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Abstract

A splay tree is a self-adjusting binary search tree in which recently accessed elements are

quick to access again. Splay operation causes the sequential bottleneck at the root of the

tree in concurrent environment. The Lazy splaying is to rotate the tree at most one per

access so that very frequently accessed item does full splaying. We present the RCU (Read-

copy-update) based synchronization mechanism for splay tree operations which allows reads

to occur concurrently with updates such as deletion and restructuring by splay rotation.

This approach is generalized as relativistic programming. The relativistic programming is

the programming technique for concurrent shared-memory architectures which tolerates dif-

ferent threads seeing events occurring in different orders, so that events are not necessarily

globally ordered, but rather subject to constraints of per-thread ordering.

The main idea of the algorithm is that the update operations are carried out concurrently

with traversals/reads. Each update is carried out for new reads to see the new state, while

allowing pre-existing reads to proceed on the old state. Then the update is completed after

all pre-existing reads have completed.
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Chapter 1

Introduction

1.1 Motivation

The hardware manufacturers are shifting towards multi-core computer design and the num-

ber of cores per computer is rising rapidly. More importantly, the scientific research is

growing fast with the large data volume and requiring more computations. This demands

the development of concurrent computation in the software system to utilize all the cores

we have in hand so that the scientific computations can be performed fast enough on the

ever-increasing big data volume. The main challenge of the multi-core computation is to

perform task safely concurrent with optimum scalability. Many known techniques fails on

scalability while focusing on safe concurrency [25].

Read-Copy-Update [23] is a novel synchronization mechanism that achieves scalability im-

provements by allowing reads to occur concurrently with updates. RCU supports concur-

rency between a updater and readers which is suitable for read-mostly data structures.

Relativistic programming [14] is a generalization of the techniques developed for RCU. The

terminology is introduced by Jonathan Walpole and his team at Portland State Univer-

sity developing the primitives and implementing the techniques in different data structures

[24, 15]. Based on their use and applicability, RCU is described as ”a way of waiting for

things to finish” [19] and relativistic programming is described as ”a way of ordering things”

[14]. The relativistic programming primitives allow readers and writers to constrain the or-
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der in which the individual memory operations that compose the read and write are visible

to each other. Unlike other synchronization mechanisms that try to impose a total order

on operations to the same data, relativistic programming allows each reader to view writes

in a different order. Each reader is allowed their own relative reference frame in which to

view updates, and it is this property that gives relativistic programming its name.

The building block of the concurrent programs are the concurrent data structures that

supports synchronization among the threads. Designing such data structure is far more

difficult than the one for sequential software. Binary Search Tree is widely used in sequential

context to implement lookup tables and dynamic sets. To access the items more quickly,

self-adjusting version of BST called Splay tree is used which moves frequently used nodes

near the root. In the concurrent context, moving the items to the root causes immediate

sequential bottleneck. Different solutions have been proposed to resolve this issue. Yehuda

Afek [1] suggests the technique to perform splay in a lazy manner to make it much more

efficient using counters. We follow the counter based technique described by Afek and used

by M. Regmee in his masters thesis dissertation [31] to perform the splay operation. Unlike

the approach in [31] where the restructuring and deletion is postponed during the highly

concurrent access of the tree and performed during the less contention, our approach is

to carry out these operations concurrently with the reads using relativistic programming

primitives as described in [14] to update operations involve multiple writes to multiple

nodes.

1.2 Objective

Most of the concurrent data structure implementations use either blocking ( coarse grained

or fine grained locks) or non-blocking synchronization mechanisms and some uses transac-

tional memory mechanism. Lock based technique is safe but does not scale as it does not

allow multiple threads to access the common data at the same time and hard to manage

effectively. Non-blocking mechanisms are complex to design. Transactional Memory solves

the complexity problem inherent in most NBS techniques, but it still suffers from poor

performance [14]. It provides no more concurrency than is theoretically available with fine

2



grained locking.

Our objective in this thesis is to study the new synchronization mechanism namely Read-

Copy-Update and the generalized version of it called relativistic programming, then apply

their primitives in designing the concurrent self stabilizing Splay Tree in Lazy Splaying

manner. Relativistic programming technique and its primitives are chosen to be applied

for the low overhead readers and joint access parallelism between readers and writers. This

helps splaying and restructuring of the tree in presence of the concurrent read operation in

progress.

1.3 Related Work

The RCU-like access to a binary search tree [30] was described by H. T. Kung and Q. Lehman

in September 1980 in their paper ”Concurrent Maintenance of Binary Search Trees”. After

that several RCU-like mechanisms were studied and proposed by different researchers. It

became popular when it was added in Linux kernel in October of 2002. Paul E. Mckenney

is one of the inventors of RCU. Mckenney presented RCU in his Ph.D. dissertation [19] and

maintains useful contents about RCU and RP in the web [25, 32, 21] and published re-

search papers on RCU [20, 18]. Relativistic Programming research group in Portland State

University is generalizing and standardizing the RCU programming model. They gave the

term ”Relativistic Programming” borrowing from Einsteins theory of relativity in which

each observer is allowed to have their own frame of reference. Jonathan Walpole is the

founder of the Relativistic Programming research group. In relativistic programming, each

reader is allowed to have their own frame of reference with respect to the order of updates.

Different papers [24, 15, 16] and Ph.D. dissertation [14, 35] are published related to relativis-

tic programming model. Hagit Attiya and Maya Arbel from Israel Institute of Technology

are examining the Read Copy Update (RCU) synchronization mechanism, investigating its

implementations and use in concurrent data structures [2, 3]. There are some academic

research on prototype implementation of RCU other than linux kernel namely OpenSolaris

and HelenOS operating systems [28, 17]. The RCU and RP research focuses on read-mostly

data structures and reclamation environment.
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1.4 Outline

In chapter 1, we briefly discussed about the background of choosing the RCU based syn-

chronization technique on a concurrent data structure as a thesis research topic. We then

briefly discussed about the objective of the study and the related research work currently

being done in the the field of RCU and RP synchronization techniques. Many papers related

to RCU and RP implementations have been researched.

In chapter 2, we give brief overview of shared memory system. Then we discuss various

synchronization mechanisms used in shared memory system to work properly in the shared

data. We focus more on Read Copy Update and Relativistic programming techniques and

how they are free from the issues that are in lock based and other synchronization mech-

anisms to work in the concurrent search tree implementation. We also describe about the

concurrent data structure and the correctness criteria for the concurrent data structure.

In chapter 3, we will go over Binary Search Trees, Splay tree fundamentals and splaying

operations in details.

In chapter 4, We will discuss about the RCU fundamentals, its properties and the way it

works. We will go over the ordering and correctness criteria in Relativistic Programming

and also present RP primitives that are used in our implementation. Then we will briefly

describe about our implementation approach.

In chapter 5, we will present the proposed algorithm on binary search tree operations in-

cluding lazy splaying using relativistic primitives discussed in previous chapter. We will

present the pseudo code for the proposed algorithm. Before that we will briefly introduce

the various supporting fields/variables and operation on the binary search tree used.

In chapter 6, we conclude the work and outline the remaining and future work.
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Chapter 2

Background

2.1 Multi-Core Processors

As the transistor size is being decreased day by day, more transistors fit into the single chip

but the clock speed cannot be increased because of the overheating problem. This is the

reason that no matter how many transistors can fit in the single chip, the speed can not

be increased enough to solve the current need. So the manufacturers are developing mul-

ticore architectures. Multiple cores communicate directly through shared hardware caches.

Multiprocessor chips make computing more effective by exploiting parallelism: harnessing

multiple processors to work on a single task [12]. Multi-core is a design in which a single

physical processor contains the core logic of more than one processor [6]. Fig 2.1 [29] is a

basic block diagram of a generic multi-core processor.

Figure 2.1: A basic block diagram of a generic multi-core processor

The availability of multicore system, in fact , provides the environment for parallel and/or
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concurrent computation, it does not speed up by itself. So, to utilize the parallel environ-

ment and perform in optimum speed, we have to rethink about the data structure, algorithm

and the software that works exploiting the parallelism. But the parallel programs are very

difficult to design, write, debug, and tune than sequential software. Concurrent computing

is one of the outstanding challenges of modern Computer Science.

2.2 Concurrent Computing

Concurrent computing is a form of computing in which several computations are executing

during overlapping time periods i.e, concurrently instead of sequentially (one completing

before the next starts)[13]. In a concurrent system, a computation can make progress

without waiting for all other computations to complete where more than one computation

can make progress at the same time. A process is an instance of a program running in a

computer. It is the basic entity that can be executed in a computer. A thread of execution

is the smallest sequence of programmed instructions that can be managed independently by

a scheduler, which is typically a part of the operating system. A thread is a component of a

process. A computer program contains several processes and each process may have multiple

threads. concurrency arises when multiple software threads running at different cores tries

to access some shared resources. In single CPU system the concurrency is observed only

logically. They use the time-sharing technique to share the same CPU within multiple

threads.

2.3 Shared Memory Computation

A shared-memory computation [12] consists of multiple threads, each of which is a sequen-

tial program and they communicate by calling methods of objects that reside in a shared

memory. Threads are asynchronous as they run at different speeds are and can halt for

an unpredictable duration at any time. Thread delays are unpredictable, ranging from mi-

croseconds to even seconds. The shared memory can be centrally located or distributed

into different computation nodes and connected via some form of network. UMA(uniform

memory access) is a kind of shared memory architecture where the shared memory appears

6



to be at equal distance from each processor and hence have the same response time. The

other kind is NUMA(non-uniform memory access) architectures in which a shared memory

might appear to be closer to one processor while another shared memory might appear

closer to another processor and hence they may not have the same response time.

The concurrent execution in sharing resources may cause race condition and behave in

unexpected manner. So the asynchronous concurrent processes have to be synchronized

when they were accessing the shared data. A critical section is a piece of code that accesses

a shared data that must not be concurrently accessed by more than one thread of execution.

A critical section will usually terminate in fixed time, and a thread, task, or process will

have to wait for a fixed time to enter it [8]. Some synchronization mechanism is required

at the entry and exit of the critical section to ensure exclusive use.

2.4 Shared Memory Synchronization

In this section, we discuss about different synchronization mechanisms being used to work

with shared data in the concurrent environment.

2.4.1 Lock Based Synchronization

Lock based synchronization protects critical sections allowing only one thread to enter a

critical section at a time which in fact restricts concurrency and preserves data safety. Lock

is used to achieve mutual exclusion. This is also known as blocking technique. As the

locking restricts concurrency, this mechanism does not scale. More-ever , there are other

disadvantages of lock based synchronization such as deadlock which may occur in a scenario

where two processes running concurrently and locking their current resource waits for an-

other to release the lock to get each-others current resources, that makes them wait forever.

Priority Inversion is another common disadvantage of a lock based system, where a low-

priority thread/process holding a common lock can prevent high-priority threads/processes

from proceeding.

One of the locking techniques that our study in this thesis can be related is the reader-writer
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locking. Reader writer lock allows concurrent access but for readers only. Multiple threads

can read the data concurrently but an exclusive lock is needed for modifying data. When

a writer is writing the data, readers will be blocked until the writer is finished writing.

There exists two kinds of locking depending on granularity of the lock. They are Coarse-

grained and Fine-grained locking. Coarse-grained locking is used to protect the entire

data structure by a single lock which may cause sequential bottleneck and progress delay

[26]. Fine-grained locking can be used to obtain some degree of concurrency and hence

scalability as multiple locks of small granularity is used to protect different partition of the

data to allow concurrent operations to proceed in parallel as long as they do not access

the same partition of the data. In some cases the fine grained locking may cause negative

impact on performance. For example, if a linked list is partitioned such that each node

has a separate lock, then the cost of acquiring a lock for each node can outweigh any gains

through additional concurrency [14].

2.4.2 Lock Free Synchronization

As single thread that holds a lock in a blocking technique may prevent progress in all other

threads, a non-blocking synchronization technique were developed [11] which guarantees

that some process will complete an operation in a finite number of step. Lock Free im-

plementation is a non-blocking which has guaranteed system-wide progress. Lock-freedom

allows individual threads to starve but guarantees system-wide throughput. An algorithm

is lock-free if it satisfies that when the program threads are run sufficiently long at least

one of the threads makes progress.

2.4.3 Obstruction Free Synchronization

Obstruction free is the weakest non-blocking progress guarantee. An algorithm is obstruc-

tion free if at any point, a single thread executed in isolation (i.e., with all obstructing

threads suspended) for a bounded number of steps will complete its operation. All lock free

algorithms are obstruction free.
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2.4.4 Wait Free Synchronization

In wait-free synchronization implementation, every operation has a bound on the number

of steps the algorithm will take before the operation completes and any process that has

invoked an operation eventually completes unless it fails itself irrespective of number of

active processes or their state. All wait-free algorithms are lock-free.

Above non-blocking mechanisms are better for concurrency than Locking but such algo-

rithms are complex to implement as they must accommodate any arbitrary interleaving

from different threads; and preserve the liveness property in the presence of arbitrary de-

lays in any other thread [14].

2.4.5 Transactional Memory

Transactional memory is an emerging programming model that was developed to provide a

solution to the problem associated with blocking and non-blocking synchronization we dis-

cussed above. It is an approach extended from the approach used in database transactions.

Transaction works on the principle that either all of the operations within a transaction

complete or non of them completes. Two fundamental properties of TM implementations

are disjoint access parallelism and the invisibility of read operations. Disjoint access par-

allelism ensures that operations on disconnected data do not interfere. The invisibility

of read operations means that their implementation does not write to the memory reduc-

ing the memory contention. But [4] proves an inherent trade-off for implementations of

transactional memories: they cannot be both disjoint-access parallel and have read-only

transactions that are invisible and always terminate successfully. TM can be implemented

in hardware (HTM), in software (STM), or both. Hardware transactional memory systems

may comprise modifications in processors, cache and bus protocol to support transactions

and Software transactional memory provides transactional memory semantics in a software

runtime library or the programming language,[6] and requires minimal hardware support

[34]. TM still suffers from poor performance and provides no more concurrency than is

theoretically available with fine grained locking [14].
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2.4.6 Read-Copy-Update

Read-Copy-Update (RCU) is synchronization mechanism which works as a framework for

implementing concurrent algorithms. It allows extremely low overhead, wait-free reads that

occur concurrently with updates. This makes RCU implementation more scalable for read-

mostly algorithm implementations in the concurrent environment. RCU can be used to

replace reader-writer locking. It has also been used in a number of other ways. As readers

do not directly synchronize with RCU updaters RCU read paths extremely fast, and also

permits RCU readers to accomplish useful work even when running concurrently with RCU

updaters. RCU ensures that reads are coherent by maintaining multiple versions of objects

and ensuring that they are not freed up until all pre-existing read-side critical sections

complete [25]. RCU defines and uses efficient and scalable mechanisms for publishing and

reading new versions of an object, and also for deferring the collection of old versions. These

mechanisms distribute the work among read and update paths in such a way as to make read

paths extremely fast. In some cases (non-preemptable kernels), RCU’s read-side primitives

have zero overhead. RCU is made up of three fundamental mechanisms namely Publish-

Subscribe Mechanism (for insertion),Wait For Pre-Existing RCU Readers to Complete (for

deletion) and maintain Multiple Versions of Recently Updated Objects (for readers). RCU

API does not provide any means of synchronization among writers. We will revisit RCU in

details in chapter 4.

2.4.7 Relativistic Programming

Relativistic programming is a programming technique for concurrent shared-memory ar-

chitectures which is the generalization of the RCU model. It basically has two following

properties [32].

1. It tolerates different threads seeing events occurring in different orders, so that events are

not necessarily globally ordered, but rather subject to constraints of per-thread ordering,

and in a few cases, partial-order constraints on global ordering.

2. It tolerates conflicts, for example, one thread can safely modify a memory location de-

spite the fact that other threads might be concurrently reading that same memory location.

Howard [14] states that the relativistic programming primitives allow readers and writers
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to constrain the order in which the individual memory operations that compose the read

and write are visible to each other. Unlike other synchronization mechanisms that try to

impose a total order on operations to the same data, relativistic programming allows each

reader to view writes in a different order. Each reader is allowed their own relative ref-

erence frame to view updates, and it is this property that gives relativistic programming

its name. Relativistic programming constrains ordering in a pairwise manner between a

writer and each reader. Each reader forms a different pair with the writer so the ordering

constraints can be applied differently to each reader-writer pair. By not requiring a total

order agreed on by all threads minimizing the ordering constraints and thus the overhead

necessary to impose those ordering constraints. By minimizing the overhead, relativistic

programming holds the promise for better performance and scalability. Read Copy Update

and hence Relativistic programming focus on the read performance that is beneficial for

read-mostly data structures. Research on relativistic programming aims to standardize the

programming model of Read-Copy Update. Josh Triplett proposed a new memory ordering

model in his PHD thesis in 2011 [35] for relativistic programming model called relativistic

causal ordering, which combines the scalability of relativistic programming and Read-Copy

Update with the simplicity of reader atomicity and automatic enforcement of causality.

We will relativistic Relativistic Programming primitives and details along with Read Copy

Update in chapter 4.

2.5 Correctness in Concurrent Implementations

As long as there is no guarantee that algorithm or implementation is correct to give de-

sired output, it can not be accepted only based on the performance, code beauty or any

other factors. But checking correctness of concurrent implementations is not that straight

forward as compared to sequential implementations. In addition to defining the correct se-

quential behavior, correct interaction between threads also has to be defined. Threads

being asynchronous in nature, adds the difficulties in defining the interaction between

them.Concurrency is meant for improved performance but adds complexity in designing

as well as verifying the correctness of the implementations. The correctness is the behavior

of concurrent objects which gives the safety property. The other property of concurrent
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object is the liveness and is referred as progress behavior. It is easier to reason about con-

current objects if we can somehow map their concurrent executions to sequential ones, and

limit our reasoning to these sequential executions [12].

In lock based implementations, correctness is defined in terms of data structure invariants

and threads are allowed to violate the invariants while they hold the lock as they affect

critical section sequentially so no other threads will access the data and see an invalid state.

But to be correct implementation, all invariants have to be restored prior to releasing the

lock.

In Non-blocking implementations, as data can be changed by one thread during another

threads operation, invariants cannot be used in the same way as in lock based implementa-

tions. Following are the correctness criteria and principles for the concurrent implementa-

tions [12].

2.5.1 Quiescent Consistency

An object is quiescent if it has no pending method calls. Quiescent consistency can be

defined by following two principles [12]

1. Method calls should appear to happen in a one-at-a-time,sequential order (Principle

3.3.1) [12].

2. Method calls separated by a period of quiescence should appear to take effect in their

real-time order (Principle 3.3.2) [12].

It means any time an object becomes quiescent,then the execution so far is equivalent to

some sequential execution of the completed calls. Formally, the object is called quiescently

consistent, given a concurrent execution history of an object, if all operations appear to

occur in some sequential order and non overlapping operations appear to occur in real-time

order assuming each operation accesses a single object.
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2.5.2 Sequential Consistency

The order in which a single thread issues method calls is called its program order. Sequen-

tial Consistency is defined by the Principle 3.3.1 stated above collectively with following

principle: Method calls should appear to take effect in program order (Principle 3.4.1) [12].

Sequential consistency requires that method calls act as if they occurred in a sequential

order consistent with program order. That is, in any concurrent execution, there is a way

to order the method calls sequentially so that they are consistent with program order, and

meet the objects sequential specification. sequential consistency is not compositional that

means the result of composing sequentially consistent components is not itself necessarily

sequentially consistent.

2.5.3 Linearizability

Linearizability is a correctness condition for concurrent objects. It permits a high degree

of concurrency, yet it permits programmers to specify and reason about concurrent objects

using known techniques from the sequential domain [13]. Linearizability can be defined by

the following principle

Each method call should appear to take effect instantaneously at some moment between its

invocation and response (Principle 3.5.1) [12].

This principle states that the real-time behavior of method calls must be preserved. For-

mally, the object is called linearizability given a concurrent execution history of an object,if

the system is sequentially consistent and the sequential order is consistent with real time;

i.e., all operations appear to happen between their invocation and response assuming each

operation accesses a single object. Every linearizable execution is sequentially consistent,

but not vice versa.

We will discuss about the correctness criteria in for relativistic programming in section 4.2.
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Chapter 3

Literature Review

There are lots of research is being done to develop the scalable version of the concurrent

data structures from the sequential version for the common data structures such as stack,

queue, linked list, hash tables and skip lists and different varieties of binary search trees

like splay tree.

Data structures that allows the efficient retrieval of an element from the set of elements are

called search structures. Binary Search Tree is the mostly used search structure. We will

describe about the binary search tree and the splay tree in the following sections.

3.1 Binary Search Tree

Binary search trees(BST) are a class of data structures used to implement lookup tables

and dynamic sets. They store data items, known as keys and support three operations

Find(key), Insert(key) and Delete(key) operations.

A binary search tree is a node-based binary tree data structure where each node has a

comparable key and an associated value and satisfies the restriction that the key in any

node is larger than the keys in all nodes in that node’s left sub-tree and smaller than the

keys in all nodes in that node’s right sub-tree [5]. Fig 3.1 is a BST of size 10 and depth

3 with root 17 and leaves 1, 5, 20 and 25. Binary search trees keep their keys in sorted
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order, so that lookup and other operations can use the principle of binary search: when

looking for a key in a tree, they traverse the tree from root to leaf, making comparisons

to keys stored in the nodes of the tree and deciding, based on the comparison, to continue

searching in the left or right subtrees. Each lookup/insertion/deletion takes O(n) worst

case time complexity where n is the number of items stored in the tree.

Figure 3.1: Binary Search Tree

Concurrent implementation of any search tree can be done using single global lock. Some

level of concurrency can be obtained using reader-writer lock which allows readers execute

concurrently with each other. Using fine grained locking with one lock per nodes can im-

prove the performance. RCU based synchronization further allows reader and writer execute

together which scales even more. But this technique does not specify the synchronization

among the updaters.

There are various self adjusting binary search trees which restructures itself based on certain

conditions to make the overall operations efficient. The restructuring is done using tree

rotations that does not effect the BSTs property. AVL tree, Red Black Tree and Splay tree

are the popular example of such trees.
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3.2 Splay Tree

A splay tree is a self-adjusting binary search tree with the additional property that recently

accessed elements are quick to access again. It performs basic operations such as insertion,

look-up and removal in O(log n) amortized time. For many sequences of non-random oper-

ations, splay trees perform better than other search trees, even when the specific pattern of

the sequence is unknown [33]. The Splay tree is suitable for the applications where fraction

of the entries are the targets of most of the find operations. The splay tree was invented by

Daniel Dominic Sleator and Robert Endre Tarjan in 1985.

The find() operation in a splay tree begins like the find() operation in an ordinary binary

search tree. then tree is traversed until the node is found or reach a node from which the

next step leads to a null pointer. Then it performs the splaying on the node where the search

ended node for find() operation irrespective of the result whether it found the searched key

or not. The node is splayed up the tree through a sequence of rotations, so that the node

will be on the root of the tree. This will bring the recently accessed entries near the root

and improve the balance along the branch if the node being splayed lies deeply down an

unbalanced branch of the tree prior to the splay operation. So if the node being splayed is

deep, many nodes on the path to that node are also deep and by restructuring the tree, we

make access to all of those nodes cheaper in the future.

3.3 Splaying

splaying is the operation on the node of interest through which a recently accessed nodes are

kept near the root and the tree remains roughly balanced to achieve the desired amortized

time bounds .

Each particular step depends on three factors:

Case I: Whether node of interest is the left or right child of its parent node.

Case II: Whether parent node is the root or not, and if not.

Case III: Whether parent is the left or right child of its parent.
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Based on above cases, there are three types of splay steps. Additionally, there may be right

or the left handed cases based on the position of the nodes being splayed and its parent(right

or left). As they are symmetric, only one of the two cases is explained here.

Zig step: This is done when parent is the root. The tree is rotated on the edge between the

node of interest and its parent. Fig 3.2 shows the tree before and after the zig step, not it

does not break the BST property.

Figure 3.2: Zig step

Zig-zig step: This is done when parent of the node being splayed is not the root and the

node and parent are either both right children or are both left children. The Fig 3.3 shows

the case where both are the left children. The tree is rotated on the edge joining parent

with its parent, then rotated on the edge joining the node with parent.
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Figure 3.3: Zig-zig step

Zig-zag step: This step is done when parent of the node being splayed is not the root and

the node is a right child and parent is a left child or vice versa. The tree is rotated on the

edge between parent and the node to be splayed, and then rotated on the resulting edge

between the node and garend parent. Fig 3.4 shows the Zig-zag operation.

Figure 3.4: Zig-zag step
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Bottom-up splaying requires two traversals, one is from root to the node to be splayed,

and second is rotating back to the root. The top-down splaying can be used to perform

splay operation in one traversal on the way down the access path. This approach uses

three sets of nodes left, right and middle tree. Left tree and right tree contain all items

of original tree known to be less than or greater than current item respectively and mid-

dle tree consists of the sub-tree rooted at the current node. These three sets are updated

down the access path while keeping the splay operations in check. Top-down splaying uses

only 2 cases: zig and zig-zig. zig-zag is reduced to a zig, and either a second zig, or a zig-zig.

Number of restructuring in splaying can be reduced with semi-splaying preserving the prop-

erties of splay tree. In Semi-splaying an element is splayed only partway towards the root.

It reduces the depth of every node on the access path to at most about half of its previous

value. Only one rotation is performed in the zig-zag case, but two steps are taken up the tree.

Another way to reduce restructuring is to do full splaying, but only in some of the access

operations, when the access path is longer than a threshold.
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Chapter 4

Methodology

In this chapter, we discuss about background idea and concept of our solution. We mainly

discuss about synchronization mechanism used: Read-Copy-Update (RCU) and Relativistic

Programming (RP) synchronization mechanisms, its fundamental properties, ordering and

correctness criteria and primitives.

4.1 RCU Fundamental

We discussed about Read-Copy-Update as one of synchronization mechanisms in section

2.4.6, now we will describe it in details.

The essential property of RCU is that, readers can access the data structure when it is being

updated. That means, RCU supports concurrency between a single updater and multiple

readers. This property is achieved by following three fundamental mechanisms of RCU [25]:

1. Publish-Subscribe Mechanism :

This mechanism is used during concurrent insertion process. The rcu assign pointer() prim-

itive is used to publish the new structure. The rcu dereference() primitive is used by readers

in read-side critical section as subscribing to a given value of the specified pointer, guar-

anteeing that subsequent dereference operations will see any initialization that occurred

before the corresponding publish (rcu assign pointer()) operation. This process can be well
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described by the fig 4.1 [30] below. There are four-state states in insertion procedure. The

red color indicates that concurrent readers may be accessing it and so updaters should take

care in that situations. The green color indicates that the is inaccessible to the readers.

The first state shows a global pointer named ”gptr” that is initially NULL, In second state

memory is allocated for a new structure. This structure has indeterminate state but is inac-

cessible to readers. Because the structure is inaccessible to readers, the updater may carry

out any desired operation without fear of disrupting concurrent readers. In the third state

the new structure is initialized. In final state, this new structure is assigned a reference to

gptr using rcu assign pointer(). In this state, the structure is accessible to readers. This

assignment is atomic so concurrent readers will either see a NULL pointer or a valid pointer

to the new structure, but not some mash-up of the two values.

Figure 4.1: RCU insertion procedure

2. Wait For Pre-Existing RCU Readers to Complete:

This mechanism is used during concurrent delete process to wait for all pre-existing RCU

reads (RCU reads are carried out between rcu read lock and rcu read unlock primitives

called as RCU read-side critical section) to completely finish by using the synchronize rcu()

or wait for readers primitives. Considering this mechanism, McKenney describes RCU as

a way of waiting for things to finish [12].
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This RCU deletion process can be well described by the fig 4.2 [30] below.

The yellow color indicates that pre-existing readers might still have a reference to the data.

The first state shows a linked list containing elements A, B, and C. In second state, element

B is removed using list del rcu() primitive. The link from element B to C is left intact in

order to allow readers currently referencing element B to traverse the remainder of the list.

Readers accessing the link from element A will either obtain a reference to element B or

element C, but either way, each reader will see a valid and correctly formatted linked list.

Preexisting readers may still have a reference to element B, new readers have no way to

obtain a reference. A waitforreaders operation transitions to the third state. The waitfor-

readers need only wait for preexisting readers, but not new readers. Therefore, it is now

safe for the updater to free element B, and so freed using free() in the final state.

Figure 4.2: RCU delete procedure
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Any statement that is not within an RCU read-side critical section is said to be in a quiescent

state, and such statements are not permitted to hold references to RCU-protected data

structures, nor is the wait-for-readers operation required to wait for threads in quiescent

states. Any time period during which each thread resides at least once in a quiescent state

is called a grace period. The wait-for-readers operation must wait for at least one grace

period to elapse. Fig 4.3 [25] below depicts the way of waiting for pre-existing RCU read-side

critical sections to completely finish.

Figure 4.3: RCU way of waiting for pre-existing readers to complete

3. Maintain Multiple Versions of Recently Updated Objects:

This mechanism is used by readers to maintain multiple versions of data while deleting or

replacing the data concurrently by the updaters. As readers do not synchronize directly with

updaters, readers might be concurrently scanning while removing data. These concurrent

readers might or might not see the newly removed element, depending on timing. However,

readers that were delayed just after fetching a pointer to the newly removed element might

see the old version of the data for quite some time after the removal. Therefore, we now

have two versions of the data. Different versions (with or without B) that different readers

may see can be seen in fig 4.2 [30] in state 2.
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The most common use of RCU is to replace the reader-writer lock, but are used in a number

of other ways too. In reader-writer locking, any reader that begins after the writer starts

executing is guaranteed to see new values, and readers that attempt to start while the writer

is spinning might or might not see new values, depending on the reader/writer preference

of the rwlock implementation in question. In contrast, in RCU, any reader that begins

after the updater completes is guaranteed to see new values, and readers that end after the

updater begins might or might not see new values, depending on timing. [22] Fig 4.4 below

shows how the RCU readers well see the change more quickly than reader-writer-locking

readers.

Figure 4.4: RCU and Reader-writer Lock
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4.2 Relativistic Programming

In section 2.4.7, we discussed briefly about Relativistic Programming as a generalization

of Read-Copy-Update synchronization mechanism, now we will discuss about the cor-

rectness and ordering criteria of Relativistic Programming, which is different than other

Non-blocking synchronizations as it allows read and write to have joint access parallelism.

Howard [14] presented a new analysis of the ordering requirements of relativistic programs

and the primitives that support them along with the correctness criteria that can be applied

to relativistic programs and Triplett [35] presented new memory model called Relativistic

Causal Ordering,a memory model for scalable concurrent data structures in their Phd dis-

sertations.

4.2.1 Ordering in Relativistic Programming

Concurrent implementations may be erroneous due to the results of reordering by compilers

and hardware as they are capable of reordering the execution of a program. So concurrent

programs must be written to prevent the erroneous results by reorderings.

Relativistic programming provides ordering primitives and rules for their placement which

is used for the operations that need to be ordered. If these primitives work correctly and are

used correctly, they will only allow correct orderings of execution. The effects of concurrency

in Relativistic Programming are visible but the primitives and the methodology abstract

away the details making it much easier to manage concurrency.

Following are the ordering relationships in concurrent implementations:

Program order is the order defined by the source code of the program. Erroneous executions

by reordering should be resolved by inserting primitives to preserve program order.

Occurred Before is used to show the outcome of a race for two particular instances of

threads. A Occurred Before B is written as A → B.
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Required Before is used for the condition that two instances should occur in the desired

order. A Required Before B is written as A ⇒ B.

Following are the ordering primitives in Relativistic programming:

rp-publish, rp-read, start-read, end-read, and wait-for-readers. The rp-publish and rp-read

primitives work together to implement the dependency ordering mechanism. Following or-

dering relationship is guaranteed by these primitives [14]:

∀ readers and any wait-for-readers

if start-read → (the start of wait-for-readers)

then end-read ⇒ (the end of wait-for-readers)

Relativistic programming does not guarantee a total order ( neither totally chaotic) on all

events that helps to have higher performance. There are some correct but non-linearizable

solutions in RP, but NOT all operations supported and implemented by RP is non-linearizable.

4.2.2 Correctness in Relativistic Programming

As there is no isolation between reads and writes, the use of invariants enforced at the end

of a write-side critical section is not adequate for correctness in relativistic prigramming.

It allows non-linearizable solutions as each reader is allowed to have their own view of the

order of updates. So Linearizability is also inadequate.

Howard [14] lists down following correctness criteria for relativistic implementations of

ADTs:

1. Updates leave the ADT in an always-valid state meaning a read can access the data

structure at any time without the need for synchronization.

2. Read operations on the ADT see the effects of all previous non-concurrent updates.

3. Read operations do not see any of the effects of later non-concurrent updates.

4. For a read that is concurrent with an update, the read sees either the state of the ADT

prior to the update or after the update, but the read is not allowed to see any other state.
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Chapter 5

Proposed Solution

In this chapter, we will propose the solution for the relativistic reader-writer synchroniza-

tion for the splay tree operations using the RP primitives. The read-side primitives are

wait-free and the implementation is focused on read-side performance and scalability so the

updaters has to do extra work for synchronization so that concurrent readers always read

valid data. RP primitives does not have the primitives to be used among writers, we have

used fine grained locking while accessing the node for updating so that other updaters don’t

have access to the locked nodes.

We first specify the data structure, its attributes and operations used in the implementa-

tions followed by synchronization technique used. Then we will write algorithms to all the

operations and helper functions.

5.1 Data Structures

The data structure we are using is the binary search tree(BST). BST implements the find,

insert and delete operations. To move the frequently accessed items (by find, insert or

delete operations) towards the root so that future access will be faster, additional splay

operation has been implemented. The splay is performed in lazy manner without making

the root a bottleneck.
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We implement internal binary search tree with keys stored in all nodes. Searching for a

key, either in a find operation or at the beginning of an update (insert,delete), is done in a

wait-free manner inside an RCU read-side critical section. Each node contains the following

fields: a key, child[] pointer with dir value left or right pointing left right child respectively,

a lock field for fine grained locking used among updaters. The other fields used for the

count based lazy splay operations [1, 31] are selfCnt which in an estimate on the total

number of operations that has been performed on the node, rightCnt and leftCnt which are

an estimate on the total number of operations that have been performed on items in the

right and left sub-trees of the node. The marked field [2, 10] is used for validation purpose

to see if the node was deleted concurrently by other thread before applying lock. The Tag

field tag[] associated with left or right child is added in order to avoid an ABA problem [2].

A tag field is initialized to zero, and incremented every time the corresponding child field

is set to ⊥ .

The BST tree used has the structure with the two dummy node -1 and ∞ is shown in Fig

5.1 similar to the structure tree used in [2]. The root of the tree always points to a node

with key -1, this node has a right child with key ∞. All other nodes are in the left sub-tree

of ∞.

Figure 5.1: BST with two dummy nodes
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5.2 Operations

Following are the operation including the helper functions that are implemented to support

basic BST operations and Splay operation.

1. get

The helper function get is used by find/insert/delete operations to access or the check

if the node exists to avoid. This helps avoiding lock when searching for a node. It

starts from the root and searches down the tree. It is performed inside a read-side

critical section, wrapped with relativistic programming primitives rp start read and

rp end read. Corresponding RCU primitives rcu read lock and rcu read unlock can

also be used.

2. validate

The validate function is used for validating the nodes that may have been changed

by other overlapping updater after returning from get function but before locking

the node. Parent-child relation is used by checking the child pointer of the parent.

Validation that the node was not removed is used using marked field.

3. incrementTag

This helper function receives a node and a direction to the child, if the child of node

in the provided direction is ⊥ , it increments the tag associated with this direction.

The purpose of this function is to avoid ABA problem.

4. find

The find operation invokes get to find the key. If the key is found, it returns the node.

If not found, it returns false. It calls splayNode function and updates the count values

of the corresponding node after accessing it.

5. insert

This function is used to insert a node as a leaf in a way that preserves the BST

property. It requires little synchronization as it does not have to do with internal

nodes. It invokes get, and returns false if get finds the key. If it does not find the

key, a new node with the key is inserted as a leaf, added to the tree as the child of
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the parent of ⊥ returned by get. It validates before inserting the node taking help

from validate function. The insert is performed in a relativistic programming way,

using RP primitive. It updates the count values of the corresponding node and calls

splayNode function after inserting it.

6. delete

The delete function also invokes get helper function, and returns false if get does not

find the key. There are two cases of deletion. First case is, if the node has at most one

child, the node is removed by redirecting the child field of parent to point to its child.

The second case is, it has two children and it is replaced with its successor in the tree.

The successor of a node is the node with the smallest key among the nodes with keys

larger than or equal to the node’s key, which is stored in the leftmost node in the right

sub-tree of the node to be deleted. These two cases are shown in the figure. The delete

operation requires coordination with the concurrent get operation searching for the

successor. So the replacement is done in relativistic way using RCU/RP primitive.

Searches that start before wait for readers starts, find the successor in its previous

location. Searches that start after wait for readers starts, find the new copy of the

successor. Fig 5.2 and 5.3 shows the diffenrent case of delete operation performed.

Figure 5.2: Deletition of node with one child
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Figure 5.3: Deletition of node with two children

There might be two copies of the successor in the original and in the new locations.

So, the BST here is following weak BST (WBST) property. The WBST property

allows multiple nodes with the same key. If all nodes with the same key hold the

same value, preserving the WBST property ensures that contains is correct, as it may

return the value of some duplicate node, and ignore the others [2].

7. splayNode

This function is used to perform lazy splay operation on the node that is accessed

either by find operation or insert operation. The splay rotation depends on the access

counter values of neighboring nodes. Based on these counter values, it performs either

zig or zig-zag operation. Zig-zag is carried out if the total number of accesses to the

node right sub-tree is higher than the total number of accesses to the parent and its

right sub-tree. If zig-zag was not performed then zig is performed if the total number

of accesses to the node and its left sub-tree is larger than the total number of accesses

to the node-parent and its right sub-tree.

8. zigRightRotation

This splay operation is basically the rotation of the tree and depending on certain

pre-condition at each node based on access count of node and its left and right sub-

trees. The operation is performed as shown in fig 5.4. All the operations are done

relativistic way so that the concurrent readers will not see undesired result.

31



Figure 5.4: Zig rotation example

9. zigLeftZagRightRotation

This splay operation is also the rotation of the tree and depending on certain pre-

condition (defined in splaynode function) at each node based on access count of node

and its left and right sub-trees. The operation is performed as shown in fig 5.5. All

the operations are done relativistic way so that the concurrent readers will not see

undesired result.

Figure 5.5: Zig-zag rotation example
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The pseudo-codes for the BST and Splay operations and helper functions are presented

below:

Algorithm 5.1 Helper function - get

function get(key)
rp start read . read-side critical section begins,

. corresponding rcu primitive is rcu read lock
parent← root
curNode← parent.child[right]
curKey ← curNode.key
dir ← right
while (curNode 6= ⊥ and curKey 6= key) do

parent← curNode
if curKey < key then

dir ← right
else

dir ← left
end if
curNode← parent.child[dir]

end while
if curNode 6= ⊥ then

curKey ← curNode.key
end if
tag ← parent.tag[dir]
rp end read . read-side critical section begins,

. corresponding rcu primitive is rcu read unlock
return (parent, tag, curNode, dir)

end function
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Algorithm 5.2 Helper function - validate

function Validate(parent,tag,curNode,dir)
if parent.marked ∨ parent.child[dir] 6= ⊥ then

return False
end if
if curNode 6= ⊥ then

return !curNode.marked
end if
return parent.tag[dir] = tag

end function
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Algorithm 5.3 Helper function - incrementTag

function incrementTag(node,dir)
if node.child[dir] == ⊥ then

node.tag[dir]+ = 1
end if

end function
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Algorithm 5.4 Find operation

function Find(key)
(parent,−, curNode, dir)← get(key)
if curNode = ⊥ then

return False
end if
SplayNode(parent, dir, curNode, curNode.child[left], curNode.child[right])
curNode.selfCnt + +
return curNode

end function

Algorithm 5.5 Insert operation

function Insert(key)
loop . If the key doesnot exist but the validation fails, retry
(parent, tag, curNode, dir)← get(key)
if curNode 6= ⊥ then

return False
end if
lock(parent)
if validate(parent, tag, , dir) then

newNode← new(key, value, , ) . Create new leaf node, initialization
rp publish(parent.child[dir], newNode) . relativistic insert
SplayNode(parent, dir, newNode, newNode.child[left], newNode.child[right])
newNode.selfCnt + +
unlock(parent) . Release lock for concurrent updaters
return True

end if
unlock(parent) . validation failed, release lock and retry

end function
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Algorithm 5.6 Delete operation

function Delete(key)
loop . If the key exists but the validation fails, retry
(parent, tag, curNode, dir)← get(key)
if curNode == ⊥ then . key does not exist

return False
end if
lock(parent)
lock(curNode)
if validate(parent,−, curNode, dir) then

if curNode.child[left] == ⊥ ∨ curNode.child[left] == ⊥ then
. Case 1, curNode has single child

curNode.marked← true
if curNode.child[left] 6= ⊥ then

rp publish(parent.child[dir], curNode.child[left])
else

rp publish(parent.child[dir], curNode.child[right])
end if
incrementTag(parent, dir)
unlock(parent)
wait for readers()

. Wait for all pre-existing readers in read-side critical section to complete
rp free(curNode) . Relativistic Deletion
return True

else . Case 2, curNode has two children
parentSucc← curNode . Searching the successor
succ← curNode.child[right]
next← succ.child[left]
while ((next 6= ⊥) do

parentSucc← succ
succ← next
next← next.child[left]

end while
if curNode == parentSucc then

succDir ← right
else

succDir ← left
lock(parentSucc)

. parentSucc is locked only if it is not the curNode (already locked)
end if
lock(succ)
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Algorithm 5.6 Delete operation (continued)

if validate(parentSucc,−, succ, succDir)∧validate(succ, succ.tag[left], , left)
then

succ copy ← new(succ.key, succ.value, curNode.child[left],
curr.child[right])

. Create new node of by copying the successor with children pointing to children of
curNode

curNode.marked← true
rp publish(parent.child[dir], succ copy) . Relativistic insertion
wait for readers()
rp free(succ) . Relativistic Deletion of succ
if parentSucc == curNode then

rp publish(succ copy.child[right], succ.child[right])
incrementTag(succ copy, right)

else
rp publish(parentSucc.child[left], succ.child[right])
incrementTag(parentSucc, left)

end if
unlock(parent)
unlock(parentSucc)
unlock(succ)
wait for readers()
. Wait for all pre-existing readers in read-side critical section to complete
rp free(curNode) . Relativistic Deletion
return True

end if
end if

end if
unlock(parent) . Validation failed, release locks and retry
unlock(curNode)

end function
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Algorithm 5.7 Lazy splay operation

function splayNode(parent,dir, curNode,lChild,rChild)
if lChild 6= ⊥ then // . Propagate Counter

curNode.leftCnt← lChild.leftCnt + lChild.rightCnt + lChild.selfCnt
else

curNode.leftCnt← 0
end if
if curNode.right 6= ⊥ then

curNode.rightCnt← rChild.leftCnt + rChild.rightCnt + rChild.selfCnt
else

curNode.rightCnt← 0
end if

. check for zigRight and zigLeftZagRight
nodeP lusLeftCount← lChild.selfCnt + lChild.leftCnt
parentP lusRightCount← curNode.selfCnt + curNode.rightCnt
nodeRightCount← lChild.rightCnt
if nodeRightCount ≥ parentP lusRightCount then . zigzag condition

zigLeftZagRightRotation(parent, curNode, dir)
parent.leftCnt← lChild.right.rightCnt
lChild.rightCnt← lChild.right.leftCnt
lChild.child[right].rightCnt ← lChild.child[right].rightCnt +

parentP lusRightCount
lChild.child[right].leftCnt← lChild.right.leftCnt + nodeP lusLeftCount

else if nodeP lustLeftCount > parentP lusRightCount then . zig condition
zigRightRotation(parent, curNode, dir)
parent.leftCnt← lChild.rightCnt
lChild.rightCnt← lChild.rightCnt + parentP lusRightCount

end if

end function
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Algorithm 5.8 Zig right rotataion operation

function zigRightRotation(parent, curNode, dir)
leftNode← CurNode.child[left]
if !validate(parent,−, CurNode, dir) ∨ CurNode == ⊥ ∨ leftNode == ⊥ then

return false
end if
lock(parent)
lock(CurNode)
lock(leftNode)
CurNode copy ← new(CurNode.key, CurNode.value, leftNode.child[right],

CurNode.child[right])
. copy CurNode to create CurNode copy

rp publish(leftNode.child[right], CurNode copy)
if dir == left then

. If CurNode is left child of a parent.
rp publish(parent.child[left], leftNode)

else
. If node CurNode is right child of a parent.

rp publish( parent.child[right], leftNode)
end if
rp free( CurNode)

unlock(leftNode)
unlock(parent)
return true

end function
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Algorithm 5.9 Zig left zag right rotataion operation

function zigLeftZagRightRotation( parent,curNode,dir )
x← CurNode.child[left]
r ← x.child[right]
if !validate(parent,−, CurNode, dir) ∨ CurNode == ⊥ ∨ x == ⊥ ∨ r == ⊥ then

return false
end if
lock(parent)
lock(curNode)
lock(x)
lock(r) . create new node x copy to replicate x
x copy ← new(x.key, x.value, x.child[left], r.child[left])
rp publish(r.child[left], x copy)
wait for readers
free(x) . create new node curNode copy′ to replicate curNode
curNode copy ← new(curNode.key, curNode.value, r.child[right],

curNode.child[right])
if dir == left then . If curNode is left child of a parent.

rp publish(parent.child[left], r)
else . If node parent is right child of a grand.

rp publish(parent.child[right], r)
end if
wait for readers
free(curNode)
unlock(r)
unlock(parent)
return true

end function
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Chapter 6

Conclusion and Future Work

In this thesis, we have studied the Relativistic Programming approach, generalization of

RCU synchronization technique applicable for the read-mostly data structure. We bor-

rowed the idea and concept from various implementations and proposed the relativistic

solution for BST operations including lazy splay. RP primitives are used to synchronize be-

tween readers and updaters, that makes the read and update can go concurrently even when

updaters making change in the same portion of the data readers are accessing. This makes

read paths extremely fast and readers do not directly synchronize with RCU updaters, syn-

chronization and data consistency is maintained by updater. The fine grained locking has

been used to synchronize among the updaters. To resolve the possible ABA problem and

data changes during overlapping updaters, validation on the data being modified has been

applied. We conclude that, these techniques we have used in our implementation makes the

algorithm scalable and efficient.

Though, the proposed solution can be claimed to have better performance because of the

synchronization used, the actual implementation of the proposed solution and compari-

son with other implementation is the interesting future work. The RCU has been used

extensively in Linux kernel and academic research and implementations are going on, yet

it has not been used in concurrent data structure implementations that extensively. The

Relativistic Programming is also new in the field. So using these technique in other the

read-mostly data structure is another future work.
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