
UNLV Theses, Dissertations, Professional Papers, and Capstones

December 2016

Simulation of Online Bin Packing in Practice
Kalpana Rajagopal
University of Nevada, Las Vegas, rajagopa@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations,
Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

Repository Citation
Rajagopal, Kalpana, "Simulation of Online Bin Packing in Practice" (2016). UNLV Theses, Dissertations, Professional Papers, and
Capstones. 2894.
https://digitalscholarship.unlv.edu/thesesdissertations/2894

http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2894?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

SIMULATION OF ONLINE BIN PACKING IN PRACTICE

by

Kalpana Rajagopal

Bachelor of Technology

Jawaharlal Nehru Technological University

2007

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

December 2016

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

December 8, 2016

This thesis prepared by

Kalpana Rajagopal

entitled

Simulation of Online Bin Packing in Practice

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Wolfgang Bein, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Ajoy K. Datta, Ph.D.
Examination Committee Member

Laxmi Gewali, Ph.D.
Examination Committee Member

Venkatesan Muthukumar, Ph.D.
Graduate College Faculty Representative

iii

ABSTRACT

by

Kalpana Rajagopal

Dr. Wolfgang Bein, Examination Committee Chair

Professor of Computer Science

University of Nevada, Las Vegas

The bin packing problem requires packing a set of objects into a finite number of bins of fixed capacity in

a way that minimizes the number of bins used. We consider the online version of the problem where items

arrive over tine and a decision has to be made as soon as an element is available. Online algorithms can be

analyzed in terms of competitiveness, a measure of performance that compares the solution obtained online

with the optimal offline solution for the same problem, where the lowest possible competitiveness is best.

Online processing is difficult due to the fact that unpredictable item sizes may appear. A number of online

algorithms such as First-Fit, Next-Fit, Best-Fit, Worst Fit and Harmonic have been proposed and studied in

the literature. In this thesis, we examine how well these algorithms perform in practice. Our results that

practical performance is differs substantially from the worst case online measure.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Wolfgang Bein for all the support, encouragement and

knowledge that I have received from him throughout all stages of my thesis. I am deeply grateful to

Dr. Ajoy K Datta for his valuable advice that has made my master’s degree possible. I thank

Dr.Laxmi Gewali for his valuable time and advice. I would like to thank Dr. Muthukumar

Venkatesan for having accepted to serve as a graduate college representative for my thesis and

offering constructive comments.

I take this opportunity to thank my colleagues for their kindly support.

I must thank my family who have provided me with their enormous love, support and

consideration for my life.

I thank almighty God for his blessings and providing me this opportunity.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES .. xi

CHAPTER 1 INTRODUCTION ... 1

1.1 What is Bin Packing? .. 1

1.2 Background of Bin Packing ... 2

1.3 Online vs Offline Computation ... 2

1.4 Competitive Analysis .. 2

1.5 Applications of Bin Packing .. 3

CHAPTER 2 OFFLINE BIN PACKING .. 4

2.1 Next Fit Offline Algorithm .. 4

2.2 Is this analysis tight? ... 5

2.3 First Fit Offline Algorithm .. 6

2.4 First Fit Decreasing Offline Algorithm ... 6

CHAPTER 3 ONLINE BIN PACKING .. 8

3.1 First Fit Bin Packing Algorithm .. 8

3.2 Next Fit Bin Packing Algorithm .. 10

3.3 Best Fit Bin Packing Algorithm .. 11

3.4 Worst Fit Bin Packing Algorithm .. 12

3.5 Harmonic Fit Bin Packing Algorithm ... 13

CHAPTER 4 LOWER BOUNDS .. 15

4.1 Next Fit Algorithm .. 15

4.2 First Fit and Best Fit Algorithm .. 15

vi

4.3 Harmonic Fit Algorithm .. 17

CHAPTER 5 SIMULATION RESULTS .. 18

5.1 Next Fit Algorithm .. 18

5.2 First Fit Algorithm ... 20

5.3 Best Fit Algorithm ... 23

5.4 Worst Fit Algorithm .. 25

5.5 Harmonic Fit Algorithm .. 27

CHAPTER 6 IMPLEMENTATION OF TEST DATA ... 30

6.1 Optimal Solution ... 30

6.1.1 Generate input random numbers .. 30

6.1.2 Packing random numbers into bins .. 30

6.1.3 Rearranging the packed items .. 31

6.2 First Fit Bin Packing .. 31

6.3 Next Fit Bin Packing ... 31

6.4 Best Fit Bin Packing .. 31

6.5 Worst Fit Bin Packing ... 32

6.6 Harmonic Fit Bin Packing ... 32

CHAPTER 7 SUMMARY AND RESULTS OF ONLINE BIN PACKING 34

REFERENCES .. 36

APPENDIX 1 ... 37

APPENDIX 2 ... 39

APPENDIX 3 ... 42

APPENDIX 4 ... 45

APPENDIX 5 ... 48

APPENDIX 6 ... 51

vii

CURRICULUM VITAE .. 56

viii

LIST OF TABLES

TABLE 1. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 18

TABLE 2. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 19

TABLE 3. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 19

TABLE 4. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 19

TABLE 5. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 20

TABLE 6. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 21

TABLE 7. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 21

TABLE 8. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 21

TABLE 9. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 22

TABLE 10. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 22

TABLE 11. BEST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE INTERVALS

(0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS .. 23

TABLE 12. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 24

ix

TABLE 13. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 24

TABLE 14. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 24

TABLE 15. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 25

TABLE 16. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 25

TABLE 17. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 26

TABLE 18. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 26

TABLE 19. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 26

TABLE 20. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 27

TABLE 21. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 27

TABLE 22. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 28

TABLE 23. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 28

TABLE 24. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 28

TABLE 25. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS ... 29

x

TABLE 26. LIST OF COMPETITIVE RATIOS AND WORST VALUES FOR ONLINE

ALGORITHMS. ... 35

xi

LIST OF FIGURES

FIGURE 1: AN EXAMPLE OF THREE BINS: THE FIRST BIN HAS LEVEL OF 0.8, THE SECOND

BIN IS FULL AND THE THIRD BIN HAS LEVEL 0.4 .. 1

FIGURE 2. EXAMPLE FOR NEXT FIT OFFLINE BIN PACKING ALGORITHM 5

FIGURE 3. EXAMPLE FOR FIRST FIT ONLINE BIN PACKING ALGORITHM 9

FIGURE 4. EXAMPLE FOR NEXT FIT ONLINE BIN PACKING ALGORITHM.............................. 10

FIGURE 5. EXAMPLE FOR BEST FIT ONLINE BIN PACKING ALGORITHM 11

FIGURE 6. EXAMPLE FOR WORST FIT ONLINE BIN PACKING ALGORITHM 12

FIGURE 7. EXAMPLE FOR HARMONIC FIT ONLINE BIN PACKING ALGORITHM................... 14

FIGURE 8. EXAMPLE FOR LOWER BOUND FOR FIRST FIT AND BEST FIT ALGORITHMS ... 16

1

CHAPTER 1

INTRODUCTION

1.1 What is Bin Packing?

The bin packing problem asks for the minimum number k of identical bins of capacity C needed to store a

finite collection of weights w1, w2, w3,…, wn so that no bin has weights stored in it whose sum exceeds the

bin’s capacity. Traditionally the capacity C is chosen to be 1 and the weights are real numbers which lie

between 0 and 1. This problem is known as 1-dimensional bin packing problem.

Bin Packing is considered both when an algorithm has the whole input in advance and when items are

coming one by one and each must be packed immediately and irrevocably into a bin without any knowledge

of future items. It is important to keep in mind that weights are to be thought of as indivisible objects rather

than something like oil or water. For oil one can imagine part of a weight being put into one container and

any leftover being put into another container. Here we cannot split an object.

One way to visualize the situation is as a collection of rectangles which have height equal to the capacity C

and a fixed width, whose exact size does not matter. When an item is put into the bin it either falls to the

bottom or is stopped at a height determined by the weights that are already in the bins.

FIGURE 1: AN EXAMPLE OF THREE BINS: THE FIRST BIN HAS LEVEL OF 0.8, THE

SECOND BIN IS FULL AND THE THIRD BIN HAS LEVEL 0.4

0.2

0.3

0.5

0.5

0.2

0.3

0.2

0.3

0.5

0.5

0.3

2

Bin packing problem is an optimization problem with incomplete information. In Bin Packing, a sequence

of items of size up to 1 arrives to be packed into bins of unit capacity which lie between 0 and 1. The goal

is to minimize the number of bins used. In other words, we need to partition items into the minimum number

of bins such that the sum of sizes of items in each bin is at most one.

1.2 Background of Bin Packing

Bin packing problem is one of the oldest and most thoroughly studied problems in computer science. Bin

packing problem is NP – hard optimization problem. One way to deal with this problem is to find an

algorithm which gives a worse solution in polynomial time. The field of approximation algorithms deals

with such problem. The bin packing problem was proposed by Johnson [1] in early seventies and it was

studied extensively since then in both online and offline settings. In fact, bin packing was the first problem

being investigated properly in both of these settings and moreover Johnson in 1973 introduced comparing

the quality of the solution by an online algorithm against an optimal strategy.

1.3 Online vs Offline Computation

Generally, online computation deals with situations when the input is revealed to the algorithm as the time

goes on and the algorithm must deal with an incoming part of the input immediately after it comes without

any knowledge of the future [3] [4]. On the other hand, in the offline computation an algorithm knows the

whole input before making any decision.

An offline algorithm simply repacks everything each time an item arrives, where as in online algorithm

each item is packed immediately and irrevocably without any knowledge of the next items in input

sequence. Offline bin packing is not easy if we have only polynomial amount of time. Packing large items

is difficult with online bin packing.

1.4 Competitive Analysis

Competitive analysis is a type of worst-case analysis. Analyzes the performance of an algorithm by

comparing it with the best optimal solution. In this thesis, we compare the performance of different online

3

algorithms with the best optimal solution. This comparison is done by using a ratio called ‘Competitive

Ratio’. The best online algorithm for bin packing is the one that has the lowest possible competitive ratio

and this ratio is at least 1.

Competitive Ratio

In the case of bin packing, the standard metric for worst-case performance is competitive ratio. For a given

list of items and an algorithm A, let A(L) be the number of bins used when algorithm A is applied to list L,

let OPT(L) denote the optimum number of bins for a packing of L, and RA(L) denote the absolute worst-

case performance (competitive) ratio for algorithm A [3].

RA(L) = A(L) / OPT(L)

A disadvantage of competitive analysis is that it sometimes gives an unrealistically bad impression on an

algorithm, in that algorithms that perform well in practice have a high competitive ratio. Furthermore, it

sometimes fails to differentiate between algorithms whose performance is observed to be very different.

1.5 Applications of Bin Packing

Bin packing problem has many real-world applications such as filling up containers, loading trucks with

weight capacity, creating file backups in media [5], scheduling tasks with known execution times on a set

of identical machines, storing files on disks, cutting stock problem. Online bin packing arises in many real-

world problems. For example, we put goods of different weights into trucks or containers with the same

weight limit and we want to use as few of them as possible, while items are packed immediately as they

arrive without a possibility to change their assignment later [10]. Of course, one must simplify the problem;

mainly we are assuming that the weight is more restrictive than the size of containers. Other applications

are: assigning newspaper articles into columns, adding network packets of different sizes into larger blocks

of the same size, assigning commercials into breaks on a television station, etc.

4

CHAPTER 2

OFFLINE BIN PACKING

In the classical offline bin packing problem, an algorithm receives items of size x1, x2, …, xn є (0,1]. We

have infinite number of bins, each with capacity 1, and every item is to be assigned to a bin. Further, the

sum of the sizes of the items assigned to any bin cannot exceed its capacity. A bin is empty if no item is

assigned to it, otherwise, it is used. The goal of the algorithm is to minimize the number of used bins. This

is one of the classical NP-hard problems and heuristic and approximation algorithms have been investigated

thoroughly.

In both the offline and online problems the algorithm has access to the bins in arbitrary order. The more

restricted version of offline algorithms for bin packing is sequential algorithms. In this algorithm items

arrive one by one but in each round the algorithm have only two possible choices: assign the given item to

the open bin or to the next empty bin, and items cannot be assigned anymore to closed bins.

2.1 Next Fit Offline Algorithm

A simple offline algorithm called Next Fit is used to minimize the number of bins. Next Fit processes the

items one at a time in the same order as they are given in input. The first item a1 is placed into bin B1. Let

Bj be the last used bin, when the algorithm considers item ai: Next Fit assigns ai to Bj if it has enough room;

otherwise ai is assigned to a new bin Bj+1.

Theorem: Consider any instance x of the Minimum Bin Packing problem, algorithm Next Fit computes a

solution such that: mNF (x) ≤ 2m* (x) [6].

Proof: Firstly, ‘A’ denotes the sum of all the item sizes in the bin. In the next fit algorithm, only one bin

(last used bin) is kept open and when an item doesn`t fit, that bin is closed and a new bin is opened. So at

any given time only one bin is open and once the bin is closed it cannot be opened. Since the sum of the

items of any two consecutive bins is always greater than 1, the number of bins used by Next fit algorithm

5

is less than 2[A]. This is because on an average the bins are more than half full. On the other hand, the

optimal solution uses bins which are at least the total size of the items (A). So, m* (x) ≥ [A]. Hence, we

have mNF (x) ≤ 2m* (x).

2.2 Is this analysis tight?

Sequence: Consider an instance of 4n items and the order of the items are as follows: {1/2, 1/2n, 1/2,

1/2n,…, 1/2, 1/2n} (each pair is repeated 2n times). This example is taken from the paper written by D.S.

Johnson [1]. Fig (a) represents the optimal solution where the 2n items of size ½ are filled in n bins and the

remaining 2n items of size 1/2n are filled in a single bin. Hence the optimal requires n+1 bins to fill the

given sequence. Fig (b) represents the approximate solution of Next Fit algorithm where 2 items of size 1/2

and 1/2n are filled in each bin. Hence the next fit requires 2n bins to fill the given sequence.

FIGURE 2. EXAMPLE FOR NEXT FIT OFFLINE BIN PACKING ALGORITHM

 Optimal Solution Next Fit

An obvious weakness of Next Fit is that it tries to assign an item only to the last used bin. This leads to a

problem where the performance of NF is 2 times worse than the optimal performance. To overcome this

weakness, we suggest a new algorithm called First Fit, which processes items in the input order according

to the following rule: item ai is assigned to the first used bin that has enough available space to include it;

if no bin contain ai, a new bin is opened.

...

1/2

1/2

1/2

1/2

1/2

1/2

1/2n

.

.

1/2n

1/2n

1/2n

1/2

1/2n

1/2

1/2n

1/2

1/2n

1/2

2n items of size ½ 2n items of size 1/2n 2n Bins

6

2.3 First Fit Offline Algorithm

First Fit algorithm has a better performance than Next Fit: it finds a solution this is at most 70% far away

from the optimal solution. It can be shown that First Fit finds a solution with the value mFF (x) such that

mFF (x) ≤ 1.7m* (x) + 2 [1] [6].

An even better algorithm for Offline Bin Packing is First Fit Decreasing (FFD)

2.4 First Fit Decreasing Offline Algorithm

This algorithm first sort’s items in non-increasing order with respect to their size and then processes items

as First Fit.

Theorem: First Fit Decreasing is a 3/2-approximation for Bin Packing [2]. The algorithm runs in O(n2)

time.

Proof: Let k be the number of non-empty bins of the assignment a found by First Fit Decreasing and let k*

be the optimal number [7]. Consider bin number j = [2/3k]. If it contains an item i with si > 1/2, then each

bin jꞌ < j did not have space for item i. Thus, jꞌ was assigned an item iꞌ with iꞌ < i. As the items are considered

in non-increasing order of size we have siꞌ ≥ si > 1/2. That is, there are at least j items of size larger than 1/2.

These items need to be placed in individual bins. This implies k* ≥ j ≥ 2/3 k.

Otherwise, bin j and any bin jꞌ > j does not contain an item with size larger than 1/2. Hence the bins j, j + 1,

2, ..., k contains at least 2(k − j) + 1 items, none of which fits into the bins 1, 2, …, j − 1. Thus, we have

s(I) > min{j − 1, 2(k − j) + 1}

 ≥ min{[2/3k] − 1, 2(k − (2/3k + 2/3)) + 1}

 = [2/3k] − 1

and k ∗ ≥ s(I) > [2/3k] − 1. This even implies

k* ≥ [2/3k] ≥ 2/3 k

7

and hence the claim.

There exists an instance of the bin packing problem for which the performance of First Fit Decreasing is

11/9 times away from optimum. By means of a detailed case analysis, the bound given in the above theorem

can be substituted by 11m*(x)/9 + 7/9.

Algorithm for First-Fit Decreasing

Input: Set I of n positive rationales less than or equal to 1;

Output: Partition of I in subsets of unitary weight;

begin

 Sort elements of i in non-increasing order;

 (* Let (a1, a2, ----, an) be the obtained sequence *)

 for i: = 1 to n do

 if there is a bin that can contain ai then

 Insert ai into the first such bin

 else

 Insert ai into a new bin;

 Return the partition

end

8

CHAPTER 3

ONLINE BIN PACKING

In the online bin packing problem, a sequence of items with sizes in the interval (0,1] arrive one by one and

need to be packed into bins, so that each bin contains items of total size at most 1. Once an item is packed

in a particular bin it cannot be moved. Each item must be irrevocably assigned to a bin before the next item

becomes available. The algorithm has no knowledge about future items. There is an unlimited supply of

bins available, and the goal is to minimize the total number of used bins.

The online processing is difficult because unpredictable item sizes may appear. In general, the performance

of an online bin packing algorithm is substantially affected by the permutation of items in a given list.

There are several well-known and often used online algorithms for bin packing. Now let us discuss some

of the online algorithms for bin packing.

3.1 First Fit Bin Packing Algorithm

If we are willing to keep bins open in the hope that we will be able to fill empty space with items in the list,

we will typically use fewer bins. The simplest way to evaluate this idea is known as First Fit bin packing

algorithm [11]. In First Fit, we place the next item in the list into the first bin which has not been completely

filled into which it will fit. When bins are filled completely they are closed and if an item will not fit into

any currently open bin, a new bin is opened.

Example: Items - 0.5, 0.3, 0.4, 0.8, 0.2, 0.2, 0.2

9

FIGURE 3. EXAMPLE FOR FIRST FIT ONLINE BIN PACKING ALGORITHM

 Algorithm

Consider bins bj where j є (1,2, … , n)

Consider an instance x containing items ai where i є (1, 2, … , n)

 Begin

 For i:= 1to n do

 For j:= 1 to n do

 If item ai can fit in the bin bj

 then

 Insert ai into the bin

 Break; //exit for j loop

 // continue for i loop

 End

0.2

0.3

0.5

0.2

0.2

0.4

0.8 Bins

10

3.2 Next Fit Bin Packing Algorithm

Next Fit is one of the most basic online algorithms. The idea behind this algorithm is to open a bin and

place the items into it in the order they appear in the list [11]. If an item on the list will not fit into the open

bin, we close the bin permanently and open a new one and continue packing the remaining items in the list.

Of course, if some of the consecutive weights on the list exactly fill a bin, the bin is then closed and a new

bin opened.

Example: Items - 0.3, 0.6, 0.2, 0.1, 0.5, 0.7, 0.2, 0.4, 0.1, 0.9

FIGURE 4. EXAMPLE FOR NEXT FIT ONLINE BIN PACKING ALGORITHM

Algorithm

Consider an instance x containing items ai where i є (1, 2, … , n) and number of bins b ‹-- 1

Begin

For i: = 1 to n do

 If the item ai can fit in the opened bin then

 Insert ai into the bin

 Insert the item ai into a new bin

0.6

0.3

0.5

0.1

0.2

 0.2

0.7

0.1

0.4

0.9
Bins

11

 b: = b+1

 Return b

End

3.3 Best Fit Bin Packing Algorithm

Best Fit packs the input item according to the following rule: while trying to pack item ai, the best fit

algorithm assigns the item to the bin whose empty space is minimum [11]. If the item ai is unable to fit in

any of the opened bins, then a new bin is opened to pack that item ai.

Example: Items - 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

FIGURE 5. EXAMPLE FOR BEST FIT ONLINE BIN PACKING ALGORITHM

Algorithm

Consider bins bj where j ϵ (1,2 … , n)

Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1

 Begin

For i := 1 to n do

Sort bins bj in decreasing order such that the bin with minimum space available is placed

first. Let the sorted sequence be { B1,B2 …. ,Bn}

0.1

0.5

0.2

0.4

0.3

 0.7

0.8

Bins

12

For k:=1 to n do

if the item ai can fit in the bin Bk then

Insert ai into the bin

break; // exit for k loop

//continue for i loop

 End

3.4 Worst Fit Bin Packing Algorithm

Worst Fit packs the input item according to the following rule: while trying to pack item ai, the worst fit

algorithm assigns the item to the bin whose empty space is maximum. If the item ai is unable to fit in any

of the opened bins, then a new bin is opened to pack that item ai.

Example: Items – 0.4, 0.7, 0.1, 0.3, 0.8, 0.2, 0.5

FIGURE 6. EXAMPLE FOR WORST FIT ONLINE BIN PACKING ALGORITHM

Algorithm

Consider bins bj where j ϵ (1,2 … , n)

Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1

 Begin

For i := 1 to n do

0.3

0.1

0.4

0.2

0.7

0.8

0.5

Bins

13

Sort bins bj in decreasing order such that the bin with maximum space available is placed

first. Let the sorted sequence be { B1,B2 …. ,Bn}

For k:=1 to n do

if the item ai can fit in the bin Bk then

Insert ai into the bin

break; // exit for k loop

//continue for i loop

 End

3.5 Harmonic Fit Bin Packing Algorithm

Under online algorithms for bin packing problem, we have another algorithm based on non-uniform

partitioning of interval (0, 1] into M sub-intervals [8]. Consider an instance L = {it1, it2, it3,… , itn}, where

0 < s(iti) ≤ 1 , s(iti) denotes the size of item iti in the given instance L. In this algorithm, the interval (0, 1]

is partitioned into harmonic sub intervals IM = {(0, 1/M], (1/M, 1/M-1],…., (1/2, 1]} where M is a positive

integer. Now each item iti is classified and put in one of these sub intervals based on their size. An item iti

is called Ik item, if the item size is in the interval Ik = (1/k+1, 1/k], k>1. If the item size is in the interval IM=

(0, 1/M], then the item is called IM item. In this manner, all the items in the instance or the sequences are

classified. So, the Ik filled bin (bin with all Ik items) packs exactly k items irrespective of the actual sizes of

the items. Using this background, we discuss about Algorithm Harmonic.

This algorithm opens an active bin for each type i.e., one bin of I1 (Huge) type items, one bin of I2 (Large)

type items, one bin of I3 (Medium) type items and one bin of I4 (Small) type items.. Hence a total of M

bins are active at any given time (since M sub intervals) [12]. When an item iti belonging to sub-interval Ik

(Ik item) arrives, it is packed in the corresponding active bin, if that bin is filled and has no enough space

to pack item Ik then it is closed and a new bin is open for that sub-interval items. This harmonic algorithm

is independent of the arriving order of the items. A disadvantage with this algorithm is when items of size

> 1/2 are packed then one bin per item is used resulting in wasting a lot of free space in each single bin.

14

Example: Assume that the harmonic sub intervals are Huge = (
1

2
, 1], Large = (

1

3
,

1

2
], Medium = (

1

4
,

1

3
] and

Small = (0,
1

4
].

Items: 0.6, 0.1, 0.4, 0.8, 0.2, 0.3, 0.7

FIGURE 7. EXAMPLE FOR HARMONIC FIT ONLINE BIN PACKING ALGORITHM

Algorithm

For a given value of M and the set of items L = {it1, it2, … , itn}

Step 1: Partition the interval (0, 1] for the given M into subintervals as given below:

(0, 1/M], (1/M, 1/M-1], …. , (1/2, 1]

Step 2: Assign each item itn to the open bin of that type (the size of itn fits into the corresponding

subinterval).

Step 3: If an item does not fit into the corresponding bin, then close it and open a new one.

Step 4: Calculate the total number of bins used of each type.

Bins

0.6

0.4

0.3

0.2

0.1

0.8

0.7

Huge Large Medium Small Huge Huge

15

CHAPTER 4

LOWER BOUNDS

4.1 Next Fit Algorithm

Given an instance x of online bin packing, the algorithm next fit returns a result with value mNF(x) such that

mNF(x)/mOPT(x) ≤ 2 where mOPT(x) denotes the optimal solution for an instance x. This means the

competitive ratio of next fit is 2. Here is the worst example to prove the competitive ratio for next fit.

Example: Input sequence of arbitrary length n is needed.

Sequence: k items of size 0.9 and k items of size 0.2. These can be packed in n bins by optimal.

As the sizes 0.9 and 0.2 both together cannot occupy in one bin, the items size with 0.9 are packed in n bins

and the items size with 0.2 are packed in n bins. So altogether next fit packs these items in 2n bins.

So the competitive ratio for next fit is 2n/n = 2. In fact, first fit and best fit algorithms have a better

competitive ratio than next fit when it comes to online algorithms for bin packing.

4.2 First Fit and Best Fit Algorithm

Given an instance x of Online Bin Packing, the algorithm First Fit returns a result with value m
FF(x) ≤ 1.7

mOPT(x) + 2 where mOPT(x) denotes the optimal solution for an instance x [9]. The numeric “2” represents

the additive constant. The competitive ratio for both first fit and best fit algorithms is 1.7. Here is the

example to prove the competitive ratio for First Fit and Best Fit.

Example: Input sequence of arbitrary length n is needed

Input Sequence: 6n items of size 0.15, 6n items of size 0.34, 6n items of size 0.51

These items can be packed into 6n bins by optimal.

How do First Fit and Best Fit pack this input?

16

FIGURE 8. EXAMPLE FOR LOWER BOUND FOR FIRST FIT AND BEST FIT ALGORITHMS

 Total 10n bins are used.

 Lower bound is 10n/6n = 5/3 = 1.7

6n items of size 0.34 → packed in 3n bins. All these bins are 0.68 full

6n items of size 0.15 → packed in n bins. All these bins are 0.9 full

6n items of size 0.51 → packed in 6n bins.

17

Though First Fit and Best Fit are better than Next Fit, the worst-case performance is the same for all the

three algorithms. A better approximation algorithm is obtained by observing that the worst performance for

First Fit and Best Fit seems to occur when smaller items appear before larger items in a given instance.

4.3 Harmonic Fit Algorithm

To find out competitive ratio we need input sequence of arbitrary length n.

Sequence: k items of size 0.50001, k items of € (epsilon). These items can be packed into k bins by optimal.

How does Harmonic Fit packs this input?

 Harmonic Fit packs all the k items of size 0.50001 in k bins and all the k items of epsilon is

packed in k/2 bins. So, the harmonic fit packs the input in (k/2 + k) bins.

So the competitive ratio of harmonic to optimal is 3/2 = 1.5

18

CHAPTER 5

SIMULATION RESULTS

5.1 Next Fit Algorithm

This is a bounded-space online algorithm in which the only partially-filled bin that is open is the most recent

one to be started. The first item is assigned to bin1. Items 2, …., n are then considered by increasing indices:

each item is assigned to the current bin, if it fits; otherwise, it is assigned to a new bin, which becomes the

current one. The time complexity of the algorithm is clearly O (n). It is easy to prove that, for any instance

x of bin packing problem, the solution value mNF(x) provided by the algorithm satisfies the bound

mNF(x) ≤ 2 mOPT(x)

where mOPT(x) denotes the optimal solution value. Furthermore, there exist instances for which the ratio

mNF(x)/mOPT(x) is arbitrarily close to 2, i.e., the competitive ratio of NF is 2. The tables below show the

closest competitive ratio and worst values.

TABLE 1. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 N/A 1

0.0 – 0.5 N/A 1

0.0 – 1.0 1.044 1.2

19

TABLE 2. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 N/A 1

0.0 – 0.2 N/A 1

0.0 – 0.5 1.016 1.2

0.0 – 1.0 1.107 1.286

TABLE 3. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 N/A N/A

0.0 – 0.2 1 1

0.0 – 0.5 1.13 1.18

0.0 – 1.0 1.28 1.33

TABLE 4. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 N/A 1

0.0 – 0.2 1 1

0.0 – 0.5 1.13 1.19

0.0 – 1.0 1.27 1.3

20

TABLE 5. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.0201 1.0208

0.0 – 0.2 1.05 1.06

0.0 – 0.5 1.16 1.17

0.0 – 1.0 1.3 1.31

5.2 First Fit Algorithm

There is no restriction for First Fit Bin Packing. All partially-filled bins are considered as possible

destinations for an item to be packed. We place an item in the first bin into which it will fit, the next item

is placed in the bin which has lowest index otherwise a new bin is opened. The lower bound for First Fit is

mFF(x)/mOPT(x) ≤ 5/3

The above lower bound occurs when the items are sorted in increasing order by size. The lower bound 5/3

is obtained by following sequence of items. The sequence has 6n items of size 0.15, 6n items of size 0.34

and 6n items of size 0.51.

Note that still worse examples and arbitrarily close to the lower bound examples can be devised using the

above idea.

21

TABLE 6. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 N/A N/A

0.0 – 0.2 N/A 1

0.0 – 0.5 1.365 1.5

0.0 – 1.0 1.3 1.333

TABLE 7. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1.315 1.5

0.0 – 0.5 1.27 1.33

0.0 – 1.0 1.13 1.16

TABLE 8. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.155 1.5

0.0 – 0.2 1.16 1.25

0.0 – 0.5 1.1 1.11

0.0 – 1.0 1.09 1.11

22

TABLE 9. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1.07 1.125

0.0 – 0.5 1.04 1.05

0.0 – 1.0 1.06 1.08

TABLE 10. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.003 1.020

0.0 – 0.2 1.007 1.01

0.0 – 0.5 1.0093 1.0095

0.0 – 1.0 1.023 1.027

Although this simple scheme for worst case examples is insufficient to characterize the worst-case behavior

of First Fit, there are other algorithms for which it is more relevant. Moreover, the scheme is correct in

suggesting that for First Fit to behave at its worst, the instance to which it is applied must contain relatively

large items. As with Next Fit, First Fit’s worst-case behavior improves dramatically as the size of the largest

item declines. Moreover, it maintains its advantage over Next Fit in such situations, although the size of its

advantage depends on the precise value of the item and shrinks with the size of the largest item.

23

5.3 Best Fit Algorithm

Now we know how crucial the packing rule used for First Fit to the improved worst-case behavior.

Performance of Best Fit and First Fit is similar, but BF assigns an arriving item to the bin in which it fits

best. Place the items in the order in which they arrive. Place the next item into that bin which will leave the

least room left over after the item is placed in the bin. If it does not fit in any bin, start a new bin. The time

complexity of BF is O (n log n). The lower bound of best fit is

mBF(x)/mOPT(x) = 5/3

This means best fit never uses more than 5/3 = 1.7 bins. Note that still worse examples and arbitrarily close

to the lower bound examples can be devised using the above idea.

TABLE 11. BEST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 N/A N/A

0.0 – 0.2 1 1

0.0 – 0.5 1.195 1.5

0.0 – 1.0 1.29 1.33

24

TABLE 12. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1.145 1.5

0.0 – 0.5 1.237 1.33

0.0 – 1.0 1.14 1.16

TABLE 13. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1.178 1.33

0.0 – 0.5 1.105 1.11

0.0 – 1.0 1.08 1.11

TABLE 14. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.08 1.25

0.0 – 0.2 1.05 1.11

0.0 – 0.5 1.05 1.05

0.0 – 1.0 1.05 1.05

25

TABLE 15. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.004 1.02

0.0 – 0.2 1.007 1.01

0.0 – 0.5 1.007 1.01

0.0 – 1.0 1.01 1.02

5.4 Worst Fit Algorithm

Initially Worst Fit was presented as offline heuristics, but in fact it is online algorithm which process the

items as a list. Worst Fit places the item into the most empty bin. This heuristic has the effect of spreading

the slack (empty space) over the bins used. This algorithm might be useful if it is desirable to pack the bins

with approximately the same weight or fill them with items of approximately the same value. Worst Fit is

better than Next Fit. The lower bound of worst fit is

mwF(x)/mOPT(x) = 2

This means worst fit never uses more than 2 bins. Note that still worse examples and arbitrarily close to the

lower bound examples can be devised using the above idea.

TABLE 16. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 N/A N/A

0.0 – 0.2 1.1 2

0.0 – 0.5 1.68 2

0.0 – 1.0 1.34 1.5

26

TABLE 17. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 0.64 2

0.0 – 0.2 1.795 2

0.0 – 0.5 1.25 1.3

0.0 – 1.0 1.25 1.28

TABLE 18. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.5 1.5

0.0 – 0.2 1.23 1.25

0.0 – 0.5 1.15 1.2

0.0 – 1.0 1.2 1.26

TABLE 19. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.21 1.25

0.0 – 0.2 1.11 1.12

0.0 – 0.5 1.12 1.14

0.0 – 1.0 1.16 1.18

27

TABLE 20. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.04 1.04

0.0 – 0.2 1.05 1.05

0.0 – 0.5 1.09 1.1

0.0 – 1.0 1.146 1.158

5.5 Harmonic Fit Algorithm

Harmonic algorithm is one of the best of the known online heuristics for the classical bin packing problem,

which was developed by C.C. Lee and D.T. Lee. They proved that the asymptotic worst-case performance

ratio of this algorithm is 1.6901….

Note that still worse examples and arbitrarily close to the lower bound examples can be devised.

TABLE 21. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1 1

0.0 – 0.5 1.45 1.5

0.0 – 1.0 1.25 1.75

28

TABLE 22. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1.46 1.5

0.0 – 0.5 1.27 1.4

0.0 – 1.0 1.423 1.428

TABLE 23. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1 1

0.0 – 0.5 1.198 1.2

0.0 – 1.0 1.33 1.42

TABLE 24. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1 1

0.0 – 0.2 1.082 1.1

0.0 – 0.5 1.15 1.17

0.0 – 1.0 1.35 1.39

29

TABLE 25. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS

Items Competitive Ratio Worst Value

0.0 – 0.1 1.0006 1.02

0.0 – 0.2 1.0014 1.01

0.0 – 0.5 1.127 1.137

0.0 – 1.0 1.28 1.3

30

CHAPTER 6

IMPLEMENTATION OF TEST DATA

6.1 Optimal Solution

Start of main

initialize array size, lower and upper values

6.1.1 Generate input random numbers

For generating random numbers, we declare an integer function called array[size]. A boolean function

outputs the random array. We generate random numbers using srand and we use ‘for loop’ to execute a

sequence of statements multiple times and abbreviate the code that manages the loop variable. Initialize

and declare a variable ‘i’ in ‘for loop’ and iterate it with the array size. If the condition satisfies we use a

formula to generate random numbers and store them in an array. Print the array using ‘cout’ function. The

formula is:

6.1.2 Packing random numbers into bins

 for each of items in array

 if sum of current total and item value less than current bin capacity

const granularity = 100

int size

int lower

int upper = granularity

array[i] = (lower + rand() % (upper – lower + 1))

31

 add item to current total

 else

 assign the remaining capacity to current bin and continue to next bin

6.1.3 Rearranging the packed items

 for each elements in array

 generate a random index and assign element at index to new rearranged array

 assign the last element in current array to random index

6.2 First Fit Bin Packing

initialize firstfit array to zero

 for each of items in new rearranged array

 if item in rearranged array can fit in firstfit bin

 add to firstfit bin

 else

 continue to next firstfit bin

 print results

6.3 Next Fit Bin Packing

initialize nextfit array to zero

 for each of items in new rearranged array

 if item in rearranged array can fit in the opened bin

 add to the opened bin

 else

 continue to the next new bin and close the previous bin

 print results

6.4 Best Fit Bin Packing

initialize bestfit array to zero

32

 for each of items in new rearranged array

 if item in rearranged array can fit in the opened bin whose empty space is minimum

 add to the opened bin

 else

 continue to the next new bin

 print results

6.5 Worst Fit Bin Packing

initialize bestfit array to zero

 for each of items in new rearranged array

 if item in rearranged array can fit in the opened bin whose empty space is maximum

 add to the opened bin

 else

 continue to the next new bin

 print results

6.6 Harmonic Fit Bin Packing

Declare and initialize all bins to zero.

 This is huge bin for item sizes (1/2, 1] (maxHbin = 0)

 This is large bin for item sizes (1/3, 1/2] (maxLbin = 0)

 This is medium bin for item sizes (1/4, 1/3] (maxMbin = 0)

 This is small bin for item sizes (0, 1/4] (maxSbin = 0)

for each item sizes there exists an array, initialize all the arrays to zero

 for each of items in new rearranged array

 if item in rearranged array lies between (1/2, 1] then

 add to the huge bin

33

 else if item in rearranged array lies between (1/3, 1/2] then

 add to the large bin

 else if item in rearranged array lies between (1/4, 1/3] then

 add to the medium bin

 else if item in rearranged array lies between (0, 1/4] then

 add to the small bin

print total number of bins

34

CHAPTER 7

SUMMARY AND RESULTS OF ONLINE BIN PACKING

We know that bin packing is one of the classic and well-studied problems in the field of computer science.

Since bin packing belongs to the class of NP-hard problems, it is difficult to come up with a polynomial

time algorithm which solves the problem to give an optimal solution. So as a result, approximation

algorithms are presented to find the closest possible solution to the optimal. Johnson has studied the bin

packing problem and showed that next fit has a competitive ratio of 2 [9]. The proof for this ratio is simple

and is proved in the above chapters. He also showed that the competitive ratio of first fit is 17/10 = 1.7.

Yao [13] has redefined first fit and showed that the competitive ratio of first fit is 5/3 = 1.66. Lee and Lee

[6] presented a harmonic algorithm which had a better ratio of 1.635.

This thesis show better competitive ratio than the above ratios. Here we find competitive ratio and worst

values using different input sizes in different intervals. For each input size and each interval there will be

different competitive ratios and worst values. To get better competitive ratio we need to find ratio in all

possibilities. In this thesis, we find competitive ratio and worst value for 100 runs. The ratio between online

algorithm and optimal solution is Competitive Ratio. The average of all the competitive ratios gives the

actual competitive ratio and maximum of all the competitive ratios gives the worst value.

We know that Next Fit is more restrictive than any other fit algorithms, since it keeps only a single bin

open and puts an incoming item into it whenever the item fits, otherwise the bin is closed and a new bin is

opened. We know that next fit has a competitive ratio of 2. In this thesis, we show a better competitive

ratio for next fit. The competitive ratio for small items is ≈ 1 and for large items (number of items = 1000

and the size lies in between (0, 1]) the competitive ratio is 1.3.

Similarly, we know that first fit and best fit has better ratio than next fit (ratio is 1.7). In the case of FF and

BF, the competitive ratio for large items is ≈ 1. In case of First Fit, for small items (number of items = 10

35

and the size lies in between (0, 0.5]) the competitive ratio is 1.365. In case of Best Fit, for small items

(number of items = 10 and the size lies in between (0, 1]) the competitive ratio is 1.29. The proof for this is

very simple. The input sequence for this competitive ratio is 6n items of size 0.15, 0.34, 0.51.

We know that worst fit has a competitive ratio of 2. Here we show that worst fit still has worst competitive

ratio for any number of items and the WF has a ratio of 1.795 still not better than 2. So practically worst fit

will not work for bin packing.

Lee and Lee has presented a harmonic algorithm with a competitive ratio of 1.635. We show a better ratio

of 1.46. Practically harmonic fit works better for smaller items and for large items the ratio is ≈ 1. Harmonic

fit has better ratio if the number of items are 20 and the size lies in between (0, 0.2].

TABLE 26. LIST OF COMPETITIVE RATIOS AND WORST VALUES FOR ONLINE

ALGORITHMS.

Online Algorithms Input Sizes Intervals Competitive Ratio Worst Value

Next Fit Algorithm s1, s2,…, s1000 0.0 – 1.0 1.3 1.31

First Fit Algorithm s1, s2,…, s10 0.0 – 0.5 1.365 1.5

Best Fit Algorithm s1, s2,…, s10 0.0 – 1.0 1.29 1.33

Worst Fit Algorithm s1, s2,…, s20 0.0 – 0.2 1.795 2

Harmonic Algorithm s1, s2,…, s20 0.0 – 0.2 1.46 1.5

The above table shows that Best Fit Online Algorithm has better competitive ratio than any other online

algorithms. The competitive ratio of Best Fit is 1.29 for input items in the interval (0, 1] and number of

input items is 10.

36

REFERENCES

[1] Johnson, D.S.: Near-optimal bin-packing algorithms. Doctoral Thesis. MIT Press,

Cambridge (1973)

[2] Baker, B.S.: A new proof for the first-fit decreasing bin-packing algorithm. J.

Algorithms, 49-70(1985)

[3] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 1998.

[4] Richard M. Karp. Online Algorithms Versus Offline Algorithms: How much is it worth to know

the Future? International Computer Science Institute

[5] Joseph malkevitch. Bin Packing, American Mathematical Society

[6] L.Becchetti. Sequential algorithms for partitioning problems: Minimum Bin Packing

[7] https://www2.informatik.hu-berlin.de/alcox/lehre/lvws1011/coalg/bin_packing.pdf

[8] Doina Bein, Wolfgang Bein, and Swathi Venigella. Cloud Storage and Online Bin

Packing. http://www.egr.unlv.edu/~bein/pubs/bein_cloud_19.pdf

[9] D. S. Johnson, A.Demers, J. D. Ullman, M. R. Garey, and R. L. Graham(1974).

Worst-case performance bounds for simple one-dimensional packing

algorithms.SIAM J. Computing 3, 299-325.

[10] Prof. RNDr. Jiˇr´ı Sgall, DrSc. Online algorithms for variants of bin packing, Charles University

in Prague, 2014

[11] Darapuneni, Yoga Jaideep, "A Survey of Classical and Recent Results in Bin Packing Problem"

(2012). UNLV Theses/Dissertations/Professional Papers/Capstones. Paper 1663.

[12] C. Lee and D. Lee. A simple on-line bin-packing algorithm. Journal of ACM,

32:562572,1985

[13] RAMANAN, P., BROWN, D., LEE, C., AND LEE, D. 1989. On-line bin packing

in linear time. J. Algor. 10, 305–326.

37

APPENDIX 1

#include<iostream>

#include<ctime>

#include<math.h>

#include<cstdlib>

using namespace std;

int main()

{

 const int granularity = 100;

 int size;

 int lower = 1;

 int upper = granularity;

 cout << "Enter the size of the array: " << endl;

 cin >> size;

 cout << "------------------------------------" << endl;

 // Generating random numbers

 int array[size];

 srand(time(0));

 cout << "random array is:" << endl;

 for (int i=0; i<size; i++)

 {

 array[i] = (lower + rand() % (upper - lower + 1)) ;

 cout << array[i] << endl;

 }

 cout << "------------------------------------" << endl;

 // Packing random numbers into bins

 int tally=0;

 int numberofbins = 1;

 for (int j=0; j<size;j++)

 {

 if (tally + array[j] < granularity)

 {

 tally = tally + array[j];

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 }

38

 else

 {

 array[j] = granularity - tally;

 tally = 0;

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 if (j<(size-1))

 {

 numberofbins++;

 }

 }

 }

 // Rearranging the packed items

 int cs = size;

 int b[size];

 int k = 0;

 cout << "-------------------------------------" << endl;

 while (cs > 0)

 {

 int index = rand() % cs;

 b[k] = array[index];

 k++;

 array[index] = array[cs - 1];

 cs--;

 }

 int bin = 1;

 for (int l=0; l<size; l++)

 {

 cout << b[l]/float(granularity) << endl;

 }

 cout << "------------------------------------" << endl;

39

APPENDIX 2

#include<iostream>

#include<ctime>

#include<math.h>

#include<cstdlib>

using namespace std;

int main()

{

 const int granularity = 100;

 int size;

 int lower = 1;

 int upper = granularity;

 cout << "Enter the size of the array: " << endl;

 cin >> size;

 cout << "------------------------------------" << endl;

 // Generating random numbers

 int array[size];

 srand(time(0));

 cout << "random array is:" << endl;

 for (int i=0; i<size; i++)

 {

 array[i] = (lower + rand() % (upper - lower + 1)) ;

 cout << array[i] << endl;

 }

 cout << "------------------------------------" << endl;

 // Packing random numbers into bins

 int tally=0;

 int numberofbins = 1;

 for (int j=0; j<size;j++)

 {

 if (tally + array[j] < granularity)

 {

 tally = tally + array[j];

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 }

40

 else

 {

 array[j] = granularity - tally;

 tally = 0;

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 if (j<(size-1))

 {

 numberofbins++;

 }

 }

 }

 // Rearranging the packed items

 int cs = size;

 int b[size];

 int k = 0;

 cout << "-------------------------------------" << endl;

 while (cs > 0)

 {

 int index = rand() % cs;

 b[k] = array[index];

 k++;

 array[index] = array[cs - 1];

 cs--;

 }

 int bin = 1;

 for (int l=0; l<size; l++)

 {

 cout << b[l]/float(granularity) << endl;

 }

 cout << "------------------------------------" << endl;

 // First Fit Bin Packing

 int maxbin=0;

 int fbin[size];

 for(int i=0; i<size; i++)

 {

41

 fbin[i] = 0;

 }

 for(int g=0; g<size; g++)

 {

 for(int i=0;i<size;i++)

 {

 if(fbin[i] + b[g] <= granularity)

 {

 fbin[i] = fbin[i] + b[g];

 cout << " item:" << b[g]/float(granularity) << " " << "put item in bin:" << i+1 << " " << "size of bin:" <<

fbin[i]/float(granularity) << endl;

 if (i+1 > maxbin)

 {

 maxbin = i+1;

 }

 break;

 }

 }

 }

 cout << "--" << endl;

 cout << "number of bins for first fit:" << maxbin << endl;

 cout << "optimal number of bins:" << numberofbins << endl;

 cout << "ratio between first fit and optimal:" << maxbin/(float)numberofbins << endl;

}

42

APPENDIX 3

#include<iostream>

#include<ctime>

#include<math.h>

#include<cstdlib>

using namespace std;

int main()

{

 const int granularity = 100;

 int size;

 int lower = 1;

 int upper = granularity;

 cout << "Enter the size of the array: " << endl;

 cin >> size;

 cout << "------------------------------------" << endl;

 // Generating random numbers

 int array[size];

 srand(time(0));

 cout << "random array is:" << endl;

 for (int i=0; i<size; i++)

 {

 array[i] = (lower + rand() % (upper - lower + 1)) ;

 cout << array[i] << endl;

 }

 cout << "------------------------------------" << endl;

 // Packing random numbers into bins

 int tally=0;

 int numberofbins = 0;

 for (int j=0; j<size;j++)

 {

 if (tally + array[j] < granularity)

 {

 tally = tally + array[j];

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins+1 << endl;

 }

43

 else

 {

 array[j] = granularity - tally;

 tally = 0;

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins+1 << endl;

 if(j<(size-1))

 {

 numberofbins++;

 }

 }

 }

 // Rearranging the packed items

 int cs = size;

 int b[size];

 int k = 0;

 cout << "-------------------------------------" << endl;

 while (cs > 0)

 {

 int index = rand() % cs;

 b[k] = array[index];

 k++;

 array[index] = array[cs - 1];

 cs--;

 }

 int bin = 1;

 for (int l=0; l<size; l++)

 {

 cout << b[l]/float(granularity) << endl;

 }

 cout << "------------------------------------" << endl;

 // Next Fit Bin Packing

 int maxbin = 1;

 int nbin[size];

 for(int i=0;i<size;i++)

 {

44

 nbin[i] = 0;

 }

 for(int g=0;g<size;g++)

 {

 for(int i=(maxbin-1);i<size;i++)

 {

 if(nbin[i] + b[g] <= granularity)

 {

 nbin[i] = nbin[i] + b[g];

 cout << "item:" << b[g]/float(granularity) << " " << "put item in bin:" << i+1 << " " << "size of bin:" <<

nbin[i]/float(granularity) << endl;

 if (i+1 > maxbin)

 {

 maxbin = i+1;

 }

 break;

 }

 }

 }

 cout << "--" << endl;

 cout << "number of bins for next fit:" << maxbin << endl;

 cout << "optimal number of bins:" << numberofbins+1 << endl;

 cout << "ratio between next fit and optimal:" << maxbin/(float)(numberofbins+1) << endl;

}

45

APPENDIX 4

#include<iostream>

#include<ctime>

#include<math.h>

#include<cstdlib>

using namespace std;

int main()

{

 const int granularity = 100;

 int size;

 int lower = 1;

 int upper = granularity;

 cout << "Enter the size of the array: " << endl;

 cin >> size;

 cout << "------------------------------------" << endl;

 // Generating random numbers

 int array[size];

 srand(time(0));

 cout << "random array is:" << endl;

 for (int i=0; i<size; i++)

 {

 array[i] = (lower + rand() % (upper - lower + 1)) ;

 cout << array[i] << endl;

 }

 cout << "------------------------------------" << endl;

 // Packing random numbers into bins

 int tally=0;

 int numberofbins = 1;

 for (int j=0; j<size;j++)

 {

 if (tally + array[j] < granularity)

 {

 tally = tally + array[j];

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 }

46

 else

 {

 array[j] = granularity - tally;

 tally = 0;

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 if (j<(size-1))

 {

 numberofbins++;

 }

 }

 }

 // Rearranging the packed items

 int cs = size;

 int b[size];

 int k = 0;

 cout << "-------------------------------------" << endl;

 while (cs > 0)

 {

 int index = rand() % cs;

 b[k] = array[index];

 k++;

 array[index] = array[cs - 1];

 cs--;

 }

 int bin = 1;

 for (int l=0; l<size; l++)

 {

 cout << b[l]/float(granularity) << endl;

 }

 cout << "------------------------------------" << endl;

 //Best Fit Bin Packing

 int maxbin = 0;

 int bbin[size];

 int bfindex = 0;

47

 for(int i=0; i<size; i++)

 {

 bbin[i] = 0;

 }

 for(int g=0; g<size; g++)

 {

 int diff = granularity;

 for(int i=0;i<size;i++)

 {

 if(bbin[i] + b[g] <= granularity)

 {

 if (diff > (granularity - (bbin[i] + b[g])))

 {

 diff = granularity - (bbin[i] + b[g]);

 bfindex = i;

 }

 }

 if (i >= maxbin)

 break;

 }

 bbin[bfindex] = bbin[bfindex] + b[g];

 if (bfindex+1 > maxbin)

 {

 maxbin = bfindex+1;

 }

 cout << " item:" << b[g]/float(granularity) << " " << "difference:" << diff/float(granularity) << " " << "put item in bin:" << bfindex+1

<< " " << "size of bin:" << bbin[bfindex]/float(granularity) << endl;

 }

 cout << "--" << endl;

 cout << "number of bins for best fit:" << maxbin << endl;

 cout << "optimal number of bins:" << numberofbins << endl;

 cout << "ratio between best fit and optimal:" << maxbin/float(numberofbins) << endl;

}

48

APPENDIX 5

#include<iostream>

#include<ctime>

#include<math.h>

#include<cstdlib>

using namespace std;

int main()

{

 const int granularity = 100;

 int size;

 int lower = 1;

 int upper = granularity;

 cout << "Enter the size of the array: " << endl;

 cin >> size;

 cout << "------------------------------------" << endl;

 // Generating random numbers

 int array[size];

 srand(time(0));

 cout << "random array is:" << endl;

 for (int i=0; i<size; i++)

 {

 array[i] = (lower + rand() % (upper - lower + 1)) ;

 cout << array[i] << endl;

 }

 cout << "------------------------------------" << endl;

 // Packing random numbers into bins

 int tally=0;

 int numberofbins = 1;

 for (int j=0; j<size;j++)

 {

 if (tally + array[j] < granularity)

 {

 tally = tally + array[j];

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 }

49

 else

 {

 array[j] = granularity - tally;

 tally = 0;

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins << endl;

 if (j<(size-1))

 {

 numberofbins++;

 }

 }

 }

 // Rearranging the packed items

 int cs = size;

 int b[size];

 int k = 0;

 cout << "-------------------------------------" << endl;

 while (cs > 0)

 {

 int index = rand() % cs;

 b[k] = array[index];

 k++;

 array[index] = array[cs - 1];

 cs--;

 }

 int bin = 1;

 for (int l=0; l<size; l++)

 {

 cout << b[l]/float(granularity) << endl;

 }

 cout << "------------------------------------" << endl;

 //Worst Fit Bin Packing

 int maxbin = 0;

 int bbin[size];

 int bfindex = 0;

 int diff = 0;

50

 for(int i=0; i<size; i++)

 {

 bbin[i] = 0;

 }

 for(int g=0; g<size; g++)

 {

 diff = 0;

 for(int i=0;i<size;i++)

 {

 if(bbin[i] + b[g] <= granularity)

 {

 if (diff <= (granularity - (bbin[i] + b[g])))

 {

 if (diff != 0 && bbin[i]==0)

 break;

 diff = granularity - (bbin[i] + b[g]);

 bfindex = i;

 }

 }

 if (i >= maxbin)

 break;

 }

 bbin[bfindex] = bbin[bfindex] + b[g];

 if (bfindex+1 > maxbin)

 {

 maxbin = bfindex+1;

 }

 cout << "item:" << b[g]/float(granularity) << " " << "difference:" << diff/float(granularity) << " " << "put item in bin:" << bfindex+1

<< " " << "size of bin" << bfindex+1 << ": " << bbin[bfindex]/float(granularity) << endl;

 }

 cout << "--" << endl;

 cout << "number of bins for worst fit:" << maxbin << endl;

 cout << "optimal number of bins:" << numberofbins << endl;

 cout << "ratio between worst fit and optimal:" << maxbin/float(numberofbins) << endl;

}

51

APPENDIX 6

#include<iostream>

#include<ctime>

#include<math.h>

#include<cstdlib>

using namespace std;

int main()

{

 const int granularity = 100;

 int size;

 int lower = 1;

 int upper = granularity;

 cout << "Enter the size of the array: " << endl;

 cin >> size;

 cout << "------------------------------------" << endl;

 // Generating random numbers

 int array[size];

 srand(time(0));

 cout << "random array is:" << endl;

 for (int i=0; i<size; i++)

 {

 if (i%2 == 0)

 {

 lower = 0, upper = 100;

 array[i] = (lower + rand() % (upper - lower +1));

 cout << array[i] << endl;

 }

 else

 {

 lower = 0, upper = 100;

 array[i] = (lower + rand() % (upper - lower +1));

 cout << array[i] << endl;

 }

 }

 /* for (int i=0; i<size; i++)

52

 {

 array[i] = (lower + rand() % (upper - lower + 1)) ;

 cout << array[i] << endl;

 } */

 cout << "------------------------------------" << endl;

 // Packing random numbers into bins

 int tally=0;

 int numberofbins = 0;

 for (int j=0; j<size;j++)

 {

 if (tally + array[j] < granularity)

 {

 tally = tally + array[j];

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins+1 << endl;

 }

 else

 {

 array[j] = granularity - tally;

 tally = 0;

 cout << array[j]/float(granularity) << " " << "bin:" << numberofbins+1 << endl;

 if(j<(size-1))

 {

 numberofbins++;

 }

 }

 }

 // Rearranging the packed items

 int cs = size;

 int b[size];

 int k = 0;

 cout << "-------------------------------------" << endl;

 while (cs > 0)

 {

 int index = rand() % cs;

 b[k] = array[index];

53

 k++;

 array[index] = array[cs - 1];

 cs--;

 }

 int bin = 1;

 for (int l=0; l<size; l++)

 {

 cout << b[l]/float(granularity) << endl;

 }

 cout << "------------------------------------" << endl;

 // Harmonic Algorithm

 int maxHbin=0;

 int maxLbin=0;

 int maxMbin=0;

 int maxSbin=0;

 //initialize arrays

 int hbin[size];

 for(int i=0;i<size;i++)

 {

 hbin[i] = 0;

 }

 int lbin[size];

 for(int i=0;i<size;i++)

 {

 lbin[i] = 0;

 }

 int mbin[size];

 for(int i=0;i<size;i++)

 {

 mbin[i] = 0;

 }

 int sbin[size];

 for(int i=0;i<size;i++)

 {

 sbin[i] = 0;

54

 }

 for(int g=0;g<size;g++)

 {

 if(b[g]>(granularity/2))

 {

 if(hbin[maxHbin] + b[g] > granularity)

 {

 maxHbin=maxHbin+1;

 }

 hbin[maxHbin] = hbin[maxHbin] + b[g];

 cout << "item:" << b[g]/float(granularity) << " " << "put item in HUGE bin:" << maxHbin+1 << " " << "size of bin:" <<

hbin[maxHbin]/float(granularity) << endl;

 }

 else if(b[g]>(granularity/3))

 {

 if(lbin[maxLbin] + b[g] > granularity)

 {

 maxLbin=maxLbin+1;

 }

 lbin[maxLbin] = lbin[maxLbin] + b[g];

 cout << "item:" << b[g]/float(granularity) << " " << "put item in LARGE bin:" << maxLbin+1 << " " << "size of bin:" <<

lbin[maxLbin]/float(granularity) << endl;

 }

 else if (b[g]>(granularity/4))

 {

 if(mbin[maxMbin] + b[g] > granularity)

 {

 maxMbin=maxMbin+1;

 }

 mbin[maxMbin] = mbin[maxMbin] + b[g];

 cout << "item:" << b[g]/float(granularity) << " " << "put item in MEDIUM bin:" << maxMbin+1 << " " << "size of bin:" <<

mbin[maxMbin]/float(granularity) << endl;

 }

 else

 {

55

 int binindex = 0;

 for(int i=0; i<=maxSbin; i++)

 {

 if(sbin[i] + b[g] <= granularity)

 {

 binindex = i;

 break;

 }

 if(i==maxSbin)

 {

 binindex=i+1;

 maxSbin=maxSbin+1;

 }

 }

 sbin[binindex] = sbin[binindex] + b[g];

 cout << "item:" << b[g]/float(granularity) << " " << "put item in SMALL bin:" << binindex+1 << " " << "size of bin:" <<

sbin[binindex]/float(granularity) << endl;

 }

 if(g+1==size)

 {

 if(hbin[0]>0)

 maxHbin+=1;

 if(lbin[0]>0)

 maxLbin+=1;

 if(mbin[0]>0)

 maxMbin+=1;

 if(sbin[0]>0)

 maxSbin+=1;

 }

 }

 int totalHAbins=maxHbin+maxLbin+maxMbin+maxSbin;

 cout << "--" << endl;

 cout << "number of bins for ha fit:" << totalHAbins << endl;

 cout << "optimal number of bins:" << numberofbins+1 << endl;

 cout << "ratio between ha fit and optimal:" << totalHAbins/(float)(numberofbins+1) << endl;

 }

56

CURRICULUM VITAE

Graduate College

University of Nevada, Las Vegas

Kalpana Rajagopal

Home Address:

71 Sevilla Heights Dr

Henderson, NV 89074.

Degrees:

Bachelor of Technology, Computer Science,

Jawaharlal Nehru Technological University, India

Thesis Title: Simulation of Online Bin Packing in Practice.

Thesis Examination Committee:

Chairperson, Dr. Wolfgang Bein, Ph. D.

Committee Member, Dr. Ajoy K Datta, Ph. D.

Committee Member, Dr. Laxmi Gewali, Ph. D.

Graduate faculty Representative, Dr. Muthukumar Venkatesan, Ph. D.

	December 2016
	Simulation of Online Bin Packing in Practice
	Kalpana Rajagopal
	Repository Citation

	tmp.1493245446.pdf.AqVXa

