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Abstract

We review important algorithmic results for the coverage of 1.5D terrain by point guards. Finding

the minimum number of point guards for covering 1.5D terrain is known to be NP-hard. We propose

two approximation algorithms for covering 1.5D terrain by a fewer number of point guards. The

first algorithm (Greedy Ranking Algorithm) is based on ranking vertices in term of number of

visible edges from them. The second algorithm (Greedy Forward Marching Algorithm) works in

greedy manner by scanning the terrain from left to right. Both algorithms are implemented in

Python 2.7 programming language.
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Chapter 1

Introduction

Problems related to visibility on terrain surface have numerous applications such as (i) geographic

data frameworks, (ii) route management for aerial vehicles, (iii) transportation systems, (iv) crisis

reaction arranging, and (v) remote communications system (Wired and Wireless).

Terrain visibility problems can be viewed as a restricted instance of the well-known Art Gallery

Problem [O’R98] in computational geometry. In the art gallery problem, the domain is a simple

polygon and it is required to find the set S of a minimum number of point guards inside the polygon

so that any point inside it is visible from some point in S. It is remarked that two points pi and

pj inside a polygon are visible to each other if the line segment having pi and pj as endpoints does

not intersect with the exterior of the polygon. The standard art gallery problem is known as NP-

hard [O’R98]. This intractability result has motivated many researchers to look for approximation

algorithms for art gallery problem [O’R98]. Some variation of the standard art gallery problem

has been considered. Such variations include an alternative notion of visibility and having input

polygon restricted to monotone polygons and orthogonal polygons. In visibility variations, the

notion of staircase visibility [Gew95, VP12] . In the staircase visibility model, two points pi and pj

inside the polygon are visible if there is a staircase path connecting pi and pj that lies completely

inside the polygon. It is noted that in a staircase path the edges are parallel to x-axis and y-axis

and the path itself is monotone.

In this thesis, we use the standard notion of visibility and restrict the polygon domain as a

monotone polygon in which one chain is a monotone chain and the other chain is a line segment. A

monotone polygon with one chain as line segment is precisely a 1.5D terrain. The standard terrain

is a 2.5D structure which means that a terrain is a structure which is between two dimensions and

three dimensions. This view can be further elaborated in term of the cross-section of terrain with
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a horizontal plane. If we consider the cross-section of a terrain with a horizontal plane then the

cross-section area become progressively smaller as the height of the horizontal plane increases.

The thesis is organized as follows. In Chapter 2, we review important existing algorithms

dealing with visibility property of simple polygon and 1.5D terrain. In particular, we examine

existing algorithmic results for placing guards to cover 1.5D terrains. We also review intractability

results and approximation algorithms for placing point guards in a monotone polygon and 1.5D

terrain. In Chapter 3, we present the principle contributions of this thesis. We design, describe

and sketch two approximation algorithms for finding a reduced number of point guards to cover

(or illuminate) a 1.5D terrain. The first algorithm which we call ”Greedy Ranking” is based on

the ranking of vertices on visibility measures. The nodes are then processed in a greedy manner by

placing the first point guard at the node with the largest visibility and other guards are progressively

placed by re-ranking the uncovered nodes. The time complexity of the algorithm is 0(|E|log|V |)

where |E| is the number of edges and |V | is the number of vertices in visibility graph induced by

the terrain. The second algorithm (Greedy Forward Marching Algorithm) places guards in greedy

manner, by placing candidate guard gi as far right as possible to illuminate uncovered terrain to

the left of gi. The time complexity of this algorithm is O(|E| + |V |).

In Chapter 4, we describe in detail the implementation of the proposed algorithms. The imple-

mentation is done by using Python 2.7 and the prototype program contains a friendly user interface.

We also describe the process of generating input data for terrain, both randomly and by user-input.

We then discuss the results obtained for many sets of data (more than 100 sets). Finally, in Chap-

ter 5, we discuss (i) possible extension of the proposed algorithms and (ii) interesting variation of

terrain illumination problem for future research.
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Chapter 2

Visibility Algorithms on Polygon and

1.5D Terrain

In this part, we presented a brief review of some problem in computational geometry that is closely

related to our research topic and reviewed some algorithms for illuminating polygon and 1.5D

terrain by placing point guards.

2.1 Preliminaries

Problem dealing with visibility in the presence of polygons has been investigated by several re-

searchers since last 40 years [O’R87, DBVKOS00]. In defining the notion of the visibility, the

boundary of a polygon is considered as an opaque object. Two points inside the polygon are visible

if the line segment connecting them do not intersect with the boundary. This is illustrated in Figure

2.1.

In Figure 2.1, point p is visible to the point v as the line segment connecting p to v does not

intersect with any boundary edge of the polygon. On the other hand, point p is not visible to

point q as the line segment connecting them intersect with the boundary edges. This notion of the

internal visibility carries over naturally to the exterior of the polygon. In the figure, three exterior

points (r, t, s) are shown. It is clear that r is visible to t but not visible to s.

One of the widely investigated visibility problems on the simple polygon is to illuminate the

entire interior of the polygon by placing a minimum number of point guards inside the polygon

boundary. This is often known as the Art Gallery problem. An Art Gallery problem instance is

shown in Figure 2.2. For this polygon, two vertex guards are necessary and enough to guard the

3



p q

v
r

t

s

Figure 2.1: A Polygon

entire polygon. Interested readers can find such problem in [O’R87, DBVKOS00].

Figure 2.2: An instance of Art Gallery Problem

The problem of placing minimum number of guards inside a simple polygon is known to be

intractable [LL86]. This problem remains NP-hard even for some restricted classes of polygons. One

of the widely studied restricted class of simple polygons are monotone polygons. A simple polygon is

called monotone if its boundary can be partitioned into two chains, each of which are monotone with

respect to a given direction. Monotone polygons are used to model two dimensional terrain. Finding
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the minimum number of point guards to cover terrain has applications in telecommunication tower

placement and geographic information system. An instance of the placement of point guards on a

1.5D terrain is shown in Figure 2.3. In this problem instance, five point guards are needed.The point

guards are drawn as small circles. Readers can easily verify that the terrain cannot be illuminated

(or covered) with less than 5 point guards. The problem of finding the minimum number of point

guards in terrain was a long standing open problem, which was settled by James King and Erik

Krohn in 2009. They proved [KK11] this problem to be NP-hard.

Figure 2.3: An instance of Terrain Illumination

They reduced an instance of PLANAR 3-SAT problem to an instance of minimum guard place-

ment problem in the monotone polygon. PLANAR 3-SAT problem is a restricted version of the

standard 3-SAT problem [GJ02]. In a planar 3-SAT, the graph implied by the satisfiability expres-

sion has to be a planar graph. Both standard 3-SAT and PLANAR 3-SAT problem are known to

be NP-Hard [GJ02].

2.2 One-sided versus two-sided guarding

The standard terrain or terrain guarding problem is the one-sided guarding problem. In the defi-

nition of one-sided guarding problem, a point pi in the domain is said to be guarded if pi is visible

from any guard.

Very recently [LH18], the notion of two-sided guarding problem has been introduced in the

context of guarding 1.5D terrain. In this definition, a point pi in the terrain is said to be two-sided

guarded if pi is visible to at least one guard in the left and at least one guard in the right. The

distinction of one-sided guarding and two sided guarding is shown in Figure 2.4.

An examination of the terrain in Figure 2.4 shows that it needs 5 guards (X) to cover it under

5
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Figure 2.4: Distinguishing one-sided and two-sided guarding

two-sided notion of visibility. This terrain can be guarded by 2 guards (shown by o) under normal

(one-sided) notion of visibility. While finding the minimum number of guards to cover 1.5D terrain

is NP-Hard [KK11], the problem can be solved in linear time [LH18] under the notion of two-sided

visibility.

2.3 Approximate Algorithm

The intractability of the art gallery problem has motivated many authors to develop approximation

algorithms. One of the first such algorithm was proposed by S.K Ghosh [Gho10]. This paper con-

tains approximation algorithms for both simple polygons and polygon with holes. It is established

in [Gho10] that a simple polygon with n vertices can be guarded with numbers of guards m such

that m is no more than O(log n) time the optimal solution. Their algorithm is based on partitioning

the polygon into convex components. The convex components are views as sets and approximation

set covering algorithm is used to obtain approximation solution for art gallery problem. The time

complexity of the algorithm is O(n4) for the simple polygon and O(n5) for the polygon with holes.

Ben-Moshe et. al. [BMKM05] have reported an approximation algorithm for guarding 1.5D

terrain by point guards. The idea is to process pockets of the terrain separately by evaluating the

visibility of convex vertices in each packet. The pockets are formed when 1.5D terrain is enclosed

by the convex hull bounded as shown in the Figure 2.5.

In the figure, convex hull boundary (Shown by dashed edges) and 1.5D terrain induce three

pockets. The authors [BMKM05] made complicated case analysis to develop an approximation

algorithm of constant factor for covering the terrain. The time complexity of the algorithm is

O(n2) where n is the number of vertices in the terrain. In this algorithm it is not clear what is the

6



Figure 2.5: Formation of pockets

exact value or bound of the constant factor
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Chapter 3

Fast Heuristic For Covering 1.5D

Terrain

In this chapter we propose two heuristic algorithms for placing a reduced number of point guards

to cover a given 1.5D terrain.

3.1 Preliminaries

We start with the description of the properties and characterization of 1.5D terrain needed for

developing fast heuristics. Since the problem of placing a minimum number of point guards in 1.5D

terrain is NP-Hard [KK11] it is motivating to come up with good heuristic methods that execute

relatively fast in practical applications. Due to simpler structural properties of 1.5D terrain, guard

placement is relatively easier compared to guard placement in a simple polygon.

Observation 3.1

For simple polygons, it is known that visibility of all vertices does not imply that all of the boundary

is visible [O’R98]. This fact applies to 1.5D terrain as shown in Figure 3.1.

In the figure, two guards are placed at v1 and v5 shown by the solid circles. All the remaining

vertices v2, v3, v4, v6 and v7 are visible from these two guards but the edge < v3, v4 > is not visible.

Observation 3.2

A guard placed at a non-convex vertex can be moved to the adjacent convex vertex without losing

any coverage.

Definition 3.1: (Zig-Zag Terrain) A 1.5D terrain in which no two consecutive vertices are

convex.

8
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v

v
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v
1

v
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7

5

3

v

v

2

Figure 3.1: Illustrating Observation 3.1

Lemma 3.1 In a Zig-Zag 1.5D terrain, covering all vertices implies the covering of all boundary

points.

Proof: Suppose there is an edge ei = (vi−1, vi) which is not completely visible. If a point guard is

at vi−1, vi, or vi+1 then ei is clearly visible. If vi is visible from vertex vj (other than vi−1,vi,vi+1)

then vj must be in the sector Rj formed by vi−1, vi, vi+1 as shown by dashed rays in Figure 3.2.

Consequently, points of ei are visible from that guard due to the convexity of the sector Ri.

i−1

v
i

v
i+1

R
i

v

Figure 3.2: Illustrating proof of Lemma 3.1

3.2 Greedy Ranking Algorithm

This algorithm works in two stages: (i) greedy placement stage and (ii) redundancy removal stage.

In the first stage, the next point guard is placed on the vertex that covers the maximum number

9



of non-illuminated edges.
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(a) Illustrating Initial Node Ranking.
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(b) Illumination state after placing the first guard
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(c) Ranking of vertices after placing first guard
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v9
v14

v18

v21

v

(d) Guard placement after completing first stage

Figure 3.3: Illustration of Greedy Ranking Algorithm
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The location of vertex guards are determined based on their rank. The rank of a node vi is the

number of non-covered edges that can be covered by placing a point guard at vi. Initially all edges

are not covered and the rank of each node is the number of edges visible from them. The initial

rank of nodes are illustrated in Figure 3.3a.

We describe the working of the algorithm with this running example. Since vertex v10, v13, v16,

v19 have the highest rank (5), we pick the vertex v16 arbitrarily and place the first guard at v16

(shown by a triangle symbol). Note that if more than one vertex have the same rank then we pick

the vertex arbitrarily.

After the placement of the guard at v16, all the edges visible from v16 are determined ( visible

vertices are drawn with filled circle and visible edges are drawn with thick line in Figure 3.3b).

Based on this placement, the ranking of the nodes are recomputed. In recomputing the rank, only

the uncovered edges are considered. The new ranks are shown in figure Figure 3.3c.

It is noted that for the vertices where guards are already placed, the rank is not needed and

not shown in Figure 3.3c. In the second round of ranking, vertex v10 has the highest rank and a

guard is placed there. The process of re-ranking and guard placement is continued until all edges

are covered. In our running example, the first stage is completed after 6 rounds of ranking. The

placement of guards after completion of the first stage (greedy ranking) is shown in Figure 3.3d.

The greedy ranking algorithm places guards incrementally (one at a time) by identifying the

vertex with highest rank. After each guard placement, the rank of the vertices are recomputed

(updated) so that edges already covered are excluded in the ranking accumulation. The algorithm

stops when all the edges are covered. A formal sketch of ”Greedy Ranking Algorithm” is shown in

Algorithm 3.1.

A straight forward implementation of the Algorithm 1 can take O(n3) time in the worst case.

Step 4 (ranking step) can be implemented by checking the intersection of possible edges with terrain

edges which can take O(n2) time in the worst case. To implement Step 7 (marking covered edges),

we can similarly check the intersection of candidate visibility edges with edges of terrain, which

again takes O(n2) time. If the while loop repeats n times then the total time complexity of the

algorithm is O(n3). This time complexity is rather high. An improved implementation of Algorithm

1 based on the visibility graph is described next.

The visibility graph in the presence of a polygonal object is defined by considering the polygonal

boundary as obstacles. The visibility graph in the presence of 1.5D terrain can be defined similarly

and an example is shown in Figure 3.4a. A visibility graph can be computed in time proportional to
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(a) Illustration of visibility graph.
R=14

(b) Illustration of visibility graph for uncovered edge after placing 1st guard

R=14

R=8

(c) Illustration of visibility graph for uncovered edge after placing 1st guard

R=1

R=7

R=4

R=1

R=14

(d) Illustration of visibility graph for uncovered edge after placing 1st guard

Figure 3.4: Illustration of Visibility graph
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Algorithm 1 Greedy Ranking Algorithm

1: Input: Terrain chain Ch1 {v0,v1,.....vn−1}
2: Output: Subset Sg of Ch1 where guards are placed
3: while all edges are not covered do
4: RankVertices(Ch1 {v0,v1,.....vn−1})
5: u = getHighestRankedVertex(Ch1)
6: u.guard = True
7: Mark edges covered by u

8: Sg= {v | v.guard = True}
9: Output Sg

function RankVertices(chain Ch1 {v0,v1,.....vn−1})
for all v in Ch1 do

if v is convex and no guard placed at v then
v.rank = Number of newly covered edges

its size by using an algorithm given in [GM87]. When the visibility graph is computed in [GM87],

visibility edges emanating from a vertex are available in angularly sorted order around it. This

structure of the output of the algorithm in [GM87] can be used to implement the Greedy Ranking

Algorithm efficiently. Initial ranking of vertices can be obtained by simply reading off the number

of visibility edges emanating from each vertex. When a guard is placed at a vertex we can define

the notion of Uncovered Visibility Graph (UVG) by considering only those visibility edges that are

connected to the uncover edges of the terrain. When the first guard is placed (indicated by filled

triangle sign above the terrain vertex), the resulting visibility graph is shown in Figure 3.4b .

The efficient version of Algorithm 1 is based on updating UVG as guards are placed. Initially,

UVG is given by the standard visibility graph. When a guard is placed at vertex vi, visibility

edges emanating from vi and its incident vertices are deleted to update UVG. The updated rank of

vertices are the counts of visibility edges corresponding to the updated UVG. In order to retrieve

and update the ranks of nodes, the vertices of UVG are maintained in a priority queue Q, using

the priority of the number of visibility edges emanating vertices. A formal sketch of the algorithm

is listed as Algorithm 2.

The time complexity of Algorithm 2 can be done as follows. Step 3 takes O(|E|+ |V |) [GM87].

One delete operation and decrease key operation can be done in O(log|V |) time. Each execution

of while loop removes at least one visibility edge to update UVG. Hence the whole loop executes

at most O|E| time. Thus the total time complexity is O(|E|log|V |)

13



Algorithm 2 Improved Greedy Ranking Algorithm

1: Input: Ordered list of vertices chain V {v0,v1,.....vn−1} of terrain T
2: Output: Subset Sg of V where guards are placed
3: Compute Visibility Graph (VG) for T
4: Store Vertices of VG in max priority Queue Q in the priority of vertex degree
5: Set uncovered visibility graph UVG to VG
6: Sg=∅
7: while UVG contains edges do
8: v=Q.getMax()
9: Sg = Sg ∪ {v}

10: Q.deleteMax()
11: for all vertices u adj to v do
12: decrease key of u by 1
13: remove edge (u,v) from UVG

14: Output Sg

3.3 Removal of Redundant Guards

Once the terrain is fully guarded using the ’Greedy Ranking Algorithm’, the next step is the

identification and removal of redundant guards. Given three consecutive guards gi−1, gi and gi+1,

guard gi is said to be redundant if the edges seen by gi is a subset of the union of the edges seen

by gi−1 and gi+1. In our running example (Figure 3.3d obtained after stage1 processing) guard at

v16 is redundant. An inspection of placement reveals that all the edges visible to v16 are also visible

jointly by guards at v13 and v19. The result of guard placement after removing redundant guards

is shown in Figure 3.5. Incidentally, this is also the minimum number of guards needed to cover

the running example 1.5D terrain.

3.4 Greedy Forward Marching Algorithm

The previous algorithm (the one presented in Section 3.2) attempts to place guards based on the

visibility ranking of the nodes. In the Greedy Forward Marching Algorithm (GFM - Algorithm),

we attempt to place the guards by scanning the terrain from left to right and identifying the nodes

where a guard must be placed. This approach has been used for placement of towers in 1.5D terrain

[GD18]. We adopt this approach for covering terrain by point guards. It is like covering terrain by

zero height towers. We call such node a Next Candidate Node. Such a node can be defined as

follows.

Definition 3.2 : (Next Candidate Node (NC)) The first guard is placed at the rightmost

14



Redundant guard

1

v6

v9
v14

v18

v21

v

Figure 3.5: Final guard placement after applying redundancy removal.

vertex vi1 such that all edges to the right of vi1 are covered by the guard at vi1 . Let vi1 , vi2 ,.....vik

denotes the guards placed so far. Then NC(vik) denote the next candidate node such that it is

the rightmost node that covers all the vertices (terrain surface) between vi and NC(vi). This is

illustrated in the Figure 3.6. In this figure, two guards are currently placed which are at v3 and v7

(denoted by filled triangles). If we inspect the figure, we find that the next candidate node is v11.

The algorithm proceeds by marching left to right by identifying next candidate nodes in a greedy

manner.

NC Node

5
v

1 v
10 v

15
v

20
v

25
v

28

   

v

Figure 3.6: Illustration of Next Candidate Node (NC)
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Algorithm 3 Greedy Forward Marching Algorithm

1: Input: Ordered list of vertices chain V {v0,v1,.....vn−1} of terrain T
2: Output: Subset Sg of V where guards are placed
3: Compute Visibility Graph (VG) for T
4: j = 1; Sg=∅
5: Place the first guard at rightmost vertex vi1 that covers all the edges to the left of vi1
6: Delete all visibility edges originating from consecutive vertices covered by vi1
7: Let Tc be consecutive edges covered by vi1
8: T = T - Tc

9: while T 6= ∅ do
10: Find vij+1=NC(vij )
11: Let Tc be consecutive edges covered by vij+1

12: T = T - Tc

13: Sg = Sg ∪ {vij+1}
14: Output Sg

The formal sketch of the algorithm is listed as Algorithm 3. The time complexity of Algorithm

3 can be done as follows. Step 3 (computing visibility graph V G(V,E)) can be done in O(|E|+ |V |)

by using algorithm given in [GM87]. Observe that as a guard is placed at vertex vi, all visibility

edges originating from consecutive vertices covered by the guard are removed. Furthermore, each

visibility edge is examined at most a constant number of times. Thus the total time taken by the

while loop is bounded by |E| + |V |. Hence the time complexity of Algorithm 3 is O(|E| + |V |).

The complete steps of terrain guarding using GFM- algorithm is illustrated in Figure 3.7.

3.5 Removal of Redundant Guards

Once a terrain is fully guarded using the ’Greedy Ranking Algorithm’, the next step is to remove

the redundant guards. We follow the same approach as explain in the section 3.3. Figure 3.8 shows

the guard placement result using GFM- algorithm. We can see that the guard placed at vertex v13

and v21 is redundant as all the side covered by the guard at v13 is covered by the guard at v17.

Similarly all the side covered by the guard at v12 is covered by the guard at v24.

Figure 3.9 illustrate the guard placement after redundant guard removal.
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Figure 3.7: Illustration of Greedy Forward Marching algorithm
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Figure 3.8: Illustration of guard placement with redundant guards
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Figure 3.9: Illustration of guard placement after redundant guards removal
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Chapter 4

Experimental Investigation

In this chapter we present the experimental investigation of several algorithms proposed in Chapter

3. The implemented algorithms include (i) Generation of terrain models, (ii) Placement of point

guards based on Greedy Ranking Algorithm, (iii) Placement of point guards using Greedy Forward

Marching Algorithm, and (iv) Removal of redundant guards,

4.1 Program prototype

We developed the program prototype by using Python programming language (Version 2.7). For

the ease of program execution, the prototype supports a graphical user interface (GUI) populated

by user-friendly GUI-components that include (i) Drawing panel, (ii) Check boxes, (iii) Scroll-able

table, and (iv) File input/output and related drop-down menu. We used the GridBagLayout to

place various elements on the window. GridBagLayout supports a dynamic grid where each UI

component can be placed

The structure of the top-level of the front-end interface (Main Frame) consists of eight compo-

nents as depicted in Figure 4.1.

The main frame consists of eight components which are (i) Tool-bar Panel, (ii) Status-bar Panel,

(iii) Left Top Panel, (iv) Left Bottom Panel, (v) Central Panel, (vi) Right Top Panel, (vii) Right

Middle Panel, and (viii) Right Bottom Panel.

4.1.1 File Menu Items

The file menu bar is part of the main frame which contains a drop-down menu as describe below.

The file menu consists of four options: Open, Save, Save As, and Quit. These four options facilitate
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Tool−Bar Panel

Left Top Panel

Left Bottom Panel

Central Panel Right Middle Panel

Right Bottom Panel

Right Top Panel

Status−Bar Panel

Figure 4.1: Illustration of GUI layout

the user to Open the previously saved data file, save the current data in a new file etc.

S.N. File Menu Item Function

1 Open Open a previously saved terrain vertices set

2 Save Save the current terrain vertices to currently open file

3 Save As Save current terrain vertices to the new file

4 Quit Quit the application

Table 4.1: Detail of File Menu Items

4.1.2 List of Panels

Seven panels are used as containers for the various GUI components. The purpose and contents of

each of these panels are:

Tool-Bar Panel : This is designed for placing GUI buttons that execute (i) Print function, (ii)
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Capture Screen-shot, and (iii) Zoom-in/ Zoom-out.

Status-Bar Panel : For displaying copyright information (Text Box).

Left Top Panel : Contains the general control buttons for terrain drawing (draw node, edit node,

delete node, move drawing etc.)

Left bottom Panel : Used for placing control buttons and text input fields required for random

terrain vertices generation tasks (point count, upper cut, lower cut, set guiding chain, draw guiding

chain etc.)

Central Panel : Used for displaying the input terrain and guarding result.

Right Top Panel : Contains algorithm selection check boxes and scrollable table to display guards

coordinates generated by the algorithm.

Right Middle Panel : Used for displaying coordinates of terrain vertices in editable and scroll-

able text-box table.

Right Bottom Panel : Contains text field for vertex count and data set count and click button

for data generation.

4.1.3 List of Buttons

The functionalities of various GUI buttons are as describe in the following table.

S.N. Buttons Function

1 CLEAR WINDOW Erase drawing area (Central Panel).

2 DRAW TERRAIN Draw terrain implied by the ordered input vertices.

3 VISIBILITY POLYGON
Displaying visibility polygon corresponding to highest
ranked vertex.

4 DISPLAY GUARD For displaying the placement of generated guards.

5 REMOVE REDUNDANT
Displaying placement of guards after removal of re-
dundant guards.

6 RANDOM GENERATE Randomly generate terrain vertices (nodes).

7 SAVE Save edited coordinate of Nodes.

8 DISCARD
Discard and restore the old coordinate of the edited
Nodes.

9 GENERATE
Triggers generation of data sets as specified in vertex
and data set count in text input box of Right Bottom
Panel.

Table 4.2: Functionality of Buttons
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4.1.4 List of Check-Boxes

S.N. Check-Boxes Function

1 DRAW NODE Enable vertex drawing with mouse click.

2 EDIT NODE Enable editing of node coordinates.

3 DELETE NODE Enable editing of node coordinates.

4 MOVE DRAWING
Enable block movement of all drawn object in Central
Panel.

5 SHOW GUIDING CHAIN Display currently used guiding chain.

6 SET GUIDING CHAIN Set guiding chain for input vertices.

7
GREEDY RANKING AL-
GORITHM

Select Greedy Ranking Algorithm for guard placement

8
GREEDY FORWARD
MARCHING

Select Greedy Forward Marching Algorithm for guard
placement

Table 4.3: Description of check box functionality

4.1.5 List of Text-Areas

S.N. Text-Area Function

1 Guard Coordinate Display the coordinates of guards in text area.

2 Nodes Coordinates Display the coordinates of a terrain vertices in text area.

Table 4.4: Description of Text-Areas Functionality

4.1.6 List of Text-Inputs

S.N. Text-Inputs Function

1 VERTEX COUNT Setting number of random vertices.

2 UPPER CUT (%) Used for upper limit of guiding strips.

3 LOWER CUT (%) Used for lower limit of guiding strips.

4 TOTAL VERTEX Setting number of vertices count.

5 TOTAL DATA Total number of data set.

Table 4.5: Description of Text-Inputs Functionality
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A snapshot of the GUI application is shown in Figure 4.2 below:

Figure 4.2: Snapshot of GUI application

4.2 Data Generation

We generate the random terrain vertex for 1.5D terrain using a uniform random number generation

algorithm available in Python 2.7. We fix the upper and lower bounds of terrain vertices using

terrain generation guiding strip. The terrain generation guiding strip is bounded by two zig-zag

chains as illustrated in the Figure 4.3 below.

4.3 Computing Visible Vertex Table (VVT)

For each vertex vi the set of the vertices visible from it are maintained in a table. For terrain of

Figure 4.4 the corresponding table is shown in Table 4.6.

To construct the visibility vertex table, we use the ray tracking methodologies with O(n2) time
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Figure 4.3: Illustration of guiding strip
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Figure 4.4: Illustration of concept of visibility table

S.N. Vertex Visible Vertex List

1 v1 [v2,v4]

1 v2 [v1,v3,v4]

3 v3 [v2, v4]

4 v4 [v1,v2, v3, v5, v6]

5 v5 [v4, v6]

6 v6 [v4, v5, v7, v8]

7 v7 [v6, v8]

8 v8 [v6, v7,v9]

9 v9 [v8]

Table 4.6: Description visible vertex table
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complexity. In this method, we scan terrain from left to right. If we can draw a ray between vertex

vi to vj without any intersection with the terrain chain lying above it, then we can say that vertex

vi is visible from vertex vj and vice-versa. For three vertex vi, vj and vk of increasing x-coordinates,

their visibility relation can be determined by examining implied left-turn/right-turn. Specifically,

if vi and vj are visible then vk is visible from both vi and vj if vi, vj ,vk is a left-turn. If it is a

right-turn then vk is not visible from vi of vj .

For implementation we identify the Running Farthest Visible Vertex (RFVV) for each candidate

vertex when the terrain vertices are scanned from left to right. In Figure 4.5, v2 and v4 are the

first and second RFVV for v1.
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Figure 4.5: Illustration of left turn and right turn

A Formal sketch of the algorithm of constructing the visible vertex table is listed as Algorithm

4.

Algorithm 4 Algorithm to find the vertex visibility table

1: Input: Terrain vertices Ti sorted according to x-coordinate
2: Output: Visibility Table Tv

3: Tv = ∅
4: N = Total terrain vertices
5: for i = 0 to N-1 do
6: v1 = Ti[i]
7: RFVV = Ti[i+1]
8: for j = i to N do
9: v2 = Ti[j]

10: if isVisible(v1, RFVV, v2) then
11: RFVV = v2
12: insert v2 into visible vertex set of v1 and update Tv

13: insert v1 into visible vertex set of v2 and update Tv

14: return Tv
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Note: isVisible() return true if v1, LFVV, v2 has Right-Turn

4.4 Finding Visibility Edge Table (VET)

For vertex vi, an edge ej(vj ,vj+1) is visible if both end-point vertices vj and vj + 1 are visible from

vi. In Figure 4.7, for vertex v1, edge e1 is visible, e2 not visible and e3 is partially visible. So we

can not consider e3 in the visible edge list for v1. Table 4.7 lists the set of edges visible from each

vertex for the terrain shown in Figure 4.6.
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Figure 4.6: Illustration of concept of visibility edge table

S.N. Vertex Visible Edge List

1 v1 [e1 (we can not put e3 as it is not completely visible by v1 )]

1 v2 [e1,e2,e3]

3 v3 [e2,e3]

4 v4 [e1,e2,e3,e4]

5 v5 [e4, e5]

6 v6 [e4,e5,e6,e7]

7 v7 [e6,e7]

8 v8 [e6, e7,e8]

9 v9 [e8]

Table 4.7: Example visibility edge table

4.5 Finding the Visibility Polygon

The visibility polygon or visibility region for any vertex v on the terrain is the unbounded polygonal

region of all the points of the plane visible from v. Once we compute the visibility vertex table and

visibility edge table, we can easily compute the visibility polygon for any vertex of a terrain. For
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Figure 4.7: Illustration of partially visible edge by vertex

Algorithm 5 Algorithm to find the edge visibility table

1: Input1: Terrain vertices Ti sorted according to x-coordinate
2: Input2: Vertex Visibility Table Tv

3: Output: Visibility Edge Table Te

4: for each vi in Ti do
5: Tvi : Visible vertex set for vertex vi
6: if length(Tvi) = 2 then
7: Add Tvi to Te

8: if length(Tvi) > 2 then
9: for each consecutive vertices pair (vi,vi+1) in Tvi do

10: Add (vi,vi+1) to Te

11: Return Te

partially visible edges we use the ray shooting method to identify the partially visible portion of

that edge as shown Figure 4.8.
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Figure 4.8: Illustration of visibility polygon
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4.6 Implementation of Greedy Ranking Algorithm

To implement the Greedy Ranking Algorithm, we first compute the visible vertex table (VVT)

and visible edge table (VET). By inspecting these tables, the visibility polygon for each vertex

can be computed in a straightforward manner. By examining vertices in each visibility polygon,

we determine the ranks. The first guard is placed at the vertex with the highest rank. After this

placement, ranking is updated by counting only uncovered edges. The process is repeated until all

edges are not covered. A flow chart diagram of this approach is shown in Figure 4.9.

In our GUI , we generate the vertices for terrain in random manner. We create the terrain using

these random vertices and use greedy ranking algorithm to generate the guard placement result. A

snapshot of our GUI implementation is shown in Figure 4.10.

4.7 Implementation of Greedy Forward Marching Algorithm

Once we compute the visible vertex table (VVT) and visible edge table (VET), we use the algorithm

explained in Algorithm 3 to place the point guards on the terrain surface. In each iteration, we find

the Next Candidate Node and place the guard at that node. We run our algorithm until any point

on the terrain is visible from at-least one guard. The flow chart in Figure 4.11 below illustrates the

process used to implement this algorithm.

A snapshot of our GUI implementation is shown in Figure 4.12.
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if(unguarded_edges is empty)?

compute the rank of vertices

unguared_edges = [input terrain]

guarded_edges = []

guard_points = []

End

True

False

update guarded_edges

place the guard at the vertex

with the heightest rank

Start

update unguarded_edges

update guard_points

Figure 4.9: Flow chart for implementation of greedy ranking algorithm
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Figure 4.10: Snapshot of Greedy Ranking Algorithm implementation in GUI application
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update guard_points

place the guard on the node

guard_points = []

unguarded_terrain = [input terrain]

Start

End

True

False
if(unguarded_terrain is empty)?

update unguarded_terrain

find next candidate node and

Figure 4.11: Flow chart of Greedy Forward Marching algorithm
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Figure 4.12: Snapshot of Greedy Forward Marching algorithm in GUI application
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4.8 Result Comparison

We executed a series of experiments to test the performance of the proposed algorithms. We ran

the algorithm with terrains having different numbers of nodes. We computed the number of guards

using two algorithms: Greedy Ranking, and Greedy Forward. We then removed the redundant

guards and prepared the final guard placement result. The result obtained from the experiment

are listed in Table 4.8 - Table 4.10.

Nodes

(N)

Number of Guard

by Greedy Ranking

(GR)

Guard after

Redundancy

Removal (GR)

Number of Guard by

Greedy Forward

Marching (GFM)

Guard after Redundancy

Removal (GFM)

10 3 3 3 3

25 8 8 8 8

50 10 10 11 11

75 14 14 16 16

100 23 22 24 23

125 29 28 29 27

150 30 29 33 33

175 40 38 42 41

200 42 41 46 45

250 56 54 58 57

300 63 62 67 67

350 72 71 81 78

400 83 80 94 89

450 93 91 102 97

500 103 101 115 113

550 110 109 121 119

600 116 114 133 128

650 135 133 148 143

700 150 147 161 158

750 151 150 165 160

800 170 169 190 187

850 182 179 191 184

900 165 164 203 200

950 211 208 221 220

1000 205 204 230 224

1050 217 214 234 231

1100 227 216 250 241

1150 248 242 255 252

1200 237 231 271 263

Table 4.8: Table for number of nodes count (10-1200)
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Nodes

(N)

Number of Guard

by Greedy Ranking

(GR)

Guard after

Redundancy

Removal (GR)

Number of Guard by

Greedy Forward

Marching (GFM)

Guard after Redundancy

Removal (GFM)

1250 255 253 284 279

1300 280 275 294 283

1350 291 287 305 287

1400 284 279 316 305

1450 302 298 325 315

1500 315 307 339 330

1550 311 306 350 339

1600 310 304 365 358

1650 342 334 371 354

1700 347 344 384 371

1750 369 366 394 390

1800 379 370 406 400

1850 389 382 419 412

1900 397 393 439 422

1950 410 403 448 436

2000 417 415 455 438

2050 424 420 468 456

2100 437 429 470 453

2150 452 444 493 480

2200 463 456 496 486

2250 481 475 513 500

2300 485 481 525 510

2350 489 487 546 530

2400 504 499 558 541

2450 520 512 563 550

2500 523 517 564 549

2600 528 521 578 565

2700 566 560 625 607

2800 592 584 638 627

2900 607 600 668 647

3000 614 608 679 660

3100 652 643 696 680

3200 664 659 734 711

3300 693 685 770 739

3400 700 691 780 761

3500 717 705 796 775

3600 760 749 816 796

3700 793 780 857 840

Table 4.9: Table for number of nodes count (1250-3700)
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Nodes

(N)

Number of Guard

by Greedy Ranking

(GR)

Guard after

Redundancy

Removal (GR)

Number of Guard by

Greedy Forward

Marching (GFM)

Guard after Redundancy

Removal (GFM)

3800 796 784 865 843

3900 819 805 903 875

4000 833 821 923 892

4100 839 829 938 922

4200 864 850 950 928

4300 886 873 992 964

4400 894 884 1030 998

4500 934 920 998 971

4600 962 948 1040 1019

4700 975 963 1063 1040

4800 998 982 1088 1064

4900 1028 1009 1120 1095

5000 1048 2028 1130 1105

5100 1091 1072 1174 1146

5200 1099 1082 1199 1166

5300 1106 1089 1216 1175

5400 1132 1109 1232 1206

5500 1152 1136 1255 1222

5600 1162 1146 1288 1246

5700 1192 1180 1306 1269

5800 1219 1195 1323 1282

5900 1239 1225 1338 1305

6000 1248 1222 1349 1318

6100 1296 1274 1406 1359

6200 1302 1286 1411 1375

6300 1313 1290 1445 1399

6400 1322 1306 1468 1435

6500 1331 1311 1459 1419

6600 1375 1351 1505 1450

6700 1385 1360 1527 1487

6800 1423 1402 1558 1511

6900 1444 1423 1579 1529

7000 1472 1443 1601 1556

Table 4.10: Table for number of nodes count (3800-7000)
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The tabulated data was plotted in a graph with the number of guards as y-axis and the number

of nodes as x-axis, for both Greedy Ranking Algorithm and Greedy Forward Marching Algorithm

as shown in Figure 4.13.

Figure 4.13: Graph between Number of Nodes vs Number of Guards

To find the effectiveness of redundancy removal, Figure 4.14 shows the number of identified

redundant guards for both algorithms. The plot shows that the number of redundant guards is

consistently larger for the placement obtained by the Greedy Forward Marching Algorithm
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Figure 4.14: Graph between Number of Nodes vs Number of Redundant Guards
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Chapter 5

Conclusion

We presented a brief review of existing algorithms for placing point guards in 1.5D terrains and

simple polygons. We presented two heuristic algorithms for covering 1.5D terrain by point guards.

We obtained several experimental results on the performance of the presented algorithms (Greedy

Ranking Algorithm and Greedy Forward Marching Algorithm). To enhance the performance of

both algorithms we considered identifying redundant point guards (guards that are not necessary).

Our experimental result shows that the performance of the Greedy Ranking Algorithm is better

than the performance of the Greedy Forward Marching Algorithm. We observed this result on

several terrain input sizes 10, 25, 50, 75 ,......7000. For all these input sizes, the data shows the

performance of Greedy Ranking is consistently better. This can be observed in Figure 4.3. One of

the additional contributions of this thesis is the generation of 1.5D terrain data of various sizes. The

generation is done randomly by using guiding a strip. At present, an implementation by the guiding

strip is taken as a shape with zig-zag structure. To make it more realistic it would be interesting

to have strip of other structures. This can be an interesting future work. The performance of

Greedy Forward Marching is not very good. There is room for improvement by enhancing this

approach. One approach for improvement would be to look forward beyond the Next Candidate

Node while placing the next guard. This is expected to improve the performance of this algorithm

at the expense of time complexity. Recently, some authors have proposed the notion of one-sided

guard placement [LH18]. It would be interesting to convert our proposed heuristic to a one-sided

version of visibility.

There is ample scope to developing better algorithms for identifying redundant guards. In the

method proposed to identify redundant guards at vi we only look for the pair of guards (one to the

left and one to the right of vi). A generalization of this technique is to look for coverage by more
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than two guards (say three). This should improve the spotting of redundant guards at the expense

of time complexity.

A better approach for generating realistic 1.5D terrain would be to sample points on the horizon

of a real terrain and connect them. This approach is certainly feasible and would be a good avenue

for further research. We have taken an unlimited visibility model for defining visible vertices:

two vertices are visible as long as the line segment connecting them does not intersect with the

terrain, no matter how far apart they are located. A more realistic model is to incorporate the

notion of limited visibility. Under this model, two vertices vi and vj are visible if (i) the line

segment connecting them does not intersect with the terrain, and (ii) they are not farther apart

than a certain distance d. It would be an interesting research exercise to develop guard placement

algorithms under limited visibility.
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