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Abstract

Abstract In this thesis, we present a summary of our activities associated with the storage and

query processing of Google 1T 5-gram data set. We first give a brief introduction to some of the

implementation techniques for the relational algebra followed by a Map Reduce implementation

of the same operators. We then implement a database schema in Hive for the Google 1T 5-gram

data set.

The thesis will further look into the query processing with Hive and Pig in the Hadoop setting.

More specifically, we report statistics for our queries in this environment.
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Chapter 1

Introduction

This thesis is an experiment in the storage and query processing of the Google Web1T-5gram data

set. From now on, we will use Web1T-5gram instead of Google Web1T-5gram. Web1T-5gram

addresses the frequency of words in a corpus: ”A corpus is a large, principle collection of naturally

occurring examples of language stored electronically[1]”.

In 2006, Google released the Web1T-5gram database based on 1 trillion words. This database

keeps the frequency of Unigram, Bigram, trigram, four-grams and five-grams. In statistical lan-

guage processing, this method is called an N-gram model[13]. The N-grams are used to train

language models based on the hidden Markov paradigm. N-gram model is designed to keep track

of the frequency of word sequences in a text. Google also created an open source software solution

called Web1T5-easy based on a Relational Database system to manipulate the data.

In this thesis, we show an efficient method for indexing and storing the Web1T-5gram in Hive.

The system Hive takes advantage of Hadoop’s distributed clustering environment. The Hive and

Hadoop can decrease the number of storage costs and reduce computational processing while also

increasing reliability and speed on big data searches.

This thesis contains eight chapters. Chapter One is this introduction. Chapter Two is a

background section is describing Web1T-5gram and Web1T-easy. Chapter Three provides details

about the MapReduce programming paradigm. The MapReduce framework is widely used parallel

computing platforms for processing big data. MapReduce was initially used by Google for indexing

tasks, but later on other entities including, Yahoo, Facebook, Amazon, Ebay, CISCO, Intel, IBM

and Zettaset use it for analytics on their data sets[3] . Chapter Four is an introduction to Big Data.

The Big Data is typically a large dataset that’s hard to process with traditional data processing

methods.

Chapter Five focuses on the structure of Hadoop and also introduces data warehouse system
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layers on top of Hadoop like Hive and Pig. Chapter six describes Hive and Pig and their differences.

In Chapter Seven, we show our implementation in Hive. Chapter Eight addresses the conclusion

and future recommendations.
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Chapter 2

Google Web 1T-5gram

Knowing the probability of how many times a sequence of words in a specific context has occurred

is important in Statistical Language Processing. One of the best-known language modeling tools is

N-gram. Google Web1T-5gram database contains the frequency of N-gram words extracted from

one trillion words of English text. This dataset includes one, two, three, four, and five-grams that

have a frequency greater than 40. Because of the dataset’s sheer size, Web1T-5gram is now used

by many researchers for building better language modeles[5].Web1T-5gram stored in 6 CDs for the

total size of 24.4 GB gzip. In Table 2.1., we show the list of text files on each N-gram.

Table 2.1: number of gzip(text file) for each N-grams based on Google Web1T-5gram CDs
N − gram NumberOfGzipF iles
Bigrams 31
Trigrams 97

Four − grams 131
Five− grams 117

In Web1T-5gram, the text was tokenized with Penn Treebank tokenization.In the same manner

as Penn tokenizer, words are separated by whitespace (e.g. today is, will be two tokens: to-

day(token1) and is(token2)). Verb contraction tokenizer (e.g. mother’s converting to two tokens:

mother(token1)) and ’s(token2) or won’t converting to two tokens, wo(token1) and n’t(token2)).

Marks the sentences with < S >and < /S >. The special token < UNK > shows words that

occurred less than 200 times. The difference between Web1T-easy tokenizer and Penn tokenizer is

that text such as email addresses, URLs, hyphenated compound words, and dates counts as single

token. Table 2.2 is a sample of Web1T-5gram frequency.

Web1T-5gram has 1, 024, 908, 267, 229 tokens (cf. Table 2.3 ).

3



Table 2.2: sample Of Web1T-5gram Frequency(Web1T-5gram,extracted from 4gm-0014.gz)
4gram word1 word2 word3 word4 Frequency

1 tablespoon 8 ounces 1 tablespoon 8 ounces 42
1 tablespoon ; < S > 1 tablespoon ; < /S > 202

1 tablespoon < UNK > sauce 1 tablespoon < UNK > sauce 65
1 tablespoon all - 1 tablespoon all − 4008

Table 2.3: Number of tokens in Google 1T-5grams
Numberoftokens : 1, 024, 908, 267, 229

NumberofSentences : 95, 119, 665, 584

Google has generated around 1 trillion word tokens from public web pages. This corpus is

10,000 times larger than the British National Corpus ( BNC ), which is extracted from 100 million

words. Besides, Web1T-5gram is 2500 times larger than the Corpus Of Contemporary American

English (COCA), which is extracted from 385 million words. Examples of corpora and their sizes

are presented in Table 2.4.

Table 2.4: List of corpora with size in billion tokens[8]
CorpusName : Tokenssize

BNC 0.1G
WP500 0.2G

Wackypedia 1.0G
ukWac 2.2G

WebBase 3.3G
UKCOW 4.0G

LCC 0.9G
Web1T5 1000.0G

The Web1T-5gram has some disadvantages raw data. For example, raw data lacks linguistic

annotation . The data also omits n-grams with the frequency less than 40. Without indexing, a

query requires a linear scan of the entire data. One solution that can increase the speed of the

searches is to store the data in a relational database system. With the relational implementation,

we have the ability to index the n-grams to increase the search process.

Google has also built an open-source, user-friendly software ”Web1T-easy that is a collection of

Perl scripts for indexing and querying the database with the open-source database engine SQLite.”

[5] In indexing, words are first normalized to lower case, and then each word is given word-id for

decreasing the database size and for increasing the search performance. Then each 5-gram is stored

as a sequence of 5 integers.

4



Since working with SQL may not be suitable for most users, Google has built Web 1T-easy, a

user-friendly open-source software that is translated from SQL code.

With the Web1T-easy interface, we have the ability to run queries on Web1T-5gram database

and show the highest frequency of a specific search. Web1T-easy is designed to support queries on

multi-words patterns with words frequencies [4]

(The MapReduce model is designed to work with parallelization- for instance, it can determine

the number of times a specific word appears in a data set.)
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Chapter 3

MapReduce

In 2004, Google introduced MapReduce, which provides its user with a useful way to work with

both parallel paradigm processing and run time programming[7]. In 2005, Nutch developers created

Nutch file system(NDFS) based on MapReduce. Early in 2006, Lucene created Hadoop based on

NDFS and MapReuce. In 2008, Yahoo! announced a search index based on MapReduce with over

10,000 core Hadoop clusters [12] .

MapReduce which uses the runtime programming and can work across a large cluster of com-

puters. It is one of the most frequently used parallel computing platforms for processing big data

. MapReduce is reliable, easy-to-use, and easy-to-program for distributed paradigm and occur in

three stages [2]: map stage, shuffle stage, reduce stage.

The MapReduce programs take advantage of the cluster of commodity servers. First it divides

a job among a group of servers known as Mappers. It then uses a shuffle to distribute the output

of Mappers to the group of servers known as Reducers. The Mapper assumption is that the data

can be parallel processed by Mapper and Reducer. Google runs approximately 1,000 MapReduce

jobs daily[8].

The following describes the three stages of MapReduce on a word count example. In this

example, we describe a MapReduce application that computes the words with the highest frequency

in a given set of text.

3.1 Map Phase

In the following word count example, the input is files of text. We need to know how many times

each word has occurred within this specific corpus. Whitespace separates the words.

Consider the following example where each line represents a file of text:

today is Monday

today is sunny

6



today is a sunny Monday

To counting the words in this example, Mapper will first split the words by whitespaces, and

the output of Mapper is the pair of words with their frequencies know as (key, value) pair. Several

mappers should come across the words based on our text. MapReduce transform output of our

Mapper contains multiple (key, value) pairs.

Table 3.1: Map Function Output
Key V alue
today 1
is 1

Monday 1
today 1
is 1

sunny 1
today 1
is 1
a 1

sunny 1
Monday 1

You can see the diagram of this example on figure 3.1.

Figure 3.1: Map Function

7



The code below shows the word count example in Python. ”

#!/ usr / bin /env python

””” Mapper , us ing Python .”””

import sys

de f r ead input ( f i l e ) :

f o r l i n e in f i l e :

# s p l i t the l i n e in to words

y i e l d l i n e . s p l i t ( )

de f main ( s epara to r =’\ t ’ ) :

# input comes from STDIN ( standard input )

data = read input ( sys . s td in )

f o r words in data :

# wr i t e the r e s u l t s to STDOUT ( standard output ) ;

# what we output here w i l l be the input f o r the

# Reduce s tep

# tab−de l im i t ed ; the t r i v i a l word count i s 1

f o r word in words :

p r i n t ’%s%s%d ’ % ( word , separator , 1)

i f name == ” main ” :

main ( )

”1

3.2 Shuffle Phase

Shuffle stage is implemented by the system that sort and send all the values to the Reducer.

Those pairs that have the same key go to the same Reducer.

1http://www.quuxlabs.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
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Table 3.2: Shuffle Function Output
Key V alue
today 1
today 1
today 1
is 1
is 1
is 1

sunny 1
sunny 1
Monday 1
Monday 1

a 1

Figure 3.2: Shuffle Stage

3.3 Reduce Phase

Reducer joins and unites all intermediate values with the same intermediate key. Reducer is a

program written by the programmer to sums the values for each key. Usually, Reducer produces

Zero or one output value.

As we can see the result of reducer in below.

Reducer for the wordcount example in Python.

”

9



Figure 3.3: Reduce Stage

Table 3.3: Reduce Function Output
Key V alue
today 3
is 3

sunny 2
Monday 2

a 1

#!/ usr / bin /env python

””” Reducer , us ing Python .”””

from i t e r t o o l s import groupby

from operator import i t emge t t e r

import sys

de f read mapper output ( f i l e , s epa ra to r =’\ t ’ ) :

f o r l i n e in f i l e :

y i e l d l i n e . r s t r i p ( ) . s p l i t ( separator , 1)

de f main ( s epara to r =’\ t ’ ) :

# input comes from STDIN ( standard input )

data = read mapper output ( sys . s td in , s epa ra to r=separa to r )

# groupby groups mul t ip l e word−count p a i r s by word ,

# and re tu rn s cons e cu t i v e keys and t h e i r group :

# current word − s t r i n g conta in ing a word ( the key )

# group − y i e l d i n g a l l [”& l t ; current word&gt ; ” , ”& l t ; count&gt ; ” ] i tems

10



f o r current word , group in groupby ( data , i t emge t t e r ( 0 ) ) :

t ry :

t o t a l c o u n t = sum( i n t ( count ) f o r current word , count in group )

p r i n t ”%s%s%d” % ( current word , separator , t o t a l c o u n t )

except ValueError :

# count was not a number , so d i s ca rd t h i s item

pass

i f name == ” main ” :

main ( )

” 2

For testing the Mapper code for small data sets on the local machine, we can simply run this

command line (on Mac):

$ cat / . . / ( the text f i l e path ) | / . . . . / mapper . py ( the path that mapper . py

f i l e has been saved ) | s o r t −k , 1 | / . . . / reducer . py ( Path that reducer . py i s saved )

2http://www.quuxlabs.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
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Chapter 4

Big Data

The role of technology in collecting data from different devices have led to a vast amount of data.

This consequently has created many opportunities to analyze and report on discoveries of certain

patterns in the data. Because of their large size and complexity of this data, managing the data

with traditional approaches is not suitable. This includes challenges associated with storage and

processing.

To illustrate the big data problem, we consider the growth in the number of published pages

on the Internet. In 1998, according to Google there were about one million pages. In 2000, this

number had increased to one billion. In 2008, Google reported approximately one trillion web

pages, and now, in 2014, estimated to be around 30 trillion. In the last six years, it increased up

to 30 times as shown in Table 4.1.

Table 4.1: Number Of Google Unique Web Pages
Y ear NumberOfIndividualWebPages
1998 1, 000, 000
2000 1, 000, 000, 000
2008 1, 000, 000, 000, 000
2014 30, 000, 000, 000, 000

In 1998, Weiss and Indrukya [6] first reported some problems associated with the processing of

the Big Data. In 2000, Diebold [4] published a paper on Big Data concepts and issues.

Big Data heavily depends on the capabilities of the systems for storage and processing. Tradi-

tional systems like Relational Database are not designed to handle smooth processing of Big Data.

In particular, the big data challenges the processing speed, capturing and searching of unstructured

data. It further has problems associated with sharing, transferring, analyzing and visualizing of

big data.

In traditional database systems, data is structured and is stored in tables with fixed number

12



of columns. Each column has the specific data type. But in Big Data, we have variety of data

formats like audio, video, and text that does not fit in the table formats.

In 2001, Doug Laney talked about measuring the Big Data with 3 V’s [8], Volume, Variety,

and Velocity as follows:

• Volume is related to the size of data.

• Variety refers to the number of data types.

• Velocity is related to the speed of processing.

According to 3V’s model, Big Data challenges is not focusing just on the sheer amount of data,

but from all three properties[9]. This model is extended by two more V’s Variability, and Veracity

as follows:

• Variability is designed as having an extremely large variety of data

• Veracity is focused on quality of Big Data. Having lots of incorrect data even if they processed

fast can cause a lot of problems.
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Chapter 5

Hadoop

Many companies have had different experiences working are with Big Data. It is important for

them to have a method to analyze intensive data in an appropriate amount of time. With the

use of Hadoop, working on Big Data computing becomes much easier for users. Hadoop is used

in many organization such as Facebook and Yahoo!. Parallel processing with Big Data allows

simultaneous access to multiple compute clusters. However, many organizations cannot afford

to buy and maintain these clusters. Merging Hadoop with the cloud is a cost-effective solution.

Hadoop is a data management framework that works on Big Data in the cloud.

5.1 Hadoop architecture

Hadoop requires processing massive amounts of raw input data. Distributed computing has been

developed to process Big Data effectively. In distributed computing, each application runs on

several compute nodes. The data is typically divided into several chunks that then processed in

parallel on different compute node. This allows multiple tasks to run independently and eliminates

the problem of the task waiting. They work both individually and parallel. Parallelism is a solution

that works well with Big Data because it reads the data while also parallel processing that same

data. Hadoop copies data a minimum of three times on at least three different machines, which

provides valuable backup, and data redundancy. To help illustrate the Hadoop multiplication pro-

cess, we will reference following the figure.

This is one of the many advantages of Hadoop. Another advantage is that if one of the systems

fails, the other machines can continue processing because the data has been replicated.Another

benefit of this paradigm is faster task processing speed. Multiple data reads and computations

can occur in parallel instead of the most traditional process in which tasks are processed one at a

time.
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Figure 5.1: Name Node - Data Node

Hadoop is an open-source framework that was designed based on distributed computing for

working with Big Data. Hadoop contains two components: HDFS (Hadoop Distributed File

System) and MapReduce.

Figure 5.2: Nutch in Hadoop Distributed File System

Hadoop is the most popular implementation of MapReduce. Hadoop has a master-slave archi-

tecture; the master node is JobTracker, and the slave node is TaskTracker.

Also, Hadoop has been supported by GFS ( Google File System), HDFS( Hadoop Distributed

File System), and MapReduce. In Hadoop, HDFS works on master-slave architecture in which

the master node directs application to multiple slave nodes, and slave nodes store the data. The

master node cannot store data. In a large Hadoop cluster, the master node also serves both

JobTracker and DataNode and TaskTracker and DataNode support each slave node. However,

there are no slave nodes in small Hadoop clusters. The master nodes work alone with JobTracker

and DataNode. When a MapReduce job is executed in Hadoop, Hadoop will first divide the input
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file into several data blocks. Each block is typically 64 MB by default unless otherwise specified

by the programer. Then these blocks are stored in a Hadoop Distributed File System(HDFS).

Each MapReduce job can run in parallel on slave nodes. The mapper function will input the

raw (key, value) pairs into the shuffle that outputs the sorted data to the appropriate reducer

function. The reducer function will then produce the final (key, value) pairs. There are multiple

mappers and multiple reducers, which allows the map and reduce tasks to run simultaneously.

Each block sent to the mapper will divide files into individual (key,value) pairs. First, these

output pairs are written into a memory buffer. Next they are written into a split file on a local disk

.[2]. The shuffling process automatically organizes the (key, value) pairs into groups of identical

keys prior to being sent to the reducer. For example, all keys titled ”today” will be shuffled into

the same partition. These shuffled files are then stored on a local machine. Each shuffle portion

is then processed individually by the reducer function. The final output of the MapReduce job is

a single file in which all identified keys have been tallied. The (key, pair) values consist of the key

and the number of times that a key is counted in the data set. For example, let’s say that the

Reducer counts the key ”today” a total of three times. The final (key, pair) value for this word

would be ”today 3”. The reducer function runs in parallel processing.

The JobTracker node in Hadoop handles executing MapReduce jobs. JobTracker manages

the mapper and reducer execution processes. TaskTracker performs all map and reduce tasks.

JobTracker performs job scheduling (e.g., it leads and schedules jobs from different users) and task

scheduling (e.g., how to assign tasks to TaskTracker). JobTracker will prefer to execute the local

data first to reduce the data transfer across the network. This means that when we have task

assignments and TaskTracker is available for that particular task, JobTracker will first try to find

data blocks that are stored on local disk. If there is no data on the local disk or if JobTracker

cannot find the data, then it will try to find data blocks starting with the nodes that are closest

to the TaskTracker.

One of the Hadoop features is that it will make three copies of each file. HDFS stores these

three copies separately for fault tolerance purposes and reduces the risk of losing data[2]. A reduce

task consists of three stages: copy, sort, and reduce stages. In the copy stage, all of the data that

produced by the mapper function will be copied. The sort stage will sort the data by keys. In the

final stage, the reduce task will sort all of the (key, value) pairs identified sort stage and then store

the output into a final output file. The reduce stage compiles the data into a single file and saves

it to an HDFS.
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5.1.1 fault tolerance in Hadoop

When Hadoop runs Big Data, there can be a risk of failure. Hadoop has been designed to have a

fault tolerance mechanism, and if a failure occurs, Hadoop will try to repair it so that the failure

will have minimal effect on the final output. We will discuss three of the most common types of

failure and their solutions: task failure, TaskTrack failure, and JobTrack failure in Hadoop[2].

• The first common type of failure, task failure, is typically due to user error. For example, a

programmer may have written bad MapReduce code. When a job runs from a poorly written

MapReduce code, the TaskTracker will find task failure. TaskTracker will not perform the

failed task and will notify the JobTracker about the failed task. Then the JobTracker will

try to reschedule the failed task by pointing to a different TaskTracker and try to run the

task again. In Hadoop, if the task fails four times then the entire job will fail and the user

will be notified of the failure. However, the user will not be informed which particular task

failed.

• The second type of failure, TaskTrack failure, is more dangerous than task failure. It occurs

when JobTracker has not received any heartbeat message from TaskTracker for ten minutes.

JobTracker will stop that TaskTracker job and will seek out another TaskTracker job. The

user just receives a message that there is a task failure.

• JobTrack failure, the third common type of failure, is a severe error. Hadoop has a configu-

ration option for this kind of problem that captures snapshots of jobs at periodic intervals.

When a JobTracker failure occurs, Hadoop will use the snapshot to recover all of the jobs

that ran during the failure time. Unlike task failure and TaskTrack failure, JobTrack failure

will produce an error message for the user.

5.1.2 HDFS

Hadoop file system is created based on Google File System(GFS). HDFS is a distributed file system

that execute on top of the file system on all the machines in the cluster. HDFS is one of the Hadoop

components that help to have fault tolerance. Another HDFS job is working on Big Data, that the

typical data will be around terabyte up to few petabyte. HDFS is a built-in support for working

on massive data sets.

HDFS assumes that the data is written one time, and it will be read several times; Data

replication is done by HDFS software layer to distribute the input file and store it in DataNode;

This facility let the application to have access to local data, and also if the Data-Node crashed

still keep a copy of the data in another Data-Node.
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Hadoop Distributed File System wrote in Java for storing massive data sets in a large cluster.

Hadoop is saving each particular file as a sequence of blocks; the input file is broken into several

blocks. Each block has a size 64MB by default, but it’s changeable by the user; also these blocks

also replicated usually three times. Replication is one of the HDFS advantages. It is replicate

to make sure the reliability, network utilization, and availability of blocks[1]. The HDFS has

master-slave architecture, Name-Node (master) and Data-Node(slave).

HDFS architecture

HDFS supported by Name Node, a single node that has managed the access the files, and NameN-

ode will store data into blocks. In next figure, you can see the HDFS architecture.

Figure 5.3: HDFS architecture

5.1.3 NameNode

NameNode runs the file system operations like opening and closing the files. NameNode splits the

file into blocks and store them on metadata and makes the data ready to save on DataNode. Na-

meNode has responsiibility for replication of data blocks. HDFS also has a secondary NameNode.

The responsibility of this second node is to take the snapshot of NameNodes memory structures.

If any failure happen to NameNode, the recent snapshot can be used for recovery.
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5.1.4 DataNode

DataNode responsibility is to store data in Hadoop File System. There is more than one DataNode

and data stored across several DataNodes. If a user needs any data, first NameNode has to find

the location of data blocks, then it can talk directly to the DataNode. Then the DataNode get

the instruction from NameNode.

5.1.5 Hadoop MapReduce

The Hadoop splits the data into data nodes and uses the process of mapper, shuffle and reducers

to process data in parallel. The following is the execution of the word count problem on Apache

Hadoop.

$ scp − i ˜/ . ssh / bozorg i . p r i v a t e mapper . py ec2−user@master : / mnt/ opt /hadoop

The result of this command is:

mapper . py 100% 603 0 .6KB/ s 00 :00

and we do the same for the reducer.

$ scp − i ˜/ . ssh / bozorg i . p r i v a t e reducer . py ec2−user@master : / mnt/ opt /hadoop

reducer . py 100% 978 1 .0KB/ s 00 :00

To execute this on Hadoop, we need to first login to our master and slaves. With the command:

$ ssh − i ˜/ . ssh / bozorg i . p r i v a t e ec2−user@master

By listing the Hadoop directory, we can see our mapper.py and reducer.py that we just copied.

We copied a text file (sunny.txt) to Hadoop for testing the MapReduce job on Hadoop with

Wordcount example. Our example contains three text files:

today is Monday

today is sunny

today is a sunny Monday

We use the same mapper.py and reducer.py that we explained before on Hadoop. For running

mapper and reducer to get a frequency of each word, we need to run the command:

$ bin /hadoop j a r share /hadoop/ t o o l s / l i b /hadoop−streaming −2 . 2 . 0 . j a r − f i l e

/mnt/ opt /hadoop/mapper . py −mapper /mnt/ opt /hadoop/mapper . py − f i l e

/mnt/ opt /hadoop/ reducer . py −reducer /mnt/ opt/hadoop/ reducer . py

−input / datase t /sunny . txt −output /ReducerOutput

The details of our MapReduce job is shown below:
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Figure 5.4: Data Node

14/11/09 2 1 : 0 8 : 30 INFO mapreduce . Job : map 0% reduce 0%

14/11/09 2 1 : 0 8 : 39 INFO mapreduce . Job : map 100% reduce 0%
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14/11/09 2 1 : 0 8 : 46 INFO mapreduce . Job : map 100% reduce 100%

14/11/09 2 1 : 0 8 : 47 INFO mapreduce . Job : Job job 1414437132736 0024

completed s u c c e s s f u l l y

14/11/09 2 1 : 0 8 : 47 INFO mapreduce . Job : Counters : 43

F i l e System Counters

FILE : Number o f bytes read=105

FILE : Number o f bytes wr i t t en =248430

FILE : Number o f read ope ra t i on s=0

FILE : Number o f l a r g e read ope ra t i on s=0

FILE : Number o f wr i t e ope ra t i on s=0

HDFS: Number o f bytes read=264

HDFS: Number o f bytes wr i t t en=34

HDFS: Number o f read ope ra t i on s=9

HDFS: Number o f l a r g e read ope ra t i on s=0

HDFS: Number o f wr i t e ope ra t i on s=2

Job Counters

Launched map ta sk s=2

Launched reduce ta sk s=1

Data−l o c a l map ta sk s=2

Total time spent by a l l maps in occupied s l o t s (ms)=12698

Total time spent by a l l r educes in occupied s l o t s (ms)=4550

Map−Reduce Framework

Map input r e co rd s=4

Map output r e co rd s =11

Map output bytes=77

Map output m a t e r i a l i z e d bytes =111

Input s p l i t bytes =178

Combine input r e co rd s=0

Combine output r e co rd s=0

Reduce input groups=5

Reduce s h u f f l e bytes =111

Reduce input r e co rd s =11

Reduce output r e co rd s=5

S p i l l e d Records=22

Shu f f l e d Maps =2
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Fai l ed S h u f f l e s=0

Merged Map outputs=2

GC time e lapsed (ms)=161

CPU time spent (ms)=2090

Phys i ca l memory ( bytes ) snapshot =635981824

Vi r tua l memory ( bytes ) snapshot =2612731904

Total committed heap usage ( bytes )=515375104

S h u f f l e Errors

BAD ID=0

CONNECTION=0

IO ERROR=0

WRONGLENGTH=0

WRONGMAP=0

WRONGREDUCE=0

F i l e Input Format Counters

Bytes Read=86

F i l e Output Format Counters

Bytes Written=34

To see the result of example, we need to open space the output file.

$ bin / hdfs d f s −cat /ReducerOutput/∗

The output is shown below :

Monday 2

a 1

is 3

sunny 2

today 3

5.1.6 Hadoop Streaming

With the Hadoop streaming power, programmers can perform MapReduce jobs in several languages

such as Ruby, Python, Java, C. The developer has to make sure that they take input from STDIN

and output is going to STDOUT. In the next figure, we can see the STDIN and STDOUT:

We can read the input from STDIN line by line and reducer can process the collected lines

from STDOUT. In the following script, we can see the code:
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Figure 5.5: Hadoop Streaming

”

#mapper

#!/ usr / bin /env python

import sys

# input i s been wr i ten on STDIN

f o r l i n e in sys . s td in :

l i n e = l i n e . s t r i p ( ) # remove l ead ing and t r a i l i n g whitespace

words = l i n e . s p l i t ( ) # s p l i t the l i n e in to words

f o r word in words : # i n c r e a s e counter s

# The r e s u l t o f mapper w i l l wr i t e on STDOUT

# STDOUT w i l l be input f o r reducer
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# the t r i v i a l word count i s 1

p r i n t ’%s \ t%s ’ % ( word , 1)

Our reducer code based on STDIN, STDOUT:

#reducer

#!/ usr / bin /env python

from operator import i t emge t t e r

import sys

current word = None

cur rent count = 0

word = None

# i r ea d the input from STDIN

f o r l i n e in sys . s td in :

# remove whitespace

l i n e = l i n e . s t r i p ( )

# parse the input we got from mapper . py

word , count = l i n e . s p l i t ( ’\ t ’ , 1)

# convert s t r i n g count to i n t e g e r count

t ry :

count = i n t ( count )

except ValueError :

# count was not a number , qu i t

cont inue

# s h u f f l e s o r t the mapper output be f o r e sending i t to reducer

i f current word == word :

cur r ent count += count
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e l s e :

i f current word :

# wr i t e r e s u l t to STDOUT

pr in t ’%s \ t%s ’ % ( current word , cur r ent count )

cur r ent count = count

current word = word

i f current word == word :

p r i n t ’%s \ t%s ’ % ( current word , cur r ent count )

”1

Then with streaming power developer doesnt need to learn a new language and it is reducing

the overhead learning for the developer. For running our MapReduce job, after copied our files

from our desktop to Hadoop we need to run this command and the result show as below:

$ bin /hadoop j a r share /hadoop/ t o o l s / l i b /hadoop−streaming −2 . 2 . 0 . j a r

− f i l e /mnt/ opt /hadoop/mapS . py −mapper /mnt/ opt /hadoop/mapS . py

− f i l e /mnt/ opt /hadoop/RedS . py −reducer /mnt/ opt/hadoop/RedS . py

−input / datase t /sunny . txt −output /Stream

after running the command, we will receive details about our MapReduce job:

14/11/10 0 6 : 1 9 : 00 INFO mapreduce . Job : map 0% reduce 0%

14/11/10 0 6 : 1 9 : 08 INFO mapreduce . Job : map 50% reduce 0%

14/11/10 0 6 : 1 9 : 09 INFO mapreduce . Job : map 100% reduce 0%

14/11/10 0 6 : 1 9 : 15 INFO mapreduce . Job : map 100% reduce 100%

14/11/10 0 6 : 1 9 : 16 INFO mapreduce . Job : Job job 1414437132736 0026

completed s u c c e s s f u l l y

14/11/10 0 6 : 1 9 : 17 INFO mapreduce . Job : Counters : 43

F i l e System Counters

FILE : Number o f bytes read=105

FILE : Number o f bytes wr i t t en =248346

FILE : Number o f read ope ra t i on s=0

FILE : Number o f l a r g e read ope ra t i on s=0

FILE : Number o f wr i t e ope ra t i on s=0

HDFS: Number o f bytes read=264

1http://www.quuxlabs.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
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HDFS: Number o f bytes wr i t t en=34

HDFS: Number o f read ope ra t i on s=9

HDFS: Number o f l a r g e read ope ra t i on s=0

HDFS: Number o f wr i t e ope ra t i on s=2

Job Counters

Launched map ta sk s=2

Launched reduce ta sk s=1

Rack−l o c a l map ta sk s=2

Total time spent by a l l maps in occupied s l o t s (ms)=13399

Total time spent by a l l r educes in occupied s l o t s (ms)=4389

Map−Reduce Framework

Map input r e co rd s=4

Map output r e co rd s =11

Map output bytes=77

Map output m a t e r i a l i z e d bytes =111

Input s p l i t bytes =178

Combine input r e co rd s=0

Combine output r e co rd s=0

Reduce input groups=5

Reduce s h u f f l e bytes =111

Reduce input r e co rd s =11

Reduce output r e co rd s=5

S p i l l e d Records=22

Shu f f l e d Maps =2

Fa i l ed S h u f f l e s=0

Merged Map outputs=2

GC time e lapsed (ms)=153

CPU time spent (ms)=2040

Phys i ca l memory ( bytes ) snapshot =649879552

Vi r tua l memory ( bytes ) snapshot =2630070272

Total committed heap usage ( bytes )=495976448

S h u f f l e Errors

BAD ID=0

CONNECTION=0

IO ERROR=0
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WRONGLENGTH=0

WRONGMAP=0

WRONGREDUCE=0

F i l e Input Format Counters

Bytes Read=86

F i l e Output Format Counters

Bytes Written=34

14/11/10 0 6 : 1 9 : 17 INFO streaming . StreamJob : Output d i r e c t o r y : /Stream

In this example, the result of this command will save on /Stream. For showing the result we

just use cat command:

$ bin / hdfs d f s −cat /Stream/∗

and the result shows as below:

Monday 2

a 1

is 3

sunny 2

today 3

5.1.7 Job-Tracker

The Job-Tracker job is scheduling of MapReduce jobs, and also monitors the failure or success of

those jobs. If Job-Tracker fails, all running jobs will stop.//

Figure 5.6: Job Tracker2
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5.1.8 Task-Tracker

Task-Tracker is a node that accepts task like map, reduce, and shuffle from Job-Tracker. Task-

Tracker contains several slots that shows the number of tasks that can accept. The Task-Tracker

let the Job-Tracker know about the status of the task. If it is failed or if the task done successfully.

Another Task-Tracker responsibly is to send a message every few minutes to Job-Tracker to make

sure Job-Tracker is still working and also notifies of the number of available slots to Job-Tracker.

5.1.9 Hadoop configuration

Hadoop has been configured based on the users request. After installation of Hadoop, configuration

files are generated automatically. The configuration files contain two categories, read-only default

configuration that includes core-default.xml, hdfs-default.xml, and mapred.default.xml ,and site-

specific configuration includes core-site.xml, hdfs-site.xml, and mapred-site.xml.

2http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2013/3b_xz
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Chapter 6

Hive and Pig

6.1 Hive structure

Programming with low-level MapReduce requires an extensive knowledge of the system know-

how. In addition, it is not easy to maintain and update the specific codes. In this thesis, we

used Hive data management software that is built on top of Hadoop. The query language HiveQL

provides the same functionality as SQL. HiveQL constructs are built with MapReduce tools that

work efficiently with the distributed computing environment of Hadoop. Developers can plug

in MapReduce programs directly to the HiveQL. Many companies like Facebook and Yahoo use

HiveQL to manage the data analysis associated with the weblogs. Facebook uses Hive to process

around 700TB of data daily[11].

Figure 6.1: Hive Structure
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In a relational database model, we need to have well-structured data. For less structured data

such as text, audio and maps, the relational model is not a good fit.. Hadoop is designed to accept

unstructured, semi-structured, and poly-structured data. The data can be text, video, XML or

pdf, etc.

Figure 6.2: Hive Map

The Hive layer is on top of Hadoop; which can create and query large unstructured data with

the power of MapReduce.

Hive structure shares many similarities with SQL, such as commands and logic. In Hive, we

have concepts like database, tables, rows, columns. Hive supports many data types similar to

the data types that are offered by SQL (e.g. double, integer, float). Furthermore, Hive supports

complex data types such as maps.

Hive allows developers to extend the data types with their own types. Similar to the traditional

relational model, Hive stores the data in tables. Hive tables have rows and columns. Each database

is the collection of one or more tables. Each column contains one particular type. The type can

be standard primitive types such as integer, complex types like map, or extended type developed

by users. The complex type of the map can be defined as a new type as seen in Table 6.1.

Table 6.1: Complex types supported by Hive
Type Description
map : map < key − type, value− type >
list : list < element− type >

srtuct : struct < file− name : file− type, ... >

We can merge the data types together and create our complex data. For example:

{ l i s t <map < s t r u c t < s t r i ng , s t ruc t<int , s t ruc t<c1 : int , c2 : int>>>>}
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This shows the list of arrays that map the string to the struct. We can put all these commands

together and make schemas for our database on Hive with the following command:

hive> CREATE TABLE tab l e1 ( column1 int , column2 s t r i ng , column3 f l o a t ,

column4 l i s t <map < s t r u c t < s t r i ng ,

s t ruc t<int , s t ruc t<c1 : int , c2 : int >>>>);

The above example has a table with four columns with integer, string, float and list types. We

can access the fields of the table with . symbol, and values with ’[ ]’. First element of the list

shows as Table1.column3 [0]. We can access to c2 Field by Table1.column3 [0][’word’].c2.

As you see, the Hive can support arbitrary complex data types. The tables in Hive using

default serialized and deserialized. In Hive, we can use the externally stored data without actually

transferring the data to the Hive. This saves a significant amount of time by omitting transferring

large amounts of data[11]. The jar in Hive implements the SerDe Java interface (SerDe.jar). The

jar file and table connect to each other, and each query assumes that each jar file is a part of the

table.

6.1.1 HiveQL structure

HiveQL implements a subset of SQL in addition to new constructs. As with SQL, it supports joins

(e.g., inner join, left outer join, right outer join), group by, union, select, etc. SQL knowledge often

helps users become proficient in Hive more quickly than those who are not familiar with SQL.

Figure 6.3: Hive Query Structure

The metadata store in metastore browsing features commands such as SHOW TABLES and

DESCRIBE TABLE. Command line has access to the metastore to process the queries.

The following is an example of a join command:

hive> SELECT tab l e1 . a1 as c1 , t ab l e2 . b1 as c2
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> FROM table1 , t ab l e2 # means : t ab l e1 j o i n tab l e2

> WHERE tab l e1 . a2=tab l e2 . b2 ;

We have the ability to insert new data in our Hive table by using the overwrite command below:

hive> INSERT OVERWRITE TABLE tab l e1

> SELECT ∗

> FROM tab l e2 ;

We have several different joins in Hive such as join, inner join, and Map join. Below are

examples of join, left outer join, right outer join, and full outer join.

• Join: the rows will be joined where they have the same key(the keys must be matched). In

this join result, the rows that do not match the keys are eliminated and thus we cannot see

them in the results.

Figure 6.4: Join

• Left Outer Join: This join will be the rows from the first (left) of the two tables below; they

do not look at the match keys.

Figure 6.5: Left Outer Join

• Right Outer Join: In this join, the rows in the second (right) table will be shown and do not

check the key.

Figure 6.6: Right Outer Join
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Figure 6.7: Full Outer Join

• Full Outer Join: Both tables will be shown and if unmatched rows are found, the results will

return a null value in those appropriate fields.

Our Hive query is based on MapReduce, which means that our common join will have the map

and reduce stages. This process is described visually in figure below. All mapper input runs using

the join command. Mapper first read the fields and then sends the join (key, value) pairs to a file.

The shuffle stage sorts and merges all of the (key, value) pairs and sends them to the reducer.

Reducer receives these sorted and merged pairs and runs the join process. The merge process

within the shuffle stage is very time consuming and puts a massive load on the CPU. We can see

the join process in the figure below .

Figure 6.8: Map Join Pricess

In Map Join, the job performance is improved by removing the work for the shuffle and reduce

stages, which it sends all of the work to the mapper stage. In Map Join, the mapper stage performs

the join command by keeping the small joint table data stored in memory. The job is also performed

in memory.

However, there are two problems associated with Map join. The first problem is that the data

in the join table must be small enough to be stored in the memory; if the table is too large, then

the process will not be able to run. The second problem is that the number of mappers that the
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mapper wants to read from memory at the same time is limited. This means that if hundreds of

mappers want to read the same memory-stored table simultaneously, the processes will crash.

Figure 6.9: Optimized Map Join

To solve these problems, we can use a method of distributed cache called Optimized Map Join.

In this model, each new task reads the small table from the Distributed File System to a hash

table. After completing the read process, we have our hash table file. All the mappers can upload

the hash table file to the Hadoop Distribute Cache and perform the join job. Even if hundreds

of mappers run on the same system, the system will continue to operate without any problems

because the Distributed Cache merely needs to send a copy of hash table file to the system. [11]

Figure 6.10: Using Hash Tables in Optimized Map Join
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In Hive, we do not have INSERT INTO, DELETE and UPDATE commands.

Hive has the ability to support MapReduce programs, and the MapReduce code can be pro-

grammed in any language that accepted by Hadoop.For example, we can get a query from our

word count example that we wrote the code based on Python.

hive> FROM (MAP text USING ’ python mapper . py ’ AS ( key , va lue )

> FROM docs CLUSTER BY key ) a

> REDUCE key , va lue USING ’ python reducer . py ’ ;

In the above example, we are presented with the Map and Reduce functions. Depending on

the job, it is possible that the only mapper will run and reducer is not required. Mapper is always

mandatory, but reducer can be optional. Cluster BY specifies output columns from mapper.py

and these columns will be the reducer.py input. The reducer.py output will be the final result. In

Hive, besides CLUSTER BY, we have DISTRIBUTE BY and SORT BY. In Hive, we can insert

data into a table with an INSERT OVERWRITE clause or INSERT OVERWRITE DIRECTORY

(hdfs path), or INSERT OVERWRITE LOCAL DIRECTORY (on the local user’s system)[11].

Hive Join Examples

Below are some examples of Join in Hive. The first is a simple example of a join command that is

run on two tables on Hive. The next example consists of three tables and executes different join

commands on each table. The third example also uses a join command on three tables, but then

uses an STREAMTABLE command. We first create three tables in Hive by:

> c r e a t e t a b l e one ( c1 s t r i ng , c2 s t r i n g ) ;

> c r e a t e t a b l e two ( b1 s t r i ng , b2 s t r i n g ) ;

> c r e a t e t a b l e three ( a1 s t r i ng , a2 s t r i n g , a3 s t r i n g ) ;

• > s e l e c t one .∗ from one j o i n two on ( one . c1=two . b1 ) ;

• > c r e a t e t a b l e three ( a1 s t r i ng , a2 s t r i n g , a3 s t r i n g ) ;

• > SELECT /∗+ STREAMTABLE( one ) ∗/ one . c1 , two . b1 , three . a1 FROM

one JOIN two ON ( one . c2=two . b2 ) JOIN three ON ( three . a2=two . b2 ) ;
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• > s e l e c t /∗+ MAPJOIN( two ) ∗/ one1 . c1 , one1 . c2

FROM one1 JOIN two ON one1 . c1=two . b1 ;

In our following OUTER LEFT JOIN command example, the result returns all the rows in

table two. We assume two tables that are named Table two and Table three. Each table had

a list of associated entities as shown in Table6.2 and 6.3.

Table 6.2: Table Two
Column1 Column2
sunny sunday
rainy night
foggy Thursday

Table 6.3: Table Three
Column1 Column2
sunny night
foggy day
snowy night

We will continue to use Table two and Table three from Table 6.3 and Table 6.4 This time,

we will run the LEFT OUTER JOIN command on the first column of each of the two tables.

The command took 22.656 seconds to run. The results of the command are presented in

Table 6.5.

• > s e l e c t three . a1 , two . b1 FROM three LEFT OUTER JOIN two ON ( three . a2=two . b2 ) ;

Total MapReduce jobs = 1

sunny night NULL

foggy day NULL

snowy night NULL

Time taken : 22 .656 seconds , Fetched : 3 row ( s )

The result of this join is shown in Table 6.4.

6.1.2 Data Storage in Hive

Tables in Hive can store in HDFS, sub-directory of the table, or in tablets directory.

• With PARTITION BY clause, we can store our table on an HDFS directory.
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Table 6.4: The result of Left Outer Join
Column1 Column2
sunny night
foggy day
snowy night

hive> CREATE TABLE t e s t ( c1 s t r i ng , c2 i n t )

> PARTITIONED BY ( Date s t r i ng , Hour i n t ) ;

In the above example, the table will be stored in hdfs, and partition exists for every value

of Date and Hour. The partition columns are stored in metadata table; they cannot store in

table data. For creating new partition, we can use INSERT or ALTER clues.

• A partition stores the portions of tables on subdirectory as hive directory.

hive> INSERT OVERWRITE TABLE

> t e s t PARTITION

> ( Date=’2014−03−05 ’ , Hour= 10)

> SELECT ∗ FROM tab l e2 ;

hive> ALTER TABLE t e s t

> ADD PARTITION ( Date=’2014−03−05 ’ ,Hour=10);

In the above example, we add the new partition to the test table and store the columns in

the test table HDFS directory.

hive> SELECT ∗ FROM t e s t

> WHERE ds =’2020−05−05 ’;

The compiler just scans the specified HDFS directory (e.g. Path like /hive/examples/ds=2020-

05-05). Then we just can access to the part of the data that we need.

• Hive uses the Bucket concepts for storing the units. A bucket is a file with the directory of

the table or a partition. The time that the user is creating the tables can specify the Buckets.

For example we have a table that bucketed into 20 buckets.

hive> SELECT ∗ FROM t e s t TABLESAMPLE (3 OUT OF 2 0 ) ;

That in this example compiler will scan the data in the third bucket. And look at the data

buckets store in HDFS directory.
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• Hive has the ability to get a query from the data that are stored locally in hive directory,

also can get a query from tables that stored in other locations in HDFS.

The only different between the original table and external table is on DROP TABLE Claus

that when we do the DROP TABLE, in external table we just delete the data from metadata

and the data still stayed in external table. In normal tables DROP TABLE command delete

the entire table.

It depends if the data is partitioned or not, a bucket stored the data in a file on where the

table is already stored.

hive> CREATE EXTERNAL TABLE t e s t 1 ( column1 int , column2 s t r i ng , column3 s t r i n g )

> LOCATION ’/ data / dataset ’ ; #hdfs path

6.1.3 SerDe

Hive has an ability to use the SerDe. With Serializer and Deserializer power, Hive can recognize

to how the process a record.

• Deserializer read a record, take a string of the record and convert it into Java objects. Hive

can handle these Java objects (e.g. when we execute the SELECT command)

• Serializer takes these Java objects and translates it to something that let the Hive write it

on the HDFS. (e.g. For instance when we run the INSERT command).

Programmer developed the SerDe jar file and connected it to the table. In Hive, we have

default SerDe that called LazySerDe, With the LazySerDe we assume the data stored in a file. It

recognized the row delimiter and column delimiter.

hive> CREATE TABLE t e s t 2 ( c1 int , c2 s t r i n g )

> ROW FORMAT DELIMITED

> FIELDS DELIMITED by ’\003 ’

> LINES TERMINATED BY ’\012 ’ ;

Also, we can delimit the serialized key, and also we can delimit the value of maps with DE-

LIMITED clause.

hive> CREATE TABLE t e s t 3 ( c1 int , c2 l i s t <map<s t r i ng , int >>)

> ROW FORMAT DELIMITED

> FIELDS TERMINATED BY’\ t ’

> COLLECTION ITEMS TERMINATED BY ’\n ’

> MAP KEY TERMINATED BY ’\002 ’ ;
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The one of exciting features of SerDe is RegexSerDe that allows the programmer to specify the

regular expression before compiler parse those columns. To assist with explaining of SerDe work,

we reference the figure below.

Figure 6.11: Hadoop MapReduce Using Hive with a Custom SerDe1

6.1.4 Storing Formats

Hive supports most of the formats by default. For example Text files stored in TextInputFormat.

Moreover, the programmer can specify their file format. Developers needs to specify their format

by using INPUTFORMAT and OUTPUTFORMAT clause and store it by STORED AS clause.

Figure 6.12: System Architecture2

1http://ruibm.com/2013/06/02/hadoophive-writing-a-custom-serde-part-1/
2urlhttp://www.programering.com/a/MTM0EzMwATM.html
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To help the illustrate the Hive system architecture, we will reference the figure of a system

architecture in Hive. We have several main components in Hive. Metadata is one of an important

element in Hive, which store the tables, columns, and partitions. Matastore store location of the

table, the table schema, the columns and their types and their partitions.

Compiler in Hive, process the HiveQL clauses. The same as other compilers it starts with

parsing. In Hive for generating the tree from the command, Antlr will be used. We have type

checker as well. In type checker stage, the compiler got the input and output tables information,

from the Metastorea and used create a logical plan for that information. After finishing compiling

the task is time for executing the task.

6.1.5 Executing Tasks

Each task execute after all the task pre-request job be done. For example, for MapReduce task the

pre-request is to first serialized the portion of the task to a file. Then added this file to a cache.

At the end, task deserialized the file and then execute the task. The result of the execution saved

in a temporary location.

6.2 Pig

Programmers for using Hadoop have to spend lots of time for coding for mapper and reducer.

Yahoo! Developed Pig around 2007 that focuses on spending less time on coding. It can handle

and use almost all kind of data. In Pig, we have two main concepts: Pig Latin that is programming

language, and Pig Engine the execution part that run Pig Latin scripts on multiple MapReduce

jobs in Hadoop clusters. So, the result of this part can show on screen or store in a file. Moreover,

Pig is a flexible UDF (User Define Language) that allows the user to use many programming

languages like Java, Jython, Groony, Python, and JRuby. As we said before, many companies are

exciting to work with Hadoop, but they found some weakness during work with Hadoop.

The first limitation of Hadoop is that the developer needs to put a lot of efforts to code with low-

level programming. The solution for solving this problem is using Pig that is a high-level data-flow

programming language. Pig interactive shell is Grunt. With Grunt shell, users can use Pig Latin

and also Grunt has relation to HDFS. Compare to Hadoop, with Pig we have more flexibility.

Many companies such as Google and Facebook use Pig/Hadoop for processing on their large

amount of their data[10]. Pig is compatible with unstructured, semi-structured and structured

data. Another Hadoop limitation is that it cannot support data flow. Hadoop MapReduce unable

to merge several process of several data sets together.

3http://www.itcandor.com/hadoop/
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Figure 6.13: Hadoop Ecosystem3

Pig language called Pig Latin; a programmer can use the Pig Latin and produce a pig code, and

then this program compiles it in MapReduce job, it can be one or more MapReduce jobs. Then

those jobs are executed on Hadoop. Pig supports fault tolerance and scalability. Pig is easy to use

and learn with who is familiar with SQL. Pig can work with typical data operation like Join; also

can work with nested data service like Map.

6.2.1 Difference between Pig and Hive

There are several differences between Hive (a distributed data warehouse) and Pig(a dataflow

programming language).

• The programmer does not need to wait for all the data loaded then start coding. During the

data loading developer can coding. The hive that is kind of RDBMS based first has to wait

for all the data to load. In some examples, like the data from satellites that is a stream data

working with Pig is a lot easier than Hive. In Hive we need buckets to keep the data, and

the programmer has to work on the one bucket and run it again on the other buckets while

still new data are importing to the new buckets.

• Pig Latin is designed as a data flow language. Pig Latin is more flexible and is more accepted

by software engineers. Hive is more related to data analysis.

41



Chapter 7

Experiments

Building an inverted index for web pages is a hard and time-consuming task. Google designed

an innovative method to index and searched a big corpus using MapReduce methodology. This

MapReduce technic was used to build the Google Web1T-5gram. Later Google developed the

Web1T-easy package that contains two Perl scripts: indexing, access to the database. In indexing

section, words normalized to lowercase. Each word given an unique identification number. Then

the result was converted to a database table in SQLLite, MYSQL and PostgreSQL.

In our work, we used the Hive for counting the frequency of each word. Hive is a warehouse

layer on top of Hadoop. Hive is using the MapReduce power, but the programmer doesnt need to

write the mapper and reducer code.

We demonstrate the use of Hive in word counting application. The first example contains three

lines, each line representing a text file. We first create a table with one column to store each

textfile as a row. Then we load the data in the table and then run the query to build the inverted

index in Hive.

> CREATE TABLE hivedocs ( l i n e STRING) ;

OK

Time taken : 0 .424 seconds

> LOAD DATA INPATH ’/ data / sunnysmall . txt ’ OVERWRITE INTO TABLE hivedocs ;

Loading data to t a b l e d e f a u l t . h ivedocs

Table d e f a u l t . h ivedocs s t a t s : [ num part i t i ons : 0 , n u m f i l e s : 1 ,

num rows : 0 , t o t a l s i z e : 56 , r a w d a t a s i z e : 0 ]

OK

Time taken : 0 .608 seconds
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> s e l e c t ∗ from hivedocs ;

OK

today i s Monday

today i s sunny

today i s a sunny Monday

Time taken : 0 .208 seconds , Fetched : 4 row ( s )

> CREATE TABLE WordFrequency AS SELECT word , count (1 ) AS count FROM

> (SELECT explode ( s p l i t ( l i n e , ’\ t ’ ) ) AS word FROM hivedocs ) w

> GROUP BY word ORDER BY word ;

Total MapReduce jobs = 2

Launching Job 1 out o f 2

Number o f reduce ta sk s not s p e c i f i e d . Estimated from input data s i z e : 1

In order to change the average load f o r a reducer ( in bytes ) :

s e t h ive . exec . r educe r s . bytes . per . reducer=<number>

In order to l i m i t the maximum number o f r educe r s :

s e t h ive . exec . r educe r s . max=<number>

In order to s e t a constant number o f r educe r s :

s e t mapred . reduce . t a sk s=<number>

Sta r t i ng Job = job 1414437132736 0062 , Tracking

URL = http :// master :8088/ proxy/ app l i ca t ion 1414437132736 0062 /

K i l l Command = /mnt/opt /hadoop/ bin /hadoop job −k i l l job 1414437132736 0062

Hadoop job in fo rmat ion f o r Stage −1: number o f mappers : 1 ;

number o f r educe r s : 1

2014−11−16 10 : 36 : 56 , 782 Stage−1 map = 0%, reduce = 0%

2014−11−16 10 : 37 : 04 , 012 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.75 sec

2014−11−16 10 : 37 : 05 , 043 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.75 sec

2014−11−16 10 : 37 : 06 , 077 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.75 sec
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2014−11−16 10 : 37 : 07 , 109 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.75 sec

2014−11−16 10 : 37 : 08 , 140 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.75 sec

2014−11−16 10 : 37 : 09 , 172 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.75 sec

2014−11−16 10 : 37 : 10 , 205 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.75 sec

2014−11−16 10 : 37 : 11 , 242 Stage−1 map = 100%, reduce = 100%,

Cumulative CPU 3.28 sec

2014−11−16 10 : 37 : 12 , 276 Stage−1 map = 100%, reduce = 100%,

Cumulative CPU 3.28 sec

2014−11−16 10 : 37 : 13 , 310 Stage−1 map = 100%, reduce = 100%,

Cumulative CPU 3.28 sec

MapReduce Total cumulat ive CPU time : 3 seconds 280 msec

Ended Job = job 1414437132736 0062

Launching Job 2 out o f 2

Number o f reduce ta sk s determined at compi le time : 1

In order to change the average load f o r a reducer ( in bytes ) :

s e t h ive . exec . r educe r s . bytes . per . reducer=<number>

In order to l i m i t the maximum number o f r educe r s :

s e t h ive . exec . r educe r s . max=<number>

In order to s e t a constant number o f r educe r s :

s e t mapred . reduce . t a sk s=<number>

Sta r t i ng Job = job 1414437132736 0063 , Tracking

URL = http :// master :8088/ proxy/ app l i ca t ion 1414437132736 0063 /

K i l l Command = /mnt/opt /hadoop/ bin /hadoop job −k i l l job 1414437132736 0063

Hadoop job in fo rmat ion f o r Stage −2: number o f mappers : 1 ; number o f r educe r s : 1

2014−11−16 10 : 37 : 21 , 890 Stage−2 map = 0%, reduce = 0%

2014−11−16 10 : 37 : 29 , 130 Stage−2 map = 100%, reduce = 0%,

Cumulative CPU 0.78 sec

2014−11−16 10 : 37 : 30 , 163 Stage−2 map = 100%, reduce = 0%,

Cumulative CPU 0.78 sec

2014−11−16 10 : 37 : 31 , 195 Stage−2 map = 100%, reduce = 0%,

Cumulative CPU 0.78 sec
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2014−11−16 10 : 37 : 32 , 228 Stage−2 map = 100%, reduce = 0%,

Cumulative CPU 0.78 sec

2014−11−16 10 : 37 : 33 , 262 Stage−2 map = 100%, reduce = 0%,

Cumulative CPU 0.78 sec

2014−11−16 10 : 37 : 34 , 293 Stage−2 map = 100%, reduce = 0%,

Cumulative CPU 0.78 sec

2014−11−16 10 : 37 : 35 , 330 Stage−2 map = 100%, reduce = 0%,

Cumulative CPU 0.78 sec

2014−11−16 10 : 37 : 36 , 364 Stage−2 map = 100%, reduce = 100%,

Cumulative CPU 2.16 sec

2014−11−16 10 : 37 : 37 , 406 Stage−2 map = 100%, reduce = 100%,

Cumulative CPU 2.16 sec

MapReduce Total cumulat ive CPU time : 2 seconds 160 msec

Ended Job = job 1414437132736 0063

Moving data to : hdfs : // master :54310/ user / h ive / warehouse / wordfrequency

Table d e f a u l t . wordfrequency s t a t s : [ num part i t i ons : 0 ,

n u m f i l e s : 1 , num rows : 0 , t o t a l s i z e : 37 , r a w d a t a s i z e : 0 ]

MapReduce Jobs Launched :

Job 0 : Map: 1 Reduce : 1 Cumulative CPU: 3 .28 sec

HDFS Read : 273 HDFS Write : 229 SUCCESS

Job 1 : Map: 1 Reduce : 1 Cumulative CPU: 2 .16 sec

HDFS Read : 594 HDFS Write : 37 SUCCESS

Total MapReduce CPU Time Spent : 5 seconds 440 msec

OK

Time taken : 49 .898 seconds

hive> s e l e c t ∗ from WordFrequency ;

OK

Monday 2

a 1

i s 3

sunny 2

today 3
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Time taken : 0 .149 seconds , Fetched : 6 row ( s )

As it can be seen the process took a large amount of the time to index the three lines. We then

run it on another text files with the larger sizes:

[ ec2−user@master hadoop ] $ du −sh book1 . txt

168K book1 . txt

[ ec2−user@master hadoop ] $ du −sh book2 . txt

2 .3M book2 . txt

[ ec2−user@master hadoop ] $ du −sh book20 . txt

23M book20 . txt

[ ec2−user@master hadoop ] $ du −sh book30 . txt

50M book30 . txt

In book1, that the words separated by whitespace:

hive> CREATE TABLE book1 ( i n f o 1 STRING) ;

OK

Time taken : 0 .124 seconds

hive> LOAD DATA INPATH ’/ data /book1 . txt ’ OVERWRITE INTO TABLE book1 ;

Loading data to t a b l e d e f a u l t . book1

Table d e f a u l t . book1 s t a t s : [ num part i t i ons : 0 ,

n u m f i l e s : 1 , num rows : 0 , t o t a l s i z e : 167515 , r a w d a t a s i z e : 0 ]

OK

Time taken : 0 .476 seconds

hive> CREATE TABLE Book1Frequency AS SELECT word , count (1 )

AS count FROM (SELECT explode ( s p l i t ( in fo1 , ’ ’ ) ) AS word FROM book1 ) w

GROUP BY word ORDER BY word ;

Total MapReduce jobs = 2

Launching Job 1 out o f 2
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Total MapReduce CPU Time Spent : 11 seconds 640 msec

OK

Time taken : 53 .822 seconds

Similarly, we loaded book2 thru book30 into Hive. And the loading time is shown in Table 7.1.

Table 7.1: Loading the data
Name Size CreateTableT imeTaken LoadDataT imeTaken SplitTheDataOnTable
Book1 168K 0.124 0.476 53.822
Book2 2.3M 0.109 0.409 54.631
Book20 23M 0.103 0.502 55.642
Book30 50M 0.275 0.552 62.773

We now constructed and ran queries based on certain words. The first query looks for the word

Alice in the index. If we want to know how many time name Alice repeated in our file we run this

command:

hive> s e l e c t ∗ from book20Frequency where word = ” Al i c e ” ;

Total MapReduce jobs = 1

Launching Job 1 out o f 1

Number o f reduce ta sk s i s s e t to 0 s i n c e there ’ s no reduce operator

S ta r t i ng Job = job 1414437132736 0074 ,

Tracking URL = http :// master :8088/ proxy/ app l i ca t ion 1414437132736 0074 /

K i l l Command = /mnt/opt /hadoop/ bin /hadoop job −k i l l job 1414437132736 0074

Hadoop job in fo rmat ion f o r Stage −1: number o f mappers : 1 ;

number o f r educe r s : 0

2014−11−16 11 : 50 : 19 , 025 Stage−1 map = 0%, reduce = 0%

2014−11−16 11 : 50 : 27 , 276 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.94 sec

2014−11−16 11 : 50 : 28 , 317 Stage−1 map = 100%, reduce = 0%,

Cumulative CPU 1.94 sec

MapReduce Total cumulat ive CPU time : 1 seconds 940 msec

Ended Job = job 1414437132736 0074

MapReduce Jobs Launched :

Job 0 : Map: 1 Cumulative CPU: 1 .94 sec HDFS Read : 64932

HDFS Write : 11 SUCCESS

Total MapReduce CPU Time Spent : 1 seconds 940 msec

OK
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Al i c e 3094

Time taken : 17 .145 seconds , Fetched : 1 row ( s )

We run the same query on the other books as shown in the table 7.2.

Table 7.2: Loading the data
Name Size Word Frequency T imeTaken
Book1 168K Alice 221 17.048
Book2 2.3M Alice 543 17.121
Book20 23M Alice 3094 17.145
Book30 50M Alice 68068 17.118

As we can see, it is working in less time foe bigger size of data.

Uploading the Google Web1T-5gram in Hadoop, which took a lot of time. We use a similar

table as in our book example to store the all gzip file in Hive.

First we send the files to Hadoop. For sending the files to Hadoop first, we use the below

command.

$ scp −c b l ow f i sh − i ˜/ . ssh / bozorg i . p r i v a t e ∗ . gz

ec2−user@master : / mnt/ opt /hadoop/web1t/5g

For sending data to the server, for each gzip file we spend 5:56 up to 54:19 minutes. The reason

that it’s not fast enough could be Internet connection speed, Internet traffic, or resources busy at

the server side. After sending all the gzip file, we run the query in one gzip file, and then run the

queries in all the gzip file. Working with Hive is a good choice for working with Big Data.

In the first experience, we decompress one of the files (for example file 4gm-0010.gz) by gunzip

command.

$ gunzip /mnt/ opt /hadoop/web1t/5g/4gm−0010. gz

Then we send the new decompress file to HDFS layer.

$ bin / hdfs d f s −copyFromLocal /mnt/ opt /hadoop/web1t/5g/4gm−0010 / data

We create a table with one column and send the file into it.

> c r e a t e t a b l e 4gm ( c1 s t r i n g ) ;

> LOAD DATA INPATH ’/ data /4gm−0010 ’ OVERWRITE INTO TABLE 4gm;

The data in Web1T separated by tab. We split the data on the table and store it in a new

table with two column: one for words and the other one for the frequency of the words.
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hive> CREATE TABLE 4gmcount

AS SELECT word , count (1 )

AS count FROM(SELECT explode ( s p l i t ( c1 , ’\ t ’ ) ) AS word FROM 4gm) w

GROUP BY count ORDER BY count ;

CREATE TABLE f i n

AS SELECT word , count (1 )

AS count FROM(SELECT explode ( s p l i t ( c1 , ’\ t ’ ) ) AS word FROM words ) w

GROUP BY word ;

We run some queries and the result shown in Table 7.3.

Table 7.3: Sample query result from file 4gm-0010
Sequenceofwords Frequency T imeTaken

−ElectronicsandMicroelectronics 111 24.55seconds
−ElectricityNetworkCompany 128 24.55seconds
−ElectricityMarketModel 54 24.55seconds
−ElectricitySupplyIndustry 941 24.55seconds
−ElectricityandMagnetism 2184 24.55seconds

We run the same process to get query on all data. First we send all the gzip file into the table

that has one column; then we spilled the gzip file and store it into another table with two columns

and then run some queries. The gzip files contain vocabulary, one to five-gram word frequency.

The following is a 3-gram data contained in this Web1T-5gram corpus:

Table 7.4: Sample query result from file 4gm-0010
words1 words3 words3 frequency

A MEMBERSHIP ORGANIZATION 69
A MEMBERSHIP GET 253
A MEMORABLE DAY 69
A MEN < /S > 410
A MEMORY ! 184

There are some differences between the traditional database and Hadoop. A traditional rela-

tional database designed to work on structured data. It requires data to be fit into the relational

paradigm of columns and rows schema. Based on IBM report 80 percent of the collected data

is unstructured. However, on Hadoop with MapReduce help, the programmer does not need to

have structured data. MapReduce developers are free to structure the data; they can have their

structure or even can work with no structure. MapReduce paradigm is flexible. In the traditional

method, the size of tables is limited by the local storage size. Apache Hadoop is not a database.
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However, it is a distributed file system that can run large volumes of data in parallel. In the figure

below, we describe some of the differences between Traditional Database and Hadoop.

Table 7.5: Different between RDBMS and Hadoop

RDBMS
DataSize GigabyesorTerabytes
Structure JustWorkWithStructuredSata(StaticSchema)

Read/WriteThroughoutLimits 1000sQueriesPerSecond
DataLayout RowFamilyOriented

Update Read/WriteManyT imes

Hadoop
DataSize PetabytesOrHexabytes
Structure WorkWithStructured, Semi− StructuredandUnstructuredData

Read/WriteThroughoutLimits MillionsOfQueriesPerSecond
DataLayout ColumnFamilyOriented

Update WriteOnceAndReadManyT imes

We used the MapReduce on the Hadoop and Hive jobs. It is important to know that MapReduce

is not a database system. MapReduce is an algorithm for the processing on BigData.

Hive is built in on top of Hadoop with an SQL type query language using for querying and

complex analysis. After developer define tables and columns, data is loaded into these tables. When

we run a query, the MapReduce jobs run automatically. Hive is designed for batch processing,

which means is not working on real time queries. MapReduce is an algorithm for the processing

on BigData.
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Chapter 8

Conclusion

Knowing the frequency of the word is part of the standard methodology in linguistics for exploiting

corpus. In 1991, Sinclair mentioned that ”anyone studying a text is likely to need to know how

often each different word form occurs in it”. Google released Web1T-5gram from the source of

1 trillion words that in that database keep the frequency of the sequence of words. Since there

is no comparable corpus with this data size, Web1T became one of valuable reference. Google

released an open source software called web1T-easy for indexing and querying of that data based

on RDBMS. MapReduce programming paradigm is used for parallel computing on massive data.

Map function read the input file and divide it into multiple (key, value) pairs. Reduce function

aggregates the pairs with the same key and the result of reduce function will be one file. To imagine

how is working we can think the map function as a GROUP-BY command in SQL, and reduce

function can be the aggregation on SQL-like maximum, average that applied over all the rows.

Hadoop is using MapReduce functions and is a software framework. For using Hadoop we do

not need to have expensive hardware, and it can be installed in Linux cluster. Hadoop is reliable by

storing the data minimum three times. Also, it is fault-tolerance and scalable. Jobs that written

in different languages like Python, C and Java, can create and run on Hadoop. Also, Hadoop has

TaskTracker and JobTracker that it can keep track of all execution part and keep track of the nodes

job of each cluster. Hive is a data warehouse that support SQL commands. In SQL data must be

the matched to the schema if the load data doesn’t confirm the schema type it is stop working.

But in Hive doesn’t verify the type of input data during loading data. Hive use batch processing.

It is not working on real-time data. Pig programming language called Pig Latin. It has some

similarity to SQL like GROUP BY and DESCRIBE commands. But there are several different

between Pig and SQL. For instance, in RDBMS structured data stored in tables but in Pig can run

on unstructured data. Pig Latin focuses on data processing on complex data. For programming

with Pig, the developer doesn’t need to know Java, and the same as Hadoop developer can use
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several different programming languages.

Our future work will be work on computer Poker data. Video game developers gain and adopt

advanced analytics for supporting each game. They need to have all the unstructured data and at

the same time they need to have the ability to analyse those data. Each video game has different

players, platforms and different type of data. We will design the efficient method based on Hadoop

and Hive for analyzing the Poker big data.
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