
UNLV Theses, Dissertations, Professional Papers, and Capstones

May 2018

Advancing Community Detection Using Keyword Attribute Search Advancing Community Detection Using Keyword Attribute Search

Sanket Chobe
sanketchobe@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Chobe, Sanket, "Advancing Community Detection Using Keyword Attribute Search" (2018). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 3231.
https://digitalscholarship.unlv.edu/thesesdissertations/3231

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3231?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

ADVANCING COMMUNITY DETECTION USING

KEYWORD ATTRIBUTE SEARCH

by

Sanket Chobe

Bachelor of Technology (I.T.)

Government College of Engineering, Amravati, India

2011

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2018

c© Sanket Chobe, 2018

All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

April 6, 2018

This thesis prepared by

Sanket Chobe

entitled

Advancing Community Detection Using Keyword Attribute Search

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Justin Zhan, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Hal Berghel, Ph.D.
Examination Committee Member

Wolfgang Bein, Ph.D.
Examination Committee Member

Xiangning Chen, Ph.D.
Graduate College Faculty Representative

Abstract

As social network structures evolve constantly, it is necessary to design an efficient mechanism

to track the influential nodes and accurate communities in the networks. The attributed graph

represents the information about properties of the nodes and relationships between different nodes,

hence, this attribute information can be used for more accurate community detection. Current

techniques of community detection do not consider the attribute or keyword information associated

with the nodes in a graph. In this thesis, I propose a novel ideal of online community detection

using a technique of keyword search over the attributed graph. First, the influential attributes are

derived based on the probability of occurrence of each attribute type-value pair on all nodes and

edges, respectively. Then, a compact Keyword Attribute Signature is created for each node based on

the unique id of each influential attribute. The attributes on each node are classified into different

classes, and this class information is assigned on each node to derive the strongest association

among different nodes. Once the class information is assigned to all the nodes, I use a keyword

search technique to derive a community of nodes belonging to the same class. The keyword search

technique makes it possible to search community of nodes in an online and computationally efficient

manner compared to the existing techniques. The experimental analysis shows that the proposed

method derive the community of nodes in an online manner. The nodes in a community are strongly

connected to each other and share common attributes. Thus, the community detection can be

advanced by using keyword search method, which allows personalized and generalized communities

to be retrieved in an online manner.

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude and appreciation to Dr. Justin Zhan for being

a wonderful academic advisor and committee chair. Dr. Zhan provided a strong support to my

research work [CZ18, WZC18] by sharing all the knowledge, resources, and opportunities. He en-

couraged and guided me throughout my Master’s program.

Besides my advisor, I would like to thank Dr. Hal Berghel for serving on my thesis commit-

tee. It has been a great pleasure and honor working with Dr. Berghel as a Teacher Assistant(TA).

He mentored and supported me in my TA work, due to which I could handle multiple responsibil-

ities.

I would like to gratefully acknowledge Dr. Wolfgang Bein and Dr. Xiangning Chen for serving on

my thesis committee and evaluating my research work.

I shall remain indebted to the Graduate College, Graduate Financial Services, and Office of Inter-

national Students and Scholars forever, for their help and support throughout my Master’s program.

A special thanks to Mr. Rizwan Patel, who is the Director at Caesars Entertainment Corporation

located at Las Vegas, USA. He has mentored and encouraged me to explore different advanced

technologies during my tenure as an intern in Caesars Entertainment, which helped in my research.

Finally, I would like to thank my family: my parents and my sister for their tremendous support

to my academic pursuit. It would have been an impossible journey without their support and

encouragement.

Sanket Chobe

University of Nevada, Las Vegas

May 2018

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

Chapter 1 INTRODUCTION 1

Chapter 2 LITERATURE REVIEW 4

2.1 Community Detection on Attributed Graphs . 4

2.1.1 Community Detection . 4

2.1.2 Structure-based Community Detection . 5

2.1.3 Attributed-based Community Detection . 6

2.1.4 Online Community Detection . 7

2.1.5 Keyword Search over Graphs . 7

Chapter 3 PROPOSED APPROACH 9

3.1 Problem Statement . 9

3.1.1 Preliminary . 9

3.1.2 Definition 1 (k-core) . 10

3.1.3 Definition 2 (Core Number) . 10

3.1.4 Definition 3 (Jaccard Similarity Index) . 10

3.1.5 Definition 4 (Shortest Path Length or Geodesic Distance) 11

v

3.2 Problem Definition . 11

3.2.1 Problem 1 (Attributed Community Detection) 11

3.2.2 Community Detection Using Keyword Search 12

Chapter 4 KEYWORD SEARCH-BASED ALGORITHM 14

4.1 Node-weight . 15

4.2 Edge-weight . 16

4.2.1 Keyword Attribute Signature . 17

4.3 Attribute Index Structure . 18

4.3.1 Keyword Attribute Class Information . 18

4.4 Personalized Community Detection . 20

4.5 Generalized Community Detection . 21

Chapter 5 ALGORITHM ANALYSIS 25

5.1 Node-weight and Edge-weight . 25

5.2 Maximizing Degree of Nodes . 25

5.3 Attribute Index Structure Creation . 26

5.4 Keyword Search for Community Detection . 26

Chapter 6 EXPERIMENTAL RESULTS 28

6.1 Experimental Setup . 28

6.1.1 Experimental Result Analysis . 29

6.1.2 A Case Study . 31

Chapter 7 CONCLUSION AND FUTURE WORK 38

Bibliography 39

Curriculum Vitae 43

vi

List of Tables

3.1 Symbols and Meanings . 10

4.1 Node Attributes of Sample Graph in Figure 4.1(a) . 14

4.2 Node-weight for Karate-Club Network . 16

4.3 Edge-weight for Karate-Club Network . 17

4.4 Attribute Index Structure for Karate-Club graph . 18

6.1 Comparison with Existing Methods . 29

6.2 Small Graph Datasets . 31

6.3 Large Graph Datasets . 32

6.4 Experimental Results on Small Graphs . 33

6.5 Experimental Results on Large Graphs . 34

6.6 Node-weight for Caesars-WiFi Dataset . 34

6.7 Edge-weight for Caesars-WiFi Dataset . 35

6.8 Attribute Index Structure for Caesars-WiFi Dataset . 35

vii

List of Figures

2.1 A Simple Graph with Communities Highlighted by Different Colors. 5

4.1 Karate Club Network Dataset with Ground-truth Communities 15

4.2 Political Books Network Dataset with Ground-truth Communities 15

4.3 Communities Generated from Network Dataset Using the Proposed Method 24

6.1 Run Time vs Number of Communities for Ground-truth Community Datasets 29

6.2 Run Time vs Number of Communities for Amazon and DBLP Datasets 30

6.3 Run Time vs Number of Communities for Small Graph Datasets 30

6.4 Run Time vs Number of Communities for Large Graph Datasets 33

6.5 Original Graph Generated for Caesars Dataset . 36

6.6 Communities Detected for Caesars Way Finding Data 37

viii

List of Algorithms

1 Keyword Attribute Index Structure . 19

2 Personalized Community Detection . 22

3 Generalized Community Detection . 23

ix

Chapter 1

INTRODUCTION

Graphs have played an important role in the big data and social network analysis in recent years

[GEJN02, AB02]. It is straightforward to represent and manage the information from different

domains with the help of graphs. It is efficient to define the relationship between different entities

and get the required knowledge from graphs. Due to changing dynamics of users over the Internet,

different applications of the social network, and the tremendous rise in the volume of information,

it is critical to design a method to efficiently extract the knowledge and discover hidden patterns

among the group of users. The community detection is widely used to derive a group of nodes

closely interacting and having a strong relationship with each other, which is helpful to get more

positive results from social network analysis. For example, if the nodes in a network represent the

user profiles in a social or professional network, and edges represent the association or interaction

between these nodes, then a community of nodes provides the group of users who are closely

interacting with each other and share some similar characteristics. The community detection can

be used to derive the information about a group of people who go to the same school, who work

at the same organization, or group of books by the same publication. This close interaction and

strong association among the nodes in a network can also be used to predict the link formation

or edge creation. Deriving the strongest community among the large network graph has become

an increasingly important and critical task [SS17, RTB07] in graph analytics. Several different

techniques of community detection are already defined. Although more advance work is in progress,

there are limited efficient mechanisms to get the knowledge from attributed graphs. The large

volume of information is represented in the form of network graph, where some key attributes are

assigned to the nodes, and relationships between different nodes are represented in the form of

edges. It is important to consider these attributed graphs for the community detection, which

1

can give us much more useful information than general network graphs. Current techniques of

community detection can be categorized into three different categories. First, the Structure-based

community detection, where the community of nodes is formed based on the connectivity between

nodes. The techniques like Label Propagation [RAK07], Random Walk [AF02], and Modularity

Optimization [ZWW+09] focus on the probability of edge creation or connectivity between two

nodes. These probabilistic models derive a community based on the actual connection and the

possible connection between different nodes, and group them together based on the connectivity of

the nodes. This type of community detection gives the nodes which have high connectivity with

each other and form a cohesive structure. However, these techniques do not consider the attributes

associated with each node, hence, the accurate communities may not be derived from the attributed

graphs. Another class of community detection technique considers the attributes associated with

the nodes, also known as the Attribute-based community detection. However, it is possible that

the two nodes which share the same attributes may not be connected to each other, hence the

community of nodes may not be structurally cohesive. There are some methods which consider the

attribute similarity as well as the connectivity between nodes while deriving a community of nodes.

The fundamental principle behind all these methods is to create a group of nodes which share some

common features. But, we do not have any prior information about how many communities and

what type of relationships are present between the nodes in a community. Finding communities in

an online manner is a more efficient and accurate way of extracting knowledge on a real-time scale.

Thus, I introduce a novel method [CZ18] to derive the community of nodes in an online manner

based on the attribute similarity and the connectivity of nodes in a graph. This thesis defines a

new mechanism [CZ18] to extract different community of nodes from attributed network graphs by

using the keyword search technique. The proposed method is used to derive the communities in

an online manner, which makes it possible to generate personalized communities based on the user

queries. Since a keyword search approach is used to detect the communities, the proposed method

is able to derive communities in a more accurate and efficient manner. The key contributions to

the novel method are listed as follows:

1. A novel technique of community detection is developed based on the existing revolutionary

research [GEJN02, SS17, FC12, LNMG09, NAXC08, ENG04, SCFS12].

2. The node attributes are used to represent the keywords in the attributed graphs to design a

novel algorithm of community detection using keyword search over attributed graphs.

2

3. Since the multiple keyword attributes are present on every node, it is important to find the

influential attributes from the set of attributes, which in turn leads to influential nodes. The

probability of each attribute on all the nodes of the graph is derived and the less important

attributes are filtered out if the probability of occurrence is less than a threshold value. The

attributes with a greater probability of occurrence are called as node-weighted attributes, and

considered as the influential attributes.

4. Apart from node-weighted attributes, it is necessary to find the probability of connectivity

of nodes which share similar attributes. The probability of each attribute shared among

different nodes helps to filter out the attributes which are shared the least among different

nodes. Hence, another threshold value is given to filter out the attributes which have the least

probability of being shared among different nodes. The attributes with a greater probability

of sharing between two connected nodes are called as edge-weighted attributes, and considered

as the influential attributes.

5. Once the influential attributes are determined, I create and assign a vector of keyword at-

tributes on each node. These node attributes can be classified into different class of attributes

based on the similarity of two attributes. I use Jaccard Similarity Index to measure the sim-

ilarity between two nodes.

6. A class label is assigned to each node while classifying the attributes in different classes. This

class information is used as a keyword on each node, and can be used for personalized as well

as generalized community detection by using keyword search techniques.

7. The experimental analysis shows that the proposed algorithm is able to derive the personalized

community for a query, and generalized communities for all classes of attributes. Thus, the

proposed mechanism is able to derive community of nodes in an online and efficient manner

based on the keyword attributes.

The rest of the thesis is organized as follows. Chapter 2 presents the related work and back-

ground. Chapter 3 gives the detailed explanation of the proposed approach. Chapter 4 describes

the Keyword Search based algorithm for personalized as well as generalized community detection

in detail. Chapter 6 analyzes the performance of the proposed approach. Chapter 7 describes the

experimental analysis, and chapter 8 concludes the thesis.

3

Chapter 2

LITERATURE REVIEW

This chapter reviews the related work about the community detection and keyword search over the

large network graphs.

2.1 Community Detection on Attributed Graphs

Since the inception of graph theory, many algorithms have been proposed for different applications

of graph theory [SS17, FC12]. Significant research has been done on the different properties and ap-

plications of graphs in different domains like biology, social, and informational networks [GEJN02].

The different mathematical properties of graphs add an advantage to the use of graphs in different

domains. For instance, social network analysis started in 1930’s and has become one of the most

critical and revolutionary areas of research in the big data community.

2.1.1 Community Detection

A community is also known as a cluster or module, and defined as a group of vertices which

probably share common features, or have a strong relationship with each other formed by the

strong distribution of edges between the vertices. In Figure 2.1, a graphic representation of a

sample graph with communities is shown.

A community [For10] can also be defined as a dense subgraph, since the nodes in same commu-

nities have dense connection with each other than that of different communities. Each community

represents a functional system or working unit, due to which it is necessary to find different effec-

tive techniques of community detection. Since the inception of graph-based community detection,

many algorithms have been already proposed. The different community detection techniques can

4

Figure 2.1: A Simple Graph with Communities Highlighted by Different Colors.

be categorized as follows:

2.1.2 Structure-based Community Detection

This class of community detection considers the connectivity between different nodes and deter-

mines the probability of possible connection between nodes, and groups them together in one

community. Existing methods like the Label Propagation [RAK07] and Random Walk [AF02] gen-

erate the community structure based on a probabilistic model. The Label Propagation [RAK07]

assigns the label to each node and changes the label of nodes based on the label of neighbors.

Though the Label Propagation [RAK07] is computationally efficient, it does not consider the at-

tributes associated with each node, hence, may not be an effective method to create a group of

nodes based on the label of neighbors for attributed graphs. The Random Walk [AF02] method

works on the principal of Markov Chain Process, where nodes are grouped together based on the

probability of transition from one node to another. Since the current Random Walk [AF02] based

methods do not consider the attributes associated with nodes, hence, the generated communities

may not have attribute similarity between the nodes in same community. Girvan and Newman

proposed a new measure known as the modularity [GEJN02, ZWW+09], which is defined as the

fraction of connections within a community in the actual network minus expected fraction of con-

5

nections in a random network. As per the definition of modularity, a maximum modularity gives the

best partition of a network [GEJN02]. Fortunato and Barthelemy discovered that the modularity

optimization [FB07] gives extra importance to the number of connections in a network, and hence

this method cannot correctly classify some specific cases of networks. The main limitation of the

modularity optimization [FB07] approach is that it does not consider the overall size of a commu-

nity. To overcome this limitation, Rosvall and Bergstrom [RTB07, RB07] used the full description

length of a partition of a network to compress the network-based communication process. Li et

al. [LBL+16] proposed a fast and accurate measure of mining community structure by providing

a kernel function to measure the leadership of each node. Once the leader nodes are determined,

a discrete-time dynamical system is used to assign the community for each node dynamically. All

these methods consider the actual and possible connection between different nodes, and generate

the structurally cohesive community structure. However, none of the above methods considers the

node attributes, and hence, may not be the accurate measure to generate community structures

for an attributed graph.

2.1.3 Attributed-based Community Detection

Many different techniques of community detection have considered large complex graph without

any keyword or attributes on its nodes. There are limited techniques of community detection

for the network graphs having node attributes [TFGER07]. Fang et al. [FCLH16] proposed the

community detection on large attributed graphs by creating an index tree based on the keyword

attribute information. Zhou et al. [ZCY09] proposed a method to derive the clusters by computing

the pairwise similarity between the nodes using keywords and links between the nodes. Ruan et

al. [RFP13] proposed a method called as CODICIL, where new edges are created based on the

content similarity, and then effective graph sampling is done to boost the efficiency of graph clus-

tering. In another approach [XKW+12], the attributed graph community detection is done based

on probabilistic inferences. CESNA [YML13] detects the overlapping communities by assuming

communities generate content. He et al. proposed another method known as MISAGA, [HC18]

for mining subgraphs in an attributed graph. MISAGA [HC18] defines a probabilistic measure to

determine the strength of association between a pair of attribute values, then it determines the

degree of association between each pair of vertices to group them together in one community. All

these methods consider the degree of association between a pair of vertices based on a set of at-

tributes on vertices. However, these methods may not consider the structure cohesiveness or the

6

connectivity between a pair of vertices while creating the community structure. It is necessary to

design a mechanism which will consider both, structure cohesiveness and attribute similarity for a

group of nodes belonging to the same community. There are limited techniques which achieve this

objective [YJCZ09].

2.1.4 Online Community Detection

There are some techniques to determine the communities in an online manner, that is based on a

query request. Few of these methods [SG10, CXWW14, LQYM15, CXW+13] obtain the community

for given vertex V based on the query over q. Such a personalized community detection technique

requires different measures like the minimum degree, k-core, etc., which generate the structurally

cohesive communities. Sozio et al. [SG10] proposed the first algorithm known as the Global to

find the k̂-core containing vertex q. Cui et al. [CXWW14] proposed the Local to enhance the

efficiency of the Global by expanding techniques to local search space. There are many other

methods like k-clique [CXW+13] and k-truss [HCQ+14] which search the communities in large

complex networks, but all these techniques assume non-attributed graphs, and does not consider

the important keyword attribute information on nodes which can be used for the generation of

more accurate communities in the graph.

In this thesis, I consider some important measures described by structure-based, attribute-based,

and online community detection, and design a novel method to generate more accurate communities

for large attributed graphs.

2.1.5 Keyword Search over Graphs

The keyword search over graphs [BHN+02, DYW+07, KPC+05, KA11] have attracted significant

attention in recent years since it provides valuable information to users without the knowledge of

underlying entities, schema, or access mechanism. To search information over such large complex

graphs, many advanced keyword search techniques [BHN+02, DYW+07, KPC+05, KA11, YLC+17]

are already discovered. I use the concept of keyword search over graphs to generate different

communities in the graph. I apply the naive keyword search approach to search the keyword

attributes on the nodes, and group them together based on the similarity between two nodes. The

keyword search approach gives the flexibility of searching the required group of nodes in an online

manner. Since the social network graphs may have multiple attributes assigned to their nodes,

a mechanism is designed to derive clusters in the graph based on the attribute similarity among

7

different nodes. The next chapter defines the problem, and describes the key definitions and major

aspects of the proposed approach.

8

Chapter 3

PROPOSED APPROACH

In this chapter, the proposed approach of community detection using keyword attribute search is

explained in detail. Before explaining the proposed approach in detail, it is necessary to define the

problem and provide some corresponding definitions and lemmas to support the proposed approach.

3.1 Problem Statement

Let a network graph is denoted as G = (V, E, Λ), which is an undirected and attribute graph.

V is the set of vertices, E is the set of undirected edges, and Λ is the set of attributes assigned

to each vertex vi ∈ V in the graph. If two vertices vi and vj are connected to each other through

an undirected edge, then such a graph is known as a connected graph. The set of attributes for

all vertices vi ∈ V is denoted as Λ ={attr1, attr2, attr3...attrn}, and the set of attribute values

associated with each vertex vi is denoted as attrji = {attr1i, attr2i,...attrji)}.

In this thesis, an undirected attributed graph G = (V, E, Λ) is considered. Let n and m be

the size of V and E, respectively. Table 3.1 represents the meaning of all the symbols used in the

thesis.

3.1.1 Preliminary

A community can be defined as a subgraph of G that have the nodes densely connected to each

other to form a cohesive structure, and sparsely connected to nodes in other communities. The

structure cohesiveness of a graph G is defined by how different nodes are connected to each other.

The minimum degree of all the vertices in a community is k or more [CXWW14, DGM06, LQYM15,

Sei83, SG10], also known as k − core, which is an important condition for structure cohesiveness

9

Table 3.1: Symbols and Meanings

Symbol Meaning

G(V,E) An undirected graph with set of vertices V and set of edges E

λ A set of attributes for set of vertices V

q keyword or query to be searched on attributed graph G

degG(V) The degree of vertex V in G

L(X(q)) The length of the set of attribute X for vertex q

G[S′] The largest connected subgraph of G such that q ∈ G[S′], and S ⊂ X(v)

Sim(q1, q2) Jaccard Similarity Index to measure similarity between q1 and q2

θc Maximum threshold constant for similarity between q1 and q2

Wv Maximum threshold constant for Node-Weight on attribute type-value pairs

We Maximum threshold constant for Edge-Weight on attribute type-value pairs

GD(q1, q2) Shortest path length or Geodesic distance between q1 and q2

of G.

3.1.2 Definition 1 (k-core)

Given an integer k (k ≥ 0), the k − core [Sei83, SG10, 10.14] of G denoted by Gk is the largest

subgraph of G such that, ∀v ∈ GkdegGk
(v) ≥ k. The notion of K − core [Sei83, SG10, FCLH16,

Sei83] makes sure that all the nodes in a community Gk are densely connected to each other in

some way, and hence makes the structure cohesive.

3.1.3 Definition 2 (Core Number)

Given a vertex v ∈ V , the core number [Sei83, SG10, FCLH16] of v, denoted by coreG(v), is defined

as the highest order of a k-core that contains the vertex v.

3.1.4 Definition 3 (Jaccard Similarity Index)

Given a graph G = (V,E) and two vertices v1, v2 ∈ V which have set of attributes X1 and

X2 respectively, the measure of similarity between the two vertices can be given by the Jaccard

Similarity Index [WBW+13] Sim(v1, v2) and defined as follows:

Sim(v1, v2) =
|(X1 ∩X2)|
|(X1 ∪X2)|

(3.1)

10

The Jaccard Similarity Index [WBW+13] measure can be useful to give some threshold constant,

which can be used to classify the vertices with a similarity of attributes greater than or equal to

the threshold constant into a common group of vertices.

3.1.5 Definition 4 (Shortest Path Length or Geodesic Distance)

Apart from the attribute similarity, it is necessary that the two nodes v1 and v2 are connected to

each other at a minimum possible distance. If two nodes v1 and v2 are connected to each other,

but far away from each other in a network than the other nodes, then such nodes may not be

the part of a community. Since the communities contain nodes which are densely connected, the

shortest path distance between two nodes should be minimal to make the community structure

dense, or structurally cohesive. The shortest path length or geodesic distance [HKA16] can be used

to calculate and specify the maximum threshold on the distance between two nodes v1 and v2. The

shortest path length or geodesic distance [HKA16] can be given as follows:

GD(v1, v2) = min(∀i∀jd(vi, vj)) (3.2)

3.2 Problem Definition

The problem is defined as follows:

For a given large complex graph G, an efficient mechanism should be designed to partition the

graph into K disjoint subgraphs, where each subgraph will hold the following properties:

1. The vertices vi ∈ V in a subgraph should be connected to each other to form a cohesive

structure, and sparsely connected to other subgraphs.

2. The vertices vi ∈ V which have similar attributes should be partitioned into the same group,

while the vertices with different attributes should be partitioned into separate groups.

Based on the above properties, the formal problem definition for the community detection in

attributed graphs is stated in the following definition:

3.2.1 Problem 1 (Attributed Community Detection)

Given a graph G(V,E, λ), a positive integer constant k, a vertex v ∈ V , and a set of attributes

S ⊂ X(V), return a set of subgraphs such that following properties should be satisfied ∀Gv ∈ G:

11

1. Connectivity: Gv ∈ G is a connected subgraph and contains v ∈ V ;

2. Structure Cohesiveness: ∀v ∈ Gv degGv(v) ≥ k; all the nodes v ∈ V in a subgraph have

degree greater than or equal to the k core value.

3. Attribute Cohesiveness: The number of shared attributes L(Gv, S) among all the vertices v

in Gv should be maximal, where L(Gv, S) = ∩v∈Gv(X(v)∩S) represents the set of attributes

from S shared among all the vertices v in Gv.

The above properties like k-core and k-clique make sure the community structure is structurally

cohesive, and the property of Jaccard Similarity Index makes sure the community structure follows

the attribute cohesiveness. Both of these requirements are critical for an accurate community

detection. The focus is to design an efficient mechanism to derive communities not only in terms

of interaction between the vertices in a community, but also in terms of attribute similarity, or the

characteristics shared by vertices in a community.

3.2.2 Community Detection Using Keyword Search

It is useful to assign the keyword attributes on vertices to gain an accurate measure of a community.

The vertices which have strong relationships and common properties can be grouped together in

the same community based on keyword attributes. An algorithmic framework can be designed to

classify keyword attributes on all vertices based on the similarity between a set of attributes on two

vertices, and these classes of attributes can be used to search the vertices strongly related to each

other, and hence, eventually the community. Following major steps are involved in the community

detection using keyword search method:

1. Since each node v ∈ V contains a set of attributes X ∈ λ, and each attribute type attrij ∈ X

might be distributed on the different nodes with different values, it is important to find the

influential attribute type-value pairs among all the node attributes. The probability of each

attribute type-value pair on all vertices can be used to get influential attributes. A probability

threshold value called as Node − weight is defined, which derive the influential attributes.

If the probability of an attribute type-value pair is greater than or equal to Node− weight,

then that attribute type-value pair is considered as an important attribute.

2. Once all the influential attribute type-value pairs are determined, I determine the connec-

tivity of all the attribute type-value pairs which makes sure the structure cohesiveness. The

12

probability of each attribute type-value pair shared between all pair of vertices can be useful

to get this information. A probability threshold value called as Edge − weight is defined,

which derives the influential attributes in terms of the connectivity. If the probability of

sharing of any attribute type-value pair between all pair of vertices is greater than or equal to

Edge− weight, then that attribute type-value pair is considered as an important attribute.

3. All the influential keyword attribute information on nodes can be used to construct an At-

tribute Index Structure, where different keyword attributes are classified and grouped together

in separate groups based on the attribute similarity between the nodes, and their degree struc-

ture. The factors like the Jaccard Index and K core are used to measure the similarity of

attributes between a pair of vertices and the connectivity of the vertices sharing similar at-

tributes, respectively.

4. While classifying each vertex in the graph based on the attributes like city, school, mutual

interest or activities, events, etc., a different class of attributes can be identified and stored

in the Attribute Index Structure. This attribute class information can be assigned as a label

to each node of the graph with the keyword attribute information, to find strongly associated

nodes.

5. Since I create an index structure for a different class of attributes in a keyword information,

I create queries for the personalized community detection using attribute class information

assigned to different nodes with the keyword attributes.

6. The naive keyword search algorithm is used to determine the personalized communities in the

graph based on a query by using different class of attributes assigned to all vertices in the

graph.

7. For a generalized community detection, the naive keyword search algorithm is used to de-

termine all communities in the graph based on the class information and keyword attribute

information on different nodes in the graph. All the classes can be accessed iteratively to

determine different nodes which belong to the same class, and which share strong association

in terms of keyword information. The group of such nodes will form a community structure

in the graph.

In the next chapter, an algorithmic framework is defined and explained in detail for each major

step.

13

Chapter 4

KEYWORD SEARCH-BASED

ALGORITHM

The proposed approach is explained in detail in this chapter. The Keyword Attribute Search-

based algorithm requires that every node should have some keyword or attributes associated with

them, these keyword attributes are used to search a specific type of attribute and group them

together in one class. For example, I use two network datasets Karate-club and Political Book

which have ground-truth communities associated with them. The Karate-club network is shown

in Figure 4.1(a) and the corresponding ground-truth communities are displayed in Figure 4.1(b).

The Political Books network is shown in Figure 4.2(a). I assign random attributes on each node of

both the datasets, and derive communities by using Keyword Search-based algorithm. The random

attributes assigned to each node of the Karate-club network is shown in Table 4.1.

Table 4.1: Node Attributes of Sample Graph in Figure 4.1(a)

Attribute Type Set of Values

School {’UNLV’,’SUNY’,’ASU’}
Employer {’Caesars’,’MGM’,’Amazon’,’Google’}

Role {’Student’,’Professor’,’Software Engineer’,’Manager’,’Team Lead’}
Sports {’Soccer’,’Baseball’,’Badminton’,’Basketball’}
Vehicle {’Toyota’,’Hyundai’,’Mercedes’,’Audi’,’BMW’,’Chevrolet’}

City {’Las Vegas’,’New York’,’Phoenix’}
Country {’USA’}

Following major steps are involved in the Keyword Attribute Search-based algorithm:

14

(a) Karate Club Network (b) Communtiy Derrived from Graph in (a)

Figure 4.1: Karate Club Network Dataset with Ground-truth Communities

(a) Political Books Network

Figure 4.2: Political Books Network Dataset with Ground-truth Communities

4.1 Node-weight

The first step, in the process of our community detection problem, is to determine the influential

nodes among all the nodes in a graph. Since there are multiple attributes on each node, it is

necessary to find the influential attributes among a set of attributes, and filter out the less important

attributes. The influential attributes can be found based on the probability of each attribute type-

15

value pair among all the nodes in the graph. Let O(attri) is the number of times attri present

among all the vertices, N be the number of nodes in the graph, then the probability of attri can

be given as follows:

P (attri) =
O(attri)

N
=

∑N
j=1 attri

N
(4.1)

For the example network shown in Figure 4.1(a), let’s assume that the maximum threshold for

Node-weight Wv =20.0%, then the corresponding important attributes are listed in Table 4.2.

Table 4.2: Node-weight for Karate-Club Network

Id Attribute Type-Value pair Probability

1 Country : USA 100.0

2 School : UNLV 50.0

3 School : SUNY 35.0

4 City : New York 50.0

5 City : Las Vegas 50.0

6 Role : Student 38.00

7 Sports : Baseball 38.00

8 Sports : Soccer 32.00

9 Employer : Caesars 30.00

10 Employer : Google 27.00

11 Employer : Microsoft 24.00

12 Employer : MGM 21.00

13 Vehicle : Hyundai 22.00

14 Vehicle : Chevrolet 21.00

4.2 Edge-weight

Once all the important attributes are determined based on the probability of each attribute type-

value pair on all the nodes of a graph, I consider the probability of occurrence of each attribute

type-value pair on each edge, that is, how many times each attribute type-value pair is shared

between all pair of vertices. The threshold value of probability of each attribute type-value pair on

each edge can be called as the Edge-weight. If the probability of each attribute type-value pair on

each edge is greater than or equal to Edge-weight, then that attribute type-value pair is considered

to be influential. Let O(attrij) and O(attrik) be the number of times attribute attri present on

16

vertices j and k, respectively. O(attrij , attrik) represents the number of times attri shared between

vertex j and k, when j and k are connected to each other. The probability of an attribute type-value

pair shared among all the pair of vertices can be given as follows:

P (attrij , attrik) =

∑N
i=1

∑N
j=1O(attrij , attrik)

N
(4.2)

The Edge-weight is determined from the above important attribute type-value pairs listed in Table

4.2, and all the edges in the Karate-club network graph which share these attribute type-value pairs.

Let’s assume that the maximum threshold value for Edge-weight We =10.0%, then corresponding

influential Edge-weight attributes are listed in Table 4.3.

Table 4.3: Edge-weight for Karate-Club Network

Id Attribute Type-Value pair Probability

1 Country : USA 100.0

2 School : UNLV 38.0

3 School : SUNY 36.0

4 City : New York 38.0

5 City : Las Vegas 22.0

7 Sports : Baseball 16.00

9 Employer : Caesars 10.00

11 Employer : Microsoft 15.00

13 Vehicle : Hyundai 12.00

14 Vehicle : Chevrolet 13.00

4.2.1 Keyword Attribute Signature

The influential attributes can be stored in a decreasing order of the probability value, and a unique

index ki → attri|∀attri ∈ X value can be assigned to the attribute type-value pair. The Keyword

Attribute Signature contains a vector of these unique index values for each attribute type-value pair

on a node. Thus, the Keyword Attribute Signature is a compact representation of the attribute

values on each node. The unique index associated with each attribute type-value pair shown in

Table 4.3 is used to create the Keyword Attribute Signature on each node.

17

4.3 Attribute Index Structure

In the next step, I create an Attribute Index Structure for the Keyword Attribute Signature as-

signed to all nodes. Given a largely attributed graph G = (V, E), the task is to determine the

different class of attributes from all the Keyword Attribute Signatures on all vertices. Since we do

not have prior information on the type of attributes in the graph, this information can be deter-

mined from the keyword attributes on different nodes. The Attribute Index Structure is created

iteratively for all nodes and will contain all the class of attributes in the large network graph.

Each class of attribute is created iteratively by comparing every node with each other, if the two

nodes are similar to each other based on Jaccard Similarity Index, then the Keyword Attribute

Signature on two nodes can be merged into one class, and two nodes belong to the same class.

The Attribute Index Structure would consist of the inverted list of Keyword Attribute Signature for

each node with a corresponding class, first visited node, and the total number of vertices which

belong to the same class of attributes. The Attribute Index Structure can be denoted as I =

{C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(C2)}, ..., Cn : {Xn, Vn, count(Cn)}}, where Ci is the

class assigned to each attribute set Xi, and Vi is the first node from which the class Ci is derived.

The following pseudo-code is used to create the Attribute Index Structure:

Table 4.4 represents the Keyword Attribute Index structure created for the Karate-Club network

dataset.

Table 4.4: Attribute Index Structure for Karate-Club graph

Class Node V Attributes count

1 1 {1, 2, 3, 4, 5, 7, 9, 11, 13, 14} 10

2 24 {1, 3, 7, 9, 11, 13} 7

4.3.1 Keyword Attribute Class Information

Once the Attribute Index Structure is created, it is used to assign the class of attribute Ci on each

vertex vi ∈ V along with the Keyword Attribute Signature information. The main idea behind

the class creates awareness about strong relationship or common properties between the nodes.

Initially, each vertex with the Keyword Attribute Signature is considered as a separate community

while searching it’s relationship with other vertices, this Keyword Attribute Signature based search

leads to different nodes which share the same attribute information, which eventually helps derive

18

Algorithm 1 Keyword Attribute Index Structure

Input:
G = (V,E);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of influential attributes derived from Node-Weight and Edge-Weight;
Xi = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : Set of attributes associated with each vertex in the graph;

Output:
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(C2)},.., Cn : {Xm, Vn, count(Cn)}} : Attribute
index structure where Cn is the class assigned to each attribute set Xm(Vn), and Vn is the first
node which belongs to Cn ;

1: Initialize i, j, k, count node = ∅
2: for vi ∈ V do
3: for Cj ∈ I do
4: k core← K core(G, vi);
5: attri ← X(vi);
6: attrj ← Xj ∈ Cj ;
7: Sim(attri, attrj)← |attri ∩ attrj | ÷ |attri ∪ attrj |;
8: if degvi ≥ k core then
9: if Sim(attri, attrj) ≥ θ then

10: attri ∪ attrj ← XjforX(vi), Xj;
11: Vj ← vi for first vi ∈ V and Vj ∈ Cj ;
12: count(vi) + +; {Number of nodes for each class of attribute}
13: Set X(vi)← X(vi) ∪ Cj where X(vi) ∈ X;
14: else
15: Ck ← k + 1 {Create a seperate class for attribute X(vi)};
16: Vk ← vi;
17: Xk ← X(vi);
18: count(Ck)← 1;
19: Set I = {Ck : {(Xk, Vk, count(Ck)}} ;
20: Set X(vi)← X(vi) ∪ Ck where X(vi) ∈ X;
21: end if
22: end if
23: end for
24: end for
25: return I

the communities in graph. However, for a large network graph, there are numerous type of attributes

associated with all nodes, hence it becomes necessary to classify Keyword Attribute Signature at

each node in different classes. There should be a parameter θc to depict a maximum threshold of

similarity between two set of Keyword Attribute Signature on two vertices v1 and v2, respectively,

based on which it will be easy to prune the search space over a large network graph. I can verify

19

if an attribute is present in Attribute Index Structure I. If an attribute attrij ∈ X(j) is present in

the inverted list of attributes {Cj : Xj , Vj , count(Cj)}, then I assign the corresponding class Cj of

attribute attrij to the node vi. If an attribute attrij ∈ X(j) is not present in the inverted list, then

the attribute attrij ∈ Xj is compared with the existing attributes in I. The similarity between

the two set of attributes is determined based on the Jaccard Similarity Index Sim(vi, vj). If the

Sim(Xi(vi), Xj(vj)) is greater than or equal to the threshold value θc, then the two attributes are

combined together Xi(vi)∪Xj(vj), and same class Ci is assigned to the combination of attributes.

If Sim(Xi(vi), Xj(vj)) is less than the threshold value θc, then a new class Cj is assigned to the

attribute Xj(V(j)) along with the node Vj in the Attribute Index Structure I. I keep track of

the count of nodes counti(Ci) which belong to same class of attributes while creating the class of

attributes in the Attribute Index Structure I. This information is useful in the personalized as well

as generalized community detection. Based on the key definitions and Attribute Index Structure I,

following lemma is derived to prove that the Attribute Index Structure is useful to classify nodes in

different clusters, or groups to form communities.

Theorem 4.1. Given G = (V,E) and set of attributes X, if Xq = {Xq1, Xq2, . . . , Xqn} and X̂q =

{X̂q1, X̂q2, . . . , X̂qn} are the set of attributes on the two vertices q and q̂ respectively, and (q, q̂) ∈

GXq i.e. q and q̂ belong to the same subgraph GXq . If L(Xq ∩ X̂q) ≥ Kq, then Xq ∪ X̂q ∈ Cq, where

Cq ∈ I.

Proof. To prove this lemma, I use a proof by contradiction. Let Xq = {Xq1, Xq2, . . . , Xqn} such

that Xq ∈ Cq, and X̂q = {X̂q1, X̂q2, . . . , X̂qn} such that X̂q ∈ Ĉq. Assuming X̂q /∈ Cq, then it means

that Xq and X̂q does not have any attribute in common, which proves Cq is not equal to Ĉq and

L(Xq ∩ X̂q) = φ. Thus, for every query or keyword vertex Xq ∈ Cq and q ∈ Gq i.e. q belongs to

the subgraph Gq, and X̂q ∈ Ĉq and q̂ ∈ Ĝq i.e. q̂ belongs to the subgraph Ĝq. This contradicts the

given assumption that (q, q̂) ∈ GXq and also fails to satisfy the attribute cohesiveness. This proves

the given lemma.

4.4 Personalized Community Detection

As discussed in the previous steps, the Attribute Index Structure I contains the class Ci of attributes

, first node, and the number of nodes which belongs to class Ci, also, keyword attribute Xi(vi) is

updated to include the class Ci for each node vi ∈ V . This information is crucial for the personalized

community detection. The personalized community detection can be defined as, a group of nodes

20

having same class Cqi on each node for a given query Q = {q1, q2, . . . , qi}, with i keywords in the

query. For a given query Q which has keywords or class of attributes, I access the class information

Ci, the number of nodes which belong to the same class counti(Ci), and the first vertex Vi which

belongs to class Ci from I. Once this information is fetched from the Attribute Index Structure I,

the naive keyword search algorithm is used to search nodes which belong to class Ci. This keyword

search starts at the node Vi derived from I and continues to search the nodes with same class Ci

of attributes as node vi. The keyword search has the upper bound of threshold length counti(Ci),

and continues the keyword search until the counti(Ci) number of nodes are not matched with the

given class Ci. Following pseudo-code is used for the Keyword Search required in personalized

community detection.

4.5 Generalized Community Detection

The generalized community detection can derive all communities from a network graph based on the

Keyword Attribute Signature associated with each node in the graph. Since each node vi ∈ V has

a keyword attribute Xi(vi) associated with it, and this attribute belongs to some class Ci ∈ I, this

information can be used to determine the similarity between two nodes and group them together

in one community. The personalized community detection is based on the keyword search query Q,

while generalized community detection may not need keyword search query Q. The Attribute Index

Structure I has required information about different attributes Xi(vi) on node vi ∈ V and class

Ci of these attributes. It also contains the information of first node Vi and the number of nodes

counti(Ci) that belongs to class Ci. All this information can be used for the generalized community

detection. The process starts by scanning the Attribute Index Structure I for each class Ci of the

attribute, then perform the keyword search at node Vi associated with Ci in I. The Keyword Search

process explained in the personalized community detection leads to a community of nodes for each

class Ci ∈ I. Same process is performed recursively for each class Ci of the attribute, corresponding

node Vi, and the attributes Xi(Vi) associated with the node Vi. The following pseudo-code explains

the generalized community detection process in detail:

The personalized community detection can be used to derive a particular community from a

graph in an online manner. However, the generalized community detection can be used to derive

all the communities from a graph without any query in an online manner. For example, if we look

at the Karate-Club network graph shown in Figure 4.1(a) with different attributes on each node,

and the Attribute Index Structure shown in Table 4.4, I derive the community of nodes that belong

21

Algorithm 2 Personalized Community Detection

Input:
G = (V,E,X);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of attributes in the graph;
Xi = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : set of attributes associated with each vertex in the
graph;
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(c2)},.., Cn : {Xm, Vn, count(Cn)}} : Attribute
index structure where Cn is the class assigned to each attribute set Xm(Vn), and Vn is the first
node which belongs to Cn ;
Q = {q1, q2, . . . , qn} : Query which has a list of keywords or class information;

Output:
Comm(Ci): Community of the nodes which share the keyword information in the query Q;

1: Initialize i, j, node = ∅;
2: for qi ∈ Q do
3: Ci ← qi;
4: if Ci ∈ I then
5: nodei = Vi; {I = {Ci : {Xi, Vi, counti(Ci))}}}
6: k core← K Core(G, vi)
7: if degnodei ≥ k core then
8: node counti ← counti(nodei)
9: bfs list(nodei)← BFS Tree(G, vi)

10: while count ≤ node counti do
11: for vj ∈ bfs list(nodei) do
12: if degvj ≥ k core then
13: Classj ← attrj(vj) {attrj(vj) = Ci}
14: if qi ∈ Classj then
15: Commi(qi)← vj ; {Mark vj for community }
16: end if
17: end if
18: end for
19: end while
20: end if
21: end if
22: end for
23: return Comm(Q);
24: BFS Tree(G, vj)
25: Initialize j, k = ∅;
26: for each vk ∈ in neighbor(vj) do
27: Pick up the vk ∈ BFS TREE
28: end for

to the same class of attributes as shown in Figure 4.3(a). Similarly, based on the previously defined

measures, I derive the communities for the Political-Books network dataset shown in Figure 4.2.

22

Algorithm 3 Generalized Community Detection

Input:
G = (V,E,X);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of attributes in the graph;
attr(Vi) = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : set of attributes associated with each vertex in the
graph;
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(C2)},.., Cn : {Xm, Vn, count(Cn)}} : Attribute
index structure where Cn is the class assigned to each attribute set Xm(Vn), and Vn is the first
node which belongs to Cn ;

Output:
Comm(Ci): Communities which have the nodes vi belong to Ci ∈ I;

1: Initialize i, j, node = ∅;
2: for Ci ∈ I do
3: Ci = qi;
4: nodei = Vi; {I = {Ci : {Xi, Vi, counti(Ci))}}}
5: k core← K core(G, vi)
6: if degnodei ≥ k core then
7: node counti ← counti(nodei)
8: bfs list(nodei)← BFS Tree(G, vi)
9: while count ≤ nodecounti do

10: for vj ∈ bfs list(nodei) do
11: if degvj ≥ k core then
12: Classj ← attrj(vj) {attrj(vj) = Ci}
13: if qi ∈ Classj then
14: Commi(qi)← vj ; {Mark vj for community }
15: end if
16: end if
17: end for
18: end while
19: end if
20: end for
21: return Comm(Q);
22: BFS Tree(G, vj)
23: Initialize k = ∅;
24: for each vk ∈ in neighbor(vj) do
25: Pick up the vk ∈ BFS TREE
26: end for

All the communities are displayed in Figure 4.3(b).

23

(a) Communities for Karate Club Network

(b) Communities for Political Books Network

Figure 4.3: Communities Generated from Network Dataset Using the Proposed Method

24

Chapter 5

ALGORITHM ANALYSIS

The complexity analysis of the proposed method can be divided into following major parts based

on the major steps involved in the community detection process.

5.1 Node-weight and Edge-weight

The Node−weight and Edge−weight are calculated by calculating the probability of each attribute

on each node vi and edge eij , respectively. Let’s assume that there are n nodes and m edges in

a network graph, and each node contains an average of c attributes, then the time required to

calculate Node− weight and Edge− weight can be given as follows:

O(attri(vj)) =
c∑

i=1

n∑
j=1

O(attri(vj)) = O(c ∗ n) = O(n) (5.1)

O(attri(ejk)) =

c∑
i=1

m∑
j=1

m∑
k=1

O(attri(ejk)) = O(c ∗m) = O(m) (5.2)

5.2 Maximizing Degree of Nodes

Identifying the nodes, which have a maximum degree, satisfy the requirement of the structure

cohesiveness. The k-core measure is used to identify such nodes with a maximum possible degree.

The k-core of a graph G can be identified within the time complexity of O(m), where m is the

number of lines. Since all the n nodes of graph G are traversed to identify the k-core value, the

complexity of the process to maximize the degree of nodes can be given as follows:

O(K core) = min(degK core(G,V)) = O(n+m)) (5.3)

25

O(K core) = O(n) = O(|V |+ |E|) (5.4)

5.3 Attribute Index Structure Creation

As explained in the previous section, the Attribute Index Structure is created to classify Keyword

Attribute Signature on each node into different classes. These classes are used to generate the

communities based on the similarity of a set of attributes on two nodes of the graph. Since I

consider the nodes which have degree greater than or equal to the threshold value of k-core, nodes

which have degree less than the k-core are rejected and will not be part of any community. This

criterion prune the search space over a large network graph. There is another threshold known as

Jaccard Similarity Index θc, which verify the similarity between two Keyword Attribute Signatures.

If the similarity between two sets is greater than or equal to θc, then such sets are combined into

one class Ci, otherwise, the two sets are classified into two different class of attributes Ci and Cj ,

respectively. If I consider the worst case scenario where all the nodes are densely connected to

each other, hence, they have maximal degrees associated with them, then all the n nodes of the

graph G are considered for the Attribute Index Structure creation. Also, if I assume that there are

c attributes on each node of the graph G, then the time required for the comparison of the two

Keyword Attribute Signatures would be some constant value. Hence, the total time required for

the creation of Attribute Index Structure can be given by the following equation:

O(I) =

n∑
i=1

n∑
j=1

O(n ∗ c) = O(n) = O(|V |) (5.5)

5.4 Keyword Search for Community Detection

Every class of attributes in the Attribute Index Structure Ci ∈ I is associated with a vertex Vi,

and the number of nodes counti(Ci) which belong to the class Ci. This information is used for

the personalized as well as generalized community detection by using the Keyword Search method.

Since the generalized community detection uses each class of attributes Ci ∈ I, the Keyword Search

method is executed for every class and generate communities. The Keyword Search starts at the

first vertex Vi associated with class Ci, then it searches iteratively for keyword Ci on every node in

Breadth First Search (BFS) tree oriented at root Vi (vi ∈ BFS TREE(Vi)). During the keyword

search, the class Ci is compared with the class information present in attributes of node attri(vi),

if the attribute information matches with the class Ci, then those nodes are grouped together in

the same community marked with class Ci. It is also necessary to consider another important

26

requirement for cohesive community structure, i.e. shortest path length between two nodes. The

shortest path length between two nodes should be less than or equal to a maximum threshold path

length. Thus, the time required for the generalized community detection with keyword search

would consist of the total time required for finding Node-weight, Edge-weight, and k-core, creating

Attribute Index Structure, retrieving the BFS tree for vertex vi ∈ Ci, and determining the nodes

having shortest path length less than or equal to a maximum threshold path length. The time

required for the BFS tree creation is O(|V | + |E|), but the nodes in the graph have maximum

degree forming a dense structure, hence, it is safe to assume that the time required for the BFS

tree creation is dominated by the number of edges, that is O(|E|), or O(m). Now, the generalized

community detection searches for all the classes Ci ∈ I, hence, the BFS tree is retrieved for each

vertex vi associated with Ci ∈ I. In the worst case, each vertex vi belongs to separate class Ci,

hence, the BFS tree requires the O(n ∗ |E|) or O(|V | ∗ |E|) time. The time required to calculate

the shortest path length for n or |V | vertices is O(n2) or O(|V |2). Thus, the total time complexity

for the generalized community detection can be given as follows:

O(Commi(I)) = max(O(|V |), O(|E|), O(|V |+ |E|), O(|V | ∗ |E|), O(|V |2)) (5.6)

Since as per the assumption, the given graph is undirected, attributed, and dense graph, hence the

number of edges |E| dominate the number of nodes |V |, which results in the time complexity to be

bounded with the number of edges or degree of the nodes. Hence, the resultant time complexity

for the generalized community detection can be given as follows:

O(Commi(I)) = O(|V | ∗ |E|)) (5.7)

27

Chapter 6

EXPERIMENTAL RESULTS

Different experiments are performed to verify the accuracy of the proposed method. I consider only

the undirected and attributed graph for all the experiments. All the experiments are executed on

64 GB main memory in Intel Core i5 @ 3.70GHz on an Windows 10 operating system. Python 2.7

is used to implement the algorithms with networkx package for graph related operations.

6.1 Experimental Setup

I divide my experiments into three parts. The first part of the experiment compares the pro-

posed approach with the existing methods. I use the network datasets like Karate-Club, American

Football, Political-Books, Dolphin-network, email-EU-core, DBLP, and Amazon [LK14] with the

ground-truth communities for the comparison experiment. The second part contains the experi-

ments on smaller datasets, where a number of nodes in the graph are less than or equal to 1000,

while the third part contains experiments on the large datasets where the number of nodes in the

graph is greater than 10000. Since the community structure would contain the dense subgraphs,

I include the variation in a number of edges by creating synthetic graphs having 2000, 5000, and

10000 nodes respectively, and the probability of edge creation 0.50, 0.40, and 0.30 respectively. I

distribute a number of attributes randomly on each node of all the above graphs where no attribute

values are assigned to any node, so that the threshold value for attribute classification varies, and

the resultant community structure can be verified. I use real datasets like YouTube video crawl

[CDL08], Twitter User Profiles [KLPM10], Skytrax Airline Reviews, Terrorist Data [GG17], Cae-

sars Entertainment anonymous dataset, and Facebook. I randomly assign attributes to the datasets

having only edge lists, and randomly create edges with a certain probability of edge creation for

28

(a) Run Time for Ground-truth Community Datasets (b) Number of Communities for Ground-truth Com-
munity Datasets

Figure 6.1: Run Time vs Number of Communities for Ground-truth Community Datasets

the datasets having node list only. The networkx package of Python 2.7 is used for all the graph

related operation in the experiments.

6.1.1 Experimental Result Analysis

Table 6.1: Comparison with Existing Methods

Legend: T1: Time for K-Clique; C1: #Communities for K-Clique; T2: Time for GN
(Girvan-Newman); C2: #Communities for GN; T3: Time for Proposed Method;

C1: #Communities for Proposed Method;

Graph T1 C1 T2 C2 T3 C3

Karate 1 3 1 33 1 2

Football 1 4 1 114 1 5

Political-Books 1 4 1 104 1 4

Dolphins 1 3 1 61 1 3

email-EU-Core 187 3 3300 772 50 8

DBLP 6480 47307 46080 13477 936 128

Amazon 7380 23134 88080 75499 6791 468

Table 6.1 shows the details about the runtime and a number of communities in each comparison

experiment. Figure 6.1 and Figure 6.2 displays the result for comparison of required runtime and

the number of communities generated for existing methods, and the proposed method respectively.

Tables 6.2 and 6.3 show the statistics for the small as well as large graph datasets, respectively.

The table shows statistics about the number of nodes, the number of edges, the probability of

29

(a) Run Time for DBLP and Amazon Datasets
(b) Number of Communities for DBLP and Amazon
Datasets

Figure 6.2: Run Time vs Number of Communities for Amazon and DBLP Datasets

(a) Run Time for Small Graph Datasets (b) Number of Communities for Small Graph Datasets

Figure 6.3: Run Time vs Number of Communities for Small Graph Datasets

edge creation, and the number of attributes on each node. Tables 6.4 and 6.5 show the statistics

about the experimental results on the small as well as large graph datasets, respectively. The tables

show detailed information of each experiment, where the number of nodes and edges are mentioned

along with the threshold value for the similarity of attributes between two nodes, a threshold value

for the shortest path length, the number of communities, and the time required for the proposed

method to generate these communities. All this detailed information shows the authenticity of the

proposed method to generate more accurate communities. All the experimental results are depicted

in Figure 6.3 and Figure 6.4, respectively.

30

Table 6.2: Small Graph Datasets

Graph Nodes V Edges E Prob. of edge Attributes on each node

Twitter User Profile 100 3426 P=0.70 26

Twitter User Profile 200 11793 P=0.70 26

Twitter User Profile 500 74625 P=0.60 26

Twitter User Profile 1313 517068 P=0.60 26

Skytrax Airline Reviews 100 3514 P=0.70 7

Skytrax Airline Reviews 200 13882 P=0.70 7

Skytrax Airline Reviews 500 74907 P=0.60 7

Skytrax Airline Reviews 1005 300202 P=0.60 7

Terrorist Data 100 3457 P=0.70 7

Terrorist Data 200 13969 P=0.70 7

Terrorist Data 500 74753 P=0.60 7

Terrorist Data 1000 299420 P=0.60 7

Caesars Entertainment 100 3439 P=0.70 6

Caesars Entertainment 200 13929 P=0.70 6

Caesars Entertainment 500 74835 P=0.60 6

Caesars Entertainment 1000 299953 P=0.60 6

6.1.2 A Case Study

I create a small case study based on a real time graph dataset provided by Caesars Entertain-

ment Corporation, Las Vegas, USA . This dataset contains the anonymous real time attribute

data collected from the Caesars Entertainment Corporation WiFi data, a test graph is created

to represent the information about patrons visiting different properties of Caesars Entertain-

ment, time, and places of their visit at a particular property. I create a graph G = (V,E) with

|V | = 200 nodes and |E| = 12000 edges with 60% probability of edge creation in the graph at

different nodes, this makes the graph structurally cohesive. I assign different attributes Xi(vi) like,

Patron Id, Path From Property, Path To Property, Time From Property, Time To Property, and

Place Visited on all the vertices vi ∈ V . Since each attribute may have different values on each

node, the probability threshold value of Node-weight =10.0 and Edge-Weight =1.0 is set. Table 6.6

and Table 6.7 represent all the attribute type-value pairs having probability greater than or equal

to Node-weight and Edge-weight, respectively. Table 6.8 represents the Attribute Index Structure

for the graph dataset. Figures 6.5, and 6.6(a), 6.6(b), 6.6(c), 6.6(d), 6.6(e), and 6.6(f) show the

31

Table 6.3: Large Graph Datasets

Graph Nodes V Edges E Prob. of edge Attributes on each node

Facebook 2000 1000025 P=0.50 7

Facebook 5000 4997567 P=0.40 7

Facebook 10000 14998579 P=0.30 7

Youtube Video Crawl 2000 998910 P=0.50 9

Youtube Video Crawl 5000 4997518 P=0.40 9

Youtube Video Crawl 10000 14996737 P=0.30 9

Terrorist Data 2000 1000470 P=0.50 7

Terrorist Data 5000 4998900 P=0.40 7

Terrorist Data 10000 15004225 P=0.30 7

Caesars Entertainment 2000 998937 P=0.50 6

Caesars Entertainment 5000 4887265 P=0.40 6

Caesars Entertainment 10000 14997657 P=0.30 6

original graph and the communities generated through the proposed method, respectively. Now,

for the personalized community detection, I can create the queries q like, find a community of nodes

where people traveled from property A to property B. Such a query q represents the class of keyword

attributes Path From Property = A,Path To Property = B, and the personalized community

detection algorithm finds all the nodes vi ∈ I, where Ci(vi) = q. This creates a community of

nodes Commi(Ci), where all the nodes have path from Property A to B . However, the general-

ized community detection finds the communities Commi(Ci) for all Ci ∈ I, which contains all the

nodes sharing the keyword attribute information, resulting in more accurate community detection

as desired.

32

Table 6.4: Experimental Results on Small Graphs

Legend: V: Set of Vertices; E: Set of Edges; JCD: Jaccard Attribute Similarity Index;
GD: Shortest Path Length(Geodesic Distance)

Graph V E JCD GD Communities Time

Twitter User Profile 100 3426 70% 3 2 1

Twitter User Profile 200 11860 70% 3 2 3

Twitter User Profile 500 74625 70% 3 4 10

Twitter User Profile 1313 517072 70% 5 3 25

Skytrax Airline Reviews 100 3514 50% 3 3 1

Skytrax Airline Reviews 200 13882 50% 3 3 2

Skytrax Airline Reviews 500 74907 50% 3 4 6

Skytrax Airline Reviews 1005 300202 50% 3 5 28

Terrorist Data 100 3457 70% 3 2 1

Terrorist Data 200 13969 70% 3 2 2

Terrorist Data 500 74753 70% 3 3 10

Terrorist Data 1000 299420 70% 3 3 37

Caesars Entertainment 100 3439 70% 3 10 1

Caesars Entertainment 200 13929 70% 3 12 2

Caesars Entertainment 500 74835 70% 3 12 6

Caesars Entertainment 1000 299953 70% 3 13 22

(a) Run Time for Large Graph Datasets (b) Number of Communities for Large Graph Datasets

Figure 6.4: Run Time vs Number of Communities for Large Graph Datasets

33

Table 6.5: Experimental Results on Large Graphs

Legend: V: Set of Vertices; E: Set of Edges; JCD: Jaccard Attribute Similarity Index;
GD: Shortest Path Length(Geodesic Distance)

Graph V E JCD GD Communities Time

Facebook 2000 1000025 70% 3 60 100

Facebook 5000 4997567 70% 3 37 2577

Facebook 10000 9996858 70% 3 51 1701

Youtube Video Crawl 2000 998910 70% 3 5 62

Youtube Video Crawl 5000 4997518 70% 3 5 817

Youtube Video Crawl 10000 14996737 70% 3 6 6785

Terrorist Data 2000 1000470 70% 3 9 100

Terrorist Data 5000 4998900 70% 5 10 2149

Terrorist Data 10000 15004225 70% 5 10 25000

Caesars Entertainment 2000 998937 70% 3 7 109

Caesars Entertainment 5000 4997265 70% 3 10 1321

Caesars Entertainment 10000 14997657 70% 3 10 7383

Table 6.6: Node-weight for Caesars-WiFi Dataset

Id Attribute Type-Value pair Probability

1 Property Region : Gaming 21.0

2 To Property :Cromwell 20.50

3 From Property : Cromwell 20.50

4 From Property : Harrahs LV 18.0

5 From Property : Paris 17.0

6 To Property : Caesars Palace 16.00

7 To Property : Paris 15.00

8 From Property : Caesars Palace 14.50

9 To Property : Harrahs LV 14.00

10 From Property : Ballys 14.00

11 Property Region : Cromwell Valet 11.00

12 To Property : Flamingo 10.00

34

Table 6.7: Edge-weight for Caesars-WiFi Dataset

Id Attribute Type-Value pair Probability

1 Property Region : Gaming 4.5

2 To Property :Cromwell 4.0

3 From Property : Cromwell 4.0

4 From Property : Harrahs LV 3.16

5 From Property : Paris 3.0

6 To Property : Caesars Palace 3.00

7 To Property : Paris 2.26

8 From Property : Caesars Palace 2.19

9 To Property : Harrahs LV 2.00

10 From Property : Ballys 2.00

11 Property Region : Cromwell Valet 1.09

Table 6.8: Attribute Index Structure for Caesars-WiFi Dataset

Class Node V Attributes count

1 0 {2, 4, 5, 8, 10} 48

2 2 {0, 1, 6, 9, 10} 35

3 9 {0, 1, 2, 5} 15

4 11 {0, 6, 7, 9} 16

5 14 {0, 3, 4, 5, 6} 29

6 21 {0, 1, 6, 7, 10} 6

7 31 {2, 4, 6, 8, 10} 4

8 35 {0, 1, 2, 3} 9

9 47 {0, 2, 3, 6, 8} 12

10 50 {0, 5, 7, 8, 9} 13

11 61 {1, 2, 4, 10} 5

12 188 {0, 1, 10, 3, 4} 2

35

Figure 6.5: Original Graph Generated for Caesars Dataset

36

(a) From ”Cromwell” to ”Harrahs LV” at ”Cromwell-
Valet”

(b) From ”Bally’s” to ”Cromwell” at ”Gaming”

(c) From ”Cromwell” to ”Caesars Palace”

(d) From ”Caesars Palace” to ”Paris” at ”Gaming”

(e) From ”Harrahs LV” to ”Caesars Palace” at ”Gam-
ing””

(f) From ”Bally’s” to ”Harrahs LV”

Figure 6.6: Communities Detected for Caesars Way Finding Data

37

Chapter 7

CONCLUSION AND FUTURE

WORK

A community structure derived from an attributed graph exhibits the structure and keyword at-

tribute cohesiveness. The proposed keyword search based method derives communities with struc-

ture and keyword attribute cohesiveness by constructing an Attribute Index Structure. The At-

tribute Index Structure correctly represents different classes of attributes and helps to derive the

community of nodes which share a finite number of keyword attributes, along with the cohesive

structure. The proposed method is able to provide the personalized and generalized community

detection method, which provides the flexibility to determine community of nodes in an online

manner. Hence, the proposed method provides a more accurate measure of community detection

in terms of the cohesive structure as well as keyword attribute similarity, compared to the existing

algorithms. In addition, the proposed method provides a mechanism to generate communities in an

online manner, which is more useful to determine real-time community of nodes. For future work, I

intend to design a probabilistic model to predict the community of a node based on its connectivity

with different nodes and attribute similarity. A probabilistic model can predict the class of a node,

which can be further used for the Advanced Keyword Search techniques. I will also examine other

metrics of keyword search over distributed graphs so that, the current work can be extended to a

distributed environment and more efficient techniques of keyword search can be incorporated for

the purpose of community detection.

38

Bibliography

[10.14] Efficient core maintenance in large dynamic graphs. IEEE Transactions on Knowledge

Data Engineering, 26(10):2453–2465, 2014.

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.

Rev. Mod. Phys., 74:47–97, Jan 2002.

[AF02] David Aldous and James Allen Fill. Reversible markov chains and random walks

on graphs, 2002. Unfinished monograph, recompiled 2014, available at http://www.

stat.berkeley.edu/\simaldous/RWG/book.html.

[BHN+02] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword

searching and browsing in databases using banks. In Proceedings 18th International

Conference on Data Engineering, pages 431–440, 2002.

[CDL08] X. Cheng, C. Dale, and J. Liu. Statistics and social network of youtube videos. In

2008 16th Interntional Workshop on Quality of Service, pages 229–238, June 2008.

[CXW+13] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. Online search

of overlapping communities. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’13, pages 277–288, New York, NY,

USA, 2013. ACM.

[CXWW14] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. Local search of com-

munities in large graphs. In Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’14, pages 991–1002, New York, NY,

USA, 2014. ACM.

[CZ18] Sanket Chobe and Justin Zhan. Advancing community detection using keyword at-

tribute search. 2018. Manuscript submitted for publication to IEEE Access.

[DGM06] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. k. Phys. Rev. Lett., 96:040601,

Feb 2006.

[DYW+07] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-cost

connected trees in databases. In 2007 IEEE 23rd International Conference on Data

Engineering, pages 836–845, April 2007.

[ENG04] Mark E.J. Newman and Michelle Girvan. Finding and evaluating community structure

in networks. 69:026113, 03 2004.

39

[FB07] Santo Fortunato and Marc Barthlemy. Resolution limit in community detection. Pro-

ceedings of the National Academy of Sciences, 104(1):36–41, 2007.

[FC12] Santo Fortunato and Claudio Castellano. Community Structure in Graphs, pages 490–

512. Springer New York, New York, NY, 2012.

[FCLH16] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. Effective community

search for large attributed graphs. Proc. VLDB Endow., 9(12):1233–1244, August

2016.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75 – 174,

2010.

[GEJN02] Michelle Girvan and Mark E. J. Newman. Community structure in social and biological

networks. proc. natl acad. sci. usa 99, 7821-7826. 99:7821–6, 07 2002.

[GG17] Alexander Gutfraind and Michael Genkin. A graph database framework for covert net-

work analysis: An application to the islamic state network in europe. Social Networks,

51(Supplement C):178 – 188, 2017. Crime and Networks.

[HC18] T. He and K. C. C. Chan. Misaga: An algorithm for mining interesting subgraphs in

attributed graphs. IEEE Transactions on Cybernetics, PP(99):1–14, 2018.

[HCQ+14] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k-truss

community in large and dynamic graphs. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’14, pages 1311–1322,

New York, NY, USA, 2014. ACM.

[HKA16] M. B. Hutair, I. Kamel, and Z. Al Agbari. Social community detection based on node

distance and interest. In 2016 IEEE/ACM 3rd International Conference on Big Data

Computing Applications and Technologies (BDCAT), pages 274–279, Dec 2016.

[KA11] Mehdi Kargar and Aijun An. Keyword search in graphs: Finding r-cliques. Proc.

VLDB Endow., 4(10):681–692, July 2011.

[KLPM10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a

social network or a news media? In WWW ’10: Proceedings of the 19th international

conference on World wide web, pages 591–600, New York, NY, USA, 2010. ACM.

[KPC+05] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desai,

and Hrishikesh Karambelkar. Bidirectional expansion for keyword search on graph

databases. In Proceedings of the 31st International Conference on Very Large Data

Bases, VLDB ’05, pages 505–516. VLDB Endowment, 2005.

[LBL+16] H. J. Li, Z. Bu, A. Li, Z. Liu, and Y. Shi. Fast and accurate mining the community

structure: Integrating center locating and membership optimization. IEEE Transac-

tions on Knowledge and Data Engineering, 28(9):2349–2362, Sept 2016.

40

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[LNMG09] Yan Liu, Alexandru Niculescu-Mizil, and Wojciech Gryc. Topic-link lda: Joint models

of topic and author community. In Proceedings of the 26th Annual International Con-

ference on Machine Learning, ICML ’09, pages 665–672, New York, NY, USA, 2009.

ACM.

[LQYM15] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. Influential community search in

large networks. Proc. VLDB Endow., 8(5):509–520, January 2015.

[NAXC08] Ramesh M. Nallapati, Amr Ahmed, Eric P. Xing, and William W. Cohen. Joint

latent topic models for text and citations. In Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’08, pages

542–550, New York, NY, USA, 2008. ACM.

[RAK07] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect

community structures in large-scale networks. , 76(3):036106, sep 2007.

[RB07] Martin Rosvall and Carl T. Bergstrom. An information-theoretic framework for resolv-

ing community structure in complex networks. Proceedings of the National Academy

of Sciences, 104(18):7327–7331, 2007.

[RFP13] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy. Efficient community detection

in large networks using content and links. In Proceedings of the 22Nd International

Conference on World Wide Web, WWW ’13, pages 1089–1098, New York, NY, USA,

2013. ACM.

[RTB07] Martin Rosvall and Carl T Bergstrom. An information-theoretic framework for resolv-

ing community structure in complex networks. 104:7327–31, 06 2007.

[SCFS12] Mrinmaya Sachan, Danish Contractor, Tanveer A. Faruquie, and L. Venkata Subrama-

niam. Using content and interactions for discovering communities in social networks.

In Proceedings of the 21st International Conference on World Wide Web, WWW ’12,

pages 331–340, New York, NY, USA, 2012. ACM.

[Sei83] Stephen B. Seidman. Network structure and minimum degree. Social Networks,

5(3):269 – 287, 1983.

[SG10] Mauro Sozio and Aristides Gionis. The community-search problem and how to plan

a successful cocktail party. In Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 939–948, New

York, NY, USA, 2010. ACM.

[SS17] Peng Gang Sun and Xiya Sun. Complete graph model for community detection.

Physica A: Statistical Mechanics and its Applications, 471(Supplement C):88 – 97,

2017.

41

[TFGER07] Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad. Fast best-

effort pattern matching in large attributed graphs. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’07, pages 737–746, New York, NY, USA, 2007. ACM.

[WBW+13] Longju Wu, Tian Bai, Z. Wang, Limei Wang, Yu Hu, and Jinchao Ji. A new com-

munity detection algorithm based on distance centrality. In 2013 10th International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pages 898–902, July

2013.

[WZC18] Jimmy Ming-tai Wu, Justin Zhan, and Sanket Chobe. Mining association rules for

low frequency itemsets. 2018. Manuscript submitted for publication to PLOS ONE.

[XKW+12] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A model-based

approach to attributed graph clustering. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’12, pages 505–516, New

York, NY, USA, 2012. ACM.

[YJCZ09] Tianbao Yang, Rong Jin, Yun Chi, and Shenghuo Zhu. Combining link and content

for community detection: A discriminative approach. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’09, pages 927–936, New York, NY, USA, 2009. ACM.

[YLC+17] Y. Yuan, X. Lian, L. Chen, J. X. Yu, G. Wang, and Y. Sun. Keyword search over

distributed graphs with compressed signature. IEEE Transactions on Knowledge and

Data Engineering, 29(6):1212–1225, June 2017.

[YML13] J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with node

attributes. In 2013 IEEE 13th International Conference on Data Mining, pages 1151–

1156, Dec 2013.

[ZCY09] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on struc-

tural/attribute similarities. Proc. VLDB Endow., 2(1):718–729, August 2009.

[ZWW+09] X. S. Zhang, R. S. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang, and L. Chen. Mod-

ularity optimization in community detection of complex networks. EPL (Europhysics

Letters), 87(3):38002, 2009.

42

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Sanket Chobe

Contact:

Phone: 725-266-1351

Email: chobe@unlv.nevada.edu

Degrees:

Bachelor of Technology in Information Technology 2011

Government College of Engineering, Amravati, India

Thesis Title: Advancing Community Detection Using Keyword Search

Thesis Examination Committee:

Chairperson, Dr. Justin Zhan, Ph.D.

Committee Member, Dr. Hal Berghel, Ph.D.

Committee Member, Dr. Wolfgang Bein, Ph.D.

Graduate Faculty Representative, Dr. Xiangnining Chen, Ph.D.

43

