea urchin genome mapping project as reported by Sea Urchin Genome Sequencing Consortium

http://science.sciencemag.org/content/314/5801.toc is one of the well-studied topics in marine

ecosystems. As a part of a bigger project for mapping of genome of sea cucumber, we were interested

in alignment of certain scaffolds of sea cucumber and sea urchin.

Our efforts in mapping of sea cucumber genome began with approximately 450 million paired-

end reads which were prepared at University of Southern California. In this thesis, we will report

on discovery of similarities between the scaffolds of the genomes of sea cucumber and sea urchin

using the minhash technique. The second chapter covers the background on genome mapping -

using FastQC to check the quality of the reads followed by Trimmomatic to trim out bad reads

then running String-Graph Assembler to form contigs which fed to SSPACE and GapFiller forming

scaffolds.

The third chapter goes over the background of the minhash technique invented by Andrei

Broder [11], a widely-used technique to find similarity between images, documents, and web pages

that utilizes shingles and hashing with a distance measure to compute the similarity between two

entities. The chapter will cover the basics of minhash technique.

The fourth and fifth chapters introduce our experiments and implementation of minhash tech-

nique. We discuss the data preparations and various genome post processing tools that are referred

to in Chapter 1. We then provide the details of our implementation of minhash technique to

compute the similarity between sea cucumber and sea urchin scaffolds.

1
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Chapter six discusses the results of our experiments. At last, Chapter seven is our conclusions

and future work associated with the assembly of sea cucumber.
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Chapter 2

Genome Mapping

The deoxyribonucleic acid (DNA) is the building block of a living creature, it is unique to each

being and guides its development. The DNA is a double helix composed of four bases Adenine (A),

Cytosine (C), Guanine (G), and Thymine (T). These bases are attached by a backbone [1]. Genes

are formed from specific sections of a DNA, and control different characteristics such as eye color

and height [4].

The genome is an organism’s complete set of DNA, including all of its genes [5]. Each strand

of DNA can be viewed as a long string on the alphabet { A, C, G, T }. The size of this string

is dependent on the living species, for example, the length of human genome is 3.2 billion base

pairs or roughly 3GB in raw text, while the length of a virus’ DNA is a few million base pairs.

In order to build a complete genome, scientists have to first generate millions of reads/sequences

from small fragments of DNA using sequencing machines such as those built by Illumina. The task

of genome mapping is the process of creating the complete DNA from these reads. There are two

basic approaches to genome mapping: Reference based or De novo. In reference based approach, if

a closely related species’ DNA ( a reference ) is known, one can use this reference as a template to

build the genome. In the De novo sequencing approach, one basically arranges the reads without

any reference.

A good analogy would be to compare the Illumina machine as a jigsaw puzzle creator, to which

you would feed in a picture that you’ve never seen before and watch it generate jigsaw pieces for

you that you would have to put together. Using De novo method, you will be slowly placing each

piece next to the one that you assume is the correct location for it. In a reference based mapping,

you are given a copy of a closely related image. One can use this image to figure out where to

place the pieces. In our case, we are trying to sequence the 450 million paired-end Sea Cucumber

3



reads that we received from University of Southern California utilizing the Sea Urchin’s genome as

a reference.

2.1 FASTQ file format

Before we can assemble the reads into the complete genome, we first have to pass the reads through

FastQC to get an understanding of the quality of the reads. The reads are stored in FASTQ file

formats. Each read is composed of four lines as described below [13]:

1. Line 1 begins with a ‘@’ character and is followed by a sequence identifier and an optional

description

2. Line 2 is the raw sequence letters (151 characters)

3. Line 3 begins with a ‘+’ character and is optionally followed by the same sequence identifier

(and any description) again

4. Line 4 encodes the quality values for the sequence in Line 2, and must contain the same

number of symbols as letters in the sequence

For example:

1 @SEQ ID

2 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

3 +

4 ! ’ ’∗ ( ( ( (∗∗∗+ ) )%%%++)(%%%%).1∗∗∗−+∗ ’ ’) ) ∗∗55CCF>>>>>>CCCCCCC65

Listing 2.1: FASTQ file format

2.2 Phred Quality Score

A Phred quality score is a measure of the quality of the identification of nucleobases generated

by automated DNA sequencing. A score is attached to each nucleotide base-call in automated

sequencer traces. Phred quality score, Q, is defined as a property which is logarithmically related

to the base-calling error probabilities, P [13]:

Q = −10 log10 P (2.1)
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or

P = 10
−Q
10 (2.2)

A Phred quality score of 20 for a nucleotide base means the chances of the base being incorrect

is 1 in a 100, or 99%, whereas a Phred quality score of 60 means, the chances of it being incorrect

is 1 in a 1000000 or 99.9999%.

In a FASTQ file, the Phred quality score is represented as an ASCII value. The quality scores

ranges from low quality ! to ∼ :

!”#$%&’()∗+,−./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[ \ ] ˆ ‘

abcdefghi jklmnopqrstuvwxyz { |}˜

Listing 2.2: Phred quality scores

The following Python code converts between ASCII value and Phred33 code:

1 # Convert Q i n t o Phred33 ASCII−encoded q u a l i t y

2 def QToPhred33 (Q) :

3 return chr (Q + 33)

4

5 # Convert Phred33 ASCII−encoded q u a l i t y i n t o Q

6 def Phred33ToQ ( q u a l i t y ) :

7 return (ord ( q u a l i t y ) − 33)

Listing 2.3: Converting between ASCII value and Phred33 code

2.3 FastQC

FastQC runs the reads through a series of tests to verify their quality, which includes [6]:

1. Per Base Sequence Quality - checks the range of quality values across all bases at each position

in the FastQ file. In this box-whisker type plot, the elements are as follows:

• Yellow box represents the inter-quartile range (25 - 75%)

• Upper and lower whiskers represent the 10% and 90% points

• Central red line is the median value

• Blue line represents the mean quality

5



2. Per Sequence Quality Score - reports back if a subset of the sequences has universally low

quality values possibly from being poorly imaged (should be a small percentage of the total

sequences, unless there is a systematic problem)

3. Per Base Sequence Content - ideally the four bases (A, C, G, T) should be evenly distributed

across the read, this test checks for that, if one of the base reports higher concentration, it

could mean a possible contamination or bias when the reads were being generated

4. Per Base GC Content - reports on the GC content of each base position in the file, where

overrepresentation could indicate a contamination or bias in the generation of the reads

5. Per Sequence GC Content - GC content should be roughly normally distributed across the

sequences, where an unusual shaped distribution could indicate a contamination or bias in

the generation of the reads

6. Per Base N Content - N is the default value the sequencer would produce if it couldn’t

determine with sufficient confidence what the base was

7. Sequence Length Distribution - checks to confirm if the length of sequences is uniform or not

8. Duplicate Sequences - this test checks to see if any sequence has an unusual concentration

in the file, while it is possible to have some sequences duplicate, however unlikely for it to

happen in high concentration

9. Overrepresented Sequences - typically the reads should be a diverse set wherein no individual

sequence should make up a tiny fraction of the whole. Finding such a sequence(s) is indicative

of - highly biologically significance, contamination, or the reads are not diverse as expected

10. Overrepresented K-mers - this test counts the enrichment of every 5-mer within the sequences.

It compares it against an expected level at which the k-mer should have been based on

the base content of the library as a whole and then uses the actual count to calculate an

observed/expected ratio for that k-mer

2.4 Trimmomatic

When preparing DNA fragments for sequencing, one of the task is to orient adapters around them

before, during and after enrichment of DNA fragments with PCR primer. Polymerase chain reaction

6



(PCR) is a technique used to amplify a single copy or a few copies of a DNA fragment across several

orders of magnitude, generating thousands of copies of that fragment. This allows the sequencer

to generate multiple copies of the fragments.

An example of an adapter is the TruSeq Universal Adapter: “5 AATGATACGGCGACCAC-

CGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 3”, that of a primer is PCR

Primer 2.0: “5 CAAGCAGAAGACGGCATACGAGAT 3”. These help the sequencer to generate

reads around the DNA fragments of interest [16]. These however are irrelevant information after

the sequencing is done and could mislead FastQC’s report on the quality of the reads, since the

FASTA file would contain segments of these adapters and primers.

Trimmomatic removes the adapters and primers from the reads, and trims off bad reads or

those not meeting the criteria using the following steps [9]:

• Cut adapter and other Illumina-specific sequences from the reads

• Perform a sliding window trimming, cutting once the average quality within the window falls

below a threshold

• Cut bases off the start of a read, if below a threshold quality

• Cut bases off the end of a read, if below a threshold quality

• Cut the read to a specified length

• Cut the specified number of bases from the start of the read

• Drop the read if it is below a specified length

Trimmomatic has two modes of execution: Simple Mode and Palindrome Mode. Simple mode

references to a single read file, whereas Palindrome mode references to reads that have a forward

and reverse read files, such as our Sea Cucumber data [10]. Trimming out the adapters and primers

from the reads along with bad reads based on threshold quality, length of reads and other factors,

you end up with a subset of reads that are of higher quality such that you can focus on assembling.

Going back to the jigsaw example, Trimmomatic could be considered as a filtering process to

weed out jigsaw pieces that do not meet the standard jigsaw puzzle criteria or are too blurry to

make out the image on the piece.

Once the reads have been trimmed and cleaned up, the next step is to construct the DNA from

these reads. As mentioned previously, we are interested in the De novo assembly of sea cucumber.
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This assembly must align and merge the reads with overlap to form contigs. These contigs are then

combined to form scaffolds. Many techniques have been developed to carry out the task of assembly.

In general, these techniques involve traversal of overlap graphs that are built from the reads. The

most widely used methods of assembly are OLC, De Bruijn, and SGA. The details of these methods

are beyond the scope of this thesis. The following figure gives a pictorial representation of these

techniques:
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Figure 2.1: (Continued on the following page.)
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Figure 2.1: “A genome schematic is shown at the top with four unique regions (blue, violet,
green and yellow) and two copies of a repeated region (red). Three different strategies for genome
assembly are outlined below this schematic. a) Overlap-layout-consensus (OLC). All pairwise
alignments (arrows) between reads (solid bars) are detected. Reads are merged into contigs (below
the vertical arrow) until a read at a repeat boundary (split colour bar) is detected, leading to
a repeat that is unresolved and collapsed into a single copy. b) de Bruijn assembly. Reads are
decomposed into overlapping k-mers. An example of the decomposition for k = 3 nucleotides is
shown, although in practice k ranges between 31 and 200 nucleotides. Identical k-mers are merged
and connected by an edge when appearing adjacently in reads. Contigs are formed by merging
chains of k-mers until repeat boundaries are reached. If a k-mer appears in multiple positions
(red segment) in the genome, it will fragment assemblies and additional graph operations must be
applied to resolve such small repeats. The k-mer approach is ideal for short-read data generated
by massively parallel sequencing (MPS). c) String graph. Alignments that may be transitively
inferred from all pairwise alignments are removed (grey arrows). A graph is created with a vertex
for the endpoint of every read. Edges are created both for each unaligned interval of a read and for
each remaining pairwise overlap. Vertices connect edges that correspond to the reads that overlap.
When there is allelic variation, alternative paths in the graph are formed. Not shown, but common
to all three algorithms, is the use of read pairs to produce the final assembly product [12].”
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In our experiments with sea cucumber, we used SGA followed by two post processing techniques

of SSPACE and GapFiller. In the next section, we give a short summary of these techniques.

2.5 SGA

String Graph Assembler (SGA) is a de novo assembler designed to assemble large genomes from

high coverage short read data [17]. SGA implements a set of assembly algorithms based on the

FM-index. An SGA assembly has three distinct phases [18]:

1. First phase corrects base calling errors in the reads. An FM-index of the sequence reads is

constructed; then base calling errors are identified by finding low-frequency k -mers in the

reads.

2. Second phase assembles contigs from the corrected reads. An FM-index of the corrected

sequence reads is constructed, where duplicate reads and low-quality reads after corrections

are found and discarded with sga filter subprogram, while sga fm-merge merges together

reads that can unambiguously assembled. Finally, sga overlap computes the structure of the

string graph and contigs are built using sga assemble.

3. Third phase uses paired-end and/or mate pair data to build scaffolds from the contigs. This

phase begins by re-aligning reads to the contigs built in the previous step. The copy number

of each contig, and distances between contigs, are estimated from the resulting BAM files

and used as input for sga scaffold, and the output from it is passed to sga scaffold2fasta to

produce the FASTA file of the resulting scaffold sequences.

With the assembled genomes, there are a few other programs such as SSPACE and GapFiller

that could be ran to further combine the scaffolds and fill some of the gaps in between them.

2.6 SSPACE

SSPACE (SSAKE-based Scaffolding of Pre-Assembled Contigs after Extension) is a stand-alone

program for scaffolding pre-assembled contigs using NGS (Next-Generation Sequencing) paired-

read data. SSPACE takes in the contigs assembled along with the paired-end data after non-ACTG

reads have filtered and proceeds to loop through the following [7]:
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Figure 2.2: A schematic overview of the main steps of the SSPACE algorithm [7].
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• The position and orientation of each pair that could be mapped is stored in a hash and

duplicate read-pairs are filtered out.

• Putative contig pairs are computed based on the position of the paired reads on different

contigs. These pairs are only considered if they satisfy the distance criteria set by the user-

defined distance range.

• Scaffolds are formed iteratively combining contigs if a minimum number of read pairs support

the connection, starting with the largest contig. The code also checks to see if there are

alternative connections between the contigs and if found between the alternatives themselves,

the algorithm seeks to place all alternatives in the correct order using the estimated insertion.

Otherwise if the ratio that is calculated between the two best alternatives is below a threshold,

a connection with the best scoring alternative is established. Extension of scaffolds is aborted

if either a contig has no links with other contigs or the ratio for alternatives is exceeded.

• The scaffolding process is repeated until all contigs are incorporated into linear scaffolds.

2.7 GapFiller

GapFiller is used to close gaps within pre-assembled scaffold. “GapFiller seeks to find read pairs of

which one member matches within a sequence region and the second member falls (partially) within

the gap. The latter reads are then used to close the gap through sequence (k -mer) overlap. Gaps

are entirely closed only if the size of the sequence insertion corresponds closely to the estimated gap

size after scaffolding, which is based on the alignment of paired reads to the contigs. The process

is iteratively repeated until no further gaps can be closed [8].”
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Figure 2.3: “Scaffolding contigs with alternative connections. SSPACE provides two scenarios for
scaffolding contigs with alternative connections. In scenario (a) contig A has links with contigs B
and C. Since also internal links exist between B and C, and the calculated distances between all
contigs satisfy the distance-range, A, B and C are placed in one scaffold. In scenario (b) contig
A has links with contigs B and C, but no internal links exist between B and C. Hence a ratio is
calculated by dividing the number of links found between A and C (5) with those found between
A and B (10). If this ratio (0.5) is below a user-specified treshold (parameter -a) contig A and B
are placed in one scaffold [7].”
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Figure 2.4: A schematic overview of the main steps of the GapFiller algorithm. “(a) The input data
consist of a set of scaffold sequences containing gapped nucleotides and one or more sets of paired-
end and/or mate-pair reads. (c) As a pre-processing step low quality nucleotides are removed from
the sequence edges, thus enlarging the gap of ten nucleotides from each side. It should be stressed
that the contig ends resulting from a draft assembly often contain misassemblies. (c) Paired-reads
are aligned to the scaffolds and retained if one pair aligns to a scaffold sequence (dark grey) and
one pair to a gapped region (black). (d) All pairs that are estimated to fall in the gapped regions
are split into k-mers and used for gap filling. (e) The gap is closed from each edge by using k-mers
that present a sequence overlap of size (k-mer - 1) and one nucleotide overhang. Gaps are closed if
the right and left extensions can be merged and correspond to the estimated sequence gap [8].”

15



Chapter 3

Minhash

Suppose we have two sets, A : {a, b, c, d} and B : {a, b, d, e}, and we want to find the similarity

between the two sets. This can be achieved by taking the intersection between the sets over the

size of the sets combined, in this case 3/5. This similarity is also known as Jaccard Similarity, also

could be interpreted as resemblance r(A,B), which is calculated for sets A and B by:

|A ∩B|
|A ∪B|

(3.1)

This fraction is a value that ranges between 0 and 1, where closer to 1 means that the sets are

roughly the same.

Jaccard Distance d(A,B), for sets A and B is defined as one minus Jaccard Similarity.

1− |A ∩B|
|A ∪B|

(3.2)

This value also ranges from 0 to 1, where 0 means that the sets are identical. Jaccard Distance

is a metric measure which satisfy the following four axioms [14]:

1. d(x, y) ≥ 0 - no negative distance

2. d(x, y) = 0 if and only if x = y - distance is positive, except for the distance from a point to

itself

3. d(x, y) = d(y, x) - distance is symmetric

4. d(x, y) ≤ d(x, z) + d(z, y) - triangle inequality

Other examples of metric measure are Euclidean distance, edit distance, Hamming distance,

and cosine distance [14].
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“How similar are these documents?” is a common question asked, whether be it in academia

when checking for plagiarism or in business when checking for differences between 100 pages of

legal documents or in search engines when trying to label how similar two webpages are. One

could always compare each word in the document against each word in the other documents to

compute the similarity between the documents. However, this is not computationally efficient. For

example, to find similarity between a million documents one would have to do
(
1000000

2

)
document

comparisons which is ≈ n(n−1)
2 which is on the order of n2. This is where Minhash comes in.

Minhash is a locality sensitive hashing scheme invented by Andrei Broder back in 1997 as part of

the AltaVista search engine to find similar documents and compute similarity between documents

[11]. The simplest representation of a document is a “bag of words” or shingles.

3.1 Shingles

The process of converting documents to sets is called Shingling. k-shingle or k-gram or k-mer is a

sequence of k tokens that appears in a string. These tokens can be characters, words, sentences or

something else depending on the application. For example, token when comparing sentences can

be characters or words, whereas when comparing emails or documents could even be sentences. In

our application, tokens will be strings of characters. For example, in the document, to be or not

to be, the set of shingles can be {to be, be or, or not, not to, to be} or {to be, be or, or not, not

to} after omitting duplicates. We can observe that the number of shingles of size k for a document

of length n is n − k + 1. Of course, these shingles are not unique. Documents that have lots of

shingles in common have similar text, even if the text appears in different order, so k must be

large enough, or most documents will have most shingles [14]. The choice of k depends on the

application. For example, for emails similarity k = 5 is better, while k = 10 is better for similarity

of long documents. For our assembly application, we choose shingles of length 16.

Part of Minhash process is to compress long shingles so that it takes (say) 4 bytes. This allows

us to represent a document by the set of hash values of its k-shingles. The following Python code

shows how compressed k-shingles generated from a document:
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1 import b i n a s c i i

2

3 # Generate k−s i z e d s h i n g l e s from document doc

4 # k − s h i n g l e l e n g t h

5 # doc − document

6 def genKShingles (k , doc ) :

7 lenDoc = len ( doc )

8 s h i n g l e s = [ ]

9

10 # I t e r a t e from 0 to l e n g t h o f doc − k + 1

11 for i in xrange ( lenDoc−k+1) :

12 s h i n g l e s . append ( b i n a s c i i . c rc32 ( doc [ i : i+k ] ) & 0 x f f f f f f f f ) # Get the 32−

b i t i n t e g e r hash f o r the k−mer

13

14 return s h i n g l e s

Listing 3.1: Python code to generate k -mers

3.2 Matrix Representation of Sets

Once we have shingles generated from all the documents, one way to compare the documents against

each other is to build a matrix with shingles as your rows and documents as your columns. This

allows one to see which documents have the same shingles. Also, keep in mind, this matrix will be

a sparse matrix.

For example, assume the universal set of our shingles is {a, b, c, d, e} and our documents are

A = {b, d, e}, B = {a, b, d}, C = {c}, D = {a, c, e} and E = {d, e}, then the matrix would be:
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Shingle A B C D E

a 0 1 0 1 0

b 1 1 0 0 0

c 0 0 1 1 0

d 1 1 0 0 1

e 1 0 0 1 1

Table 3.1: Matrix representation of the shingles and documents, where 0 means the document

doesn’t have the shingle and 1 means the document does.

This matrix is also called the characteristic matrix for the shingles and their documents [14].

While a sparse matrix is not the ideal data structure to store data in, it helps visualize the data.

3.3 Minhash

“To minhash a set represented by a column of the characteristic matrix, pick a permutation of the

rows. The minhash value of any column is the number of the first row, in the permuted order, in

which the column has a 1 [14].”

For example, the matrix shown above in table 3.1, say permute the rows to form bdeac, this

defines a minhash function h that maps sets to rows.

Shingle A B C D E

b 1 1 0 0 0

d 1 1 0 0 1

e 1 0 0 1 1

a 0 1 0 1 0

c 0 0 1 1 0

Table 3.2: Matrix formed by permuting rows of Matrix 3.1 to form bdeac.

To compute the minhash value of set A according to h, we must find the first row for set A that

has 1, which is b. Thus, h(A) = b, h(B) = b, h(C) = c, h(D) = e, and h(E) = d.
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3.3.1 Minhash and Jaccard Similiarity

“The probability that the minhash function for a random permutation of rows produces the same

value for two sets equals the Jaccard similarity of those sets [14].” The values for rows for sets A

and B can be broken down into 3 categories:

1. Rows that have 0 in both columns (L)

2. Rows that have 1 in both columns (M)

3. Rows that have 0 and 1 (N)

In a spare matrix, most of the rows would be of type L, however it is the ratio of type M and

N that determines both Jaccard similarity of A and B, and the probability that h(A) = h(B).

Jaccard similarity of A and B can be calculated by m/(m + n) where, m is rows of type M and n

is the rows of type N . m is represents A ∩B, and (m + n) represents A ∪B.

3.3.2 Minhash Signatures

A minhash signature for column representing set S is the vector [h1(S), h2(S), h3(S), . . . , hn(S)],

where h1, h2, h3, . . . , hn is n random permutations of the rows of the matrix M . The signatures

themselves are placed into a matrix, called a signature matrix, in which ith column is replaced by

the minhash signature for (the set of) the ith column [14].

Note that the signature matrix has only n rows, but has the same number of columns as matrix

M .

3.3.3 Computing Minhash Signatures

It is not a feasible task to permute the characteristic matrix, even picking random permutations

of millions or billions of rows is time-consuming, and the necessary sorting of the rows would take

even more time. Thus, permuted matrices like in table 3.2 are not implementable [14].

However, it is possible to simulate the effect of a random permutation by a random hash

function that maps row numbers to as many buckets as there are rows [14]. A hash function that

maps integers 0, 1, 2, . . . , k− 1 to bucket numbers to 0 through k− 1 typically will map some pairs

of integers to the same bucket and leave other buckets unfilled [14]. However, the difference is

unimportant as long as k is large and there are not too many collisions [14].
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Therefore, instead of picking n random permutations of rows, we will pick n randomly chosen

hash functions h1, h2, h3, . . . , hn on the rows. The signature matrix is constructed by considering

each row in their given order [14].

Taking the matrix in table 3.1, we are going to apply two hash functions, h1(x) = x + 1 mod 5

and h2(x) = 3x + 1 mod 5, from Chapter 3 of Mining of Massive Datasets. We have also replaced

the letters in the shingles columns to be integers from 0 to 4. The values of these two functions

applied to the row numbers are given in the last two columns in the matrix below:

Row A B C D E (x + 1) mod 5 (3x + 1) mod 5

0 0 1 0 1 0 1 1

1 1 1 0 0 0 2 4

2 0 0 1 1 0 3 2

3 1 1 0 0 1 4 0

4 1 0 0 1 1 0 3

Table 3.3: Matrix with hash functions computed for the rows.

These hash functions are true permutations of the rows, which is only possible since there are

five rows and five being a prime number. If two rows get the same hash, collisions will occur.

We can compute the minhash signature from table 3.3 by doing the following:

1. Compute h1(r), h2(r), . . . , hn(r)

2. For each column c do the following:

(a) If c has 0 in row r, do nothing.

(b) If c has 1 in row r, then for each i = 1, 2, . . . , n set SIG(i, c) to the smaller of the current

value of SIG(i, c) and hi(r).

Build a signature matrix with all row values set to ∞:

hash A B C D E

h1 ∞ ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞ ∞
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First we consider row 0 in table 3.3, where h1(0) = 1 and h2(0) = 1. The row numbered 0 has

1’s in the columns for sets B and D, so only these columns of the matrix can change. As 1 is less

than ∞, the values in columns B and D can be updated:

hash A B C D E

h1 ∞ 1 ∞ 1 ∞

h2 ∞ 1 ∞ 1 ∞

For row numbered 1, h1(1) = 2 and h2(1) = 4, we can set SIG(1, 1) to 2 and SIG(2, 1) to 4 for

column A, but since column B has 1 which is less than 2 (SIG(1, 2)) and 4 (SIG(2, 2)), we would

not be updating it.

hash A B C D E

h1 2 1 ∞ 1 ∞

h2 4 1 ∞ 1 ∞

For row numbered 2, h1(2) = 3 and h2(2) = 2, we can set SIG(1, 2) to 3 and SIG(2, 2) to 2 for

column C, but since column D has 1 which is less than 3 (SIG(1, 3)) and 2 (SIG(2, 3)), we would

not be updating it.

hash A B C D E

h1 2 1 3 1 ∞

h2 4 1 2 1 ∞

For row numbered 3, h1(3) = 4 and h2(3) = 0, we can SIG(1, 3) to 4 and SIG(2, 3) to 0 for

column E. We can also update column A and B for h2(3) since 0 is less than 1.

hash A B C D E

h1 2 1 3 1 4

h2 0 0 2 1 0

Finally, for row numbered 4, h1(4) = 0 and h2(4) = 3, column A, D and E will have 0 for h1(4)

since 0 is less than their respective values - 2, 1, and 4. Therefore our final signature matrix is:
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hash A B C D E

h1 0 1 3 0 0

h2 0 0 2 1 0

Based off the final signature matrix, we can estimate the Jaccard similarities of the underlying

sets. For example, column A and E are identical, so we can guess that the SIM(A,E) = 1, but if

we look at table 3.3, we can see that the true Jaccard similarity of A and E is 2/3. For additional

similarities:

x y SIM(x, y) JS

A B 0.5 0.5

A C 0 0

A D 0.5 0.25

B C 0 0

B D 0 0.25

B E 0.5 0.25

C D 0 1/3

C E 0 0

D E 0.5 0.25

As shown, the fraction of rows that agree in the signature matrix is only an estimate of the

true Jaccard similarity. Remember, this example is much too small for the law of large numbers to

assure that the estimates are close [14].

3.3.4 False Positives & False Negatives

Hashing can be compared to bucketing items into individual buckets based on their similarities.

For example, geometric objects can be compared according to dimensions and shape. If not diverse

enough, collisions can occur where a circle and sphere would end up in the same bucket, because

the two are the same dimensionally. This can be remedied by picking numbers that are larger than

the population size, ideally a prime number.

In addition, we could drop squares and rectangles together into the same bucket as well, this is

known as false positive. Whereas false negative occurs when squares are not bucketed in the same
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buckets. By using a large number of hash functions when generating the minhash signature we can

hope to reduce the chances of dissimilar items being in the same bucket and increase the chances of

similar items being in the same buckets, and hope only a small fraction end up being false positives

and false negatives.

3.4 Locality-Sensitive Hashing

In order to compare a million documents, say for example, as computed early on in this chapter,

we would have to do roughly half a trillion comparisons. This is only if our goal is to find the

similarity between every pair of documents, however most of the time we only want the all pairs

that are above a certain threshold of similarity. We can shift our focus to such pairs by performing

locality-sensitive hashing (LSH) or near-neighbor search [14].

3.4.1 Banding

With the minhash signatures we’ve created, an effective way to pick the hashings is to divide the

signature matrix into b bands consisting of r rows each. For each band, there is a hash function

that takes vectors of r integers (the portion of one column within the band) and hashes them to

some large number of buckets. The same hash function is used for all the bands, but a separate

bucket array for each band, so that columns with same vector in different bands are not hashed to

the same bucket [14].

1 0 0 0 2

b1 . . . 3 2 1 2 2 . . .

0 1 3 1 1

b2

b3

Table 3.4: Dividing a signature matrix into four bands of three rows per band [14].
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The probability that minhash signatures for any two documents to agree in any one particular

row of the signature matrix is s. Then we can calculate the probability that the signatures of these

documents of becoming a candidate pairs as follows [14]:

1. The probability that the signatures agree in all rows of one particular band is sr.

2. The probability that the signatures disagree in at least one row of a particular band is 1− sr.

3. The probability that the signatures disagree in at least one row of each of the bands is (1−sr)b.

4. The probability that the signatures agree in all the rows of at least one band, and therefore

become a candidate pair, is 1− (1− sr)b.

The function 1 − (1 − sr)b forms a S-curve given b and r. The steepest part of the curve is

where our threshold for finding candidates is, the value of s at which the probability of becoming a

candidate is 0.5. The pairs with similarity above the threshold are very likely to become candidates,

while those below the threshold are unlikely to become candidates [14].
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Figure 3.1: For b = 16 and r = 4, this is the curve generated by 1 − (1 − sr)b. The threshold is
≈ 0.45, which can also be approximated by taking (1/b)(1/r) = (1/16)(1/4) = 1/2.
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Figure 3.2: Given 100 rows, we can band them 6 different ways. Here we have plotted the various
combinations to show how the curve reacts to the values of b and r picked. The area of the graph
to the left of your selected s would be your false positives, while the area to the right would be
your false negatives.
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Consider s = 0.8, for b = 20, r = 5 for d1 and d2:

• Probability d1, d2 are identical in one particular band is: (0.8)5 = 0.32768

• Probability d1, d2 are not similar in all of the 20 bands: (1− 0.32768)20 = 0.000356

• Probability d1, d2 are identical in all rows of at least one of the 20 bands, and become a

candidate pair is: 1− 0.000356 = 0.999644.

– About one in 3000 pairs that are as high as 80% are false negatives (we will miss them)

– We would find 99.9644% pairs of truly similar documents

3.5 Summary

We can summarize minhash with locality-sensitivity hashing procedure as follows:

1. We pick a k value for generating k -mers from each document depending on the content type

2. We pick n hash functions to hash the k -mers through to form the minhash signature for each

document

3. We then pick a threshold s that defines how similar documents have to be in order for them

to be a candidate pair. Next we pick a number of bands b and a number of rows r such that

b ∗ r = n, and the threshold s is approximately (1/b)1/r [14]:

• If avoidance of false negatives is important, then (1/b)1/r must be lower than s

• If speed is important and avoidance of false positives is important, then (1/b)1/r must

be higher than s

4. Retrieve candidate pairs using locality-sensitive hashing technique

5. Examine the candidate pairs’ signatures before examining the documents themselves
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Chapter 4

Experiment

As previously mentioned in chapter 2, we are working with Sea Cucumber paired-end reads prepared

at University of Southern California.

Figure 4.1: A pair of reads, the sequence you see are, conceptually, pointing towards each other on
opposite strands. When you align them on the genome, one read should align to the foward strand,
and the other should align to the reverse strand, at a higher base pair position than the first one
so that they are pointed towards one another. This is known as a “FR” read - forward/reverse, in
that order [15].

The reads consists of 414,981,154 forward (LP001 R1.fastq) and reverse (LP001 R2.fastq) reads.

Our first task was to verify the quality of the reads using FastQC.
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(a) LP001 R1 (b) LP001 R2

Figure 4.2: FastQC report on our Sea Cucumber reads.
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As shown, FastQC has flagged the reads with few alerts and warnings. In order to fix some

of the warnings, we ran the reads through Trimmomatic (paired-end mode), with the following

criteria:

• Remove adapters (ILLUMINACLIP:adapter.fa:2:30:10)

• Remove leading low quality or N bases (below quality 3) (LEADING:3)

• Remove trailing low quality or N bases (below quality 3) (TRAILING:3)

• Scan the read with a 4-base wide sliding window, cutting when the average quality per base

drops below 15 (SLIDINGWINDOW:4:15)

• Drop reads below the 151 bases long (MINLEN:151)

java −j a r . . / programs/Trimmomatic−0.35/ trimmomatic −0.35. j a r PE −t r imlog

t r imlog . txt LP001 R1 . f a s t q LP001 R2 . f a s t q LP001 forward paired . f a s t q

LP001 forward unpaired . f a s t q LP001 reve r s e pa i r ed . f a s t q

LP001 reverse unpa i red . f a s t q ILLUMINACLIP : adapter . f a : 2 : 3 0 : 1 0 LEADING: 3

TRAILING: 3 SLIDINGWINDOW: 4 : 1 5 MINLEN:151

Listing 4.1: Running trimmomatic pair-end mode

>TruSeq3 IndexedAdapter

GATCGGAAGAGCACACGTCTGAACTCCAGTC

>TruSeq3 UniversalAdapter

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Listing 4.2: adapter.fa file used for Trimmomatic

Trimmomatic for a paired-end mode run, outputs four files - forward and reverse, paired and

unpaired reads. The paired reads are the ones that met the criteria we set for the run, while the

unpaired ones did not make the cut. Number of paired reads that survived is 184,016,240.
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The following is the FastQC’s report on the result from Trimmomatic:

(a) LP001 forward paired (b) LP001 reverse paired

Figure 4.3: FastQC report on the forward and reverse paired reads outputed from Trimmomatic.
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Next we fed the survived reads to SGA to build a draft assembly. SGA produced:

Scaffolds merged 434,385

Unplaced Scaffolds 1,671,716

Total Scaffolds 2,106,101

a total of 2,106,101 scaffolds, out of which 1,671,716 were unplaced scaffolds. These scaffolds

were then passed through SSPACE to combine some of the scaffolds. This resulted in a total of

2,073,163 scaffolds. These scaffolds are then passed through GapFiller to finally form 2,072,983

scaffolds. These scaffolds will be used in our implementation of Minhash where we will be using

Sea Urchin’s scaffolds as a reference genome.

The California Purple Sea Urchin (Strongylocentrotus purpuratus) has been sequenced and

annotated by the Sea Urchin Genome Sequencing Consortium led by the Human Genome Se-

quencing Center (HGSC) at Baylor College of Medicine [2]. We will be using Spur 4.2 from

https://www.ncbi.nlm.nih.gov/assembly/GCF 000002235.4/ as our reference genome to compare

against our Sea Cucumber’s scaffolds.
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Figure 4.4: The California Purple Sea Urchin aka Strongylocentrotus purpuratus. Courtesy of Kirt
L. Onthank.
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Sea cucumber and sea urchin are Echinoderms, a member of the phylum Echinodermata of

marine animals. Sea urchin being of the same phylum is what makes it a good candidate for a

reference genome for sea cucumber. Sea urchins genome has been shown to be surprisingly related

to humans’ https://www.nsf.gov/news/news summ.jsp?cntn id=108174. One of the objectives of

assembly is identification and annotation of genes. In the case of sea cucumber, researchers want

to identify the gene or genes that are responsible for healing properties.

Figure 4.5: The different groups of echinoderms. Courtesy of MESA (http://www.mesa.edu.au/
echinoderms/default.asp).
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Chapter 5

Minhash Implemenation

Our implementation of minhash is broken into the following five components:

1. Reading in sea urchin and sea cucumber scaffolds

2. Generating k -mers from the scaffolds

3. Hashing the k -mers

4. Collecting the minhashes to form signatures

5. Finding similarity between sea urchin and sea cucumber signatures using Hamming distance

The rest of this chapter is divided into two sections. The first section gives an overview of our

implementation. The second section provides the details on improving the efficiency of our imple-

mentation with concepts from parallel programming.

5.1 Implementation Overview

We used the sea urchin scaffolds (Spur 4.2) generated by HGSC at Baylor College of Medicine and

the sea cucumber scaffolds from the output from GapFiller. The scaffold file is read in and k -mers

(where k = 16) are generated using the code mentioned in chapter 3.1. The k -mers are stored as

integers to save space. Sea urchin has 31,896 scaffolds which generated about 990,436,922 16-mers,

while sea cucumber which has 2,072,983 scaffolds, generated 1,094,181,998 16-mers. These large

numbers point to the difficulty of the comparison of sea cucumber and sea urchin scaffolds. The

brute force technique requires a total of 2, 072, 983∗31, 896 = 66, 119, 865, 768 scaffold comparisons.
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Once the k -mers are generated, our next piece of code generates a family of independent hash

functions to map the k -mers to produce the minhash signature vectors for each of our scaffolds.

The family of independent hash functions we generate are of the form (ax+ b)%c where a and b are

random values between 0 and maxNum (in our case maxNum is 232 − 1) that only occurs once

(this is guaranteed by Python’s random.sample function), x is the k -mer in integer form and c is

the prime larger than maxNum so that we have fewer or no collisions happening. The following

Python code shows how we generate our family of independent hash functions:

1 import random

2

3 # Generate a l i s t o f n unique random numbers

4 def genRandomNums(n) :

5 # Maximum number a l l o w e d i s 2ˆ32 − 1 cause o f our hash l i m i t

6 maxNum = 2∗∗32 − 1

7

8 # Check i f n i s v a l i d

9 i f n < 0 or n > maxNum:

10 raise Exception ( ” I n v a l i d number o f random number reques ted ” )

11

12 # Use random ’ s sample c a l l to genera te l i s t o f n unique random numbers

between 0 and maxNum

13 return random . sample (xrange (0 , maxNum) , n)

14

15 # Generates h independent hash f u n c t i o n s o f the format : h ( x ) = ( a∗x + b ) % c

16 def genHashFuncs (h) :

17 # Set c to number l a r g e r than maxNum

18 c = 4294967311

19

20 # Generate 2 l i s t o f v a l u e s f o r a and b

21 aL i s t = genRandomNums(h)

22 bLi s t = genRandomNums(h)

23

24 # I n i t i a l i z e hash f u n c t i o n array

25 hashFuncs = [ ]

26

27 # Generate h random hash f u n c t i o n s
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28 for i in xrange (h) :

29 hashFuncs . append (lambda x , a=aL i s t [ i ] , b=bLi s t [ i ] , c=c : ( ( ( a ∗ x ) + b)

% c ) )

30

31 return hashFuncs

Listing 5.1: Python code to generate a family of independent hash functions

In our experiments, we generate 200 independent hash functions. We then use these independent

hash functions to generate the minhash signature for each scaffold by finding the lowest value

computed when passing each k -mer through the independent hash functions. The following C code

displays how the minhash signature is computed for each scaffold:

1 unsigned long int ∗ computeMinhashSignature (unsigned long int ∗ s c a f f o l d ,

unsigned long int s ca f f o ldLength , struct hashFuncs hFuncs )

2 {

3 unsigned long int i = 0 , j = 0 , hash = 0 ;

4 unsigned long int ∗vec = (unsigned long int ∗) mal loc ( s izeof (unsigned long

int ) ∗ hFuncs . l ength ) ;

5

6 for ( i =0; i<hFuncs . l ength ; ++i )

7 {

8 vec [ i ] = hFuncs . c ;

9 for ( j =0; j<s ca f f o l dLeng th ; ++j )

10 {

11 // ( ( ( a ∗ x ) + b ) % c )

12 hash = ( ( ( hFuncs . funcs [ i ] . a ∗ s c a f f o l d [ j ] ) + hFuncs . funcs [ i ] . b ) %

hFuncs . c ) ;

13

14 i f ( vec [ i ] > hash )

15 {

16 vec [ i ] = hash ;

17 }

18 }

19 }

20 return vec ;

21 }
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Listing 5.2: C code to compute the minhash signature from a scaffold of given length and a family

of independent hash functions

Once the minhash signatures are computed for each scaffold, we can finally compare the scaffolds

of sea cucumber and sea urchin against each other using Hamming distance.

Hamming distance is a distance measure metric that satisfies the axioms as explained in Chapter

3. Hamming distance between two strings of equal length is the number of positions at which the

corresponding symbols are different. For example, the hamming distance between the strings abbc

and abcc is 1, because the third position is different between the two strings.

In our case, the strings for Hamming distance would be the minhash signature for each scaffold.

We calculate the Hamming distance a bit differently, where instead of counting the difference

between the two signatures, we compute the similarity of them. The following C code shows how

we calculate Hamming distance between two minhash signatures. It is worth mentioning that we

divide the distance by the length of the signature array to normalize the value to fall between 0

and 1.

1 double calHammingDistance (unsigned long int ∗a , unsigned long int ∗b , int

l ength )

2 {

3 double d i s t = 0 ;

4 int i = 0 ;

5

6 for ( i =0; i<l ength ; ++i )

7 {

8 i f ( a [ i ] == b [ i ] )

9 {

10 ++d i s t ;

11 }

12 }

13

14 // d i v i d e by l e n g t h to s e t the d i s t a n c e between 0 and 1

15 return d i s t / l ength ;

16 }

Listing 5.3: C code to compute the Hamming distance between two arrays of the same length
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With our interpretation of Hamming distance, a distance value closer to 1 means the two

scaffolds are very similar (1 being the same scaffold), while a value closer to 0 means they are very

different.

5.2 Implementation Efficency

Given our data size, implementing certain sections sequentially is not ideal, while doable, the sheer

amount of calculations involved would make the time taken impractical. In order to speed up the

computation, we employed the use of not just MPI (Message Passing Interface) but also utilized

Intel Xeon Phi Coprocessors hosted by Cherry Creek 2.0 supercomputer at Switch.

5.2.1 MPI & OpenMP

MPI in short is a message passing system that networks multiple machines for computation. This

allows communications between the machines, therefore one can send data to and from machines

or simply use them to work on the problem in parallel. We utilize MPI purely to launch our job

across multiple machines. While we could utilize it to send data to the machines, given the nature

of shared disk on Cherry-Creek this was not necessary.

OpenMP is a specification for a set of compiler directives, library routines, and environment

variables that can be used to specify high-level parallelism in Fortran and C/C++ programs.

OpenMP is used to spin up threads in parallel to parallelize the computations involved. We

specifically used #pragma omp for call to generate n threads (where n is 220) when running for

loops so that we could fully utilize the Intel Xeon Phi Coprocessor’s computational resources.

Threads unlike MPI processes, are isolated to the host machine, however unlike MPI processes

that uses multiple machines and has distributed memory, threads share memory with other threads

on the same machine. This can be both a boon and a bane, a boon in the aspect no special

instructions or calls are required to access memory utilized by another thread, the bane being if

one is not careful, this could introduce race conditions. Race condition happens when more than

one thread contests for the same memory location at the same time with operations that could lead

to incorrect result if not performed sequentially.
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5.2.2 Intel R© Xeon PhiTM Coprocessor

Coprocessor is a computer processor used to supplement the functions of the primary processor.

In essence it “offloads” the work from the processor and speeds up the overall performance of the

machine. “The original Cherry Creek (1.0) had 48 nodes. Each node had 2 Intel Xeon E5 - 2697v2

(12 cores each), 128Gb Ram, and 3 Intel Xeon Phi 7120P coprocessors (with 61 cores each). In

addition to the 48 nodes above, Cherry Creek 2.0 has an additional: 48 Penguin Computing Relion

nodes each with 2 Xeon E5 - 2640v3 (8 cores each), 128Gb Ram, and 4 Intel Xeon Phi 31S1P

(with 57 cores each). It also contains 24 Intel manufactured nodes with 2 Xeon E5 - 2697v2 (12

cores each), 192Gb Ram, and 2 Intel Xeon Phi 7120P coprocessors (with 61 cores each). Cherry

Creek 2.0 currently has the following capabilities: theoretical peak speed of 495 TFlops/s (Trillion

Floating-Point operations per second), total Memory: 32.470 TB (TeraBytes), and total scratch

storage of 46.32 TB” [3].

5.2.3 Using an Intel R© Xeon PhiTM Coprocessor

Intel Xeon Phi coprocessor is essentially just like a regular processor, but it has its own set of

rules and regulations on how to use it, and even its own Linux operating system. While typical

contemporary processors clock about 2-3GHz, Intel Xeon Phi coprocessors clock about 1GHz [19].

Intel Xeon Phi coprocessors are best used as pure computational entities; they can handle anywhere

from 220 to 240 threads in parallel while a regular processor is limited to 8 to 24 threads in parallel.

They have their own memory (8 to 16GB GDDR5) that hosts the data used for computation, which

is not much for large dataset problems and as such data will need to be transferred from host to

coprocessor and vice-versa via the System BUS [19]. Intel Xeon Phi coprocessors can also be used

as part of MPI jobs since they have their own hostname.

5.2.4 Transferring functions and data to an Intel R© Xeon PhiTM Coprocessor

As mentioned in the above subsection 5.2.3 Intel Xeon Phi coprocessor has its own Linux operating

system and supports traditional Linux services including SSH [19]. There are three ways to run

code on an Intel Xeon Phi coprocessor:

• Native Applications - Directly compile and run code from the coprocessor without needing

to involve the host processor.
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1 #include <s t d i o . h>

2 #include <uni s td . h>

3

4 int main ( )

5 {

6 p r i n t f ( ” He l lo world ! I have %ld l o g i c a l c o r e s .\n” ,

7 sy s con f ( SC NPROCESSORS ONLN) ) ;

8 }

Listing 5.4: C hello world code that can be ran on host as well as on Intel Xeon Phi

Coprocessor [19].

1 user@host% icc h e l l o . c

2 user@host% . / a . out

3 He l lo world ! I have 32 l o g i c a l c o r e s . user@host%

Listing 5.5: Compiling and running the “Hello World” code on the host. [19].

To compile the C code to run on Intel Xeon Phi coprocessor, -mmic flag must be used. Note

that once compiled with this flag, host machine cannot execute the code.

1 user@host% icc h e l l o . c −mmic

2 user@host% . / a . out

3 −bash : . / a . out : cannot execute binary f i l e

4 user@host% scp a . out mic0 :˜/

5 a . out 100% 10KB 10 .4KB/ s 00 :00

6 user@host% ssh mic0

7 user@mic0% pwd

8 /home/ user

9 user@mic0% l s

10 a . out

11 user@host% . / a . out

12 He l lo world ! I have 240 l o g i c a l c o r e s .

Listing 5.6: A native application for Intel Xeon Phi coprocessors cannot be run on the host

system, so we have to transfer and run a native application on an Intel Xeon Phi coprocessor

direclty. [19].
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• Explicit Offload Model - With this model, special instructions are wrapped around code and

data that needs to be transferred from host to the coprocessor and back. These special

instructions generate special code for the coprocessor to execute.

1 // a t t r i b u t e ( ( t a r g e t ( mic ) ) ) i s a d e c l a r a t i o n q u a l i f i e r t h a t i n d i c a t e s

t h a t the d e c l a r e d o b j e c t ( v a r i a b l e or f u n c t i o n ) must be compi led i n t o

the t a r g e t code

2 a t t r i b u t e ( ( t a r g e t ( mic ) ) ) int data [ 1 0 0 0 ] ;

3

4 int a t t r i b u t e ( ( t a r g e t ( mic ) ) ) CountNonzero ( const int N, const int∗ ar r

)

5 {

6 int nz=0;

7 for ( int i = 0 ; i < N; i++) i f ( a r r [ i ] != 0) nz++;

8 return nz ;

9 }

10

11 // #pragma o f f l o a d a t t r i b u t e ( push , t a r g e t ( mic ) ) and #pragma

o f f l o a d a t t r i b u t e ( pop ) can be used i n s t e a d o f the q u a l i f i e r

a t t r i b u t e ( ( t a r g e t ( mic ) ) ) when m u l t i p l e c o n s e c u t i v e e lements in a

source f i l e need to be i n c l u d e d in the o f f l o a d code

12 #pragma o f f l o a d a t t r i b u t e ( push , t a r g e t ( mic ) )

13

14 double∗ ptrdata ; // Apply the o f f l o a d q u a l i f i e r to a po inter−based array

15 void MyFunction ( ) ; // a f u n c t i o n

16 #include ” myvar iables . h” // or even a whole f i l e

17

18 #pragma o f f l o a d a t t r i b u t e ( pop )

19

20 // #pragma o f f l o a d t r a n s f e r t a r g e t ( mic ) r e q u e s t s t h a t c e r t a i n non−s c a l a r

data must be copied to the coproces sor . This pragma t a k e s a number o f

c l a u s e s to s p e c i f y data t r a f f i c

21 #pragma o f f l o a d t r a n s f e r t a r g e t ( mic : 0 ) in ( ptrdata : l ength (N) ) a l l o c i f

( 1 ) f r e e i f ( 0 )

Listing 5.7: Some of the special instructions used to generate code specifically for Intel Xeon

Phi coprocessors [19].
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• MYO (Virtual-Shared) Memory Model - An alternative to the offload model, a virtual-shared

memory approach called MYO, Mine Yours Ours, eliminates the need for data marshaling.

That is, #pragma offload is replaced with a software emulation of memory shared between

multi-core and many-core processors residing in a single system. MYO refers to the software

abstraction that shares memory within a system for determining current access and ownership

privileges. This is controlled by two keywords Cilk shared and Cilk offload [19].

1 #include <s t d i o . h>

2

3 #define N 1000

4

5 C i l k s h a r e d int ar1 [N ] ;

6 C i l k s h a r e d int ar2 [N ] ;

7 C i l k s h a r e d int r e s [N ] ;

8

9 void i n i t i a l i z e ( )

10 {

11 for ( int i = 0 ; i < N; i++)

12 {

13 ar1 [ i ] = i ;

14 ar2 [ i ] = 1 ;

15 }

16 }

17

18 C i l k s h a r e d void add ( )

19 {

20 #i fde f MIC

21 for ( int i = 0 ; i < N; i++) r e s [ i ] = ar1 [ i ] + ar2 [ i ] ;

22 #else

23 p r i n t f ( ” Of f load to coproc e s s o r f a i l e d !\n” ) ;

24 #endif

25 }

26

27 void v e r i f y ( )

28 {

29 bool e r r o r s = f a l s e ;
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30

31 for ( int i = 0 ; i < N; i++)

32 e r r o r s |= ( r e s [ i ] != ( ar1 [ i ] + ar2 [ i ] ) ) ;

33

34 p r i n t f ( ”%s \n” , ( e r r o r s ? ”ERROR” : ”CORRECT” ) ) ;

35 }

36

37 int main ( int argc , char ∗argv [ ] )

38 {

39 i n i t i a l i z e ( ) ;

40 C i l k o f f l o a d add ( ) ; // Function c a l l on coprocessor , ar1 , ar2 are

copied in , re s copied out

41 v e r i f y ( ) ;

42 }

Listing 5.8: Example of using the virtual-shared memory and offloading calculations with

Cilk shared and Cilk offload of the function call. Note that, even though data are not

explicitly passed from the host to the coprocessor, function compute sum(), executed on the

coprocessor, has access to data initialized on the host. [19].

5.2.5 Using Multiple Intel R© Xeon PhiTM Coprocessor

Cherry-Creek has the Intel Xeon nodes configured to have anywhere from two to four Intel Xeon

Phi coprocessors connected to it. Which allows a user to further distribute their data and spin up

more threads in parallel to work on the data. Sending data to multiple coprocessors can be blocking

or non-blocking or via MPI. We went with spinning up threads using pragma on the host machine

equal to the number of coprocessors attached to the node to split up the data and communicate

that to their respective coprocessor.

5.3 Summary

Our code can be summarized as follows (as of right now):

1. Generate a family of h independent hash functions

2. The scaffolds are read in by a Python script that then produces n output files evenly dis-

tributed with k-mers that are converted to integers 3.1
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3. We then launch a C code that immediately launches n MPI-processes that does the following:

(a) Read in the nth file output file from the previous step

(b) Read in the h independent hash functions

(c) Split the scaffolds further based on c coprocessors allocated for the job

(d) Offload the data to the coprocessor for computing the minhash signature for each scaffold

using the independent hash functions 5.2

(e) Retrieve the minhash signature from the coprocessor and write them into a file

4. Launch a second C code that then does the following:

(a) Reads in the output from the previous step for sea cucumber and sea urchin

(b) Compares the signatures to find similar scaffolds using Hamming distance 5.3

(c) Write the result from comparisons - scaffold # of sea cucumber, scaffold # of sea urchin,

number of matches
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Chapter 6

Result

To test out the code, we first ran sea urchin against itself. A Python multi-process version (8

processes in parallel) took roughly 90 hours to compute the similarities between the sea urchin

scaffolds. We then updated the code to have Python generate a file with the k -mers since it is

easier to do string manipulation in it, and wrote a C OpenMP version (8 threads) which then

took roughly 20 minutes to compute the similarities. Once we introduced a single coprocessor (220

threads), then time taken dropped down to 13 minutes. Total scaffolds compared in this scenario

was (31, 896 ∗ 31, 896/2) = 508, 677, 408.

We further modified the Python code to generate n k -mer files for sea cucumber, and updated

our C code to now launch n MPI process (1 per node) which then utilizes 4 coprocessors on

each node (each coprocessor spawning 220 threads), so essentially if n = 4, we will be spawning

4 ∗ 4 ∗ 220 = 3520 threads. The execution time to compute the minhash signatures for all sea

cucumber scaffolds for n = 8 was roughly 3 minutes. Finally, a C sequential code was written to

compute the similarities between sea cucumber and sea urchin which took 31 hours.

About 5,855,468 single matches was found between sea cucumber and sea urchin scaffolds,

followed by 249,344 for 2 matches, till the max number of matches we found was 28 matches for 4

sea cucumber scaffolds against the same sea urchin scaffold.
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Figure 6.1: Histogram on number of sea cucumber scaffolds that had more than 2 matches against
sea urchin. The x-axis represents the number of matches and the y-axis represents the total number
of sea cucumber scaffolds that matched.
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Figure 6.2: Histogram on number of sea cucumber scaffolds that had more than 8 matches against
sea urchin. The x-axis represents the number of matches and the y-axis represents the total number
of sea cucumber scaffolds that matched.
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Chapter 7

Conclusion & Future Work

We took University of California’s sequenced reads for sea cucumber and cleaned it up to generate

scaffolds using various genome tools such as FastQC, Trimmomatic, SGA, SSPACE and GapFiller.

We then attempted to match the scaffolds against HGSC’s sea urchin scaffolds using minhash

technique to find similar scaffolds.

Our future work involves the following:

• Trying out various other genome tools to further clean up the sea cucumber reads

• Improving our code to be more stable and efficient depending on job resources allocated for

the job

• Running data used by other assemblers through ours to compare the results
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