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Abstract

We review existing algorithms for the placement of towers for illuminating 1.5D and 2.5D terrains.

Finding the minimum number of towers of zero height to illuminate 1.5D terrain is known to be

NP-Hard. We present approximation algorithms for solving two variations of the tower placement

problem. In the first variation, we consider the placement of a single tower of given height to

maximize visibility coverage. In the second variation, we consider the problem of placing reduced

number of common height towers to cover the entire terrain. Algorithms for solving both problem

variations are based on discretizing the problem domain by carefully identifying feasible placement

points. We also present a Java implementation for placing a single tower of minimum height to

illuminate a given 1.5D terrain.
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Chapter 1

Introduction

Problems dealing with visibility on the surface of terrain have attracted the interest of many

researchers in diverse scientific areas that include (i) geographic information systems, (ii) path

planning for aerial vehicles, (iii) transportation networks, (iv) emergency response planning and

(v) wireless communications. In geographic information system(GIS) the topography of the terrain

is modeled by discretizing the surface by placing nodal points. Each nodal point pi is specified by

three integers xi,yi,hi, where xi and yi denote x - and y-coordinates of pi and hi denotes the elevation.

The nodal points are carefully connected by edges to obtain what is called a triangulated irregular

network(TIN). For the purpose of visibility computation, each triangle of TIN is assigned an index

called visibility index. Two triangles t1 and t2 of TIN are visible to each other if representative

points of t1 and t2 are such that the line segment connecting t1 to t2, lies above the terrain i.e.

it does not intersect with the terrain. While some triangles are visible from many other triangles,

there could be other triangles that are visible only from a very few other triangles. Triangles having

high visibility have a high visibility index. Such visibility indices are used in planning road networks,

locating facility centers, positioning cellular towers, and modeling reconnaissance trajectories for

aerial vehicles.

In a telecommunication network it is required to construct towers on the surface of terrain to

cover a given region. Just placing towers on triangles having a high visibility index may need a

prohibitively large number of towers. This issue has attracted the interest of many researchers

from the algorithm community to develop efficient algorithms for covering a given region of TIN

with only a small number of towers. Most researchers have adopted the convention of line-of-sight

communication for developing tower placement algorithms. In line-of-sight communications, two

towers can directly communicate with each other if they are in each other’s line of sight, i.e. the
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line segment connecting the top of the towers does not intersect with the terrain. In rare cases,

towers not in line-of-sight, may be able to communicate by exchanging feeble signals. However,

most researchers have adopted the line-of-sight model as fairly good, adequate, and intuitive for

many applications, and in this thesis we stick with this model.

In this thesis, we examine algorithmic approaches for the placement of towers in terrain. Some

versions of tower placement problems are known to be intractable[KK11] and consequently our

motivation is in the development of tower placement algorithms that are efficient and easy to

implement. In chapter 2, we present a critical review of groundbreaking algorithms reported in

publication avenues. In chapter 3, we present the main contribution of the thesis. We first formulate

the Tower Placement Problem(TPP) and present an O(n2) algorithm that finds the location for

placing a tower of given height to maximize the visible region in given 1.5D terrain. We also present

a greedy heuristic to place a reduced number of common height watch towers that cover the entire

1.5D terrain. In Chapter 4, we present an implementation of two algorithms dealing with the

placement of watch towers. The first algorithm we implement is the computation of shortest towers

and their placement for covering the entire 1.5D terrain. The second algorithm we implement is

the placement of a tower of given height to maximize the coverage area. The implementation is

done in the JAVA programming language.

In Chapter 5, we discuss the experimental results of the implemented algorithms and examine

approaches for making them robust and reliable. We also propose interesting variations of tower

placement problems that can be pursued in the future.
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Chapter 2

Review of Terrain Visibility

Algorithms

2.1 Preliminaries

A terrain surface is usually modeled by a collection of covering triangles. Such a model is extensively

used in geographic information system (GIS) and finite element analysis. The network of line

segments for representing a terrain surface by covering triangles is also known as a triangulated

irregular network (TIN). The terrain surface satisfies an interesting structural property called the

projection containment property which can be elaborated as follows. The term h-crosssection is used

to indicate the intersection between the terrain and a horizontal plane. The area of h-crosssection

Ihi
at height hi decreases monotonically as height hi increases. Specifically, consider two h-sections

Ih1 and Ih2 at height h1 and h2 (h1 above h2). The projection of Ih1 on the horizontal plane at h2

is contained inside Ih2 . This projection containment property has been used extensively to develop

efficient algorithms for solving geometric problems on terrain. Figure 2.1 is an illustration of the

projection containment property.

Due to the validity of the projection inclusion property, computational geometry investigators

often refer to terrain as a geometric shape in two and half dimension or simply 2.5D-terrain:

the dimensionality of a terrain is viewed between two dimensions (2D) and three dimensions (3D).

When the terrain is restricted to two dimensions, the surface becomes a monotone polygonal chain,

monotone along the x-axis. It is noted that in a x-monotone chain Ch, any vertical line intersects

with Ch in at most one point. Consequently, a terrain in two dimensions is viewed as a 1.5D-terrain.

A 1.5D terrain is illustrated in Figure 2.2.
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Figure 2.1: Illustrating projection property

Figure 2.2: A 1.5D terrain

2.2 Placement of Single Tower

One of the extensively investigated problems on terrain visibility is the placement of shortest

tower(s) on the surface of 2.5D terrain so that all points on the surface are visible from the top of

the tower. The problem can be formally stated as follows:

Shortest Tower Problem (STP)

Given: A 2.5D terrain L.

Question: Find a position p0(x, y) to place a shortest vertical tower on L so that all points on L

are visible from the top of the tower.

It is noted that a point pi(xi, yi) on the surface of L is visible from the top point tp of tower

if the line segment connecting tp to pi does not intersect with the surface of L. Details about the

concept of visibility can be found in O’Rourke’s book[O’R87].

One of the first algorithms for computing shortest tower was reported by Sharir[Sha88]. Sharir’s

paper establishes that STP reduces to the problem of computing the shortest distance between two
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polyhedrons L and S. Polyhedron S is formed by the intersection of half planes formed by the 2D

faces of L. It turns out that while L is not a convex polyhedron, S is convex. For the purpose of

clarity of presentation, we can illustrate the formation of S in 1.5D as shown in Figure 2.3

Figure 2.3: Illustrating shapes S and L used in Sharir’s algorithm

In the figure, we illustrate Sharir’s idea in 1.5D terrain. The area below the terrain can be

represented by a simple polygon (not necessarily convex) and the intersections of half planes is

represented by a convex polygon which we call the reference polygon. In Figure 2.3, the polygon

representing terrain is filled with a darker shade and the convex region is filled with a lighter shade.

To construct the reference polygon, Sharir[Sha88] used the idea of intersecting rays that originate

from segments of the terrain and extend above. Each of these rays defines a half plane (either to

the left or to the right as appropriate). Specifically, for a ray proceeding to the north-east direction,

the half plane is to the left of the ray. Similarly, for the rays proceeding to the north-west direction

the half plane is to the right of the ray. The intersection of these half planes precisely forms the

reference convex polygon. It is remarked that the reference convex polygon is unbounded. Sharir

proved by geometric analysis that the point on the terrain that minimizes the distance to the

reference polygon is the point where the shortest watch tower should be located. To sketch the

resulting algorithm, three cases are distinguished. The first case is to find the distance between a

vertex of the reference polygon and a line segment of the terrain. The second case is to find the

distance between a vertex of the terrain and the reference polygon. Finally, the third case is to

find the distance between a line segment of the reference polygon and a line segment of the terrain.

While the first two cases can be solved easily in O(nlogn) time by using a standard technique in

computational geometry [o’R98]. The third case is slightly complicated and intricate point location
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techniques are used in [Sha88] to obtain the distance in O(nlog2n) time.

It took another nine years to obtain a faster algorithm for solving the shortest watch tower

problem. Binhai Zhu[Zhu97] reported a faster algorithm. Binhai used Dobkin-Kirkpatrik’s[DK85]

hierarchical representation of convex polyhedron to store additional information on the polyhedron.

This approach resulted in a faster algorithm which executes in O(nlogn) time.

One of the difficulties in developing efficient algorithms for solving STP is the fact that the

shortest tower can potentially be at any point on the surface of the terrain. Figure 2.4 shows the

situations where the shortest tower can be either at a vertex or at an interior point on the edge of

1.5D terrain.

(a) Shortest tower at a vertex (b) Shortest tower at an interior point

Figure 2.4: Placement of towers at different positions

2.3 Placement of Two Towers

Illuminating terrain by the placement of two towers has been investigated. The problem can be

formally stated as follows.

Two Tower Placement Problem (TTPP)

Given: A 2.5D terrain L

Question: Find the placement of two towers of common smallest height to cover L.

This problem can be further stated in two version. In the first version (the discrete version),

the base of the tower is restricted to be among the vertices of L. In the second version (called

the continuous version) the base of the tower could be anywhere on the surface of the tower. As

observed in Agarwal et. al.[ABD+05] the optimal solution for the TTPP could be either on vertices

or on interior points as shown in the figure below.
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(a) Both towers at vertices
(b) Towers at a vertex and an
edge

(c) Bothe towers at edges

Figure 2.5: Three version of two-watchtowers

By using a parametric search technique, it is established in[ABD+05] that the discrete two-

watchtower position can be determined in O(n2log4n) time, where n is the number of edges in 1.5D

terrain. It is further shown in [ABD+05] that within the same time complexity, the semi-continuous

version of the two-watchtower problem can be solved. It is remarked that in the semi-continuous

version, one of the towers can be anywhere while the other is required to be placed at one of the

vertices. For the continuous version of the two-watchtower problem, it is proved in [ABD+05] that

the optimum placement points can be computed in O(n3α(n)log3n) time, where α(n) is the inverse

of the Achermann function.

2.4 Intractability and Approximation

The Tower placement problem is closely related to the well known art gallery problem[O’R87] of

computational geometry. In the art gallery problem, it is asked to find the minimum number of

point guards inside a simple polygon so that any point in the interior of the polygon is visible to

some point guard. It is noted that a point gi sees a point pj inside the polygon if the line segment

(gi, pj) does not intersect with the exterior of the polygon. The standard art gallery problem is

known to be NP-Hard[O’R87]. A 1.5D terrain can be viewed as a part of a monotone polygon. The

complexity of finding the minimum number of point guards to illuminate a 1.5D terrain, often called

the Terrain Illumination Problem (TIP) was not settled for quite some time. Finally, in 2010,

King and Krohn[KK11] were able to build a relationship between TIP and a variation of the 3-SAT

problem called planar 3-SAT. In the standard 3-SAT problem we are given a logical expression E

in Conjunctive Normal Form (CNF) where each clause in E contains at most 3 literals[GJ02] and

we are asked to determine whether there is an assignment to the variable of E to make it satisfiable.

In the planar 3-SAT problem the graph of the logical expression (GLE) is required to be planar.
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For example, consider, a logical expression.

E1 = (v1 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v3 ∨ v4)

In GLE, each variable appears as a circular node and each clause represents a square node.

C3

V1

V2

V3

V4

C1

C2

Figure 2.6: Illustrating planar 3-SAT graph

The edges of GLE consists of positive literal edges and negative literal edges. A positive edge

connects a clause with a positive literal, and a negative edge connects a clause with a negative

literal. In Figure 2.6, positive edges are drawn as solid lines and negative edges are drawn as

dashed lines. In a planar 3-SAT it is required that the GLE be planar, i.e no two edges of GLE

intersect. King and Krohn reduced the TIP problem to the planar 3-SAT problem. Since, planar

3-SAT is known to be NP-Complete[GJ02], it implies that TIP is also NP-Complete.

The minimum tower placement problem (minTP) asks to find the minimum number of towers

of a given common height so that all points on the surface of 1.5D terrain is covered. Now, TIP

can be viewed as a restricted case of min TP in which the height of the tower is zero. In this sense,

the complexity of minTP is also NP-Hard. However, if the common height of the tower is required

to be non-zero then the complexity of minTP is still open.

Some interesting approximation algorithms for solving TIP have been proposed.

One of the first such algorithms was reported by Stephen Eidenbenz in [Eid02]. The approach

taken in this paper is the development of a relationship between the minimum setcover (minSet)

problem and minTP. The minimum setcover problem (minSet) is a well known intractable problem

[GJ02] and a few approximation algorithms have been reported [GJ02]. Specifically, in the minSet

problem, two sets (i) E = {e1, e2, ..., en} and (ii) S = {s1, s2, ..., sm} are given, where each si is a
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subset of E. The minSet problem asks to find a minimum subset S
′
of S such that every element of E

is in at least one member of S
′
. This problem is known to be NP-Hard [GJ02] and an approximation

algorithm with approximation ratio logn+1 is known[GJ02].

In [Eid02] the space above the 2.5D terrain is partitioned into 3D convex cells. These cells can

be viewed as set S in the minSet problem. Analyzing this approach, it is established in [Eid02]

that an approximation algorithm for solving minTP can be developed. The approximation ratio

is also O(logn). The time complexity of the algorithm is O(n6). This algorithm is of theoretical

interest and not efficient enough for practical application.

Another approximation algorithm for covering 1.5D terrain is published in [BMKM07]. This

algorithm is based on placing point guards(watchtowers of zero height) at (i)the vertices of the

convex hull CH(T) of terrain T and (ii) at the carefully selected vertices on sub-terrains defined

by consecutive vertices of CH(T). This is illustrated in Figure 2.7.

V6

V5

V4
V3

V2

V1

(a) Convex Hull

V4
V3

(b) Sub-terrain

Figure 2.7: Convex Hull and Sub-terrain

The dashed chain is the convex hull CH(T) of given terrain T. The convex hull has six ver-

tices CH(T ) =< v1, v2, ...v6 > and there are four sub-terrains. The third sub-terrain induced by

CH(T) is shown Figure 2.7b. A complicated and intricate case analysis is done in [BMKM07] to

select desired vertices for placement in sub-terrains. It is reported in this paper that the resulting

algorithm yields a constant factor approximation for placing guards on terrain T. It is however not

clear about the value of the constant factor.
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Chapter 3

Placement Algorithms

In this chapter we formulate the problem of placing a vertical tower of given height in a 1.5D terrain

so that the portion of the terrain visible from the top of the tower is maximized.

3.1 Problem Formulation

We are given a 1.5D terrain T1 and a watch tower R1 of height h1. Find a placement of R1 so that

the portion of T1 visible from the top of the tower is maximized. The problem is relevant when

the height of the tower is not long enough to visibly cover the whole terrain. It was observed in

Chapter 2 that the solution to a single tower placement problem need not be in one of the vertices

of the terrain. When the solution is one of the interior points on the edge of the terrain it is not

clear how to locate such a point. The placement problem can be formally stated as follows:

3.1.1 Tower Placement Problem (TPP)

Given: (i) A 1.5D terrain T1, (ii) A tower R1 of height h1.

Question: Find the location on the terrain to place tower R1 such that the portion of T1 visible

from the top of the tower is maximized.

If we move the tower from the leftmost points in T1 to the right then the length of T1 visible

from the top of R1 changes. At some intervals the change in visible length is gradual (increasing

or decreasing), while at some intervals the change is abrupt and discontinuous.
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Definition 3.1: (Transition Point) The placement point on the terrain that corresponds to

a discontinuity in visible length is called transition point. In Figure 3.2, there are 12 transition

points.

Definition 3.2: (Critical Points) The set of points on the terrain consisting of transition

points and terrain vertices are called critical points.

Definition 3.3 (Basic Interval) The interval on the terrain between two consecutive critical

points is referred to as a basic interval.

A transition point could be any point on the terrain. For a given terrain, the transition points

depends on (i) the structural shape of the terrain, and (ii) the height of the tower.

Consider the change in visibility (portions of terrain) from the top of the tower as its placement

moves along the basic internal segment. Visible portions of terrain consist of several sub-segments

(we refer to them v-edges). As the tower moves, some v-edges shrink and other v-edges expand,

increasing or decreasing their lengths monotonically. This can be established as stated in the

following lemma.

Lemma 3.1: The change in the length of v-edges as the tower moves along the basic interval

is increasing or decreasing monotonically. (We thank Professor Dr. Rama Venkat’s help in the

calculus part of this lemma.)

Proof: Without loss of generality, we consider a v-edge whose length increases as the tower

moves left to right along the basic interval.(Figure 3.1)

Given constant values of θ1, θ2 and h1, we need to develop a functional relation between l1 and

l2

As h1 moves along l1 (keeping its height h, and θ1 to the slope constant), θ will change. So

does l1 and l2. L is the maximum possible visibility length. Actually in this case, θ increases while

l1 and l2 decrease. Of course, l2 decreasing means that visibility increases. In other words, L− l2

increases.

Note: θ3 = (180− θ1)− θ

= φ− θ, where φ = 180− θ1 which is a constant.

Law of Sines for ∆ABC
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beta

l1

A

B

C

D

E

l2

L
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Figure 3.1: Moving tower of h1 along AC

l1
sin(θ3)

=
h

sin(θ)

l1 = h
sin(φ− θ)

sin(θ)

For ∆CDE

γ = ∠ECD = (180− θ4)− θ

γ = α− θ where α = 180− θ4 is a constant

β = ∠CED = 180− ∠ECD − θ2

= 180− (180− θ4 − θ)− θ2

= θ4 − θ2 + θ

Law of cosines for ∆CDE gives:

l4
sin(β)

=
l2

sin(γ)

l2 = l4
sin(γ)

sin(β)
= l4

sin(α− θ
sin(θ4 − θ2 + θ)
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Note l4 = constant

We have,

l1 = h
sin(φ− θ)

sin(θ)
− − − (i)

l2 = l4
sin(α− θ)

sin(θ4 − θ2 + θ)
− − − (ii)

Differentiating l1 and l2 with respect to θ,

dl1
dθ

= h
− cos(φ− θ) sin(θ)− cos(θ) sin(φ− θ)

sin2(θ)

= (−h)
sin(θ + φ− θ)

sin2(θ)

dl1
dθ

= −h sin(φ)

sin2(θ)

Now for l2,

dl2
dθ

= l4
− cos(α− θ) sin(θ4 − θ2 + θ)− sin(α− θ) cos(θ4 − θ2 + θ)

sin2(θ4 − θ2 + θ)

= −l4
sin(θ4 − θ2 + θ + α− θ)

sin2(θ4 − θ2 + θ)

= −l4
sin(θ4 − θ2 + α)

sin2(θ4 − θ2 + θ)

dl2
dl1

=
dl2
dθ
.
dθ

dl1
= (

l4
h

)
sin(θ4 − θ2 + α) sin2(θ)

sin(φ) sin2(θ4 − θ2 + θ)

dl2
dl1

= (
l4
h

)
sin(180− θ2)
sin(180− θ1)

sin2(θ)

sin2(θ4 − θ2 + θ)

dl2
dl1

= (
l4
h

)
sin(θ2)

sin(θ1)

sin2(θ)

sin2(θ4 − θ2 + θ)

The key functional behavior is:

dl2
dl1

∝ sin2(θ)

sin2(θ4 − θ2 + θ)
=
X

Y

13



From the above relation we conclude that X increases monotonically, Y decreases monotonically

and X
Y increases monotonically. This means X

Y does not contain extremum (minimum or maximum)

in their interior.

3.2 Computing Transition Points

Consider the image Im(T1,h1) of terrain T1, formed by lifting it by height h1 of the tower. The

image is shown in Figure 3.2a drawn in thin segments. From each peak points zi of the terrain

we can construct two grazing rays rleft and rright that originate at the peak point and extend

upward along the terrain edges incident on zi. In Figure 3.2, grazing rays are drawn as dashed

edges. The points of intersections between grazing rays and terrain image Im(T1,h1) are referred

to as guiding points. Guiding points are illustrated in Figure 3.2d drawn as small red circles. We

can project guiding points vertically downward on the terrain to obtain the transition points,

drawn as small blue circles in Figure 3.2e.

A straightforward algorithm for computing transition points is to directly use their constructive

definition. Such an algorithm can be described as follows:

The image chain Im(T1, h1) can be constructed by adding height h1 of tower to the y-coordinates

of terrain chain T1. Specifically, if (xi, yi) is the co-ordinate of vertex vi of Ti then the coordinates

of the corresponding image Im(T1, h1) is (xi, yi + h1). Grazing rays from each vertex vi of terrain

T1 can be constructed by using the slope of segments incident on vi in constant time. We can

then check for intersection between grazing rays and segments of image chain Im(T1, h1). A formal

sketch of our algorithm based on this straightforward approach is listed as Algorithm 1

14



Algorithm 1 Straightforward Intersection Algorithm for Computing Transition Points

1: Input: (i) Terrain T1, (ii) Tower height h1
2: Output: Transition points U={u1,u2,...,uk}
3: Construct Im(T1,h1) by lifting T1 by h1
4: V= ∅
5: for each n in N do
6: Construct grazing rays rleft and rright for zi
7: Let Wi be the intersection points between Im(T1,h1) and grazing rays rleft and rright
8: Add Wi to V

9: Project points in V vertically downward to T1 to obtain U
10: Output U

(a) Placement of a tower on 1.5D Terrain

h

(b) Lifting-up terrain image by h units

(c) Extending rays from top-vertices
(d) Marker points formed by ray extension
(red dots)

(e) Projecting marker point to construct
transition points

Figure 3.2: Different stages of finding transition points
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Observation 3.1: One peak point can potentially trigger O(n) guiding points. This happens

when a grazing ray originating from a peak point intersects with almost all edges of the terrain’s

image This is shown in Figure 3.3

Figure 3.3: Example of a grazing ray inducing O(n) transition segments

Computing guiding points by using Algorithm 3.1 is rather slow. Observation 3.1 leads to

the conclusion that Step 7 in Algorithm 3.1 can take O(n) time for computing intersection points

corresponding to one pair of grazing segments. Since there are O(n) peaks, a straightforward

approach for computing guiding points can take O(n2) time.

By using the plane sweep technique of computational geometry [o’R98], all guiding points can be

computed more efficiently. The approach is to sweep a vertical line from left to right and maintain

two data structures (i) a height balanced tree Tr to maintain the segments intersected by the sweep

line and (ii) a priority queue Q to store segment endpoints and candidate intersection points to

the right of the sweep line. When the sweep line is on an endpoint pi, all intersection points to the

left of the sweep line are discovered together with some implied intersections points to the right

of the sweep line. When the sweep line is at the right end point of a segment ei (event 1), it is

removed from the tree Tr. Similarly, when the sweep line is at the left end of segment ei (event

2), it is inserted into the tree Tr. During event 1 and event 2, when possible intersection point

pj is indeed found, then pj is inserted into queue Q. Whenever the sweep line is on an intersection

point pj (event 3), the order of the corresponding segments (intersecting at pj) are interchanged.

The algorithm finds all intersection points when all edges are processed by a left to right sweep. A

formal description of this algorithm is listed as Algorithm 2.
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Algorithm 2 Plane Sweep Algorithm for Computing Transition Points

1: Tr=∅ Initialize search tree Tr
2: (i) Q = Q ∪ Endpoints of edges of Im(T1,h1) Initialize priority queue Q to endpoints of edges

of image chain
3: (ii) Q = Q ∪ Endpoints of grazing segments Initialize priority queue Q to endpoints of edges

of grazing segments
4: while Q is not empty do
5: Let p be the point with minimum x-coordinate in Q
6: Delete p from Q
7: if p is a left endpoint of edge ej then
8: Insert ej into Tr
9: Let ei, ek be two neighbors of ej in Tr

10: Insert ∩(ei, ej) and ∩(ej , ek) into Q

11: if p is a right endpoint of edge ej then
12: Let ei,ek be neighbors of ej in Tr
13: Delete ej from Tr
14: Insert ∩(ei, ek) into Q if the intersection is to the right of sweep line

15: if p is ∩(ei, ej) then
16: ei and ej are necessarily adjacent in Tr
17: Interchange ei, ej in Tr
18: Let eh, ek be the neighbors of ei and ej in Tr
19: Insert ∩(eh, ei) and ∩(ej , ek) into Q if they are to the right of the sweep line
20: Output p

3.3 Maximizing Tower’s Coverage

Once we have the critical points, we are ready to describe an algorithm for placing a tower T1 of

given length h1 to maximize coverage. Consider the visibility polygon V P (gi) from a critical point

gi as shown in Figure 3.4a. The interior of V P (gi) is shaded in the figure. The visibility polygon

from a point inside a simple polygon can be computed in O(n) time [DBVKOS00]. The portion of

T1 visible from gi, denoted by L(T1, gi), can be extracted from V P (gi) is straightforward manner.

L(T1, gi) is indicated in Figure 3.4b where the visible portions of terrain edges are indicated by

dashed edges. The Visible Portion L(T1, gi)’s from all critical vertices are computed and we select

the one that maximizes the length of the visible portions. A formal sketch of the algorithm is listed

as Algorithm 3.
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c

gi

a

b

(a) Visibility polygon VP(gi) from point gi

c

A

gi

a
b

(b) Illustrating visible portions from position A

Figure 3.4: Visibility polygon and visible edge portions

Algorithm 3 Placement to maximize coverage

Input: (i) Terrain T1, (ii)Height h1
Output: Placement point t

′
on T1 that maximizes coverage

1: Compute critical points g1,g2, ... ,gm using Algorithm 2
2: for each point gi do
3: Compute Visibility polygon V P (gi)
4: Extract L(T1, gi) from V P (gi)

5: Set g
′

to gi that maximizes L(T1, gi)
6: Project down g

′
to T1 to obtain t

′

7: Output t
′
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3.4 Covering the Entire Terrain

If the length of the tower is not long enough it would be interesting to develop an algorithm for

covering the whole terrain by placing only a small number of towers. If the length of the tower

is zero then the problem of finding the minimum number of tower placement is NP-Hard [KK11].

This motivates us to develop a good heuristic to place a reduced number of towers of common

height h1 to cover the entire 1.5D terrain T1.

The algorithm we present is a greedy algorithm that determines placement points, incrementally,

one placement at a time, by scanning the terrain left to right.

v1

v2

v3

v4
v5

v6

v7

v8

v9

v10

v11

Figure 3.5: Illustrating placement by RT-Algorithm

We start with a few definitions needed to describe the greedy heuristic. Consider a 1.5D terrain

whose left to right vertices are in the order v1,v2,...,vn as shown in Figure 3.5.

Definition 3.4 (RL-vertex) For a given height h1, let RL(T1,h1)=vj be the rightmost left

covering vertex such that by placing the tower at vj , all edges of T1 to the left of vj are visible from

vj . In Figure 3.5, RL(T1,h1) is given by v4.

Definition 3.5 (LM-Chain) Let LM(T1, h1) be the maximal leftmost sub-terrain containing

no sub-edges of T1 invisible from the tower placed at vertex RL(T1, h1). In Figure 3.5, LM(T1, h1)

is given by the chain < v1, v2, v3, v4, v5 >.

The greedy heuristic we propose, which we call Left Covering RightMost heuristic (LCRM-

heuristic), essentially identifies RL-vertices and LM-chains, one at a time, by performing a

right to left scan of the terrain. Once the first RL-vertex and corresponding LM-chain is identified,

terrain T1 is updated by deleting the LM-chain from T1. In our running example, the updated
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terrain T1 is < v5, v6, v7, v8, v9, v10, v11 >. In the second greedy iteration, the RL-vertex is v7 and

the corresponding LM-chain is < v5, v6, v7, v8v9 >. In the third greedy iteration, RL-vertex is given

by v11. The placement of the corresponding towers to cover the entire terrain are at vertices v4,v7

and v11. A formal stepwise sketch of the resulting LCRM-heuristic is listed as Algorithm 4.

Algorithm 4 LCRM-heuristic

Input: (i) Terrain T1, (ii) Tower height h1
Output: Placement vertices W=vi1 ,vi2 ,...vim

1: W = φ
2: while T1 6= φ do
3: Determine RL-vertex ui1 by checking visibility from the top of the tower placed at rightmost

vertex starting at vn
4: W = W ∪ {ui1}
5: T1= sub-chain of T1 to the right of T1

6: Output W
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Chapter 4

Implementation and Experimental

Results

In this section, we present the implementation details of our proposed algorithms for various vis-

ibility problems in 1.5D terrain. These include determining the position of a shortest watchtower

to completely guard the terrain, placement of a watchtower of specific height, placement of two

watchtowers to completely guard the terrain etc. The algorithms are implemented in Java while

the GUI was developed using Java Swing API.

Classes for various elementary geometric objects like point, segment, line and ray are used from

the custom BasicGeometry library. This library provides all the basic functionality like length of a

segment, col-linearity of points, intersection among line segments, etc, that we require to implement

the algorithms. Details of these used methods will be presented later.

4.1 Interface Description

The frontend interface of the application is a GUI window developed using Java Swing API. The

layout used to place the elements in the window is the GridBagLayout which works by creating

a dynamic grid where each GUI element is placed in each cell. The application window is just a

JFrame object in Java Swing. The GUI comprises of three main panels: the top panel, the left

panel and the right panel. (Figure 4.1)

The top panel is for the menu bar. It contains a File Menu which has in turn Open, Save and

Exit options. It can be used to (i) open a saved terrain file, (ii) save the current file, and (iii) exit

the application. The left panel contains all the control elements that can be used to draw, edit or
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Top Panel

Left Panel

Right Panel

Figure 4.1: GUI layout of the application

clear the terrain. This panel contains buttons, checkboxes and text areas to display the coordinates

of generated points. Each of these will be discussed in detail shortly. The right panel is used to

draw the terrain. It is the main display area of the application.

The interface allows (i) drawing the vertices of a terrain, (ii) loading the previously saved points

from a file,(iii) saving the current terrain vertices,(iv) drawing the terrain from vertices, (v) editing

the terrain structure, and (vi) finding the shortest watchtower for that terrain. Each of the UI

elements are as indicated in the following table (Table 4.1).

S.N.
File Menu
Item

Function

1 Open
Open a previously saved
terrain point set

2 Save
Save the current terrain
points to a file

3 Exit Exit the application

Table 4.1: Description of File Menu Items

The file menu consists of three options: Open, Save and Exit. Through these, users can open

a previously saved terrain point set and draw a terrain from it. The Save option can be used to

save a current terrain to a file. As the name implies, exit is used to quit the application. Similarly,

the left panel of the GUI consists of several buttons and checkboxes that facilitates the drawing

and editing of the terrain, displaying the kernel of the terrain and drawing the shortest tower. The
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Draw button displays the terrain from plotted points, the Clear button clears the currently drawn

terrain. There are also options for adding or removing the points in the terrain and for editing the

existing points. These features are enabled when the respective boxes are checked. There are three

textareas for different purposes. The first one prints the coordinates of terrain points. The second

text box displays the coordinates of the shortest tower, while the third one displays the coordinates

of the terrain kernel. Each of these elements are described in tables 4.2-4.4.

A snapshot of the application is shown in figure 4.2 below:

Figure 4.2: Snapshot of the GUI application
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4.2 Component Functionality

S.N. Buttons Function

1 Draw
Draw the terrain joining
the points plotted

2 Clear Clear the drawing panel

Table 4.2: Description of Buttons Functionality

S.N. CheckBoxes Function

1 Add points
Add a new point to a
terrain

2
Delete
Points

Delete any point from a
terrain

3 Edit Points
Edit the terrain point
by moving it.

4
Show Ker-
nel

Display the kernel of the
currently drawn terrain.

5 Show tower

Display the shortest
tower from which the
terrain is completely
visible

Table 4.3: Description of CheckBoxes Functionality

S.N. TextArea Function

1
Input Coor-
dinates

Display the input coor-
dinates of a terrain

2
Shortest
Watchtower

Display the coordinates
of shortest watchtower

2
Kernel Co-
ordinates

Display the coordinates
of a kernel

Table 4.4: Description of TextAreas Functionalities
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4.3 Implementation of the Single Tower Placement Algorithm

The first algorithm we implemented was the algorithm to single tower placement problem. This

algorithm is reported in [Sha88]. Here, the objective is to place the tower on a terrain such that all

of the terrain is visible from the top of the tower. Finding the position for the shortest watchtower

involves finding the convex region above the terrain. Any point inside this convex region may be

the solution of our problem. That means, all of the terrain can be seen from any point on this

convex region. We call this convex region a kernel”. Finding the point on a kernel which is closest

to the terrain is straightforward. Hence, the main sub-task while implementing the solution is

determining the segments of the kernel.
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(a) Visible half plane for edge 2
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(b) Intersection of half planes for edges 2
and 4
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(c) Intersection of half planes for edges 2,4
and 6
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(d) Intersection of half planes for edges 2,4,6
and 8

Figure 4.3: Illustrating half plane of the edges in forward pass

We begin by extrapolating the edges of a terrain. In the first (forward) pass, we take only the

backward edges of the terrain and find the visible half plane for those edges. The idea is illustrated

in figure 4.3. In the Figure, edges numbered 2,4,6 and 8 are considered in the first pass. In Figure

4.3a, the red dashed arrow lines depict the half plane for edge 2. Similarly, we compute half planes

for the edges 4,6 and 8. Then we compute the intersection of these half planes which forms part of
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the kernel.

The segments of a kernel as the forward pass completes is shown as a green dashed line in Figure

4.3d. Now, we begin the backward pass where we start from edge 7 through 1 in backward fashion.

In the backward pass, we compute the intersection of visible planes resulted from the forward pass

with the visible half plane of each edge. At the end of the backward pass, we get the desired convex

region which we call a kernel of the terrain. The backward pass is illustrated in Figure 4.4. In

Figure 4.4d, the segments of the kernel are shown in green dashed lines.
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(d) Visible unbounded region until edge 1

Figure 4.4: Illustrating the formation of kernel at the end of backward pass

After we obtain the segments for the kernel, all we have to do is find the point lying on the

kernel whose perpendicular distance to the terrain is the lowest. A Screenshot of our program

finding the shortest tower is given in Figure 4.5.

In our implementation, we store the edges of a kernel as forward feasible segments and back-

ward feasible segments computed from forward pass and backward pass. Portion of the method

ComputeFeasiblePoints which store these segments is as shown in code listing below:

1 List<segment> feasibleSegments = new ArrayList<>();

2 for (int k = 0; k <= i; k++) {

3 for (segment s : feasibleSegmentsPool) {
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Figure 4.5: Finding the shortest tower

4 line fwl = new line(forwardSegments.get(k));

5

6 if(fwl.PerpDistanceToPoint(s.source())<collinearTol &&

7 fwl.PerpDistanceToPoint(s.target())<collinearTol) {

8 feasibleSegments.add(s);

9 }

10 }

11 }

12

13

14 for (int k = 0; k <= i; k++) {

15 for (segment s : feasibleSegmentsPool) {

16 line bwl = new line(backwardSegments.get(k));

17 if(bwl.PerpDistanceToPoint(s.source())<collinearTol &&

18 bwl.PerpDistanceToPoint(s.target())<collinearTol)

19 {

20 feasibleSegments.add(s);

21 }

22 }

23 }
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4.4 Implementation of the Maximum Visibility Problem

In this sub-section, we describe the implementation details of the Maximum Visibility problem to

illuminate the terrain. The theoretical ingredients of maximum visibility were presented in Chapter

3. Here, we describe how we implemented these ingredients. As with the previous implementation,

we used the same interface for drawing the terrain. The GUI has an option (check box) to select

the display of the placement of the tower for maximum visibility . The user can also input the

height of the tower in number of pixel units.

The implementation displays both the 1.5D terrain and its generated image lifted up to the

height of the tower. A snapshot of the display is shown in Figure 4.6.

Figure 4.6: Image of the terrain

The edges of the terrain incident on convex vertices are extended to determine the guiding

points. For our implementation, we adopted the straightforward method of checking the intersection

between grazing rays formed by extending terrain edges incident on convex vertices and the terrain

image. In Figure 4.7, grazing rays are drawn as dotted lines. The intersection points between

grazing rays and the image of the terrain give guiding points, which are drawn as red dots in Figure

4.7.
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Figure 4.7: Our program finding the guiding points

In our implementation, we have defined a Java method called DrawImageAndIntersection

that computes the line segments for terrain image and guiding points. The portion of the code that

does this task is listed below:

1 for(line l:lines)

2 {

3 my_point start=new my_point(l.getStart().get_x(),

4 l.getStart().get_y()-limitedHeightTower);

5 my_point end=new my_point(l.getEnd().get_x(),

6 l.getEnd().get_y()-limitedHeightTower);

7 line il=new line(start,end);

8 imageLines.add(il);

9 }

10

11 for(line il:imageLines)

12 {

13 for(segment s:extrapolatedLines)

14 {

15 segment s1=new segment(il.getStart(),

16 il.getEnd());

17 if(s.Intersect(s1))

18 intersectionPointsWithImage.add
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19 (s.Compute_Intersect(s1));

20 }

21 }

Here, the first for loop iterates over each edge of the terrain, retrieves the start and end

coordinates of the edge and then finds the end coordinates of the image by simple subtracting

the y-coordinates of the terrain edges from the height of the tower. This is how the image of the

terrain is formed. After computing the edges of the image terrain, the second for loop iterates to

check the intersection between grazing rays and image edges. The grazing rays are stored in a List

data structure called extrapolatedLines. For computing the intersection points, the method

Compute Intersect provided by the class segment is used. The computed guiding points are

stored in a List data structure named intersectionPointsWithImage.

The y co-ordinates of the guiding points are modified by adding the height of the tower to obtain

the transition points on the terrain. We need to compute the visible portions of the terrain from

each guiding point. What we exactly need is the visibility segments emanating from the guiding

points to the terrain vertices. To compute a visibility segment, we treat image edges as transparent

and terrain edges as opaque.

To find the visible portion of the terrain image, we need to establish the concept of whether

the line of sight from the top of the tower to any specific point on the edges are blocked. If the

line of sight is blocked, we say that point on the terrain edge is not visible from the top of the

tower, else it is visible. After we computationally establish this concept, we just go through all the

points on the edges and calculate the portion of the edges that are visible. This concept can be

best illustrated through Figure 4.8.

As we see in the figure, if we place the tower on the second guiding point, line of sight from

that point to the eighth edge is blocked by other edges until some higher point. After we gradually

go upwards on the eighth edge, there comes a point when the line of sight starts reaching that edge

unblocked. And it will remain so until the end of the edge. Therefore, placement of the tower at

this guiding point means the visible portion of the eighth edge is from the point when the line of

sight starts getting unblocked to the end of the edge. So for each of the transition points (guiding

points), we compute the length of the visible portion for every terrain edge and sum them.

Another issue of this implementation is how to computationally determine whether the line of

sight is being blocked. For this, we use a simple idea: check the intersection between the line of

sight and all of the edges of the terrain except the edge we are trying to illuminate. If any one
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(a) Line of Sight being blocked
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(b) Line of sight starts getting unblocked

Figure 4.8: Illustrating how line of sight is used to determine visibility

of those edges has an intersection with the line of sight, then it is blocked; otherwise it is not. In

our code, we have implemented a method ComputeV isibleEdgeDistance which returns the length

of an edge that is visible from any particular point. To gradually change the line of sight as we

progress through the edge, we compute the slope and intercept of the edge, and find the next point

that lies on the edge which connects to the guiding points. The excerpt of the code that does this

is given below:

1 public double ComputeVisibleEdgeDistance(my_point p,int lineInd)

2 {

3 int height=600;

4 line l=lines.get(lineInd);

5 p=new my_point(p.get_x(),height-p.get_y());

6
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7 my_point start=new my_point(l.getStart().get_x(),

8 height-l.getStart().get_y());

9

10 my_point end=new my_point(l.getEnd().get_x(),

11 height-l.getEnd().get_y());

12

13 double slope=(double)(end.get_y()-start.get_y())/

14 (double)(end.get_x()-start.get_x());

15

16 double intercept=(double)(end.get_x()*start.get_y()-

17 start.get_x()*end.get_y())/

18 (double)(end.get_x()-start.get_x());

19

20 for(int i=start.get_x()+2;i<end.get_x();i=i+2)

21 {

22 currentX = i;

23 newY = (int) ((slope * i) + intercept);

24 lineOfSight = new segment(p, new my_point(i, newY));

25 - -

26 - -

27 - -

28 }

29 - -

30 - -

31 - -

32

33 }

As per our description above, we have created a method to check if a line of sight is blocked or

not by an edge which is called repeatedly from method ComputeV isibleEdgeDistance. Method

LineOfSightBlocked is listed below:

1 private boolean LineOfSightBlocked(segment s,int height,int li)

2 {

3 int no=0;

4 for (int i=0;i<lines.size();i++)

5 {

6 line edge=lines.get(i);

7

8 my_point sStart=new my_point(edge.getStart().get_x(),

9 height-edge.getStart().get_y());

10

11 my_point sEnd=new my_point(edge.getEnd().get_x(),

12 height-edge.getEnd().get_y());
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13

14 segment sEdge = new segment(sStart,sEnd);

15 if(i!=li)

16 {

17 if (sEdge.Intersect(lineOfSight))

18 no++;

19 }

20

21 }

22 //return no;

23 if(no==0)

24 return false;

25 else

26 return true;

27 }

We can see from the code, the for loop iterates over all the edges and checks if it intersects with

lineOfSight. If it does, we increment the variable no by 1. At the end, if no is 0, i.e. no edges

intersects with lineOfSight, it returns false(meaning it is not blocked) else it returns true(meaning

it is blocked). Finally, our program identifies the position where the visibility of the terrain is

maximum. It is shown in the following Figure:
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Figure 4.9: Our program finding the solution for maximum visibility
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Chapter 5

Conclusion

We presented a cursory review of existing algorithms for placing towers in 1.5D and 2.5D terrain.

We proposed two variations of tower placement algorithms.The first version of the problem asks for

placing a single tower of a given length to maximize the visibility coverage. In the second version

of the problem, we proposed the placement of a reduced number of guards to cover the entire

1.5D terrain. While the first problem is an optimization problem, the second one is a heuristic for

obtaining an approximate solution for a NP-Hard problem. Algorithms for solving both problems

are based on discretizing the placement points on the terrain by computing transition points.

It was observed in Chapter 3 that the number of transition points could be quadratic in the

number of vertices in the terrain(Figure 3.3). Not all transition points, as mentioned in Chapter

3, are necessary to search for the optimum placement. So, it would be interesting to reduce the

number of transition points to make the proposed algorithms efficient. It would also be interesting

to characterize 1.5D terrain for which the number of transition points is linear in the number of

vertices of the terrain. The proposed algorithms are for 1.5D terrain. It would be a valuable exercise

to extend our proposed algorithms to 2.5D terrain.

In our experimental investigation, we constructed the input 1.5D terrain manually by using

mouse clicks in the interface of the prototype program. In order to evaluate the performance of

the proposed algorithms rigorously, it would be appropriate to generate the 1.5D terrain randomly.

The proposed algorithm could then be tested on several randomly generated 1.5D terrains.

Another variation of the tower placement problem is the positioning of two towers of common

height to maximize the coverage. We can call this problem 2T-Max. A solution for 2T-Max can

be obtained by exploiting the structure of transition points formulated in Chapter 3. What we need

is to check the coverage for all pairs of transition points and pick the one that maximizes the cover.
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It would be interesting to solve 2T-Max efficiently without using all pairs of transition points.
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