
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2015

Efficient Estimation of Cluster Population Efficient Estimation of Cluster Population

Sanjeev K C
University of Nevada, Las Vegas, sanjeev.kc6@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Geometry and Topology Commons, and the Theory and Algorithms Commons

Repository Citation Repository Citation
K C, Sanjeev, "Efficient Estimation of Cluster Population" (2015). UNLV Theses, Dissertations, Professional
Papers, and Capstones. 2370.
https://digitalscholarship.unlv.edu/thesesdissertations/2370

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2370?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

EFFICIENT ESTIMATION OF CLUSTER POPULATION

by

Sanjeev K C

Bachelor of Computer Engineering

Tribhuvan University

Institute of Engineering, Pulchowk Campus

2010

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science – Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2015

Copyright by Sanjeev K C, 2015

All Rights Reserved

ii

We recommend the thesis prepared under our supervision by

Sanjeev K C

entitled

Efficient Estimation of Cluster Population

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Laxmi P. Gewali, Ph.D., Committee Chair

John T. Minor, Ph.D., Committee Member

Ajoy K. Datta, Ph.D., Committee Member

Henry Selvaraj , Ph.D., Graduate College Representative

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College

May 2015

Abstract

Partitioning a given set of points into clusters is a well known problem in pattern recogni-

tion, data mining, and knowledge discovery. One of the well known methods for identifying

clusters in Euclidean space is the K-mean algorithm. In using the K-mean clustering al-

gorithm it is necessary to know the value of k (the number of clusters) in advance. We

propose to develop algorithms for good estimation of k for points distributed in two di-

mensions. The techniques we pursue include a bucketing method, g-hop neighbors, and

Voronoi diagrams. We also present experimental results for examining the performances of

the bucketing method and K-mean algorithm.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Laxmi Gewali for his

valuable guidance and support during the completion of this thesis. I would also like to

thank Dr. Ajoy Datta for his help in official and academic difficulties and confusions.

Furthermore, I would like to thank Dr. John Minor and Dr. Henry Selvaraj for being a

part of my thesis committee.

Moreover, my courteous appreciation goes to my parents, my wife and my family mem-

bers for their unconditional support and inspiration in each and every steps.

Last but not least, I would like to thank all my friends, juniors and seniors for their love

and support.

Sanjeev K C

University of Nevada, Las Vegas

May 2015

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

Chapter 1 Introduction 1

Chapter 2 Review of Clustering Algorithm 3

2.1 Generic strategies for Clustering . 3

2.2 K-Mean algorithm . 5

Chapter 3 Estimation of Cluster Centers 7

3.1 Chapter Summary . 7

3.2 Adaptive Bucketing . 8

3.3 Aggregating buckets of a cluster . 13

3.4 Nudging . 14

3.5 Local Density Estimation . 17

3.5.1 g-Hop Neighbor . 17

3.5.2 Voronoi Based g-hop . 18

3.6 Randomized Approach . 22

3.7 Measuring Solution Quality . 23

v

Chapter 4 Implementation 24

4.1 GUI Description . 24

4.2 Interface Description . 25

4.3 Execution of Bucket Clustering algorithm 27

4.4 Results and statistics . 30

Chapter 5 Conclusion and Discussion 41

Bibliography 43

Curriculum Vitae 44

vi

List of Tables

4.1 File Menu Items Description. 26

4.2 Checkbox Description. 27

4.3 Button Description. 27

4.4 Textbox Description. 27

4.5 Dataset result Mapping . 30

4.6 Dataset 1 Experimental results . 38

4.7 Dataset 2 Experimental results . 38

4.8 Dataset 3 Experimental results . 38

4.9 Dataset 4 Experimental results . 38

4.10 Dataset 5 Experimental results . 39

4.11 Dataset 6 Experimental results . 39

4.12 Dataset 7 Experimental results . 40

vii

List of Figures

2.1 Illustrating Hierarchical strategy for Clustering 4

2.2 Illustrating tree of cluster combinations . 4

3.1 Illustrating a set of clustered nodes . 8

3.2 Illustrating Bucket-Embedding . 9

3.3 Merging of Bucket Captured Clusters . 9

3.4 Bucket index and point mapping . 11

3.5 Point distribution with two clusters . 13

3.6 Extraction of coarse cluster . 15

3.7 Cluster refinement by nudging . 16

3.8 Nudging Types . 16

3.9 Points in the neighborhood of a point . 17

3.10 Showing the 3-hop neighbor . 18

3.11 Illustrating Voronoi Diagram of 50 point sites 19

3.12 Illustrating 1-hop and 2-hop rings . 20

3.13 Input points . 22

3.14 Sampled points using Random Approach . 23

4.1 Graphical User Interface layout. 25

4.2 Actual Graphical User Interface . 26

4.3 Set of input points . 28

4.4 Cluster obtained using bucket clustering algorithm 29

4.5 Clusters after Nudging . 29

4.6 Labeling buckets as high and low . 30

viii

4.7 Dataset 1 with initial centroids at point 9, 16, 56, 33 31

4.8 Dataset 1 after executing bucketing algorithm and nudging 31

4.9 Dataset 2 with initial centroids at point 50, 7, 28 32

4.10 Dataset 2 after executing bucketing algorithm 32

4.11 Dataset 3 with initial centroids at point 9, 16, 56, 35 33

4.12 Dataset 3 after executing bucketing algorithm and nudging 33

4.13 Dataset 4 with initial centroids at point 0, 91, 150, 72, 112 34

4.14 Dataset 4 after executing bucketing algorithm 34

4.15 Dataset 5 with initial centroids at point 9, 102, 33, 191, 379, 492 35

4.16 Dataset 5 after executing bucketing algorithm and nudging 35

4.17 Dataset 6 with initial centroids at point 168, 55, 104, 392 36

4.18 Dataset 6 after executing bucketing algorithm and nudging 36

4.19 Dataset 7 with initial centroids at point 374, 68, 296, 488 37

4.20 Dataset 7 after executing bucketing algorithm 37

ix

Chapter 1

Introduction

Clustering is a technique of identifying 'closely related points' from a collection of large

number of data. Closely related points in terms of some distance metric are grouped together

as a cluster. In most input data there could be several blocks of clusters. The notion of

perceiving clusters in a given distribution of points has been considered from the very dawn

of civilization. Distribution of stars in the night sky can be considered as a distribution of

points, and groups of stars in the form of zodiacs, ursa-major, ursa-minor, and the milky

way can be viewed as star clusters.

Cluster analysis is extensively used in many fields that include statistics, medicine, the

social sciences and humanities [6]. In fact, any study that uses collection of data can make

productive use of cluster analysis.

Most of the early research on cluster analysis was done by considering the point distri-

bution in Euclidean space, where an Euclidean metric is used to measure distance between

points. In this setting, distance between a pair of points in the same cluster is distinctly

smaller than the distance between a pair formed by taking one point from the cluster and

the other from outside the cluster.

After the advent of computer science, researchers considered the problem of developing

efficient algorithms for extracting clusters [3] [6] [7]. The K-Mean algorithm and its vari-

ations are examples of practical algorithms for identifying clusters in Euclidean space. In

recent years, there has been a surge in research interest for identifying clusters in big-data.

In normal data we can assume that all the data is available in the main memory, and al-

1

gorithms are developed by considering the standard RAM model. In big-data, not all the

data can be stored in RAM. The challenge is to develop cluster identification algorithms

when data is available in external memory and the cloud storage.

In some applications, an Euclidean metric can not be used to measure distance between

points. The data points could be visitors to Las Vegas entertainment sites, and we may

be interested to identify a cluster of visitors who visit casino sites and are coming from

Hong Kong. Straightforward use of Euclidean metric may not be applicable in such data

to extract clusters. We need to come up with an appropriate metric other than Euclidean.

In statistics, a widely used technique for cluster analysis is the method of principal

component analysis (pca). In this approach an orthogonal transformation is performed to

obtain linearly uncorrelated data from possibly correlated ones [5].

In this thesis we address the issues of estimating the number of clusters for points

distributed in Euclidean space. In Chapter 2, we present a critical review of the prominent

existing methods for extracting clusters. In Chapter 3, we present the main contribution

of the thesis. We present several algorithms for estimating the number of clusters and

the location of their centers. The algorithms we present include (i) bucketing method,

(ii) g-hop neighbors, and (iii) Voronoi-based g-hop neighbors. In Chapter 4, we present

implementation of some of the techniques presented in Chapter 3. The implementation

is done in the Java Programming Language. Finally, in Chapter 5, we describe possible

extensions and generalizations of proposed algorithms, and avenues and scope for future

work.

2

Chapter 2

Review of Clustering Algorithm

In this chapter we present a critical review of well known clustering algorithms reported

in computer science and application literature. In our review we particularly focus on the

application of the tools from computational geometry for developing efficient clustering

algorithms. Clustering algorithm have been reported in engineering and statistics literature

for almost one hundred years [6] [7]. Most of the clustering algorithms assume that the

input points are distributed in Euclidean space. In recent years there has been extensive

interest among big-data researchers to develop clustering techniques in non-Euclidean space.

Furthermore, extracting clusters from cloud stored big-data (in the range of Xetabytes)

warrants the development of new approaches and insights.

2.1 Generic strategies for Clustering

Most of the clustering algorithms reported in the literature can be broadly classified into

two kinds. The first kind of algorithms are developed by using a hierarchical scheme and

the other is the point assignment. A detailed discussion of these approaches are found in

[6].

In the hierarchical scheme, each of the points pi's in the input data are considered

themselves as clusters. Each cluster is associated with its centroid point which is taken as

the arithmetic mean of the coordinates of the points in the cluster. Two clusters are picked

to combine by formulating some metric. One simple way of combining clusters is to pick a

pair of clusters whose centroids are closest. Another way to combine clusters is to consider

3

the smallest distance between nodes from one cluster to the other. When a new cluster

is formed by combining two smaller clusters, the corresponding centroid is also computed.

The process of combining two clusters is continued until all points are grouped into one

cluster. In some sense the hierarchical clustering scheme works by following the spirit of

the construction of a minimum spanning tree by using Kruskals' algorithm [2]. We can

illustrate this strategy by an example shown in Figure 2.1.

1 2
12

13

14

20
2215

19

16

8
10

11 9

5

7

6

4

317

18

E

P

M

H

F

G

V

A

Q

R

K

N

BT

L

C

D

O

21

S

J

I

Figure 2.1: Illustrating Hierarchical strategy for Clustering

15 20 16 19

G

J

L

13P

E

M

S

H

12

1 2

V 14

21

R Q

CA

111085 76 9

O3 417 18

T B

I

D

KN

22 F

Figure 2.2: Illustrating tree of cluster combinations

In the point assignment strategy, clustering algorithms are developed by making an

initial estimate of the number of clusters that are constructed by adding points one by one

to the initial partial clusters. The k-mean algorithm described in the next section is an

4

example of this strategy.

2.2 K-Mean algorithm

The K-Mean Algorithm was first formally introduced by Stuart Lloyd [7] in connection with

its application to pulse code modulation at Bell Lab. This algorithm is perhaps the most

widely referred clustering algorithm for almost 35 years. The algorithm works for points

distributed in Euclidean space. The algorithm assumes the number of clusters as a part of

the input. The location of the initial k points is also specified by the user of the algorithm.

The algorithm grows the clusters by adding carefully selected nodes to one of the clusters.

Initially, each of the k clusters have one node. The locations of the initial single member

in the clusters are taken as their centroids. The algorithm progresses through a series of

steps to grow clusters by adding one node at a time. The nodes outside the clusters are

unprocessed nodes . The algorithm examines an unprocessed node pi as the next candidate

point. The candidate point pi is added to the cluster whose center is closest to pi. This

process of “adding a candidate point” is continued until all nodes are processed. When

all points are processed, one pass of the “clusters construction” is completed. After the

completion of a pass the centroids are recomputed. The updated centroid of a cluster Ci

is the centroid of all points included in it. A new pass of computation starts again with

respect to the newly updated centroids. In each pass the estimation of centroids and the

corresponding cluster is updated. The initiation of the next pass stops when cluster members

do not change or the change in the location of centroids is below a certain predetermined

threshold value. A formal sketch of the algorithm is listed as K-Mean Algorithm (Algorithm

2.1).

5

Algorithm 2.1: K-Mean Algorithm

Input: (i) Set of points S = p0, p1,, pn−1 in 2D

(ii) Integer k

(iii) Threshold value δ

Output: Clusters of point sets C1, C2,, Ck

Step 1: (i) Pick well-separated k points q1, q2,, qk

(ii) Let ti be the centroid for Ci.

(iii) Set ti to qi's

Step 2: (i) CentroidMovement = LargeNumber;

(ii) ClusterChangeFlag = true;

Step 3: while (CentroidMovement > δ and ClusterChangeFlag == true) {

Step 4: (i) Mark all points in S 'unprocessed'

(ii) Initialize new clusters Ci'’s to empty

Step 5: for (int i = 0; i <n; i++) {

(a) Let tj be the centroid closest to pi

(ii) Include pi into Ci'

(iii) Mark pi 'processed'

}

Step 6: Compute new centroids ti'’s

Step 7: Set ClusterChangeFlag by comparing old Ci’s to new clusters Ci'’s

Step 8: Set CentroidMovement by comparing ti’s to ti'’s

Step 9: Set Ci’s to Ci'’s

Step 10: } // end while

6

Chapter 3

Estimation of Cluster Centers

3.1 Chapter Summary

One of the most popular methods for constructing clusters from a given set of points dis-

tributed in Euclidean space is the k-mean algorithm [7]. This algorithm assumes that the

number of clusters k is known in advance. If the value of k is not given as a part of the input

then we need to estimate it 'somehow'. One straightforward technique would be to repeat

the execution of the algorithm for several values of k and evaluate the quality of resulting

solutions. The value of k that corresponds to the best value of cluster quality is the desired

answer. A brute-force method is to try all values of k = 2,3,4,... n. A faster method based

on the binary search technique has been suggested [6] for searching for the value of k. Obvi-

ously the binary search technique is only effective where the quality of cluster as a function

of k is a monotone function. An exhaustive searching approach has several demerits: (i)

executing the clustering algorithm repeatedly is time consuming, (ii) measuring the quality

of a candidate solution is not precise, and (iii) locating the cluster center for a given value

of k is itself a difficult and critical problem. We present three approaches for estimating the

value of k and their center’s locations (co-ordinates) for points distributed in the Euclidean

plane. The first approach called 'adaptive-bucketing' estimates k by partitioning the region

containing the input points into orthogonal buckets. The second approach called 'g-hop

capture' estimates the value of k by examining the g-hop neighbors of the input points.

Finally, the third approach we present is based on the principle of randomization. In this

approach a subset of input points is randomly selected and these points are processed by us-

7

ing adaptive-bucketing and/or g-hop capture to estimate the value of k and the co-ordinates

of estimated centers.

3.2 Adaptive Bucketing

Without loss of generality we can assume that the input point-sites p0, p1, ..., pn are inside

a rectangular box R of height = h and width = w. The box R can be divided into nxm

orthogonal buckets. The value of bucket size m can be pre-determined by examining the

distribution of the nearest neighbor distance distribution for n input points. The exact

method for estimating the value of m will be described at the end of this chapter. An ex-

ample of partitioning the bounding box R into orthogonal buckets is shown in Figure 3.1-3.3.

Figure 3.1: Illustrating a set of clustered nodes

8

Figure 3.2: Illustrating Bucket-Embedding

Figure 3.3: Merging of Bucket Captured Clusters

A straight-forward approach for counting the points in each bucket is to check for point

inclusion in each nxm buckets. The bucket that returns 'true' for point inclusion is the

bucket containing the point. Since the buckets are disjoint, only one bucket will return true

for inclusion for a given point.

9

To implement this approach we maintain a count array cnt[nm − 1] whose entries are

initialized to zeros at the start. An array bx[] holds the coordinates of the top left corner

of buckets. If the inclusion test for point pi(xi, yi) against bucket bx[j] returns true then

cnt[bx[j]] is increased by 1. When this check is repeated for all points, point counts for all

buckets is complete. A formal sketch of the algorithm based on this approach is listed as

Straightforward Count Algorithm (Algorithm 3.1)

Algorithm 3.1: Straightforward Count Algorithm

Input: (i) p[N]; // Input points in 2D

(ii) int n, m; // Number of bucket rows and columns

(iii) int bx[n,m]; //Array to hold top left corner of buckets

(iv) int kv, kh; // length and width of each bucket

Output: cnt[]; // Array to hold count of bucket

Step 1: // Read input

read p[N], n, m ,kv,kh

Step 2: // Initialize cnt[] to 0’s

for (int i = 0; i < n*m; i++)

cnt[i] = 0;

Step 3: for (int i = 0; i <N ; i++) {

for (int j = 0; j < n*m; j++) {

if (inside(bx[j], p[i]))

cnt[bx[j]]++;

}

}

Step 4: Output cnt[]

The time complexity of Algorithm 3.1 can be done as follows. Step 1 takes O(N +nm).

Step 2 takes O(nm). Step 3 takes O(Nnm) which is the dominating step in terms of

10

complexity. Hence the overall time complexity is O(Nnm). If n*m is comparable to N

then the time complexity becomes O(N2) which is rather high.

Mapping Count Approach

This approach is used to directly map pi to the bucket b[j] where it falls. Since the size of

buckets are the same and rectangular, the index of the bucket where point pi falls can be

computed in term of the row number, column number, width, and height of the bucket. It

is given that the outer rectangle R bounding the input points is partitioned into n columns

and m rows of buckets, each of size kv*kh. Here kv is the vertical extent of the bucket and

kh its horizontal width. For a given point pi(xi, yi), its row number rn is given by rn = yi/kv

+ 1 and column number cn = xi/kh +1. We can index buckets left to right and top to

bottom as 1, 2,, n*m as shown in Figure 3.4. Then the bucket index corresponding

to point pi(xi, yi) is (rn − 1) ∗ n + cn. As an example, point p1(55, 25) is mapped bucket

(3-1)*5 + 4 = 14.

15,0 30,0 45,0 60,0 75,00,0

0,10

0,20

0,30

0,40

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

55,25

Figure 3.4: Bucket index and point mapping

Based on this mapping, the following is a faster algorithm (Algorithm 3.2) called Map-

ping Count Algorithm.

11

Algorithm 3.2: Mapping Count Algorithm

Input: (i) p[N]; // Input points in 2D

(ii) int n,m; // Number of bucket rows and columns

(iii) int bx[n,m]; //Array to hold top left corner of buckets

(iv) int kv,kh; // length and width of each bucket

Output: cnt[n*m]; // Array to hold count of bucket

Step 1: read p[N], n, m, kv, kh // Read input

Step 2: for(int i = 0; i <n*m; i++) // Initialize cnt[] to 0’s

cnt[i] = 0;

Step 3: for(int i = 0; i < N; i++) {

rn = yi/kv + 1;

cn = xi/kh + 1;

j = (rn − 1) ∗ n + cn

cnt[bx[j]]++;

}

Step 4: Output cnt[n*m]

The time complexity of Algorithm 3.2 can now be analyzed. Step 1 and Step 2 each take

O(N + nm) and O(nm), respectively. The for loop of Step 3 executes O(N) times and one

execution of the body of the for loop takes O(1) time. Hence Step 1 is the dominant step

and hence the total time complexity of Algorithm 3.2 is O(N +nm). This time complexity

is optimal in the sense that it takes O(N) time to read the points and n*m is at most N

(Remark 3.1).

Remark 3.1 (Number of buckets): The very purpose of using buckets fails

if there are too many buckets. For making the bucketing approach efficient we

do not want to have many empty buckets. At the same time to identify the

boundaries of clusters we should have enough buckets. A good upper bound

for the number of rows and columns in bucket partitioning is
√
N . In some

applications, the number of rows and columns is much smaller than
√
N , and

in some cases it’s even constant.

12

3.3 Aggregating buckets of a cluster

After identifying buckets containing a high concentration of points, it is now necessary to

aggregate buckets together belonging to the same cluster. We can clarify this with the

following example in Figure 3.5

b12 b6 b7

b11

b1

b3

b4

b2

b8 b5

b15b13

b10
b9

b14

Figure 3.5: Point distribution with two clusters

In this example there are two clusters C1 and C2. Cluster C1 has 10 buckets b1, b2, b3,

b4, b5 , b6, b7, b8, b11, b12 and cluster C2 has five buckets b9, b10, b13, b14, b15. Suppose the

starting bucket is b6. The algorithm proceeds by initializing a queue Qb by inserting the

starting bucket b6 to Qb. The algorithm then repeats the following generic task until all

buckets of the cluster are aggregated.

Generic Task : Pick the bucket bj from the front of the queue Qb and enqueue

all 4-connected neighbors of bi that are marked H. Bucket bj is pushed onto

stack Sb and bj is marked processed.

In our running example, bucket b6 is removed from the front of the queue Qb and its

'H' marked neighbors that have not been processed yet(b2, b4, b8 and b7) are enqueued onto

queue Qb. Bucket b6 is marked processed. Next bucket b2 is removed from the queue and

13

its unprocessed neighbors that are marked 'H'(b1 and b3) are enqueued onto the queue.

Bucket b2 is marked processed. These operations on stack and queue are repeated until

the queue is empty. When the queue is empty all the buckets of the cluster in the context

are present in the stack. A formal sketch of the algorithm which we refer to as Bucket

Clustering Algorithm is listed as Algorithm 3.3

Algorithm 3.3: Bucket Clustering Algorithm

Input: (i) An array b[] of size m * n representing the top left co-ordinates of buckets

(ii) A given starting bucket index q that belongs to current cluster

Output: A stack containing the buckets representing the cluster counting b[q]

Step 1: Q = b[q]; // Initialize queue Q

// Initialize stack Sb to be empty

Step 2: while (Q is not empty) {

a. Px = Q.delete();

b. Let Rc be set of unprocessed h-neighbors of Px

c. Insert points in Rc into Q

d. Push Px into stack Sb

e. Mark points in Rc 'processed'

}

Step 3: Output Sb

3.4 Nudging

A straightforward application of the bucketing technique aggregates high count buckets

(H-buckets) to extract a cluster. We refer to the clusters constructed in this way as coarse

clusters and their boundaries as coarse boundaries. Some points in L-clusters adjacent to

coarse boundaries are not included in the cluster even if they are very close to the fence

of a H-bucket. Of course, points in L-buckets adjacent to a coarse boundary should not

be included in the cluster if such points are farther away from the boundary and appear

disconnected to the cluster. In Figure 3.6, the cluster at the center is formed by aggregating

8 buckets [4,4], [5,4], [4,5], [5,5], [6,5], [3,6], [4,6] and [5,6]. However, boundary points in

14

low count buckets [4,7], [5,7], [6,7] and [6,6] should be included in the cluster. When such

boundary points are included in the cluster we get better estimation of the cluster as shown

in Figure 3.7.

8

7

6

5

3

1

4

2

2 3 4 5 6 7 81

L L L L L L H

L

L

L

L

L

L

LL

L

L

L

L

L

LLLLLL

L H H H L

L L

L

H H H

H H L

L

L

LL

L

LL

LL

LLL

HH

HH

L

L

L

L

L

L

L

L

L

Figure 3.6: Extraction of coarse cluster

15

8

7

6

5

3

1

4

2

2 3 4 5 6 7 81

L L L L L L H

L

L

L

L

L

L

LL

L

L

L

L

L

LLLLLL

L H H H L

L L

L

H H H

H H L

L

L

LL

L

LL

LL

LLL

HH

HH

L

L

L

L

L

L

L

L

L

Figure 3.7: Cluster refinement by nudging

Now we describe a formal way of identifying points near the coarse boundary that can

be included in the cluster. Our approach is to nudge coarse boundaries to capture proximity

points in the corresponding cluster.

H

L

L

strip nudging

arc nudging

Figure 3.8: Nudging Types

Consider a H-bucket adjacent to a coarse boundary as shown in Figure 3.8. If a L-bucket

shares an edge with a H-bucket, then we can inspect points inside a rectangle of size l x

l/4 (strip rectangle) as shown in Figure 3.8 to possibly include in the cluster, where l is the

side length of the bucket. This is called strip nudging. If a L-bucket is adjacent to a corner

of a H-bucket then we should inspect points inside an arc of radius l/4 and angle 3π/4, as

shown in the lower left of Figure 3.8. This technique is called arc nudging.

16

3.5 Local Density Estimation

A point pi is a very good candidate for the cluster center if there are a lot of points in its

neighborhood. In other words, the region around pi has a higher number of points per unit

area, i.e. higher density region. So, to estimate the density of points in the neighborhood

of pi we need to count points inside a small region enclosing pi as shown in Figure 3.9.

p3

How many points inside?

Figure 3.9: Points in the neighborhood of a point

The first issue here is how to specify the small local region around pi and the second

issue is to find ways to compute the points in such an area quickly. The easiest and the

most logical way to specify the region enclosing pi is a circle with pi as center and a small

radius. The radius should be comparable to the side length of the bucket. To determine the

number of points inside the circle we need to perform an inclusion check for all N points.

A slightly different approach is to use the concept of g-hop as discussed next.

3.5.1 g-Hop Neighbor

For each point site pi, we can define its g-Hop neighbor, if it exists. This can be defined

iteratively as follows. The 1-hop neighbor of pi denoted as 1-hop(pi) is the nearest neighbor

of pi. Let dsk(pi, 1) denote the disk with center at pi and radius equal to the distance

between pi and 1-hop(pi). The 2-hop neighbor of pi is the point site closest to 1-hop(pi)

that lies outside the disk dsk(pi, 1). In general, the g-hop neighbor of pi, denoted by g-

hop(pi), is the point site closest to (g-1)-hop(pi) that lies outside of dsk(pi, g − 1). These

concepts are illustrated in Figure 3.10.

17

p

p

p2

i

3

p6

Figure 3.10: Showing the 3-hop neighbor

Observation 3.1 : It immediately follows that for a given point site pi, g-hop(pi) is

farther away from g'-hop(pi) for g > g'

A straightforward way of computing g-hop(pi) is to use the iterative definition. To

compute (g+1)-hop(pi) we need to check the distance of all point sites from g-hop(pi) that

lie outside of disk dsk(pi, g−1). This checking takes O(n) time. Hence the total time taken

by this approach is O(gn). So to determine the g-hop neighbors of all point sites it takes

O(g2n2) time.

3.5.2 Voronoi Based g-hop

A faster algorithm for computing a variation of g-hop neighbors of all point sites can be

developed by using the Voronoi diagram[8] induced by the input points. The Voronoi

diagram of n point sites partitions the plane into n cells V (i), 1 ≤ i ≤ n such that all

points in a cell V (j) are nearer to site pj than all other sites. All Voronoi cells are convex

polygons. Some Voronoi cells are bounded and others are unbounded. An example of a

Voronoi diagram induced by 50 point sites is shown in Figure 3.11.

Given the Voronoi diagram of n point sites,Voronoi based g-hop neighbor of pi can be

computed by navigating the Voronoi cells starting from V (i), the Voronoi cell for point site

pi. To describe the algorithm in a convenient way we assume that the Voronoi diagram is

available in a Doubly Connected Edge List (DCEL) data structure [1] [8]. The edges of

V (i) are traversed by using the dcel data structure to check Voronoi neighbors of pi. The

Voronoi induced 1-hop neighbor of pi is its nearest neighbor point site which is one of the

point sites corresponding to adjacent cells of V (i). Voronoi based g-hop neighbors can be

18

Figure 3.11: Illustrating Voronoi Diagram of 50 point sites

conveniently defined in term of g-hop ring as follows:

g-hop ring : For a given point site pi, its 1-hop ring is the chain of cells adjacent to V (i).

The g-hop ring of point site pi is the closed or open chain(s) of cells adjacent to the cells of

(g-1)-hop ring, away from pi. In Figure 3.12, 1-hop ring and 2-hop ring are shown for point

site 3.

19

Figure 3.12: Illustrating 1-hop and 2-hop rings

Voronoi based g-hop neighbor of a point site pi is the closest site corresponding to cells

in g-hop ring. If the i-hop ring contains an unbounded cell then the outward cells adjacent

to the cells of i-hop ring do not form closed chains. In such situations we need to consider

chains of cells and proceed.

To compute Voronoi based g-hop for a point site pi we start from cell V (i) and process

cells from inner rings to outer rings starting from the 1-hop ring. Since the Voronoi diagram

is available in doubly connected edge list form, we can navigate from one cell to adjacent

cell by following twin edges of the dcel structure. The details of dcel data structure is in [1]

[8].

A formal sketch of the algorithm which we refer to as Voronoi Based g-hop Estimation

Algorithm is listed as Algorithm 3.4.

20

Algorithm 3.4: Voronoi Based g-Hop Estimation

Input: (i) A set point sites p0, p1, p2, ..., pN−1; // Input points in 2D

(ii) Threshold distance g

(iii) Candidate node pj

Output: Number of points k within distance g

Step 1: Compute the Voronoi diagram of input point sites and represent

it in dcel form.

Step 2: (i) Initialize queue Q to empty queue.

(ii) Insert the cell corresponding to pj into Q

(iii) Cell u = Q.delete(); Mark u as 'processed';

(iv) d = 0;

(v) bool done = false; k = 1;

(vi) Mark all unbounded cells 'processed'

Step 3: while ((not done) and d <g) {

(ii) Let W be the set of unprocessed cells adjacent to u

(iii) If(W is not Empty) {

(a) Insert the cells in W into Q

(b) u = Q.deleteItem(); d = dist(pj , u); k++;

}

Else done = true;

}

Step 4: Output k;

Theorem 3.1: Voronoi based g-hop estimation algorithm can be executed in O(NlogN)

time.

Proof: Step 1 can be done in O(NlogN) time by using Fortune’s sweep line algorithm [1]

[8]. Within the same time complexity the Voronoi diagram can be made available in DCEL

data structure form. The most expensive operation in Step 2 is marking cells, adjacent

to unbounded region, which takes O(n) time. In Step 3 each cell is processed a constant

21

number of time due to the fact that a cell is inserted into the queue only once. Hence the

total time can be charged to the edges processed in the cells which is bounded by O(n).

Hence Step 1 is the most expensive step and the total time is O(NlogN).

3.6 Randomized Approach

If the number of data is very large we can use a randomly generated sample to construct

an input data set of smaller size. If there are N input points p0, p1, ..., pN−1 then a sample

set of input points q0, q1, ..., qk−1 of size k can be constructed by using a random number

generator such as Random() function in Java. The Random function can be used to ran-

domly generate an integer between 0 and N. If the generated integer is j then pj is taken as

one member of the sample. This process of generating a random integer can be repeated k

times to obtain a random sample of size k. When generating the next random integer j, we

include it in the sample set if it was not generated previously. We can use the bucketing

method or g-hop method for estimating cluster centers on the sampled input. The result

of a distribution of sample points and input points for 20% sample size is shown in Figure

3.14. Sampled points are drawn slightly bigger.

Figure 3.13: Input points

22

Figure 3.14: Sampled points using Random Approach

3.7 Measuring Solution Quality

To measure the quality of the solution obtained using the bucket clustering algorithm, we

use the sum of squared error (SSE) as our objective function[3] [9]. We first calculate

the squared error of each point to its closest centroid and compute the total sum of the

squared errors for the clusters. Mathematically SSE can be defined as :

SSE =
K∑
i=0

∑
x∈Ci

dist(ci, x)
2

where dist is the standard Euclidean distance between two points in Euclidean space,

ci is the mean of cluster Ci and x is a point belonging to cluster Ci. A small SSE means

the generated clusters truly represent the points in the cluster. Therefore when selecting

between two different set of clusters, we select one that minimizes the total SSE.

23

Chapter 4

Implementation

In this chapter, we present the implementation of bucket clustering algorithm that was

presented in chapter 3 and use it to determine the value of k in K-means algorithm. Java

programming language is used for the implementation. A nice and user friendly graphical

interface is built on the top of the program for better user interaction.

4.1 GUI Description

The main graphical user interface, created using the JFrame object from javax.swing pack-

age, is divided into five panels: top, left, center, right and bottom panels as shown in Figure

4.1. The top panel contains the menu bar which handles the file operations and program

termination.The left panel contains different checkboxes that allow user to perform oper-

ations like drawing nodes, editing nodes, showing the clusters, nudging and showing high

low buckets. The center panel, being the main part of our GUI, displays the graphics for

both input data and generated output. The right panel contains different buttons like clear

canvas, refresh canvas, random sites etc and different textboxes like threshold, nudge of the

mouse and number of points in the center panel. All the panels are extended from JPanel

class of javax.swing package.

24

RIGHTCENTERLEFT

TOP

BOTTOM

Figure 4.1: Graphical User Interface layout.

4.2 Interface Description

The actual graphical user interface of our program is shown in Figure 4.2. The top panel

holds the file menu dropdown which allows users to open an existing file, save object data

to file, and exit the application. A point can be drawn in the canvas by checking Draw

Vertex checkbox and clicking the left button of the mouse. When the user clicks the left

button of the mouse on the canvas, a small black-filled point is drawn. The corresponding

x and y co-ordinates of the point are displayed on the Vertex Coordinates textbox located

on the right panel. Figure 4.2 is a snap-shot from the program showing 20 vertices entered

by a user via mouse clicks. Edit Vertex checkbox on the left panel can be used to edit the

25

position of the drawn point. When Edit Vertex checkbox is checked and the left button of

the mouse is pressed and dragged, the point nearest to the cursor changes its position to

the current position of the mouse cursor. A brief description of the functionalities of file

menu items on the top panel, the check box items on the left panel and the buttons and

textboxes on the right panel are listed in Table 4.1, Table 4.2, Table 4.3, and Table 4.4

respectively.

Figure 4.2: Actual Graphical User Interface

Table 4.1: File Menu Items Description.

S.N. File Menu Items Functionalities

1 Read File Allows user to open an existing file.

2 Save File Allows user to save the diagram to a file.

3 Exit Exits the application

26

Table 4.2: Checkbox Description.

S.N. Check boxes Functionalities

1 Draw Vertex Allows users to draw vertices on the canvas.

2 Edit Vertex Allows users to edit previously drawn vertices.

3 Show High Low Divides the canvas into buckets and shows high low buckets.

4 Show Clusters Displays the clusters for the given set of points on canvas.

5 Nudge Expands the area of the cluster by a small amount to include
points that are part of low buckets but are near the boundary
of high buckets.

Table 4.3: Button Description.

S.N. Buttons Functionalities

1 Random Sites Draws random set of points on the canvas

2 Refresh Canvas Draws points on the canvas using vertex co-ordinates from
Vertex Coordinates textbox

3 Refresh Textbox Refreshes Vertex Coordinates text box with co-ordinates of
current points on the canvas

4 Clear Canvas Clears everything in the canvas

Table 4.4: Textbox Description.

S.N. Textboxes Functionalities

1 Threshold Sets the threshold of points required for a bucket to be high

2 Nudge Specifies the nudge percent to be applied when Nudge check-
box is checked

3 Bucket Width Sets the width for a individual bucket

4 Bucket Height Sets the height for a individual bucket

5 Canvas Width Sets the width for the canvas

6 Canvas Height Sets the height for the canvas

7 Vertex Coordinates Displays the vertex co-ordinates of points on the canvas

8 Initial Centroids Gets the initial centroids required for K-means algorithm

4.3 Execution of Bucket Clustering algorithm

The bucket clustering algorithm can be executed once the user draws a set of points on the

canvas either by mouse clicks or reads them from an existing file. When the Show Clusters

checkbox is checked and mouse is moved on the canvas, the canvas is divided into buckets

taking the height and width of buckets from two respective textboxes on the right panel.

Then the points are assigned to respective buckets based on their x and y co-ordinates, and

27

high and low buckets are determined. Once high and low buckets are calculated, the high

buckets are aggregated, whenever and wherever possible, to create a cluster. Figure 4.4

shows the clusters obtained by using the bucket clustering algorithm for the set of input

points in Figure 4.3. The value of k is displayed below the Vertex Coordinates textbox

on the right panel. The points in clusters are colored so as to make them different from

other points. Also different colors are assigned to points from different clusters. The cluster

centers are marked with 'X'. Figure 4.5 shows the clusters after nudging is applied and

Figure 4.6 shows buckets with high and low labels.

Figure 4.3: Set of input points

28

Figure 4.4: Cluster obtained using bucket clustering algorithm

Figure 4.5: Clusters after Nudging

29

Figure 4.6: Labeling buckets as high and low

4.4 Results and statistics

We generated different examples with varying number of clusters and points to test the

performance of the bucketing algorithm. We used SSE technique as described in Chapter

3 Section 3.6 for this purpose. We calculated SSE for clusters generated using both the

standard K-means algorithm and bucketing algorithm. The cluster centers are marked with

'X' whereas the initial centroids are marked with '+'. Figure 4.7 to Figure 4.18 show the

results of experimental investigations whereas the details of these experimental results are

shown in Table 4.6 to Table 4.11.

Table 4.5: Dataset result Mapping

Dataset No. No. of points Result Table Result Figures

1 72 Table 4.6 Figure 4.7 - 4.8

2 100 Table 4.7 Figure 4.9- 4.10

3 66 Table 4.8 Figure 4.11 - 4.12

4 208 Table 4.9 Figure 4.13 - 4.14

5 551 Table 4.10 Figure 4.15 - 4.16

6 400 Table 4.11 Figure 4.17 - 4.18

7 1000 Table 4.12 Figure 4.19 - 4.20

30

Figure 4.7: Dataset 1 with initial centroids at point 9, 16, 56, 33

Figure 4.8: Dataset 1 after executing bucketing algorithm and nudging

31

Figure 4.9: Dataset 2 with initial centroids at point 50, 7, 28

Figure 4.10: Dataset 2 after executing bucketing algorithm

32

Figure 4.11: Dataset 3 with initial centroids at point 9, 16, 56, 35

Figure 4.12: Dataset 3 after executing bucketing algorithm and nudging

33

Figure 4.13: Dataset 4 with initial centroids at point 0, 91, 150, 72, 112

Figure 4.14: Dataset 4 after executing bucketing algorithm

34

Figure 4.15: Dataset 5 with initial centroids at point 9, 102, 33, 191, 379, 492

Figure 4.16: Dataset 5 after executing bucketing algorithm and nudging

35

Figure 4.17: Dataset 6 with initial centroids at point 168, 55, 104, 392

Figure 4.18: Dataset 6 after executing bucketing algorithm and nudging

36

Figure 4.19: Dataset 7 with initial centroids at point 374, 68, 296, 488

Figure 4.20: Dataset 7 after executing bucketing algorithm

37

Table 4.6: Dataset 1 Experimental results

Method Initial Centroids Avg. SSE Total Clusters Threshold pts.

K-Means 9, 16, 56, 33 50681 4

K-Means 9, 16, 56, 35 40638.5 4

Bucketing 0 0 3

Bucketing
with Nudging

0 0 3

Table 4.7: Dataset 2 Experimental results

Method Initial Centroids Avg. SSE Total Clusters Threshold pts.

K-Means 10, 2, 26 85490.5 3

K-Means 50, 7, 28 88399.5 3

Bucketing 55138 3 5

Bucketing
with Nudging

114537 3 5

Table 4.8: Dataset 3 Experimental results

Method Initial Centroids Avg. SSE Total Clusters Threshold pts.

K-Means 9, 16, 56, 35 109076 4

K-Means 9, 16, 56, 33 103137 4

Bucketing 65265 4 4

Bucketing
with Nudging

107791 4 4

Table 4.9: Dataset 4 Experimental results

Method Initial Centroids Avg. SSE Total Clusters Threshold pts.

K-Means 0, 91, 150, 72, 112 399204 5

K-Means 2, 93, 153, 63, 57 403163 5

Bucketing 403710 5 4

Bucketing
with Nudging

652767 5 4

38

Table 4.10: Dataset 5 Experimental results

Method Initial Centroids Avg. SSE Total Clusters Threshold pts.

K-Means 9, 102, 33, 191,
379, 492

1319661 6

K-Means 335, 115, 30, 213,
379, 490

1394179 6

Bucketing 1072883 6 14

Bucketing
with Nudging

1952540 6 14

Table 4.11: Dataset 6 Experimental results

Method Initial Centroids Avg. SSE Total Clusters Threshold pts.

K-Means 142, 41, 124, 390 901703.25 4

K-Means 168, 55, 104, 392 907126.25 4

Bucketing 24114140 1 4

Bucketing
with Nudging

24566045 1 4

Bucketing 1279606 4 5

Bucketing
with Nudging

1595448 4 5

Bucketing 599789 4 9

Bucketing
with Nudging

881676 4 9

Bucketing 373290 3 13

Bucketing
with Nudging

592832 3 13

Bucketing 122360 2 15

Bucketing
with Nudging

282545 2 15

Bucketing 15715 1 17

Bucketing
with Nudging

68559 1 17

Bucketing
with Nudging

0 0 18

39

Table 4.12: Dataset 7 Experimental results

Method Initial Centroids Avg. SSE Total Clusters Threshold pts.

K-Means 374, 68, 296, 488 2102307 4

K-Means 316, 29, 169, 446 2146726 4

Bucketing 7165562 4 5

Bucketing
with Nudging

7945554 4 5

From the experimental results it is clear that when the threshold points are carefully

selected, the clusters obtained using the bucketing algorithm, in most cases, have either

less or almost equal SSE compared to the standard K-means algorithm. Due to the wrong

selection of threshold points, in some cases, the SSE obtained from the bucketing algorithm

is higher than the standard K-means as in Dataset 6. Overall, the bucketing algorithm pro-

vides almost the same or better SSE compared to original K-means. In addition, bucketing

algorithm removes the necessity of providing the number of clusters at the beginning.

40

Chapter 5

Conclusion and Discussion

We presented a review of important existing approaches for identifying clusters in Euclidean

space. In particular we described a critical evaluation of the hierarchical method for recog-

nizing clusters by using bottom-up nesting. We also presented a detailed examination of the

most popular cluster constructing algorithm called the K-mean algorithm. We articulated

one of the main difficulties of the K-mean algorithm which is the estimation of the number

of clusters k. In most variations of the K-mean algorithm the value of k is taken as part of

the input. This motivated us to seek ways of estimating the value of k efficiently.

We proposed two main methods for estimating the values of k for points distributed in

two dimensions. The first method we presented is based on using a bucketing technique to

approximately identify the number of clusters. The buckets used are the rectangular boxes

obtained by embedding an orthogonal grid on the 2-d Euclidean space. The algorithm is

easy to understand and implement. One of the benefits of the bucketing method is that

large size data can be sampled in the bucket to substantially reduce the size of input data.

Existing K-mean algorithms can be used on the reduced dataset.

In the g-hop method, we developed algorithms for determining the number of input

points m(g, pi) within distance g from a given test point pi. We first considered the straight-

forward method of estimating m(q, pi) based on distance-sorting, which takes O(N2logN)

time in total. We then presented a faster Voronoi based algorithm for computing m(q, pi).

This algorithm runs in O(NlogN) time.

We presented an experimental investigation of clustering algorithms by implementing

41

a prototype program in Java, supporting a friendly graphical user interface. The experi-

mental investigation includes the standard K-mean algorithm and bucketing method. The

experimental results show that the bucketing method is quite effective in estimating cluster

population in 2-d.

Several extensions and generalizations of the technique proposed in this thesis can be

suggested. The bucketing method can be generalized in a straightforward way to three

and higher dimensions. The rectangular buckets in two dimensions become rectangular

prisms in three dimensions. The point inclusion test for rectangles can be modified to a

point inclusion test for rectangular prisms. It would be very interesting to perform an

experimental investigation in three dimensions.

We could have implemented and investigated g-hop method but, due to time constraints,

we were unable to do so. It would be worth implementing and investigating g-hop method.

Another extension of the investigation would be its generalization to big-data. In sit-

uation when all data cannot be loaded into RAM, how can we use the locality hashing

paradigm [4] for estimating cluster populations in two and three dimensions this would be

worth investigating.

42

Bibliography

[1] Berg, Mark de, Mark van Krevald, Mark Overmars, and Otfried Schwarzkopf. Compu-

tational Geometry: Algorithms and Applications. 2nd ed. Berlin: Springer, 2000.

[2] Cormen, Thomas H., Charles E. Lieserson, Ronald L. Rivest, and Cliford Stein. Intro-

duction to Algorithms. 3rd ed. Cambridge, Mass.: MIT Press, 2009.

[3] Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim. “CURE: An Efficient Clustering

Algorithm for Large Databases.” Information Systems 26, no. 2 (2001): 35-58. MIT

Press, 2009

[4] Indyk, Piotr, and Rajeev Motwani. “Approximate Nearest Neighbors: Towards Remov-

ing the Curse of Dimensionality.” Proceedings of STOC, 1998, 604-13.

[5] Jolliffe, I. T. Principal Component Analysis. 2nd ed. New York: Springer, 2002.

[6] Leskovec, Jure, Jeffrey D. Ullman, and Anand Rajaraman.Mining of Massive Datasets.

New York, N.Y.: Cambridge University Press, 2014.

[7] Lloyd, S. P. “Least Square Quantization in PCM.” IEEE Transaction on Information

Theory, 1982, 129-37.

[8] Rourke, Joseph. Computational Geometry in C. 2nd ed. Cambridge, UK: Cambridge

University Press, 1998.

[9] Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.

Boston: Pearson Addison Wesley, 2005.

43

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Sanjeev K C

Degrees:

Bachelor of Computer Engineering 2010

Tribhuvan University, Institute of Engineering, Pulchowk Campus

Thesis Title: Efficient Estimation of Cluster Population

Thesis Examination Committee:

Chairperson, Dr. Laxmi Gewali, Ph.D.

Committee Member, Dr. Ajoy Datta, Ph.D.

Committee Member, Dr. John Minor, Ph.D.

Graduate Faculty Representative, Dr. Henry Selvaraj, Ph.D.

44

	Efficient Estimation of Cluster Population
	Repository Citation

	tmp.1443218406.pdf.cOAC8

