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ABSTRACT 

by 

 

Kalpana Rajagopal 

 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor of Computer Science 

University of Nevada, Las Vegas 
 

The bin packing problem requires packing a set of objects into a finite number of bins of fixed capacity in 

a way that minimizes the number of bins used. We consider the online version of the problem where items 

arrive over tine and a decision has to be made as soon as an element is available. Online algorithms can be 

analyzed in terms of competitiveness, a measure of performance that compares the solution obtained online 

with the optimal offline solution for the same problem, where the lowest possible competitiveness is best. 

Online processing is difficult due to the fact that unpredictable item sizes may appear. A number of online 

algorithms such as First-Fit, Next-Fit, Best-Fit, Worst Fit and Harmonic have been proposed and studied in 

the literature. In this thesis, we examine how well these algorithms perform in practice. Our results that 

practical performance is differs substantially from the worst case online measure. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 What is Bin Packing? 

The bin packing problem asks for the minimum number k of identical bins of capacity C needed to store a 

finite collection of weights w1, w2, w3,…, wn so that no bin has weights stored in it whose sum exceeds the 

bin’s capacity. Traditionally the capacity C is chosen to be 1 and the weights are real numbers which lie 

between 0 and 1. This problem is known as 1-dimensional bin packing problem. 

Bin Packing is considered both when an algorithm has the whole input in advance and when items are 

coming one by one and each must be packed immediately and irrevocably into a bin without any knowledge 

of future items. It is important to keep in mind that weights are to be thought of as indivisible objects rather 

than something like oil or water. For oil one can imagine part of a weight being put into one container and 

any leftover being put into another container. Here we cannot split an object. 

One way to visualize the situation is as a collection of rectangles which have height equal to the capacity C 

and a fixed width, whose exact size does not matter. When an item is put into the bin it either falls to the 

bottom or is stopped at a height determined by the weights that are already in the bins. 

FIGURE 1: AN EXAMPLE OF THREE BINS: THE FIRST BIN HAS LEVEL OF 0.8, THE 

SECOND BIN IS FULL AND THE THIRD BIN HAS LEVEL 0.4 
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Bin packing problem is an optimization problem with incomplete information. In Bin Packing, a sequence 

of items of size up to 1 arrives to be packed into bins of unit capacity which lie between 0 and 1. The goal 

is to minimize the number of bins used. In other words, we need to partition items into the minimum number 

of bins such that the sum of sizes of items in each bin is at most one. 

1.2 Background of Bin Packing 

Bin packing problem is one of the oldest and most thoroughly studied problems in computer science. Bin 

packing problem is NP – hard optimization problem. One way to deal with this problem is to find an 

algorithm which gives a worse solution in polynomial time. The field of approximation algorithms deals 

with such problem. The bin packing problem was proposed by Johnson [1] in early seventies and it was 

studied extensively since then in both online and offline settings. In fact, bin packing was the first problem 

being investigated properly in both of these settings and moreover Johnson in 1973 introduced comparing 

the quality of the solution by an online algorithm against an optimal strategy.  

1.3 Online vs Offline Computation 

Generally, online computation deals with situations when the input is revealed to the algorithm as the time 

goes on and the algorithm must deal with an incoming part of the input immediately after it comes without 

any knowledge of the future [3] [4]. On the other hand, in the offline computation an algorithm knows the 

whole input before making any decision. 

An offline algorithm simply repacks everything each time an item arrives, where as in online algorithm 

each item is packed immediately and irrevocably without any knowledge of the next items in input 

sequence. Offline bin packing is not easy if we have only polynomial amount of time. Packing large items 

is difficult with online bin packing. 

1.4 Competitive Analysis 

Competitive analysis is a type of worst-case analysis. Analyzes the performance of an algorithm by 

comparing it with the best optimal solution. In this thesis, we compare the performance of different online 
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algorithms with the best optimal solution. This comparison is done by using a ratio called ‘Competitive 

Ratio’. The best online algorithm for bin packing is the one that has the lowest possible competitive ratio 

and this ratio is at least 1. 

Competitive Ratio 

In the case of bin packing, the standard metric for worst-case performance is competitive ratio. For a given 

list of items and an algorithm A, let A(L) be the number of bins used when algorithm A is applied to list L, 

let OPT(L) denote the optimum number of bins for a packing of L, and RA(L) denote the absolute worst-

case performance (competitive) ratio for algorithm A [3]. 

RA(L) = A(L) / OPT(L) 

A disadvantage of competitive analysis is that it sometimes gives an unrealistically bad impression on an 

algorithm, in that algorithms that perform well in practice have a high competitive ratio. Furthermore, it 

sometimes fails to differentiate between algorithms whose performance is observed to be very different. 

1.5 Applications of Bin Packing 

Bin packing problem has many real-world applications such as filling up containers, loading trucks with 

weight capacity, creating file backups in media [5], scheduling tasks with known execution times on a set 

of identical machines, storing files on disks, cutting stock problem. Online bin packing arises in many real-

world problems. For example, we put goods of different weights into trucks or containers with the same 

weight limit and we want to use as few of them as possible, while items are packed immediately as they 

arrive without a possibility to change their assignment later [10]. Of course, one must simplify the problem; 

mainly we are assuming that the weight is more restrictive than the size of containers. Other applications 

are: assigning newspaper articles into columns, adding network packets of different sizes into larger blocks 

of the same size, assigning commercials into breaks on a television station, etc. 
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CHAPTER 2 

 

OFFLINE BIN PACKING 

In the classical offline bin packing problem, an algorithm receives items of size x1, x2, …, xn є (0,1]. We 

have infinite number of bins, each with capacity 1, and every item is to be assigned to a bin. Further, the 

sum of the sizes of the items assigned to any bin cannot exceed its capacity. A bin is empty if no item is 

assigned to it, otherwise, it is used. The goal of the algorithm is to minimize the number of used bins. This 

is one of the classical NP-hard problems and heuristic and approximation algorithms have been investigated 

thoroughly. 

In both the offline and online problems the algorithm has access to the bins in arbitrary order. The more 

restricted version of offline algorithms for bin packing is sequential algorithms. In this algorithm items 

arrive one by one but in each round the algorithm have only two possible choices: assign the given item to 

the open bin or to the next empty bin, and items cannot be assigned anymore to closed bins. 

2.1 Next Fit Offline Algorithm 

A simple offline algorithm called Next Fit is used to minimize the number of bins. Next Fit processes the 

items one at a time in the same order as they are given in input. The first item a1 is placed into bin B1. Let 

Bj be the last used bin, when the algorithm considers item ai: Next Fit assigns ai to Bj if it has enough room; 

otherwise ai is assigned to a new bin Bj+1. 

Theorem: Consider any instance x of the Minimum Bin Packing problem, algorithm Next Fit computes a 

solution such that: mNF (x) ≤ 2m* (x) [6]. 

Proof: Firstly, ‘A’ denotes the sum of all the item sizes in the bin. In the next fit algorithm, only one bin 

(last used bin) is kept open and when an item doesn`t fit, that bin is closed and a new bin is opened. So at 

any given time only one bin is open and once the bin is closed it cannot be opened. Since the sum of the 

items of any two consecutive bins is always greater than 1, the number of bins used by Next fit algorithm 
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is less than 2[A]. This is because on an average the bins are more than half full. On the other hand, the 

optimal solution uses bins which are at least the total size of the items (A). So, m* (x) ≥ [A]. Hence, we 

have mNF (x) ≤ 2m* (x). 

2.2 Is this analysis tight? 

Sequence: Consider an instance of 4n items and the order of the items are as follows: {1/2, 1/2n, 1/2, 

1/2n,…, 1/2, 1/2n} (each pair is repeated 2n times). This example is taken from the paper written by D.S. 

Johnson [1]. Fig (a) represents the optimal solution where the 2n items of size ½ are filled in n bins and the 

remaining 2n items of size 1/2n are filled in a single bin. Hence the optimal requires n+1 bins to fill the 

given sequence. Fig (b) represents the approximate solution of Next Fit algorithm where 2 items of size 1/2 

and 1/2n are filled in each bin. Hence the next fit requires 2n bins to fill the given sequence. 

FIGURE 2. EXAMPLE FOR NEXT FIT OFFLINE BIN PACKING ALGORITHM 

  

 Optimal Solution                                   Next Fit 

 

An obvious weakness of Next Fit is that it tries to assign an item only to the last used bin. This leads to a 

problem where the performance of NF is 2 times worse than the optimal performance. To overcome this 
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if no bin contain ai, a new bin is opened. 
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2.3 First Fit Offline Algorithm 

First Fit algorithm has a better performance than Next Fit: it finds a solution this is at most 70% far away 

from the optimal solution. It can be shown that First Fit finds a solution with the value mFF (x) such that 

mFF (x) ≤ 1.7m* (x) + 2 [1] [6].  

An even better algorithm for Offline Bin Packing is First Fit Decreasing (FFD) 

2.4 First Fit Decreasing Offline Algorithm 

This algorithm first sort’s items in non-increasing order with respect to their size and then processes items 

as First Fit. 

Theorem: First Fit Decreasing is a 3/2-approximation for Bin Packing [2]. The algorithm runs in O(n2) 

time.  

Proof: Let k be the number of non-empty bins of the assignment a found by First Fit Decreasing and let k* 

be the optimal number [7]. Consider bin number j = [2/3k]. If it contains an item i with     si > 1/2, then each 

bin jꞌ < j did not have space for item i. Thus, jꞌ was assigned an item iꞌ with iꞌ < i. As the items are considered 

in non-increasing order of size we have siꞌ ≥ si > 1/2. That is, there are at least j items of size larger than 1/2. 

These items need to be placed in individual bins. This implies k* ≥ j ≥ 2/3 k.  

Otherwise, bin j and any bin jꞌ > j does not contain an item with size larger than 1/2. Hence the bins j, j + 1, 

2, ..., k contains at least 2(k − j) + 1 items, none of which fits into the bins 1, 2, …, j − 1. Thus, we have  

s(I) > min{j − 1, 2(k − j) + 1}  

      ≥ min{[2/3k] − 1, 2(k − (2/3k + 2/3)) + 1}  

      = [2/3k] − 1  

and k ∗ ≥ s(I) > [2/3k] − 1. This even implies  

k* ≥ [2/3k] ≥ 2/3 k 
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and hence the claim. 

There exists an instance of the bin packing problem for which the performance of First Fit Decreasing is 

11/9 times away from optimum. By means of a detailed case analysis, the bound given in the above theorem 

can be substituted by 11m*(x)/9 + 7/9. 

Algorithm for First-Fit Decreasing 

Input: Set I of n positive rationales less than or equal to 1; 

Output: Partition of I in subsets of unitary weight; 

begin 

 Sort elements of i in non-increasing order; 

 (* Let (a1, a2, ----, an) be the obtained sequence *) 

 for i: = 1 to n do 

 if there is a bin that can contain ai then  

  Insert ai into the first such bin 

 else 

  Insert ai into a new bin; 

 Return the partition 

end 
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CHAPTER 3 

 

ONLINE BIN PACKING 

In the online bin packing problem, a sequence of items with sizes in the interval (0,1] arrive one by one and 

need to be packed into bins, so that each bin contains items of total size at most 1. Once an item is packed 

in a particular bin it cannot be moved. Each item must be irrevocably assigned to a bin before the next item 

becomes available. The algorithm has no knowledge about future items. There is an unlimited supply of 

bins available, and the goal is to minimize the total number of used bins. 

The online processing is difficult because unpredictable item sizes may appear. In general, the performance 

of an online bin packing algorithm is substantially affected by the permutation of items in a given list. 

There are several well-known and often used online algorithms for bin packing. Now let us discuss some 

of the online algorithms for bin packing. 

3.1 First Fit Bin Packing Algorithm 

If we are willing to keep bins open in the hope that we will be able to fill empty space with items in the list, 

we will typically use fewer bins. The simplest way to evaluate this idea is known as First Fit bin packing 

algorithm [11]. In First Fit, we place the next item in the list into the first bin which has not been completely 

filled into which it will fit. When bins are filled completely they are closed and if an item will not fit into 

any currently open bin, a new bin is opened. 

Example: Items - 0.5, 0.3, 0.4, 0.8, 0.2, 0.2, 0.2 
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FIGURE 3. EXAMPLE FOR FIRST FIT ONLINE BIN PACKING ALGORITHM 
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3.2 Next Fit Bin Packing Algorithm 

Next Fit is one of the most basic online algorithms. The idea behind this algorithm is to open a bin and 

place the items into it in the order they appear in the list [11]. If an item on the list will not fit into the open 

bin, we close the bin permanently and open a new one and continue packing the remaining items in the list. 

Of course, if some of the consecutive weights on the list exactly fill a bin, the bin is then closed and a new 

bin opened. 

Example: Items - 0.3, 0.6, 0.2, 0.1, 0.5, 0.7, 0.2, 0.4, 0.1, 0.9 

FIGURE 4. EXAMPLE FOR NEXT FIT ONLINE BIN PACKING ALGORITHM 

 

 

Algorithm 

Consider an instance x containing items ai where i є (1, 2, … , n) and number of bins b ‹-- 1 

Begin 

For i: = 1 to n do 

 If the item ai can fit in the opened bin then 

 Insert ai into the bin 

 Insert the item ai into a new bin 
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 b: = b+1 

 Return b 

End 

3.3 Best Fit Bin Packing Algorithm 

Best Fit packs the input item according to the following rule: while trying to pack item ai, the best fit 

algorithm assigns the item to the bin whose empty space is minimum [11]. If the item ai is unable to fit in 

any of the opened bins, then a new bin is opened to pack that item ai. 

Example: Items - 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

FIGURE 5. EXAMPLE FOR BEST FIT ONLINE BIN PACKING ALGORITHM 

   

 

Algorithm 

Consider bins bj where j ϵ (1,2 … , n) 

Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1 

  Begin 

For i := 1 to n do 

Sort bins bj in decreasing order such that the bin with minimum space available is placed 

first. Let the sorted sequence be { B1,B2 …. ,Bn} 
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For k:=1 to n do 

if the item ai can fit in the bin Bk then 

Insert ai into the bin 

break; // exit for k loop 

//continue for i loop 

 End                                      

3.4 Worst Fit Bin Packing Algorithm 

Worst Fit packs the input item according to the following rule: while trying to pack item ai, the worst fit 

algorithm assigns the item to the bin whose empty space is maximum. If the item ai is unable to fit in any 

of the opened bins, then a new bin is opened to pack that item ai. 

Example: Items – 0.4, 0.7, 0.1, 0.3, 0.8, 0.2, 0.5  

FIGURE 6. EXAMPLE FOR WORST FIT ONLINE BIN PACKING ALGORITHM 

   

 

 

 

 

 

Algorithm 

Consider bins bj where j ϵ (1,2 … , n) 

Consider an instance x containing items ai where i ϵ (1,2 … , n) and no of bins b ‹— 1 

                  Begin 

For i := 1 to n do 
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Sort bins bj in decreasing order such that the bin with maximum space available is placed 

first. Let the sorted sequence be { B1,B2 …. ,Bn} 

For k:=1 to n do 

if the item ai can fit in the bin Bk then 

Insert ai into the bin 

break; // exit for k loop 

//continue for i loop 

      End                                      

3.5 Harmonic Fit Bin Packing Algorithm 

Under online algorithms for bin packing problem, we have another algorithm based on non-uniform 

partitioning of interval (0, 1] into M sub-intervals [8]. Consider an instance L = {it1, it2, it3,… , itn}, where 

0 < s(iti) ≤ 1 , s(iti) denotes the size of item iti in the given instance L. In this algorithm, the interval (0, 1] 

is partitioned into harmonic sub intervals IM = {(0, 1/M], (1/M, 1/M-1],…., (1/2, 1]} where M is a positive 

integer. Now each item iti is classified and put in one of these sub intervals based on their size. An item iti 

is called Ik item, if the item size is in the interval Ik = (1/k+1, 1/k], k>1. If the item size is in the interval IM= 

(0, 1/M], then the item is called IM item. In this manner, all the items in the instance or the sequences are 

classified. So, the Ik filled bin (bin with all Ik items) packs exactly k items irrespective of the actual sizes of 

the items. Using this background, we discuss about Algorithm Harmonic. 

This algorithm opens an active bin for each type i.e., one bin of I1 (Huge) type items, one bin of I2 (Large) 

type items, one bin of I3 (Medium) type items and one bin of I4 (Small) type items.. Hence a total of M 

bins are active at any given time (since M sub intervals) [12]. When an item iti belonging to sub-interval Ik 

(Ik item) arrives, it is packed in the corresponding active bin, if that bin is filled and has no enough space 

to pack item Ik then it is closed and a new bin is open for that sub-interval items. This harmonic algorithm 

is independent of the arriving order of the items. A disadvantage with this algorithm is when items of size 

> 1/2 are packed then one bin per item is used resulting in wasting a lot of free space in each single bin.  
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Example: Assume that the harmonic sub intervals are Huge = (
1

2
, 1], Large = (

1

3
,  

1

2
], Medium = (

1

4
, 

1

3
] and 

Small = (0, 
1

4
]. 

Items: 0.6, 0.1, 0.4, 0.8, 0.2, 0.3, 0.7 

FIGURE 7. EXAMPLE FOR HARMONIC FIT ONLINE BIN PACKING ALGORITHM                                                                                                 

   

 

 

 

 

 

 

Algorithm 

For a given value of M and the set of items L = {it1, it2, … , itn} 

Step 1: Partition the interval (0, 1] for the given M into subintervals as given below: 

(0, 1/M], (1/M, 1/M-1], …. , (1/2, 1] 

Step 2: Assign each item itn to the open bin of that type (the size of itn fits into the corresponding 

subinterval). 

Step 3: If an item does not fit into the corresponding bin, then close it and open a new one. 

Step 4: Calculate the total number of bins used of each type. 

  

Bins 
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CHAPTER 4 

 

LOWER BOUNDS 

4.1 Next Fit Algorithm 

Given an instance x of online bin packing, the algorithm next fit returns a result with value mNF(x) such that 

mNF(x)/mOPT(x) ≤ 2 where mOPT(x) denotes the optimal solution for an instance x. This means the 

competitive ratio of next fit is 2. Here is the worst example to prove the competitive ratio for next fit. 

Example: Input sequence of arbitrary length n is needed. 

Sequence: k items of size 0.9 and k items of size 0.2. These can be packed in n bins by optimal. 

As the sizes 0.9 and 0.2 both together cannot occupy in one bin, the items size with 0.9 are packed in n bins 

and the items size with 0.2 are packed in n bins. So altogether next fit packs these items in 2n bins.  

So the competitive ratio for next fit is 2n/n = 2. In fact, first fit and best fit algorithms have a better 

competitive ratio than next fit when it comes to online algorithms for bin packing. 

4.2 First Fit and Best Fit Algorithm 

Given an instance x of Online Bin Packing, the algorithm First Fit returns a result with value m
FF(x) ≤ 1.7 

mOPT(x) + 2 where mOPT(x) denotes the optimal solution for an instance x [9]. The numeric “2” represents 

the additive constant. The competitive ratio for both first fit and best fit algorithms is 1.7. Here is the 

example to prove the competitive ratio for First Fit and Best Fit. 

Example: Input sequence of arbitrary length n is needed 

Input Sequence: 6n items of size 0.15, 6n items of size 0.34, 6n items of size 0.51 

These items can be packed into 6n bins by optimal. 

How do First Fit and Best Fit pack this input? 
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FIGURE 8. EXAMPLE FOR LOWER BOUND FOR FIRST FIT AND BEST FIT ALGORITHMS 

     

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 Total 10n bins are used. 

 Lower bound is 10n/6n = 5/3 = 1.7 

6n items of size 0.34 → packed in 3n bins. All these bins are 0.68 full 

6n items of size 0.15 → packed in n bins. All these bins are 0.9 full 

6n items of size 0.51 → packed in 6n bins.  
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Though First Fit and Best Fit are better than Next Fit, the worst-case performance is the same for all the 

three algorithms. A better approximation algorithm is obtained by observing that the worst performance for 

First Fit and Best Fit seems to occur when smaller items appear before larger items in a given instance. 

4.3 Harmonic Fit Algorithm 

To find out competitive ratio we need input sequence of arbitrary length n. 

Sequence: k items of size 0.50001, k items of € (epsilon). These items can be packed into k bins by optimal. 

How does Harmonic Fit packs this input? 

 Harmonic Fit packs all the k items of size 0.50001 in k bins and all the k items of epsilon is 

packed in k/2 bins. So, the harmonic fit packs the input in (k/2 + k) bins. 

So the competitive ratio of harmonic to optimal is 3/2 = 1.5 
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CHAPTER 5 

 

SIMULATION RESULTS 

5.1 Next Fit Algorithm 

This is a bounded-space online algorithm in which the only partially-filled bin that is open is the most recent 

one to be started. The first item is assigned to bin1. Items 2, …., n are then considered by increasing indices: 

each item is assigned to the current bin, if it fits; otherwise, it is assigned to a new bin, which becomes the 

current one. The time complexity of the algorithm is clearly O (n). It is easy to prove that, for any instance 

x of bin packing problem, the solution value mNF(x) provided by the algorithm satisfies the bound 

mNF(x) ≤ 2 mOPT(x) 

where mOPT(x) denotes the optimal solution value. Furthermore, there exist instances for which the ratio 

mNF(x)/mOPT(x) is arbitrarily close to 2, i.e., the competitive ratio of NF is 2. The tables below show the 

closest competitive ratio and worst values. 

TABLE 1. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value  

0.0 – 0.1 1 1 

0.0 – 0.2 N/A 1 

0.0 – 0.5 N/A 1 

0.0 – 1.0 1.044 1.2 
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TABLE 2. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 N/A 1 

0.0 – 0.2 N/A 1 

0.0 – 0.5 1.016 1.2 

0.0 – 1.0 1.107 1.286 

 

TABLE 3. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 N/A N/A 

0.0 – 0.2 1 1 

0.0 – 0.5 1.13 1.18 

0.0 – 1.0 1.28 1.33 

 

TABLE 4. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 N/A 1 

0.0 – 0.2 1 1 

0.0 – 0.5 1.13 1.19 

0.0 – 1.0 1.27 1.3 
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TABLE 5. NEXT FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.0201 1.0208 

0.0 – 0.2 1.05 1.06 

0.0 – 0.5 1.16 1.17 

0.0 – 1.0 1.3 1.31 

 

5.2 First Fit Algorithm 

There is no restriction for First Fit Bin Packing. All partially-filled bins are considered as possible 

destinations for an item to be packed. We place an item in the first bin into which it will fit, the next item 

is placed in the bin which has lowest index otherwise a new bin is opened. The lower bound for First Fit is  

mFF(x)/mOPT(x) ≤ 5/3 

The above lower bound occurs when the items are sorted in increasing order by size. The lower bound 5/3 

is obtained by following sequence of items. The sequence has 6n items of size 0.15, 6n items of size 0.34 

and 6n items of size 0.51. 

Note that still worse examples and arbitrarily close to the lower bound examples can be devised using the 

above idea.  
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TABLE 6. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 N/A N/A 

0.0 – 0.2 N/A 1 

0.0 – 0.5 1.365 1.5 

0.0 – 1.0 1.3 1.333 

 

TABLE 7. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio  Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1.315 1.5 

0.0 – 0.5 1.27 1.33 

0.0 – 1.0 1.13 1.16 

 

TABLE 8. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.155 1.5 

0.0 – 0.2 1.16 1.25 

0.0 – 0.5 1.1 1.11 

0.0 – 1.0 1.09 1.11 
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TABLE 9. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1.07 1.125 

0.0 – 0.5 1.04 1.05 

0.0 – 1.0 1.06 1.08 

 

TABLE 10. FIRST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.003 1.020 

0.0 – 0.2 1.007 1.01 

0.0 – 0.5 1.0093 1.0095 

0.0 – 1.0 1.023 1.027 

 

Although this simple scheme for worst case examples is insufficient to characterize the worst-case behavior 

of First Fit, there are other algorithms for which it is more relevant. Moreover, the scheme is correct in 

suggesting that for First Fit to behave at its worst, the instance to which it is applied must contain relatively 

large items. As with Next Fit, First Fit’s worst-case behavior improves dramatically as the size of the largest 

item declines. Moreover, it maintains its advantage over Next Fit in such situations, although the size of its 

advantage depends on the precise value of the item and shrinks with the size of the largest item. 
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5.3 Best Fit Algorithm 

Now we know how crucial the packing rule used for First Fit to the improved worst-case behavior. 

Performance of Best Fit and First Fit is similar, but BF assigns an arriving item to the bin in which it fits 

best. Place the items in the order in which they arrive. Place the next item into that bin which will leave the 

least room left over after the item is placed in the bin. If it does not fit in any bin, start a new bin. The time 

complexity of BF is O (n log n). The lower bound of best fit is 

mBF(x)/mOPT(x) = 5/3 

This means best fit never uses more than 5/3 = 1.7 bins. Note that still worse examples and arbitrarily close 

to the lower bound examples can be devised using the above idea.  

TABLE 11. BEST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 N/A N/A 

0.0 – 0.2 1 1 

0.0 – 0.5 1.195 1.5 

0.0 – 1.0 1.29 1.33 
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TABLE 12. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S20 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1.145 1.5 

0.0 – 0.5 1.237 1.33 

0.0 – 1.0 1.14 1.16 

 

TABLE 13. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S50 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1.178 1.33 

0.0 – 0.5 1.105 1.11 

0.0 – 1.0 1.08 1.11 

 

TABLE 14. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S100 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.08 1.25 

0.0 – 0.2 1.05 1.11 

0.0 – 0.5 1.05 1.05 

0.0 – 1.0 1.05 1.05 
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TABLE 15. BEST FIT - SEQUENCE OF ITEMS WITH ARRAY SIZES S1, S2 ,……, S1000 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.004 1.02 

0.0 – 0.2 1.007 1.01 

0.0 – 0.5 1.007 1.01 

0.0 – 1.0 1.01 1.02 

 

5.4 Worst Fit Algorithm 

Initially Worst Fit was presented as offline heuristics, but in fact it is online algorithm which process the 

items as a list. Worst Fit places the item into the  most empty bin. This heuristic has the effect of spreading 

the slack (empty space) over the bins used. This algorithm might be useful if it is desirable to pack the bins 

with approximately the same weight or fill them with items of approximately the same value. Worst Fit is 

better than Next Fit. The lower bound of worst fit is 

mwF(x)/mOPT(x) = 2 

This means worst fit never uses more than 2 bins. Note that still worse examples and arbitrarily close to the 

lower bound examples can be devised using the above idea.  

TABLE 16. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 N/A N/A 

0.0 – 0.2 1.1 2 

0.0 – 0.5 1.68 2 

0.0 – 1.0 1.34 1.5 
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TABLE 17. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 0.64 2 

0.0 – 0.2 1.795 2 

0.0 – 0.5 1.25 1.3 

0.0 – 1.0 1.25 1.28 

 

TABLE 18. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.5 1.5 

0.0 – 0.2 1.23 1.25 

0.0 – 0.5 1.15 1.2 

0.0 – 1.0 1.2 1.26 

 

TABLE 19. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.21 1.25 

0.0 – 0.2 1.11 1.12 

0.0 – 0.5 1.12 1.14 

0.0 – 1.0 1.16 1.18 
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TABLE 20. WORST FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.04 1.04 

0.0 – 0.2 1.05 1.05 

0.0 – 0.5 1.09 1.1 

0.0 – 1.0 1.146 1.158 

 

5.5 Harmonic Fit Algorithm 

Harmonic algorithm is one of the best of the known online heuristics for the classical bin packing problem, 

which was developed by C.C. Lee and D.T. Lee. They proved that the asymptotic worst-case performance 

ratio of this algorithm is 1.6901…. 

Note that still worse examples and arbitrarily close to the lower bound examples can be devised.  

TABLE 21. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S10 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1 1 

0.0 – 0.5 1.45 1.5 

0.0 – 1.0 1.25 1.75 
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TABLE 22. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S20 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1.46 1.5 

0.0 – 0.5 1.27 1.4 

0.0 – 1.0 1.423 1.428 

 

TABLE 23. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S50 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1 1 

0.0 – 0.5 1.198 1.2 

0.0 – 1.0 1.33 1.42 

 

TABLE 24. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S100 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1 1 

0.0 – 0.2 1.082 1.1 

0.0 – 0.5 1.15 1.17 

0.0 – 1.0 1.35 1.39 



 

29 

TABLE 25. HARMONIC FIT - SEQUENCE OF ITEMS WITH SIZES S1, S2 ,……, S1000 IN THE 

INTERVALS (0, 0.1], (0, 0.2], (0, 0.5], (0,1] WITH 100 RUNS 

Items Competitive Ratio Worst Value 

0.0 – 0.1 1.0006 1.02 

0.0 – 0.2 1.0014 1.01 

0.0 – 0.5 1.127 1.137 

0.0 – 1.0 1.28 1.3 
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CHAPTER 6 

 

IMPLEMENTATION OF TEST DATA 

6.1 Optimal Solution 

Start of main 

initialize array size, lower and upper values 

   

 

6.1.1 Generate input random numbers 

For generating random numbers, we declare an integer function called array[size]. A boolean function 

outputs the random array. We generate random numbers using srand and we use ‘for loop’ to execute a 

sequence of statements multiple times and abbreviate the code that manages the loop variable. Initialize 

and declare a variable ‘i’ in ‘for loop’ and iterate it with the array size. If the condition satisfies we use a 

formula to generate random numbers and store them in an array. Print the array using ‘cout’ function. The 

formula is: 

 

6.1.2 Packing random numbers into bins 

  for each of items in array 

    if sum of current total and item value less than current bin capacity 

const granularity = 100 

int size 

int lower 

int upper = granularity 

array[i] = (lower + rand() % (upper – lower + 1)) 
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  add item to current total 

 else  

  assign the remaining capacity to current bin and continue to next bin  

6.1.3 Rearranging the packed items 

  for each elements in array 

     generate a random index and assign element at index to new rearranged array 

  assign the last element in current array to random index 

6.2 First Fit Bin Packing 

initialize firstfit array to zero 

  for each of items in new rearranged array  

     if item in rearranged array can fit in firstfit bin  

  add to firstfit bin  

   else  

  continue to next firstfit bin  

    print results 

6.3 Next Fit Bin Packing 

initialize nextfit array to zero 

  for each of items in new rearranged array 

     if item in rearranged array can fit in the opened bin  

         add to the opened bin 

       else 

                               continue to the next new bin and close the previous bin  

    print results 

6.4 Best Fit Bin Packing 

initialize bestfit array to zero 



 

32 

  for each of items in new rearranged array 

    if item in rearranged array can fit in the opened bin whose empty space is minimum 

        add to the opened bin 

     else 

                              continue to the next new bin 

   print results           

6.5 Worst Fit Bin Packing 

initialize bestfit array to zero 

  for each of items in new rearranged array 

    if item in rearranged array can fit in the opened bin whose empty space is maximum 

        add to the opened bin 

     else 

                              continue to the next new bin 

   print results 

6.6 Harmonic Fit Bin Packing 

Declare and initialize all bins to zero. 

 This is huge bin for item sizes (1/2, 1] (maxHbin = 0) 

 This is large bin for item sizes (1/3, 1/2] (maxLbin = 0) 

 This is medium bin for item sizes (1/4, 1/3] (maxMbin = 0) 

 This is small bin for item sizes (0, 1/4] (maxSbin = 0) 

 

for each item sizes there exists an array, initialize all the arrays to zero 

  for each of items in new rearranged array 

    if item in rearranged array lies between (1/2, 1] then 

   add to the huge bin 
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    else if item in rearranged array lies between (1/3, 1/2] then 

  add to the large bin 

    else if item in rearranged array lies between (1/4, 1/3] then 

  add to the medium bin 

    else if item in rearranged array lies between (0, 1/4] then 

  add to the small bin 

print total number of bins 
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CHAPTER 7 

 

SUMMARY AND RESULTS OF ONLINE BIN PACKING 

We know that bin packing is one of the classic and well-studied problems in the field of computer science. 

Since bin packing belongs to the class of NP-hard problems, it is difficult to come up with a polynomial 

time algorithm which solves the problem to give an optimal solution. So as a result, approximation 

algorithms are presented to find the closest possible solution to the optimal. Johnson has studied the bin 

packing problem and showed that next fit has a competitive ratio of 2 [9]. The proof for this ratio is simple 

and is proved in the above chapters. He also showed that the competitive ratio of first fit is 17/10 = 1.7. 

Yao [13] has redefined first fit and showed that the competitive ratio of first fit is 5/3 = 1.66. Lee and Lee 

[6] presented a harmonic algorithm which had a better ratio of 1.635. 

This thesis show better competitive ratio than the above ratios. Here we find competitive ratio and worst 

values using different input sizes in different intervals. For each input size and each interval there will be 

different competitive ratios and worst values. To get better competitive ratio we need to find ratio in all 

possibilities. In this thesis, we find competitive ratio and worst value for 100 runs. The ratio between online 

algorithm and optimal solution is Competitive Ratio. The average of all the competitive ratios gives the 

actual competitive ratio and maximum of all the competitive ratios gives the worst value.  

We know that Next Fit is more restrictive than any other fit algorithms, since it keeps only a single bin 

open and puts an incoming item into it whenever the item fits, otherwise the bin is closed and a new bin is 

opened. We know that next fit has a competitive ratio of 2. In this thesis, we show a better competitive 

ratio for next fit. The competitive ratio for small items is ≈ 1 and for large items (number of items = 1000 

and the size lies in between (0, 1]) the competitive ratio is 1.3.  

Similarly, we know that first fit and best fit has better ratio than next fit (ratio is 1.7). In the case of FF and 

BF, the competitive ratio for large items is ≈ 1. In case of First Fit, for small items (number of items = 10 
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and the size lies in between (0, 0.5]) the competitive ratio is 1.365. In case of Best Fit, for small items 

(number of items = 10 and the size lies in between (0, 1]) the competitive ratio is 1.29. The proof for this is 

very simple. The input sequence for this competitive ratio is 6n items of size 0.15, 0.34, 0.51. 

We know that worst fit has a competitive ratio of 2. Here we show that worst fit still has worst competitive 

ratio for any number of items and the WF has a ratio of 1.795 still not better than 2. So practically worst fit 

will not work for bin packing. 

Lee and Lee has presented a harmonic algorithm with a competitive ratio of 1.635. We show a better ratio 

of 1.46. Practically harmonic fit works better for smaller items and for large items the ratio is ≈ 1. Harmonic 

fit has better ratio if the number of items are 20 and the size lies in between (0, 0.2]. 

TABLE 26. LIST OF COMPETITIVE RATIOS AND WORST VALUES FOR ONLINE 

ALGORITHMS. 

Online Algorithms Input Sizes Intervals Competitive Ratio Worst Value 

Next Fit Algorithm s1, s2,…, s1000 0.0 – 1.0 1.3 1.31 

First Fit Algorithm s1, s2,…, s10 0.0 – 0.5 1.365 1.5 

Best Fit Algorithm s1, s2,…, s10 0.0 – 1.0 1.29 1.33 

Worst Fit Algorithm s1, s2,…, s20 0.0 – 0.2 1.795 2 

Harmonic Algorithm s1, s2,…, s20 0.0 – 0.2 1.46 1.5 

 

The above table shows that Best Fit Online Algorithm has better competitive ratio than any other online 

algorithms. The competitive ratio of Best Fit is 1.29 for input items in the interval (0, 1] and number of 

input items is 10. 
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APPENDIX 1 

#include<iostream> 

#include<ctime> 

#include<math.h> 

#include<cstdlib> 

using namespace std; 

int main() 

{ 

  const int granularity = 100; 

  int size; 

  int lower = 1; 

  int upper = granularity; 

  cout << "Enter the size of the array: " << endl; 

  cin >> size; 

  cout << "------------------------------------" << endl; 

  // Generating random numbers 

  int array[size]; 

  srand(time(0)); 

  cout << "random array is:" << endl; 

  for (int i=0; i<size; i++) 

    { 

      array[i] = (lower + rand() % (upper - lower + 1)) ; 

      cout << array[i] << endl; 

    } 

   cout << "------------------------------------" << endl; 

  // Packing random numbers into bins 

  int tally=0; 

  int numberofbins = 1; 

  for (int j=0; j<size;j++) 

    { 

      if (tally + array[j] < granularity) 

 { 

   tally = tally + array[j]; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

 } 
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      else 

 { 

   array[j] = granularity - tally; 

   tally = 0; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

   if (j<(size-1)) 

     { 

       numberofbins++; 

     } 

 } 

    } 

  // Rearranging the packed items 

  int cs = size; 

  int b[size]; 

  int k = 0; 

  cout << "-------------------------------------" << endl; 

  while (cs > 0) 

    { 

      int  index = rand() % cs; 

      b[k] = array[index]; 

      k++; 

      array[index] = array[cs - 1]; 

      cs--; 

    } 

  int bin = 1; 

  for ( int l=0; l<size; l++) 

    { 

      cout <<  b[l]/float(granularity) << endl; 

    } 

  cout << "------------------------------------" << endl; 
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APPENDIX 2 

#include<iostream> 

#include<ctime> 

#include<math.h> 

#include<cstdlib> 

using namespace std; 

int main() 

{ 

  const int granularity = 100; 

  int size; 

  int lower = 1; 

  int upper = granularity; 

  cout << "Enter the size of the array: " << endl; 

  cin >> size; 

  cout << "------------------------------------" << endl; 

  // Generating random numbers 

  int array[size]; 

  srand(time(0)); 

  cout << "random array is:" << endl; 

  for (int i=0; i<size; i++) 

    { 

      array[i] = (lower + rand() % (upper - lower + 1)) ; 

      cout << array[i] << endl; 

    } 

  cout << "------------------------------------" << endl; 

  // Packing random numbers into bins 

  int tally=0; 

  int numberofbins = 1; 

  for (int j=0; j<size;j++) 

    { 

      if (tally + array[j] < granularity) 

 { 

   tally = tally + array[j]; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

 } 
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      else 

 { 

   array[j] = granularity - tally; 

   tally = 0; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

   if (j<(size-1)) 

     { 

       numberofbins++; 

     } 

 } 

    } 

  // Rearranging the packed items 

  int cs = size; 

  int b[size]; 

  int k = 0; 

  cout << "-------------------------------------" << endl; 

  while (cs > 0) 

    { 

      int  index = rand() % cs; 

      b[k] = array[index]; 

      k++; 

      array[index] = array[cs - 1]; 

      cs--; 

    } 

  int bin = 1; 

  for ( int l=0; l<size; l++) 

    { 

      cout <<  b[l]/float(granularity) << endl; 

    } 

  cout << "------------------------------------" << endl; 

  // First Fit Bin Packing 

  int maxbin=0; 

  int fbin[size]; 

  for(int i=0; i<size; i++) 

    { 
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      fbin[i] = 0; 

    } 

  for(int g=0; g<size; g++) 

    { 

    for(int i=0;i<size;i++) 

      { 

 if(fbin[i] + b[g] <= granularity) 

   { 

     fbin[i] = fbin[i] + b[g]; 

     cout << " item:" << b[g]/float(granularity) << "    " <<  "put item in bin:" << i+1 <<  "    "  << "size of bin:" << 

fbin[i]/float(granularity) <<  endl; 

     if (i+1 > maxbin) 

       { 

  maxbin = i+1; 

       } 

     break; 

   } 

      } 

    } 

  cout << "----------------------------------------" << endl; 

  cout << "number of bins for first fit:" << maxbin << endl; 

  cout << "optimal number of bins:" << numberofbins << endl; 

  cout << "ratio between first fit and optimal:" << maxbin/(float)numberofbins << endl; 

} 
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APPENDIX 3 

#include<iostream> 

#include<ctime> 

#include<math.h> 

#include<cstdlib> 

using namespace std; 

int main() 

{ 

  const int granularity = 100; 

  int size; 

  int lower = 1; 

  int upper = granularity; 

  cout << "Enter the size of the array: " << endl; 

  cin >> size; 

  cout << "------------------------------------" << endl; 

  // Generating random numbers 

  int array[size]; 

  srand(time(0)); 

  cout << "random array is:" << endl; 

  for (int i=0; i<size; i++) 

    { 

      array[i] = (lower + rand() % (upper - lower + 1)) ; 

      cout << array[i] << endl; 

    } 

  cout << "------------------------------------" << endl; 

  // Packing random numbers into bins 

  int tally=0; 

  int numberofbins = 0; 

  for (int j=0; j<size;j++) 

    { 

      if (tally + array[j] < granularity) 

 { 

   tally = tally + array[j]; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins+1 <<  endl; 

 } 
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      else 

 { 

   array[j] = granularity - tally; 

   tally = 0; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins+1 <<  endl; 

   if(j<(size-1)) 

     { 

       numberofbins++; 

     } 

 } 

    } 

  // Rearranging the packed items 

  int cs = size; 

  int b[size]; 

  int k = 0; 

  cout << "-------------------------------------" << endl; 

  while (cs > 0) 

    { 

      int  index = rand() % cs; 

      b[k] = array[index]; 

      k++; 

      array[index] = array[cs - 1]; 

      cs--; 

    } 

  int bin = 1; 

  for ( int l=0; l<size; l++) 

    { 

      cout <<  b[l]/float(granularity) << endl; 

    } 

 cout << "------------------------------------" << endl; 

  // Next Fit Bin Packing 

  int maxbin = 1; 

  int nbin[size]; 

  for(int i=0;i<size;i++) 

    { 
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      nbin[i] = 0; 

    } 

  for(int g=0;g<size;g++) 

    { 

      for(int i=(maxbin-1);i<size;i++) 

 { 

   if(nbin[i] + b[g] <= granularity) 

     { 

       nbin[i] = nbin[i] + b[g]; 

       cout << "item:" << b[g]/float(granularity) << "    " <<  "put item in bin:" << i+1 <<  "    "  << "size of bin:" << 

nbin[i]/float(granularity) <<  endl; 

       if (i+1 > maxbin) 

  { 

    maxbin = i+1; 

  } 

       break;     

     } 

 } 

    } 

  cout << "----------------------------------------" << endl; 

  cout << "number of bins for next fit:" << maxbin << endl; 

  cout << "optimal number of bins:" << numberofbins+1 << endl; 

  cout << "ratio between next fit and optimal:" << maxbin/(float)(numberofbins+1) << endl;  

} 
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APPENDIX 4 

#include<iostream> 

#include<ctime> 

#include<math.h> 

#include<cstdlib> 

using namespace std; 

int main() 

{ 

  const int granularity = 100; 

  int size; 

  int lower = 1; 

  int upper = granularity; 

  cout << "Enter the size of the array: " << endl; 

  cin >> size; 

  cout << "------------------------------------" << endl; 

  // Generating random numbers 

  int array[size]; 

  srand(time(0)); 

  cout << "random array is:" << endl; 

  for (int i=0; i<size; i++) 

    { 

      array[i] = (lower + rand() % (upper - lower + 1)) ; 

      cout << array[i] << endl; 

    } 

  cout << "------------------------------------" << endl; 

  // Packing random numbers into bins 

  int tally=0; 

  int numberofbins = 1; 

  for (int j=0; j<size;j++) 

    { 

      if (tally + array[j] < granularity) 

 { 

   tally = tally + array[j]; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

 } 
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      else 

 { 

   array[j] = granularity - tally; 

   tally = 0; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

   if (j<(size-1)) 

     { 

       numberofbins++; 

     } 

 } 

    } 

  // Rearranging the packed items 

  int cs = size; 

  int b[size]; 

  int k = 0; 

  cout << "-------------------------------------" << endl; 

  while (cs > 0) 

    { 

      int  index = rand() % cs; 

      b[k] = array[index]; 

      k++; 

      array[index] = array[cs - 1]; 

      cs--; 

    } 

  int bin = 1; 

  for ( int l=0; l<size; l++) 

    { 

      cout <<  b[l]/float(granularity) << endl; 

    } 

  

  cout << "------------------------------------" << endl; 

  //Best Fit Bin Packing 

  int maxbin = 0; 

  int bbin[size]; 

  int bfindex = 0; 
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  for(int i=0; i<size; i++) 

    { 

      bbin[i] = 0; 

    } 

  for(int g=0; g<size; g++) 

    { 

      int diff = granularity; 

      for(int i=0;i<size;i++) 

 { 

   if(bbin[i] + b[g] <= granularity) 

     { 

       if (diff > (granularity - (bbin[i] + b[g]))) 

  { 

    diff = granularity - (bbin[i] + b[g]); 

    bfindex = i; 

  } 

     } 

   if (i >= maxbin) 

     break; 

 } 

      bbin[bfindex] = bbin[bfindex] + b[g]; 

      if (bfindex+1 > maxbin) 

 { 

   maxbin = bfindex+1; 

 } 

      cout << " item:" << b[g]/float(granularity) << "     " << "difference:" << diff/float(granularity) <<  "     " << "put item in bin:" << bfindex+1 

<<  "     "  << "size of bin:" << bbin[bfindex]/float(granularity) <<  endl; 

    } 

  cout << "----------------------------------------" << endl; 

  cout << "number of bins for best fit:" << maxbin << endl; 

  cout << "optimal number of bins:" << numberofbins << endl; 

  cout << "ratio between best fit and optimal:" << maxbin/float(numberofbins) << endl;  

} 
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APPENDIX 5 

#include<iostream> 

#include<ctime> 

#include<math.h> 

#include<cstdlib> 

using namespace std; 

int main() 

{ 

  const int granularity = 100; 

  int size; 

  int lower = 1; 

  int upper = granularity; 

  cout << "Enter the size of the array: " << endl; 

  cin >> size; 

  cout << "------------------------------------" << endl; 

  // Generating random numbers 

  int array[size]; 

  srand(time(0)); 

  cout << "random array is:" << endl; 

  for (int i=0; i<size; i++) 

    { 

      array[i] = (lower + rand() % (upper - lower + 1)) ; 

      cout << array[i] << endl; 

    } 

   cout << "------------------------------------" << endl; 

  // Packing random numbers into bins 

  int tally=0; 

  int numberofbins = 1; 

  for (int j=0; j<size;j++) 

    { 

      if (tally + array[j] < granularity) 

 { 

   tally = tally + array[j]; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

 } 
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      else 

 { 

   array[j] = granularity - tally; 

   tally = 0; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins <<  endl; 

   if (j<(size-1)) 

     { 

       numberofbins++; 

     } 

 } 

    } 

  // Rearranging the packed items 

  int cs = size; 

  int b[size]; 

  int k = 0; 

  cout << "-------------------------------------" << endl; 

  while (cs > 0) 

    { 

      int  index = rand() % cs; 

      b[k] = array[index]; 

      k++; 

      array[index] = array[cs - 1]; 

      cs--; 

    } 

  int bin = 1; 

  for ( int l=0; l<size; l++) 

    { 

      cout <<  b[l]/float(granularity) << endl; 

    } 

  cout << "------------------------------------" << endl; 

  //Worst Fit Bin Packing 

  int maxbin = 0; 

  int bbin[size]; 

  int bfindex = 0; 

  int diff = 0; 
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  for(int i=0; i<size; i++) 

    { 

      bbin[i] = 0; 

    } 

  for(int g=0; g<size; g++) 

    { 

      diff = 0; 

      for(int i=0;i<size;i++) 

 { 

   if(bbin[i] + b[g] <= granularity) 

     { 

       if (diff <= (granularity - (bbin[i] + b[g]))) 

  { 

    if (diff != 0 && bbin[i]==0) 

      break; 

    diff = granularity - (bbin[i] + b[g]); 

    bfindex = i; 

  } 

     } 

   if (i >= maxbin) 

     break; 

 } 

      bbin[bfindex] = bbin[bfindex] + b[g]; 

      if (bfindex+1 > maxbin) 

 { 

   maxbin = bfindex+1; 

 } 

      cout << "item:" << b[g]/float(granularity) << "     " << "difference:" << diff/float(granularity) <<  "     " << "put item in bin:" << bfindex+1 

<<  "     "  << "size of bin" << bfindex+1 << ": " << bbin[bfindex]/float(granularity) <<  endl; 

    } 

  cout << "----------------------------------------" << endl; 

  cout << "number of bins for worst fit:" << maxbin << endl; 

  cout << "optimal number of bins:" << numberofbins << endl; 

  cout << "ratio between worst fit and optimal:" << maxbin/float(numberofbins) << endl;  

}  
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APPENDIX 6 

#include<iostream> 

#include<ctime> 

#include<math.h> 

#include<cstdlib> 

using namespace std; 

int main() 

{ 

  const int granularity = 100; 

  int size; 

  int lower = 1; 

  int upper = granularity; 

  cout << "Enter the size of the array: " << endl; 

  cin >> size; 

  cout << "------------------------------------" << endl; 

  // Generating random numbers 

  int array[size]; 

  srand(time(0)); 

  cout << "random array is:" << endl; 

  for (int i=0; i<size; i++) 

    { 

      if (i%2 == 0) 

 { 

   lower = 0, upper = 100; 

   array[i] = (lower + rand() % (upper - lower +1)); 

   cout << array[i] << endl; 

 } 

      else 

 { 

   lower = 0, upper = 100; 

   array[i] = (lower + rand() % (upper - lower +1)); 

   cout << array[i] << endl; 

 } 

    } 

  /*  for (int i=0; i<size; i++) 
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    { 

      array[i] = (lower + rand() % (upper - lower + 1)) ; 

      cout << array[i] << endl; 

      } */ 

  cout << "------------------------------------" << endl; 

  // Packing random numbers into bins 

  int tally=0; 

  int numberofbins = 0; 

  for (int j=0; j<size;j++) 

    { 

      if (tally + array[j] < granularity) 

 { 

   tally = tally + array[j]; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins+1 <<  endl; 

 } 

      else 

 { 

   array[j] = granularity - tally; 

   tally = 0; 

   cout << array[j]/float(granularity) << " " << "bin:" <<  numberofbins+1 <<  endl; 

   if(j<(size-1)) 

     { 

       numberofbins++; 

     } 

 } 

    } 

  // Rearranging the packed items 

  int cs = size; 

  int b[size]; 

  int k = 0; 

  cout << "-------------------------------------" << endl; 

  while (cs > 0) 

    { 

      int  index = rand() % cs; 

      b[k] = array[index]; 
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      k++; 

      array[index] = array[cs - 1]; 

      cs--; 

    } 

  int bin = 1; 

  for ( int l=0; l<size; l++) 

    { 

      cout <<  b[l]/float(granularity) << endl; 

    } 

  cout << "------------------------------------" << endl; 

  // Harmonic Algorithm 

  int maxHbin=0; 

  int maxLbin=0; 

  int maxMbin=0; 

  int maxSbin=0; 

  //initialize arrays 

  int hbin[size]; 

  for(int i=0;i<size;i++) 

    { 

      hbin[i] = 0; 

    } 

  int lbin[size]; 

  for(int i=0;i<size;i++) 

    { 

      lbin[i] = 0; 

    } 

  int mbin[size]; 

  for(int i=0;i<size;i++) 

    { 

      mbin[i] = 0; 

    } 

  int sbin[size]; 

  for(int i=0;i<size;i++) 

    { 

      sbin[i] = 0; 
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    } 

  for(int g=0;g<size;g++) 

    { 

      if(b[g]>(granularity/2)) 

        { 

          if(hbin[maxHbin] + b[g] > granularity) 

     { 

              maxHbin=maxHbin+1; 

     } 

          hbin[maxHbin] = hbin[maxHbin] + b[g]; 

          cout << "item:" << b[g]/float(granularity) << "    " <<  "put item in HUGE bin:" << maxHbin+1 <<  "    "  << "size of bin:" << 

hbin[maxHbin]/float(granularity) <<  endl; 

        }     

      else if(b[g]>(granularity/3)) 

        { 

          if(lbin[maxLbin] + b[g] > granularity) 

     { 

              maxLbin=maxLbin+1; 

     } 

          lbin[maxLbin] = lbin[maxLbin] + b[g]; 

          cout << "item:" << b[g]/float(granularity) << "    " <<  "put item in LARGE bin:" << maxLbin+1 <<  "    "  << "size of bin:" << 

lbin[maxLbin]/float(granularity) <<  endl; 

 } 

      else if (b[g]>(granularity/4)) 

 {    

          if(mbin[maxMbin] + b[g] > granularity) 

     { 

              maxMbin=maxMbin+1; 

     } 

          mbin[maxMbin] = mbin[maxMbin] + b[g]; 

          cout << "item:" << b[g]/float(granularity) << "    " <<  "put item in MEDIUM bin:" << maxMbin+1 <<  "    "  << "size of bin:" << 

mbin[maxMbin]/float(granularity) <<  endl; 

 } 

      else 

 { 
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   int binindex = 0; 

   for(int i=0; i<=maxSbin; i++) 

     { 

       if(sbin[i] + b[g] <=  granularity) 

  { 

    binindex = i;    

    break; 

  } 

       if(i==maxSbin) 

  { 

    binindex=i+1; 

    maxSbin=maxSbin+1; 

  } 

     } 

   sbin[binindex] = sbin[binindex] + b[g]; 

   cout << "item:" << b[g]/float(granularity) << "    " <<  "put item in SMALL bin:" << binindex+1 <<  "    "  << "size of bin:" << 

sbin[binindex]/float(granularity) <<  endl; 

 } 

      if(g+1==size) 

 { 

   if(hbin[0]>0) 

     maxHbin+=1; 

   if(lbin[0]>0) 

     maxLbin+=1; 

   if(mbin[0]>0) 

     maxMbin+=1; 

   if(sbin[0]>0) 

     maxSbin+=1; 

 }     

    } 

  int totalHAbins=maxHbin+maxLbin+maxMbin+maxSbin; 

  cout << "----------------------------------------" << endl; 

  cout << "number of bins for ha fit:" << totalHAbins << endl; 

  cout << "optimal number of bins:" << numberofbins+1 << endl; 

  cout << "ratio between ha fit and optimal:" <<  totalHAbins/(float)(numberofbins+1) << endl;  

 } 
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