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Abstract

This thesis revisits the problem of five year survivability predictions for breast cancer using machine

learning tools. This work is distinguishable from the past experiments based on the size of the

training data, the unbalanced distribution of data in minority and majority classes, and modified

data cleaning procedures. These experiments are also based on the principles of TIDY data and

reproducible research. In order to fine-tune the predictions, a set of experiments were run using

naive Bayes, decision trees, and logistic regression. Of particular interest were strategies to improve

the recall level for the minority class, as the cost of misclassification is prohibitive. One of The main

contributions of this work is that logistic regression with the proper predictors and class weight

gives the highest precision/recall level for the minority class.

In regression modeling with large number of predictors, correlation among predictors is quite

common, and the estimated model coefficients might not be very reliable. In these situations, the

Variance Inflation Factor (VIF) and the Generalized Variance Inflation Factor (GVIF) are used to

overcome the correlation problem. Our experiments are based on the Surveillance, Epidemiology,

and End Results (SEER) database for the problem of survivability prediction. Some of the specific

contributions of this thesis are:

1. detailed process for data cleaning and binary classification of 338,596 breast cancer patients.

2. computational approach for omitting predictors and categorical predictors based on VIF and

GVIF.

3. various applications of Synthetic Minority Over-sampling Techniques (SMOTE) to increase

precision and recall.

4. An application of Edited Nearest Neighbor to obtain the highest F1-measure.

In addition, this work provides precise algorithms and codes for determining class membership

and execution of competing methods. These codes can facilitate the reproduction and extension of
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our work by other researchers.
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Chapter 1

Introduction

According to the National Breast Cancer Organization [Cancer, 2016], “Breast cancer is a disease

in which malignant (cancer) cells form in the tissues of the breast.” Over 230,000 women are

diagnosed with breast cancer in the United States annually[Cancer, 2016][breastcancer.org]. In

addition about one in eight women will develop breast cancer. These alarming statistics have led to

tremendous research efforts and studies associated with breast cancer in recent years. In addition,

many organizations have compiled statistical data pertaining to individual patients. One such

database is Surveillance, Epidemiology, and End Results (SEER) database which is maintained by

National Cancer Institute (NCI) [NCI, 2016]. The SEER database is a rich source of information for

statistical learning analysis. For example, Bellaachia and Guven in 2006 carried out a comparative

study of three data mining techniques in order to predict five year survivability based on SEER

data [Bellaachia and Guven, 2006].

Since SEER database is updated on a regular basis with new patients, it is logical to repeat

some of the past experiments. As the first step, we wanted to repeat the same experiments to

establish a basis for comparison with a new updated SEER data. It turns out that we could not

repeat experiments reported by Bellaachia and Guven [Bellaachia and Guven, 2006] and by Delen,

Walker, and Kadam [Delen et al., 2005]. This is because the reported data preparation, clean

up, and data processing were incomplete and ambiguous. As a result, these cited works were not

reproducible research [Peng, 2011].

This thesis revisits the topic of prediction of five year survivability for breast cancer with machine

learning tools, following the principles of TIDY data and reproducible research as discussed by Peng

[Peng, 2011] and Wickham [Wickham, 2014]. Of particular interest in how to set up an environment

that other researchers could use to apply the same techniques on other types of cancer.
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This thesis is organized into six chapters, including this introduction.

Chapter 2 gives a detailed background on SEER database, clinical definition of five year sur-

vivability, TIDY data and reproducible research.

In chapter 3, we describe our approach to data cleaning and category identification for patients

in the SEER database. We also provide the list of the chosen attributes from the SEER data that

characterizes each patient.

Chapter 4 gives a brief introductions to specific machine learning techniques used in this work.

More specifically, we provide a short introduction to Naive Bayes, decision trees, linear regression,

and logistic regression. Also we summarize some of the notable works associated with data science,

SEER database, and machine learning techniques.

Chapter 5 describe the comparison results for Naive Bayes, decision trees, and logistic regres-

sion. The metrics of comparison are precision, recall, F1-measure, and ROC that are also defined

in this chapter.

In chapter 6, we explain our ideas on correlation, prediction, and fine tuning of our regression

model. In particular, we describe how VIF and GVIF are used to overcome the correlation problem.

Chapter 7 concludes this thesis with a short summary of our results and explores directions for

future work.

2



Chapter 2

Cancer Data, Survivability, and

Reproducible Research

Typically, many projects use data sets that were not necessarily collected for those projects. For

example, SEER database is built for summarizing cancer data and not survivability prediction. The

survivability prediction problem is a binary classification with uneven distribution of data points

[Vapnik, 1995][Xiao et al., 2009]. In order to prepare SEER data for binary classification, we must

first decide how to assign data points to each class. According to Parkin and Hakulinen, a well-

accepted methodology in predicting patient survival involves summarizing and analysis [Parkin and

Hakulinen, 1991]. The most widely used metric involves calculating the percentage of patients alive

after five years, using a direct method as outlined by Parkin and Hakulinen [Parkin and Hakulinen,

1991].

The following three sections provide detailed description for SEER data, five year survivability,

and reproducible research:

2.1 SEER data

Every year the National Cancer Institute (NCI) releases the latest cancer statistics. The NCI

recognizes the need for greater research of a more diverse population in order to better understand

and to support the researchers in the field. Since SEER shares this same sentiment, the NCI has

funded SEERs registries. SEER stands for surveillance, epidemiology and end results. The

data used is based on the SEER registry program.

On January 1, 1973, SEER began to collect cancer data from Connecticut, Iowa, New Mexico,
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Utah, Hawaii and the metropolitan areas of Detroit and San Francisco/ Oakland. In 1974, it

expanded to the metropolitan area of Atlanta and the 13 county Seattle/Puget Sound Area. By

1978, 10 predominately African American rural counties in Georgia were added. In 1980, Native

Americans residing in Arizona were included. By the end of 1990, New Orleans, Louisiana (1974-

1977, rejoined 2001); the state of New Jersey (1979-1989, rejoined 2001); and Puerto Rico (1973-

1989) were added to the SEER registries.

But it didnt stop there. By 1992, SEER had increased its coverage of minority populations,

especially the Hispanic population. In California, Los Angeles County and 4 counties in the San

Jose/Monterey area south of San Francisco were added. In 2001, the state of Kentucky and the

remaining counties of California were added[NCI, 2016].

SEER is also part of a larger national cancer registration program, which includes registries

managed by the CDC (Cancer for Disease and Prevention). SEER, in conjunction with the NCI

and the CDC, covers the vast majority of the United States. The SEER registry is a fundamental

component of the data system for cancer research.

In 2010, the state of Georgia was added to the SEER registry. In some areas like New Jersey,

greater California and Louisiana, funds from the NCI and the CDC (Center for Disease Control

and Prevention), SEER received combined funds from NCI and CDC.

Each November SEER registrars report the latest cancer cases to the NCI. Every year, NCI,

CDC, American Cancer Society (ACS) and the North American Association of Central Cancer

Registries (NAACCR) collaborate for providing updates on cancer incidence and death rates. The

first report of them published in 1998[Edwards et al., 2014], and the most recent report provides

update cancer rates and trends for all cancer types or combination[Edwards et al., 2014].

The current NCI statistics are from 1973 to 2013. The NCI always releases data with a

two/three-year gap, due to the complicated collecting process. Also, they wish to ensure the

quality of the data.

SEER collects information on up to 94 different types of cancer including: Liver, Lung, Pros-

trate, Breast , Colon, Skin, Thyroid, Melanoma, Middle Ear, Ovary, Testis, Kidney, Orbit, KS,

Brain, OthEye, Lymphoma, HeartMediastinum, KidneyParenchyma , NETColon, etc.

SEER reports the cancer data in 143 attributes. For instance, information such as Patient ID,

Race, Marital Status, Primary Site Code, Histologic Type, Behavior Code, Grade, Extension Of

Tumor, Lymph Node Involvement, RXSUMM surgery primary site, Radiation, Stage Of Cancer,

Age, Tumor Size, Number Of Positive Nodes, Vital Status, Survival Month, Year Of Diagnosis,

4



Table 2.1: Tumor Size categories in SEER Data
Code Description

000 Indicates no mass or no tumor found
001-988 Exact size in millimeters
989 989 millimeters or larger
990 Microscopic focus or foci only; no size of focus is given
991 Described as less than 1 cm
992 Described as less than 2 cm
993 Described as less than 3 cm
994 Described as less than 4 cm
995 Described as less than 5 cm
996-998 Site-specific codes where needed
888 Not applicable
999 Unknown; size not stated; not stated in patient record

Table 2.2: Cancer Stage categories in SEER Data
Code Description

0 In situ
1 Localized
2 Regional
3 Microscopic focus or foci only; no size of focus is given
4 Distant
8 Localized/Regional Only used for Prostate cases.
9 Unstaged

Month of Diagnosis and Cause Of Death, etc. We start our research by first looking at Breast

cancer information, and not all the attributes are related to Breast cancer. The attributes such as

Brain, Lung, Bone , Liver, etc doesn’t have any information related to Brest cancer.

In SEER data, we have different distinctions for each attribute. For example,there are informa-

tion such as what kind of radiation patient received or if the patient refused radiation even though

it was recommended and so on.

Another example is Tumor sizes that represented in 12 different categories shown in the table

2.1.

In SEER data, cancer’s stages are represented in 5 categories: in situ, localized, regional, distant

and unknown that shown in the table 2.2.

In SEER data, we have detailed information related to grading. Besides grade I, II, III and IV,

we have the T-Cell, B-Cell, Null Cell and N K Cells information. These are shown in the table 2.3.

SEER data used in the vast area of cancer research. For instance, [Al-Bahrani et al., 2013]

Used SEER data to find actual survival rate for Colon Cancers patients. In this study, the multiple

5



Table 2.3: Cancer Grade categories in SEER Data
Code Description

1 Grade I
2 Grade II
3 Grade III
4 Grade IV
5 T-cell
6 B-cell
7 Null cell
8 N K cell
9 cell type not determined

classification schemes used to estimate the risk of mortality after one, two and five years of diagnosis.

In that study [Al-Bahrani et al., 2013] compared basic classifiers, J48 decision tree, reduced

error pruning tree, random forest , alternating secision tree and logistic regression, with Meta

classifiers, Bagging, AdaBoost, Random SubSpace and Voting With selected 13 attributes. The

result shows that the voting method has the best and more accurate survivability rate. Another

study [Davies and Welch, 2014] used SEER data for analyzing the increasing thrend in Thyroid

cancers patients. Since 1975, the patients who diagnosed with Thyroid cancer are nearly tripled

while its mortality has remained stable. That at the end of this research it appears that its just

overdiagnosis of papillary thyroid.

Another example is research by [Abdel-Rahman, 2017], the SEER data used on the Mediastinal

tumors’ research. Mediastinal tumors can be benign or malignant, and it’s just growing in the

area of the chest like heart. The results of this study are shown that surgical resection plays a

particularly important role in the management of this disease.

In our research, we use Python 3.5.1, Anaconda 2.4.0 and Pandas version 0.17.0. At the

beginning, we divide our data into two parts, information gathered from 1973-2003 and information

gathered from 2004-2013 (2004+). We then merge them together to find proper data. The reason

for this is due to some information in the description being stored in a different position; for

example, information about tumor size collected in position 61-63 for the years 1988 to 2003 and

after 2004 stored in position 96-98.

6



2.2 Survivability

One way to determine a patients survivability is to use biostatistics as a survival analysis method-

ology. This methodology can help to quantify and describe survival time. In addition, it examines

the greatness of differences in survival time [Fink and Brown, 2006].

In an ideal study, all patients would be diagnosed at the same time, stay in the study until

an outcome was achieved (possibly death), and participate in follow-ups. However, it is an almost

impossible task to find a large group of patients with the ideal conditions. Some patients were

diagnosed prior to entering our data set, and they had already begun treatment. Others decided to

leave the study, so they never followed up. Since we do not always have an ideal dataset, we need

to develop statistical strategies to obtain good information from the incomplete dataset. This is

the reason we are led to use the survival analysis techniques as defined in [Fink and Brown, 2006].

The life of the patient (survivability) is an important variable in our research. Generally,

a patient diagnosed with any kind of cancer who lives 5 years or more is considered to be in

remission. Survivability depends on many factors, such as cancer stage, age group, tumor size,

amount of positive nodes etc. In SEER data, VitalStatus is used to represent if the patient is still

alive or not. Also, we have additional information regarding survival months and cause of death.

Used together, all this information helps us to evaluate the different survival techniques and to

select one. There are several different techniques used in calculating survivability. A few of the

techniques used are the Direct Method, Actuarial Method and Kaplan-Meier Method which will

be described in the followings [Parkin and Hakulinen, 1991]:

2.2.1 Direct Method

The Direct Method [Parkin and Hakulinen, 1991] is the most cited method for calculating lifetime

probability. In this method, the patients survival rate is evaluated at the end of a specific time

interval. If a patient had survived for a minimum of 60 months (5 years) after being diagnosed,

the patient would be notated as Survived, even if the patient were no longer alive. The key factor

being that the patient lived 5 years after the initial diagnosis. On the other hand, if a patient

dies prior to 60 months (5 years) and the cause of death is cancer, then the patient is considered

Not-Survived. Patients who live less than 5 years and die from any other cause than cancer are

not considered.

7



Table 2.4: Actuarial Life Type
Value

Number of patients at the beginning of the interval
Number of patients who died during the interval time
Number of patients stop/lost to follow up during the interval time
Number of patients exposed to risk of death
Number of patients withdrawn alive during the interval
Conditional probability of death
Conditional probability of survival

2.2.2 Actuarial Method

Cutler and Ederer used the Actuarial Method in 1958 to develop the life-table analysis [Dawson

and Trapp, 2004] used in todays survivability analysis. In this method, a dataset table contains

information, such as the number of patients at the beginning of an interval, the number of deceased

patients etc. [Lucijanic and Petrovecki, 2012][Parkin and Hakulinen, 1991]. Please see the table

2.4.

The survival rate will have been calculated based on these variables.

In Actuarial method Number of patients exposed to risk of death is the average of the

Number of patients withdrawn alive during the interval and the Number of patients stop

Or lost to follow up during the interval.

The Conditional probability of death calculated as:

Number Of patients who died during the interval time

Number Of Patients exposed to risk of death
(2.1)

The conditional probability of survival is defined similarly as:

Number of patients who died during the interval time

Number of patients exposed to risk of death
(2.2)

The Survival rate is calculated by multiplying the Conditional probability of survival for each

interval time [Fink and Brown, 2006].

This information is then added to the Life-Table or Actuarial Table. And is represented by

the survival curve. This method is good only if the interval is for a short period of time; it is not

designed for long intervals. Also, we are interested in working with patients who wish to enter our

data set at any given time. Thats why the Actuarial Method is one that we are less likely to use.
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2.2.3 Kaplan-Meir Method

The Kaplan-Meir method is similar to the Actuarial method [Parkin and Hakulinen, 1991], However

instead of a cumulative survival rate at the end of each year of follow up, the proportion of patients

still surviving can be calculated at intervals as short as the accuracy of recording date of death

permits[Austin, 2014]. The Kaplan-Meir method also evaluates in tabular form [Kaplan and Meier,

1958]. In this method time consider as reference point, different points of calculation divided by

time. It evaluate estimation of survivability over time, even though some patients dont have any

follow up records, and repeat the study for different length of time. One disadvantage of Kaplan-

Meir method is that its difficult to find best proportion due to the censoring the data[Austin,

2014]. In addition, the choice of time is arbitrary and it is misleading the survival curve comparison

[Lucijanic and Petrovecki, 2012].

2.3 Reproducible Research

Machine learning is used in a variety of statistical, probabilistic and optimization techniques in

many different complex data sets. In machine learning techniques, we learn historical information

and can then detect a pattern from the data sets. These learning techniques are used to discover

new facts from the data and to interpret the data patterns. This helps researchers to better prepare

and issue useful information. Machine learning techniques are frequently used in cancer diagnosis

and detection.

More recently, they have been used for cancer prediction. Unfortunately, very few research

papers have fully addressed their process. In all machine learning experimental studies, preparing

and cleaning of the data has been a major factor. However, data computation steps have been

ignored in everyday research publications [Millman and Pérez, 2014]. They are mainly considered

to be a task for fellow researchers to figure out. Most of the previous research data and software

have been poorly saved and organized, making it almost impossible to reach the identical result as

the publisher. In other words, many of the codes and closed-sources make it hard to completely

understand the research [Sonnenburg et al., 2007]. In much of this research, it is difficult and

almost impossible to reproduce the same results due to lack of information, and insufficient data

descriptions, data processing, source codes, and so on. There is no doubt that reproducible research

can be a foundation for further studies by providing the software, source codes and data sources.

Then researchers will be able to easily and quickly adopt the methods [Sonnenburg et al., 2007].
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Because of the Internet and social media, today everybody has a chance to voluntarily share

their ideas. Web 2.0 is one of the defining characteristics of these systems, for instance, YouTube,

Wikipedia, Open Source Software (OSS) etc [Oreilly, 2005]. OSS usually refers to computer software

products, which users are allowed to freely use, modify and redistribute. GitHub and BitBucket are

examples. The largest OSS community on the web is called SourceForge,in March 2014,contains

more than 430,000 projects and over 3.7 million registered members.[Wikipedia, 2017] and it’s

competing with other ”providers such as GitHub, Bitbucket, RubyForge, Tigris.org, BountySource,

Launchpad, BerliOS, JavaForge, GNU Savannah, and GitLab” [Wikipedia, 2017].

SourceForge allows developers to manage their own source code along with the people who have

access to the code, to keep track of different updates on their work, and to give others permission to

download their code. SourceForge has a variety of sub-communities. With the Internet and social

media technologies help everybody has a chance to share their ideas voluntarily. The Web 2.0 is

one of the defining characteristics of this system, for instance, YouTube, Wikipedia, Open Source

Software(OSS), etc [Oreilly, 2005]. OSS usually refers to computer software products which users

are allowed to freely use, modify and redistributed.also let the others download their materials.

The idea of using reproducible research is straightforward and convenient because programmers

or users can read, modify and republish the study’s result [Millman and Pérez, 2014]. When using

reproducible research, we need to use open source software, which allows both the free use and the

exchange of information. The Open Source Software required for reproducible research must:

• Be free and easy to access

• Allow researchers to build, to modify, and to redistribute the information, such as source

codes, citations, and graphs, etc., as many times as necessary

• Permit others access to the code of origin. This helps researchers to understand the model

better and to develop new methods quickly [Sonnenburg et al., 2007].

In August 2004, an open letter signed by 25 Nobel laureates was sent to the United States

Congress stating, ‘Open access indeed expands shared knowledge across scientific fields, it is the

best path for accelerating multi-disciplinary breakthroughs in research.‘ [Sonnenburg et al., 2007].

It is necessary to follow the same experimental and data to obtain the same result. Same experi-

mental means that by downloading and running the code on the same data on different machines,

the researcher will end up with the same result.’ the Same result means identical result or out-
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put[Schaffner, 1994]. We firmly believe reproducible research has many benefits with few if any, dis-

advantages. There are many different fields using machine learning techniques. Using open source

software and making machine learning techniques reproducible are preferred[Feller and Fitzgerald,

2000]. By sharing the code of origin, paper, and data, we can achieve the reproducibility of machine

learning research. The advantages of having data availability, reproducibility, and testability allow

faster progress in all areas of research.

Reproducible research and organized steps of computing not only help future researchers but

also help publishers to go back and make any necessary changes before publishing a paper. For

example, a researcher uses Python for analyzing and developing performance code in Java (related

to research), and uses Tableau for making good-looking plots. Unfortunately, months later the

researcher realizes there is a problem either with the work or the result. Without having a com-

prehensive workflow, are they able to validate the issue without making any errors or changing

the complete process? Will other researchers be able to easily understand their new idea without

having the good and complete source?

In our research, we used Python. Python is a simple language, installable from almost all

different platforms, and powerful enough to deal with complex, experimental, significant data.

Python supports functional programming, object-oriented programming, and meta-programming

[Millman and Pérez, 2014][Demšar et al., 2013]. Due to excellent support for scripting tools written

in other languages (like C, and R), Python is often used as an integration language for calling

routines from a broad range of high-quality scientific libraries.

Python is used in a substantial amount of libraries. Python has been built in libraries for

different purposes, such as database access, data compression and so on. In our research, we used

Pandasa, NumPy, Matplotlib and scikit-learn. These libraries are designed to simplify the data

analysis workflow. In this research we are going to use the Pandas library, which has a more at-

tractive and practical statistical computing environment. We call Pandas as follows:

Import Pandas as pd

By adding pd. in front of our command, we can then use the Pandas library. With Pandas

help, our data set arrives in tabular format, making it easier to explore. Because we initially didnt

have a specific table with two dimensions, or observation and column names, we had to create this

table first. The SEER data sample is shown in figure ??.

With Pandas and the SEER registry guidebooks help, we were able to make a table. The first
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Figure 2.1: Sample of SEER raw data

Table 2.5: SEER Data
0 07000003 01 2

1 07000057 01 5

2 07000066 01 5

3 07000078 01 2

step was to find about the position of each observation and then to assign them to a relative column.

For instance, having information related to Race and a patients marital status as seen below:

Import Pandas as pd

ColumnName=[” PatientID ” ,” Race ” ,” Mar i ta lStatus ” ]

data=pd . DataFrame ( [ ( l i n e [ 0 : 8 ] , l i n e [ 1 9 : 2 1 ] , l i n e [ 1 8 : 1 9 ] )

f o r l i n e in open (”BREAST new .TXT” ,” r ”) , columns= ColumnName)

and the result in a two-dimensional tabular format is shown in the table 2.5.

And as mentioned before, each of these codes has a description guide in the SEER Registry book.

For instance, in our first and last examples, the patients are married. However, in the second and

third examples, they are widowed. All have the same ethnicity, which is white. With Pandas help,

we read our data set once and use it as many time as we wish. So far, we have read the data and

have made it easily callable. Scikit-Learn is another library that is widely used in Machine Learning

research. Scikit-Learn is excellent for the implementation of many supervised and unsupervised

learning algorithms. Its easy to use and understand and can easily interface with other programs.

Scikit-Learn is distributed under the BSD license, non-copy left license. (Also, it is Bare-bone

design, for lowering the barrier the entity), moreover, it incorporates complied code for efficiency.
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It provides reference implementation of different machine learning algorithms.[Pedregosa et al.,

2011b] Numpy, another library, is used for data and model parameters. The view base modeling in

Numpy minimizes copies and provides advance arithmetic operations[Walt et al., 2011].

Reproducibility is not just limited to computing complex code, but more importantly to cleaning

the data. The cleaning and preparing of the data are the most time-consuming parts of data

analysis. Unless we write and exact the same data, we can never achieve the same results by

running the machine learning computations code. The first step is to clean the data. Based on

the needs of the topic, cleaning may have to be repeated many times. In the next section, we will

discuss Tidy data in detail. Its important to have an accurate, reliable way to provide information

related to the necessary steps to clean the data.

One of the tool that help researcher is BitBucket; The researchers aware of the difficulty of

Source Code control during the research duration, like store the project safely, modifying with the

ability of keeping track of each step, be able to go back steps based on the project needs, and giving

the chance to have experiment with new features without damaging the whole work. One question

is that where so we have a plan to save our source code? Git Hub is one well known (write about

Git Hub) But Git Hub is not the only option, BitBucket is another ”BitBucket has been around

for a long time, having been founded in 2008 and bought out in 2010 by Aussie tech giant Atlassian

after having developed its own committed contingent of die-hard fans.”

The Virtual machines designed to let the softwares running on top of the servers in order to

use the specific needed hardware. Virtual Machines sits between Operating system and hardware,

and its virtualize the server. Each Virtual machines runs a unique operating system, we can use

different virtual machines, with different operating systems that all can be run on the same physical

server. Each virtual machines has their own libraries.

Containers sit on top of server as well, and it host an Operating System. And contain libraries.

In container, the libraries are read only and so do all the shared component. In contrast of VM

that they can be as large as gigabytes the containers have megabyte sizes. Containers are fast and

variety of containers can be put on top of a server. We can share containers and they are shareable

in public and private cloud deployments. We do have less bug fixes, patches and etc. when we are

working with containers, due to sharing a common operating system. In containers, the Operating

system is virtualized, and shared Operating system is used, however in virtual machine hardware

is virtualized then they are complicated in terms of system requirements.
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Chapter 3

Data Processing

The performance of statistical learning algorithms such as logistic regression depends on training

data. The data preparation is one of the crucial steps in training of the classifiers. In the next two

sections, we describe our steps in data preparation based on the concept of TIDY data as described

in [Peng, 2011, Baggerly and Coombes, 2009, Wickham, 2014, Taghva and Bozorgi, 2016]:

3.1 Patient Attributes

The raw data we used is the data repository as reported in ”SEER RESEARCH DATA RECORD

DESCRIPTION CASES DIAGNOSED IN 1973-2013” [NCI, 2016]. This repository contains 769,261

records with 134 attributes. Since the records cover various kinds of cancer, not all attributes apply

to our work on breast cancer. Furthermore, there is a set of attributes that only applies to data

collected after 1988. One such set used for this study was EOD Tumor Size, EOD Extension, EOD

Lymph Nodes; the data for this set were collected from 1988 to 2003. The same data was collected

after 2003 with different labels and positions ( columns ), namely, CS Tumor Size, CS Extension,

and CS Lymph Node Involv, respectively. We used 18 attributes, as described in Table 3.1.

The attributes patientId, COD, yearOfDiagnosis, and survivalMonths were not used as features

for classification. However, survivalMonths, yearOfDiagnosis, and COD were used to label the two

classes for binary classification.

3.2 Class Definition for Patients

The next step in data preparation and cleaning was to label records based on five year survivability

according to direct method as outlined in [Parkin and Hakulinen, 1991]. It worth mentioning that
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Table 3.1: The Eighteen Attributes Used in Our Experiments

Variable Variable Definition Values

patientIdNumber uniquely identifies a patient up to 8 digiits
race two digit code race identifier 01-99, 01 for white,02 for black
maritalStatus one digit code for marital status 1-9, 1 for single, 2 for married
behaviorCode code for benign etc. o-4,0 for benign,1 for malignant, etc.
grade cancer grade 1-9, 1 for Grade I, etc.
vitalStatusRecord alive or not 1-4, 1 for alive, 4 for dead
histologicType microscopic composition of cells 4-digit code
csExtension extension of tumor 2-digit code
csLymphNode involvement of lymph nodes 2-digits code
radiation radiation type code 0-9, for none, 1 for Beam, etc.
SEERHistoricStageA codes for stages 0-9, 0 for in situ, 1 for localized
ageAtDiagnosis First diagnosis age 00-130, actual age, 999 for unknown
csTumorSize size in millimeters 000-888, 000 for no tumor
regionalNodesPositive negative vs positive 00-99, number of positive nodes
regionalNodesExamined positive, negative nodes examined 00-99, exact number
survivalMonths number of months alive 000-998, 9999 for unknown
COD Cause of Death 5-digit, 2600 for breast, 00000 alive
yearOfDiagnosis This visit year 4-digit code

many of the studies on SEER data ignored this step [Bellaachia and Guven, 2006, Delen et al.,

2005]. Consider the three patient records as shown in Table 3.2. There are four records for patient

1. The first record shows that the patient has survived 110 months from the visit on October

of 2004. Based on this record, patient 1 will be labeled as survived. Patients 2 has survived

47 months from the date of first visit on January 2010. This patient will be marked as ignore

and will not be used for training. Patients 3 and 4 are both deceased and the cause of death for

both patients is breast cancer. Patient 3 has survived beyond five years, so she will be labeled as

survived. Patient 4 is labeled as not-survived. We only keep the record of the first visit for each

patient for training purposes. Finally we remove any record which has empty or unknown values in

regionalNodesPositive, regionalNodesExamined, CSTumorSize, and EODTumersize. We net total

of 338,596 patients of which 300,215 are labeled survived and 38,381 are labeled not-survived.

We want to point out that the number of survived data points are almost eight times the

number of not-survived data points.

As mentioned in chapter 1, we first were interested in reproducing the experiments reported by

Bellaachia and Guven [Bellaachia and Guven, 2006] in order to extend the work on the more recent

SEER data. Unfortunately, neither the data sets nor the results could be reproduced, mainly due
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Table 3.2: Four Patients Records
patientId VSR STR monthOfDiagnosis yearOfDiagnosis COD

1 1 110 10 2004 00000
1 1 85 11 2006 000000
1 1 15 9 2012 00000
1 1 14 10 2012 00000

2 1 47 1 2010 00000
2 1 9 3 2013 00000
2 1 8 5 2013 00000

3 4 96 3 2005 2600
3 4 46 5 2009 2600

4 4 23 7 2006 2600
4 4 22 8 2006 2600

to the lack of exact and explicit instructions for data preparation. This is very common in scientific

literature and major obstacle in reproducible research [Peng, 2011, Baggerly and Coombes, 2009].

Following [Wickham, 2014], the data preparation must include four components:

1. The raw data

2. A TIDY data set

3. A code book describing each variable and its value

4. An explicit and exact recipe from which one needs to produce components one and two from

component one.
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Chapter 4

Machine Learning Tools

The primary goal of many artificial intelligence (AI), machine learning, and data science is the

discovery of new facts from data based on statistical and logical methods. The secondary goal of

these disciplines is to communicate the new facts [Aumann et al., 2003][Dhar, 2013]. Of course,

the discovery should be valid and reproducible. Unfortunately,many reported discoveries are not

reproducible due to sloppy data preparation and clean up [Editors, 2012][Economist, 2013].

Typically, many projects use data sets that were not necessarily collected for those projects. For

example, SEER database is built for summarizing cancer data and not survivability prediction. The

survivability prediction problem is a binary classification with uneven distribution of data points

[Vapnik, 1995][Xiao et al., 2009]. In order to prepare SEER data for binary classification, we must

first decide how to assign data points to each class. According to Parkin and Hakulinen, a well-

accepted methodology in predicting patient survival involves summarizing and analysis [Parkin and

Hakulinen, 1991]. The most widely used metric involves calculating the percentage of patients alive

after five years, using a direct method as outlined by Parkin and Hakulinen [Parkin and Hakulinen,

1991]. Chapter 3 gives our detailed explanation of our approach to data assignments based on

direct method.

One of the earliest and most cited work on survival predictability with machine learning tools

are the experiments reported by Delen et al. [Delen et al., 2005]. These experiments identified

decision tree as the best predictor, compared with artificial neural networks (ANN) and logistic

regression. A follow-up set of experiments by Bellaachia and Guven [Bellaachia and Guven, 2006]

reported similar results that decision tree was superior to naive Bayes and ANN. Neither work was

reproducible research, as there are no code book description of recipes on data preparation and

algorithms. Furthermore, it is not clear which methods (direct vs actuarial) that both studies used
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to identify patient five year survival status of patients.

Both of the above-mentioned studies were conducted using SEER data. Closely related studies

on lung cancer, also using SEER data, found that decision tree was the best predictor [Agrawal

et al., 2012]. This study further identified the importance of two out of 11 features when predicting

survivability. In another interesting and related study using SEER data, Zolbanin et al.[Zolbanin

et al., 2015] based the prediction of survivability on comorbidity of cancers, for example, breast

and prostate cancer.

Salma et al. [Salama et al., 2012] performed comparison studies on Wisconsin Breast Cancer

(WBC) database [Lichman, 2013], and reported that Multi-Layer Perception (MLP) was superior

to decision tree for that database. It is important to point out that WBC collects a different set

of features for breast cancer than does SEER. It is also worth mentioning that another study by

Christobel and Sivaprakasam [Angeline Christobel. Y, 2011] identified the Support Vector Machine

(SVM) as the best predictor for the WBC database. Finally, we want to draw attention to binary

classification based on missense mutation in genome [Wei and Dunbrack Jr, 2013].

The patient survival summarizing and analysis is a well accepted methodology [Parkin and

Hakulinen, 1991]. The most widely used metric is the calculation of percentage of patients alive

after five years by direct method as outlined in [Parkin and Hakulinen, 1991]. One of the earliest

and most cited work on survival predictability with machine learning tools is the experiments

reported by Delen et al. [Delen et al., 2005]. These experiments identified decision tree as the

best predictor compared with artificial neural networks (ANN) and logistic regression. A follow

up set of experiments by Bellaachia et al. [Bellaachia and Guven, 2006] reported similar results

that decision tree was superior to Naive Bayes and ANN. It is not clear which method (direct vs

actuarial) both studies use to identify patient five year survival status.

Both of the above-mentioned studies were conducted using SEER data. Closely related studies

on lung cancer, also using SEER data, found that decision tree was the best predictor [Agrawal

et al., 2012]. This study further identified the importance of two out of 11 features when predicting

survivability. In another interesting and related study using SEER data, Zolbanin et al.[Zolbanin

et al., 2015] based the prediction of survivability on comorbidity of cancers, for example, breast

and prostate cancer.

Salma et al. [Salama et al., 2012] performed comparison studies on Wisconsin Breast Cancer

(WBC) database [Lichman, 2013], and reported that Multi-Layer Perception (MLP) was superior

to decision tree for that database. It is important to point out that WBC collects a different set
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of features for breast cancer than does SEER. It is also worth mentioning that another study by

Christobel and Sivaprakasam [Angeline Christobel. Y, 2011] identified the Support Vector Machine

(SVM) as the best predictor for the WBC database. Finally, we want to draw attention to binary

classification based on missense mutation in genome [Wei and Dunbrack Jr, 2013].

The specific machine learning tools used in these experiments are binary classification tech-

niques. In general, we use features such as stages of cancer to help with this classification. The

NCI collects a large number of attributes for each cancer patient. Most researchers use a subset of

these attributes as features for binary classification. A fundamental question associated with these

experiments is the test of significance. In other words, how many of the selected features can be

eliminated without degrading the classifiers.

In our initial studies [Taghva and Bozorgi, 2016], we were interested in a predictive model which

estimates the odds of a female subject surviving breast cancer based upon the subject attributes.

The performance of logistic regression was compared to other machine learning tools such as Naive

Bayes and decision trees. We identified logistic regression as a strong candidate for classification

task based on F1 measure.

4.1 Naive Bayes

This section provides a brief introduction to binary classification with naive Bayes, logistic regres-

sion, and decision tree. In general, classification starts with a vector of features
−→
X = (x1, x2, . . . , xn)

which can serve as a template for each data point in the data set. We wanted to build a binary

classifier Y that predicts survivability. Essentially this construction was based on the characteristics

of the initial data set, in this case, the SEER database.

The simplest learning algorithm is the naive Bayes [Friedman et al., 1997]. This classification

technique relies on Bayes’ rule that the the outcome of an event A can be predicted from evidence

B:

P (A|B) =
P (B|A) · P (A)

P (B)
(4.1)

In practice, there are more events (or features) that contribute to this equation. The word

naive stems from the fact that features xi’s are assumed to be independent of each other. Notice

that the numerator is the joint probability P (A,B). For a more general vector of features
−→
X ,

this joint probability for a new data point to be classified is simply the product of the individual
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probabilities:

P (X1, X2, . . . Xn) = P (X1) · P (X2), . . . , · · ·P (Xn) (4.2)

4.2 Decision Trees

The decision tree [Quinlan, 1986a] uses a tree structure to classify the data points. The leaves

represent classes (survived or not), and branches represent conjunction of features from the feature

vector. This is a popular method as it represents a conceptual thought process that one can start

at the root and make conclusions at the leaves.

Decision Tree is a hierarchical acyclic graph that start with one node called rootGehrke et al.

[1999]. Each node describes a variable and edge represent the decision, and depending on the

assignment, each leaf has a distinct meaning. Each node can have as many edge as possible. The

most common tree is used for binary classification that each node just has two branches. There

are different methods for creating a Decision tree, one approach is to create a big tree and reach

out on the best tree by pruning (eliminating the useless nodes ) the nodes. On the other hand,

generate a introduction algorithm to guide us to split the data into the finite subsets, Instead of

creating many different trees and pick the best one.

There are different decision tree algorithms available like Iterative Dichotomizer3(ID3)-1986

[Quinlan, 1986b], C4.5-1993 [Quinlan, 2014], Chi-square Automatic InteractionDetection (CHAID)-

1980 [Kass, 1980], Classification and Regression Tree (CART)-1984 [De’ath and Fabricius, 2000],

Quick-Unbiased-Efficient Statistic Tree(QUEST)-1997 [Loh and Shih, 1997], GUIDE-2002, Classi-

fication Rule with Unbiased Interaction Selection and Estimation(CRUISE)-2001 [Kim and Loh,

2001] and Conditional inference tree( CTREE)-2006 [Hothorn et al., 2006]. Probably the most

popular one in machine learning are ID3 (and its successor), C4.5 and CART. Quinlan develop the

ID3 Decision Tree in 1986 at University of Sydney, and improved the tree in 1993 [Quinlan, 2014],

and named it C4.5. Ross Quinlan has various publications, he was actively works on the Decision

Tree algorithms, in the late 80s he developed ID3.

4.2.1 Iterative Dichotomizer 3(ID3)

Quinlan considered the theory of Shannon as the base of the ID3 and C4.5 algorithms. Shannon

Theory is based on Information Theory; In general Information Theory is based on statistic and
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probability, the useful information created by measuring the distribution associated to the random

variable that it called entropy. A entropy can be associated of the measure information between

single random variable or between two random variables. The Shannon entropy shows in equation

4.3.

H(s) = −
c∑
j=1

(p(j) log2 p(j) (4.3)

That p(j) is represent the probability of the j-th class, and C represent the number of classes of

the output variable. The simple example below is for better understanding the Shannon entropy .

Table 4.1: Patient Information
Patient Id Type of Cancer Doctor Visit Surgery Chemotherapy Survivability

1 Breast Cancer Regularly Yes No No

2 Breast Cancer Regularly Yes Yes No

3 Colon Cancer Regularly Yes No Yes

4 Prostate Cancer Often Yes No Yes

5 Prostate Cancer Rarely No No Yes

6 Prostate Cancer Rarely No Yes No

7 Colon Cancer Rarely No Yes Yes

8 Breast Cancer Often Yes No No

9 Breast Cancer Rarely No No Yes

10 Prostate Cancer Often No No Yes

11 Breast Cancer Often No Yes Yes

12 Colon Cancer Often Yes Yes Yes

13 Colon Cancer Regularly No No Yes

14 Prostate Cancer Often Yes Yes No

In this example the attribute’s values is as follow:

Type of Cancer= { Breast, Colon , Prostate }

Doctor Visit={Regularly,Often,Rarely}

Surgery={Yes,No}

Chemotherapy ={Yes,No}

Survivability={Yes,No}

The Shannon entropy calculated as shown in equation 4.4.

H(S) =
−9

14
× log2(

9

14
)− 5

14
× log2

5

14
= 0.94 (4.4)
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In addition, Quinlan uses the Concept Learning System (CLS) algorithm as anther base for ID3

algorithm. ID3 is a supervised learning algorithm and it use the training data to create a tree. The

produced tree is used to classify the testing data sets.

In ID3 model a tree generates based on the categorical input and output. It goes through all

the categorical attributes, hence generate a wide and shallow tree. At the beginning ID3 algorithm

assign one split for every node (attribute) where these splits create branches of the categorical

attributes. Then with Information Gain method the best split for ID3 Decision tree measured and

evaluated. Previous two steps process recursively applied to the new branches. [Suknovic et al.,

2012] Information Gain method calculated based on equation 4.5.

H(U, S) =

K∑
i=1

(
| Si |
| S |

E(Si)) (4.5)

Where, the H(U,S) is represent the expected entropy of the input U that has K categories.

E(Si) is the entropy as well that represent the output attribute.

Information Gain represent as I(U,S) in equation 4.6 as defined in [Suknovic et al., 2012].

I(U, S) = H(S)−
K∑
j=1

(sj ∗H(sj)) (4.6)

The results of the Information gain for previous example calculated as shown in equations 4.7,

4.8, and 4.9 and.

H(S) =
9

14
log(

9

14
) +

5

14
log(

5

14
) = 0.94 (4.7)

I(TypeOfCancer, S) = H(S)− 5

14
×H(SBreastCancer)−

4

14
H(SProstateCancer)

− 5

14
×H(SColonCancer) =

0.94− 5

14
× 0.9710− 4

14
× 0− 5

14
× 0.9710 = 0.246 (4.8)

H(SBreastcancer) =
2

5
log(

2

5
+

3

5
log(

3

5
= 0.971

H(SProstateCancer) =
4

4
log(

4

4
= 0

H(Scolon) =
3

5
log(

3

5
+ 5× log(

2

5
= 0.971 (4.9)

22



The results of the Information Gain for the other attributes of the example are shown in Table

4.2.

Table 4.2: Patient Information
I(Chemotherapy,S) 0.048

I(Doctor Visit,S) 0.0289

I(Surgery,S) 0.1515

ID3 is not the perfect decision tree due to the different limitations, it can just work with

categorical data , and it’s not designed to work with numerical data. In addition, ID3 is sensitive

to features with large individual number of values. For instance unique Patient Id(Or Social Security

Number), these unique values can cause the low conditional entropy value.

4.2.2 C4.5

Quinlan worked on the ID3 problems and discover a new method in 90s. He used the gain ratio

method to improve the ID3. The improved ID3 by Quinlan named C4.5 Decision Tree [Hssina

et al., 2014]. In C4.5 the Gain ratio method used to calculate the splitting attributes. It can work

with numerical and categorical input attributes. C4.5 Decision tree also has the feature to work

with unknown values. If an attribute has an unknown value/values the C4.5 manage those values

by evaluating the gain ratio. In the first step,in C4.5 Decision Tree , all possible binary splits for

all numerical attributes are considered, the splits are always binary in this model. Then the best

split selected by evaluating the gain ratio measurement. These two steps recursively applied to

all attributes[Suknovic et al., 2012]. Until reached the stop point of the tree. The ”gain ratio”

calculation is show in equations 4.10, and 4.11.

G(U, S) =
I(U, S)

SI(U, S)
(4.10)

SI(U, S) = −
K∑
i=1

(
| Si |
| S |

× log(
| Si |
| S |

) (4.11)

The c4.5 designed to work with categorical and numerical attributes, in C4.5 algorithm process

the categorical attributes generates the multiway splits ,however the numerical attributes always

generate binary splits.
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4.2.3 Classification and Regression Tree (CART)

CART is a decision tree that can evaluate classification and regression. It can only work with binary

splits and produce narrow and deep tree. In this tree, all possible splitting will be generating (can be

numerical attributes or categorical attributes). The best splits be selected based on the evaluation

Measure method, that this Evaluation Measure can be based on different method like Gini, Twoing,

and order Twoing. these two steps recursively repeated until stopping criteria has been reached.

The Gini measure evaluation [Suknovic et al., 2012] is calculated as shown in equations 4.12

and 4.13.

G(U, S) = j(S)− PL × j(SL)− PR × j(SR) (4.12)

j(S) =
∑
j,i

P (
j

S
)P (

i

S
), i 6= j (4.13)

The smaller the value of the Gini Index shows the better split. Gini method doesn’t designed

to work with the data with the wildly spread domain of the target, in those cases Towing criteria

can be used as shown in equation 4.14.

TwoingCriteria(t) =
PLPR

4
((
∑

(| P (
i

tl
)P (

i

tR
|))2) (4.14)

P ( it is the probability of the fraction of class i at node [Ture et al., 2009]. The PL is shown the

probability of a case to be at the left branch and PR is the probability that a case shown in the

right side of the tree. In addition the Mean Square Error is used in this tree to achieve the best

splits.It also designed to work with missing values.

4.2.4 Chi-square Automatic InteractionDetection (CHAID)

CHAID is a decision tree algorithm that like ID3 is just work with categorical data. CHAID

designed to find the most significant attributes based on the Chi-Square statistic. In the first

step, the most significant split for each attributes produced by generating two tables for every pair

of categorical attributes, and evaluate the Chi-Square for each table. For each pair the results

compared with the threshold, the two least significant different categories will be merged, and

this step repeat again for the new pairs.Then each remaining category generated from two or

more original categories. In this step the most significant categories will be found by dividing
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the component category into all possible two categories division [Mohankumar et al.]. The most

significant split implemented by using Chi-Square statistic, also the Benferroni multiplier used for

finding compound categories.These steps repeated recursively until the stopping criteria has been

reached. Chi-Square is used for classification and prediction [Pereira et al., 2017]. calculated as

shown in equation 4.15.

Chi− Square =
(actual − excpected)2

excpected
(4.15)

4.2.5 Quick Unbiased Efficient Statistic Tree

quest Quest is a classification tree that works with numerical and categorical input attributes . In

this method, For numerical input attributes ANOVA f-test evaluated and for categorical variables

Chi-Square.

In addition, Benferroni adjustment is used in this algorithm to make sure the bias is insignif-

icant.All categorical variables transform to numerical variable with ”discriminant coordinate or

canonical variate ” CrimCoord transformer. The CrimCoord is used in the Quest and CRUISE

decision tree, to convert numerical data to categorical data. Then the split point will be found in

the selected numerical attributes. In addition for finding the best split 2-means(group classes to

two super classes) is applied.The previous steps recursively repeats until the stop point reached.

4.2.6 Classification Rule with Unbiased Interaction Selection and Estimation

CRUISE is another supervise learning algorithm. The CRUISE algorithm is the FACT and QUEST

improved algorithm. Hyunjoong Kim and Wei-Yin Loh from Yonsei University, Korea and Univer-

sity of Wisconsin-Madison, USA designed this algorithm in 2001 [Kim and Loh, 2001]. It designed

to use pruning and also compatible to work with missing values. In CRUISE Decision tree the

attribute selection is done by a Chi-Square testing and normalizing with Peizer-Pratt transforma-

tion. The best attributes have maximum normalized value from Peizer-Pratt transformation.The

different tables generated for each numerical or categorical attributes. It generate K tables for pair

of categorical attributes, and 4 tables for each pair of numerical attributes. All categorical variables

transform to numerical variable with CRIMCOORD transformer. CRIMCOORD transformers all

numerical attributes to categorical attributes.Then for finding the best splits the Box-Cox transfor-

mation used before applying LDA, LDA is designed to work on the normal distribution data.The

previous steps recursively repeat until the stop point reached.
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4.2.7 Conditional inference tree( CTREE)

Another tree that is designed to work with categorical and numerical data is CTREE. It used for

analyzing the classification and regression. The most significant attributes selected based on the

H0 hypothesis. If the the minimum adjusted p− value is smaller than the threshold or if the H0 is

not rejected then the tree splitting will stop. In this model, the best split is selected with two sam-

ples test linear statistics. The most significant attributes chosen with Permutation(randomization)

test calculation. The significant split evaluated by permuting the response under null H0 of ”inde-

pendence between covariates and response variable” [Hothorn et al., 2006]. CTREE decision tree

doesn’t work with missing values.

4.2.8 Comparison between different Decision tree algorithm

In general, in different Decision Tree algorithms finding significant attributes is the first challenge.

Each algorithm used different methods to find the significant attributes, like ANOVA f-test, Chi-

Square test, Permutation test. In creating splits process, the Binary, QDA and LDA methods were

used. In addition , for evaluating the efficient splits, Information Gain, Gain Ratio, Gini Index,

Twoing, Ordered Twoing, Chi-Square test, AUC, Mean Square Error (MSE) and Permutation

two-sample test methods were used.

The other challenge is to find the stopping point of the tree, Rokach and Maimn in 2008 solved

this issue by considering the Pure node, Maximum tree depth or Minimum evaluate Split threshold.

CHAID uses p − value to measure the desirable of a split, while CART uses the reduction of an

impurity measure. CART is designed to generates only binary splits, while CHAID searches for

multi-way splits. In ID3 and C4.5, for each categorical attributes there is just one possible split.

If there is N possible categories, then 2k-1-1 binary splits can be generated. In CHAID algorithm,

the similar categories can be grouped and produce neither multiway nor binary. The Binary

splits used in CART, GUIDE and CTREE, the multiway splits used by ID3 and C4.5 and the

CHAID used significant split methods. The C4.5 and CART generates splits based on the numeric

attributes. QUEST use QDA and CRUISE generate splits with linear analysis. Every Decision

tree has stopping criteria. Some method considers maximum predefined depth of the tree as the

stopping point, some algorithms suggested to grow the tree and afterward prune the not significant

nodes to guarantee that the most significant tree as shwn in Table 4.3
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Table 4.3: Decision Tree comparison
Decision Tree Missing Values Splits per node Unbiased splits

C4.5 Yes ≥2 No

CTREE No 2 Yes

CRUISE Yes ≥2 Yes

CART Yes 2 No

Figure 4.1: Galton’s Data
Father’s Height Son’s Height

68.0 66.5
69.0 72.1
78.5 75.3
75.5 79.2

4.3 Linear Regression

One of the oldest statistical methods for inferencing is Linear Regression discovered by Francis

Galton in 1886 [Galton, 1886]. Galton was interested in estimating the son’s height based on

father’s height. The assumption being that there is a linear relation between the son and father

heights. If we let x and y represent the father and son heights respectively, then the following

equation could represent the desired relationship:

y = β1x+ β0 (4.16)

In this equation, β1 and β0 represent slope and intercept of the line, respectively. In general, we

are interested in identifying slope and intercept values that minimizes the error. These values are

obtained based on observed data. Consider a snippet of data from Galeton’s data as represented

in 4.1.

The Python code in 4.1, represents the graph in 4.2 as four red points. In addition, one can

guess that the regression lines y = 0.9x+ 5.8 (in blue) or y = 0.9x+ 5.0 (in green) may be a good

fit for this data as it is displayed in 4.2.

Listing 4.1: Python code for regression lines

\import numpy as np

\import matp lo t l i b . pyplot as p l t

X = [ 6 8 , 69 , 78 . 5 , 7 5 . 5 ]
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Y = [ 6 6 . 5 , 72 . 1 , 75 . 3 , 7 9 . 2 ]

t = np . l i n s p a c e (60 ,85 ,20)

p l t . p l o t (X, Y, ’ ro ’ , t , 0 .9∗ t + 5 . 8 , ’b ’ , t , 0 . 9 ∗ t + 5 . 0 , ’ g ’ )

p l t . x l a b e l ( ” Father ’ s Height ” )

p l t . y l a b e l ( ”Son ’ s Height ” )

p l t . t i t l e ( ” p o s s i b l e r e g r e s s i o n l i n e s ” )

p l t . show ( )

Figure 4.2: Display of the Possible Regression Lines

The regression line can be used to predict son’s height given father’s height. Conventionally,

for a given value x (father’s height), there are two values for son’s height, the actual value known

as observed and value obtained from the regression line known as fitted. we use y and ŷx to

denote observed and fitted values, respectively. for example for the point 68, 66.5 and regression

line y = 0.9x + 5.0, the observed value is 66.5 and the fitted value is y=0.9 ∗ 68.0 + 5.0 which is

66.2. The difference between these two values 66.5− 66.2 = 0.3 is the error. Typically, we want to

minimize this error based on the proper values of β1 and β0.

For a given list of data points (x1, y1), (x2, y2), . . . (xn, yn), we would like to calculates the slope

and intercept of the regression line by minimizing the Square Error, SE defined by:

SE =
n∑
i=1

(yi − (β1xi + β0))
2 (4.17)
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Let x̄ denote the mean of, namely, x̄ = x1+x2...xn
n or equivalently (x1 + x2 · · ·+ xn) = nx̄, then

we proceed with the following to find values 0f β1 and β0 to minimize the SE.

We start by expanding SE as follows:

SE = (y21+y22 · · ·+y2n)−2β1(x1y1+x2y2 · · ·+xnyn)−2β0(y1+y2 · · ·+yn)+β21(x21+x2 · · ·+x2n)+2β1β0(x1+x2 · · ·+xn)+nβ20

(4.18)

This is equivalent to:

SE = ny2 − 2nβ1xy − 2nβ0y + β21x
2 + 2nβ0β1x+ nβ20 (4.19)

To minimize equation 4.19, we take two partial derivatives with respect to β0 and β1:

∂SE

∂β1
= −2nxy + 2nβ1x2 + 2nβ0x = 0 (4.20)

∂SE

∂β0
= −2ny + 2nβ1x+ 2nβ0 = 0 (4.21)

by dividing both side of these two equations by 2n, we get two equations in 4.22, and 4.23:

−xy + β1x2 + β0x = 0 (4.22)

−y + β1x+ β0 = 0 (4.23)

We can rewrite these two equations as equations 4.24, and 4.25.

β1x2 + β0x = xy (4.24)

β1x+ β0 = y (4.25)

From equation 4.25, we observe that the point (x, y) lies on the regression line. Also, if we

divide the equation 4.24 by x, we get the equation 4.26 which implies that the point (x
2

x ,
xy
x ) lies

on the regression line.

With these two points, we can calculate slope and intercept of the regression as shown in

equations 4.26, and 4.27.
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β1 =
y − xy

x

x− x2

x

(4.26)

β0 = y − β1x (4.27)

Mathematically, the slope of this regression line is equivalent to equation 4.28.

cor(y, x)
sd(y)

sd(x)
(4.28)

We can revisit the four points in 4.1 in order to compute the slope and intercept of the

regression line. Based on equation 4.26 and 4.27, we obtain 0.835 and 12.53 for slope and

intercept, respectively. The four point and the regression line is shown in 4.3.

Figure 4.3: Display of the Regression Line

In practice, the analytical solution is hard when the number of observed data and features are

high. In the next section, we will describe numerical method of gradient descent as is commonly

used in machine learning applications.

4.3.1 Gradient Descent

In order to minimize the error in prediction as described in equation 4.17, one can employ the

method of gradient descent to approximate the minimum point on the error curve. In what follows,

we describe this method using derivatives, or more precisely partial derivatives.
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Figure 4.4: Computing Example for Gradient Descent

y = x2

y′ = 2x

at x = 1, y = 1, y′ = 2

tangent line is : y = m(x− x1) + y1 = 2x− 1

at x = 1/2, y = 1/4, y′ = 1

tangent line is : y = x− 1/4

at x = 0, y = 0, y′ = 0

tangent line is : y = 0

(4.29)

Listing 4.2: Python code for Gradient

import numpy as np
import matp lo t l i b . pyplot as p l t
X = [ 1 , 0 . 5 , 0 ]
Y = [ 1 , 0 . 25 , 0 ]
t = np . l i n s p a c e ( 3 , 3 , 2 0 0 )
p l t . p l o t (X, Y, ’ ro ’ , t , t ∗∗2 , ’ y ’ , t , 2∗ t 1 , ’b ’ , t , t 0 . 2 5 , ’b ’ ,

t , 0∗ t , ’ g ’ )
p l t . x l a b e l ( ”x va lue s f o r parabola ” )
p l t . y l a b e l ( ”y va lue s f o r parabola ” )
p l t . t i t l e ( ” Gradient Descent Example” )
p l t . s l im ( 3 , 3 )
p l t . yl im ( 3 , 3)
p l t . show ( )

Assume a parabola function y = x2, it is clear that the minimum point on this parabola is the

point (0, 0). Equivalently, the slope of the tangent line at this point is 0.0. The derivative of this

equation is y′ = 2x. In the equation 4.4, we compute the slope of the tangent line at three different

points.

In gradient descent, we pick a point at random (more precisely, the slope), say x = 1. We

calculate the slope of the tangent line. In the next step, we pick a point based on the calculated

slope by subtracting a small value from current x, say x = 1/2. We continue the process and pick

the next value say, x = 0. The idea is that we take steps toward the minimum point on the curve.

The Python code and display of the example are shown in listing 4.2 and figure 4.5, respectively.
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Figure 4.5: Display of the Possible Gradient Descent

Figure 4.6: Galton’s Data
Father’s Height Son’s Height

68.0 66.5
69.0 72.1
78.5 75.3
75.5 79.2
65.3 66.2
71.3 68.4
58.4 59.2
59.6 57.8
54.5 55.1

To make gradient descent more precise, we start with a hypothetical set of son’s and father’s

height as shown in 4.6.

A common approach to normalizing data is min-max which normalizes according to equation

4.30 and coded in 4.3.

x−min
max−min

(4.30)

Listing 4.3: Python code for min-max

def min max ( l i s t ) :

32



Figure 4.7: Normalized Galton’s Data
Father’s Height Son’s Height

0.56 0.47
0.6 0.71
1.0 0.84
0.88 1.0
0.45 0.46
0.7 0.55
0.16 0.17
0.21 0.11
0.0 0.0

min value = np .min( l i s t )

max value = np .max( l i s t )

n e w l i s t = [ ( x min value )/ ( max value min value ) for x in l i s t ]

print n e w l i s t

return n e w l i s t

The result of this normalization is shown in figure 4.7.

For a regression line y = mx+b and an observed point (xi, yi), we denote the predicted value by

ŷi = mxi + b. The error SE =
∑

(y− ŷ)2 = (y− (mx+ b))2 is defined as the sum of the differences

between the observed and predicted values over the training data. The gradient is defined as the

partial derivatives of SE with respect to m and b as defined in equations 4.32 and refeq:b-gradient.

b− gradient =
∂SE

∂b
= −2

n∑
i

(yi − (mxi + b)) (4.31)

m− gradient =
∂SE

∂m
= −2

n∑
i=1

xi(yi − (mxi + b)) (4.32)

We can simplify these gradient as displayed in equations 4.33 and 4.34.

−2X(Y − Ŷ ) (4.33)

−2(Y − Ŷ ) (4.34)

The algorithm proceeds according to the following steps:
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Figure 4.8: Gradient Descent Calculations

b m x y ŷ SE −2(Y − Ŷ ) −2X(Y − Ŷ )np

0.37 0.87 0.56 0.47 0.86 0.15 0.77 0.43
0.6 0.71 0.89 0.033 0.36 0.22
1.0 0.84 1.14 0.02 0.27 0.24
0.88 1.0 1.14 0.02 0.27 0.24
0.45 0.46 0.76 0.091 0.60 0.27
0.7 0.55 0.98 0.18 0.86 0.60
0.16 0.17 0.51 0.12 0.68 0.11
0.21 0.11 0.55 0.20 0.89 0.19
0.0 0.0 0.37 0.14 0.74 0.0

0.95 5.44 2.3

1. initialize m and b randomly. (i.e. [m,b] = np.random.rand(2))

2. calculate the gradients based on the equations 4.33 and 4.34.

3. Update m and b according to a learning step α and gradients as in equations 4.35 and 4.36.

4. repeat the the two previous steps until the error reaches a stable state.

b = b− α ∗ ∂SE
∂b

(4.35)

m = m− α ∗ ∂SE
∂m

(4.36)

The learning step α is obtained experimental. Typical values are 0.1, 0.01, or 0.001. In general,

It is hard to obtain an ideal error, so the repeating steps in the algorithm runs in increment of

thousands. Table reffig:regression-calc shows the process for our example data.

At this step, the error is 0.95. If we set our learning step to 0.01, the gradient values of m and

b will be updated to according to the equations 4.38 and eq:m-gradient3.

m = m− α ∗ ∂SE
∂m

= 0.87− 0.01 ∗ 2.3 = 0.847 (4.37)
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b = b− α ∗ ∂SE
∂b

= 0.37− 0.01 ∗ 5.44 = 0.316 (4.38)

The algorithm repeats the calculation as it is done in 4.8 with the updated values of m and b.

If we run this process for one thousand times we arrive at SE = 0.0167, m = 0.847, and b = 0.127,

respectively. The final regression line is displayed in Figure 4.9.

Figure 4.9: Display of the Final Regression Line

4.4 Logistic Regression

The Least Square Method was published by Adrian-Marie Legendre in 1805; however, Carl Fredrick

Gauss had used it previously. In fact, he developed the Least Square Method in 1795 at the age of

18. Gauss’s Least Square Method was first used in astronomy by an Hungarian astronomer. The

astronomer had used the method to monitor Ceres before it became lost for 40 days in January
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1802. He used the 24-year-old Gauss Method instead of the more complicated Kepler nonlinear

equation method. In 1809, Gauss published the Least Square Method; The [Gauss, 1877]credit for

its discovery went to Legendre(1805) [Legendre, 1805] and Gauss(1809) [Gauss, 1809].

The Logistic Regression Model was developed in 1958 by David Cox [Cox, 1958]. In this model,

the probability of a binary response is based on one or more independent variables. Regression

analysis is used for estimating the relationship between independent variables, which are also known

as predictors. Regression analysis is used to understand the relationship between predictors and

dependent (target) variable. The performance of the results is closely related to the data usage. In

1821, Gauss developed the Gauss-Markov Theorem, which was based on his previous method, the

Least Square Method [Gauss, 1823].

The Logistic Regression Model is one of the most commonly used statistical procedure methods.

It is used in many different areas, especially in medical research. Logistic Regression is designed

to respond to the zero or one’s shape of outcomes, for instance, ”success” or ”fail”, ”yes” or ”no”,

etc. On the other hand, Ordinary Least Square(OLS) is designed for beyond the range variables,

not binomial variables. Due to the [Loh and Shih, 1997] error variances and normal distribution

results, the OLS Method is not recommended for binary variables. However, if the target variables

are binomial, the Logistic Regression Method is recommended. The OLS Method is recommended

when there are a range of target variables. They both are sufficient when there is a variety of

independent variables, which may be categorical, continuous or ordinal.

There are many techniques for calculating the coefficient, such as Fisher’s correlation coeffi-

cient, Spearman’s coefficient and Pearson’s coefficient. The Pearson coefficient was developed by

Bravais in 1846 [Denis, 2001] and described by Karl Pearson in 1895. [Pearson, 1895]. In 1904, C.

Spearman[Spearman, 1904] used the Pearson Method as another way in which to calculate the re-

lationship strength between two variables. The historic milestone of this correlation and regression

is presented in the table ??:

Both the Logistic Regression Method and the OLS Method can be used for the Pearson and

Spearman correlation coefficient methods. When we have more than one variable, the correlation

between variables can be measured by using a different index(Coefficients).

One difference, however, is that Spearman’s coefficient was developed to measure the rank

correlation, while Pearson’s coefficient was developed to measure the ”linear association between

the OLS and the Logistic predicted values.

With logistic regression [Lin et al., 2008], the feature vector
−→
X is used to fit the data point in
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Table 4.4: History Of Correlation
Date Person Title

1823 Carl Fredrich GaussGauss [1823] German mathematician

1843 John Stuart MillMill [1843] British philosopher

1846 Argusts Bravias French physicist

1868 Charles Darwin British natural philosopher

1877- 1885-1888 Sir Francis Gallon British mathematician

1895-1896 Karl Pearson British statistician

1904 Spearman

1920 Karl PearsonPearson [1920] French

the equation:

P (
−→
X ) = β0 + β1x1 + β2x2 · · ·+ βnxn (4.39)

Since this value is not necessarily between 0 and 1, a link function, logit is used:

P (
−→
X ) =

eβ0+β1x1+β2x2···+βnxn

1 + eβ0+β1x1+β2x2···+βnxn
(4.40)

The Maximum Likelihood Estimate (MLE) is used to find the values of the coefficients βi’s from

the data.

In this section, we give a brief introduction to binary classification with logistic regression. In

general, we start with a vector of features
−→
X = (x1, x2, . . . , xn) that can serve as a template for

each data point in our data set. We want to build a binary classifier Y that predicts survivability.

This construction is essentially based on the characteristics of the training data set. In our case,

this is SEER database.

In the classical regression Lin et al. [2008], the feature vector
−→
X is used to fit the data point in

the equation:

P (
−→
X ) = β0 + β1x1 + β2x2 · · ·+ βnxn (4.41)

Since this value is not necessarily between 0 and 1, we can not use it as probability to assign

a class to the data point. In general, a link function, logit is used to convert p(
−→
X ) to a value

between 0 and 1.

P =
eβ0+β1x1+β2x2···+βnxn

1 + eβ0+β1x1+β2x2···+βnxn
(4.42)
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The training data is used to estimate the coefficients of the equation 4.42. We use log likeli-

hood to decide on class assignment. For binary classification, each training data point x̄i has a

class assignment yi (e.g. 0 for not-survived, 1 survived). We then substitute a data point in

equation 4.42 in order to calculate the probability pi. The log likelihood is:

n∑
i=1

yilogpi + (1− yi)log(1− pi) (4.43)

The equation 4.43 is solved numerically to obtain Maximum Likelihood Estimate (MLE) for

coefficients βi’s from the data.
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Chapter 5

Comparison

Many natural problems can be solved using binary classification techniques. Known examples

of binary classifications are the detection of fraudulent credit card fraudulent transactions [Phua

et al., 2004], spam identification [Benevenuto et al., 2009], classified documents [Taghva, 2009], and

privacy detection [Taghva et al., 2006]. Naive Bayes, decision trees, logistic regression, artificial

neural network(ANN), and support vector machine (SVM) are among the most popular techniques

for binary classification.

One of the earliest and most cited work on survival predictability with machine learning tools

are the experiments reported by Delen et al. [Delen et al., 2005]. These experiments identified

decision tree as the best predictor, compared with artificial neural networks (ANN) and logistic

regression. A follow-up set of experiments by Bellaachia and Guven [Bellaachia and Guven, 2006]

reported similar results that decision tree was superior to naive Bayes and ANN. Neither work was

reproducible research, as there are no code book description of recipes on data preparation and

algorithms. Furthermore, it is not clear which methods (direct vs actuarial) that both studies used

to identify patient five year survival status of patients.

Both of the above-mentioned studies were conducted using SEER data. Closely related studies

on lung cancer, also using SEER data, found that decision tree was the best predictor [Agrawal

et al., 2012]. This study further identified the importance of two out of 11 features when predicting

survivability. In another interesting and related study using SEER data, Zolbanin et al.[Zolbanin

et al., 2015] based the prediction of survivability on comorbidity of cancers, for example, breast

and prostate cancer.

Salma et al. [Salama et al., 2012] performed comparison studies on Wisconsin Breast Cancer

(WBC) database [Lichman, 2013], and reported that Multi-Layer Perception (MLP) was superior
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Figure 5.1: Confusion Matrix
Predict No Predict Yes

Actual No True Negative (TN) False Positive (FP) Neg

Actual Yes False Negative (FN) True Positive (TP) Pos
PNeg PPos n

to decision tree for that database. It is important to point out that WBC collects a different set

of features for breast cancer than does SEER. It is also worth mentioning that another study by

Christobel and Sivaprakasam [Angeline Christobel. Y, 2011] identified the Support Vector Machine

(SVM) as the best predictor for the WBC database. Finally, we want to draw attention to binary

classification based on missense mutation in genome [Wei and Dunbrack Jr, 2013].

5.1 Comparison Metrics

Regarding the prediction accuracy when using precision/recall metrics and ROC curve, in the

10-fold cross validation method, the entire data set was split into 10 random sub-samples. Each

classifier uses nine folds for training and one fold for testing. The final confusion matrix is the

average of the 10 runs.

Suppose we start with n data points divided into positive (Pos) and negative (Neg) exam-

ples. Let TP be the number of true positives, that is, the number of patients which the classifier

predicts survived and the patients actually have survived. Let FN be the number of false nega-

tives, i.e., the number of patients that actually survived but the classifier predicts not-survived.

The TN is defined as the number of patients that have not-survived and the classifier also pre-

dicts not-survived. The FP is the number of patients that have not-survived but the classifier

falsely predicts survived. These four metrics are typically summarized in a confusion matrix as

shown in Figure 5.1. The total of TN and FN is denoted by PNeg. Simialarly, the total of FP

and TP is denoted by PPos.

Recall or True Positive Rate tpr then is defined as:

recall = tpr =
TP

TP + FN
(5.1)

And the precision is defined as:
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precision =
TP

TP + FP
(5.2)

The harmonic mean of precision and recall is called the F1 measure, defined as:

F1 =
2

1/precision+ 1/recall
(5.3)

The False Positive Rate, fpr is defined as:

fpr =
FP

FP + TN
(5.4)

The accuracy of the classifier, acc is defined as the weighted average of true positive and true

negative rates.

acc = Pos ∗ tpr +Neg ∗ (1− fpr) (5.5)

Another popular metric for comparison of binary classifiers is the Receiver Operating Charac-

teristic (ROC) curve. The ROC is extensively used in ther literature. The ROC curve exhibits

the tradeoff between true positive and false positive error rates [Duda et al., 2012]. The X-axis ad

Y-axis in ROC curve are fpr and tpr, respectively.

The Area Under the ROC Curve (AUC) is also an accepted measure of the binary classification

performance and is widely used.

5.2 Base Experiment

In this study, the performance of naive Bayes, decision trees, and logistic regression were evaluated

for their performance in predicting five-year survivability of breast cancer patients. These three

approaches were chosen because they were techniques used in past studies on survivability predic-

tion. The implementations for these three approaches developed by Pedregosa et al. [Pedregosa

et al., 2011a] were used in these experiments.

As mentioned previously, the number of data points in the survived class is eight times the

number of not-survived data points. Typically, this imbalance affects the classification accuracy

[Wei and Dunbrack Jr, 2013]. Many approaches have been developed to overcome the problems

associated with the unbalanced training data. The simplest one is to provide the prior weights

of the training class to the classifier. The balanced value for class-weight parameter for both
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Figure 5.2: Performance of the Classifiers
Classifier class Precision Recall F1

Naive Bayes survived 0.36 0.99 0.53
not-survived 1.00 0.77 0.87

Logistic Regression survived 0.41 0.97 0.58
not-survived 1.0 0.82 0.90

Decision Tree survived 0.60 0.59 0.60
not-survived 0.95 0.95 0.95

Figure 5.3: ROC Curve

decision tree and logistic regression experiments. In addition, the class prior [0.12, 0.88] was used

for naive Bayes experiments. Stratified 10-fold cross validation was used for training and testing

to make sure that each fold preserved a similar distribution as the original classes. Aside from the

default setting, the only other parameter used was newton method for the solver method of the

logistic regression.

The performance of the tree classifiers with 10-fold cross validation is summarized in Figure 6.7

and Figure 5.3.

The precision reports the percentage of data points that are classified as positive that are

actually positive. The recall reports the percentage of correctly labeled data points. Precision is

sensitive to the class distribution. In general, the precision is affected by the class distribution while

recall is not. All three methods have low precision for the not-survived class, but both logistic

regression and Naive Bayes have very high recall values for this class. This is a crucial point as the

cost of misclassification is prohibitive for this class. The idea being that when a patient is put in the

not-survived class, then we may require further test to be assured of the patient condition. The

ROC curve suggests that logistic regression is also superior based on the AUC value. The difference
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between AUCs for Naive Bayes and logistic regression may not be statistically significant.

A closer look at the coefficients reveals that race and vitalStatusRecord are not significant

and can be eliminated.

There are many methods to improve our base experiments. One of the most widely used tech-

niques is to use the correlation among predictors to computationally categorize certain attribute

values to improve the recall and precision level. In the next section, we will give a detailed intro-

duction to VIF and GVIF to overcome the correlation problems.

5.3 VIF and GVIF

Our previous work on cancer data [Taghva and Bozorgi, 2016] has identified logistic regression as

a superior choice over Naive Bayes and decision trees. Our classification is based on 14 attributes.

Many of these features are categorical.In regression modeling with large number of predictors,

correlations among predictors is quite common, and the estimated model coefficients might not be

very reliable. In these situations, the variance inflation factor (VIF) is computed for each predictor;

a rule of thumb is to omit any predictor which has VIF larger than 5 [Fox, 2002]. When there are

categorical predictors present, VIF does not apply; [Fox and Monette, 1992] developed a generalized

VIF. Since the present data set has several categorical predictors, we have computed GVIF for all

predictors. For continuous predictors, GVIF and VIF are the same.

Figures 5.4,5.5, and 5.6 are bar charts of ten categorical predictors in the present data set. It can

be seen that the predictors race, histologicType , grade, csLymphNod and COD have large number

of levels or values, which makes the fitting of logistic regression models numerically inaccurate,

as indicated by extremely large values of GVIF. For this reason, we recoded these predictors by

combining levels with low sample sizes into one category which we called other; this was done for

each of the predictors mentioned above.

Another prominent technique is Synthetic Minority Over-sampling Techniques known as SMOTE.

In the next chapter, we will a give detailed introduction to SMOTE. We then combine GVIF and

SMOTE to improve our results.
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Figure 5.4: Barplots of (a) race, (b) marital status, (c) histologic type, (d) beha vior code

Figure 5.5: Barplots of (a) grade, (b) csEODLymphNode, (c) radiation, (d) seerHistoricStageA
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Figure 5.6: Barplots of (a) VitalStatusRecord, (b)causeOfDeathToSEERSiteRecord
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Chapter 6

Correlation, Sampling, and

Estimation of Models

This chapter describes our optimization approaches to improve the recall and precision level of our

classifier based on logistic regression. We start with technical development of different SMOTE

techniques in section 6.1. We then combine the GVIF and SMOTE to finalize our experiments.

6.1 Synthetic Minority Over-sampling Techniques

As mentioned in section 1, the cost of misclassification of a minority record is higher than the

cost of miscalssification of a majority record. The re-sampling techniques’ main objective is to

correct this misclassification cost. These re-sampling tools usually under-sample the majority class

or over-sample the minority class. Some side effects of these techniques are that under-sampling

may throw away good data and over-sampling may cause over-fitting.

When working with imbalanced data sets, there are two things to consider, between-class im-

balances and within-class imbalances[Chawla et al., 2004]. In imbalanced data sets, the majority

class has more samples, while the minority class has fewer. Imbalanced data sets are found in many

different areas, such as in the detection of fraud phone calls[Fawcett and Provost, 1996], detect the

possibly cancerous cells in Mammography image [Chawla, 2003] or discover oil spills in satellite

radar images[Kubat et al., 1998].

In these examples, we are mostly interested in the results of the minority class rather than the

results of the majority class. Unfortunately, traditional data mining algorithms are not designed

for imbalanced data sets. When dealing with imbalanced data sets, different methods must be
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Table 6.1: Sampling Technique
Models Techniques

Over-Sampling SMOTE (Synthetic Minority Over-Sampling Technique)
B-SMOTE (Borderline SMOTE)
B-SMOTE (Borderline SMOTE)
B-SMOTE (Borderline SMOTE)
Random majority Over-Sampling with replacement
ADASYN(Adaptive Synthetic)

Under-Sampling Random Majority Under-Sampling with replacement
Tomek Links
Near-Miss
Under-Sampling with Cluster Centroid
One Side Selection
Neighborhood Cleaning Rule
(ENN) Edited Nearest Neighbor
Repeated Edited Nearest Neighbor
Condensed Nearest Neighbor
Instance Hardness Threshold
AIKNN

used. Solutions can be determined either by data levels or algorithm levels. For data levels,

changing the distribution and using sampling techniques results in more balanced data sets. On

the other hand, for algorithm levels, improving and modifying the existing data mining to find a

new algorithm [Han et al., 2005] .

In this study, we are considering the between-class imbalance, where some classes have a lot more

samples than other classes. One solution for solving imbalanced data sets issues is to use Sampling

techniques. We have two major Sampling techniques, Over-Sampling and Under-Sampling, plus a

combination of the two. In Over-Sampling, minority class examples must be replicated to achieve

a more balanced distribution; however, in Under-Sampling, some examples are eliminated from the

majority class to find more balanced sets. The list of the some of the sampling techniques presented

in table 6.1.

We have two different categories for sampling techniques; one is combining the Over-and Under-

Sampling technique and the other is creating an Ensemble balanced set as shown in table 6.2.

In Random Over-Sampling, the random sample of the minority class is duplicated to achieve a

more balanced dataset.

A well-known Over-Sampling technique is Synthetic Minority Over-Sampling Technique (SMOTE).

SMOTE was inspired by the Ha & Bunke 1997 handwriting recognition technique [Chawla et al.,
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Table 6.2: Sampling Technique
Techniques

Models heightOver-Sampling Followed by Under-Sampling SMOTE and Tomek Link
SMOTE and ENN
SVM (Support Vector Machine)

Ensemble Sampling Easy Ensemble
Balance Cascades

2002]. In this model, the minority class is not over sampled by replacement. Instead, SMOTE

creates synthetic examples and uses the nearest K neighbor technique of the minority class, which

usually considers the 5 nearest neighbors. However, it depends on the amount of over sampling.

If the needed over sampling is 300%, then 3 of the 5 randomly chosen nearest neighbors have

one sample generated for each. Amongest all the minority class neighbors, the samples with the

smallest Euclidean Distance are selected and identified as the select minority class neighbors. (We

represent the minority class with M ) One of these five neighbors is then randomly selected and a

new synthetic sample is created as shown in 6.1.

S = MnNeigbor

M = m1,m2,m3, ...,mnumMinority

N = n1, n2, n3, ..., nnumMajority

(6.1)

y is the number between zero and 1. MnNeigbor
is randomly chosen among 5 neighbors in sample

P . It can be different on the other SMOTE sample minority node. There is an assumed line

between the minority node, the first selected neighbor, and the new generated sample, which lies

on this joining line. The minority class over sampled by each minority class sample and introducing

synthetic examples along the line segments join any/all of the k nearest neighbors. It calculates

the difference between sample and its selected neighbor, multiply the number by a random number

y and add it to feature vector.

SMOTE performs better than random over sampling and is being used in many different areas.

It is being used in bioinformatics for gene prediction [Lusa et al., 2013]. Also, Nitesh et al. , inte-

grated SMOTE into a standard boosting procedure [Han et al., 2005], this improved the prediction

of the minority class.

In the SMOTE process, the first step is to consider the minority class and ignore the majority

class. For every minority, find the K nearest neighbor. In this example, consider k=5.
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Then choose the 5 neighbors with the smallest distance. Create a new sample along the joining

(you may want to use adjoining line) line for each neighbor as shown in figure 6.1.

Figure 6.1: Synthetic Minority Over Sampling Technique -SMOTE

To better understand SMOTE, this simple example can help. Assume you have a sample of

(7,4) and the first nearest neighbor is (5,3). First we find the differences of these two points (5-7,

3-4) = (-2,-1).
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and we need to assume y between 0 and 1, here we pick 0.5. The new Synthetic example would

be: (7, 4) + 0.5 ∗ (−2,−1) which is (6, 3.5).

Borderline-SMOTE-1 is very much the same as SMOTE.In both techniques, Borderline-SMOTE-

1(B-SMOTE1) and SMOTE, the synthetic examples generated along on the line joining the two

nearest neighbors are the same but there is one difference. In SMOTE, we only consider the K

minority nearest neighbors; however, in Borderline-SMOTE-1, the k nearest of the whole data set

is considered. In whole data set, we have the minority class (M) and the majority class (N) as

shown in equations 6.2 and 6.3.

M = m1,m2,m3, · · · ,mnumMinority (6.2)

N = n1, n2, n3, · · · , nnumMajority (6.3)

In the B-SMOTE method, first find the k nearest neighbor of one minority randomly selected

point. Then count to see how many of these selected neighbors are in the minority group l and

how many are in the majority group l′.

If 0 ≤ l′ ≤ l/2 this point is ignored. If l = l′ we consider it as noise and ignore this node.

If l2 ≤ l′ ≤ l the number of selected nearest neighbors of the majority class is greater than the

selected nearest neighbors of the minority class. This point will be placed in a set called DANGER,

which is a list of selected minority class points.

For each point in the DANGER set DANGER = {m1′,m2′, . . . ,mnum′, we only calculate the

k nearest neighbors of the minority class.

Each point on the DANGER list is based solely on the k nearest minority class neighbors.

Synthetic samples are generated for each point. From the k nearest neighbor, the t nearest one

gets selected 0 ≤ t ≤ k.

The same goes for SMOTE. We find the differences and multiply them by the random number

between zero and 1(y). This process is repeated for all the points in the DANGER set.

The other over sampling method is the Adaptive Synthetic Sampling Approach (ADASYN).

This method was inspired by SMOTE, SMOTEBoost and DataBoost-IM [He et al., 2008]. The

ADASYN idea is to reduce the bias by adjustment weight and adaptive learning. The main thought

in this model is to use a weighted/density distribution to decide the number of synthetic examples

needed for each selected minority data point. In ADASYN, more synthetic data samples are
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generated from the points that are hard to learn and less samples are generated from the points

that are easier to learn[He et al., 2008].

We represent the training data with T,with the number ofMnum instances in the minority group

andNnum examples in the majority group.

In ADASYN model, the first step is calculating the degree of freedom D by dividing the number

of minority classes (Mnum) by the number of majority classes(Nnum). This model then considers

how much the degree of difficulty of learning the minority class examples is.

If the degree of freedom is smaller than the threshold for the maximum tolerated degree of class

imbalance ratio Dthreshold, then w synthetic examples are created.

One of the first earliest under-sampling techniques used was Condensed Nearest Neighbor(CNN).

This technique was based on the k nearest neighbor rule. The idea of this method was to shrink

the sample space. The Nearest neighbor implementation was nave and required a lot more space

compared to other of all the previous classified data[Angiulli, 2005]. Several different solutions

were offered at that time in order to avoid using so much space. These were methods known as

lazy, instance-base, memory-based and case-based.[Shekarforoush et al., 2017] Later on they were

grouped into the following three categories:

• Competence preservation

• Competence enhancement

• Hybrid approach

The Tomek link method is based on the Condensed Nearest Neighbor. Tomek Link is an

Under-Sampling technique, which creates more balanced data sets by removing the examples from

the minority group. After under-sampling, in this model the training data number will be less than

the number of the total data set.

Tomek link looks at pairs of data points located in different groups which have no points between

them and are very close to each other. Consider these two examples in equation 6.4:

Mn and Ni, n = 1, · · · ,Mnum and i = 1, · · · , Nnum (6.4)

The distance between Mn and Ni is represented by d(Mn, Ni) .

We consider these two points as Tomek link only if there are no other data points between

them. Tomek Link creates more balanced data sets by removing the majority data point in each
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Figure 6.2: Tomek Link

pair as shown in figure 6.2.

Another method is called the Edited Nearest Neighbors. This method was developed by Wilson

in 1972 [Wilson, 1972]. This particular method is based on the K nearest Neighbor but with a few

differences. In this method, the editing procedure is used to balance the data set. The first step

entails finding the KNN of one selected point from the training set. The next step is finding the

KNN of that sample. If the majority of the selected neighbors are the same class as the selected

point, then assign flag0.However,if the majority of the selected neighbors are from a different group,

then assign flag1. Then continue on to the next node. Repeat this process until all the nodes in

the training set are covered. At the end, remove the nodes that were assigned flag0. Consider

a node xi from the minority group. After finding the kNN, count the nearest neighbors. If the

majority goes to the Minority group, then assign flag0, since they are in the same group. And if

the majority vote goes to the majority class, then assign flag1. Continue with the same process

on the next node xi+1. Stop after all the nodes get the proper flags. Then remove all the nodes

with flag0 [Tomek, 1976].
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The next method that we are going to present is One Side Selection method. This is yet

another under-sampling technique, which came from the same idea as Tomek Link. To evaluate

the accuracy of the sampling and classifiers, as was mentioned before, measures are formulated in a

confusion matrix. We presented the Accuracy, precision, and recall measurement formula. In this

method, we first need to evaluate the a+ and a−. a+ represents the accuracy of positive examples,

and a−is a measure for accuracy in negative examples. Before trying this method, we need to find

these two numbers. If they are somewhat similar or close, this technique will not be a good option,

but if a+ and a− have totally different results, then we can consider using the One-Sided Selection

sampling technique as an option. The other measure is G = −
√
a+ × a−, mean of accuracy. G

is maximized when two a+ and a− are balanced.

The next method that we are going to present is One Side Selection method. This is yet another

under-sampling technique, which came from the same idea as Tomek Link. To evaluate the accuracy

of the sampling and classifiers, as was mentioned before, measures are formulated in a confusion

matrix. We presented the Accuracy, precision, and recall measurement formula. In this method,

we first need to evaluate the a+ and a−. a+ represents the accuracy of positive examples, and a−is

a measure for accuracy in negative examples. Before trying this method, we need to find these two

numbers. If they are somewhat similar or close, this technique will not be a good option, but if a+

and a− have totally different results, then we can consider using the One-Sided Selection sampling

technique as an option. The other measure is G, mean of accuracy. G is maximized when two a+

and a− are balanced. By looking at the figure2.3, we can see that its hard to draw the decision

surface line, because the circle points have square close neighbors.

By removing the redundant in the majority class, we have a lesser number in the majority class.

Tomek link, when applied to remove borderline and noise, improves the value of the Geometric. The

accuracies of a+ and a− are more balanced[Kubat et al., 1997]. This technique is used in different

kinds of research, for example, the identification of carbonylated sites of human proteins[Zuo and

Jia, 2017].

One Sided sampling is used to help reduce the number of majority class by adapting the Tomek

Link technique. There are four examples:

• Borderline: examples that are close to the borderline surface

• Noise: Those further away from their own groups and closer to the other groups (like the

square in the bottom right corner)
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• Redundant: They can be represented by other instances.

• Safe: The type that matters most in our technique.

Figure 6.3: dividing minority and majority group is not easy in this spread

We then create a new set called C by keeping all the minority class (in this example the circles)

and one randomly selected from the majority class. Using the samples in C, we Classify S with

1-NN rule; now we dont have any redundant examples in our new C data sets. At the end, we

remove all the majority class which are borderline (close to the borderline surface) and the noise.

Respectable balanced data sets are the result (T) as seen in figures 6.3 and 6.4.

We then create a new set called C by keeping all the minority class (in this example the circles)

and one randomly selected from the majority class. Using the samples in C, we Classify S with

1-NN rule; now we dont have any redundant examples in our new C data sets. At the end, we

remove all the majority class which are borderline (close to the borderline surface) and the noise.

Respectable balanced data sets are the result (T).

The next section is the result of our experiments.
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Figure 6.4: One Side Selection - Under Sampling

6.2 Logistic Regression, Correlation, SMOTE

We run a set of logistic regression experiments with the balanced value for class-weight parameter.

Stratified 10-fold cross validation was used for training and testing to make sure that each fold

preserved a similar distribution as the original classes. Figure 6.5 shows the model coefficients and

corresponding p-values.

Since the P-value for at least one level of the factors in the model are less than 0.05, each

categorical predictor is statistically significant; each of the five continuous predictors in the model

are also statistically significant.

The GVIF values for the predictors in the above model are shown in Figure 6.6.

The GVIF values are all quite close to 1, indicated that the fitted logistic regression model does

not suffer for multicollinearities among predictors.

The commonly used pseudo-rsquare values [Hu et al., 2006] are of moderate size suggesting that

the fitted model is reasonable. The P-value of the Walds test for overall model fit is 0.00, indicating

that fitted model is a significant improvement over the null model.

The performance of our base experiments with 10-fold cross validation is summarized in Fig-

ure 6.7. It can be seen that this model has a low precision and f1-score for the minority class.

The goal of the next set of experiments were to improve this deficiency. We performed four

additional experiments with logistic regression in order to increase the recall and f1-measure for

the minority class. The performances of these experiments are summarized in Figure 6.8.

We observe that SMOTE, SMOTE Borderline, and Tomek Link did not improve the recall or f1-

score for the minority class. The performance of the Editted Nearest Neighbors is as good as

anything reported in the literature including experiments on Support Vector Machine (SVM). The

AUC for these five experiments are shown in 6.9 which support our findings on Editted Nearest
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Figure 6.5: The ML estimates of the logistics regression model coefficients and cor responding
P-vales, based upon the training set of 75% of all cancer data

Estimate SE Z P-value

Intercept 8.516e+00 8.400e-2 101.381 ¡2e-16***
race 2 -5.479e-1 1.937e-2 -28.279 ¡2e-16***
race (Other) 1.677e-01 2.637e-02 6.359 2.04e-10***
factor(maritalStatus)2 2.155e-01 2.016e-02 10.691 ¡ 2e-16 ***
factor(maritalStatus)4 -3.040e-02 2.636e-02 -1.153 0.249
factor(maritalStatus)5 -1.239e-01 2.441e-02 -5.073 3.91e-07 ***
factor(maritalStatus)Other 1.599e-01 3.659e-02 4.371 1.24e-05 ***
factor(behaviorCode)3 -4.050e+00 6.964e-02 -58.163 ¡ 2e-16 ***
factor(grade)2 -1.132e+00 3.277e-02 -34.550 ¡ 2e-16 ***
factor(grade)3 -2.247e+00 3.185e-02 -70.542 ¡ 2e-16 ***
factor(grade)4 -2.281e+00 4.706e-02 -48.478 ¡ 2e-16 ***
factor(grade)9 -1.548e+00 3.359e-02 -46.070 ¡ 2e-16 ***
factor(radiation)1 3.680e-01 1.359e-02 27.088 ¡ 2e-16 ***
factor(radiation)Other 3.915e-02 2.927e-02 1.338 0.181
ageAtDiagnosis -6.607e-03 5.097e-04 -12.962 ¡ 2e-16 ***
csEODTumorSize -1.554e-03 3.582e-05 -43.381 ¡ 2e-16 ***
regionalNodesPositive -1.631e-02 1.655e-04 -98.559 ¡ 2e-16 ***
csEODExtension -3.893e-03 6.456e-05 -60.298 ¡ 2e-16 ***
regionalNodesExamined -1.094e-02 4.232e-04 -25.855 ¡ 2e-16 ***

—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Figure 6.6: GVIF values for predictors of model
GVIF Df GVIF(1/(2*Df))

race - categorical 1.06 2 1.02
maritalStatus - categorical 1.38 4 1.04
behaviorCode - categorical 1.03 1 1.01
grade - categorical 1.11 4 1.01
radiation - categorical 1.04 2 1.01
ageAtDiagnosis - numeric 1.42 1 1.19
csEODTumorSize - numeric 1.03 1 1.01
regionalNodesPositive - numeric 1.19 1 1.09
csEODExtension - numeric 1.04 1 1.02
regionalNodesExamined - numeric 1.09 1 1.04

Figure 6.7: Performance of the Base Experiment
Classifier class Precision Recall F1 AUC
Logistic Regression not-survived 0.27 0.77 0.40 0.75

survived 0.96 0.73 0.83
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Figure 6.8: Performance of the Base Experiment
Classifier class Precision Recall F1 AUC

SMOTE not-survived 0.73 0.79 0.76 0.75
survived 0.77 0.71 0.74

Tomek Link not-survived 0.28 0.79 0.41 0.76
survived 0.96 0.73 0.83

SMOTE Borderline not-survived 0.72 0.82 0.77 0.75
survived 0.79 0.68 0.73

Edited Nearest not-survived 0.95 0.90 0.92 0.92
survived 0.90 0.95 0.93

Figure 6.9: Area Under the Curves

Neighbors.

These four post processing sampling techniques were used for reducing classification bias in

favor of the majority class, so even though the estimated coefficients of the logistic regression

model might be biased, the classification results are improved for both classes. In addition, since

these post processing techniques add or delete some records, the size of the training sets are slightly

changed. The respected sizes of these training sets are reported in Figure 6.10.
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Figure 6.10: Sizes of the Training Data Sets
survived not-survived

logistic regression 300215 38381

Tomek Links 289816 38381

SMOTE Borderline 300215 150107

Edited Nearest 90454 38381
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Chapter 7

Conclusions and Future Works

This thesis reports on application of machine learning tools for predicting cancer survivability. This

work was based on reproducible research principle, a larger data set, and unbalanced nature of

cancer data set. Results indicate that logistic regression is an excellent choice for cancer prediction

as compared to decision trees and naive Bayes.

Our experiments are also focused on identification of correlation between features and categorical

predictors. We used VIF and GVIF to overcome the problems associated with categorical predictors.

The most significant contributions of this work are various applications of under-sampling and

over-sampling techniques in order to increase the accuracy performance for the minority class.

Our work was motivated by recent discoveries in reproducible research. Many of the past work

on the topic of cancer survival rate is based on SEER data. Unfortunately, most of these works are

difficult to reproducible due to poor record keeping. In some cases, it is not clear what methods

were used in data preparation or how the experiments carried out. We believe that this thesis

provides a remedy for data preparation and cleaning in addition to record keeping.

We were also motivated by the idea that the recall level in cancer prediction must be almost

perfect. It is a costly mistake to classify a not-survived member as a survived member. On the

other hand, if the error is reversed, a doctor can rely on further testing to reverse the classifier

prediction. Most of our experiments as reported in this thesis are based on optimization techniques

to improve the recall level.

There are four possible extensions to this project that we are currently pursing. The first

extension is to apply other the Synthetic minority over-sampling technique (SMOTE) to re-balance

the the training set in order to improve the recall. Second extension is to apply these experiments

to other types of cancers using SEER data. The third extension is to build a web-based application
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that could be used as an advisory tool for surviability prediction. The fourth extension is to apply

ANN in the mind set of logistic regression. The ANN can improve our result assuming more training

data and features become available over time.
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