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Abstract 

 
Constructing BFS trees rooted at each node of a network helps solve many problems. 

Reliable communication to other nodes is easily managed and metrics such as the 

network diameter, shortest path between any two nodes, the center, the radius, and 

others can be easily computed.  A traditional way to form a BFS tree from each node is 

for all nodes to construct their trees in parallel.  While this is the fastest way to 

accomplish this task, it also requires a large amount of network traffic.  In this thesis, we 

present a way to use a token passing algorithm to form a BFS tree from each node in the 

network within a desired network traffic limit.  We will analyze how the algorithm works 

on several network topologies and determine the amount of tokens necessary to form 

BFS trees from each node as quickly as possible without stressing the network more than 

a desirable limit. 
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Chapter 1 - Introduction 

 

In graphs (a network of nodes and edges), there are several problems that can be solved 

by constructing a BFS tree from each node.  Problems such as determining the diameter 

of the network, electing a leader, and determining the shortest path between all pairs of 

nodes (APSP) are much easier when these structures are present [1].  Unfortunately, 

when every node in a network begins constructing a BFS tree simultaneously, the 

communication between nodes can be very intense.  Parallel execution is the fastest way 

to construct these BFS trees, it takes only O(diameter) rounds, but it uses O(n*m) 

messages (where n is the number of nodes and m is the number of edges).  This is a very 

dense amount of messages to send in such a short time.   

 

In many networks, having this level of sustained traffic is not desirable.  So, it would be 

beneficial if there was a way to construct BFS trees from every node without using such a 

dense amount of traffic (i.e. stretch the message out over time to lessen the impact).  Also 

consider that each network has unique requirements.  It would be nice if a message rate 

limit could be identified, and have the BFS trees construct within this bound.  In this 

thesis, I will present a way to accomplish that.   

 

In the paper by Holzer and Wattenhofer [1], they present a new way to establish BFS 

trees in a network while spreading out the traffic over time.  The basic idea of the 

solution is to pass a token around the network.  When a node receives the token, it can 

begin constructing a BFS tree from itself.  This solution works great at keeping the 

network traffic density low compared to parallel BFS formation.  However, it takes a long 

time to complete the construction of the BFS trees (2*diameter + n rounds).  In my 

thesis, I modify Dr. Holzer’s algorithm to cover many different levels of network traffic.  

Obviously, there is a tradeoff between speed and message rate.  For each increment of 

extra communication rate allowed, the BFS trees can usually be constructed faster.   

 

In this thesis, I will go beyond theory to actually implement and test the original parallel 

BFS construction algorithm, as well as the multiple token algorithm presented in this 

thesis.  I will show that depending on the topology and size of the network, you can 

determine how many tokens should be used to form BFS trees as fast as possible while 

keeping your traffic levels under a desired limit.   
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1.1 Problems Solved With Many BFS Trees 

There are several types of problems that can be solved just by having a BFS tree 

constructed from each node.  There are too many to cover in this thesis, but I will give an 

overview of some of the most popular problems. 

 

1.2 Diameter 

Calculating the diameter is efficient when each node has a BFS tree.  Once the trees have 

formed, each node uses their tree to calculate the maximum distance between itself and 

any other node in its tree.  Each node then uses its tree to send messages to determine 

the maximum of those distances.  The resulting calculation is the diameter.  The 

messages can actually be sent as the BFS trees are being constructed, so there isn’t any 

additional time required.  Running the algorithm in parallel, this process would run in 

O(diameter) time and use O(n * m) messages [2].   

 

The multiple token algorithm in this thesis completes in diameter rounds after a token 

reaches the last node.  Depending on how many tokens are used, this could take more 

than n rounds (for a single token) and almost as fast as diameter rounds if a lot of tokens 

are used.  So, O(n + diameter) rounds is an accurate max representation and 

Ω(diameter) is the fastest it could finish.  The amount of messages is the same, they are 

just spread out over a larger number of rounds if it takes longer, reducing the rate or 

density of communication. 

 

1.3 Leader Election 

Electing a leader in a network where the number of nodes and the diameter are not 

known is another problem that can be solved when every node has a BFS tree.  First, 

each node constructs their BFS trees.  During the convergecast, the leaves send a 

message to their parent with their ID.  Each node passes along the maximum ID it sees.  

When the root of each tree receives the max ID in its tree, it compares it to its own ID.  If 

its own ID is larger than the max it has received from its children, then it elects itself the 

leader, otherwise it broadcasts that it isn’t the leader [2].   

 

Since this algorithm uses the convergecast that is already part of constructing the BFS 

trees, the time and message complexity is the same as calculating the diameter. 
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1.4 All Pairs Shortest Path 

All pairs shortest path (APSP) is a very popular problem to solve in distributed 

computing.  It has several well-known solutions that are decades old such as the Floyd-

Warshall algorithm [3, 4], the Bellman-Ford algorithm [5], and Dijkstra’s algorithm [6].  

There have also been many successful attempts to improve on these classic APSP 

algorithms.  Such as scaling the Floyd-Warshall algorithm for parallelization [7, 10, 11], 

and improving the algorithm to use cache better [8, 9].   

 

APSP is often a smaller problem that is used to help solve larger ones.  For example, 

transitive closure, finding a regular expression denoting the regular language accepted 

by a finite automation, and inversion of real matrices and optimal routing [7]. The 

applications for APSP are very widespread.  Such as geographical information systems, 

networking systems, robotics, intelligent transportation systems, and bioinformatics 

applications that can benefit from good solutions to the APSP problem [10, 11].   

 

All of the above methods are useful in different ways.  But, in a network where every 

node has a BFS tree constructed, the depth of the node in each BFS tree is known, and 

therefore all distances are known.  Which means constructing a BFS tree from each node 

solves the All Pairs Shortest Path problem.   

  

 

  



4 
 

Chapter 2 - Token algorithm 

 

2.1 Model 

 

The network used in this thesis, is an undirected graph G = (V, E) with edges that have 

no weight.  An edge represents a way to communicate directly between two nodes.  For 

formulas in this thesis, the number of nodes are represented by n, and number of edges 

by m.  It is assumed that each node has a unique identifier.  At the beginning of an 

algorithm, the nodes have no knowledge of the network beyond their immediate 

neighbors.  The algorithms in this thesis are designed for a synchronous network, but 

could easily be adapted for an unsynchronized network.   

 

2.2 Breadth First Search Tree Algorithm 

 

From Nancy Lynch’s textbook [2], a directed spanning tree is defined as a directed 

spanning tree of a directed graph G = (V, E) to be a rooted tree that consists entirely of 

directed edges in E, all edges directed from parents to children in the tree, and that 

contains every vertex of G.  A directed spanning tree of G with root node i is breadth-

first provided that each node at distance d from i in G appears at depth d in the tree.  

Every strongly connected digraph has a breadth first directed spanning tree. 

 

The algorithm to construct a BFS tree is as follows [2]: 

At any point during execution, there is some set of processes that is “marked” initially 

just i0.  Process i0 sends out a search message at round 1, to all of its outgoing neighbors.  

At any round, if an unmarked process receives a search message, it marks itself and 

chooses one of the processes from which the search has arrived as its parent.  At the first 

round after a process gets marked, it sends a search message to all of its outgoing 

neighbors.  

 

This algorithm’s time complexity is O(diameter) rounds and it generates O(m) messages. 
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2.3 Holzer/Wattenhofer Algorithm 

 

This is the algorithm presented in the paper by Holzer and Wattenhofer [1].  First, a BFS 

tree is constructed from a root node.  Once the initial BFS tree is completed, a token 

(referred to as a pebble in their paper) is passed to each node.  When a node receives the 

token for the first time, it waits one round.  The next round, the node begins forming a 

BFS tree and passes the token to a neighbor.  

 

This algorithm’s time complexity is O(n).  The construction of all BFS trees stops at most 

diameter rounds after they were started.  The runtime of the algorithm is determined by 

the time needed to build the initial BFS tree, O(diameter) plus the time needed by the 

last BFS tree that is initiated by the pebble O(n).  Since diameter <= n, O(n) [1]. 

 

2.4 Single Token Algorithm 

 

For the single token version of my algorithm, I modify the Holzer/Wattenhofer 

algorithm to decrease the amount of time it takes to complete.  In the 

Holzer/Wattenhofer algorithm, the token doesn’t start traversing the network until the 

root node’s BFS tree has finished constructing.  In round 1, the root node communicates 

to its neighbors when it requests to be their parent in its BFS tree.  In my modified 

version of the algorithm, the token is passed to a neighbor in round 2, rather than 

waiting for the initial BFS tree to finish construction.    Since the token starts one round 

after the BFS construction, the token will never have to wait for the BFS construction in 

order to find a neighbor because it’s always one step behind.  So, there is no reason to 

wait until BFS construction is complete to begin passing the token.  As in the 

Holzer/Wattenhofer algorithm, when a node receives a token, it begins forming a BFS 

tree.  The next round, it passes its token a neighbor from the main BFS tree.   

 

The algorithm’s time complexity is still O(n), although it is faster than the 

Holzer/Wattenhofer algorithm (by about diameter rounds).  Since there is no wait time 

for the initial BFS tree construction, the total rounds is simply n + diameter rounds (the 

Holzer/Wattenhofer algorithm is diameter + n + diameter).   
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For every node in the network, there will be a different BFS tree formed.  It’s important 

to note that the token will only be passed to neighbors of the BFS tree of the node that 

initially received the token.  For example, if a node has 3 network neighbors, but the BFS 

tree of the start node only has 2 neighbors for this node (presumably because that third 

node was chosen as a neighbor to a different node), then the third node will never receive 

a token from the current node (but it will receive a token from a different neighbor 

eventually).  Using the start node’s BFS neighbors instead of the network neighbors 

keeps the tokens from becoming trapped in a cycle.  

 

In the diagram below, a yellow node is in the BFS tree of node 1, the orange hexagon is 

the token, and a green node is in the BFS tree of node 2 and node 1. 
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Figure 1: Single token round 1 

 

 

In figure 1, the algorithm begins.  Node 1 receives a single token and asks its neighbors if 

it can be their parent in its BFS tree (BFS tree 1). 
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Figure 2: Single token round 2 

 

 

In figure 2 the following things happen: 

1. Nodes 2 and 3 agree to be node 1’s children in BFS tree 1.   

2. The token is passed to node 2.   

3. Node 2 asks node 1 and node 6 if it can be their parent in BFS tree 2.   

4. Node 2 also asks node 6 if it will be its child for BFS tree 1.   

5. Node 3 asks node 4 and 5 if it will be its child for BFS tree 1. 
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Figure 3: Single token round 3 

 

In figure 3 the following things happen: 

1. Node 6 has agreed to be node 2’s child for both BFS tree 1 and 2.   

2. Nodes 4 and 5 have agreed to be node 3’s children for BFS tree 1.    

3. The token has been passed to node 6.   

4. Node 6 asks node 2, 7, and 8 if it will be its children for BFS tree 6.   

5. Node 6 asks node 7 and 8 if it can be their parent for BFS trees 1 and 2.   

6. Node 5 asks nodes 8 and 9 if they will be its children for BFS tree 1.   

7. Node 1 asks node 3 if it will be its child for BFS tree 2. 

 

The algorithm will continue like this until all BFS trees have been constructed. 

 

2.4 Multiple Token Algorithm 

 

This algorithm is similar to the single token algorithm, but it has modifications to handle 

multiple tokens.  As in the single token version, a designated start node is chosen.  This 

node receives all of the tokens before the algorithm begins.  Once the algorithm starts, 

the initial node begins its BFS formation algorithm and then distributes its tokens to all 

of its BFS neighbors evenly.  This means each node now needs to keep track of how many 

times it sends a token to a neighbor.  When a node receives a token, it begins forming a 

BFS tree and then it also passes any tokens it has to each BFS neighbor evenly.   

 



9 
 

The algorithm’s time complexity is still O(n), although it is faster than both the 

Holzer/Wattenhofer algorithm and the single token algorithm.  Since there is no wait 

time for the initial BFS tree construction, the total rounds is simply n + diameter rounds 

(the Holzer/Wattenhofer algorithm is diameter + n + diameter).  In the case of the 

multiple tokens, the n will usually be less than the single token n because multiple tokens 

are traveling for each round. 

 

The first round is identical to the single token version. 
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Figure 4: Multiple token round 1 

 

 

In figure 4, the algorithm begins.  Node 1 receives two tokens and asks its neighbors if it 

can be their parent in its BFS tree (BFS tree 1). 
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Figure 5: Multiple token round 2 

 

 

In figure 5, the following things happen: 

1. Nodes 2 and 3 agree to be node 1’s parent in BFS tree 1.   

2. Node 1 passes tokens to nodes 2 and 3.   

3. Node 2 asks node 1 and node 6 if it can be their parent in BFS tree 2.    

4. Node 2 also asks node 6 if it will be its child for BFS tree 1.   

5. Node 3 asks nodes 1, 4, and 5 if they will be its children in BFS tree 3.    

6. Node 3 also asks node 4 and 5 if it will be its child for BFS tree 1. 
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Figure 6: Multiple token round 3 

 
 
In figure 6 the following things happen; 

1. Node 6 has agreed to be node 2’s child for both BFS tree 1 and 2.   

2. Node 4 and 5 have agreed to be node 3’s children for BFS tree 1.    

3. The tokens have been passed to nodes 6 and 4.   

4. Node 6 asks node 2, 7, and 8 if it will be its children for BFS tree 6.   

5. It also asks node 7 and 8 if it can be their parent for BFS trees 1 and 2.   

6. Node 5 asks nodes 8 and 9 if they will be its children for BFS tree 1.   

7. Node 5 also asks nodes 8 and 9 if they will be its children for BFS tree 3.   

8. Node 1 asks node 3 if it will be its child for BFS tree 2.   

9. Node 1 also asks node 2 if it will be its child for BFS tree 3.   

10. Node 4 asks node 3 if it will be its child for BFS tree 4. 

 

In order to achieve an even distribution of tokens, each node counts how many times it 

sends a token to each neighbor.  When a node has a token to pass, it chooses the 

neighbor with the fewest receptions.  Also, when a node receives a token, it adds one to 

its counter for the neighbor it received the token from.  This keeps the token from going 

back to a node until all nodes on that BFS branch have received a token. 
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It goes without saying that if a node has only one neighbor, when it has a token to pass, it 

just passes it back to its neighbor the next round.  These leaf nodes do not need to track 

how many tokens are sent to each neighbor. 

 

Adding just a second token makes a noticeable difference in the amount of things 

happening in each round.  For example, in round 3 above, the single token algorithm 

generated 7 items, while two tokens generated 10 items.  Each round continues to grow 

in communication until the BFS trees start completing.  In a later chapter, we will see 

that this is represented in the form of network traffic (communication) increases for each 

token added.   
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2.5 Algorithm Pseudo code 

 

Once per round, the “PassTokensToNeighbors” function would be called for each node.  

“ProcessEndOfRound” is called at the end of the round for each node. 

 

Algorithm 1 Pass Tokens To Neighbors 

function PassAllTokensToNeighbors(Node theNode, int round) 
  while (theNode.TokenCount > 0) do 
    if (theNode.neighborCount == 1) then 
      theNode.BFSNeighbors[0].ReceiveToken() 
    else 
      Node neighborWithMinTokens <- GetMinReceptionNeighbor(theNode) 
      neighborWithMinTokens.TokenSentCount++ 
      neighborWithMinTokens.ReceiveToken(round) 
    end if 
  end while 
end function 

 

Algorithm 2 Find neighbor that has received the fewest tokens 

function GetMinReceptionNeighbor(Node theNode) 
  Node minNeighbor = theNode.BFSNeighbors[0] 
  For each (BFSNeighbor aNeighbor in theNode.BFSNeighbors) do 
    if (aNeighbor.TokenSentCount < minNeighbor.TokenSentCount) then 
      minNeighbor = aNeighbor 
    end if 
  Next 
  return minNeighbor 
end function 

   

Algorithm 3 A node receives a token from a neighbor 

function ReceiveToken(int round) 
  dockedTokenCount++ 
  if (haventReceivedTokenYet == true) do 
    haventReceivedTokenYet = false 
    BeginBFSConstruction() 
  end if 
end function   

 

Algorithm 4 Executed by each node at end of round.  Moves docked tokens into 
“ready to send” state for next round. 

function ProcessEndOfRound() 
  TokenCount += dockedTokenCount 
  dockedTokencount = 0 
end function 
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Chapter 3 - Implementation 

 

To test the algorithms and theories in this thesis, I created a synchronized network 

simulator in .net.  I added a BFS construction algorithm as well as the token passing 

algorithm.  I also designed various network topologies and programmed in the code for 

creating them.  I tested and verified the accuracy of the BFS formation algorithms using 

various examples from text books and online references.  After each run, I recorded the 

results which are reviewed in the next chapter.   

 

I ran the algorithm over multiple levels of binary trees and ternary trees, several sizes of 

star networks, and four different mesh networks (combinations of large and small, 

sparse and dense).  For each network, I first ran the parallel version, then I started with a 

single token and incrementally added a token for each run.  I continued to increase the 

token count until the rounds could not be reduced anymore.   

 

3.1 Rounds 

 

During each run, I capture the number of rounds it takes to fully construct a BFS tree 

from every node.  Before the rounds begin, a node is selected and is given all of the 

tokens.  Then the simulation begins giving each node the time it needs to complete its 

processing for the round.  When all nodes have completed their processing, the round 

ends.  If there are some nodes who have not finished constructing their BFS tree, then 

the round counter is incremented, and a new round begins.  This continues until all 

nodes report their BFS trees are constructed.  This final round count is the value that is 

reported in the charts. 

 

3.2 Network Traffic 

 

This is an attempt to determine the message density or rate as the algorithm runs.  It is 

calculated by counting the number of BFS requests each node receives from a neighbor.  

Each time a neighbor requests a node to be their child, the internal counter is 

incremented for that node (the one that receives the request).  When all nodes report 

that their BFS tree is constructed, the request counters for all nodes are added together, 
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then divided by the number of nodes and divided again by the total rounds (requests per 

round per node).   This final result is stored in the chart. 

 

Traffic = Total Requests / Total Rounds / Total Nodes 

 

3.3 Technical Details 

 

The application is written in .net (specifically vb.net).  I may convert it to C# at a later 

time.  A conversion to C# would not impact or change the data results in this thesis.  It 

was written using Visual Studio 2013.  It should be accessible by Visual Studio 2010 or 

Visual Studio 2013. 

 

To test the network simulator and the BFS construction code, I created the code 

necessary to generate random networks within specifications.  For example, you can 

create a network with at least 5 nodes, but not more than 30 nodes, with at least 2 

neighbors for each node, but not more than 5 neighbors for each node.  This random 

network generation code is not used for this thesis, since I am using specific networks to 

collect results.  The code is still accessible in the project. 

 

The network simulator stores each node in a List (of nodes).  I chose this data structure 

because it is easy to work with.  Unfortunately, when the network gets large (more than 

1000 nodes), the performance begins to slow down.  If more performance is desired, 

converting the List data structure to an array should suffice.  While more difficult to 

maintain and debug, the performance benefits would make this conversion beneficial for 

large network tests. 

 

In any given round, a node can receive a BFS request for any BFS tree.  This problem 

makes the code complex and difficult to follow at times.  Each BFS request includes the 

BFS tree ID which is the node ID of the root node for that BFS tree.  So, each node must 

maintain a list of BFS neighbors for each node ID in the network.  This means each node 

requires enough space to store n * m (m is the number of network neighbors). 

 

The user interface allows quick selection of the options for the simulation.  The user 

selects the type of network to generate, along with how big to make it (if the network is 
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programmed to be sizeable).  The user also chooses how many tokens to use or if it 

should be fully parallel.   

 

When the simulation completes, on the left panel it shows the original network by listing 

each node and its neighbors.  It also shows the BFS trees that are generated for each 

node in the same manner (listing each node and its BFS neighbors for that tree).  The 

right panel shows the number of rounds it required to complete the run and the traffic 

generated during the run. 

 

 

Figure 7: Visual result of an example run 

 

3.4 Code Availability 

 

The code is publicly available on GitHub.  I hope to update the code after the thesis to 

make it easier for others to read and make it run faster.  It is available at the following 

address: 

 

https://github.com/MichaelSpencerNV/MultiTokenBFSConstruction  
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Chapter 4 – Results 

 

4.1 Binary Tree 
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Figure 8: Binary tree example 

 

For the binary tree, I ran the algorithm over trees of depth 4 (15 nodes) through 8 (255 

nodes).  The results show that the difference in speed between the fastest multiple token 

method and the fully parallel formation is roughly equal to the depth of the tree.  For 

example, the parallel formation for a level 4 tree completes in 10 rounds.  No matter how 

many tokens are added to the multi-token algorithm, it cannot complete the algorithm 

any faster than 13 rounds.  This is because a token can only travel once per round.  So 

even if all the tokens travelled in a straight line to the bottom of the tree, it would take at 

least as many rounds as the depth of the tree to reach the bottom. 

 

In the case of the binary tree, a single token is very slow.  Adding a second token cuts the 

time down roughly in half, while incurring a network traffic impact of a little less than 

double.  Adding a third token has only a marginal positive impact on the time for small 

trees, but as the network gets larger, the improvement is greater as well. 

 

When the tree is of a sufficient size (level 6 and up), the number of tokens required to 

change either the rounds or the traffic level is usually a power of 2.  This is likely because 

each node has exactly two children (in the ternary tree, multiples of 3 occur).  It is also 

because as the network gets larger, the sub trees become larger.  The tokens have to 

travel through an entire sub tree and back before they can go to the other child’s sub tree 

for a given node. 
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For display purposes (to save space), in the table, I skip the token amounts when there is 

no change between rows.   

 

Using this table, if you had a level 6 binary tree network and wanted to form BFS trees 

from every node without experiencing more than 2 requests per node per round on 

average, you would use 6 tokens.  The network would have BFS trees constructed from 

every node in 39 rounds and each node would only receive 1.59 BFS requests per round 

on average.  If you increased the token amount to 8, the algorithm would complete 10 

rounds faster, but generate 2.14 messages per node per round. 

 

Binary Tree 

Level 4 5 6 7 8 

Tokens Rnds Trffc Rnds Trffc Rnds Trffc Rnds Trffc Rnds Trffc 

1 35 0.40 69 0.43 135 0.46 265 0.48 523 0.49 

2 21 0.67 39 0.77 73 0.85 139 0.91 269 0.94 

3 21 0.67 35 0.86 61 1.02 111 1.14 209 1.22 

4 15 0.93 25 1.20 43 1.44 77 1.64 143 1.78 

6 15 0.93 25 1.20 39 1.59 65 1.94 115 2.21 

8 13 1.08 19 1.58 29 2.14 47 2.68 81 3.14 

12 13 1.08 19 1.58 29 2.14 43 2.93 69 3.68 

16 13 1.08 17 1.76 23 2.70 33 3.82 51 4.98 

24 13 1.08 17 1.76 23 2.70 33 3.82 47 5.40 

32 13 1.08 17 1.76 21 2.95 27 4.67 37 6.86 

64 13 1.08 17 1.76 21 2.95 25 5.04 31 8.19 

128 13 1.08 17 1.76 21 2.95 25 5.04 29 8.76 

Parallel 10 1.40 13 2.31 16 3.88 19 6.63 22 11.55 

Table 1: Binary tree results 

  



19 
 

4.2 Ternary Tree 
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Figure 9: Ternary tree example 

 

For the ternary tree network, I ran the algorithm on levels 2 (13 nodes) through 5 (364 

nodes).  Beginning at 6 tokens, all increments that generate new data is always a 

multiple of three (in some cases a power of 3).  This is likely because the network is 

essentially divided into three sections, so the root can pass an equal number of tokens 

into each sub tree.  On the next level of the tree, when each of those nodes can pass an 

even number of tokens to their children, we see another bump in new data. 

 

In the ternary tree, adding a second token makes a large difference (about 30% faster), 

but not quite as much as the binary tree.  The traffic also increases, but much less 

compared to the increase with the binary tree’s second token.  In the binary tree, adding 

a third token didn’t make a big difference but in the ternary tree, we see another big 

jump (again about 30% faster).  This makes sense now that each node has three children 

(vs two) to spread out the tokens to. 
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Ternary Tree 

Level 2 3 4 5 

Tokens Rounds Traffic Rounds Traffic Rounds Traffic Rounds Traffic 

1 29 0.41 85 0.46 249 0.48 737 0.49 

2 19 0.63 49 0.80 133 0.90 379 0.96 

3 13 0.92 33 1.18 89 1.35 253 1.43 

4 13 0.92 33 1.18 85 1.41 229 1.59 

5 13 0.92 31 1.26 73 1.64 193 1.88 

6 11 1.09 23 1.70 53 2.26 137 2.65 

9 9 1.33 17 2.29 37 3.24 93 3.90 

12 9 1.33 17 2.29 37 3.24 89 4.08 

15 9 1.33 17 2.29 35 3.43 77 4.71 

18 9 1.33 15 2.60 27 4.44 57 6.37 

27 9 1.33 13 3.00 21 5.71 41 8.85 

45 9 1.33 13 3.00 21 5.71 39 9.31 

54 9 1.33 13 3.00 19 6.32 31 11.71 

81 9 1.33 13 3.00 17 7.06 25 14.52 

162 9 1.33 13 3.00 17 7.06 23 15.78 

243 9 1.33 13 3.00 17 7.06 21 17.29 

Parallel 7 1.71 10 3.90 13 9.23 16 22.69 

Table 2: Ternary tree results 
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4.3 Star Network 
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Figure 10: Star network example 

 

The star network was interesting because no matter the size of the network, the parallel 

run always finishes in 4 rounds.  This is because every node is connected to the root node 

directly.  Unlike other networks, given enough tokens, the multiple token algorithm can 

almost reach the same speed as the full parallel algorithm.  This is because the diameter 

of the star network is always 2. 

 

When the network is large enough, each token makes a slight difference in speed and 

traffic.  So, with this network topology, you can actually get a large number of choices for 

speed and network traffic.  The star network turns out to be the most friendly network 

topology to the multiple token algorithm in this thesis because of how predictable it is. 
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Star Network 

Nodes 15 40 127 

Tokens Rounds Traffic Rounds Traffic Rounds Traffic 

1 31 0.45 81 0.48 255 0.49 

2 17 0.82 43 0.91 129 0.98 

3 13 1.08 29 1.34 87 1.45 

4 11 1.27 23 1.70 67 1.88 

5 9 1.56 19 2.05 55 2.29 

6 9 1.56 17 2.29 45 2.80 

7 7 2.00 15 2.60 39 3.23 

8 7 2.00 13 3.00 35 3.60 

9 7 2.00 13 3.00 31 4.06 

10 7 2.00 11 3.54 29 4.34 

11 7 2.00 11 3.54 27 4.67 

12 7 2.00 11 3.54 25 5.04 

13 7 2.00 9 4.33 23 5.48 

14 5 2.80 9 4.33 21 6.00 

16 5 2.80 9 4.33 19 6.63 

18 5 2.80 9 4.33 17 7.41 

20 5 2.80 7 5.57 17 7.41 

21 5 2.80 7 5.57 15 8.40 

26 5 2.80 7 5.57 13 9.69 

32 5 2.80 7 5.57 11 11.45 

39 5 2.80 5 7.80 11 11.45 

42 5 2.80 5 7.80 9 14.00 

63 5 2.80 5 7.80 7 18.00 

126 5 2.80 5 7.80 5 25.20 

Parallel 4 3.50 4 9.75 4 31.50 

Table 3: Star network results 
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4.4 Small Mesh Networks 
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Figure 11: Small, sparse mesh network 
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Figure 12: Small, dense mesh network 

 

For the mesh networks, I created four examples.  The first example is represented above 

in figure 10.  It’s a small, sparse mesh network with only 12 edges and 12 nodes.  The 

second example is a small dense network with 20 edges and 12 nodes. 

 

The increase in edges between the sparse and dense network results in both a faster 

completion of the algorithm and a higher traffic impact for the same amount of tokens 

when comparing the sparse and dense results in table 4.  Also, it doesn’t take very many 

tokens to close the gap between the multiple token and fully parallel algorithms.  6 
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tokens for the dense network and 8 for the sparse network finish within two rounds of 

the parallel speed. 

 

As in the binary tree, the second token makes a large impact (almost as much as in the 

binary tree), but subsequent token amounts have only a marginal increase in speed and 

traffic. 

Small Mesh Network 

Nodes Sparse Dense 

Tokens Rounds Traffic Rounds Traffic 

1 30 0.43 25 1.16 

2 18 0.72 15 1.93 

3 18 0.72 13 2.23 

4 16 0.81 13 2.23 

6 16 0.81 10 2.90 

8 14 0.93 10 2.90 

Parallel 12 1.08 8 3.63 

Table 4: Small mesh network results 

 

 
 

  



25 
 

4.5 Large Mesh Networks 
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Figure 13: Large, sparse mesh network 
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Figure 14: Large, dense mesh network 

 

For the large mesh networks, I again created a sparse and a dense version.  Both versions 

have 84 nodes.  The sparse version has 94 edges, while the dense version has 167 edges. 

 

As with previous networks, adding a second token has a large impact.  In this case, 

subsequent tokens continue to make a difference in both networks.  The dense network 
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has a many more increments to choose from, but also has a much larger traffic impact 

compared to the sparse network at any given token amount. 

 

The fastest sparse network construction with 104 tokens, falls 11 rounds short of the 

speed of the parallel algorithm.   This is due to the size of the network and the many 

bottlenecks that exist.  It takes a while for the tokens, no matter how many, to reach the 

nodes on the other side of the network.  In contrast, the dense network misses the 

parallel network by only 4 rounds of the parallel network, but it takes 428 tokens to 

reach the speed. 

Large Mesh Network 
Nodes Sparse Dense 

Tokens Rounds Traffic Rounds Traffic 

1 194 0.54 176 1.43 

2 106 0.99 92 2.73 

3 102 1.03 78 3.22 

4 82 1.28 62 4.05 

5 82 1.28 60 4.18 

6 82 1.28 54 4.65 

7 80 1.21 48 5.23 

8 64 1.64 48 5.23 

9 64 1.64 42 5.98 

10 62 1.69 42 5.98 

12 60 1.75 40 6.28 

15 60 1.75 38 6.61 

16 58 1.81 38 6.61 

20 58 1.81 36 6.97 

24 57 1.84 36 6.97 

28 57 1.84 34 7.38 

32 55 1.91 33 7.61 

42 55 1.91 32 7.84 

44 53 1.98 32 7.84 

56 53 1.98 28 8.96 

104 51 2.06 28 8.96 

116 51 2.06 26 9.65 

212 51 2.06 24 10.46 

428 51 2.06 23 10.91 

Parallel 40 2.63 19 13.21 

Table 5: Large mesh network results 
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4.6 Rounds vs Tokens 

 

Figure 15: Rounds vs tokens 

 

This chart shows how many rounds it takes for all of the BFS trees to construct, given 1 to 

16 tokens.   Rounds are on the vertical axis, and tokens on the horizontal.  I included a 

couple examples from each network type.  They all follow a similar path, with the largest 

differences between token amounts of 1 to 7.   

 

The star networks follow a fairly smooth curve, due to the many different levels of 

network traffic.  While the other network topologies tend to plateau for a few token 

amounts at a time, then drop.  This isn’t surprising considering the star network can pass 

the token around to a new node very efficiently, while the other network types commonly 

have tokens backtracking over nodes that have already received a token. 
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4.7 Traffic vs Tokens 

 

Figure 16: Traffic vs tokens 

 

This chart represents the amount of network traffic for each token amount of 1 to 16 

tokens.  The vertical axis is BFS requests per node per round and the horizontal axis is 

token amount.   

 

The large-dense and 127 star network stand out as the highest generators of network 

traffic.  These networks topologies have more densely connected nodes than the others 

networks.  This indicates that the more connected a graph is, the heavier the traffic will 

be.  The chart shows that the token amount can control the traffic even for these dense 

networks.  The biggest difference between sparse and dense networks is how much traffic 

is increased with each token added.  The dense network adds a lot of traffic for each 

token, while the sparse network sometimes doesn’t even increase with an extra token. 
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Chapter 5 - Conclusions 

 

This thesis contains a new way to construct BFS trees that gives you control over the 

amount of network impact by choosing a certain amount of tokens to begin the 

algorithm.  I ran the new multiple token algorithm through a custom network simulator 

across several types of network topologies using different amounts of tokens to confirm 

that the algorithm is performing as expected.  The results show that the amount of 

network traffic can be chosen based on the token amount. 

 

While constructing BFS trees in parallel is the fastest way to obtain a BFS tree from every 

node in the network, it requires a lot of network traffic in a short amount of time.  In 

contrast, using the single token algorithm is very light on the network, but it can take a 

very long time to complete.  With the multiple token method described in this thesis, you 

can choose a point somewhere in between the two extremes.  In addition, the results 

show that if you know a little bit about the network topology, you can even target a 

specific maximum network limit and be confident you are forming BFS trees as fast as 

possible within that limit. 
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Chapter 6 – Future Work 

 

Token Efficiency 

In the current algorithm, when tokens make it back to the root, the root continues to 

pass the tokens around evenly.  A possible improvement would be to have the 

convergecast for the main root BFS tree include the number of total children.  When the 

root receives its children counts, it could begin spreading the tokens more towards the 

neighbors that have more children (or children that haven’t finished convergecast yet).  

This would not make much difference for smaller networks, but could increase the speed 

for some networks where the tokens are having trouble reaching the deeper levels when 

the main BFS tree forms very unevenly. 

 

Token Prediction Simplification 

This thesis provides results for several types of networks, and it seems like there is some 

connection to certain aspects of network topology and the effectiveness of token amounts 

(i.e. binary tree increases are seen only one powers of two after the initial 5 tokens).  It 

would be interesting if the amount of tokens required to limit the network traffic to some 

degree could be predicted by only having a few specifications of the network, rather than 

knowing the actual topology of the network.  The ratio of edges to nodes is possibly the 

strongest indicator.  Perhaps there is a formula lurking in this data that could simplify 

the choice of token amount regardless of the topology? 

 

Unsynchronized Networks 

Another area for exploration would be unsynchronized networks.  This algorithm should 

work fine on unsynchronized networks, but the results (time to complete and network 

traffic) might vary.   
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