
UNLV Theses, Dissertations, Professional Papers, and Capstones

May 2019

A Novel Feature Maps Covariance Minimization Approach for A Novel Feature Maps Covariance Minimization Approach for

Advancing Convolutional Neural Network Performance Advancing Convolutional Neural Network Performance

Bikram Basnet
basnetbik@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Basnet, Bikram, "A Novel Feature Maps Covariance Minimization Approach for Advancing Convolutional
Neural Network Performance" (2019). UNLV Theses, Dissertations, Professional Papers, and Capstones.
3569.
https://digitalscholarship.unlv.edu/thesesdissertations/3569

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3569?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

A NOVEL FEATURE MAPS COVARIANCE MINIMIZATION APPROACH FOR

ADVANCING CONVOLUTIONAL NEURAL NETWORK PERFORMANCE

By

Bikram Basnet

Bachelor in Computer Engineering (B.E.)

Institute of Engineering Central Campus, Tribhuvan University, Nepal

2014

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2019

c© Bikram Basnet, 2019

All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

April 11, 2019

This thesis prepared by

Bikram Basnet

entitled

A Novel Feature Maps Covariance Minimization Approach for Advancing Convolutional

Neural Network Performance

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Justin Zhan, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Dean

Laxmi Gewali, Ph.D.
Examination Committee Member

Wolfgang Bein, Ph.D.
Examination Committee Member

Ge Kan, Ph.D.
Graduate College Faculty Representative

Abstract

We present a method for boosting the performance of the Convolutional Neural Network (CNN)

by reducing the covariance between the feature maps of the convolutional layers.

In a CNN, the units of a hidden layer are segmented into the feature/activation maps. The

units within a feature map share the weight matrix (filter), or in simple terms look for the same

feature. A feature map is the output of one filter applied to the previous layer. CNN search for

features such as straight lines, and as these features are spotted, they get reported to the feature

map. During the learning process, the convolutional neural network defines what it perceives as

important. Each feature map is looking for something else: one feature map could be looking for

horizontal lines while the other for vertical lines or curves. Reducing the covariance between the

feature maps of a convolutional layer maximizes the variance between the feature maps out of that

layer. This supplements the decrement in the redundancy of the feature maps and consequently

maximizes the information represented by the feature maps.

iii

Acknowledgements

“I would like to extend my deep gratitude and humble sincerity towards the University of Nevada

in Las Vegas, and the Department of Computer Science, along with the thesis supervisor Dr. Justin

Zhan, and all the other committee members under the assistance of whom I got to further broaden

my knowledge. It was my great pleasure to complete my graduate studies in my field of interest

from The University of Nevada, Las Vegas. I am thankful for providing me research opportunities

that elucidated my interest and career objectives. Special appreciation to Coursera, and professor

Andrew Ng.

I would also like to place heartful thanks to all my well wishers.”

Bikram Basnet

University of Nevada, Las Vegas

May 2019

iv

Table of Contents

Copyright i

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

List of Algorithms xii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Objectives and Summary of Approach . 4

1.3 Organization of the Thesis . 5

Chapter 2 Related Work 6

2.1 First Wave: Cybernetics . 8

2.2 Second Wave: Connectionism . 9

2.3 Third Wave: Deep Learning . 10

Chapter 3 Proposed Approach 13

3.1 Covariance and Correlation . 13

3.2 Correlation Matrix and Convolution Matrix . 15

3.3 Proof of Principal Component Analysis . 16

v

3.3.1 Introduction . 16

3.3.2 Statement . 17

3.3.3 Proof by Induction . 17

3.4 Feature Maps Covariance Minimization . 20

3.5 Algorithm/Proposed Model . 22

Chapter 4 Experimental Evaluation For Image Classification Task 23

4.1 Overall Settings . 23

4.2 Data Description . 23

4.3 Experiments . 24

4.3.1 MNIST . 24

4.3.2 Fashion MNIST . 26

4.3.3 CIFAR-10 . 27

4.3.4 CIFAR-100 . 29

4.4 Discussion . 30

4.5 Further Improvements . 30

4.5.1 ZCA Whitening/Sphering . 30

4.5.2 Pair Formation (for Covar Minimization) with Replacement 30

4.5.3 Using Additional Pair-wise Networks . 30

4.5.4 Voting Among the Networks . 31

Chapter 5 Experimental Evaluation For Enhancing Image Resolution 32

5.1 Overall Settings . 32

5.2 Data Description . 32

5.3 Experiments . 33

5.3.1 MNIST . 33

5.3.2 Fashion MNIST . 34

5.3.3 CIFAR-10 . 35

5.3.4 CIFAR-100 . 36

5.4 Further Improvements . 37

5.4.1 ZCA Whitening/Sphering . 37

5.4.2 Increasing the Number of Networks . 37

vi

Chapter 6 Conclusion 38

Appendix A Artificial Neural Network 40

A.1 Backpropagation Algorithm . 53

A.1.1 Forward Propagation . 53

A.1.2 Backward Propagation . 53

A.2 Proof by Induction . 54

A.2.1 Output/Final layer . 54

A.2.2 Base Step (last hidden layer) . 57

A.2.3 Inductive Hypothesis ((k + 1)th layer) . 58

A.2.4 Inductive Step ((k)th layer) . 58

A.2.5 Summary . 59

Appendix B Representation Learning 60

B.1 Neural Network as a 1-vs-all Model . 60

B.2 Neural Network as Image Generator . 61

Bibliography 62

Curriculum Vitae 67

vii

List of Tables

4.1 The top-1 error rate comparison of different models on the MNIST dataset for first 35

epochs. 24

4.2 Confusion matrix of baseline . 25

4.3 Confusion matrix of best model (dropout+covar) . 25

4.4 The top-1 error rate comparison of different models on the fashion MNIST dataset for

first 35 epochs. 26

4.5 Confusion matrix of baseline . 27

4.6 Confusion matrix of best model (dropconnect+covar) 27

4.7 The top-1 error rate comparison of different models on the CIFAR-10 dataset for the

first 35 epochs. 28

4.8 The top-1 error rate comparison of different models on the CIFAR-100 dataset for the

first 35 epochs. 29

5.1 Mean Squared Error (MSE) comparison of different models on the MNIST dataset for

first 35 epochs. 33

5.2 Mean Squared Error (MSE) comparison of different models on the fashion MNIST

dataset for first 35 epochs. 34

5.3 Mean Squared Error (MSE) comparison of different models on the CIFAR-10 dataset

for first 35 epochs. 35

5.4 Mean Squared Error (MSE) comparison of different models on the CIFAR-100 dataset

for first 35 epochs. 36

A.1 Fisher Iris Setosa Dataset. 43

A.2 Fisher Iris: Versicolor/Virginica dataset . 46

A.3 Dataset for boolean ’XOR’ . 47

viii

A.4 Dataset for boolean ’XOR’ and ’AND’ . 50

ix

List of Figures

1.1 With the assessment of the sequence of transformations, each manifold becomes com-

pact, while different manifolds are distant. For example, chair manifold (blue) and

non-chair manifold (black)[25] . 2

1.2 Two spheres viewed from the front and top view; same colored (1 and 3), and different

colored (2 and 4) spheres. 3

1.3 Example of different representations: cartesian coordinate system vs polar coordinate

system. 3

3.1 Backpropagation with feature maps covariance minimization. 21

4.1 Performance comparison of different models on the MNIST test dataset. 24

4.2 Performance comparison of different models on the fashion MNIST test dataset. 26

4.3 Performance comparison of different models on the CIFAR-10 test dataset. 28

4.4 Performance comparison of different models on the CIFAR-100 test dataset. 29

5.1 Performance comparison of different models on the MNIST test dataset. 33

5.2 Performance comparison of different models on the fashion MNIST test dataset. 34

5.3 Performance comparison of different models on the fashion CIFAR-10 test dataset. . . . 35

5.4 Performance comparison of different models on the fashion CIFAR-100 test dataset. . . 36

A.1 Working of single neuron/perceptron, or a logit unit with D=3 40

A.2 Linear regression with fisher iris setosa dataset. 43

A.3 Fisher Iris: Versicolor/Virginica dataset. 46

A.4 Logistic Regression, and AND, OR, XOR boolean functions 47

A.5 Simple Neural Network for XOR . 48

A.6 Simple Neural Network for XOR: showing the first neuron of first layer 50

x

A.7 Simple Neural Network for XOR and AND . 51

A.8 Initial Layers of ANN containing L layers (L-1 hidden layers and 1 output layer) 55

A.9 Final Layers of ANN containing L layers (L-1 hidden layers and 1 output layer) 56

xi

List of Algorithms

1 Proposed Algorithm . 22

xii

Chapter 1

Introduction

1.1 Background

Convolutional neural network (CNN, or ConvNet) comprising of a variation of multilayer percep-

trons, falls under the category of deep feed-forward artificial neural networks [1]. Rooted in parame-

ter/weights sharing and translation invariance behavior, and burrowing the concept of translational

symmetry in Physics and Mathematics, it is also called shift/space invariant artificial neural net-

work (SIANN). When looking for a particular feature, even if the image is shifted, CNN will still be

able to detect that feature: the same weight will act upon even if the spatial position of the feature

changes. Shifting the image presents with the translated but same output. CNNs are designed

to employ minimal preprocessing. In comparison to the traditional algorithms where the filters

(shared weights) were hand-engineered, CNN learns them during the training.

Convolutional networks are biologically-inspired in the sense that the connections of the neurons

bear a resemblance to the structure of the visual cortex. Each cortical neurons are sensitive to small

sub-regions of the visual field, called a receptive field. In order to incorporate or reach the entire

visual field, the receptive fields are tiled and they partially overlap. In traditional fully-connected

Artificial Neural Network (ANN), the entire visual field is the receptive field at each level of the

network.

The invariant features play a vital role during object recognition. An object can have infinite

projections depending upon the angle of view and distance of the viewer from the object. The

feature vector describing an object changes with the change in the angle of view, position, en-

tire shape, or any sort of transformations that undergoes preserving the identity of the object.

The projection of these feature vectors into a high-dimensional feature space yields a relatively

1

Figure 1.1: With the assessment of the sequence of transformations, each manifold becomes com-
pact, while different manifolds are distant. For example, chair manifold (blue) and non-chair
manifold (black)[25]

low-dimensional manifold; more dimension means more information/features and information is

knowledge, and more knowledge drives towards more clarity. The human visual cortex achieves

invariance in feature extraction in a similar manner [5]−[7]. Ventral stream is responsible for the

ability of human brains to realize object recognition. The four layers V1, V2, V4, and IT compose

the ventral stream. The manifolds from different object categories are very tangled at V1 layer.

Neurons become able to recognize different object classes gradually from V1 layer to the IT layer,

implying that different manifolds will be progressively untangled. On reaching the IT layer, the

within-manifold distance becomes minimal, and the between-manifold distance is maximal. (see

Fig. 1.1).

In figure 1.2.A, from the front view it is perceived that there is only one green colored sphere, but

when observed from the top view (or in three-dimensional space) it is seen that there are two distant

different green colored spheres. In figure 1.2.B, from the front view it is perceived that there is only

one green colored sphere, but when observed from the top view (or in three-dimensional space) it is

seen that there are two distant different colored spheres (green and orange). In figure 1.2.C, from

the front view it is perceived that there is only one green colored object, but when observed from

the top view (or in three-dimensional space) it is seen that there are two distant different green

colored spheres. In figure 1.2.D, from the front view it is perceived that there is only one partial

green/orange colored object, but when observed from the top view (or in three-dimensional space)

it is seen that there are two distant different colored spheres (green and orange).

2

Figure 1.2: Two spheres viewed from the front and top view; same colored (1 and 3), and different
colored (2 and 4) spheres.

Figure 1.3: Example of different representations: cartesian coordinate system vs polar coordinate
system.

3

If we have two classes of data in a scatterplot (Fig. 1.3), and the task is to draw a line

as a boundary between them, representing the data in the cartesian coordinate system makes it

impossible. Changing the same data points to the polar coordinate system turns the task into a

feasible work, as a simple vertical line will be able to separate the data points into two corresponding

classes. (Figure produced in collaboration with David Warde-Farley.) After projecting/representing

the data into the polar coordinate system, this two-class classification problem can be solved using

models that can work with linearly separable data (such as the Perceptron algorithm).

Deep networks have more representational power than shallow ones; they have greater opportu-

nity to learn the internal structure of the actual process/model that generated the data instances in

the assessment of which the network is learning. Training deeper and complex network structures

using ultra large-scale training data [21], [22] has been the recent trend to improve the performance

accuracies of CNN models. However, the aid of this to the network performance is limited as the

model reaches a certain level of complexity. The complexity of a CNN model can be increased by

the increment in the depth and/or the number of activation maps out of the convolutional layers.

1.2 Objectives and Summary of Approach

With the above-mentioned problems in mind, we propose a novel feature maps covariance mini-

mization approach for boosting the performance of the Convolutional Neural Networks.

The visualization of the feature maps within the convolutional neural network models reveals

the features to be far from random uninterpretable patterns. Rather, they show many intuitively

desirable properties such as compositionality, increasing invariance and class discrimination as we

ascend the layers. The model, while trained for classification, is highly sensitive to local structure

in the image and is not just using broad scene context.

Each neuron in a layer of a CNN is linked to a subspace of the previous layer, and the neurons

of the following layer get their input from the subspace of the current layer. Each new layer is

subsequently built out of the previous layer. This behavior of CNN leads the initial layer of CNN

to be able to capture the slightest part of the image, while the following layers successively become

able to capture larger portions of the image, finally leading the final layer to be able to recognize

the entire image.

In CNN, the projections from each layer show the hierarchical nature of features in the network.

The first layer represent the lines and curves. The second layer responds to corners and edge/color

conjunctions. Following layers capture textures, mesh patterns, where the final layers represent

4

the objects. A certain combination of features in a certain area can signal a larger, more complex

feature exists there. The initial layers of CNN learn the slowest, however, the overall performance

of the network is largely impacted by the rate of learning of these layers.

We want to let the shared weights learn such that the feature maps generated by projecting the

previous layer with the shared weights contain maximum information. The idea is based on the fact

that better pattern recognition systems can be built by relying more on automatic learning. This

will reduce the redundancy of feature maps, ultimately leading the CNN towards faster convergence.

If the feature maps of a convolutional layer of a CNN are orthogonal, the information carried by

them is not redundant. We want variance of projected feature maps X to be maximized. So, the

optimization problem is to minimize the covariance between the pair of feature maps.

1.3 Organization of the Thesis

This thesis starts with the abstract with the basic idea of what it is about. Apart from prologue

and epilogue, the thesis is divided into six chapters.

The first chapter contains the general introduction. It provides a brief background on the topic

and provides an outline of the thesis. It discusses about the scope of the thesis and the objectives

to be fulfilled on the completion of the thesis.

The second chapter provides the literature review about the project. It also contains information

about the previously performed tasks on the related field.

The third chapter consists of the core part of the thesis. It contains the design details of the

method.

The fourth chapter includes the experimental evaluation for the image classification task. It

enlists and explains the experimental evaluation of the approach on four standard datasets: MNIST,

Fashion MNIST, CIFAR-10, and CIFAR-100.

The fifth chapter explains the experimental evaluation of 1-CNN vs 4-CNN on enhancing the

image resolution.

The sixth chapter concludes the thesis.

5

Chapter 2

Related Work

With the first proposal of programmable computers, before a hundred years one was actually

constructed, it was a matter of wonder to think if the machines will gain intelligence. Augusta Ada

King, Countess of Lovelace wrote first ever computer program in 1842 for the conceptual computer

conceived by Charles Babbage. In 1844, Ada expressed her wish of creating a mathematical model

that can describe the occurrence of ”the rise to thoughts” and ”nerves to feelings” in the brain (a

calculus of the nervous system).

Artificial intelligence (AI) refers to the ability of the machines to perform tasks that the in-

telligent life forms are capable of doing. During its beginning time period, AI speedily became

able to solve the problems to which human beings find intellectual difficulties. It was because of

the reason that computers are very good at solving problems which are describable with the help

of formal, and mathematical rules. The real challenge that lied in front of AI was when it was

exposed to the problems which people solve naturally, with the help of intuition. For example,

recognizing sounds, and identifying images [27]. It is very difficult to write formal rules for them.

Learning by experience, along with understanding the concept with regard to hierarchical concepts:

building complicated ones gradually out of simpler ones, is the answer. The knowledge gathered

from experience circumvents the requirement of formal specification of the entire knowledge needed

by the computers. Technological singularity, which is not a good event to occur, is plausible (not

in the near future). However, here, we are not talking about the technological singularity.

To deal with everyday life, we require a deep understanding of the world we reside in. We

are constantly exposed and bombarded to infinite variables by the universe, 90% of which we are

not continuously aware of; it does not mean we are not reacting toward them. The subconscious

mind, with the continuous experience from exposures and learning as a reaction to these, naturally,

6

without our complete conscious awareness is taking care of them. For example; breathing, respond-

ing to gravity, reacting to light, and so on. ’Nature’ and ’nurture’ are two fundamental aspects

that greatly influence our behavioral pattern; instances belonging to a common species reveal the

greatest intersection of the traits because of their exposure to the common environment, and also

largely because of the similar information perpetuated by genes. Genes evolve through generations

of learning from their interaction with nature. Knowledge gained as such is the product of intu-

ition. The subjective property of it places hindrance in their formal articulation. For computers to

display intelligence, they have to find a way to capture the very knowledge. It is not that easy to

make the computers understand this informal knowledge. For example, systems that rely upon the

hard-coded knowledge. The solution is to provide the computing system the ability to extract the

best patterns within the raw data and acquire the knowledge that fits them the best, via learning

by experience. This approach to learning by machines is referred to as machine learning (ML).

Logistic regression, an ML algorithm, is capable of recommending cesarean delivery [28]. In

case of a simple machine learning algorithm like this, the presentation of the data fed to them

greatly influences their performance. Actually, the dependence with representation is a natural

phenomenon. It is easy for people to perform arithmetic on Arabic numerals, and difficult to do

the same on Roman numerals. People can easily perform arithmetic on a decimal number system,

but find difficult with binary number system or hexadecimal number system; while computers use

the binary number system. Similarly, the Fourier transform is done on signal to change it into the

frequency domain from the time domain before doing any frequency analysis on the signal. For

almost all the real-world tasks, it is not easy to determine the features to be extracted.

Representation learning emerged as a very popular terminology because of the above-mentioned

reasons. It uses machine learning in order to extract the representation itself, along with the

mapping of representation to output. Hand-designed representations are often inferior to the learned

representations; one often times performance wise, and the other the model under learning is

allowed to learn the representation that fits the domain of the problem it is currently trying to

solve. It results in the ability of the Artificial Intelligence models to fleetingly adapt when exposed

to novel tasks, without much human intervention. To be able to capture pragmatic features set, a

representation learning algorithm takes minutes with regard to easy tasks, while hours to months

with regard to complex tasks. It involves a tremendous amount of time and effort in the manual

design of features when solving complicated tasks.

Deep learning solves this central problem in representation learning by introducing represen-

7

tations that are expressed in terms of other, simpler representations. Deep learning enables the

computer to build complex concepts out of simpler concepts. For example, simple concepts like

corners and contours can combine to define edges.

The first wave (cybernetics; 1940s-1960s) of representation learning developed theories of bio-

logical learning [29][30], and implemented the first models, like the perceptron [31], which enabled

a single neuron training. The second wave (connectionism; 1980-1995) introduced backpropagation

[32] enabling the training of a neural network consisting of one or two hidden layers. Deep learning,

which is capable to learn the better representation of data, the current and the third wave, began

around 2006 [33][34][35].

2.1 First Wave: Cybernetics

In the early model of brain function, McCulloch-Pitts [29] model of the neuron, the inputs from

input neurons combine linearly whereby the synaptic weights rescale the inputs before combining;

the result oftentimes passed through an activation function. This linear model is able to decide the

class of provided inputs into one of the given (two) classes depending upon the sign of the f(x, w).

The weights must be set correctly for the model to make correct class predictions; maybe by a human

operator. The first model to learn the weights with the aid of labeled inputs/samples/examples was

the perceptron algorithm [31]. It could learn the weights defining the categories of input examples.

The adaptive linear element(ADALINE), on the other hand, could learn from data and predict a

real number value [36].

The simple learning algorithms as such made a great impact on the field of machine learning.

The weights of ADALINE were learned in progression using the concept of the training algorithm

called stochastic gradient descent. A little modified variant of stochastic gradient descent dominates

the training method of deep learning models.

The Perceptron, and the ADALINE are the instances of parametric approach to supervised

learning. Supervised learning is a type of learning which learns t : X → T , where t is a function

which maps the elements of X,X = {xi}; i = 1, 2, ..., N to t(xi) ∈ T , only with the help of

given labeled training (noisy) data; (x1, t1), (x2, t2), ... , (xN , tN). The parametric approaches to

supervised learning learns a function h such that h is a close approximation of t, and h = hw(x) =

h(x,w) = σ(x,w); that is, the function h is a representation of parameter w. The construction

error can be used to train the model.

Gradient descent is a method to find the optimal weights. The residual error is computed and

8

in order to minimize the error, the sharp forward direction is taken in each step on the basis of the

cost function. For example:

E =

N∑
i=1

(h(xi, yi)− ti)2

∇w is computed for each weight, and then the weights are updated with some learning rate.

wk+1 = wk − learning rate ∗ ∇w

The cost function (J) has to be convex and differentiable. For example, J = 1
2 E can be used.

2.2 Second Wave: Connectionism

The brain is the major influence in the conceptualization of numerous computing units gaining

intelligence via their interactions. Neocognitron [37] introduced a strong model to process images

bringing forth the inspiration from the architecture of the visual system in mammals. Modern

convolutional network [38] is based on this.

A complicated version of the neocognitron with inspiration from the knowledge of the function

of the brain was put forward by the original cognitron [39] [40]. The simplified modern version

is the result of ideas gathered from multiple views, with Nair and Hinton [41] and Glorot et al.

[42] having influence from neuroscience, and Jarrett et al. [43] with more engineering-oriented

influences.

The main achievement of the connectionist movement was the successful training of deep neural

networks (with internal representations) using backpropagation [44][38]. It is the dominant method

to train deep neural network models. Backpropagation is a method to perform gradient descent on

neural networks where the error signal for the last layer is computed, let us say δL, and then all the

error signals for the remaining layers, or δs (δL−1, δL−2, ..., δ2, δ1) are computed in a backward in

a similar manner as that of the forward propagation, but in a reverse direction. With the help of

these error signals, gradients for the weights and biases are computed. And, the gradient descent

is performed.

Universal approximation theorem states that | f(x) - F(x) | < ε for ε > 0 where

F (x) =
k∑

i=1

αiσ((wi)
Tx + bi)

where, αi,wi, bi constitute of real numbers, and σ is a monotically increasing, continuous,

nonconstant, bounded function.

9

This means that with some ε we can represent the function producing the results.

Though a huge number of possible instances/outcomes, the number of favorable instances/outcomes

is surprisingly very less. For example, if we consider a 1000x1000 pixel image, each pixel can take

a value from the pool of 256 (0-255) possible values. So, 2551000000 possible instances are there,

which is way larger than the number of atoms in our known, observable universe (1078 to 1082).

The images we deal with barely make up to that number. It is because of the laws of nature having

the property to be describable using physical equations. Physical properties governing the laws

of nature limit the number of favorable instances. This extremely awe-inspiring and magnificent

behavior of nature is the foremost factor that makes the machine learning algorithms work, given

good enough data and required computing power.

ε or residual error is mostly the remnant of noise. There is always noise in the data we record

from nature; partly due to the inability of the sensors we use, and partly because due to other

reasons. For instance, in the case of the image, a huge deal of noise comes from the inability to

take the same picture twice with exactly the same features. One of the dominant factors for this is

the continuous change in sunlight throughout the day, and throughout the life span of the sun.

For confined or noiseless systems, most mathematically strong models perform really well, that

is, ε is close to zero, or even equal to zero.

2.3 Third Wave: Deep Learning

Convolutional neural networks (CNNs) are admired choice in response to the state-of-the-art ac-

complishments they have exhibited with respect to practical image classification tasks. The rapid

advancement of computing infrastructures have made the training of complex models pragmatic,

and the rapid increase in the size of widely published datasets have dramatically reduced the

obstacle of overfitting in the case of deep CNNs.

Lin et al. [24] presented the network-in-network (NIN). Unlike traditional CNNs, it uses micro

multilayer perceptrons instead of convolution kernels/filters. VGG-19 [21], with the help of 16

convolutional and 3 fully connected layers, attained top-1 error rate of 24.4% on the ImageNet

dataset. In comparison to Alexnet, it improved the performance by 16.3%. A more complex

network known as GoogLeNet [22] consisting of 22 convolutional layers and no fully-connected

layer, with 25.6% top-1 error rate is slightly inferior to VGG-19. A more complicated version of

GoogLeNet is called BN-Inception [20]. BN-Inception comprises of 31 convolutional layers and

reduces the top-1 error rate to 21.99%. The recent deep CNN MSRA ResNet [23] consists of 152

10

whopping layers. It further improved the performance with the top-1 error rate of 19.38%.

Also, despite all the aforementioned advancement, the convergence of very deep CNN models

(e.g., GoogLeNet [22], BN-Inception [20], and ResNet [23]) is becoming more difficult, and compu-

tationally very expensive. The improvement of the performance of deep CNNs by the backpropaga-

tion algorithm is being supported by the development in the many strategies employed during the

training process: different types of activation functions [9]-[11], variety of pooling methods [12]-[15],

weight decay[18], pretraining [19], and batch normalization [20] and other methodologies.

The concepts like dropout[16] and dropconnect[17] regularize the network training and ulti-

mately try to avoid the overfitting problem by discarding some information of the training data

while training. DropConnect is a generalization of Dropout, for regularizing large fully-connected

layers within neural networks. When training with Dropout, a randomly selected subset of acti-

vations are set to zero within each layer. DropConnect instead sets a randomly selected subset

of weights within the network to zero. Each unit thus receives input from a random subset of

units in the previous layer. LeCun et al. show state-of-the-art results on several image recognition

benchmarks by aggregating multiple DropConnect-trained models [17].

Inspired by the manifold learning in the brain, the MinMax objective [25] was developed by

Shi et al. for boosting the performance of CNNs. Rather than increasing the complexity of the

network, this approach focuses on enforcing the features learned by CNN under training to be

able to maintain compactness among manifolds belonging to an object category, while maintaining

maximum possible separation among manifolds belonging to different object categories: maximum

between-manifold distance and minimum within-manifold distance.

The two-streams hypothesis [8] proposes that humans have two distinguished visual systems.

Recent evidence suggests that there are two distinguished auditory systems too. Visual information

on leaving the occipital lobe and auditory information on leaving the phonological network transmits

through two main pathways. The ventral stream (what pathway) is responsible for the object

and visual identification and recognition. The dorsal stream (where pathway) is responsible for

computing the objects spatial location relative to the viewer and with speech repetition.

Inspired by two-streams hypothesis, bilinear CNN was proposed by Lin et al. [26]. It consists

of two CNN-based feature extractors; for obtaining image descriptor, the outputs of whose are

multiplied using the outer product at each location of the image and pooled over entire locations.

The outer product is capable of capturing pairwise correlations between the feature maps/channels.

It can also model the part-feature interactions, that is if one of the networks was a part detector

11

and the other a local feature extractor.

12

Chapter 3

Proposed Approach

3.1 Covariance and Correlation

Covariance and Correlation analysis is done very often in the field of statistics and probability

theory. They assist us in determining the relation and extent of the dependency that exists between

two random variables. Though they look similar, they represent different things. Covariance

calculates the degree of change in two random variables. Correlation, on the other hand, shows the

strength of the relationship between the two variables.

Covariance indicates the direction of the relationship between variables. Correlation on the

other hand measures both the strength and direction of the relationship between two variables.

Correlation is a function of the covariance. What sets them apart is the fact that correlation values

are standardized whereas, covariance values are not. You can obtain the correlation coefficient

of two variables by dividing the covariance of these variables by the product of the standard

deviations of the same values. Standard Deviation essentially measures the absolute variability

of a datasets distribution. When you divide the covariance values by the standard deviation, it

essentially scales the value down to a limited range of -1 to +1. This is precisely the range of

correlation values. Covariance values lie between -∞ to +∞. In simple terms, covariance measures

correlation, and correlation is a scaled version of covariance. The change in scale of the variables

affects the covariance value. If we multiply the values of a given variable with a constant and the

values of the other variable with the same or another constant, we notice a change to the value

of covariance as well. However, it is not the case with the correlation: the change in scale of the

variables does not affect the correlation value. Both covariance and correlation are the measures

of the relationship between two variables. If one is zero the other becomes zero as well. Moreover,

13

the change in location affects neither covariance nor correlation.

The formula for calculating covariance is shown below.

covariance(x, y) =

∑n
i=1(xi − x)(yi − y)

n− 1

x = the independent variable

y = the dependent variable

n = number of data points in the sample

x = the mean of the independent variable x

y = the mean of the dependent variable y

Similarly, the formula for calculating correlation is shown below.

correlation(x, y) =
cov(x, y)

sxsy

cov(x, y) = covariance of the variables x and y

sx = sample standard deviation of the random variable x

sy = sample standard deviation of the random variable y

With the use of standardized datasets, correlation turns out to be equivalent to covariance.

If it comes to a matter of choice or natural selection, correlation is preferred method instead of

covariance. The reason for this is due to the fact that correlation is not affected by the alteration

in either the location or the scale.

Correlation analysis is a vital tool for feature selection and multivariate analysis in data pre-

processing and exploration. Correlation helps us investigate and establish relationships between

variables. This is employed in feature selection before any kind of statistical modeling or data

analysis. PCA or Principal Component Analysis is one significant application of the same.

So how do we decide what to use? Correlation matrix or the covariance matrix? In simple

words, it is advised to use the covariance matrix when the variables are on similar scales (or

standardized) and the correlation matrix when the scales of the variables differ. Standardizing the

dataset and then computing the covariance and correlation matrices will yield the same results.

Covariance is computationally cheaper than correlation, as the tremendous amount of division

operations combinedly is very expensive. Thus, we standardize the data and use covariance. Also,

there is a significant benefit in the performance of the learning with standardized data; almost all

machine learning models converge faster with the standardized data.

In this thesis, we propose a model that uses the pair-wise feature maps covariance minimization.

14

3.2 Correlation Matrix and Convolution Matrix

The neighboring pixels of an image are highly correlated as compared to the pixels that are lying

further. So, in a CNN, we take size (nk) of kernel or convolution matrix just enough to capture

this. nk=5 is a good option, but not the universal choice. As we move about 8 pixels away, the

correlation becomes negligible. Here, we are talking about the correlation between the spatial pixels

in an image.

A convolution matrix also known as a mask, kernel or filter is simply a little matrix of weights.

During the convolution process each element of matrix weights the corresponding pixel of the

current receptive field or window, and the thus weighted local neighbors’ pixel values are summed

up to obtain a new value.

The idea is inherited from mathematical convolution. Mathematically, convolution is simply

an operation performed on two functions, say, f and g producing as an output a third function,

whereby the result explains how the shape of one alters the other. It bears resemblance with cross-

correlation. Considering the case of discrete/continuous variable, and real-valued functions, the

difference lies only with the reversal of one of the given functions, that is, in this case, where f(x)

and g(x) are the given functions, cross-correlation of the f(-x) and the g(x), or the f(x) and the

g(-x) yields convolution.

In the case of CNN, the convolution matrix is obtained by rotating the correlation matrix by 180

degrees, or vice versa. Correlation measures the similitude between the two sequences. Convolution,

on the other hand, measures the impact of sequences on one another. For standardized data, the

covariance matrix and correlation matrix are the same. Similarly, in the case of the symmetric

matrix, correlation matrix and convolution matrix are the same.

Let H be a 3x3 correlation kernel/matrix.

H =


u11 u12 u13

u21 u22 u23

u31 u32 u33


If w11 = u33, w12 = u32, w13 = u31, w21 = u23, w22 = u22, w23 = u21, w31 = u13, w32 = u12

and w33 = u11, then

15

W =


u33 u32 u31

u23 u22 u21

u13 u12 u11


or,

W =


w11 w12 w13

w21 w22 w23

w31 w32 w33


W is the convolution kernel/matrix.

The choice of the word ”convolution” in the scenario of neural networks is a result of convention.

The process of convolution in CNN is in a mathematical sense more closely a cross-correlation. But,

it does not matter as the index of wij does not have much significance as these weights are learned

by the network.

In a CNN, what we are actually doing is projecting the receptive field with a filter. Consider a

single neuron. Its output is simply the dot product, the sum of the elementwise products of the two

same-sized sequence: corresponding weights multiply corresponding features (bias being multiplied

by 1) and the results are added to give a single scalar value. If the specific spatial receptive field or

current window and also the filter are smashed/reshaped into the respective sequences, convolution

is mathematically identical to dot product. Or, in simple words filters are just projecting the visual

fields into a new topological dimension.

W is used as a filter. Filtering helps modify or enhance images; filtering an image is useful to

spotlight specific features while removing other features. We use many but different convolution

filters at each convolutional layer in our trial to capture as many distinct features as possible. When

we slide and share the weights in a CNN layer, each filter looks for the multiple presences of the

specific feature in an entirety of the image.

3.3 Proof of Principal Component Analysis

3.3.1 Introduction

Principal Component Analysis (PCA) refers to a statistical technique deployed mostly for the

purpose of reducing data dimension, compressing data, extracting features, and visualizing data.

16

It is a process of projecting the data in D dimensional feature space to k dimensional feature space,

k < D, such that projected data has maximum variance.

Principal axes refer to the axes that best describe the data when projected onto them. For

example, in case of individual points in a 2-dimensional cartesian coordinate system, x-axis and y-

axis are the principal axes of the default 2-D system. In the 2-D coordinate system, each individual

point cannot be described in any better way: every point when projected on these axes have distinct

value and can be uniquely identified.

PCA was invented in 1901 by Karl Pearson [45], as an analog of the principal axis theorem

in mechanics; it was later independently developed and named by Harold Hotelling in the 1930s

[46]-[47]. The principal axis theorem states that the principal axes are perpendicular, and gives

a constructive procedure for finding them. The operation of PCA reveals the internal structure

of the data in a way that best explains the variance in the data. PCA defines a new orthogonal

coordinate system that optimally describes variance in a single dataset.

3.3.2 Statement

Let, Σ be the covariance matrix.

λ1 be the largest eigenvalue of Σ.

u1 be the eigenvector corresponding to λ1.

- also called the first principal component.

For M < D dimensions:

- u1u2...uM are the eigenvectors corresponding to the largest eigenvalues λ1 λ2 ... λM of Σ.

3.3.3 Proof by Induction

Base Step (k=1)

We want variance of projected X to be maximized. So, the optimization problem is to minimize

-uT
1 Σu1 subject to uT

1 u1 = 1.

Using the Lagrangian function,

Lp(u1, λ1) = −uT
1 Σu1 + λ1(u

T
1 u1 − 1)

17

where λ1 is the Lagrangian multiplier for constraint uT
1 u1 = 1.

Solving

δLp

δu1
= 0

Σu1 = λ1u1

u1 is an eigenvector of Σ, λ1 is an eigenvalue of Σ

−uT
1 Σu1 = −λ1uT

1 u1 = −λ1

We are minimizing -uT
1 Σu1, and the result just above shows that this is equivalent to maxi-

mizing λ1: λ1 must be the largest possible. So, λ1 is the largest eigenvalue of Σ, and u1 is the

eigenvector corresponding to λ1. The first principal component of x is uT
1 x.

Inductive Step

Additional principal components can be defined incrementally by choosing each new projection

direction as the one with maximum projected variance among all directions orthogonal to those

already considered.

Following the inductive hypothesis (for k=K), uK is the eigenvector corresponding to the Kth

largest eigenvalue λK of Σ.

Then for k=K+1,

The (K + 1)th principal component uT
K+1x must minimize -uT

K+1ΣuK+1 such that uT
K+1x is

uncorrelated with uT
Kx, uT

K−1x, uT
K−2x, ..., uT

2 x, uT
1 x. The covariance between uT

K+1x and

uT
Kx is 0, uT

K+1x and uT
K−1x is 0, uT

K+1x and uT
K−2x is 0, ..., uT

K+1x and uT
2 x is 0, uT

K+1x

and uT
1 x is 0.

18

cov(uT
1 x,u

T
K+1x) = E[(uT

1 x)(uT
K+1x)T] = uT

1E((xxT))uK+1 = uT
1 ΣuK+1 = λ1u

T
K+1u1

Similarly,

cov(uT
2 x,u

T
K+1x) = λ2u

T
K+1u2

.

.

.

cov(uT
K−1x,u

T
K+1x) = λK−1u

T
K+1uK−1

cov(uT
Kx,uT

K+1x) = λKuT
K+1uK

u1, u2, ..., uK−1, uK and λ1, λ2, ..., λK−1, λK are already known from base step and inductive

hypothesis. So, -uT
K+1ΣuK+1 must be minimized with following constraints:

uT
K+1uK+1 = 1

uT
K+1uK + uT

K+1uK−1 + ...+ uT
K+1u2 + uT

K+1u1 = 0

Using Lagrangian function,

Lp(uK+1, λK+1) =

−uT
K+1ΣuK+1 +λK+1(u

T
K+1uK+1− 1) +φ(uT

K+1uK +uT
K+1uK−1 + ...+uT

K+1u2 +uT
K+1u1)

where λK+1 and φ are Lagrangian multipliers.

Solving

δLp

δuK+1
= 0

19

ΣuK+1 = λK+1uK+1 + φ(uK + uK−1 + ...+ u2 + u1)

Multiplying both sides by uT
K ,

uT
KΣuK+1 = λK+1u

T
KuK+1 + φ(uT

KuK + uT
KuK−1 + ...+ uT

Ku2 + uT
Ku1)

0 = 0 + φ(1 + 0 + ...+ 0 + 0), thatis, φ = 0.

Then, we get,

ΣuK+1 = λK+1uK+1

uK+1 is an eigenvector of Σ, λK+1 is an eigenvalue of Σ

−uT
K+1ΣuK+1 = −λK+1u

T
K+1uK+1 = −λK+1

We are minimizing -uT
K+1ΣuK+1, and the result just above shows that this is equivalent to

maximizing λK+1: λK+1 must be the largest possible. So, λK+1 is the (K + 1)th largest eigenvalue

of Σ, and uK+1 is the eigenvector corresponding to λK+1. The (K + 1)th principal component of

x is uT
K+1x.

3.4 Feature Maps Covariance Minimization

Figure 3.1 shows the working of the proposed method. For a convolutional layer, at each step of

gradient descent, the covariance between the pairs of feature maps with replacement is added as

supplement cost to the overall cost function. (m*m-m)/2 or mC2 (m is the number of feature maps

in a convolutional layer) covariances have to be calculated; finding the covariance between the pairs

of feature maps without replacement will reduce the complexity (m/2). This process is repeated

for all the convolutional layers and the average of the covariances is added as supplement cost to

the overall cost function.

Covariance describes how two variables are related. Variables are positively related if they

move in the same direction, and are inversely related if they move in opposite directions. If the two

20

Figure 3.1: Backpropagation with feature maps covariance minimization.

random variables are independent, the covariance will be zero. But, in our case, in a convolutional

layer, the feature maps represent different but similar features. For example, horizontal straight

lines, vertical straight lines, slant lines, or curves. So, we propose not to nullify (make absolute

value zero) the covariance, but to minimize the covariance.

Let us consider the case without replacement. mk be the number of feature maps at kth

convolutional layer. Then, the number of pair-covariances to be calculated is mk
2 .

The covariance between a pair of feature maps x and y is given by

covariance(x, y) =

∑p
j=1

∑n
i=1(xpi−xp)(ypi−yp)

n−1
p

where, n is the batch size, and p is the number of pixels in each of the feature maps of the

convolutional layer.

Then, the feature maps covariance loss for a convolutional layer is

covariancek =

∑mk
2

i=1 covariance(xi, yi)
mk
2

Finally, assume there are t convolutional layers, then the total feature maps covariance loss is

lossfeature−maps−covar =

∑t
k=1 covariancek

t

The new cost function is

losstotal = losssoftmax + βlossfeature−maps−covar

Hyperparameter β adjusts the tradeoff of the two terms.

21

3.5 Algorithm/Proposed Model

Input: N training samples {X, c}
Output: The trained model.

Initialisation : weights(Wg,W,Ws)← normal, random or any other distributions
1: batches← create batches (X, c)

LOOP Process
2: for i = 1 to |epochs| do
3: for i = 1 to |batches| do
4: feature← feedforward feature extractor (batch, Wg)
5: dense← forward propagation (W, feature)
6: prediction← softmax classifier (Ws, dense)
7: backpropagate output to dense ()

Here, the softmax loss only influences the gradient.
8: backpropagate feature extractor ()

Here, both the softmax loss term, and feature-maps-covariance loss influences the
gradient.

9: end for
10: end for

Algorithm 1: Proposed Algorithm

Algorithm 1 summarizes the proposed approach. The considered model architecture is composed

of feature extractor, dropconnect/dropout (on top of Fully Connected ReLU Layer) layer, and

softmax classifier.

For feature extractor, v = g(x; Wg) where v is the output features, x is input data to the

overall model, and Wg is parameters for the feature extractor. We choose g() to be a multi-layered

convolutional neural network (CNN), with Wg being the convolutional filters (and biases) of the

CNN.

In case of DropConnect/Dropout layer; W is a fully connected weight matrix; outputs r as

output.

Softmax classifier o = s(r; Ws) takes as input r and uses parameters Ws to map this to a k

dimensional output (k being the number of classes).

The overall model f(x; θ, M) maps input data x to an output o through a sequence of operations

given the parameters θ = {Wg , W, Ws }. It falls under the parametric approach to supervised

learning. Model f is trained using gradient descent with backpropagation. Gradient descent is a

method to find the optimal weights. The residual error is computed and in order to minimize

the error, the sharp forward direction is taken in each step on the basis of the cost function.

Backpropagation is a method to perform gradient descent on neural networks.

22

Chapter 4

Experimental Evaluation For Image

Classification Task

4.1 Overall Settings

Batch size of 50, learning rate of 0.01, β (for Covariance) of 1e− 3, and exponential learning rate

decay is used. For covariance-minimization, pairs are formed without replacement. Max-pool is

used for the pooling.

4.2 Data Description

The model performance is evaluated on the four standard datasets: MNIST, Fashion MNIST,

CIFAR-10, and CIFAR-100.

The MNIST database of handwritten digits comprises of 60,000 training examples and 10,000

test examples. The features represent row-wise organized 28X28 pixel values of grayscale images

of handwritten digits 0-9. Thus, the labels values are 0 to 9. Pixel values are 0 to 255. 0 means

background (white), 255 means foreground (black). Zero padding of two is added rectangularly all

around the image to meet the input dimension requirement of the networks used.

Fashion-MNIST is a dataset of article images consisting of a training set of 60,000 examples

and a test set of 10,000 examples. Each example is a 28x28 (zero padded to make 32X32) grayscale

image, associated with a label from 10 classes (types of clothes).

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images.

23

The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes containing 600

images each. There are 500 training images and 100 testing images per class. The 100 classes in

the CIFAR-100 are grouped into 20 superclasses. Each image comes with a ”fine” label (the class

to which it belongs) and a ”coarse” label (the superclass to which it belongs).

Training set refers to the dataset which is actually used to train the model. The test set is the

dataset that is used to verify the performance of the model. The model during training time only

sees the training data.

4.3 Experiments

4.3.1 MNIST

Table 4.1: The top-1 error rate comparison of different models on the MNIST dataset for first 35
epochs.

Model Error Rate (within 35 epochs)

Baseline 0.72 (17 epochs)

Covar 0.79 (31)

Dropout 0.60 (24)

Dropconnect 0.56 (19)

Dropout+Covar 0.52 (32)

Dropconnect+Covar 0.53 (30)

Figure 4.1: Performance comparison of different models on the MNIST test dataset.

Table 4.1 and Figure 4.1 show the performance comparison of different models on the MNIST

test dataset. The experiment shows that the performance of the network goes better with dropout,

24

dropconnect, covariance minimization(with dropconnect), and covariance minimization(with dropout).

In this case, covariance minimization gives a better result only with dropout and dropconnect; the

reason for it is because, without some sort of regularization, the model overfitted faster with covari-

ance minimization. Overfitting refers to the situation when the model performs well on training

data but not on test data; the model overfitted on training data and hence failed to generalize novel

instances. Though the purpose of the model would be to perform well on test data, the model will

always be trying to represent a function outputting the training data and always will have tendency

to overfit without regularization unless we have infinite data; infinite in the sense all the possible

test instances fall under training data, which is almost impossible in the practical sense.

3 layered CNN (32-64-128 feature maps) derived from the official tensorflow github example on

MNIST is selected as the feature extractor.

Table 4.2: Confusion matrix of baseline
Pred\Truth 0 1 2 3 4 5 6 7 8 9 total

0 977 0 0 0 0 1 4 0 2 0 984

1 0 1134 0 0 0 1 2 2 0 0 1139

2 0 1 1027 1 1 0 0 1 1 0 1032

3 0 0 0 1001 0 3 0 0 2 0 1006

4 0 0 1 0 976 0 1 0 0 8 986

5 0 0 0 4 0 886 4 0 0 1 895

6 2 0 0 0 1 1 944 0 0 1 949

7 1 0 2 2 0 0 0 1022 1 2 1030

8 0 0 2 2 0 0 3 1 966 2 976

9 0 0 0 0 4 0 0 2 2 995 1003

total 980 1135 1032 1010 982 892 958 1028 974 1009 10000

Table 4.3: Confusion matrix of best model (dropout+covar)
Pred\Truth 0 1 2 3 4 5 6 7 8 9 total

0 979 0 1 0 0 1 2 0 1 0 984

1 0 1134 0 0 0 0 3 2 0 0 1139

2 0 0 1027 2 0 0 0 0 1 0 1030

3 0 0 0 1003 0 4 0 0 0 0 1007

4 0 0 0 0 978 0 2 0 0 5 985

5 0 0 0 4 0 886 1 0 0 3 894

6 0 0 0 0 1 1 950 0 0 0 952

7 0 1 4 0 0 0 0 1024 1 2 1032

8 1 0 0 1 1 0 0 1 969 1 974

9 0 0 0 0 2 0 0 1 2 998 1003

total 980 1135 1032 1010 982 892 958 1028 974 1009 10000

25

Table 4.2 and 4.3 lists the confusion matrices of baseline, and the best model (dropout+covar).

The correct prediction of class 0 increased from 977 to 979, class 3 increased from 1001 to 1003,

class 4 increased from 976 to 978, class 6 increased from 944 to 950, class 7 increased from 1022 to

1024, class 8 increased from 966 to 969, and class 9 increased from 995 to 998. The predictions of

class 1, 2, and 5 remain unchanged.

4.3.2 Fashion MNIST

Table 4.4: The top-1 error rate comparison of different models on the fashion MNIST dataset for
first 35 epochs.

Model Error Rate (within 35 epochs)

Baseline 11.43 (33 epochs)

Covar 10.84 (34)

Dropout 9.16 (35)

Dropconnect 9.17 (33)

Dropout+Covar 9.88 (34)

Dropconnect+Covar 9.15 (34)

Figure 4.2: Performance comparison of different models on the fashion MNIST test dataset.

Table 4.4 and Figure 4.2 show the performance comparison of different models on the fashion

MNIST dataset. The experiment shows that the performance of the network goes better with covar,

dropconnect, dropout, and covariance minimization(with dropconnect). In this case, covariance

minimization (with dropout) does not perform better than dropout.

3 layered CNN (32-64-128 feature maps) derived from the official tensorflow github example on

MNIST is selected as the feature extractor.

26

Table 4.5 and 4.6 lists the confusion matrices of baseline, and the best model (dropcon-

nect+covar). The correct prediction of class 0 increased from 815 to 903, class 1 increased from 975

to 994, class 2 increased from 806 to 845, class 3 increased from 890 to 931, class 4 increased from

809 to 884, class 5 increased from 968 t0 983, class 7 increased from 948 to 973, class 8 increased

from 977 to 984, and class 9 increased from 970 to 971. But, the predictions of class 6 reduced

from 699 to 617.

Table 4.5: Confusion matrix of baseline
Pred\Truth 0 1 2 3 4 5 6 7 8 9 total

0 815 1 15 19 3 0 106 0 3 0 962

1 5 975 3 8 0 0 3 0 1 0 995

2 13 0 806 17 87 0 88 0 1 0 1012

3 24 17 7 890 32 2 23 0 2 0 997

4 6 4 92 34 809 0 75 0 4 0 1024

5 0 0 0 0 0 968 0 10 0 7 985

6 129 1 75 29 67 0 699 0 7 0 1007

7 0 0 0 0 0 22 0 948 3 23 996

8 7 2 2 3 2 0 6 1 977 0 1000

9 1 0 0 0 0 8 0 41 2 970 1022

total 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000

Table 4.6: Confusion matrix of best model (dropconnect+covar)
Pred\Truth 0 1 2 3 4 5 6 7 8 9 total

0 903 0 18 11 1 0 183 0 0 1 1117

1 4 994 4 12 2 0 6 0 2 0 1024

2 13 0 845 8 58 0 67 0 1 0 992

3 23 5 9 931 23 0 34 0 4 0 1029

4 3 0 89 29 884 0 87 0 2 0 1094

5 1 0 0 0 0 983 0 6 3 4 997

6 44 0 35 7 31 0 617 0 1 0 735

7 0 0 0 0 0 8 0 973 3 24 1008

8 8 1 0 2 1 0 6 0 984 0 1002

9 1 0 0 0 0 9 0 21 0 971 1002

total 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000

4.3.3 CIFAR-10

Table 4.7 and Figure 4.3 show the performance comparison of different models on the CIFAR-10

dataset. The experiment shows that the performance of the network goes better with dropout,

covariance minimization, dropconnect, and covariance minimization(with dropconnect). In this

27

Figure 4.3: Performance comparison of different models on the CIFAR-10 test dataset.

Table 4.7: The top-1 error rate comparison of different models on the CIFAR-10 dataset for the
first 35 epochs.

Model Error Rate (within 35 epochs)

Baseline 25.56 (32 epochs)

Covar 25.42 (35)

Dropout 25.46 (35)

Dropconnect 25.30 (30)

Dropout+Covar 25.86 (29)

Dropconnect+Covar 24.97 (34)

28

case, up to 35 epochs, covariance minimization(with dropout) performs worse than the baseline

model.

2 layered CNN (64-64 feature maps) derived from the official tensorflow github example on

CIFAR-10 is selected as the feature extractor.

4.3.4 CIFAR-100

Table 4.10 and Figure 4.4 show the performance comparison of different models on the CIFAR-100

dataset. The experiment shows that the performance of the network goes better with droupout,

covariance minimization(with dropout), covariance minimization, dropconnect, and covariance min-

imization(with dropconnect).

2 layered CNN (64-64 feature maps) derived from the official tensorflow github example on

CIFAR-10 is selected as the feature extractor.

Figure 4.4: Performance comparison of different models on the CIFAR-100 test dataset.

Table 4.8: The top-1 error rate comparison of different models on the CIFAR-100 dataset for the
first 35 epochs.

Model Error Rate (within 35 epochs)

Baseline 61.62 (35 epochs)

Covar 60.79 (34)

Dropout 61.47 (32)

Dropconnect 60.46 (13)

Dropout+Covar 61.27 (32)

Dropconnect+Covar 60.06 (16)

29

4.4 Discussion

Experimentally, it is observed that in general case, covariance minimization with dropconnect gives

the best results. However, in some cases, covariance minimization with dropout works better.

For covariance-minimization, if pairs are formed with replacement computational cost is too

high, however, the performance of the model might be better. Max-pool works in practice as it

accelerates the on-going decrement of the computational cost of deep convolutional neural networks,

while, transmitting the maximum information from the max-pool candidates. In the convolutional

network, shared weights explicitly imply less computation. Also, translation invariance behavior

leads to faster convergence.

Increasing the number of feature maps, depth of the network, and the number of epochs might

increase the accuracy.

4.5 Further Improvements

The methods to further improve the performance of the proposed approach are listed below.

4.5.1 ZCA Whitening/Sphering

ZCA whitening is a rough model of how the biological eye (the retina) processes images (through

retinal neurons). ZCA whitening also tries to add noise robustness to the data.

4.5.2 Pair Formation (for Covar Minimization) with Replacement

While performing covariance minimization, during the backpropagation process, if the pairs are

formed with replacement, the performance might get better.

4.5.3 Using Additional Pair-wise Networks

In case of fewer classes(N), two passes: one through ’N class network’, and then through ’pair-wise

network’ (first two with higher class values). Additional NC2 networks have to be trained, however,

each network can be trained independently. When N goes larger, the number of pair-wise networks

to be trained is very huge and not feasible.

30

4.5.4 Voting Among the Networks

One way to vote can be to train N (N > 1) networks, each network exactly the same in structure,

but trained with different hyperparameters. Another way to vote might be to call the listed 6

models for a vote, and the decision is made on the basis of that. These processes might increase

accuracy.

31

Chapter 5

Experimental Evaluation For

Enhancing Image Resolution

5.1 Overall Settings

Batch size of 50, the learning rate of 0.01, and exponential learning rate decay is used. Max-

pool is used for the pooling. Mean Squared Error is used as the loss. Feature maps covariance

minimization was tried here as well, and the mean squared error improved, but at the sixth/seventh

decimal places only, and hence it is not included here.

5.2 Data Description

The model performance is evaluated on the four standard datasets: MNIST, Fashion MNIST,

CIFAR-10, and CIFAR-100.

The images are reduced to 16x16 to make the input training features while the original images

(32x32; in case of mnist and fashion mnist zero padded to make 32x32) are used as the output of

the network.

The thus diminished 16x16 image is zero padded pixel by pixel to make 32x32 (requirement

of the networks used). Then it is fed to the CNN as input while the original 32x32 image is fed

as output. As the second method, the original 32x32 image is split into 4 equal parts and then 4

networks (exactly same configuration wise) are independently trained while feeding one of the 4

parts to each network as output.

32

5.3 Experiments

5.3.1 MNIST

Table 5.1 and Figure 5.1 show the performance comparison of different models on the MNIST test

dataset. The experiment shows that the performance gets better when the problem is decentralized

and more networks are used to solve the problem.

3 layered CNN (32-64-128 feature maps) derived from the official tensorflow github example on

MNIST is selected as the feature extractor.

Table 5.1: Mean Squared Error (MSE) comparison of different models on the MNIST dataset for
first 35 epochs.

Model MSE (within 35 epochs)

Baseline (1 network) 0.0540

4 networks 0.0394

Figure 5.1: Performance comparison of different models on the MNIST test dataset.

33

5.3.2 Fashion MNIST

Table 5.2 and Figure 5.2 show the performance comparison of different models on the fashion

MNIST test dataset. The experiment shows that the performance gets better when the problem is

decentralized and more networks are used to solve the problem.

3 layered CNN (32-64-128 feature maps) derived from the official tensorflow github example on

MNIST is selected as the feature extractor.

Table 5.2: Mean Squared Error (MSE) comparison of different models on the fashion MNIST
dataset for first 35 epochs.

Model MSE (within 35 epochs)

Baseline (1 network) 0.0361

4 networks 0.0253

Figure 5.2: Performance comparison of different models on the fashion MNIST test dataset.

34

5.3.3 CIFAR-10

Table 5.3 and Figure 5.3 show the performance comparison of different models on the fashion

CIFAR-10 test dataset. The experiment shows that the performance gets better when the problem

is decentralized and more networks are used to solve the problem.

2 layered CNN (64-64 feature maps) derived from the official tensorflow github example on

CIFAR-10 is selected as the feature extractor.

Table 5.3: Mean Squared Error (MSE) comparison of different models on the CIFAR-10 dataset
for first 35 epochs.

Model MSE (within 35 epochs)

Baseline (1 network) 0.0289

4 networks 0.0139

Figure 5.3: Performance comparison of different models on the fashion CIFAR-10 test dataset.

35

5.3.4 CIFAR-100

Table 5.4 and Figure 5.4 show the performance comparison of different models on the fashion

CIFAR-100 test dataset. The experiment shows that the performance gets better when the problem

is decentralized and more networks are used to solve the problem.

2 layered CNN (64-64 feature maps) derived from the official tensorflow github example on

CIFAR-10 is selected as the feature extractor.

Table 5.4: Mean Squared Error (MSE) comparison of different models on the CIFAR-100 dataset
for first 35 epochs.

Model MSE (within 35 epochs)

Baseline (1 network) 0.0382

4 networks 0.0150

Figure 5.4: Performance comparison of different models on the fashion CIFAR-100 test dataset.

36

5.4 Further Improvements

The methods to further improve the performance of the proposed approach are listed below.

5.4.1 ZCA Whitening/Sphering

ZCA whitening is a rough model of how the biological eye (the retina) processes images (through

retinal neurons). ZCA whitening also tries to add noise robustness to the data.

5.4.2 Increasing the Number of Networks

Dividing the output to more number of networks might give better results, as the output size of

the network will be reduced.

37

Chapter 6

Conclusion

We propose a novel framework for boosting CNN classification performance via minimizing the

covariance between the feature maps while training the model. This explicitly makes the learned

features to be less redundant.

It is shown that decentralization of the output image to more networks; proper distribution of

workload can increase the network performance while the network is used to solve the pointwise

regression problem, or, image generation.

The functions involved in the generation of the data are based on physical functions and these

follow the properties like compositionality, locality, symmetry, log probability. This very fact

makes computations cheap. Though a huge number of possible instances/outcomes, the number

of favorable instances/outcomes is surprisingly very less. For example, if we consider a 1000x1000

pixel image, each pixel can take a value from the pool of 256 (0-255) possible values. So, 2551000000

possible instances are there, which is way larger than the number of atoms in our known, observable

universe (1078 to 1082). The images we deal with barely make up to that number. It is because

of the laws of nature having the property to be describable using physical equations. Physical

properties governing the laws of nature limit the number of favorable instances. We have a low

order of polynomial in nature because the properties of nature can be represented by a Hamiltonian

polynomial of low order d. This extremely awe-inspiring and magnificent behavior of nature is the

foremost factor that makes the machine learning algorithms work, given good enough data and

required computing power.

Deep architecture has more representation power than a shallow one. In case of deep learning,

neural network with 1 hidden layer is considered as the shallow network, while neural network with

more than 1 hidden layers is considered as the deep network. Corresponding to the fractal nature

38

of the universe (infinite levels of pattern representations as we go towards either the microlevels or

the macrolevels), the physical processes generating the data comprises of steps of internal processes

to get the output. Deep architecture provides such an opportunity.

Future works for image classification task include performing ZCA whitening/sphering during

the data pre-processing step, pair formation for covariance minimization with replacement, and

voting among the networks. Similarly, future works for enhancing image resolution includes ZCA

whitening/sphering, and increasing the number of networks.

39

Appendix A

Artificial Neural Network

Consider X = {xj}, j = 1, 2, 3, ..., N.

where, N is the number of training data. xj is a D dimensional input feature vector. X consists

of N ’D dimensional’ feature vectors.

Figure A.1: Working of single neuron/perceptron, or a logit unit with D=3

Let, x = xj = {x1, x2, ..., xD}, and w = {w1, w2, ..., wD} be the weight vector that projects

the feature vector to produce a new scalar value, represented by Σ or simply S. Adding bias to

the sum will not enforce the function that the neuron is going to learn to always pass through

the origin in hyperplane; for example, considering a simple function of line in slope-intercept form,

y = f(x) = slope ∗ x + y intercept ∗ 1, intercept acts as the bias. If the intercept is zero, the line

always have to pass through the origin, but this is not a necessary condition for a line, as there are

infinitely as many lines that do not pass through the origin. So, the x = {x0, x1, x2, ..., xD}, and

w = {w0, w1, w2, ..., wD}, x0 = 1, w0 also represented as b is the bias.

40

S =
∑D

i=0wixi

First of all, let us deal with the case without activation. S is the predicted result. Let T be the

truth. Then the residual error is S − T . The squared error is (S − T)2. We take the squared error

because it is a derivable convex function (a requirement for gradient descent).

Let, the cost/loss/error function be

E =
1

2
(S − T)2

The reason for taking 1
2 will be shown later.

We want to minimize the error, in order to improve the performance of the model. The error is

because of the weights being incorrectly set. The task is to find the weights that try to minimize

E to zero; the model should learn the weights in such a way that the minima of the function E

is reached. The derivative of any function gives minima/maxima of that function; in our case the

function is convex, so minima. Or, in other words, derivative gives the slope at a certain point of

the function/equation. With the help of gradient descent, following the opposite path of derivative,

the model reaches slowly and taking sharp steps to the minimum value of the cost function. For

the case of the convex function, if the minimum point is crossed, the slope is positive, so taking

reverse direction will make a backward turn. While, if we have not yet reached the minimal point,

the slope is negative; following the reverse direction of the derivative will actually, in this case,

make a forward move.

Now, at each step of gradient descent, we calculate the gradients of the weights and update the

weights.

winew = wiold − learning rate ∗ ∇wi

Initially, the weights are set randomly between some range or using normal distribution, or any

other sort of distributions.

The calculation of gradients is done using partial differentiation.

∇w0 =
∂E

∂w0
=
∂E

∂S

∂S

∂w0
=

1

2
∗ (2 ∗ (S − T)) ∗ (1) = (S − T) ∗ 1

Similarly,

∇w1 =
∂E

∂w1
=
∂E

∂S

∂S

∂w1
=

1

2
∗ (2 ∗ (S − T)) ∗ (x1) = (S − T) ∗ x1

41

∇w2 =
∂E

∂w2
=
∂E

∂S

∂S

∂w2
=

1

2
∗ (2 ∗ (S − T)) ∗ (x2) = (S − T) ∗ x2

∇w3 =
∂E

∂w3
=
∂E

∂S

∂S

∂w3
=

1

2
∗ (2 ∗ (S − T)) ∗ (x3) = (S − T) ∗ x3

.

.

.

.

∇wD =
∂E

∂wD
=
∂E

∂S

∂S

∂wD
=

1

2
∗ (2 ∗ (S − T)) ∗ (xD) = (S − T) ∗ xD

This shows that the second-last part of the gradient is the residual error at that node/neuron,

and the last part is the feature which the weight projects.

This is actually the linear regression. Figure A.2 below shows the use of linear regression with

the Fisher Iris Setosa dataset, wherby it tries to predict the sepal length given sepal width; sepal

length being the truth(T)/y, and sepal width (x1) being feature. D=1, N=50, x = {x0x1} x0 = 1

is for the bias. . In this particular example, learning rate = 0.1. Initially all the weights are set to

zero. At the end of the learning process, the weights learned w0 = 2.3614, and w1 = 0.7706. With

the help of learned weights, given a sepal width (x), corresponding sepal length (y) is given by the

function y = S = f(x) = w0 ∗ 1 + w1 ∗ x = 2.3614 + 0.7706 ∗ x. That is, the dot product of weight

vector with feature vector (with bias added) gives the prediction. The line in the diagram is the

equation represented by S/y of the trained model.

First 10 out of the 50 data is shown in Table A.1.

Now, let us take the case with activation. Z = hw(S) is the predicted result. S acts as the new

input x, in this case, x. Now, the residual error is Z − T . The squared error is (Z − T)2. As we

work with the squared error, the cost function is E = 1
2(Z − T)2. We take half so that the 2 we

will get from the derivative of (Z −T)2 can cancel each other. We are merely avoiding the division

operation.

The calculation of the gradients is done as shown.

∇w0 =
∂E

∂w0
=
∂E

∂Z

∂Z

∂S

∂S

∂w0
=

1

2
∗ (2 ∗ (Z − T)) ∗ f ′(S) ∗ (1) = (Z − T) ∗ f ′(S) ∗ 1

Similarly,

42

Table A.1: Fisher Iris Setosa Dataset.
N Sepal Length (y or truth) Sepal Width (x)

1 5.1 3.5

2 4.9 3

3 4.7 3.2

4 4.6 3.1

5 5 3.6

6 5.4 3.9

7 4.6 3.4

8 5 3.4

9 4.4 2.9

10 4.9 3.1

Figure A.2: Linear regression with fisher iris setosa dataset.

43

∇w1 =
∂E

∂w1
=
∂E

∂Z

∂Z

∂S

∂S

∂w1
=

1

2
∗ (2 ∗ (Z − T)) ∗ f ′(S) ∗ (x1) = (Z − T) ∗ f ′(S) ∗ x1

∇w2 =
∂E

∂w2
=
∂E

∂Z

∂Z

∂S

∂S

∂w2
=

1

2
∗ (2 ∗ (Z − T)) ∗ f ′(S) ∗ (x2) = (Z − T) ∗ f ′(S) ∗ x2

∇w3 =
∂E

∂w3
=
∂E

∂Z

∂Z

∂S

∂S

∂w3
=

1

2
∗ (2 ∗ (Z − T)) ∗ f ′(S) ∗ (x3) = (Z − T) ∗ f ′(S) ∗ x3

.

.

.

.

∇wD =
∂E

∂wD
=
∂E

∂Z

∂Z

∂S

∂S

∂wD
=

1

2
∗ (2 ∗ (Z − T)) ∗ f ′(S) ∗ (xD) = (Z − T) ∗ f ′(S) ∗ xD

This shows that with activation, the third-last part of the gradient is the residual error at

that node/neuron, the second-last part is the derivative of post-synaptic value with respect to

pre-synaptic value, and the last part is the feature which the weight projects.

f ′(S) is the partial derivative of post-synaptic value with respect to pre-synaptic value. Partial

derivative refers to the derivative taken with respect to one variable when multiple variables are

involved in the system. All the individual values which do not contain the specific term with respect

to which the derivative is being taken yield zero; their value does not have an impact and appear

as constant to the system in which we are currently existing.

For example, in the case of ReLU (Rectified Linear Unit; rectifier is used to block the signal

from specific bands, and ReLU is linear unit: if x > 0, Z = ReLU(x) = x and ReLU ′(x) = 1; else

Z = ReLU(x) = relu constant * x and ReLU’(x) = relu constant; relu constant is some small value,

0 <= relu constant < 1, it bears very close relation to the learning rate. In case of relu (not leaky

relu), relu constant = 0. But this will not work in most of the conditions, as there is possibility

of all the weights being negative, and if such situation arises, the network will neither forward any

information, nor will correct itself. Linear activation, that is, Z = Linear(x) = x, is just a relu

activation with relu constant = 1, that is, entire available/visible field is accepted by the rectifier.

44

In case of sigmoid activation function, Z = sigmoid(x) = 1
1+e−x and sigmoid’(x) = Z(1-Z). For

hyperbolic tangent (tanh), Z = ex−e−x

ex+e−x and tanh’(x) = 1− Z2.

Taylor series expansion of f(x) about 0 is given by

f(x) = f(0) +
x

1!
f ′(0) +

x2

2!
f ′′(0) + ...+

xk

k!
fk(0) +

So,

ex = e0 +
x

1!
e0 +

x2

2!
e0 +

f ′(ecx) = cecx, and f ′(e−cx) = −ce−cx

Following the Taylor series expansion,

e� = 1 +
�
1!

+
�2

2!
+
�3

3!
+

This equation gives the value of any power of e. Taking the sum up to a considerable point is

the feasible solution.

It is obvious that in this case, with the activation applied to the weighted sum, the first

part of the gradient is the residual error, the second part is the partial derivative of the post-

activated/synaptic value with respect to pre-activated value, and the third part is the feature

which the weight projects.

This is actually the logistic regression. Figure A.3 Fisher Iris Versicolor/Virginica dataset is

shown; starting from this sort of representation, the model has to be able to learn some sort of

representation that separates the two classes as farthest as possible.

Few 10 out of the 100 data is shown in Table A.2. With a learning rate of 0.1 and using sigmoid

activation function, the accuracy rate of 95% can be easily reached. Starting from zero valued

weights, the trained weights being w0 = −27.8236, w1 = −4.1712, w2 = 10.9724. x0 = 1. If the

predicted value is greater than or equal to 0.5, it belongs to class 1, else it belongs to class 0.

sigmoid activation function limits the value between 0 and 1. If input x tends to infinity, sigmoid

returns 1, that is, y=1. If x tends to -infinity, y=0. At x=0, y=0.5. We use this feature of sigmoid

function to decide the class to be 0 or 1. y >= 0.5 or x >= 0 means the instance belongs to the

class 1, and y < 0.5 or x < 0 means the instance belongs to the class 0. In fact, the decision

boundary here is linear, as the line y=0.5 (it is used in practice) or the line x=0 (x-axis) can be

used as the decision boundary between the instances belonging to different categories.

The classes are changed to 0 and 1. It is a binary classification problem.

45

Figure A.3: Fisher Iris: Versicolor/Virginica dataset.

Table A.2: Fisher Iris: Versicolor/Virginica dataset
N sepal length(x1) petal length(x2) class (1 for Iris Versicolor, 2 for Iris Virginica)

1 6.2 4.3 1

2 5.1 3 1

3 5.7 4.1 1

4 6.7 5.6 2

5 6.9 5.1 2

6 5.8 5.1 2

7 6.8 5.9 2

8 6.7 5.7 2

9 6.7 5.2 2

10 6.3 5 2

46

Logistic regression (LR) can also solve some N-classes problem. It achieves this by creating N

different models; each model takes the instances of it as class 1 and the instances of all other classes

as class 0. It is referred to as the 1-vs-all model.

Logistic regression can solve the case of boolean ’AND’ and boolean ’OR’ as when the four

possible cases are plotted in the 2-D cartesian coordinate system, the instances belonging to class

’1’ and class ’0’ can be separated by using a straight line. As logistic regression is searching for a

linear decision boundary, it is unable to solve the case of ’XOR’ (see Fig. A.4).

Figure A.4: Logistic Regression, and AND, OR, XOR boolean functions

Nevertheless, LR is capable of getting 100% accuracy on the XOR problem with a simple

transformation to the feature space, by adding new feature x1*x2 to the existing features x1 and

x2. The addition of the nonlinear feature assists linear regression in learning a decision boundary;

the decision boundary is linear in regard to the features, but not necessarily in the original data

space. Though the decision boundary is linear in nature, the features need not be linearly related

to each other, and also each feature in individual dataspace need not be a linear function.

Another approach of solving xor without adding any new feature is to use a simple neural

network; compose many logit unit or neuron, where each neuron is connected to some other neu-

rons/inputs and passes its activated value to some other neurons/outputs (Fig. A.5). The super-

scripts represent the layer number, and the subscript denotes the neuron number.

Table A.3: Dataset for boolean ’XOR’
N bias x1 x2 Truth (T)

1 1 0 0 0

2 1 0 1 1

3 1 1 0 1

4 1 1 1 0

47

Figure A.5: Simple Neural Network for XOR

The residual error is Z − T , and the cost function is E = 1
2(Z − T)2. The weights be corrected

at each iteration of gradient descent are w1
11, w

1
12, w

1
21, w

1
22, b

1
1 or w1

01, b
1
2 or w1

02, w
2
11, w

2
21, and b21

or w2
01.

The calculation of the gradients is done as shown.

For the neurons (in this case, 1) of the last/output layer,

∇w2
01 = ∇b21 =

∂E

∂b21
=
∂E

∂Z

∂Z

∂s21

∂s21
∂b21

=
1

2
∗ (2 ∗ (Z − T)) ∗ f ′(s21) ∗ (1) = (Z − T) ∗ f ′(s21) ∗ 1 = δ21 ∗ 1

where, δ21 = (Z − T) ∗ f ′(s21). So,

∇w2
11 =

∂E

∂w2
11

=
∂E

∂Z

∂Z

∂s21

∂s21
∂w2

11

=
1

2
∗ (2 ∗ (Z − T)) ∗ f ′(s21) ∗ (1) = (Z − T) ∗ f ′(s21) ∗ y11 = δ21 ∗ y11

∇w2
21 =

∂E

∂w2
21

=
∂E

∂Z

∂Z

∂s21

∂s21
∂w2

21

=
1

2
∗ (2 ∗ (Z − T)) ∗ f ′(s21) ∗ (1) = (Z − T) ∗ f ′(s21) ∗ y12 = δ21 ∗ y12

Now, for the neurons of the second last layer.

For the top neuron.

48

∇w1
01 = ∇b11 =

∂E

∂b11
=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y11
∂s11

∂s11
∂b11

= (Z−T)∗f ′(s21)∗w2
11∗f ′(s11)∗1 = δ21∗w2

11∗f ′(s11)∗1 = δ11∗1

where, δ11 = δ21 ∗ w2
11 ∗ f ′(s11) = (Z − T) ∗ f ′(s21) ∗ w2

11 ∗ f ′(s11). So,

∇w1
11 =

∂E

∂w1
11

=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y11
∂s11

∂s11
∂w1

11

= (Z − T) ∗ f ′(s21) ∗ w2
11 ∗ f ′(s11) ∗ x1 = δ11 ∗ x1

∇w1
21 =

∂E

∂w1
21

=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y11
∂s11

∂s11
∂w1

21

= (Z − T) ∗ f ′(s21) ∗ w2
11 ∗ f ′(s11) ∗ x2 = δ11 ∗ x2

For the bottom neuron,

∇w1
02 = ∇b12 =

∂E

∂b12
=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y12
∂s12

∂s12
∂b12

= (Z−T)∗f ′(s21)∗w2
21∗f ′(s12)∗1 = δ21∗w2

21∗f ′(s12)∗1 = δ12∗1

where, δ12 = δ21 ∗ w2
21 ∗ f ′(s12) = (Z − T) ∗ f ′(s21) ∗ w2

21 ∗ f ′(s12). So,

∇w1
12 =

∂E

∂w1
12

=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y12
∂s12

∂s12
∂w1

12

= (Z − T) ∗ f ′(s21) ∗ w2
21 ∗ f ′(s12) ∗ x1 = δ12 ∗ x1

∇w1
22 =

∂E

∂w1
22

=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y12
∂s12

∂s12
∂w1

22

= (Z − T) ∗ f ′(s21) ∗ w2
21 ∗ f ′(s12) ∗ x2 = δ12 ∗ x2

It is clear from these equations that the δs of a layer is dependent upon the delta of the previous

layer. Each neuron along with output has its δ. Doing so, we can reuse the value of δ within a

layer, as well as for the calculation of δs of the previous layer. It uses the concept of dynamic

programming (memory vs speed). The other benefit it provides is the generalization of the working

of the neurons. Wherever the neuron is present in the network, the weights associated with it, at

each iteration of gradient descent, can be corrected with the help of δ of that neuron (fig. A.6).

The error of the network is because of the error of individual neurons.

From above equations, we have,

∇w1
01 = ∇b11 =

∂E

∂b11
=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y11
∂s11

∂s11
∂b11

= (Z−T)∗f ′(s21)∗w2
11∗f ′(s11)∗1 = δ21∗w2

11∗f ′(s11)∗1 = δ11∗1

∇w1
01 = ∇b11 =

∂E

∂b11
=
∂E

∂Z

∂Z

∂s21

∂s21
∂y11

∂y11
∂s11

∂s11
∂b11

=
∂E

∂y11

∂y11
∂s11

∂s11
∂b11

=
∂E

∂y11
∗ f ′(s11) ∗ 1 = δ21 ∗ w2

11 ∗ f ′(s11) ∗ 1

49

Figure A.6: Simple Neural Network for XOR: showing the first neuron of first layer

∂y11
∂s11

is the partial derivative of post-synaptic value with respect to pre-synaptic value, and it

can be calculated. Also,
∂s11
∂b11

is just the feature which the current weight (in case of bias, 1) is

projecting.

∂E
∂y11

=
∑no

i=1w
2
1i ∗ δ21 , no is the number of neurons the current neuron passes its information to

during the time of forward propagation. that is, the weighted sum of δs; each δ is weighted by the

weight of the link that had impact on that specific output which finally effected the specific δ.

Now, let us take the case of a neural network with two outputs: one for AND, and another for

XOR (fig. A.7). The data for the model is shown in table A.4.

Table A.4: Dataset for boolean ’XOR’ and ’AND’
N bias x1 x2 Truth for AND (T1) Truth for XOR (T2)

1 1 0 0 0 0

2 1 0 1 0 1

3 1 1 0 0 1

4 1 1 1 1 0

Forward propagation is done first.

s11 = x0 ∗ w1
01 + x1 ∗ w1

11 + x2 ∗ w1
21

50

Figure A.7: Simple Neural Network for XOR and AND

y11 = activation(s11)

s12 = x0 ∗ w1
02 + x1 ∗ w1

12 + x2 ∗ w1
22

y12 = activation(s12)

Now, y11, and y12 with y10 = 1 for bias added, act as the inputs to the output layer.

s21 = y10 ∗ w2
01 + y11 ∗ w2

11 + y12 ∗ w2
21

Z1 = y21 = activation(s21)

s22 = y10 ∗ w2
02 + y11 ∗ w2

12 + y12 ∗ w2
22

Z2 = y22 = activation(s22)

The residual error for AND is Z1 − T1, and for XOR is Z2 − T2. The cost function E1 =

1
2(Z1 − T1)2, and E2 = 1

2(Z2 − T2)2, whereby the total error E = E1 + E2. The weights be to

corrected at each iteration of gradient descent are w1
01, w

1
02, w

1
11, w

1
12, w

1
21, w

1
22, w

2
01, w

2
02, w

2
11, w

2
12,

w2
21, w

2
22.

51

The calculation of the gradients is done as shown.

∇w2
01 =

∂E

∂w2
01

=
∂E1

∂w2
01

+
∂E2

∂w2
01

∂E1

∂w2
01

=
∂E1

∂Z1

∂Z1

∂s21

∂s21
w2
01

= (Z1 − T1) ∗ f ′(s21) ∗ y10

If the activation function used was tanh, f ′(s21) = 1− (Z1)
2.

As E2 is not affected by w2
01, that is, E2 will not contain any term involving w2

01,

∂E2

∂w2
01

= 0

∇w2
01 = (Z1 − T1) ∗ f ′(s21) ∗ y10 = δ21 ∗ y10

∇w2
11 = (Z1 − T1) ∗ f ′(s21) ∗ y11 = δ21 ∗ y11

∇w2
21 = (Z1 − T1) ∗ f ′(s21) ∗ y12 = δ21 ∗ y12

∇w2
02 = (Z2 − T2) ∗ f ′(s22) ∗ y10 = δ22 ∗ y10

∇w2
12 = (Z2 − T2) ∗ f ′(s22) ∗ y11 = δ22 ∗ y11

∇w2
22 = (Z2 − T2) ∗ f ′(s22) ∗ y12 = δ22 ∗ y12

where, δ21 = (Z1 − T1) ∗ f ′(s21), and δ22 = (Z2 − T2) ∗ f ′(s22)

Now, for the first hidden layer,

∇w1
01 =

∂E

∂w1
01

=
∂E1

∂w1
01

+
∂E2

∂w1
01

∂E1

∂w1
01

=
∂E1

∂Z1

∂Z1

∂s21

∂s21
y11

∂y11
∂s11

∂s11
∂w1

01

= (Z1 − T1) ∗ f ′(s21) ∗ w2
11 ∗ f ′(s11) ∗ x0

∂E2

∂w1
01

=
∂E2

∂Z2

∂Z2

∂s22

∂s22
y11

∂y11
∂s11

∂s11
∂w1

01

= (Z2 − T2) ∗ f ′(s22) ∗ w2
12 ∗ f ′(s11) ∗ x0

∂E

∂w1
01

=
∂E1

∂Z1

∂Z1

∂s21

∂s21
y11

∂y11
∂s11

∂s11
∂w1

01

+
∂E2

∂Z2

∂Z2

∂s22

∂s22
y11

∂y11
∂s11

∂s11
∂w1

01

∂E

∂w1
01

=

(
∂E1

∂Z1

∂Z1

∂s21

∂s21
y11

+
∂E2

∂Z2

∂Z2

∂s22

∂s22
y11

)
∂y11
∂s11

∂s11
∂w1

01

=
∂E

∂y11

∂y11
∂s11

∂s11
∂w1

01

52

∇w1
01 =

(
(Z1 − T1) ∗ f ′(s21) ∗ w2

11 + (Z2 − T2) ∗ f ′(s22) ∗ w2
12

)
∗ f ′(s11) ∗ x0 = ∇y11 ∗ f ′(s11) ∗ x0

∇w1
01 =

(
δ12 ∗ w2

11 + δ22 ∗ w2
12

)
∗ f ′(s11) ∗ x0 = ∇y11 ∗ f ′(s11) ∗ x0 = δ11 ∗ x0

∇w1
11 =

(
δ12 ∗ w2

11 + δ22 ∗ w2
12

)
∗ f ′(s11) ∗ x1 = ∇y11 ∗ f ′(s11) ∗ x1 = δ11 ∗ x1

∇w1
21 =

(
δ12 ∗ w2

11 + δ22 ∗ w2
12

)
∗ f ′(s11) ∗ x2 = ∇y11 ∗ f ′(s11) ∗ x2 = δ11 ∗ x2

∇w1
02 =

(
δ12 ∗ w2

21 + δ22 ∗ w2
22

)
∗ f ′(s12) ∗ x0 = ∇y12 ∗ f ′(s12) ∗ x0 = δ12 ∗ x0

∇w1
12 =

(
δ12 ∗ w2

21 + δ22 ∗ w2
22

)
∗ f ′(s12) ∗ x1 = ∇y12 ∗ f ′(s12) ∗ x1 = δ12 ∗ x1

∇w1
22 =

(
δ12 ∗ w2

21 + δ22 ∗ w2
22

)
∗ f ′(s12) ∗ x2 = ∇y12 ∗ f ′(s12) ∗ x2 = δ12 ∗ x2

The computation of ∇yijs is similar to the computation of pre-synaptic values (sijs) during the

forward propagation, but in a backward manner and δs take the role of input.

A.1 Backpropagation Algorithm

A single pass of the backpropagation algorithm is summarized as below.

A.1.1 Forward Propagation

Feedforward passes on input x to compute all the activations yLj of the final layers, j = 1, 2, ...,

mL. mL is the number of neurons in the output layer.

A.1.2 Backward Propagation

For each output unit j, compute:

δLj = (yLj − Tj) ∗ f ′(sLj)

Then, for l = L− 1, L− 2,, 1 compute:

δli = (

ml+1∑
j=1

wl+1
ij δl+1

j) ∗ f ′(sli)

53

where, i = 1, 2, ..., ml. ml is the number of neurons in the current layer, and ml+1 is the

number of neurons in the following or next layer.

L is the total number of layers including L-1 hidden layers and an output layer. ml+1 is the

number of neurons in the (l + 1)th layer.

After that, compute the partial derivatives of the cost with respect to every weight (including

bias).

∇wl
ij = yl−1i δlj

yl−10 = 1 for bias, and yl−1i = xi for the first hidden layer.

Finally, update the weights with some learning rate.

A.2 Proof by Induction

Fig. A.9 and A.8 show the ANN with L layers (L-1 hidden layers, and an output layer). The

number of neurons in output layer is mL, and the number of features/input to the ANN is D. All

the hidden layers can have different number of neurons (m1, m2, ..., mL−1); generally between D

and mL, and in the decreasing order from D to mL. Only a few weights, pre-activated values, and

post-activated values are shown in the diagram as it will look cluttered and unclear. Remaining

weights and activation values can be shown in a similar fashion. Superscript is the layer number,

the subscript is the neuron number in a layer. In the case of weights wij i is the neuron number of

from-neuron and j is the neuron number of to-neuron.

A.2.1 Output/Final layer

The residual error for neuron 1 of output/final layer is yL1 − T1. Similarly for neuron 2, 3, ..., mL

are yL2 − T2, yL3 − T3, ..., yLmL
− TmL . The cost functions are E1 = 1

2(yL1 − T1)2, E2 = 1
2(yL2 − T2)2,

E3 = 1
2(yL3 −T3)2, ..., EmL = 1

2(yLmL
−TmL)2; whereby the total error E = E1 +E2 +E3 + ...+EmL .

The weights be to corrected at each iteration of gradient descent for this layer are wL
ijs where

0 < i < mL−1 (number of neurons in last hidden layer) and 1 < j < mL(number of neurons in

last/output layer).

The calculation of the gradients is done as shown.

∇wL
01 =

∂E

∂wL
01

=
∂E1

∂wL
01

+
∂E2

∂wL
01

+
∂E3

∂wL
01

++
∂EmL

∂wL
01

54

Figure A.8: Initial Layers of ANN containing L layers (L-1 hidden layers and 1 output layer)

55

Figure A.9: Final Layers of ANN containing L layers (L-1 hidden layers and 1 output layer)

56

∂E1

∂wL
01

=
∂E1

∂yL1

∂yL1
∂sL1

∂sL1
wL
01

= (yL1 − T1) ∗ f ′(sL1) ∗ yL−10

As E2, E3, ..., EmL are not affected by wL
01, that is, E2, E3, ..., EmL will not contain any term

involving wL
01,

∂E2

∂wL
01

= 0

And, so is the case with the partial derivative of other errors.

∇wL
01 = (yL1 − T1) ∗ f ′(sL1) ∗ yL−10 = δL1 ∗ yL−10

∇wL
11 = (yL1 − T1) ∗ f ′(sL1) ∗ yL−11 = δL1 ∗ yL−11

∇wL
21 = (yL1 − T1) ∗ f ′(sL1) ∗ yL−12 = δL1 ∗ yL−12

All the other gradients of the weights of this layer can be calcluated in this way. Thus general-

izing,

δLj = (yLj − Tj) ∗ f ′(sLj), and ∇wL
ij = yL−1i ∗ δLj , where 0 < i < mL−1 (number of neurons in last

hidden layer) and 1 < j < mL(number of neurons in last/output layer).

A.2.2 Base Step (last hidden layer)

Now, for the last hidden layer,

∇wL−1
01 =

∂E

∂wL−1
01

=
∂E1

∂wL−1
01

+
∂E2

∂wL−1
01

+
∂E3

∂wL−1
01

++
∂EmL

∂wL−1
01

∂E1

∂wL−1
01

=
∂E1

∂yL1

∂yL1
∂sL1

∂sL1
yL−11

∂yL−11

∂sL−11

∂sL−11

∂wL−1
01

= (yL1 − T1) ∗ f ′(sL1) ∗ wL
11 ∗ f ′(sL−11) ∗ yL−20

∂E1

∂wL−1
01

= (δL1 ∗ wL
11) ∗ f ′(sL−11) ∗ yL−20

∂E2

∂wL−1
02

= (δL2 ∗ wL
12) ∗ f ′(sL−11) ∗ yL−20

.

.

.

57

∂EmL

∂wL−1
0mL

= (δLmL
∗ wL

1mL
) ∗ f ′(sL−11) ∗ yL−20

∇wL−1
01 = (

mL∑
j=1

wL
1jδ

L
j) ∗ f ′(sL−11) ∗ yL−20 = δL−11 ∗ yL−20

All the other gradients for this layer can be calculated similarly. Thus, generalizing

with i=1,2,3,...,mL−1, and j=1,2,3,...,mL

δL−1i = (

mL∑
j=1

wL
ijδ

L
j) ∗ f ′(sL−1i)

And, with i=0,1,2,...,mL−2, and j=1,2,3,...,mL−1.

∇wL−1
ij = yL−2i ∗ δL−1j

This can also be proved in a similar manner for the second last hidden layer as well.

A.2.3 Inductive Hypothesis ((k + 1)th layer)

Inductive hypothesis states that

δk+1
i = ∇yk+1

i ∗ f ′(sk+1
i) =

∂E

∂yk+1
i

∗ f ′(sk+1
i) = (

mk+2∑
j=1

wk+2
ij δk+2

j) ∗ f ′(sk+1
i)

∇wk+1
ij = yki ∗ δk+1

j ; i = 0, 1, 2, ...,mk; j = 1, 2, 3, ...,mk+1

A.2.4 Inductive Step ((k)th layer)

Each neuron in a layer receives the back-propagated error from all the neurons of the next layer.

The error propagated by the following layer already includes all the possible paths via which the

error from the output layer could travel; each error signal is built out of the error signals from the

consecutive layer. Or in other words, during backpropagation, the gradients of a path is the same.

It does not matter the path is used by which neurons to receive the error from the output layer.

Mathematically speaking,

∇wk
01 =

∂E

∂wk
01

=
∂E

∂yk+1
1

∂yk+1
1

∂sk+1
1

∂sk+1
1

∂yk1

∂yk1
∂sk1

∂sk1
∂wk

01

+
∂E

∂yk+1
2

∂yk+1
2

∂sk+1
2

∂sk+1
2

∂yk1

∂yk1
∂sk1

∂sk1
∂wk

01

+ ...

+
∂E

∂yk+1
mk+1

∂yk+1
mk+1

∂sk+1
mk+1

∂sk+1
mk+1

∂yk1

∂yk1
∂sk1

∂sk1
∂wk

01

58

∇wk
01 = (δk+1

1 ∗ wk+1
11 + δk+1

2 ∗ wk+1
12 ++ δk+1

mk+1
∗ wk+1

1mk+1
) ∗ f ′(sk1) ∗ yk−10

∇wk
01 = δk1 ∗ yk−10

This means with i=1,2,3,...,mk, and j=1,2,3,...,mk+1

δki = (

mk+1∑
j=1

wk+1
ij δk+1

j) ∗ f ′(ski)

And, with i=0,1,2,...,mk−1, and j=1,2,3,...,mk.

∇wk
ij = yk−1i ∗ δkj

A.2.5 Summary

Following the base step, and the inductive hypothesis; the necessary and sufficient conditions for

proof by induction is met. Backpropagation algorithm actually is inspired by retrograde analysis

or backward induction. The error signals travel backward in exactly the same way as the pre-

activated value travel forward during the time of the forward propagation. The faster algorithm

of backpropagation that used the dynamic algorithm for speed, is a little bit unclear as regard to

how actually the backpropagation algorithm works. But that is fine, as it itself is an example of

representation learning: moreover, it is faster to implement by the computers.

59

Appendix B

Representation Learning

B.1 Neural Network as a 1-vs-all Model

In an ANN, at the moment the network is trained, the network could be split into two parts; the

first part contains all the hidden layers, while the second part contains the output layer. The first

part is the feature extractor. And, the second part is the classifier. Whenever the system gets

a new instance to categorize, it pre-processes the image first using the first network and extracts

the best features from the data that it could learn during the training time. Now, the output of

the feature extractor network is used by the second network (classifier) to predict the class of the

instance.

In the case of K-class classification, we will have K neurons in the output layer, that is, mL = K.

During the training time, the network thus requires 10 truths to correct the network when it

sees each training sample. This is achieved by a process called one hot vectorization. Let us

say the current data instance belongs to class K. Now, the truth vector is achieved simply by

[0, 0, 0, 0, ..., 0, 0, 0, ..., 0, 0, 0, 1], that is, the truth for the output layer belonging to that particular

class is set 1, while the truth for all other classes is set to 0. This is called hard classification.

Even though the neural network, by default, does soft classification, with the use of this technique

we change the training labels into hard classification. Similarly, during the test period, after the

training is completed, the output of the network might be [r1, r2, r3,, rK]. ri is some real

number value. Condition like this is called soft classification. One hot vectorization changes the

values of ri to either 0 or 1; if ri is the maximum, that is, max([r1, r2, r3,, rK]), then it is

set to 1. Else, to 0.

The K neurons of the output layer are independent nodes, that is, they do not depend upon each

60

other. Once, we separate the network into two parts as mentioned earlier. The second part is just

K independent neurons. The output from the first network (feature extractor) is passed as input

to all these K neurons, but independently. These independent K neurons are thus K independent

logit units, or, logistic regression units. If we use softmax function for the output layer during

training, what softmax function does is changes the output of the network into probabilistic one,

that is, r1 + r2 + r3 ++ rK = 1. It is a soft classification as it gives the probability of the data

instance belonging to all the classes, the total sum is 1. One hot vectorization during the time of

the test, changes this into hard classification using the highest class probability by giving it as 1

and all the others zero value.

Now, again during the testing time, this does not change the idea that the second part of the

two-part split network is K-bunch of independent units. Without applying the softmax function we

can decide the class of the current test instance as the logit unit among K-independent units with

a current highest class value. If we need the probability of this particular test instance belonging

to each class, one way to find it is by using softmax. Hence, the second part of the network, or, the

classifier network is just a 1-vs-all logistic regression classifiers. Logistic regression heavily depends

on the representation of the data, but if provided with the one, is a very good classification model.

This helps in the consideration of neural networks, especially the deep ones, as great examples

of representation learning.

B.2 Neural Network as Image Generator

ANNs, when used for image generation, is alike to ANNs used for classification. The difference

lies in the point that in the case of image generation, the output values are pixel values lying

between 0 − 255. This is the case of pointwise regression. Splitting the network into two parts

as before yields as the first network as the feature extractor again, while the second network as

K-independent linear/logistic regression units; linear if no activation or linear activation is used on

the final layer. Linear regression is merely logistic regression with linear activation used.

Hence, this strengthens the concept of deep neural networks being a representation learning

models.

61

Bibliography

[1] LeCun, Yann. ”LeNet-5, convolutional neural networks”. Retrieved 16 November 2013.

[2] Zhang, Wei (1988). ”Shift-invariant pattern recognition neural network and its optical archi-

tecture”. Proceedings of annual conference of the Japan Society of Applied Physics.

[3] Zhang, Wei (1990). ”Parallel distributed processing model with local space-invariant intercon-

nections and its optical architecture”. Applied Optics. 29 (32): 47907.

[4] Matusugu, Masakazu; Katsuhiko Mori; Yusuke Mitari; Yuji Kaneda, ”Subject independent

facial expression recognition with robust face detection using a convolutional neural network”,

2003.

[5] T. Serre, A. Oliva, and T. Poggio, A feedforward architecture accounts for rapid categorization,

Proc. Nat. Acad. Sci. USA, vol. 104, no. 15, pp. 64246429, 2007.

[6] N. Pinto, N. Majaj, Y. Barhomi, E. Solomon, D. Cox, and J. DiCarlo, Hu-

man versus machine: Comparing visual object recognition systems on a level

playing field, in Proc. Comput. Syst. Neurosci., Mar. 2010, [Online]. Available:

http:// www.frontiersin.org/10.3389/conf.fnins.2010.03.00283/event abstract, doi:

10.3389/conf.fnins.2010.03.00283.

[7] J. J. DiCarlo, D. Zoccolan, and N. C. Rust, How does the brain solve visual object recognition?

Neuron, vol. 73, no. 3, pp. 415434, 2012.

[8] Goodale MA, Milner AD. ”Separate visual pathways for perception and action”. Trends Neu-

rosci, 1992.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional

neural networks, in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 10971105.

62

[10] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio, Maxout networks,

in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 13191327.

[11] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level

performance on imagenet clas- sification, in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,

pp. 10261034.

[12] M. Zeiler and R. Fergus, Stochastic pooling for regularization of deep convolutional neural

networks, in Proc. ICLR, 2013. [Online]. Available: https://arxiv.org/abs/1301.3557

[13] M. Malinowski and M. Fritz. (2013). Learnable pooling regions for image classification. [Online].

Available: https://arxiv. org/abs/1301.3516

[14] K. He, X. Zhang, S. Ren, and J. Sun, Spatial pyramid pooling in deep convolutional networks

for visual recognition, IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 19041916,

Sep. 2015.

[15] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, Multi-scale orderless pooling of deep convolutional

activation features, in Proc. Eur. Conf. Comput. Vis., 2014, pp. 392407.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A

simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., vol. 15, no. 1,

pp. 19291958, 2014.

[17] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, Regularization of neural networks

using dropconnect, in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 10581066.

[18] A. Krogh and J. A. Hertz, A simple weight decay can improve gener- alization, in Proc. Adv.

Neural Inf. Process. Syst., vol. 4. San Mateo, CA, USA, 1995, pp. 950957.

[19] G. E. Dahl, D. Yu, L. Deng, and A. Acero, Context-dependent pre- trained deep neural

networks for large-vocabulary speech recognition, IEEE Trans. Audio, Speech, Lang. Process.,

vol. 20, no. 1, pp. 3042, Jan. 2012.

[20] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing

internal covariate shift, in Proc. Int. Conf. Mach. Learn., 2015, pp. 448456.

[21] K. Simonyan and A. Zisserman. (2014). Very deep convolutional networks for large-scale image

recognition. [Online]. Available: https://arxiv.org/abs/1409.1556

63

[22] C. Szegedy et al., Going deeper with convolutions, in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2015, pp. 19.

[23] K. He, X. Zhang, S. Ren, and J. Sun. (2015). Deep residual learning for image recognition.

[Online]. Available: https://arxiv.org/abs/1512.03385

[24] M. Lin, Q. Chen, and S. Yan, Network in network, in Proc. ICLR, 2014. [Online]. Available:

https://arxiv.org/abs/1312.4400

[25] Weiwei Shi, Yihong Gong, Xiaoyu Tao, Jinjun Wang, and Nanning Zheng, Fellow, ”Improv-

ing CNN Performance Accuracies With MinMax Objective”, IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018.

[26] Tsung-Yu Lin,Aruni RoyChowdhury, and Subhransu Maji, ”Bilinear CNN Models for Fine-

grained Visual Recognition”

[27] Ian Goodfellow and Yoshua Bengio and Aaron Courville, ”Deep Learning”, MIT Press, 2016,

pp. 1-26

[28] Mor-Yosef S, Samueloff A, Modan B, Navot D, Schenker JG, ”Ranking the risk factors for

cesarean: logistic regression analysis of a nationwide study”, in Proc. National Center for

Biotechnology Information, 1990 Jun

[29] McCulloch, Warren; Walter Pitts (1943). ”A Logical Calculus of Ideas Immanent in Nervous

Activity”. Bulletin of Mathematical Biophysics. 5 (4): 115133. doi:10.1007/BF02478259.

[30] Hebb, Donald (1949). The Organization of Behavior. New York: Wiley. ISBN 978-1-135-63190-

1.

[31] Rosenblatt, F. (1958). ”The Perceptron: A Probabilistic Model For Information Storage And

Organization In The Brain”. Psychological Review. 65 (6): 386408.

[32] Rumelhart, D.E; McClelland, James (1986). Parallel Distributed Processing: Explorations in

the Microstructure of Cognition. Cambridge: MIT Press. ISBN 978-0-262-63110-5.

[33] Hinton, G. E.; Osindero, S.; Teh, Y. (2006). ”A fast learning algorithm for deep

belief nets” (PDF). Neural Computation. 18 (7): 15271554. CiteSeerX 10.1.1.76.1541.

doi:10.1162/neco.2006.18.7.1527. PMID 16764513.

64

[34] Larochelle, Hugo; Erhan, Dumitru; Courville, Aaron; Bergstra, James; Bengio, Yoshua (2007).

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation.

Proceedings of the 24th International Conference on Machine Learning. ICML ’07. New York,

NY, USA: ACM. pp. 473480. CiteSeerX 10.1.1.77.3242

[35] Ranzato, Marc Aurelio; Boureau, Y-Lan (2007). ”Sparse Feature Learning for Deep Belief

Networks” (PDF). Advances in Neural Information Processing Systems. 23: 18.

[36] Widrow, B., and Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON Convention

Record.

[37] Fukushima, K. (1980). ”Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position”. Biological Cybernetics. 36 (4): 93202.

doi:10.1007/BF00344251. PMID 7370364.

[38] LeCun, Yann; Lon Bottou; Yoshua Bengio; Patrick Haffner (1998). ”Gradient-based learn-

ing applied to document recognition” (PDF). Proceedings of the IEEE. 86 (11): 22782324.

CiteSeerX 10.1.1.32.9552. doi:10.1109/5.726791. Retrieved October 7, 2016.

[39] Fukushima, K.: Cognitron: a self-organizing multilayered neural network. Biol. Cybernetics

20, 121-136 (1975)

[40] Fukushima, K. : Improvement in pattern-selectivity of a cognitron (in Japanese). Pap. Tech.

Group MBE78-27, IECE Japan (1978)

[41] Vinod Nair, and Geoffrey E. Hinton, ”Rectified Linear Units Improve Restricted Boltzmann

Machines”, 2010.

[42] Xavier Glorot, Antoine Bordes, and Yoshua Bengio, ”Deep Sparse Rectifier Neural Networks”,

2011.

[43] K Jarrett, K Kavukcuoglu, Y LeCun 2009 IEEE 12th International Conference on Computer

Vision (ICCV), 2146-2153.

[44] Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986). ”Learning representa-

tions by back-propagating errors”. Nature. 323 (6088): 533536. Bibcode:1986Natur.323..533R.

doi:10.1038/323533a0.

65

[45] Pearson, K. (1901). ”On Lines and Planes of Closest Fit to Systems of Points in Space”.

Philosophical Magazine. 2 (11): 559572. doi:10.1080/14786440109462720.

[46] Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.

Journal of Educational Psychology, 24, 417441, and 498520.

[47] Hotelling, H (1936). ”Relations between two sets of variates”. Biometrika. 28 (3/4): 321377.

doi:10.2307/2333955. JSTOR 2333955.

66

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Bikram Basnet

basnetbik@gmail.com

Degrees:

Bachelor in Computer Engineering (B.E.) 2014

Institute of Engineering Central Campus, Tribhuvan University, Nepal

Thesis Title: A Novel Feature Maps Covariance Minimization Approach for Advancing Convolu-

tional Neural Network Performance

Thesis Examination Committee:

Chairperson, Dr. Justin Zhan, Ph.D.

Committee Member, Dr. Wolfgang Bein, Ph.D.

Committee Member, Dr. Laxmi Gewali, Ph.D.

Graduate Faculty Representative, Dr. Ge Lin Kan, Ph.D.

67

