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Abstract

Human life is progressing with advancements in technology such as laptops, smart phones, high

speed communication networks etc., which helps us by reducing load in doing our daily activities.

For instance, one can chat, talk, make video calls with his/her friends instantly using social net-

working platforms such as Facebook, Twitter, Google+, WhatsApp etc. LinkedIn, Indeed, etc.,

connects employees with potential employers. The number of people using these applications are

increasing day-by-day, and so is the amount of data generated from these applications. Processing

such vast amounts of data, may require new techniques for gaining valuable insights. Network

theory concepts form the core of such techniques that are designed to uncover valuable insights

from large social network datasets.

Many interesting problems such as ranking top-K nodes and top-K communities that can effec-

tively diffuse any given message into the network, restaurant recommendations, friendship recom-

mendations on social networking websites, etc., can be addressed by using the concepts of network

centrality. Network centrality measures such as In-degree centrality, Out-degree centrality, Eigen-

vector centrality, Katz Broadcast centrality, Katz Receive centrality, and PageRank centrality etc.,

comes handy in solving these problems.

In this thesis, we propose different formulae for computing the strength for identifying top-K

nodes and communities that can spread viral marketing messages into the network. The strength

formulae are based on Katz Broadcast centrality, Resolvent matrix measure and Personalized

PageRank measure. Moreover, the effects of intercommunity and intracommunity connectivity

in ranking top-K communities are studied. Top-K nodes for spreading any message effectively into

the network are determined by using Katz Broadcast centrality measure. Results obtained through

this technique are compared with the top-K nodes obtained by using Degree centrality measure.

We also studied the effects of varying α on the number of nodes in search space. In Algorithms

2 and 3, top-K communities are obtained by using Resolvent matrix and Personalized PageRank

measure. Algorithm 2 results were studied by varying the parameter α.
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Chapter 1

Introduction

Advancements in science and technology are narrowing the distance between people. Moreover, the

availability of smartphones at cheaper prices catalysied this process. People are actively exchanging

information on social networking platforms such as Facebook, Twitter, WhatsApp etc. A multitude

of social networking websites started taking shape and are serving people in various ways. For

instance, platforms such as Facebook, Twitter, WhatsApp etc., allows an individual to get in

touch with others, who share similar idealogy. Platforms such as Meetup allows a group of people

with similar idealogy to meet once in a while and allows to exchange ideas or share knowledge.

Platforms such as LinkedIn, Indeed, Glassdoor are connecting employers to employees. Kickstarter

platform allows individuals or groups of individuals to pitch their start up ideas and get funded

from enthusiasts with same interests around the globe. Apart from these, there are tonnes of social

networking platforms that enable an individual to interact with others at different levels.

As the number of individuals using these social networking platforms are increasing day-by-day,

the amount of data generated from their interactions is also increasing exponentially. This has lead

to a new trend in big data community researchers, to engage themselves in studying individual

interaction networks, as these networks have proven to be excellent sources of hidden information

patterns.

Researchers came up with intruiging techniques for answering complex questions such as product

recommendations, friendship recommendations, web page ranking for efficient information retrieval

etc., by using various techniques. Network theory concepts form the core of such techniques designed

to uncover valuable insights. Especially In-degree centrality, Out-degree centrality, Betweenness

centrality, Eigenvector centrality, Katz Broadcast centrality, Katz Receive centrality, and PageRank

centrality etc., comes handy in solving these intruiging questions.
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1.1 Objective

In this thesis, various network datasets were examined for answering interesting questions such

as “what are the top-K nodes(users) that are suitable for broadcasting a viral message into the

network?”, “what are the top-K communities(groups of users) that are suitable for instantly spread-

ing a viral message into distinct number of communities?”. Different formulae for computing the

strength of nodes and communities in a network graph were proposed by using various centrality

measures such as Katz Broadcast centrality, Resolvent matrix and Personalized PageRank (PPR)

measures. Moreover, the impacts of intracommunity connectivity and intercommunity connectivity

on the strength of communities were studied as a part of this thesis work. This thesis work also

includes the study of effects of parameters involved in Katz Broadcast centrality, and Resolvent

matrix measure on the results obtained for top-K nodes and top-K communities. Furthermore, the

results were eloborated for explaining the need for such measures.

1.2 Outline

In Chapter 1, a brief introduction of social networking platforms, and their advantages were dis-

cussed.

In Chapter 2, related works in the field of network theory, which address complex problems using

network centrailty measures were discussed.

In Chapter 3, three different algorithms for computing the strength of top-K nodes, and top-K

communities were proposed.

In Chapter 4, dataset characteristics and experimental results showing the effects of parameters in

ranking top-K nodes and top-K communities were discussed.

In Chapter 5, proposed methods and their results were summaraized along with the possible ex-

tension of this thesis work.

2



Chapter 2

Background and Preliminaries

2.1 Related Work

Researchers have been conducting experiments towards identifying interesting patterns in large

network datasets using network theory concepts. A significant amount of research has been carried

out for the identification and ranking of top-K influential nodes that are capable of spreading viral

information messages into a given network using various approaches such as Centrality theory [1],

[2], [3], [3], [4], Diffusion models [5], Heat diffusion theory [6], Evidence theory [7] etc.

Li et al. [7] in their recent research paper published an evidence theory based method for

identifying top-K nodes in a network of networks (NON). The central idea of their approach is to

reduce a complex network(any) into a group of sub-networks. Kimura et al. in [8], proposed a

novel method for the identification of influential nodes by combining bond percolation theory and

graph theory. Doo et al. in [6], theorized an activity oriented influence model for social networks.

They used heat diffusion concepts to characterize the influence propagation in real time social

networks. Zhang et al. in [9], and Leung et al. in [10], came up with user preference based

methods for identifying the top-K nodes. Zhang et al. in [9], identified top-K nodes using a

two-staged approach called GAUP, which also includes the users preferences. In [10] Leung et al.,

proposed a MapReduce model for search space reduction by considering user-specified constraints

for mining uncertain data. Jia-Lin He et al. in [11], proposed a community structure based influence

maximization strategies in complex networks for identifying top-K nodes. In [12], Weiwei Liu et

al. proposed a topic based novel appraoch for identifying the top-K nodes in a given network.

Network theory concepts can also be applied for identifying and ranking communities in large

network graphs. In [13], Xie et al. came up with a unique spectral property based community

3



structure detection algorithm. In [14], Li et al. proposed a flooding time based approach for

detecting influential communities in large networks. The amount of time taken to spread a given

message from one node/community to the other node/community is known as flooding time [14],

[15]. Another approach for detecting the most influential community is by identifying those nodes

with radiates maximum information. Ma et al. in [16], proposed a similar method by using

heat-diffusion processes. Another approach to identify influential communities is by computing

the information diffusing power of boundary nodes. Boundary nodes in each community plays a

vital role in information propogation to neighboring communities. In [17], Faisal et al. came up

with a novel algorithm for boundary node detection in a cluster. This can be further extended

for ranking influential communities. Sweeney et al. in [18] applied game theorey concepts for

detecting communities in large datasets. Wu et al. in [19], described a new method, which uses

distance centrality as a measure for detecting communities. Their approach is based on the most

central nodes and their similarities with other nodes. In [20], Zhang and Wu proposed a core nodes

approach for the local community detection.

Personalized PageRank (PPR) measure also gained importance for evaluating network topology.

Larry Page and Sergey Brin in their research paper [21] proposed PageRank (PR) and Personalized

PageRank (PPR) measures. PR is measure used to compute the global importance of vertices in

a network. While, PPR measures the same for any vertex but with respect to a particular vertex

instead of entier network. PPR considers nodal ties while computing the importance score of a

vertex. This makes PPR more accurate measure than PR [22]. The applications of PR include

efficient information retrieval for search queries and the applications of PPR include personalizing

social search, product recommendations etc. Zhu et. al. in [23], proposed an incremental approach

for PPR computation with accuracy awareness. In [24], Lofgren et. al., proposed a bi-directional

search algorithm based on Frontier set. Other works on computing PPR include [25], [26], [27],

[28], and [29].

2.2 Preliminaries

2.2.1 Degree Centrality

Degree centrality of a Vertex v is obtained as the count of distinct ties that v has with other

vertices.

4



CD(v) = d(v) (2.1)

where d(v) in Equation (2.1) stand for the count of distinct ties that Vertex v has.

In the case of a directed network, there are two different degree centrality measures, which are

in-degree and out-degree centralities [30]. In-degree and out-degree centralities of a Vertex v are

obtained as the number of distinct ties that are directed towards it and the number of distinct ties

that are directed outwards from it. Accordingly, the equations for them are as follows:

Cin(v) = din(v) (2.2)

Cout(v) = dout(v) (2.3)

where din(v) (in Equation (2.2)) and dout(v) (in Equation (2.3)) corresponds to the number of

inward and outward ties of Vertex v.

2.2.2 Closeness Centrality

Closeness centrality for a Vertex v is obtained as the average shortest path value of all the shortest

paths between v with respect to all others in the network [31]. Closeness centrality can be used

as benchmark for measuring the time that a vertex takes to spread information into the network.

It can be used to identify vertices that are capable of quickly spreading a rumor into the network.

The equation for it is as follows:

Cc(v) =
N∑
j=1

1

d(v, vj)
(2.4)

where Cc in Equation (2.4) gives the Closeness centrality of Vertex v.

2.2.3 Betweenness Centrality

Betweenness centrality measures the number of times a Vertex v acts as a connector along the

shortest paths between any two other vertices in the network. By acting as a connector, any vertex

has the power to govern the flow of information through it. Betweenness centrality was introduced

by Linton Freeman. The betweenness of a Vertex v is given by the formula in Equation(2.5):

5



CB(v) =
∑

l=1,m 6=1

glvm
glm

(2.5)

where glvm is all paths connecting vertices l and m through vi; glm is the geodesic distance between

the vertices l and m [1].

2.2.4 Eigenvector Centrality

Eigenvector centrality of a Vertex v represents its global influence in the network. It is based on

the concept that if a vertex is connected to other highly connected vertices, then the current vertex

in contex will gain a high influence value through these highly connected vertices.

2.2.5 Katz Centrality:

Katz centrality of a Vertex vi measures its relative influence in the network graph by considering

vi’s immediate neighboring vertices as well as vertices that are connected through these immediate

neighboring vertices and so on. The Katz centrality of a Vertex vi is computed as:

CKatz(vi) = α
n∑
j=1

Aj,iCKatz(vj) + β (2.6)

where α is called damping factor [32] and its value is restricted by the condition α < 1/λ1. λ1

is the largest eigenvalue for the adjacency matrix of the network [33]. Parameter β is called the

exogenous vector and generally it is chosen to be 1 and it is used to ensure that each vertex has a

minimum centrality so that it can be transferred to other nodes and so on.

The concept of using Katz centrality to rank the actors in a social graph was first proposed

by Leo Katz in [34]. The very fact that a humans influence in his/her social group decreases as

one moves further from his/her close connections to loosely connected distant members forms the

base of Katz centrality. Katz centrality consideres all the possible walks in the network graph,

irrespective of the fact that whether a given path is a shortest path or not. As the length of a

path increases the influence of a vertex decreases and Katz centrality achieves this by utilizing

the damping factor α which reduces the influence across longer paths. Consider a Node i, the

immediate neighbors, i.e. walk of length 1, are given the value α1, whereas the farther neighbors,

i.e. walk of length k, are assigned as αk and so on [32].

6



(I − αA)−1 = I + αA+ α2A2 + ...+ αkAk + ... =

∞∑
k=0

αkAk, 0 < α < 1/λ (2.7)

Equation (2.7) can be generalized for the entire graph as:

CKatz = β(I − αAT )−1.1 (2.8)

where (I − αAT )−1 is the resolvent matrix and 1 is a column vector of ones.

Resolvent matrix [(I − αAT )−1]ij gives the influence of Node i on Node j. From the Equation

(2.8) it is also evident that Katz centrality is dependent on α and β [15]. Benzi et al. in their paper

[35], showed that different choices of α and β lead to different centrality values. If α → 0+, then

Katz centrality reduces to degree centrality. The degree centrality of a node i gives importance to

connections that are one step away starting from i. If α→ (1/λ)−, then it reduces to eigenvector

centrality, for example, if α = (1/λ) and β = 0, then Katz centrality is the same as eigenvector

centrality. In short Katz centrality covers both the local and global influences of a node i, otherwise

given by independently by degree and eigen vector centralities.

In the case of a directed network graph, there are two centrality measures, which are Katz

Broadcast centrality and Katz Receive centrality.

Given a directed, unweighted graph G = (V, E) with adjacency matrix A, Katz Broadcast

and Katz Receive centralities of a vertex i are obtained as:

KatzBv = β(I − αA)−1.1 (2.9)

KatzRv = β(I − αAT )−1.1 (2.10)

Clearly from the Equations (2.9) and (2.10), it is evident that we are considering row sums to

obtain the outboundness of a node and column sums to obtain the inboundness of a node. In case of

directed networks [(I−αA)−1]ij gives the broadcasting influence of i towards j and [(I−αAT )−1]ij

gives the receiving capacity of Node i when a message is triggered from Node j.

7



For the Figure (3.1), Katz Broadcast and Katz Receive centralities are computed as:

Figure 2.1: Sample Network Graph for Demonstrating Katz Centrality Computation

I =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1
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A =



0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0



AT =



0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 1 0 1 0 0 1 1

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



[I − α ∗A]−1 =



1 3.063 0 2.604 0 14.754 17.357 2.604 0 0

0 3.604 0 3.063 0 17.357 20.420 3.063 0 0

0 3.063 1 2.604 0 14.754 17.357 2.604 0 0

0 3.063 0 3.604 0 17.357 20.420 2.604 0 0

0 3.063 0 2.604 1 14.754 17.357 2.604 0 0

0 0 0 0 0 3.604 3.063 0 0 0

0 0 0 0 0 3.063 3.604 0 0 0

0 0 0 0 0 0 0 1 0 0

0 3.063 0 2.604 0 17.357 20.420 2.604 1 0

0 3.063 0 2.604 0 17.357 20.420 2.604 0 1
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[I − α ∗AT ]−1 =



1 0 0 0 0 0 0 0 0 0

3.063 3.604 3.063 3.063 3.063 0 0 0 3.063 3.063

0 0 1 0 0 0 0 0 0 0

2.604 3.063 2.604 3.604 2.604 0 0 0 2.604 2.604

0 0 0 0 1 0 0 0 0 0

14.754 17.357 14.754 17.357 14.754 3.604 3.063 0 17.357 17.357

17.357 20.420 17.357 20.420 17.357 3.063 3.604 0 20.420 20.420

2.604 3.063 2.604 2.604 2.604 0 0 1 2.604 2.604

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


where I is the Identity matrix, A is the Adjacency matrix of the given graph, AT is the transpose

of A, α value as 0.85 ( λ1 for the matrix A is 1), [I − α ∗A]−1 represents the Resolvent matrix for

broadcasting ability and [I − α ∗ AT ]−1 represents the Resolvent matrix for receiving ability. By

choosing β value as 1 and solving for β ∗ [I −α ∗A]−1].1, and β ∗ [I −α ∗AT ]−1].1 Katz Broadcast

and Katz Receive centralities are obtained as below:

KatzBroadcast =



41.381381

47.507508

41.381381

47.048048

41.381381

6.666667

6.666667

1.000000

47.048048

47.048048
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KatzReceive =



1.000000

21.98198

1.000000

19.68468

1.000000

120.35736

140.42042

19.68468

1.000000

1.000000


2.2.6 PageRank Centrality

Named after its creator Larry Page, PageRank algorithm assigns a value to each vertex in a network

as per the importance of that vertex in relation to the other vertices in the network [21]. For a

Vertex u, Fu be the set of vertices that u points to, Nu= |Fu| be the number of ties from Vertex

u, Bu be the set of vertices that point to u, and c be a factor used for normalization such that the

total importance score of all vertices is constant. PageRank of Vertex u is computed as:

PR(u) = (1− c) + c
∑
v∈Bu

PR(v)

Nv
(2.11)

where PR(u) is the PageRank of Vertex u, PR(v) is the PageRank value of Vertex v ∀Bv, and Nv

is the number of forward links of each Vertex v ∀ Bv. This is the initial formula proposed by Page

and Brin in [21].
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Figure 2.2: Sample Network of Web Pages Showing that PageRank Value of a web Page is Evenly
Distributed Among its Outbound Links

From Figure (2.2), it can be observed that the rank of any vertex is obtained from its incoming

vertices, and the rank of any vertex is distributed evenly among its outgoing ties. Page and Brin

also discussed the possible problems with this simplified approach and proposed modifications for

computing the PageRank of a vertex. Consider two Vertices u and v, that are pointing to each

other only. Vertex w is pointing to Vertex u. Then, during the PageRank computation, rank is

accumulated in the u and v loop only, and is never distributed to w. This is a sort of trap, which

is called as a rank sink. To overcome the problem of rank sink in [21] Page and Brin proposed a

modified formula for calculating PageRank values as:

R′(u) = c
∑
v∈Bu

R′(v)

Nv
+ c ∗ E(u) (2.12)

such that c is is maximized and || R′ || = 1 (|| R′ ||1 denotes the L1 norm of R’).

In Equation (2.12), E(u) is a vector over all vertices that corresponds to a source of rank.

2.2.6.1 Power Iteration for Computing PageRank

The PageRank values of all the vertices in a network graph can be calculated by using Power

Iteration approach. In this iterative approach, all the transition probabilities between the nodes

are represented in the form of a matrix (known as Transition matrix). We will start with an initial
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distribution of PageRank values. Generally an uniform distribution of PageRank values is used.

The product of initial PageRank distribution and transition matrix gives the new PageRank values.

These newly obtained values are used for computing the PageRank values in next iteration and so

on. Let A be the transition matrix, such that Auv = 1
Nu

, if Edge (u, v) exists, where Nu is the

out-degree of Vertex u. Let π denote the initial distribution of PageRank values. As mentioned

earlier, a uniform distribution is applied for the initial values, say frac1| V |, where | V | is the

number of vertices in the graph. Please note that π is a column vector and πT is a row vector. The

matrix multiplication of πT and A gives the new PageRank values. As mentioned earlier, PageRank

values are iteratively computed, until the values converge. Therefore, this multiplication process is

repeated iteratively, each time considering new PageRank values and this process is repeated until

the values converge.

π(1)T = π(0)T .A (2.13)

where π(0)T is the initial PageRank distribution vector, π(1)T is the PageRank vector after first

iteration. This process is repeated until the values converge.

π(2)T = π(1)T .A (2.14)

π(k)T = π(k−1)T .A (2.15)

π(k)T = π(k)T .A (2.16)

where π(k)T is the PageRank vector and π(k)T [u] represents the PageRank value of a Vertex u and

so on.

2.2.6.2 Random Walk Perspective

Computation of PageRank values can be characterized by using random surfer approach. A random

surfer starts his walk/tour from any Vertex i in the network graph and continues his walk/tour

by randomly choosing one of the outbound vertices of i and so on. A random surfer may choose

to start from any arbitrary point. All the vertices in the graph are given equal probability of

getting selected for beginning a random walk/tour. The initial PageRank vector π(0)T captures

the uniform distribution of a vertex getting selected for starting random walk/tour, the matrix A
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Figure 2.3: Sample Network Graph for Demonstrating PageRank and Personalized PageRank Com-
putation

Figure 2.4: Sample Network Graph for Demonstrating Dangling Node Problem in Random Surfer
Model

gives the probability of moving from one vertex to another vertex in the network. The PageRank

values can be computed using Power Iteration method. The obtained PageRank values π(k)T [u]

correspond to the probability of a random walker terminating the walk/tour at each Vertex u in

network.

It is possible that a random surfer may get stuck at some vertex without any outbound ties.

Such vertices without any outbound ties are termed as Dangling nodes. For example, consider

Figure (2.3), where the random surfer choose to start his walk from Node 1. From Node 1, the

surfer moved to Node 2, and then to Node 3, and then to Node 4. At Node 4, the surfer is stuck as

there are no outbound edges for Node 4. To address this problem, the transition matrix is modified

as [36]:

S = A+ d.w (2.17)
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where, d is the Dangling vector (a column vector) such that di = 1, if Node i is a Dangling node,

else di = 0. w is a row vector of length | V |, containing uniform transition probabilities from

Node i to all the nodes in the network [36]. After introducing transition probabilities for dangling

nodes, the topology of above network graph is modified as shown in Figure (2.4).

However, in real time a user might not follow the random surfer approach and doesn’t keep on

clicking from one link to another. Users in real time may choose to move to any page on the Internet

by entering the URL of that page. In order to capture this real time user behavior Equation (2.17)

is modified as:

G = α+ (1− α).1.v (2.18)

where ≤ α ≤1 is a scalar, 1 is a column vector of ones, v is known as Personalization vector (row

vector) and it contains the probability distribution of a random surfer teleporting to any random

page without clicking links, the matrix G is called as Google matrix, α is the probability of moving

from one page to another by clicking links, and 1-α is the probability with which the random

surfer teleports to a random page without clicking links. α and 1-α are interchangeably used.

Larry and Brin performed extensive experiments, in which they used α=0.85 and v = ( 1
n ,., 1n).

Assigning a uniform probability distribution means that the web surfer can choose any of the web

pages randomly, when not selecting the outbound links of a node. This matrix G, is used in power

iteration method, along with the initial distribution of PageRank values to obtain a steady values

for PageRanks of all the nodes in the network. The results obtained using Equation (2.16) are same

as that of the results obtained using Equation (2.18).
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2.2.6.3 Example of PageRank Computation for Small Network Data

Figure 2.5: Sample Network Graph for Demonstrating PageRank and Personalized PageRank Com-
putation

H =


0 1 0 0

0 0 1 0

0.5 0 0 0.5

0 0 0 0



S =


0 1 0 0

0 0 1 0

0.5 0 0 0.5

0.25 0.25 0.25 0.25



G =


0.05 0.85 0.05 0.05

0.05 0.05 0.85 0.05

0.45 0.05 0.05 0.45

0.25 0.25 0.25 0.25


Personalizationvector =

[
0.25 0.25 0.25 0.25

]

InitialPR =
[
0.25 0.25 0.25 0.25

]

PR =
[
0.21376215 0.26462229 0.3078534 0.21376215

]
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2.2.6.4 Personalized PageRank

Personalized PageRank (PPR) is used to compute the reachability of all nodes in network with

respect to a node. Mathematically the difference between PageRank and Personalized PageRank

is that the Vector v in PageRank is populated with equal probability of moving to any random

node by some means other than clicking the outgoing links. Whereas in Personalized PageRank,

the Vector v can be manipulated in way that, the random surfer always moves to one node or a

set of nodes of our interest, rather than moving to any node from all the nodes in the network. If

we want the random surfer to move to a particular node, say Node i, then v[i] = 1 and rest all

are assigned as zero. The initial probabilities of a random surfer beginning the random walk at a

any node can also be customised to begin the random walk from a particular Node i. The values

obtained by using power iteration are the Personalized PageRank values of all nodes with respect

to Node i.

2.2.6.5 Example of Personalized PageRank Computation

H =


0 1 0 0

0 0 1 0

0.5 0 0 0.5

0 0 0 0



S =


0 1 0 0

0 0 1 0

0.5 0 0 0.5

0.25 0.25 0.25 0.25



G =


0.05 0.85 0.05 0.05

0.05 0.05 0.85 0.05

0.45 0.05 0.05 0.45

0.25 0.25 0.25 0.25


Personalizationvectorwithrespecttovertex1 =

[
1 0 0 0

]

InitialPPRwithrespettovertex1 =
[
1 0 0 0

]
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PPR =
[
0.328 0.288 0.256 0.128

]
2.2.6.6 Applications of Personalized PageRank: Personalizing Search Results

Let us consider the scenario of social search where an User “A”, who is interested in movies searches

for another user named “John”. If PageRank is applied then the top users with name “John” as

their name and are having high global influence on other nodes, irrespective of their fields are

retrieved. If Personalized PageRank is used, then all the users with “John” as their name and who

are most influential in movies are retrieved.

Figure 2.6: Social Search Results when PageRank Measure is Used

Figure 2.7: Social Search Results when Personalized PageRank Measure is Used

2.2.6.7 Applications of Personalized PageRank: Product Recommendations

Let us consider the scenario of an e-Commerce website, recommending products to a customer

“Doe” based on the history of items purchased by user “Doe” and other users who share similiar
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Figure 2.8: Bi-partite Graph for Demonstrating Product Recommendation Using Personalized
PageRank

interestes as that of user “Doe”. Customer-purchase-Product graph (with reverse edges) is used

for this purpose. Customer-purchase-Product graph is a bipartite graph, where all the customers

are represented in one set and all the products are represented on the other side. An edge exists

between a customer and product only if the customer purchased the product. Since the firm

wants to recommend products to an user “Doe”, the random surfer will start from node “Doe”.

Interestingly, the random walk is very likely to touch the products purchased by “Doe”, and other

users who purchased those products, and also other products purchases by those users and so on.

This walk is able to reach the users who are similar to “Doe” as they purchased common products.

In addition, the walk can discovers frequently purchased products because they were purchased by

the same users. Thus, PPR is used in this scenario to identify both similar users to “Doe” and

products that might be of Does interest [37].
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Chapter 3

Proposed System

3.1 Algorithm 1: Ranking Top-K Influential Nodes Using Katz Broadcast Cen-

trality

In this section, we will discuss our first algorithm used for finding the top-K influential nodes. This

work is an extension of topological analysis algorithm proposed by Sweta Gurung in her Master’s

thesis [32], where she used Katz centrality measure to analyze top-k nodes. In this section we

evaluate her proposed algorithm with various datasets and analyze the results from two different

perspectives. Given a network dataset, first the Katz Broadcast centralities of all the nodes are

computed. Next, our algorithm checks whether each node satisfies two constraints for considering

them into top-K node candidacy set. The first filtering constraint is user defined and it can be

varied as per the users’ choice. This constraint tests whether the Katz Broadcast centrality of a

node is greater than that of user defined threshold value or not. The second filtering constraint

tests whether the average of Katz Broadcast centrality values of a node and its immediate neighbors

is greater than that of average Katz Broadcast centrality of the all the nodes in the network. The

first filtering constraint helps the users’ to focus only on the nodes of interest, while the second

constraint is tested only for those nodes which satisfy the first one. Nodes, which satisfy both the

constraints are included into top-K nodes set. Thus a finely refined set of nodes are returned to

the user for executing the top-K query (where K is less than or equal to the number of nodes in

top-K nodes set).

The first filtering constraint is denoted as Const, keeps the users’ in control on the choice of

nodes they are interested in. While the second filtering constraint prioritizes the nodes with more

number of immediately highly connected nodes.
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The average centrality values of a node and its neighbors is denoted as LACKatz (Local Average

Centrality) and the average centrality value for the entire network is denoted as GACKatz (Global

Average Centrality):

LAC(vi) =
CKatz(vi) +

∑ni
j=1CKatz(vj)

ni + 1
(3.1)

GAC(G) =

∑n
i=1CKatz(vi)

n
(3.2)

where ni is the number of out-bound neighbors of vi and n is the total number of nodes in the

network.

Below is the Algorithm 1 for ranking top-K influential nodes in a network. The algorithm

first computes the Katz Broadcast centrality values of each node present in the network. Then the

algorithm tests whether each nodes’ Katz Broadcast centrality value is greater than the user-defined

Const or not. For each node satisfying the first constraint, the algorithm computes LAC value and

checks if it is greater than GAC or not. If the second constraint is also satisfied, then the node is

retrieved into top-K candidacy nodes list. Thus, the algorithm reduces the search space for running

top-K nodes query for effectively broadcasting a given message into a network at a low cost.

Algorithm 1: Algorithm 1 for Ranking Top-K Influential Nodes Using Katz Broadcast Cen-
trality

Input: Network Graph G, alpha α, betaβ, Const
1 for each node vi ∈ V do
2 Calculate Katz Centrality, CKatz(vi);
3 if vi satisfies Const then
4 set LAC(vi)← CKatz(vi);
5 set ngbrCount← 0;
6 Find a list of its out-bound neighbors vj ∈ Nout and their CKatz(vj);
7 for each vj ∈ Nout do
8 LAC(vi)← LAC(vi) + CKatz(vj);
9 ngbrCount← ngbrCount+ 1;

10 end
11 LAC(vi)← LAC(vi)/(ngbrCount+ 1);
12 if LAC(vi) ≥ GAC(G) then
13 Return vi and its CKatz(vi);
14 end

15 end

16 end
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3.1.1 Working on Karate Club Dataset

The Karate club dataset [38] consists of friendships between 34 members of a karate club at a U.S

university in the 1970s. This undirected network dataset consists of 34 nodes and 78 edges. This

dataset is obtained from Mark Newman network datasets repository.
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Figure 3.1: Algorithm 1 Working on Karate Club Membership Network

The karate club network visualization shown in Figure (3.1) was created by using D3.js (Data

Driven Documents) [39]. Let A represent the adjacency matrix of this network. The largest

eigenvalue λ obtained for A is 6.725 and to satisfy the constraint that α < 1
λ , α value is chosen

to be less than 0.148. We also tested the algorithm by varying α value and with a β value kept

constant as 1. Constraint Const is chosen as the sum of standard deviation of Katz centralities of

all the nodes in network and average of Katz centralities of all the nodes in network. The second

filtering constraint is set to the average of Katz centralities of all the nodes in the network. For all

the datasets, the first filtering constraint uses the same formula as above and β value is set as 1.

We studied the effect of α values on the number of nodes in search space and the ordering of top-K

nodes.

Figure (3.2), clearly depicts that the filtering constraint are effective in filtering the unwanted

nodes. The top-5 nodes obtained using the proposed algorithm are 33, 0, 32, 2 & 1 and the top

most influencing node is 33, which in reality represents the president of the karate club, and the

second most influencing node is 0, which in reality represents the instructor of the club. These are

the most influential people of the club and they fought with each other, which eventually led to
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Figure 3.2: Graph Demonstrating the Relationship Between α Values and the Number of Nodes in
Search Space

the seperation of the club into two factions aligned around the president and the instructor [40].
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3.2 Algorithm 2: Resolvent Matrix Based Measure for Community Strength

Detection

Consider a network of communities, and you are interested in spreading an important marketing

message into the network at a low cost. The ideal approach for this problem is to identify important

communities that are capable of spreading information effectively into other communities, instead

of sending it to each and every community in the network. In this section, we propose a novel

approach for computing and ranking them in the order of their broadcasting abilities. For each

community we consider several parameters, which gives us insights about the communitys’ capacity

to broadcast a given message into the network.

For each community, inorder to compute strength we consider the following parameters: Firstly,

we consider the communicability between the members of a community. This also accounts for

community’s connectivity, as communicability will be high if and only if the connectivity is high.

For this purpose, we classify the members of a community as internal and boundary nodes. Internal

nodes of a community are those nodes which do not share ties with nodes belonging to other

communities. Boundary nodes of a community are those nodes which share atleast an edge with

nodes beloning to other communities. As we are discussing abound spreading a viral marketing

messages into different communities, boundary nodes play an important role as it is through these

nodes that information diffuses into other communities. For spreading a rumor into the network,

a message can be given to any node in the community. If that node is an internal node, then the

message should reach the boundary nodes first and then it is trasmitted to other communities. If

a community’s internal nodes are not connected well to its boundary nodes, then there is a slight/

no chance of message being transmitted to the boundary nodes. In our strength formula, the

first parameter considers this connectivity/communicability. The resolvent matrix [(I − α ∗ A)]−1

measure gives the communicability between any two nodes (Resolvent matrix is used to compute

Katz centrality). For a given graph we compute the resolvent matrix measure and get the score

of each nodes’ communicability to the boundary nodes of the same community. Sum of all such

scores is taken and is represented as intracommunity communicability/connectivity.

Secondly, the main intention of marketing is to send a message into diverse set of communi-

ties i.e., to maximize the reach into distinct communities in the network at a low cost. For any

community, this is captured as its intercommunity connectivity. For a given community, its in-

tercommunity connectivity score is determined by three factors: number of distinct neighboring
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communities, number of ties that the boundary nodes of this community share with the nodes of

other communities and the number of distinct neighboring nodes with which the boundary nodes

share ties with. By knowing the number of ties shared with distinct nodes of other communities,

we compute the average of edges shared with a node and then multiply it with the distinct number

of communities that these nodes are spread over.

Lastly, the factors obtained in Step 1 and 2 are multiplied to get the strength of a community.

Given a community Ci containing n nodes N = {v1, v2, ..., vn}, k number of boundary nodes

which are B = {u1b, u2b, ..., ukb}, and surrounded by l number of distinct neighboring nodes

belonging to L number of communities with t number of ties, then the strength of a community

can be obtained as:

Strength(Ci) =
∑
vi∈N

∑
uib∈B

[(I − αA)−1]viujb ∗
L ∗ t
l

(3.3)

Algorithm 2 for computing strengths and ranking communities is as follows:

Algorithm 2: Algorithm 2 for Community Strength Computation and Ranking

Input: Network Graph G, set of distinct communities C
1 Compute resolvent matrix [(I − αA)−1];
2 for each community Ci ∈ C do
3 B = computeBoundaryNodes();
4 L = obtainNeighboringCommunitiesCount();
5 l = distinctNeighboringNodes();
6 t = computeT iesSharedWithOtherCommunities();

7 end
8 for each community Ci ∈ C do

9 Strength(Ci) =
∑

vi∈N
∑

uib∈B[(I − αA)−1]viujb ∗ L∗tl ;

10 end
11 Sort the communities in the descending order of their strength values;
12 return top-K communities;
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3.3 Algorithm 3: Personalized PageRank Based Measure for Community Strength

Detection

In Algorithm 2, for determining intracommunity connectivity we used resolvent matrix measure.

But, in reality the communicability/closeness between any two nodes varies as per the category

or topic of message in consideration. For example given a community with three nodes A, B and

C. Node A might share strong ties with node B on a particular topic and may not share stong

ties with C on the same topic. Resolvent matrix doesn’t take this case into consideration and

is static irrespective of the topic/category of the message. Personalized PageRank captures this

exact essence and to gain better understanding of intracommunity ties, we use PPR score as a

measure. For computing the strength of a community, we use the same paramters as in Algorithm

2, except for resolvent matrix measure instead we use PPR measure. The equation for computing

a community’s strength is as follows: Given a community Ci containing n nodes N = {v1, v2, ...,

vn}, k number of boundary nodes which are B = {u1b, u2b, ..., ukb}, and surrounded by l number

of distinct neighboring nodes belonging to L number of communities with t number of ties, then

the strength of a community can be obtained as:

Strength(Ci) =
∑
vi∈N

∑
uib∈B

[PPR]viujb ∗
L ∗ t
l

(3.4)

Algorithm 3 for computing strengths and ranking communities is as follows:

Algorithm 3: Algorithm 3 for Community Strength Computation and Ranking

Input: Network Graph G, set of distinct communities C
1 for each community Ci ∈ C do
2 B = computeBoundaryNodes();
3 L = obtainNeighboringCommunitiesCount();
4 l = distinctNeighboringNodes();
5 t = computeT iesSharedWithOtherCommunities();

6 end
7 for each community Ci ∈ C do

8 Strength(Ci) =
∑

vi∈N
∑

uib∈B[PPR]viujb ∗ L∗tl ;

9 end
10 Sort the communities in the descending order of their strength values;
11 return top-K communities;
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Chapter 4

Experimental Results

The experiments for Algorithm 1 were performed on 16 GB main memory in Intel Xeon(R) CPU E5-

1607 @ 3.00 GHz x 4 on Windows 7 Operating system platform. The language used to write these

algorithms was Oracle Java 1.7 using Jblas [41] and Graph-stream [42] packages. The algorithms

were written using the Java data structures like Lists & Hashmaps.

The experiments for Algorithms 2 and 3 were performed on 64GB main memory in Intel Xeon(R)

CPU E5-1630 v4 @ 3.70 GHz on Windows 10 Operating system platform. The language used to

write these algorithms was Python using Networkx [43] and Numpy [44] packages.

4.1 Datasets

For all the algorithms, network datasets were collected from Mark Newmann datasets [38], SNAP

Stanford Large Network Database Collection [45] & ILAB-Data Centre [46]. Table (4.1) summa-

rizes dataset characteristics.

Table 4.1: Characteristics of Network Datasets Used for Experimentation

Dataset Type Number of Nodes Connectivity

Facebook Undirected 1034 53498
CA-GrQc Undirected 5242 14496

CA-HepTh Undirected 9877 25998
Epinions-I Directed 1247 51558
Epinions-II Directed 1799 61037
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4.1.0.1 Facebook Dataset

Facebook is an on-line social networking platform [47], where nodes represents the users and edges

represents the relation between the users. A total of 1034 nodes and 53498 connections are present

in this dataset. The largest eigenvalue of the network is ≈ 123.215. Keeping the fact in mind that

the value of α should be less than 1
λ1

(0.008 in this case) in mind, the values for the parameter α

values are varied as 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035 . . . 0.008.

4.1.0.2 Coauthorship Network Dataset for General Relativity and Quantum

Cosmology Category

CA-GrQc dataset covers the scientific collaboration between the authors who submitted papers

“General Relativity and Quantum Cosmology” category between January 1993 and April 2003

(124 months) [48]. If an author a worked on a paper in collaboration with another author b, then

the graph contains an undirected edge from a to b. A total of 5242 nodes and 14496 connections

are present in this network dataset. The largest eigenvalue is ≈ 45.616. As, the value of α should

be less than 0.021, α values are varied as 0.005, 0.01, 0.015 & 0.02.

4.1.0.3 Coauthorship Network Dataset for High Energy Physics-Theory Cate-

gory

CA-HepTh dataset covers the scientific collaboration between the authors who submitted papers

submitted to “High Energy Physics - Theory” category between January 1993 to April 2003 (124

months) [48]. If an author a worked on a paper in collaboration with another author b, then the

graph contains an undirected edge from a to b. A total of 9877 nodes and 25998 connections are

present in this network dataset. The largest eigenvalue is ≈ 31.03485. As, the value of α should be

less than 0.0322, α values are varied as 0.03, 0.02, & 0.01.

4.1.0.4 Epinions Network Datasets

Epinions.com [49] is a general consumer review site, where the members can choose to“trust” each

other or not. A Web of Trust is formed basing up all the trust relationships interact and then

combined with review ratings to determine which reviews are shown to the user. For the purpose

of experimentation we used both Epinions-I and Epinions-II datasets. Both the datasets are that

of directed graph. In Epinions-I dataset a total of 1247 nodes and 51558 connections are present.
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In Epinions-II dataset a total of 1799 nodes and 61037 connections are present. As the largest

eigenvalues of these two networks are ≈ 83.751, α values should be less than 0.011. For both the

datasets, α values are varied as 0.001, 0.004, 0.007, and 0.011 and results are analyzed.

4.2 Algorithm 1: Results and Discussion

For the purpose of experimentation of Algorithm 1, we considered Facebook, CA-GrQc, Epinions-I

and Epinions-II datasets. For all the datasets, we analyzed the results from two different perspec-

tives. Firstly, we analyzed the relationship between α values against the number of nodes obtained

for each α value. Secondly, we compare the top-K results of our algorithm with the top-K results of

Degree centrality algorithm using intersection similarity as a measure and analyze the significance

of our algorithm.

Intersection similarity (Intersection distance) captures the notion of union minus the intersec-

tion. Previously, Benzi et al. used intersection similarity measure in their research in [2].

Let xk and yk be the top k ranked items in two ranked lists x and y respectively. Then the top

k intersection similarity can be computed as

isimk(x, y) :=
1

k

k∑
i=1

| xi∆yi |
2i

(4.1)

where ∆ is the symmetric difference operator between the two sets. If the lists are identical, then

isimk(x, y) = 0 for all k. If the two sequences are disjoint, then isimk= 1 [50], [2].

Figure (4.1(a)), shows the relationship between α values and the number of nodes in search

space for Facebook dataset. The number of nodes in search space followed an increase- decrease

pattern for α values between 0.0005 and 0.004. For α values between 0.004 and 0.008, the number

of nodes in search space increased with an increase in α values. On the whole, there has been an

increase in the number of nodes, with an increase in α value. This means with an increase in alpha

values, the number of nodes that are capable of spreading an important marketing message into

the network are increased. We can also draw further conclusions such as when α values are low,

Katz Broadcast centrality tends to behave as degree centrality and there are less number of nodes

in the search space, which indicates that there are a less number of highly connected actors in this

network. But as α value is increased upto 0.008, the influence of those nodes which are connected

to highly connected nodes also increased through these highly connected nodes.

Figure (4.2(a)), shows the relationship between α values and the number of nodes in search
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Figure 4.1: Experimental Results of Facebook Dataset
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Figure 4.2: Experimental Results of CA-GrQc Dataset
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Figure 4.3: Experimental Results of Epinions-I Dataset

32



0.002 0.004 0.006 0.008 0.010

0
50

10
0

15
0

20
0

Epinions−II dataset

alpha values

nu
m

be
r 

of
 n

od
es

 in
 s

ea
rc

h 
sp

ac
e

(a) Relation Between α and Number of Nodes in Search Space for Epinions-II Dataset

0 100 200 300 400 500 600 700 800 900

Degree centrality
0

100

200

300

400

500

600

700

800

N
o
. 
o
f 
n
o
d
e
s

(b) Degree Centrality Frequency Distribution of Epinions-II Dataset
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Figure 4.6: Intersection Similarity Distance Between Top-K Nodes Obtained Through Algorithm
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Figure 4.7: Intersection Similarity Distance Between Top-K Nodes Obtained Through Algorithm
1 and Degree Centrality Measure for Epinions-I Dataset
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Figure 4.8: Intersection Similarity Distance Between Top-K Nodes Obtained Through Algorithm
1 and Degree Centrality Measure for Epinions-II Dataset
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space for CA-GrQc dataset and unlike Facebook dataset, the number of nodes in search space

decreased with an increase in alpha values (on the whole).

Figures (4.1(b)) and (4.2(b)) shows the degree distribution frequencies of Facebook and CA-

GrQc datasets respectively. For Facebook dataset, a large number of nodes have small degree values

or no degree values and yet there are a considerable number of nodes with high degree values. But,

in case of CA-GrQc dataset a very large number of nodes have smaller degree values and the number

of nodes with high degree values are negligible when compared to this. As mentioned before Katz

centrality is a measure which captures both the local and global influences of a node. If the value

of α → 0+, then Katz centrality is approximately equal to that of Degree centrality. And as α

values start moving from 0+ to 1
λ

−
Katz centrality values starts capturing the global influences of

the nodes as well. As there are a very less number of nodes with high degree values, compared

to the number of nodes with smaller degree values in case of CA-GrQc, the number of nodes that

can exhibit local and global influence are very less than the number of nodes which can exhibit

local influence (as α → 0+). Hence, a decrease in the number of nodes in search space with an

increase in α value. The converse of this can be observed in case of Facebook dataset, where there

are a considerable number of nodes with higher degree values in comparison to those with a smaller

degree values.

Figures (4.3(a)) and (4.4(a)), shows the relationship between α values and the number of nodes

in search space for Epinions datasets. It can be seen that there is an overall increase in the number of

nodes in search space with an increase in α value. The degree distribution frequencies for Epinions

datasets, in Figures (4.3(b)) and (4.3(b)), are similar to that of Facebook dataset in Figure (4.1(b)).

Hence, the relationship between α values and the number of nodes in search space is similar to that

of in Facebook dataset.

Figures (4.5), (4.6), (4.7) and (4.8) shows the intersection similarity values for top-k nodes

between degree centrality and our algorithm. For Facebook dataset, intersection similarity values

are computed for top 20, 50, 80, 100, 120, 150 and 166 nodes, with α value as 0.004. It can be

observed from Figure (5(a)), that in all the cases, intersection similarity values are around 0.2.

For CA-GrQc dataset, intersection similarity values are computed for top 40, 140, 240, 340 nodes,

with α value as 0.015. It can be observed from Figure (4.6), that in all the cases, intersection

similarities are around 0.4. For Epinions-I dataset, intersection similarities are computed for top 5,

10, 15, 24, 25 and 27 nodes, with α value as 0.007. Intersection similarity values are increased with

an increase in k value, with a maximum values around 0.6. For Epinions-II dataset, intersection
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similarities are computed for top 20, 40, 60 and 71 nodes, with an α value as 0.007. On the whole,

the intersection similarity values are around 0.8. Except Facebook dataset, experiments performed

on the other datasets show that, intersection similarity values are morethan 0.4. This highlights

the fact that there is a significant difference in the rankings produced by Degree centrality measure

and our algorithm. Moreover, the top-3 nodes obtained in each case are same, but there is a

considerable difference in rankings of the remaining nodes as our concept of giving importance to a

node, based on Local Average Centrality proved to given importance to nodes with high local and

global influence rather than nodes with high degree values. This confirms that the results obtained

by using Degree centrality and our algorithm are different and both the approaches capture different

perspectives in giving importance to nodes. Also, our approach gives more power to the user in

choosing the parameters and narrowing the search space for running the top-K query. These results

support our algorithm as a new method for ranking nodes in a given network.

4.3 Algorithm 2 and Algorithm 3: Results and Discussion

For testing both the Algorithms 2 and 3, we considered both the coauthorship network datasets

i.e., CA-GrQc and CA-HepTh datasets collected from SNAP - Stanford Large Network Database

Collection [45]. For CA-GrQc dataset α values are varied as 0.02, 0.015, 0.01, and 0.005 and for

CA-HepTh dataset α values are varied as 0.03, 0.02, and 0.01. We have studied the impact of α

values on top-K communities Strength values and their ranking.

For CA-GrQc dataset, when α value is set as 0.02, top-10 communities obtained are {1, 4, 3,

2, 6, 7, 9, 12, 13, and 18 }. In Table (4.2) (in all tables too) C stands for Community number,

AD stands for Average Degree of nodes within community C, BN stands for Boundary Nodes in

community C, CC stands for Community’s Communicability(connectivity), NC stands for number

of Neighboring Communities, AID stands for Average of Intercommunity Degree and ICC stands

for InterCommunity Connectivity. Community number 1 is the largest community in the network.

It has around 530 nodes. Clearly, from the tabluar values it is evident that Community num-

ber 1 is dominating other communities in all perspectives. For a fair comparison, the results for

other communities in top-10 list were compared and evaluated against other communities. Con-

sider Communities 2, 3, and 4. As per Algorithm 2, Community number 4 stands first among the

three, followed by Community number 3 and Community number 2. Community number 4 has

117 boundary nodes (BN), where are communities 3 and 2 have 90 and 66 boundary nodes. The

communicability of Community number 4 is highest than the other two and more over intercom-
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munity connectivity is high for Community number 4. Therefore, this led to a high strength value

for Community number 4. Communities 2 and 3 almost have same communicability scores but

Community number 3 is surrounded by 23 distinct neighbors and this led to a high strength score

for Community number 3 than Community number 2. Communities 2 and 6 almost have same

number of boundary nodes, but there’s a considerable difference between their communicability

scores. This led to a high strength value for Community number 2 than Community number 6.

Communities 6 and 7 also almost have same number of boundary nodes, but there is a huge differ-

ence in their communicability scores. Community number 7 is having more number of boundary

nodes than Community number 9, but Community number 9 has higher communicability score

than 7. But Community number 7 is surrounded by 20 distinct communities and this led to a

higher strength for Community number 7 than Community number 9. Though 9 and 12 have

same number of boundary nodes and Community 12 has higher number of distinct neighboring

communities, but still the communicability score of Community 9 dominates the strength values.

The list is follwed by communities 13 and 18.

Table 4.2: Top-10 Communities Obtained for CA-GrQc Network Dataset by Using Algorithm 2
with α Value as 0.02

C AD BN CC NC AID ICC S

1 11.02099237 134 1188.532806 22 1.54679803 34.02955665 40445.24446
4 4.135278515 117 343.6467171 23 1.492063492 34.31746032 11793.08258
3 6.943620178 90 258.2605204 23 1.329341317 30.5748503 7896.27675
2 9.469230769 66 256.3660423 21 1.344262295 28.2295082 7237.087294
6 3.992673993 67 220.7227166 20 1.358208955 27.1641791 5995.751407
7 3.823529412 64 153.5518199 20 1.428571429 28.57142857 4387.194853
9 5.142857143 41 163.1969011 14 1.465116279 20.51162791 3347.434111
12 4.091954023 41 125.1378389 18 1.291139241 23.24050633 2908.266737
13 4.167741935 39 122.6259651 18 1.214285714 21.85714286 2680.253238
18 3.445544554 30 107.4995517 20 1.164556962 23.29113924 2503.787028

When α value is changed to 0.015, the top-10 communities obtained are same as that of when α

value is 0.02. Table (4.3) contains the details about top-10 communities. But, it can observed that

the communicability scores and strength values are decreased. Intracommunity connectivity is not

impacted by the parameter α. As α value moves away from 1
λ1

the global influence will gradually

starts to tend towards local influence.
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Table 4.3: Top-10 Communities Obtained for CA-GrQc Network Dataset by Using Algorithm 2
with α Value as 0.015

C AD BN CC NC AID ICC S

1 11.02099237 134 539.173674 22 1.54679803 34.02955665 18347.84108
4 4.135278515 117 325.7854878 23 1.492063492 34.31746032 11180.13055
3 6.943620178 90 248.0059327 23 1.329341317 30.5748503 7582.744265
2 9.469230769 66 211.3199069 21 1.344262295 28.2295082 5965.457044
6 3.992673993 67 209.6230512 20 1.358208955 27.1641791 5694.238106
7 3.823529412 64 146.9149649 20 1.428571429 28.57142857 4197.570424
9 5.142857143 41 151.9816223 14 1.465116279 20.51162791 3117.390486
12 4.091954023 41 118.6370062 18 1.291139241 23.24050633 2757.184093
13 4.167741935 39 116.8526768 18 1.214285714 21.85714286 2554.06565
18 3.445544554 30 103.220687 20 1.164556962 23.29113924 2404.127394

When α value is changed to 0.01, there is a slight change in the ordering of communities 6 and 2.

Table (4.4) contains the results of top-10 communities. As α value is decreased futher, local influence

starts to dominate the communicability score and this led for an increase in community number

6’s communicability score. Overall, with a decrease in α there is a decrease in communicabilty and

strength scores.

Table 4.4: Top-10 Communities Obtained for CA-GrQc Network Dataset by Using Algorithm 2
with α Value as 0.01

C AD BN CC NC AID ICC S

1 11.02099237 134 415.1474506 22 1.54679803 34.02955665 14127.28369
4 4.135278515 117 309.7598829 23 1.492063492 34.31746032 10630.17249
3 6.943620178 90 238.6352166 23 1.329341317 30.5748503 7296.236022
6 3.992673993 67 199.5718027 20 1.358208955 27.1641791 5421.204192
2 9.469230769 66 189.6560877 21 1.344262295 28.2295082 5353.898082
7 3.823529412 64 140.8234063 20 1.428571429 28.57142857 4023.525895
9 5.142857143 41 142.2420328 14 1.465116279 20.51162791 2917.615649
12 4.091954023 41 112.6606925 18 1.291139241 23.24050633 2618.291536
13 4.167741935 39 111.5295835 18 1.214285714 21.85714286 2437.718039
18 3.445544554 30 99.23236613 20 1.164556962 23.29113924 2311.234857

When α value is changed to 0.005, the ordering of top-10 communities is same as that of when

α value is 0.001. Table (4.5) contains the results of top-10 communities. Overall, there is a decrease

in the communicabilty and strength scores with a decrease in α values.

For CA-HepTh dataset α values are varied as 0.03, 0.02, and 0.01. The top-10 communities

when α value is set as 0.03 are {1, 2, 3, 6, 4, 5, 9, 8, 7, and 10}. Table (4.6) contains the results

of top-10 communities. Community number 1 is the largest community in the network. From
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Table 4.5: Top-10 Communities Obtained for CA-GrQc Network Dataset by Using Algorithm 2
with α Value as 0.005

C AD BN CC NC AID ICC S

1 11.02099237 134 353.8520613 22 1.54679803 34.02955665 12041.42877
4 4.135278515 117 295.2388458 23 1.492063492 34.31746032 10131.84738
3 6.943620178 90 230.0000568 23 1.329341317 30.5748503 7032.217306
6 3.992673993 67 190.4053339 20 1.358208955 27.1641791 5172.204593
2 9.469230769 66 175.1793653 21 1.344262295 28.2295082 4945.227329
7 3.823529412 64 135.2047653 20 1.428571429 28.57142857 3862.993294
9 5.142857143 41 133.6483656 14 1.465116279 20.51162791 2741.345546
12 4.091954023 41 107.1342781 18 1.291139241 23.24050633 2489.854868
13 4.167741935 39 106.5951886 18 1.214285714 21.85714286 2329.866265
18 3.445544554 30 95.50144676 20 1.164556962 23.29113924 2224.337494

the tabe it is evident that Community number 1 dominated other communities in all aspects.

For a fair comparison, remaining communities were compared with each other and the results are

explained. Community number 2 is containing less number of boundary nodes than Community

number 3, but the communicability value of Community number 2 is higher than that of Community

number 3. Moreover, intercommunity connectivity of Community number 2 is greater than that

of Community number 3. Therefore, Community number 2 has higher strength than that of

Community number 3. Community number 3 clearly has more number of boundary nodes than

Community number 6 and is also surrounded by more number of distinct neighboring communities.

Therefore, Community number 3 is having higher strength than that of Community number 6.

Community number 4 is having less number of boundary nodes than that of Community number

5, but the communicability value is high for Community number 4. Eventhough Community number

4 is surrounded by less number of distinct communities than that are surrounded by Community

number 5, due to high intraconnectivity Community number 4 got higher strength than that of

Community number 5. Community number 9 has less number of boundary nodes than Community

number 5, but it has more number of distinct neighboring communitie than Community number

5. But the intraconnectivity of Community number 5 dominated the strength value of Community

number 9. Though Community number 8 is having slightly higher connectivity than that of

Community number 9, it is surrounded by less number of distinct neighboring communities than

taht of Community number 9. Therefore, it stands after Community number 9 in the top-10 list.

The list is followed by the communities 7 and 10.

When α value is hanged to 0.02, the top-10 communities obtained are {1, 2, 3, 6, 5, 9, 4, 8,

7, and 10}. Table (4.7) contains the results of top-10 communities. When compared to the top-
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Table 4.6: Top-10 Communities Obtained for CA-HepTh Network Dataset by Using Algorithm 2
with α Value as 0.03

C AD BN CC NC AID ICC S

1 6.30162413 815 3845.779642 28 2.002970297 56.08316832 215683.5069
2 4.8 179 790.1971989 26 1.36318408 35.44278607 28006.79027
3 4.549248748 202 726.7088699 25 1.409703504 35.2425876 25611.10101
6 3.975708502 152 524.1011068 22 1.592741935 35.04032258 18364.67185
4 6.002336449 123 593.630283 20 1.456066946 29.12133891 17287.30866
5 4.234215886 153 492.3232998 24 1.362318841 32.69565217 16096.83137
9 4.152694611 111 389.8454439 25 1.47 36.75 14326.82006
8 4.230563003 92 399.615553 21 1.5 31.5 12587.88992
7 5.258169935 95 352.2145429 24 1.294117647 31.05882353 10939.36933
10 4.182926829 88 335.2440401 22 1.283505155 28.2371134 9466.323978

10 communities obtained when α value is 0.03, there is a slight change in the ordering of top-10

communities when α value is 0.02. Communities 5 and 9 dominated Community number 4. In

case of Community number 5, it has high intraconnectivity and interconnectivity than Community

number 4. Whereas, in Community number 9, a high interconnectivity dominated the strength

of Community number 4. Overall, there has been a decrease in the communicability values of all

communities and also as communicability decreased, the strength of all communities decreased too.

Table 4.7: Top-10 Communities Obtained for CA-HepTh Network Dataset by Using Algorithm 2
with α Value as 0.02

C AD BN CC NC AID ICC S

1 6.30162413 815 2919.149217 28 2.002970297 56.08316832 163715.1369
2 4.8 179 687.6789698 26 1.36318408 35.44278607 24373.25861
3 4.549248748 202 640.9837889 25 1.409703504 35.2425876 22589.92733
6 3.975708502 152 472.3361629 22 1.592741935 35.04032258 16550.81151
5 4.234215886 153 445.0475266 24 1.362318841 32.69565217 14551.11913
9 4.152694611 111 351.2981508 25 1.47 36.75 12910.20704
4 6.002336449 123 422.8957683 20 1.456066946 29.12133891 12315.29099
8 4.230563003 92 343.1370974 21 1.5 31.5 10808.81857
7 5.258169935 95 317.0311647 24 1.294117647 31.05882353 9846.614998
10 4.182926829 88 299.3275179 22 1.283505155 28.2371134 8452.145068

When α value is 0.01, the top-10 communities are same as that of when α value is 0.02. Table

(4.8) contains the results of top-10 communities. Overall, there is a decrease in the communicability

values of each community and this led to a decrease in the strength values of the communities.
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Table 4.8: Top-10 Communities Obtained for CA-HepTh Network Dataset by Using Algorithm 2
with α Value as 0.01

C AD BN CC NC AID ICC S

1 6.30162413 815 2382.064753 28 2.002970297 56.08316832 133593.7385
2 4.8 179 609.7515876 26 1.36318408 35.44278607 21611.29507
3 4.549248748 202 575.3777843 25 1.409703504 35.2425876 20277.80197
6 3.975708502 152 430.2217712 22 1.592741935 35.04032258 15075.10964
5 4.234215886 153 407.1764968 24 1.362318841 32.69565217 13312.90111
9 4.152694611 111 320.0423497 25 1.47 36.75 11761.55635
4 6.002336449 123 378.9504537 20 1.456066946 29.12133891 11035.54459
8 4.230563003 92 300.5822917 21 1.5 31.5 9468.34219
7 5.258169935 95 288.281791 24 1.294117647 31.05882353 8953.693274
10 4.182926829 88 271.4274726 22 1.283505155 28.2371134 7664.328324

Unlike Algorithm 2, Algorithm 3 uses PPR measure to compute intracommunity communi-

cabilty. Table (4.9) shows the strength values of top-10 communities for CA-GrQc dataset. For

Ca-GrQc dataset, the number of communities obtained are 379, out of which only 80 communities

contain atleast 10 nodes. The largest community is Community number 1 with 524 members.

From the table, it is evident that Community number 1 dominated all the other communities in all

aspects, because it is the largest community in the network. For a fair comparison, communities

2, 3 and 4 communities which contain 377, 337 and 260 nodes were compared. From the table,

it can be seen that Community number 2 is having the highest average degree for the nodes with

in the community. But, the comminication capacity of Community number 2 is less than those of

communities 4 and 3. This is beacause communities 4 and 3 have more number of boundary nodes

that act as bridges to carry information into other communities. Moreover, communities 4 and 3

are driving information into 23 distinct communities, where as Community number 2 is capable

of driving information into 21 distinct communities only. Thus the ordering of communities 4, 3

and 2 are justified. CC and ICC values for these three communtiies show that Community number

4 is top among these three, where as Community number 3 stands second in the list, where as

Community number 2 is in last position. Similarly, communities 3 and 4, 6 and 7. Both these sets

have same number of neighboring communities which are 23 and 20. But in case of communities

3 and 4, the communication capacity and intercommunity connectivity of Community number 4

is greater than that of Community number 3. Thus the ranking of Community number 4 before

Community number 3 is justified. Where as, between communities 6 and 7, Community num-

ber 6 has a larger CC value compared to Community number 7, but ICC value for Community

number 6 is slightly lower than that of Community number 7. But this doesn’t affect the ranking
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of Community number 6 as it has a higher CC than Community number 7. The same reasoning

can be extended to other communities in top-10 list as well. Overall, there has been a decrease in

strength as the CC value tends to decrease, even the same trend can be seen in ICC values except

for Community number 6.

Table 4.9: Top-10 Communities Obtained for CA-GrQc Network Dataset by Using Algorithm 3

C NC BN CC AD AID ICC S

1 22 134 528.603048 11.02099237 1.54679803 34.02955665 17988.12737
4 23 117 80.77957644 4.135278515 1.492063492 34.31746032 2772.149909
3 23 90 56.53926046 6.943620178 1.329341317 30.5748503 1728.679425
2 21 66 43.9666455 9.469230769 1.344262295 28.2295082 1241.15678
6 20 67 33.46895159 3.992673993 1.358208955 27.1641791 909.1565954
7 20 64 19.25017256 3.823529412 1.428571429 28.57142857 550.0049304
9 14 41 15.70058298 5.142857143 1.465116279 20.51162791 322.0445161
12 18 41 8.154229229 4.091954023 1.291139241 23.24050633 189.508416
13 18 39 7.102461137 4.167741935 1.214285714 21.85714286 155.2395077
11 17 45 5.636477931 4.226804124 1.217391304 20.69565217 116.6505868

Table (4.10) contains the top-10 communities for CA-HepTh dataset. For CA-HepTh dataset,

the top-10 communities obtained are {1, 2, 3, 6, 5, 4, 8, 9, 7, and 10 }. When compared to the

ordering of top-10 communities obtained using Algorithm 2, there is a slight change in the ordering

of the top-10 communities. This suggests that there is difference in the perspectives used for ranking

communities using Algorithm 2 and Algorithm 3.

Table 4.10: Top-10 Communities Obtained for CA-HepTh Network Dataset by Using Algorithm 3

C AD BN CC NC AID ICC S

1 6.30162413 815 3662.786388 28 2.002970297 56.08316832 205420.6655
2 4.8 179 134.5142799 26 1.36318408 35.44278607 4767.560846
3 4.549248748 202 91.87821537 25 1.409703504 35.2425876 3238.026054
6 3.975708502 152 48.56004891 22 1.592741935 35.04032258 1701.559778
5 4.234215886 153 42.10539279 24 1.362318841 32.69565217 1376.663277
4 6.002336449 123 35.42243831 20 1.456066946 29.12133891 1031.548831
8 4.230563003 92 28.6953939 21 1.5 31.5 903.9049078
9 4.152694611 111 19.28098296 25 1.47 36.75 708.5761239
7 5.258169935 95 20.12306091 24 1.294117647 31.05882353 624.9985976
10 4.182926829 88 11.75829817 22 1.283505155 28.2371134 332.020399
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Chapter 5

Conclusion and Future Work

With an exponential rise in the amount of data being generated, the interest to analyze such massive

datasets is also increasing. This thesis study comprises of three different algorithms for computing

strength of nodes and communities to rank them. Algorithm uses Katz Broadcast centality based

measure to identify top-K influential nodes. This is a user centric algorithm, where the parameters

such as α and β can be adjusted by the user to select the best fit top-K nodes. Algorithms 2 and 3,

are for computing the strength of communities in order to rank and retrieve the top-K communities

that are capable of effectively spreading a viral marketing message into other communities. Both the

algorithms consider intracommunity and intercommunity connectivity in ranking the communities.

As Katz Broadcast centrality measure and Resolvent matrix measure are parameter (α) de-

pendent, experimental results are carried out by varying (α), in order to facilitate the choice of α

value. Evaluation is carried out by considering the Degree centrality distribution of the network

and experimental results shows the relation between Degree centrality frequency distribution and

the choice of α value. Moreover, experimental results show that the number of nodes obtained

in search space are decreased by a factor of atleast 75 percent. This shows the effectiveness of

the proposed algorithm. The same has been applied to Algorithm 2, and experiments are carried

out by varying α values to understand the concept of local and global influence on communities

strength values. Experimental results are evaluated and a detailed explanation has been provided

to facilitate the understanding of the relation between communities ranking and α values. Algo-

rithm 3 is parameter independent and the results and a detailed explanation has been provided for

the experimental results.

In future, Algorithms 2 and 3 can be studied on diverese datasets to understand the behavior

of communities in both directed and undirected datasets. Another area for improvising all the
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algorithms is to incorporate real time data with network topology for finding topic/category wise

top-K communities. Advanced techniques such as Deep Learning can also be applied to understand

any hidden properties of network topologies.
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