
UNLV Theses, Dissertations, Professional Papers, and Capstones

12-1-2017

A Test Driven Approach to Develop Web-Based Machine Learning A Test Driven Approach to Develop Web-Based Machine Learning

Applications Applications

Armin Esmaeilzadeh
University of Nevada, Las Vegas, armin.esmaeilzadeh@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Esmaeilzadeh, Armin, "A Test Driven Approach to Develop Web-Based Machine Learning Applications"
(2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3127.
https://digitalscholarship.unlv.edu/thesesdissertations/3127

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3127?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

A TEST DRIVEN APPROACH TO DEVELOP

WEB-BASED MACHINE LEARNING APPLICATIONS

by

Armin EsmaeilZadeh

Bachelor of Science (B.Sc.)

Azad University, Iran

2014

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

December 2017

c© Armin EsmaeilZadeh, 2017

All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

October 3, 2017

This thesis prepared by

Armin EsmaeilZadeh

entitled

A Test Driven Approach to Develop Web-Based Machine Learning Applications

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Kazem Taghva, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Ajoy Datta, Ph.D.
Examination Committee Member

Laxmi Gewali, Ph.D.
Examination Committee Member

Emma Regentova, Ph.D.
Graduate College Faculty Representative

Abstract

The purpose of this thesis is to propose the design and architecture of a testable, scalable, and ef-

ficient web-based application that models and implements machine learning applications in cancer

prediction. There are various components that form the architecture of our web-based application

including server, database, programming language, web framework, and front-end design. There

are also other factors associated with our application such as testability, scalability, performance,

and design pattern. Our main focus in this thesis is on the testability of the system while consid-

ering the importance of other factors as well.

The data set for our application is a subset of the Surveillance, Epidemiology, and End Results

(SEER) Program of the National Cancer Institute. The application is implemented with Python as

the back-end programming language, Django as the web framework, Sqlite as the database, and

the built-in server of the Django framework. The front layer of the application is built using HTML,

CSS and various JavaScript libraries.

Our Implementation and Installation is augmented with testing phase that include unit and

functional testing. There are other layers such as deploying, caching, security, and scaling that

will be briefly discussed.

iii

Acknowledgements

“Foremost, I would like to sincerely thank my thesis adviser Dr. Kazem Taghva for his support

of my M.Sc. study and research and giving me the opportunity to work with him. His advice,

motivation and immense knowledge has given me guidance in my research and writing this thesis.

Furthermore, I would like to thank my committee members, Dr. Ajoy K. Datta, Dr. Laxmi

Gewali, and Dr. Emma Regentova for their support and for being part of my thesis committee.

And above all, I would like to express my profound gratitude to my parents Homayoun Es-

maeilzadeh and Fariba Heidari, my sister Arina Esmaeilzadeh and my cousin Dara Nyknahad for

providing me with continuous encouragement and support throughout my years of study. My

accomplishments would not be possible without them.”

Armin EsmaeilZadeh

University of Nevada, Las Vegas

December 2017

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

List of Listings x

Chapter 1 Introduction 1

1.1 Outline . 2

Chapter 2 Machine Learning 4

2.1 Introduction . 5

2.2 Categories . 6

2.3 Machine Learning Models . 7

2.3.1 Decision Tree . 7

2.3.2 Linear Regression . 9

2.3.3 Kmean Clustering . 11

2.4 Machine Learning in Cancer Research . 12

2.4.1 5-year Surivavability Prediction of Breast Cancer 13

Chapter 3 Django and Web Developing 14

3.1 Introduction . 15

3.2 Server . 16

v

3.2.1 Request Phase . 16

3.2.2 Response Phase . 18

3.3 MVC and MVT Patterns . 20

3.4 Environment . 22

3.5 Installation . 24

3.5.1 Setting up Environment . 24

3.5.2 Installing Python . 24

3.5.3 Create a Workspace with Virtual Environment 24

3.5.4 Start a requirements file . 24

3.5.5 Installing Requirements . 25

3.5.6 Database setup . 25

3.5.7 Web Server . 26

3.6 Django Project . 27

3.6.1 Creating the Project . 27

3.6.2 Creating the Application . 28

3.7 Settings file . 29

3.7.1 Important configurations . 31

3.8 URL Dispatchers . 33

Chapter 4 Test Driven Django 35

4.1 Introduction . 36

4.2 Writing Unit Tests . 37

4.3 Running Tests . 38

4.4 The Test Database . 39

4.5 Test Outputs . 39

4.6 Models . 40

4.6.1 Defining Models . 40

4.6.2 Testing Models . 44

4.7 Views . 45

4.7.1 Defining Views . 45

4.7.2 Testing Views . 48

4.8 Forms . 50

vi

4.8.1 Defining Forms . 50

4.8.2 Testing Forms . 54

Chapter 5 Implementation 59

5.0.1 Introduction . 60

5.0.2 Design Approach . 60

5.0.3 Project Structure . 62

5.0.4 Implementation . 62

Chapter 6 Conclusion 75

6.0.1 Online Survivability Predictor . 76

6.0.2 Maps, Charts and Graphs . 80

6.0.3 Future Work . 81

Bibliography 82

Curriculum Vitae 84

vii

List of Tables

2.1 15 Attributes of Logistic Regression Model. 13

3.1 System Requirements. 23

5.1 15 Attributes of Logistic Regression Model. 61

viii

List of Figures

5.1 Admin Interface . 67

6.1 First Page. 77

6.2 Form . 78

6.3 Report . 79

6.4 Map . 80

6.5 Chart . 81

ix

List of Listings

3.1 Python versions. 24

3.2 Install and activate Virtual Environment. 24

3.3 Django dependency. 25

3.4 Install dependencies. 25

3.5 Start Project Command . 27

3.6 Start Application Command . 28

3.7 Python syntax. 29

3.8 Django setting module. 29

3.9 Django setting path. 29

3.10 Django setting path variable. 29

3.11 Import settings . 30

3.12 Wrong changes in the settings. 30

3.13 Wrong import from setting file. 30

3.14 Configure settings manually. 31

3.15 Configure settings manually. 31

3.16 Base Directory. 31

3.17 Installed Apps. 31

3.18 Middle-ware classes. 32

3.19 Templates . 32

3.20 Database . 33

3.21 Static files . 33

3.22 URL Patterns . 34

4.1 TestCase . 37

4.2 Running Tests . 38

4.3 Test Options . 38

x

4.4 Test Database . 39

4.5 Tests were Successful . 39

4.6 Test Failure Report . 40

4.7 Patient Model . 41

4.8 Patient Model . 41

4.9 Migrate Command . 41

4.10 Registering in Admin inteface. 42

4.11 Many to One relationship . 42

4.12 Patient Model . 43

4.13 Patient Model Title . 43

4.14 Patient Model Test . 44

4.15 Patient Model Test Fail . 44

4.16 Patient Model Test Pass . 45

4.17 current time View function. 46

4.18 current time View function URL. 46

4.19 current time View result. 47

4.20 time.html Template. 47

4.21 current time View using render function. 47

4.22 Time result. 47

4.23 current time test case. 48

4.24 current time test failure. 48

4.25 current time test failure. 49

4.26 current time test successful. 50

4.27 HTML form. 52

4.28 Django form. 52

4.29 HTML tags. 53

4.30 View for Form. 53

4.31 HTML using Django Form. 54

4.32 Testing PatientForm. 55

4.33 Error PatientForm. 55

4.34 Defining PatientForm. 56

4.35 Success PatientForm. 56

xi

4.36 Testing PatientForm. 57

4.37 Testing PatientForm Command. 57

4.38 Final Success PatientForm. 58

5.1 List of Installed Apps . 62

5.2 Databse connection . 63

5.3 Static file directories. 63

5.4 URL patterns. 64

5.5 URL patterns of Home application. 65

5.6 URL patterns of Calculator application. 65

5.7 URL patterns of Graphic application. 65

5.8 Logistic Regression Model. 65

5.9 Logistic Regression Form. 67

5.10 form view function. 69

5.11 result view function. 70

5.12 Home and Graphic view functions. 70

5.13 Load static files. 71

5.14 Map template. 71

5.15 leaflet-map.js. 73

5.16 highcharts.js. 73

xii

Chapter 1

Introduction

1

The objective of this thesis is to propose the design and implementation of an interactive web

based application that can be used to host Machine Learning models. Our main software/appli-

cation development is based on test-driven development. In the first cycle of this approach, we

define a specific set of test cases based on the requirements of the application. In the second cycle,

we implement the corresponding routines to functionally pass the test cases at any level of the

application such as database, front-end, service, controller, etc that are required. Once we verified

that all the test cases are passed then we repeat the first 2 cycles again for any new requirement or

refactoring. This approach will allow us to be certain that every new functionality that is added

to the application meets the requirement in the first cycle of the development.

The Machine Learning technique that is used in this thesis is a Logistic Regression model for

predicting the 5-years survivability for breast cancer incidents. The data set that was used to train

the model is a part of the Surveillance, Epidemiology, and End Results (SEER) program of the

National Cancer Institute (NCI).

1.1 Outline

In chapter 2, we give a brief introduction to Machine Learning. We will introduce three of the

most common used algorithms in the field of Machine Learning which are Decision Trees, Linear

Regression, and Kmean Clustering. We also give a description of the Model that is used in this

thesis.

Chapter 3 will give a detailed description of the Django framework that will be used to imple-

ment our web application. We will look into details of some of the most important aspect of the

framework such as the server, the structure of the framework, and the Model View Template (MVT)

architecture.

In chapter 4, we will introduce the testing framework of the Django framework. We will define

the structure of the tests and how to run test cases. The MVT architecture of the Django framework

will be discussed with many examples of successful test cases.

Chapter 5 will describe the implementation phase of the project. We will present the imple-

mentation of the important components of the project and three different applications that are

2

built.

In chapter 6, we will present our web application that includes different components of the

Django framework to construct the application.

3

Chapter 2

Machine Learning

4

2.1 Introduction

Machine Learning is a field of the Computer Science that gives computers the ability to learn from

experience without being explicitly programmed [Sam59]. More specifically, the field of machine

learning explores and studies the design of algorithms that can learn from data and make predic-

tions on new and unseen examples. This will greatly overcome the problem of program instructions

that are defined strictly by the programmer and will allow the computers to make data-driven

decisions and predictions dynamically.

Machine learning has evolved from the study of pattern recognition in the field of Artificial

Intelligence during 1950s and gained more popularity during recent decade as we had experienced

a rapid increase in the amount of published data and a dramatic growth in performance and speed

of CPU and GPU in processing data and information. There are also many fields in Computer Sci-

ence and Mathematics that are very closely related to Machine Learning such as statistical learning,

mathematical optimization, and data mining. In fact, many ideas in the field of Machine Learning

from practical methodologies to theoretical concepts had a long historically in mathematics.

In this chapter, we will look at different types of Machine Learning algorithms and their appli-

cations.

5

2.2 Categories

Typically, machine learning algorithms are classified into three general categories depending on the

nature of the data and learning methodologies used in the learning system. The three categories

are [Rus03]:

• Supervised learning: Models in this category are given a set of manually selected examples

and features as inputs and the goal of the algorithm is to learn the rules and principles

contained in the data.

• Unsupervised learning: The algorithms are not given examples as input. It is left to the

model or algorithm to find relationships of patterns in the input data.

• Reinforcement learning: The algorithm or the program will interact with environment

and it has to perform a certain task or goal. During this period, the algorithm is getting feed

backs regarding its performance as it explores the problem space.

We can also categorize machine learning algorithms based on the type of predictions and the

desired output that we expect the machine learning system to provide. Here are some of the most

important categories [Rus03]:

• Classification: The input data that is given to the algorithm is divided into two or more

different classes. The goal of the system is to find principles related to each one of those

classes and be able to assign a class value to a new and unseen input. Most of the algorithms

in this branch are supervised learning such as classifying emails as spam or non-spam.

• Regression: This method is also very similar to classification except that the outputs of the

system are continuous values rather than discrete.

• Clustering: The goal of these algorithms is to divide the given input data into different

groups but unlike classification methods, the groups and classes are not known in advance.

Therefore putting this models in unsupervised category.

In the following section, we give an example model in the categories of Classification, Regression,

and Clustering to have a better understanding of how these models work and their use cases.

6

2.3 Machine Learning Models

2.3.1 Decision Tree

Decision Tree is most commonly used in Classification problems and it is a supervised learning

model [Gai]. It uses a tree like model or graph to represent different decisions that can be made at

each level of the tree, based on features that have the most predictive power at that level and the

consequences of that decision. Therefore, each internal node of the tree is representing an attribute

of the data and each branch or edge is an outcome of the related node. Finally, each leaf node at

the lowest level of the tree will give us the class or label of the dependent variable. The path that

was taken from the root of the tree to the final leaf is the classification rule.

The algorithms that are used in Decision Trees work in a top down manner. It chooses an

attribute in the data, that best splits the data or set of items, to be at the top of the tree or its

root. Based on the value of that attribute it will go to the next level of the tree and chooses two

other attribute that split the data set. this process will go on until we reach a leaf node. There are

different metrics that are used to find the best attribute at each level of the tree such as Gini im-

purity [Bre84a], Information gain [Mit97] or Variance reduction[Bre84b]. The tree, by using these

metrics, will be able to learn and find the best attributes by splitting the data sets into subsets many

times. This process is called recursive partitioning. The recursive process will stop if the splitting

procedure is no longer adding any value to the prediction. This process of top down induction is an

example of greedy algorithms that is so far the best strategy to learn classification rules in the data.

One of the well-known methods that is used to split the data set into subsets that are ho-

mogeneous (subsets that have instances with has similar values) is Entropy[Mit97]. The Entropy

calculates the homogeneity of the data in the subsets. If the data set is totally homogeneous then

the entropy would be zero. If the data set is equally divided the entropy would be one. Now in

order to build the decision tree we must calculate two types of Entropy:

• Entropy by using the frequency table of one feature [Gai]:

E(S) =

c∑
i=1

−pi log2 pi (2.1)

7

• Entropy by using the frequency table of two features [Gai]:

E(T,X) =
∑
c∈X

P (c)E(C) (2.2)

Now, once we have these two formulas we can start finding the best attribute that can be used

at the root of the tree. First, we have to find the Entropy of the target variable, and then we

calculate the Entropy of each one of the attributes with the target variable. The attribute that

gives us the largest value is therefore providing the best Information Gain. We use that variable at

the root of the tree and we move on to find the next nodes. The recursive function will continue

until all of our data is classified.

8

2.3.2 Linear Regression

Linear regression models attempt to find a linear equation between one or more feature variables

and a target variable based on the observed data [Sea67]. As example, a linear regression model

may relate the weight of individuals to their height using a linear equation. But before any attempt

to find such an equation we must first make sure that there exist a relationship between these vari-

ables. The relationship does not necessarily imply causation but rather a significant association

between variables. A widely used data visualization tool that is used to observe if there exist any

relationship between variables is scatter plot. If the supposed relationship does not exist in between

the explanatory and dependent variables then a linear regression model will not fit the data and it

will not be a useful method.

One of the measures that is used to determine the association between variables is correlation

coefficient which will give us a value between -1 and 1 to indicate the strength of the relationship

between two variables in the observed data. The Pearson correlation coefficient formula is [oC]:

ρ(X,Y) =
Cov(X,Y)√

Var(X)Var(Y)
. (2.3)

The most common method that is used to fit a regression line on the observed data is least-

squares method. This method will find the best line that fits the observed data by calculating and

minimizing the sum of the squares of the deviations of each data point from the line. The general

formula for the sum of the squared residuals (residual is the difference between the observed value

and the value provided by the model) is [Dra98]:

SSE =
n∑

j=1

r2j =
n∑

j=1

(yj − ŷj)2 (2.4)

Eventually the final form of the equation of the fitted line in the linear regression model is:

Y = a+ bX (2.5)

Where X represents the explanatory variable and the Y represents the dependent variable. The

equation has a slop of b and the intercept of the line is a. By having this equation, if a new unseen

9

value of X is presented without the accompanying Y value, we can replace the X variable in the

equation with given value and predict the value of Y .

10

2.3.3 Kmean Clustering

Kmean Clustering is method originated in the field of signal processing with applications in Vector

quantization, Image segmentation, etc. This method is popular and widely used in cluster analysis.

The goal of this method is to partition n observations or given data points into k clusters where

each data point belongs to the cluster with the closest mean. Computationally, this problem is an

NP-hard [Mah09]. But there are different heuristic algorithms that can be used to converge to a

local optimum [PT12]. The given data to this method has a set of features but it has no labels or

target variables that we want to predict. Therefore, Kmean clustering method is an unsupervised

learning algorithm.

A common algorithm used in Kmean clustering uses an iterative refinement techniques and is

also referred to as Lloyd’s algorithm [Bho09]. In the Kmeam algorithm we are getting a set of

training examples x1, x2, ..., xm ∈ Rn and we want to group these observations into a few clusters.

The goal is to find k centroids and assign a label c(i) to each one of the data points determining its

cluster. There are mainly two steps involved in these method [PT12]:

• Initialization:

– In this step we initialize the cluster centroids µ1, µ2, ..., µk ∈ Rn randomly.

• Repeat until Convergence:

– Assigning step: for every data point, find its closest cluster using the squared Euclidean

distance and assign the data point to that cluster [PT12].

ci := arg min
j
||xi − µj ||2 (2.6)

– Update Step: for every k cluster centroid calculate new means or centroid based on the

new observations that was added to those clusters [PT12].

µj :=

∑m
i=1 1{c(i) = j}x(i)∑m

i=1 1{c(i) = j}
(2.7)

The algorithm will converge when the assignments are not changing anymore.

11

2.4 Machine Learning in Cancer Research

Machine Learning models such as decision trees and artificial neural networks have been used in

cancer research for over 20 years and it is not a new topic [Wis07]. However, the majority of these

applications have been used to detect, classify and distinguish malignancies which acted as an aid

in cancer detection and diagnosis. But through the last decade we have seen a growing trend in

applying machine learning models in cancer prognosis and prediction as well. The objectives of

cancer prediction is mainly in three areas [Wis07]:

• Predicting Cancer Susceptibility.

• Predicting Cancer Recurrence.

• Predicting Cancer Serviceability.

In the first case, we are trying to predict the development of cancer type prior to its occurrence.

In the second case, we will try to predict the recurrence and redevelopment of a type of cancer

after a resolution for it. In the third field, the objective is to predict survivability, life expectancy

or any other specific outcome after the diagnosis.

Nevertheless, cancer prognosis need to consider and take into account more information and data

about patient and the disease than just the diagnosis. Historically the process of prognosis involved

many physicians with different specialties to look at different clinical factors, information about

tumor and other data about the general health and life style of patients to find a sensible prognosis.

However, with the vast development of different technologies in imaging (fMRI, PET), genomic

(DNA, microarrays) and proteomic (protein chips, tissue arrays) fields, the scale of molecular

information about tumors have expanded tremendously. Aside from these data we have other

biomarkers, clinical factors, demographic, histological and macro level information about patients

that no traditional approach in cancer prognosis and prediction by physicians is practical. Moreover,

it has been shown that these molecular level data have very powerful prognostic and predictive

attribute [Wis07].

Therefore, we have seen a growing trend in applying computer based models such as Machine

Learning to tackle the intensive computational challenge of processing and analyzing these data

and information. Moreover, the use of these techniques is helping us to move toward personalized

medicine which is important not only for patients but also for physicians to make better decision

and for the general economy and policy makers.

12

2.4.1 5-year Surivavability Prediction of Breast Cancer

Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute

(NCI) has been collecting and publishing cancer data from approximately %28 of the population

in the United States of America since 1970s [Sp]. The data set includes demographics, clinical data

and information regarding tumor size, stage, etc of patients. SEER data set is the only compre-

hensive source of information for cancer diagnosis and patient survival data in the United States.

The machine learning model that we have used in the web application in this thesis is a Logistic

Regression model trained on the breast cancer data available in SEER program data set and it is

trained to predict the 5-year survivability rate for breast cancer observations.

There are the following 15 attributes in the data set that have the most predictive power in

survivability prediction. The Logistic Regression model have determined the coefficient for each

one of these attribute and they will be used to predict the survivability rate for any new and unseen

observations.

Variable Variable Definition

race two-digit code race identifier

maritalStatus one-digit code for marital status

behaviorCode code for benign etc.

grade cancer grade

vitalStatusRecord alive or not

histologicType microscopic composition of cells

csExtension extension of tumor

csLymphNode involvement of lymph nodes

radiation radiation type code

SEERHistoricStageA codes for stages

ageAtDiagnosis First diagnosis age

csTumorSize size in millimeters

regionalNodesPositive negative vs positive nodes

regionalNodesExamined positive and negative nodes examined

survivalMonths number of months alive

Table 2.1: 15 Attributes of Logistic Regression Model.

13

Chapter 3

Django and Web Developing

14

3.1 Introduction

Django is an open source and free web framework [FC] that supports developing testable, scalable

and secure web applications [Sto] [tBPV] [Dja] built in Python. It was built by Adrian Holovaty

and Simon Willison at the Laweence Journal-World newspaper in 2003 and was publicly released

under BSD licence in 2005. Django Software Foundation currently maintains the Django project.

Django provides a set of components and rich libraries for database access, template processing,

session management, user authentication that are needed to develop web applications. It follows

the Model-View-Template(MVT) architectural pattern that is extensively used to build modern web

applications and web services [Phi].

In the following sections, we will review different components and technologies that are available

in the Django framework. We also discuss various components that form the architecture of the

web application and how they interact with each other.

15

3.2 Server

One of the fundamental functions of any web application is to receive requests and return re-

sponses. Like many other web applications, request and responses in Django have two phases,

namely Request Phase and Response Phase. We will look at these two phases in more detail in

the following sections:

3.2.1 Request Phase

In a Django based web application we have to configure the web server to route incoming requests

to a script that has implemented WSGI(Web Server Gateway Interface). The WSGI’s specifica-

tion is written to map the incoming HTTP requests into Python objects and then execute one or

more applications in a stack [WSG]. The WSGI application at the bottom of the stack is the

Django application. Those applications that reside on the top of the Django application are called

middle-ware. The middle-wares are used to preprocess the incoming requests. For low level oper-

ations such as logging we can make use of these middle-wares. The first stage in the request phase

happens in the web server. Here We should note that for the purpose of our example, we will not

be using any separate web server, the web application will run locally and any request call will be

directed to the WSGI server in the web application. Regardless of which web server we chose, its

primary function is to accept the requests coming from clients and decide where the request should

be directed to. Most of the web servers would pass the requests to files, scripts, or other defined

processes.

Once the Django application receives the request, it will wrap it in an HTTP request object

that is defined in the Django application. From this point on, any part of the application that deals

with the requests will use this HTTP Request object. Before processing requests, Django emits a

request started signal in the application. This signal is subscribable by other applications that

may want to do some operations, such as clearing the logs of data base queries that has been

executed before. Here, there are middle-wares that are specific to the Django framework. After

emitting the signal, Django will pass the request object to the stack of middle-wares. Any Django

middle-ware in the Django framework is a class that is implementing one of the following functions:

16

• process request

• process view

• process template response

• process response

• process exception

These middle-wares are arranged in a stack in different orders. Django will call middle-ware

functions at different times and in different orders. For example, in the request phase the methods

are called in ascending order and in the response phase they are called in descending order. During

the request phase, Django calls the process request method in any middle-ware class that imple-

mented that method, in ascending order. Usually the process request method is used in two ways.

It is either added to the HTTP request object or to a preemptively return response. For instance,

Django’s session middle-ware will add a session attribute to the request and the authentication

middle-ware adds a user attribute to the request. In case the request should be denied based on its

header, Django’s common middle-ware will preemptively return a response. In this case, no other

process request method in the middle-wares are being executed and the returned response will be

passed to the process response methods which will be discussed later.

After the Django is finished calling the process request methods in the middle-ware stack, it

will load its URL configuration pattern. The default configuration for the URLs are defined in the

project settings in the urls.py. However, if any of the middle-ware classes add a urlconf=’...’

attribute to the request object, Django will use that instead of the default settings. Any URL

configuration is a hierarchical list of regular expressions that are used to route a requested path

inside the request object to a view in the application.

Once the Django matches the URLs path to a view, the object will be sent to the middle-ware

stack to call the process view method in middle-ware classes that has implemented it. This step

will allow the middle-ware classes to inspect the view function that Django is going to execute and

the arguments it will pass to it. The middle-ware can alter the arguments or return their own

responses. For example, Django’s Cross Site Request Forgery (CSRF) middle-ware uses this method

17

to see if the view function has an attribute that marks it as exempt from checking.

The final step in the request phase is the view. The view is a callable Python object that takes

an HTTP request object and returns an HTTP response object. Also, the views are able to accept

arguments that are parts of the request path.

3.2.2 Response Phase

The logic of our web application is inside the view functions (which act as callable objects). These

view functions are different from presentation logic which is handled by the template. In simple

terms, the business logic in the view decides what data can be shown based on the processing that

has been done on the data by the logic. The presentation logic will decide if and how the data

is going to be presented. Hence, the view is responsible to collect all the data that is required to

form the response. The final data will be put inside a context dictionary. After this point the

view can perform one of the two options. It can render the template itself and return it inside

an HTTP response or it uses a template response. In the latter case, Django will call the pro-

cess template response method in the middle-ware classes in the stack that have implemented it in

reverse order. These middle-wares are able to alter the template or the context data.

Regardless of whether the view has rendered the template or Django has called the response

render function, the template will be rendered. In order to render a template, a context dictionary

that has the data and a template is needed. Any variable that is defined inside the template will

be substituted with the values associated with that key in the context dictionary. Templates also

have access to filters that are used to provide special formatting to the data.

At the final stage, Django will go through the middle-ware stack in reverse order to call pro-

cess response methods in each of the middle-ware classes that have implemented it. The pro-

cess response method must return an HTTP response object even if it is the same object that was

passed to it. It can make its own response or alter the existing one.

After Django is finished with middle-ware stack, it will emit a request finished signal which

similar to the request started signals in the beginning of the process is subscribable by other appli-

18

cations. Applications can use this opportunity to handle any clean up tasks.

Django will then convert its own HTTP response object to an appropriate WSGI response

which will be sent back to the WSGI middle-ware stack for further processing. Finally, the WSGI

response is returned to the web server that sent the request. The web server will then convert the

WSGI response into its own format and will direct it back to the user.

19

3.3 MVC and MVT Patterns

The MVC stands for Model, View and Controller. It is a design pattern or software development

methodology that is being used to develop web applications. The main objective of this design

pattern is to promote code reusability. For this reason, the MVC pattern divides the software or web

application into three main components namely Model, View, and Controller. The responsibility

of each component is described below:

• Model: This component contains the business logic of the applications. All the rules, tasks

and processes that will be applied to the data is defined here. It is an interface to the data so

it can retrieve data from the database without knowing the details of underlying database.

So, the same model can be used to interact with different databases.

• View: This is the presentation layer. It has the information on how to present the data on

the display such as the layouts, colors, etc. The view components will be the user interface

so it can be used to collect user inputs as well.

• Controller: This component will handle the communication between incoming requests from

users and the models. So basically it will control the flow of information between view and

the model. It will also get the information that has been collected from user by the view and

will decide to either change the view or modify the data through the model.

So, the general flow will be as follow: The user will interact with the interface that has been

produced by the view. The interaction will be passed to the controller, and the controller will

decide if any request should be send to any model. The models will receive the request, will do the

data processing that is required and then it will pass the data back to the controller. The controller

then uses the data received from the model and will pass it to the view.

While this is the general approach of the MVC pattern, different frameworks have different

interpretation of how to implement it. Django is using the MVC pattern very closely, however it

uses some of its own logic for implementation. The main difference is that the controller component

is being handled by the framework. So, any request goes directly to the view classes, which have

the logic of the application and different methods to handle requests based on the request paths.

The models are object entities that reflect the tables that are in the database. The view will use

this model objects to retrieve, update, delete or do any other processing task on the data. The

20

view then will use templates, which are the presentation layer, to substitute data with variables

in these templates. For these reasons the pattern that Django uses is named MVT which stands for

Model, View, and Template. The definition of each component is described below:

• Model is the data access layer. It is an object that mirrors the tables that are in the database.

It includes the fields and methods to do some data processing on the data such as validations.

• Template is the presentation layer. This component acts as the view component of the

original MVC pattern. It has all the information about how to present the data such as

HTML layouts and CSS and JavaScript codes.

• View is the business logic layer. It has the rules to access the data through models and pass

them to the appropriate templates.

As we saw the differences are mainly in naming the components. The underlying pattern is the

same. So, anybody who has used the MVC pattern must be comfortable to work with the MVT

pattern of Django.

21

3.4 Environment

In software architecture and software deployment, a tier or environment is a system in which the

program or application is deployed and executed. Deployment architectures vary significantly across

industries. But a very common 4-tier architecture is usually development, testing, staging and pro-

duction tiers which the application is being deployed to each one in order. These environments

or tiers may vary in size significantly. For example, the development environment is typically a

developer’s workstation, while the production environment might be a large network of different

geographically distributed systems. In the project of this thesis we will look at the development

environment and since we will not have the deployment phase we will run the tests in the same

development environment.

Once we decided to start and develop the application there are a few general best practices that

we can follow to choose a development and production environment. A few of these guidelines are:

• Isolation: since in most cases, web applications have multiple dependencies on other ap-

plications, middle-wares or tools, it is important to avoid using tools or packages that are

installed outside of the development environment as much as possible. It is especially true

in case of python packages and libraries that are used for machine learning and data science

tasks which are using some C extensions. If these tools or packages are installed at the system

level and we have used them inadvertently, we may find that the application is not working

properly or as we expected in the production environment or once we share the application

to be run on different systems.

• Determinism: it simply means that we are confident about the versions of the libraries,

packages and tools that our application relies on and we can reproduce that environment

reliably.

• Similarity: As the complexity and size of the applications increases it is important to be

confident that the problems that arise in the production environment can be reproduced

in the development environment. This will substantially reduce the scope of investigation

and debugging time. Therefore, it is preferable to run the application on the same operating

system, the same release and that the same tools have been used to configure the development

and production environment.

22

In Django projects, there are tools that can help us to follow the above guidelines. For example,

we will be using a tool called

tt virtualenv to create virtual environments in our systems so that the project is not dependent on

the system’s site-packages. Also for dependency management we will use pip, which is a python

package manager, to install and to specify versions of the packages that need to be installed and

used.

The specification of the system and libraries that we used to develop our application is listed

below:

Operating System Linux Ubuntu 16.04.3 LTS

Ram 16 GB

CPU 2.7 GHz

Python 3.6.2

Django Framework 1.11

Table 3.1: System Requirements.

23

3.5 Installation

3.5.1 Setting up Environment

The development environment of Django consists of installing Python, (any python release after 2.7

already includes pip as package manager and virtualenv to create virtual environments), a database

system and a web server. Django makes it easy for developer to focus on developing the applications

in the early stages of development by providing a lightweight SQLite 3 database system and a web

server.

3.5.2 Installing Python

The following link provides the latest versions of Python and installation instructions:

1 https : //www. python . org /downloads/

Listing 3.1: Python versions.

3.5.3 Create a Workspace with Virtual Environment

The name of the virtual envirnpment is myVirtualEnv and the virtual environment files will be

installed inside it.

1 mkdir myVirtualEnv #Create a d i r e c t o r y c a l l e d myVirtualEnv v i r t u a l e n v

2 . / myVirtualEnv #I n s t a l l the v i r t u a l environment i n s i d e the d i r e c t o r y

3 source . / myVirtualEnv/ bin / a c t i v a t e #Act ivate the environment

Listing 3.2: Install and activate Virtual Environment.

Once the environment is activated, the name of the environment will be attached to the com-

mand line in parenthesis.

3.5.4 Start a requirements file

We can create a requirements.txt and write all the packages and dependencies that this program

needs. At this point we will only have Django as the main dependency, So we write it inside the

text file.

24

1 Django==1.11

Listing 3.3: Django dependency.

3.5.5 Installing Requirements

Since we have the required packages inside the requirements.txt we can use python’s packages

manager, pip, to install all of them using the following command.

1 pip i n s t a l l −U −r requ i rements . txt

Listing 3.4: Install dependencies.

3.5.6 Database setup

Django framework supports most of the major database engines to be setup and used. The following

engines are some of the SQL database systems supported in Django:

• MySQL

• PostgreSQL

• SQLite 3

• Oracle

Django also supports NoSQL systems such as search databases, in memory data structures,

document databases and catching systems as well. Some of them are listed below:

• Mango DB

• Google App Engine Data store

• Elastic Search

• Cassandra

• Simple DB

• Redis

As mentioned before, Django comes with the SQLite 3 database and we will be using it through-

out this project.

25

3.5.7 Web Server

As shown in the previous sections, Django comes with its internal lightweight web server that is

used for developing and testing applications. The server is pre-configured to work with the frame-

work and more importantly it restarts itself whenever a part of the code is modified, which is very

helpful in the early stages of development.

However, Django supports most of the popular web servers such as Apache, Nginx, Cherokee

and Lighttpd to name a few. In this project, we will be using the development server that comes

with Django.

26

3.6 Django Project

Some MVC web frameworks use a technique called Scaffolding in which the developer can define

some specifications for how the application’s database maybe used. The framework then uses this

instructions to generate code and project structures to be used as a starting point for developer to

start developing the application. Django provides HTTP as well as file system scaffolding.

The HTTP scaffolding is used to handle tasks such as parsing an HTTP request and turn

them into python objects or providing tools to easily create HTTP responses. The file system

scaffolding is a set of conventions for how to organize the code. These structure and organizations

makes it easier for developers to add more engineers to the project since most engineers working

with Django already know this organization of the code. In Django framework a Project is the final

product and it groups one or more applications together.

3.6.1 Creating the Project

Once Django is installed, it will use a django-admin.py script to handle scaffolding tasks. Since

we are in the virtual environment myVirtualEnv we can use django-admin.py to start a project

by using the following command.

1 python django−admin . py s t a r t p r o j e c t myproject .

Listing 3.5: Start Project Command

Once the project setup is finished the framework will generate the following files that are the

starting points to start development.

• manage.py: this script is pointer back to the django-admin.py script that was used to

start the project. From this point we will be using this script to interact with the framework.

manage.py has an environment variable set that points to the project to read settings from

and operate on.

• settings.py: All the configuration of the project will be in this file. It has some default

values for different components of the application such as database, web server, etc to use

and to develop the application. If we decide to change the database, web server, etc, we first

apply the changes here.

27

• urls.py: this file contains the mapping between URLs, as part of the incoming requests, to

views in the application.

• wsgi.py: this script is a WSGI wrapper for the application. The script will be used by

the development server of Django and other containers such as mod-wsgi that is used in the

Apache web server in the production environment to interact with the project and applications

grouped in it.

3.6.2 Creating the Application

At this point we have everything ready to start the application. We will use the following command

to start an application:

1 python manage . py star tapp myapp

Listing 3.6: Start Application Command

Once the applications are setup the framework will generate the following files in the myapp

folder which holds the application:

• models.py: This file will contain the Django ORM models for the application.

• view.py: This will contain the view code and the logic of the application.

• test.py: All the unit and integration tests will be defined here.

28

3.7 Settings file

All the configurations of the Django project are inside the settings.py file. The settings.py file

is a python module that has module-level variables. Because the setting file is a module, there

should be no Python syntax errors in the file. We can use normal Python syntax to assign values

to variables and we can also import values from other settings files.

For example, if we want to have a list of characters we can use the following python syntax:

1 MY SETTING = [s t r (i) f o r i in range (30)]

Listing 3.7: Python syntax.

If we want to change the settings file’s path or create other setting files, we have to specify

which settings file we want to use by assigning a path to the DJANGO SETTINGS MODULE variable.

The value of this variable should be Python path syntax for example: mysite.settings. We can

export the settings file path to the environment variable using the following command:

1 export DJANGO SETTINGS MODULE=mysite . s e t t i n g s

Listing 3.8: Django setting module.

Or we can pass the path every time we want to run the server:

1 django−admin runse rve r −−s e t t i n g=mysite . s e t t i n g s

Listing 3.9: Django setting path.

On the live server side, we also have to assign the settings file path to a server environment

variable of the WSGI application. It will be done in wsgi.py file using os.environ:

1 import os

2

3 os . env i ron [’DJANGO sTTINGS MODULE ’] = ’ mysite . s e t t i n g s ’

Listing 3.10: Django setting path variable.

There is a default settings file in the django/conf/global settings.py that Django uses in

case there are no setting files for the application. So generally, Django first loads the global settings.py

29

and then it loads settings from the specified settings files and overrides the global settings as neces-

sary. We can use the "python manage.py diffsettings" command to see the difference between

the default settings and the ones that we are overriding.

In case we want to use some of the settings configurations in our applications, we can import

the setting files:

1 from django . conf import s e t t i n g s

2

3 i f s e t t i n g s .DEBUG:

4 # Run Something

Listing 3.11: Import settings

Here we should note that the settings is not a module, it is an object, so we are not able to

import specific variables from the object. Once we have imported the module we have all the

configurations.

1 from django . conf . s e t t i n g s import DEBUG # We can ’ t import va lue s .

Listing 3.12: Wrong changes in the settings.

However, we should be careful not to change the setting configurations during run time. The

only place to assign values to is inside the settings file. :

1 from django . conf import s e t t i n g s

2

3 s e t t i n g s .DEBUG = True # Don ’ t do t h i s !

Listing 3.13: Wrong import from setting file.

The setting file can contain many sensitive information about the application such as database

username and passwords, email addresses, etc. So it is best if we limit access to it by other users.

This is very important in a shared-hosting environment.

If we don’t want to use the DJANGO SETTINGS MODULE, we can configure settings manually using

following function:

30

1 from django . conf import s e t t i n g s

2

3 s e t t i n g s . c o n f i g u r e (DEBUG=True)

Listing 3.14: Configure settings manually.

We can pass as many configurations as we want. If a value for a default variable is not set,

Django will use the default values in the global settings file. Also, if we have our variables

defined somewhere else we can pass the default settings argument in the configure functions:

1 from django . conf import s e t t i n g s

2 from myapp import myapp defaults

3

4 s e t t i n g s . c o n f i g u r e (d e f a u l t s e t t i n g s=myapp defaults , DEBUG=True)

Listing 3.15: Configure settings manually.

We should note that if the DJANGO SETTINGS MODULE is not being used, the call to configure()

must be made at any point before using any parts of the code, otherwise we will get a ImportError

exception.

3.7.1 Important configurations

BASE DIR

Base directory is the build path inside the project. Django uses this to access applications and run

them.

1 BASE DIR = os . path . dirname (os . path . dirname (os . path . abspath (f i l e)))

Listing 3.16: Base Directory.

INSTALLED APPS

Every time we add a new application to the project, it should be added to this list of installed

applications

1 INSTALLED APPS = [

2 ’ django . con t r i b . admin ’ ,

31

3 ’ django . con t r i b . auth ’ ,

4 ’ django . con t r i b . contenttypes ’ ,

5 ’ django . con t r i b . s e s s i o n s ’ ,

6 ’ django . con t r i b . messages ’ ,

7 ’ django . con t r i b . s t a t i c f i l e s ’ ,

8 ’home ’ ,

9 ’ c a l c u l a t o r ’ ,

10 ’ g raph ic ’ ,

11]

Listing 3.17: Installed Apps.

MIDDLEWARE CLASSES

All the middle-ware classes that are installed are declared here:

1 MIDDLEWARE CLASSES = [

2 ’ django . middleware . s e c u r i t y . Secur ityMiddleware ’ ,

3 ’ django . con t r i b . s e s s i o n s . middleware . Sess ionMiddleware ’ ,

4 ’ django . middleware . common . CommonMiddleware ’ ,

5 ’ django . middleware . c s r f . CsrfViewMiddleware ’ ,

6 ’ django . con t r i b . auth . middleware . Authenticat ionMiddleware ’ ,

7 ’ django . con t r i b . auth . middleware . Sess ionAuthent icat ionMiddleware ’ ,

8 ’ django . con t r i b . messages . middleware . MessageMiddleware ’ ,

9 ’ django . middleware . c l i c k j a c k i n g . XFrameOptionsMiddleware ’ ,

10]

Listing 3.18: Middle-ware classes.

TEMPLATES

Here we define the configuration for the templates:

1 TEMPLATES = [

2 {

3 ’BACKEND’ : ’ django . template . backends . django . DjangoTemplates ’ ,

4 ’DIRS ’ : [” templates ”] ,

5 ’APP DIRS ’ : True ,

6 ’OPTIONS ’ : {

32

7 ’ c o n t e x t p r o c e s s o r s ’ : [

8 ’ django . template . c o n t e x t p r o c e s s o r s . debug ’ ,

9 ’ django . template . c o n t e x t p r o c e s s o r s . r eque s t ’ ,

10 ’ django . con t r i b . auth . c o n t e x t p r o c e s s o r s . auth ’ ,

11 ’ django . con t r i b . messages . c o n t e x t p r o c e s s o r s . messages ’ ,

12] ,

13 } ,

14 } ,

15]

Listing 3.19: Templates

DATABASES

We setup the configuration of the databases that the project use such as username, password, ports

etc in this list.

1 DATABASES = {

2 ’ d e f a u l t ’ : {

3 ’ENGINE ’ : ’ django . db . backends . s q l i t e 3 ’ ,

4 ’NAME’ : os . path . j o i n (BASE DIR , ’db . s q l i t e 3 ’) ,

5 }

6 }

Listing 3.20: Database

STATICFILES DIRS

Here we define the path to the static files such as HTML, CSS or JavaScript files.

1 STATICFILES DIRS = [

2 os . path . j o i n (BASE DIR , ” s t a t i c ”) ,

3]

Listing 3.21: Static files

3.8 URL Dispatchers

The URL configuration for Django applications are set in the url.py file. This file has a Python

module called URLconf which is mapping URLs to their corresponding Python View functions that

33

is responsible to handle the requests.

Once the user sends a request or tries to access a resource by a URL address, the framework

follows a number of steps to determine which function is responsible to take the request. Here is a

general overview of the algorithm:

• The Django framework determines which url file should be used. This path to the url file is

usually set to the ROOT URLCONF variable in the settings file.

• Django then will search and loads the variable urlpatterns. This variable is a list of

django.conf.urls.url() instances that maps the URLs to their functions.

• Django will go through all the URL patterns and determines the matched URL.

• Once the matched URL is found, Django will call its View function and will send the

HttpRequest object and any other arguments that are included in the request pattern.

• If none of the patterns matches the given URL, Django will invoke an appropriate error view.

Here is an example of the URLconf module:

1 from django . conf . u r l s import u r l

2 from . import views

3

4 u r l p a t t e r n s = [

5 u r l (r ’ ˆ index /2003/$ ’ , views . index) ,

6 u r l (r ’ ˆcomments /([0−9]{4}) /$ ’ , views . comments) ,

7 u r l (r ’ ˆ a r c h i v e s /([0−9]{4}) /([0−9]{2}) /$ ’ , views . a r ch ive) ,

8 u r l (r ’ ˆ d e t a i l s /([0−9]{4}) /([0−9]{2}) /([0−9]+) /$ ’ , views . d e t a i l s) ,

9]

Listing 3.22: URL Patterns

The first value of the URL instance is the pattern and the second value is the corresponding

view function. For example, in the first instance, URL object is mapping the pattern ”index/2003”

to the view function named index. So, every request with the pattern will be sent to the index

view function.

34

Chapter 4

Test Driven Django

35

4.1 Introduction

Testing web applications is generally a more complex task than other types of programs and appli-

cations. There are several layers of logic involved in any web applications such as handling HTTP

level requests, processing and validating forms, processing templates, database interactions, etc.

But these constraints should not limit the importance and extremely useful role that automated

testing plays in web applications. Automated testing benefits the web application in a variety of

ways and helps us to solve or avoid a number of problems:

• Making sure the application is working as expected before deployment.

• When adding new code to the application we can use testing to make sure the new function-

alists do not change the behavior of application in unexpected way.

• Finding and fixing bugs.

• Testing the performance of the application under heavy loads. etc.

There are also different types of testing that can be performed on web applications such as:

• Unit testing: focuses on small units of codes such as methods to verify their correct func-

tionality.

• Functional testing: is used to test all the links to the applications such as database con-

nection, form submission, testing sessions, and cookie.

• Performance testing: These tests are designed to track the performance and behavior of

application under loads. Two of the most general tests are load testing and stress testing.

• Security testing: Testing Secure Socket Layer SSL connections, input validations, logging

and sessions, database injection, etc, are some of the use cases of this testing.

Django has a built-in testing framework with a variety of utilities that can be used to simulate

requests, producing and inserting test data, investigating applications output and generally veri-

fying the behavior of the application. Django uses the built-in unittest library. there are many

different frameworks that are available to test Django applications.

In this chapter, we will describe the testing framework of the Django and will perform Unit

and Functional tests.

36

4.2 Writing Unit Tests

Django uses the standard python library module unittest. The tests are written using a class-

based approach. Every test class is a subclass of django.test.TestCase which itself is a subclass

of unittest.TestCase. Here is an example of testing models. (We will discuss Models in the

following sections):

1 from django . t e s t import TestCase

2 from myapp . models import Pat ient

3

4 c l a s s PatientTestCase (TestCase) :

5 de f setUp (s e l f) :

6 Pat ient . o b j e c t s . c r e a t e (name=”Jack” , type=”A”)

7 Pat ient . o b j e c t s . c r e a t e (name=”Emily” , type=”B”)

8

9 de f t e s t p a t i e n t t y p e (s e l f) :

10 ””” I d e n t i f y the Pat ient ’ s Type . ”””

11 Jack = Pat ient . o b j e c t s . get (name=”Jack”)

12 Emily = Pat ient . o b j e c t s . get (name=”Emily”)

13 s e l f . a s s e r tEqua l (Jack . type , ”A”)

14 s e l f . a s s e r tEqua l (Emily . type , ”B”)

Listing 4.1: TestCase

In the above example, the class PatientTestCase will be the test case for the Patient Model.

As we can see this class is a subclass of the django.test.TestCase. The setup method is used

to do any setup work that needs to be done before running the tests such as populating the test

database, creating objects and instances of those tables. Once we have the setup we can define all

the unit test functions with any method that its name starts with "test ". In the above example

the test is called test patient type.

When we want to run our tests, Django will will search for any file name that starts with "test"

in all directories. It will automatically build a test suite out of all the test cases and will run the

test suit.

When we first build the application, Django will create a default test.py file to write test cases

for the application. We can restructure this and create a test folder and put test cases for different

purposes inside different test files such as test model.py, test views.py and test forms.py.

37

4.3 Running Tests

We can run test cases using the manage.py utility class with the following command:

1 . / manage . py t e s t

Listing 4.2: Running Tests

The command will find all files named test*.py. We can also specify the particular test cases

that we want to run by providing any number of tests labels after the previous command. The

labels can be a python path to packages, TestCases, modules or test methods. For example:

1 # Run a l l the t e s t s in the pa t i en t . t e s t s module

2 . / manage . py t e s t pa t i en t . t e s t s

3

4 # Run a l l the t e s t s found with in the ’ pa t i en t ’ package

5 . / manage . py t e s t pa t i en t

6

7 # Run j u s t one t e s t case

8 . / manage . py t e s t pa t i en t . t e s t s . Pat ientTestCase

9

10 # Run j u s t one t e s t method

11 . / manage . py t e s t pa t i en t . t e s t s . Pat ientTestCase . t e s t p a t i e n t c a n s p e a k

12

13 #d i s c o v e r t e s t s below that d i r e c t o r y :

14 . / manage . py t e s t pa t i en t /

15

16 #s p e c i f y a custom f i l ename pattern match

17 . / manage . py t e s t −−pattern=” t e s t s ∗ . py”

Listing 4.3: Test Options

If at any point we want to stop running the tests, we can send the signal Ctrl-C. This will

make the test runner to wait and pass the current running test and exit. After exit, the test runner

will print the details of all tests that has been passed or failed. If we want to halt the test runner

immediately we can use Ctrl-C again , but this time the test runner will not print any details about

the tests before the exit.

38

4.4 The Test Database

In case any of the test cases need access to the database for creating and executing queries, Django

will create separate test databases for each test case by mimicking the real database and will destroy

them once the test cases are finished, whether test cases pass or fail. This will prevent the tests to

use the real production database and accidentally changing the data.

If the SQLite database is used, Django will create an in-memory database by default and will

bypass the files system entirely which leads to fast execution of test cases.

An important note is that in case of using databases the test case must be a subclass of

django.test.TestCase rather than unittest.TestCase. The Django TestCases will provide test

databases while unittest.TestCase classes avoids running test cases in transaction and flushing

databases.

In order to starts all TestCases with a new and clean database, Django will reorder all the test

cases in the following manner:

• Every test class that is a subclass of TestCase will be run first.

• All the other Django based tests such as SimpleTestCase will be run without any particular

order.

• Finally any unittest.TestCase class that may alter the database and don’t restore it to the

original stat will be run.

4.5 Test Outputs

When the test runner starts executing tests, it will output some details in the console. We can

control the level of details shown with the verbosity option in the command line. The following

report shows that the database tables are being created before executing tests:

1 Creat ing t e s t database . . .

2 Creat ing t a b l e myapp Patient

3 Creat ing t a b l e myapp Hospital

Listing 4.4: Test Database

If all the test cases pass the we should see an message like this:

1 −−

39

2 Ran 22 t e s t s in 0 .221 s

3

4 OK

Listing 4.5: Tests were Successful

And in case any of the messages have failure we will see a detailed report about the failures:

1 ==

2 FAIL : t e s t w a s p u b l i s h e d r e c e n t l y w i t h f u t u r e p o l l (p o l l s . t e s t s .

PollMethodTests)

3 −−

4 Traceback (most r e c ent c a l l l a s t) :

5 F i l e ”/dev/ mysite / p o l l s / t e s t s . py” , l i n e 16 , in

t e s t w a s p u b l i s h e d r e c e n t l y w i t h f u t u r e p o l l

6 s e l f . a s s e r t I s (f u t u r e p o l l . w a s p u b l i s h e d r e c e n t l y () , Fa l se)

7 Asse r t i onErro r : True i s not Fa l se

8 −−

9 Ran 1 t e s t in 0 .003 s

10

11 FAILED (f a i l u r e s =1)

Listing 4.6: Test Failure Report

In the following sections we will define Models, Views, Forms and Templates, and we will see

how we can test each one of these entities of the Django application.

4.6 Models

4.6.1 Defining Models

Django models contains the fields and behavior of the data that we want to store in the database

[Moda]. It contains all the essential information that we need about our data. Generally, a model

is mapped to a single table in the database. Every model is a python class which inherits the

django.db.models.Model class and every attribute in this class represents a field in the table.

Here is an example of a table named Patient and the model the represents it in as a python

class:

40

1 from django . db import models

2

3 c l a s s Pat ient (models . Model) :

4 f i r s t n a m e = models . CharField (max length =30)

5 last name = models . CharField (max length =30)

Listing 4.7: Patient Model

The variables first name and last name are fields of the model. These fields will be mapped

to database columns in the Person table. The previous model is equivalent to the following SQL

script:

1 CREATE TABLE myapp person (

2 ” id ” s e r i a l NOT NULL PRIMARY KEY,

3 ” f i r s t n a m e ” varchar (30) NOT NULL,

4 ” last name ” varchar (30) NOT NULL

5) ;

Listing 4.8: Patient Model

Django will automatically and by default assigns the app name to the table name in the form

of appName tableName. Also, an Id field will be generated for the table.

Once we have the model we need to make sure that Django is aware of it by adding our

application name to the INSTALLED APPS in the settings file. After adding the application name,

we need to run the following command so that Django synchronizes our database with new status

of our models.

1 manage . py migrate

Listing 4.9: Migrate Command

Whenever we make a change to our models such as adding fields, changing names or deleting

models, we need to use migrations. Django will scan models and will apply the changes to the

database schemes.

Some of the most common commands are defined below:

• migrate: This command is responsible for applying and unapplying migrations.

• makemigrations: Creates new migrations based on the changes you have made to your

models.

41

• sqlmigrate: Displays the SQL statements for a migration.

• showmigrations: Lists a project’s migrations and their status.

Django also comes with an Admin application [App] that gives us a visual interface to the tables

that we have defined in the model.py file. In order to use this interface, we have to register our

models inside the admin.py file as well. The following example will register the Patient’s table

inside the admin file.

1 from django . con t r ib import admin

2 from . models import Pat ient

3

4 admin . s i t e . r e g i s t e r (Pat ient)

Listing 4.10: Registering in Admin inteface.

Fields are the most important aspects of any model. Any field should be an instance of the

Field class. These Field classes define the data type that we want to assign to database columns

such as INTEGER, VARCHAR, TEXT, etc. Each one of these fields also takes some optional arguments.

For example, we can use the max length argument to limit the number of characters a VARCHAR

field must contain. Here is some of the important arguments:

• primary key: If this argument is true then the field will be the primary key for the table.

• default: This value will provide the default value for the field.

• unique: If true, then the field must be unique in the entire table.

Also, Django models allow us to define relationships among tables. The most common type

of table relationships are: many-to-one, many-to-many and one-to-one. The following example

shows the many t one relationship between Manufacturer and Car assuming that every Car has

one Manufacturer but any Manufacturer may produce many different Cars:

1 from django . db import models

2

3 c l a s s Manufacturer (models . Model) :

4 # . . .

5 pass

6

42

7 c l a s s Car (models . Model) :

8 manufacturer = models . ForeignKey (Manufacturer , o n d e l e t e=models .CASCADE)

9 # . . .

Listing 4.11: Many to One relationship

In case we want to add some meta data to our table such as ordering options, table name, etc.

we can use the inner class named Meta inside the model. For example, in the following model we

have set ordering of the table based on the patient’s doctor name.

1 from django . db import models

2

3 c l a s s Pat ient (models . Model) :

4 f i r s t n a m e = models . CharField (max length =30)

5 last name = models . CharField (max length =30)

6 doctor = models . CharField (max length =30)

7

8 c l a s s Meta :

9 orde r ing = [” doctor ”]

Listing 4.12: Patient Model

Aside from meta data we can also add functions to our models. A common use case is adding

the str fucntion to specify which one of the fields will be used to be shown as the model’s title

in the interface. In the following example, the Patient’s last name will be used as the title for any

of the Patient’s instances.

1 from django . db import models

2

3 c l a s s Pat ient (models . Model) :

4 f i r s t n a m e = models . CharField (max length =30)

5 last name = models . CharField (max length =30)

6 doctor = models . CharField (max length =30)

7

8 de f s t r (s e l f) :

9 re turn s e l f . last name

Listing 4.13: Patient Model Title

43

4.6.2 Testing Models

Now that we know the definition of Django Models, we will see how we can test these models. In

the Test-Driven approach, we first have to write the test cases before implementing the actual code

[Modb]. So, in following example we are writing a test case for a model called Patient and we

want to check if the title of its instances are the same as the Patient’s name. We will put the test

cases for the Models inside the test model.py file.

We can create an instance of the Patient table the same way we create objects from any

standard python class. We can pass the fields as arguments to the newly created object. In the

following example, we create the instance and assign it to the ”Jones” variable. Once we have the

object we can access the fields and all the methods that have been defined inside the model.

1 from django . t e s t import TestCase

2 from . models import Entry

3

4 c l a s s PatientModelTest (TestCase) :

5

6 de f t e s t s t r i n g r e p r e s e n t a t i o n (s e l f) :

7 Adam Jones = Pat ient (f i r s t n a m e=”Adam” , last name=” Jones ”)

8 s e l f . a s s e r tEqua l (s t r (Adam Jones) , Adam Jones . last name)

Listing 4.14: Patient Model Test

Now, if we remove the str function from our model and run the test with the "python

manage.py test myapp" command, we will get the following error:

1 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

2 ==

3 FAIL : t e s t s t r i n g r e p r e s e n t a t i o n (myapp . t e s t s . PatientModelTest)

4 −−

5 Traceback (most r e c ent c a l l l a s t) :

6 . . .

7 Asse r t i onErro r : ’ Pat ient object ’ != ’ Jones ’

8 − Pat ient ob j e c t

9 + Jones

10 −−

11 Ran 1 t e s t in 0 .002 s

44

12

13 FAILED (f a i l u r e s =1)

14 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

Listing 4.15: Patient Model Test Fail

Here we see that the test runner is creating a test database and the it is trying to run the

test string representation test case. The test is failing and we see that the root of the failure

is an AssertionError, since the Patient object, which will be the default name for every instance

of a table in case we don’t implement the str method, is not the same as ”Jones”, which is the

patient’s last name, as we expected.

Now if we add the str method back to our model, and run the test again we see the following

report:

1 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

2 −−

3 Ran 1 t e s t in 0 .000 s

4

5 OK

6 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

Listing 4.16: Patient Model Test Pass

In the above report, we see that we get an OK report which indicates that the test cases have

been run successfully and the data base is being destroyed.

4.7 Views

4.7.1 Defining Views

View functions are python functions that as their argument, take web requests and return web

responses [Viea]. The type of responses that a view function may return can be HTML contents,

redirection to other pages, HTTP errors, image, XML document, etc. Any logic that we have for the

application will be used in these functions. Usually any view function maps to a URL defined in the

URL dispatcher. We will have our view functions implemented inside the views.py file but it can

be restructures based on our needs.

45

Here is a view function that takes a request and returns the current date and time as an HTML

document:

1 from django . http import HttpResponse

2 import datet ime

3

4 de f cur r ent date t ime (r eques t) :

5 now = datet ime . datet ime . now ()

6 html = ”<html><body>I t i s now %s .</body></html>” % now

7 re turn HttpResponse (html)

Listing 4.17: current time View function.

Here is the step by step explanation of the above example:

• First, from the django.http module we import the HttpResponse class, and python’s stan-

dard datetime library.

• Next, we have defined a view function called current time. The first parameter of view

functions is usually the HttpRequesst object.

• Finally, the view will return an HttpResponse object containing the data and time.

Now in order to show the response at a particular URL, we must add it to the URL dispatcher

in the url.py file. Here we add the view function to the url file:

1 from django . conf . u r l s import u r l

2

3 from myapp import views

4

5 # We are adding a URL c a l l e d / time

6 u r l p a t t e r n s = [

7 u r l (r ’ ˆmyapp/ time / ’ , views . current date t ime , name=’ time ’) ,

8]

Listing 4.18: current time View function URL.

In the above setting we are telling Django to direct any request to the ”http : //localhost :

8000/myapp/time” to the current datetime view function. The function will receive the response

and will return the HTML back to be shown in the browser.

46

Now if we run the server with "python manage.py runserver" command and go to the

”/myapp/time” URL, we should be able to see the following response in the browser:

1 I t i s now 2017−07−30 2 1 : 0 6 : 5 5 . 6 9 5 8 2 8 .

Listing 4.19: current time View result.

We notice that the HTML response is generated inside the method. The HTML code will

usually be decoupled from the view functionality and will be inside the template folder in the root

directory. The view then will return the results to the HTML template and the template then

substitutes the results with the variables inside the template and will render the response. To do

this we first write the HTML content inside the time.html file inside the template folder at the

root directory.

1 <html>

2 <body>

3 I t i s now {{ time }} .

4 </body>

5 </html>

Listing 4.20: time.html Template.

We can use double curly braces inside the HTML files to represent variables. Then we have to

send the values that was generated inside the view function as a dictionary to the view template.

For this purpose, we can use the render function from django.shortcuts module. The render

function takes the request as the first argument, the path to the template as the second argument

and the dictionary of values as the third argument. Here is the view code:

1 de f cur r ent date t ime (r eques t) :

2 now = datet ime . datet ime . now ()

3 re turn render (request , ’myapp/ time . html ’ , { ’ time ’ : now})

Listing 4.21: current time View using render function.

Now if we go the previous URL, ”http : //localhost : 8000/myapp/time”, we should be able to

see the result:

1 I t i s now July 30 , 2017 , 9 :10 p .m. .

Listing 4.22: Time result.

47

4.7.2 Testing Views

In order to test View function, we need to create HTTP requests and send them to these functions.

Django provides a test client class which is a python class that acts as web browser and allows

us to make and send requests to the views. We can simulate HTTP GET and POST requests on

the URLs that are defined inside url.py files and get the view responses and perform validation

checks on them. It also allows us to check if the request is being rendered by the particular Django

template that we have defined with the certain values that we have passed to it. [Vieb]

As we have shown earlier in the test-driven approach we first write the test cases and then

developer the actual code. Now assuming that we want to have a current time function and we

did not implement the view functionality and we don’t have the URL pattern in the url.py file, we

can write the following test case:

1 from django . t e s t import TestCase

2 from django . t e s t import C l i en t

3

4 c l a s s MyAppViewTests (TestCase) :

5 de f t e s t c u r r e n t t i m e (s e l f) :

6 c l i e n t = Cl i en t ()

7 re sponse = c l i e n t . get (’ /myapp/ time / ’)

8 s e l f . a s s e r tEqua l (re sponse . s ta tus code , 200)

Listing 4.23: current time test case.

In the example above, we are importing the Client class from the django.test module. In our

test case named test current time we use an instance of the Client class to make a GET request

to the ”/myapp/time” URL by passing the URL as the argument to the get function. Here we

should note that we do not use the complete URL addresses such as ”http : //localhost/example”.

The reason is that the test client does not require the web server to be running in order to perform

the tests. It will avoid the HTTP overheads and work with the framework directly. This will help

the unit tests to be run faster.

We put the test inside test view.py file and will run the test using the "python manage.py

test" command. We should get the following report:

1 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

48

2 System check i d e n t i f i e d no i s s u e s (0 s i l e n c e d) .

3 ==

4 FAIL : t e s t c u r r e n t t i m e (l og . t e s t s . MyAppViewTests)

5 −−

6 Traceback (most r e c ent c a l l l a s t) :

7 F i l e ”C:\ t e s t s . py” , l i n e 10 , in t e s t c u r r e n t t i m e

8 s e l f . a s s e r tEqua l (re sponse . s ta tus code , 200)

9 Asse r t i onErro r : 404 != 200

10

11 −−

12 Ran 1 t e s t s in 0 .063 s

13

14 FAILED (f a i l u r e s =1)

15 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

Listing 4.24: current time test failure.

We notice that the test has failed. The failure is due to an AssertionError. The status code

that is returned by the response is 404 which is different from the 202 code that we expect. The

reason is that the test is not able to find any URL path matching the ”/myapp/time/” URL that

we are requesting. Now we can add the URL pattern to the url.py file as we did earlier and run

the test again. Here is the new report:

1 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

2 System check i d e n t i f i e d no i s s u e s (0 s i l e n c e d) .

3 ==

4 FAIL : t e s t c u r r e n t t i m e (l og . t e s t s . MyAppViewTests)

5 −−

6 Traceback (most r e c ent c a l l l a s t) :

7 F i l e ”C:\ t e s t s . py” , l i n e 10 , in t e s t c u r r e n t t i m e

8 s e l f . a s s e r tEqua l (re sponse . s ta tus code , 200)

9 Asse r t i onErro r : 404 != 200

10

11 −−

12 Ran 1 t e s t s in 0 .063 s

13

14 FAILED (f a i l u r e s =1)

49

15 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

Listing 4.25: current time test failure.

As we see, the test also fails but for a different reason. The test was able to find the URL

path that matches the requested URL. But it was not able to find the current time attribute or

function inside the views file in the myapp application. The failure is correct since we still have

to implement the view function inside the view.py file. Now after adding the view function back

again like we did previously and run the test again we should get the following result:

1 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

2 System check i d e n t i f i e d no i s s u e s (0 s i l e n c e d) .

3 ==

4 FAIL : t e s t c u r r e n t t i m e (l og . t e s t s . MyAppViewTests)

5 −−

6 Traceback (most r e c ent c a l l l a s t) :

7 F i l e ”C:\ t e s t s . py” , l i n e 10 , in t e s t c u r r e n t t i m e

8 s e l f . a s s e r tEqua l (re sponse . s ta tus code , 200)

9 Asse r t i onErro r : 404 != 200

10

11 −−

12 Ran 1 t e s t s in 0 .063 s

13

14 FAILED (f a i l u r e s =1)

15 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

Listing 4.26: current time test successful.

We get an OK report indicating the test was able to find the URL, identify the current time

view function, make a GET request to it and receives a HTTP response with 200 status code.

4.8 Forms

4.8.1 Defining Forms

Django web framework provides a set of tools and libraries that are helpful to build forms that

can be used to accept input from users, process them and respond to those inputs [Fora]. In usual

HTML files a form is a collection of HTML elements inside a <form> tag that allows the user to have

50

various forms of interactions with the application, such as entering text or selecting options and

then send those data back to the server. Generally, any form must be able to specify two things:

• The URL that will be receiving the user’s input.

• The method that is used to send the data.

GET and POST are two of the most used HTTP methods in web applications forms. These

two methods are used for different purposes. Usually, any time a request might be used to change

a state of the application or the data in the database, the POST method is used. In contrast

GET method is only used when a request is only sent to access some resource in the application

on the server. However, one exception would be sending passwords while trying to log in to the

application. If we send the password through the GET method, it will be appeared in the URL and

eventually in browser history and server logs since GET method uses plain text to send requests.

In this case POST method coupled with some of the Django’s protection mechanism like CSRF

protection must be used to transfer sensitive data.

Generally, Django framework handles three parts involved in any form:

• Preparing the data and make it ready for rendering.

• Generating HTML forms for data.

• Processing the input data from users.

Django’s Form class is responsible for much the work involved in handling forms. It will describe

the forms and they it must work and appear in the application the same way the Model class defines

objects, their behavior and states. In a similar way that a model object is mapped to a table and its

fields to the columns of the table, every form’s field is mapped to an HTML <input> element. All the

fields in the forms have their own classes. These classes are responsible to manage the data and per-

form any type of validation that is required for that field when the form is submitted. For example

FileField and DateField are two very different type of field that have their own validation process.

The usual processes to render any object are:

• Instantiate it in the view, populate the form with data if required.

• Pass it to the template context.

51

• Expand the form object to HTML markup and populate template variables with the data.

• Receive that posted data by the user.

Building Forms

The following example shows how we can create a simple form to capture the user name as input

from the user using simple HTML tags:

1 <form ac t i on=”/your−name/” method=” post ”>

2 < l a b e l f o r=”your name”>Your name : </ l a b e l>

3 <input id=”your name” type=” text ” name=”your name” value=”{{ current name

}}”>

4 <input type=”submit” value=”OK”>

5 </ form>

Listing 4.27: HTML form.

The above HTML code tells the browser to return the captured data in the form to the

”/your−name/” URL which is defined in the action attribute of the form tag, using POST method,

that is defined in the method attribute. There is an input tag inside the form that is used to

capture the user input and save it to the current name field.

The above example is a very simple form. However, in most web applications there are tens or

even hundreds of forms and fields and many validation processes that is required before processing

the data. We can use Django framework Form classes to do most of the work which also help us

to decouple the form from the interface code.

Usually we put forms in the form.py files inside the application. Here we define the previous

form using python Form class:

1 from django import forms

2

3 c l a s s NameForm(forms . Form) :

4 your name = forms . CharField (l a b e l=’ Your name ’ , max length =100)

Listing 4.28: Django form.

52

The above NameForm class defines a single field named your name having a label and a max length

attribute. The attributes that we define in fields are also used for some types validation. For ex-

ample, the max length attribute that has value of 100 will check the length of the input to be less

or equal to 100 characters. The form also has an is valid() method is runs validation process on

all the fields of the form. when this method is called, if all the fields of the form contain data, it

will return True and will put the data present in the form inside the cleaned data attribute. The

attributes will be generated as attributes inside the input element in the HTML file and templates.

The above code will generate the following HTML tags for us:

1 < l a b e l f o r=”your name”>Your name : </ l a b e l>

2 <input id=”your name” type=” text ” name=”your name” maxlength=”100” r equ i r ed />

Listing 4.29: HTML tags.

Here we should note that it will not generate the <form> tag for us, we have to provide it in

the following section.

Once we have defined our form, we have to define the view function that is going to instantiate

them form and show it to the user and also receive the posted data by the user. Here is the code

to instantiate the form and to receive it:

1 from django . sh o r t cu t s import render

2 from django . http import HttpResponseRedirect

3

4 from . forms import NameForm

5

6 de f get name (r eque s t) :

7 # i f t h i s i s a POST reques t we need to proce s s the form data

8 i f r eque s t . method == ’POST ’ :

9 # c r e a t e a form in s tance and populate i t with data from the reque s t :

10 form = NameForm(reque s t .POST)

11 # check whether i t ’ s v a l i d :

12 i f form . i s v a l i d () :

13 # proce s s the data in form . c l eaned data as r equ i r ed

14 # . . .

15 # r e d i r e c t to a new URL:

16 re turn HttpResponseRedirect (’ / thanks / ’)

53

17

18 # i f a GET (or any other method) we ’ l l c r e a t e a blank form

19 e l s e :

20 form = NameForm()

21

22 re turn render (request , ’name . html ’ , { ’ form ’ : form })

Listing 4.30: View for Form.

Once the get name view function receives a request, it goes through the if condition. If the

incoming request is a GET method, it will simply instantiate a NameForm() and will return it to

the template as a field in the dictionary. We expect this condition the first time the user sends

requests to get the page. Once the users fill in the form and press the submit button, the get name

view function will be called again, but this time the request is using the POST method to carry the

input. At this point the first condition is true and we instantiated the NameForm() again but we

also populate the form with the posted data in the form. Then form’s is valid() method is called

to check the validity of the data. If the method returns false we go back to the template but with

the populated data, which allows the user to correct the input if required. In case the valid method

returns true we can access the data in the cleaned data attribute and do any form of processing

that is required, such as saving the data to database.

Now that we have the class and the view to instantiate and receive it back we can use the form

field returned to the template and place it inside an HTML form tag like the following example:

1 <form ac t i on=”/your−name/” method=” post ”>

2 {% c s r f t o k e n %}

3 {{ form }}

4 <input type=”submit” value=”Submit” />

5 </ form>

Listing 4.31: HTML using Django Form.

We see that the form is placed inside the form like any other variable that is returned to the

template context in a dictionary.

4.8.2 Testing Forms

Let’s assume we want to have a form where users can enter their first and last name and submit

the form. At this point we only want to have a form named Patient with two fields to capture first

54

and last names. Here we will write the test for the form first and save it inside the test forms.py

file inside the tests folder.

1 from django . t e s t import TestCase

2 from myapp . forms import PatientForm

3

4 c l a s s PatientFormTestCase (TestCase) :

5

6 de f t e s t p a t i e n t f o r m n o t n u l l (s e l f) :

7 patientForm = PatientForm (data={ ’ f i r stName ’ : ” david ” , ’ lastName ’ : ” j ons e

” })

8 s e l f . a s s e r tNotNul l (patientForm)

Listing 4.32: Testing PatientForm.

As we can see, we want to have a form named PatientForm which has two fields named

firstName and lastName. We first have to import the class from the forms file in the appli-

cation. Once we have the form available we can create an object of the form. We can also initialize

the values for the fields in the form by passing a variable named data, which is a dictionary con-

taining the data, as an argument to the form’s constructor. Django will set the fields in form to

the values in the dictionary that matches the fields’ names [Forb] .

Now if we try to run the above test case we must expect to get the following error:

1

2 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

3 System check i d e n t i f i e d no i s s u e s (0 s i l e n c e d) .

4 E

5 ==

6 ERROR: t e s t f o r m s (u n i t t e s t . l oade r . Fa i l edTes t)

7 −−

8 ImportError : Fa i l ed to import t e s t module : t e s t f o r m s

9 Traceback (most r e c ent c a l l l a s t) :

10 F i l e ”c :\ t e s t f o r m s . py” , l i n e 2 , in <module>

11 from c a l c u l a t o r . forms import PatientForm

12 ImportError : cannot import name ’ PatientForm ’

13

14

55

15 −−

16 Ran 1 t e s t in 0 .000 s

17

18 FAILED (e r r o r s =1)

19 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

Listing 4.33: Error PatientForm.

The error given is telling us that there are no forms named PatientForm. That is because we

still have not defined our form in the form.py file.

Here we define our form:

1 from django import forms

2

3 c l a s s PatientForm (forms . Form) :

4

5 f i r stName = forms . CharField ()

6 lastName = forms . CharField ()

Listing 4.34: Defining PatientForm.

The PatientForm is inheriting the Django’s Form class and is having two fields named firstName

and lastName as its fields. Now if we run the test case we get the following report:

1 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

2 System check i d e n t i f i e d no i s s u e s (0 s i l e n c e d) .

3 david

4 . .

5 −−

6 Ran 2 t e s t s in 0 .001 s

7

8 OK

9 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

10 −−−−−−−−−−−−

Listing 4.35: Success PatientForm.

So far, we only tested to see if the form is available and we can create an object of it. Next,

we want to see if the values that have been sent as argument to the form are valid and are set to

56

the fields in the form. To test for validity we use the is valid() method of the form which must

return true if the data is valid and we can access the field’s values of the form by accessing the

data field which is a dictionary and use the get method of the dictionary to access any fields of the

form. Here we add two more test, one for testing validity of the data and the other one to make

sure the values are set correctly.

Here is the final test case:

1 from django . t e s t import TestCase

2 from c a l c u l a t o r . forms import PatientForm

3

4 c l a s s PatientFormTestCase (TestCase) :

5

6 de f setUp (s e l f) :

7 s e l f . a s se r tTrue (”TrueTest”)

8

9 de f t e s t p a t i e n t f o r m n o t n u l l (s e l f) :

10 patientForm = PatientForm (data={ ’ f i r stName ’ : ” david ” , ’ lastName ’ : ” j one s

” })

11 s e l f . assert IsNotNone (patientForm)

12

13 de f t e s t p a t i e n t f o r m v a l i d (s e l f) :

14 patientForm = PatientForm (data={ ’ f i r stName ’ : ” david ” , ’ lastName ’ : ” j one s

” })

15 s e l f . a s se r tTrue (patientForm . i s v a l i d ())

16

17 de f t e s t p a t i e n t f o r m v a l u e s (s e l f) :

18 patientForm = PatientForm (data={ ’ f i r stName ’ : ” david ” , ’ lastName ’ : ” j one s

” })

19 s e l f . a s s e r tEqua l (patientForm . data . get (’ f i r stName ’) , ” david ”)

20 s e l f . a s s e r tEqua l (patientForm . data . get (’ lastName ’) , ” j one s ”)

Listing 4.36: Testing PatientForm.

We will run the test case with the following commands:

1 python manage . py t e s t c a l c u l a t o r . t e s t s . t e s t f o r m s . PatientFormTestCase

Listing 4.37: Testing PatientForm Command.

57

We expect to get this report:

1 Creat ing t e s t database f o r a l i a s ’ de fau l t ’ . . .

2 System check i d e n t i f i e d no i s s u e s (0 s i l e n c e d) .

3 . . .

4 −−

5 Ran 3 t e s t s in 0 .001 s

6

7 OK

8 Destroying t e s t database f o r a l i a s ’ de fau l t ’ . . .

Listing 4.38: Final Success PatientForm.

58

Chapter 5

Implementation

59

5.0.1 Introduction

In this chapter, we will introduce our design and implementation of the web application based on

the tools and components of the Django framework that we have defined in the previous chapters.

First, we will review the two major approaches that we had to design a web application that

contains machine learning models. These different approaches fundamentally change the scale and

the complexity of the web applications. Second, we will overview the structure of our Django

project and the applications the we have built. Finally, we will go through different components of

our web application and their implementations. We should note that our main focus in this chapter

is to review the implementations and different components of the web application. Therefore, we

will not cover the test-and-fail phases of our implementation as we did in the examples of chapter

4. The test cases will be provided in the source code.

5.0.2 Design Approach

Based on our introduction to machine learning models in chapter 2, there are two major phases

involved in constructing a machine learning model. First, the models need to be trained by the

given data that is provided as input. These data would be labeled in case of supervised learning

models and unlabeled for unsupervised learning models. In any case, most of these models require

different amounts of data, depending on the model, to reach a certain level of accuracy that is

desired. In the second phase, after the model is trained and ready to predict, new and unseen data

will be given to the model as input to make predictions about the target or independent variable.

In order to build a web application that will host machine learning models, there are three

questions that we need to ask and try to answer. These answers will help us to have a better

understanding of the scale and complexity of the application.

• How the model will be trained?

• How to persist and re-use the trained model?

Depending on the model and the amount of data it receives for training, the time complexity

for the training phase vary significantly. Also, there are more steps involved before feeding the

data to the models such as data cleansing. We need to make sure that the data we provide to the

model has certain level of accuracy and precision to prevent constructing models with wrong and

60

misleading attributes. Therefore, the main question is whether we want to train the model inside

the application or separate from the application?

In any case, once we have a trained model, the second question is how will we be able to use

this model in our web application for prediction, given the unseen data by the clients. The trained

models have acquired the state of a set of attributes that need to be persisted in the application,

so that we can use it to predict the unseen data. The nature of the state of these models and

their attributes also vary. For example, in case of large Neural Networks, we may have to persist

the state of tens or hundreds of the network nodes in memory [Che09], while a linear or logistic

regression model may only require a few attributes.

In this thesis, we have trained a Logistic Regression model outside of the web application by

the training data set. The data set has been cleaned before the training phase and the accuracy

of the model has been calculated by the testing data. The following 15 attributes had the most

predictive power to predict 5-year survivability of breast cancer incidents. The coefficient of each

variable has been given in the second column of the following table.

Variable Coefficient

race 0.0004

maritalStatus -0.0305

behaviorCode -0.9735

grade 0.0186

vitalStatusRecord -4.6421

histologicType 0.0009

csExtension -0.0091

csLymphNode -0.0012

radiation -0.0175

SEERHistoricStageA -0.7942

ageAtDiagnosis 0.0274

csTumorSize -0.0010

regionalNodesPositive -0.0066

regionalNodesExamined -0.0001

survivalMonths 1

Table 5.1: 15 Attributes of Logistic Regression Model.

Therefore, in order to persist this trained logistic regression model, we store the coefficient

61

values inside a data base table. Once we get an input from the client, we will retrieve these values

and will run the calculations.

5.0.3 Project Structure

We have divided our project into three main application to decouple different responsibilities across

the project. The following are the three main applications:

• Home: This application provides the basic home view of the project. Every request to the

website will be directed to this application first. Then, clients will be given the options of

other applications to choose from. It can also be used to add logging functionality to the

application.

• Calculator: The Calculator will have the functionality to use the machine learning model

and to generate predictions.

• Graphic: This application is dedicated to generate any visualization content such as Map,

Charts and Graphs that might be required by other applications.

The above applications are the backbone of the project, but the project is not necessarily limited

to them. Any new functionality can have its own application added to the structure. Given the

instructions in the chapter 3, this additions can be done easily.

5.0.4 Implementation

We will start by presenting the most important files that need to be modified or used for imple-

mentation. We should note that we only show snippets of these files that have the important

implementations parts and not necessarily the entire content of these files.

Settings

The first thing we need to do after installing applications in the project is to add the application

names to the settings.py file in the project folder. Here we have added our three applications to

the INSTALLED APPS list in the file:

1 INSTALLED APPS = [

2 ’ django . con t r i b . admin ’ ,

3 ’ django . con t r i b . auth ’ ,

62

4 ’ django . con t r i b . contenttypes ’ ,

5 ’ django . con t r i b . s e s s i o n s ’ ,

6 ’ django . con t r i b . messages ’ ,

7 ’ django . con t r i b . s t a t i c f i l e s ’ ,

8 ’home ’ ,

9 ’ c a l c u l a t o r ’ ,

10 ’ g raph ic ’ ,

11]

Listing 5.1: List of Installed Apps

The database is by default django.db.backends.sqlite3 that we will use during development

phase.

1 DATABASES = {

2 ’ d e f a u l t ’ : {

3 ’ENGINE ’ : ’ django . db . backends . s q l i t e 3 ’ ,

4 ’NAME’ : os . path . j o i n (BASE DIR , ’db . s q l i t e 3 ’) ,

5 }

6 }

Listing 5.2: Databse connection

Since our application has static contents such as CSS, Images and JavaScript files, we can set

a path to a folder that contains all these files. Later, we can use the "manage.py collectstatic"

command that will collect all the static files in all of the project’s applications and store them

inside a folder named static and static server. In case we decide to deploy our application to a

server, we can copy and past these folders inside the server and set the path to these static contents

in the server configuration files. Then the server will be able to serve these static files to the client

requests.

1 STATIC URL = ’ / s t a t i c / ’

2

3 STATICFILES DIRS = [

4 os . path . j o i n (BASE DIR , ” s t a t i c ”) ,

5]

6

63

7 STATIC ROOT = os . path . j o i n (BASE DIR , ’ s t a t i c s e r v e r ’)

Listing 5.3: Static file directories.

URL Dispatcher

Now that we have the applications defined, we have to configure the URL patterns inside the urls.py

file so that Django framework can map every incoming request to the appropriate applications based

on the URLs. Here we define four patterns inside the urlpatterns list in the urls.py file inside

the project folder:

1 u r l p a t t e r n s = [

2 u r l (r ’ ˆadmin/ ’ , i n c lude (admin . s i t e . u r l s)) ,

3 u r l (r ’ ’ , i n c lude (’home . u r l s ’)) ,

4 u r l (r ’ ˆ c a l c u l a t o r / ’ , i n c lude (’ c a l c u l a t o r . u r l s ’)) ,

5 u r l (r ’ ˆ graph ic / ’ , i n c lude (’ graph ic . u r l s ’)) ,

6]

Listing 5.4: URL patterns.

Django provides an application that acts as an interface to the sqlite database for every

project by default. This application is called admin [App]. The first pattern maps every incoming

request that has a URL pattern containing admin/ to the admin application. Later we will use this

interface to populate the data base. The second pattern maps the incoming requests that does not

have any pattern in the URL, meaning that they are directed to the root of the application, to the

home application. As we have discussed earlier the home application will act as the landing page of

the project, so every client needs to go through this application first. So, the incoming URL such

as ”http : /localhost : 8000/” will be directed to home.

The third pattern, maps URLs containing ”calculator/” to the calculator application and fi-

nally the ”graphic/” pattern will be directed to the graphic application. Here we should note that

each application can have its own urls.py file. So once the root project decided to direct a request

to a specific application, the framework will load that application’s urls.py file to specify which

view function needs to handle the request.

The following code is the urlpatterns of the Home application:

64

1 u r l p a t t e r n s = [

2 u r l (r ’ ˆ ’ , v iews . home , name=’home ’) ,

3]

Listing 5.5: URL patterns of Home application.

URL patterns of the Graphic and Calculator applications are given below. Notice that the

pattern in every application is an extension to the pattern in the project’s main urls.py file. For

example, any request containing the ”calculator/” pattern will be forwarded to the urls.py file in

the calculator application. Then if the second part of the pattern includes the ”form/” pattern

then the request will be forwarded to the form view function. So, the general URL pattern to the

form view function is ”calculator/form/”.

1 u r l p a t t e r n s = [

2 u r l (r ’ ˆ form/ ’ , views . form , name=’ form ’) ,

3 u r l (r ’ ˆ r e s u l t /(\d +(? :\ .\d+)?) / ’ , v iews . r e s u l t , name=’ r e s u l t ’) ,

4 u r l (r ’ ˆ chart / ’ , v iews . chart , name=’ chart ’) ,

5]

Listing 5.6: URL patterns of Calculator application.

1 u r l p a t t e r n s = [

2 u r l (r ’ ˆmap/$ ’ , views . map , name=’map ’) ,

3 u r l (r ’ ˆ chart /$ ’ , v iews . chart , name=’ chart ’) ,

4]

Listing 5.7: URL patterns of Graphic application.

Model

The Machine Learning model that we have trained and discussed in the previous section will

be inside the Calculator application. Therefore, we need to define the table that stores the

logistic regression’s coefficients in the Calculator’s model. Here we have defined a class called

Logistic Regression Model that inherits the models.Model class of the Django framework. The

model defines 16 attributes which will store float numbers.

1 c l a s s Log i s t i c Reg r e s s i on Mode l (models . Model) :

2

3 id = models . AutoField (primary key=True)

65

4 race = models . F l oa tF i e ld (max length = 10 , n u l l = True)

5 mar i ta lS ta tus = models . F l oa tF i e ld (max length = 10 , n u l l = True)

6 h i s t o l og i cType = models . F l oa tF i e ld (max length = 10 , n u l l = True)

7 behaviorCode = models . F l oa tF i e ld (max length = 10 , n u l l = True)

8 v i ta lS ta tusRecord = models . F l oa tF i e ld (max length = 10 , n u l l = True)

9 grade = models . F l oa tF i e ld (max length = 10 , n u l l = True)

10 r a d i a t i o n = models . F l oa tF i e ld (max length = 10 , n u l l = True)

11 ageAtDiognos is = models . F l oa tF i e ld (max length = 10 , n u l l = True)

12 csTumorSize = models . F l oa tF i e ld (max length = 10 , n u l l = True)

13 r eg i ona lNode sPos i t i v e = models . F l oa tF i e ld (max length = 10 , n u l l = True)

14 regionalNodesExamined = models . F l oa tF i e ld (max length = 10 , n u l l = True)

15 s e e rH i s to r i cS tageA = models . F l oa tF i e ld (max length = 10 , n u l l = True)

16 csLymphNode = models . F l oa tF i e ld (max length = 10 , n u l l = True)

17 csExtens ion = models . F l oa tF i e ld (max length = 10 , n u l l = True)

18 survivalMonths = models . F l oa tF i e ld (max length = 10 , n u l l = True)

19 i n t e r c e p t = models . F l oa tF i e ld (max length = 10 , n u l l = True)

20

21 de f s t r (s e l f) :

22 re turn s t r (s e l f . id)

Listing 5.8: Logistic Regression Model.

As we will see in the view section we will use this model to retrieves logistic regression attributes

once we want to run the prediction.

Admin Interface

Now that we have defined our model, we can use the admin application interface to populate the

Logistic Regression Model table in the database. The admin application is accessible by going

to this URL: ”localhost : 8000/admin”. After logging to the application, we can see the tables that

are defined in our project.

66

Figure 5.1: Admin Interface

The Groups and Users tables are created by the Django framework to handle user authen-

tications. We will use the Logistic regression models table and we will populate it with the

coefficient variables define in the table 5.1

Form

Once we have the model defined we need a mechanism to receive the unseen data from the clients

and process them. The form that we have defined is called LogisticRegressionForm and it is

inside the forms.py file in the Calculator application. Here is a snippet code showing 3 of the

total of 16 attributes defined in the form.

1 c l a s s Log i s t i cRegress ionForm (forms . ModelForm) :

2

3 race = forms . ChoiceFie ld (

4 widget = forms . S e l e c t (

5 a t t r s={

6 ’ c l a s s ’ : ’ form−c o n t r o l ’ ,

7 ’ p l a c eho ld e r ’ : ’ ’ ,

8 }) ,

9

10 c h o i c e s = ([(’ 1 ’ , ’ White ’) , (’ 2 ’ , ’ Black ’) ,]) ,

11 i n i t i a l= ’ 1 ’ ,

12 r equ i r ed = True ,

13 h e l p t e x t=’ 100 c h a r a c t e r s max . ’

14)

15

16 h i s t o l og i cType = forms . CharField (

67

17 widget=forms . TextInput (

18 a t t r s={

19 ’ c l a s s ’ : ’ form−c o n t r o l ’ ,

20 ’ p l a c eho ld e r ’ : ’ H i s t o l o g i c Type ’ ,

21 ’ type ’ : ’ t ex t ’

22 }) ,

23 r equ i r ed = True ,

24 e r ro r mes sage s={ ’ r equ i r ed ’ : ’ P lease ente r H i s t o l o g i c Type . ’ } ,

25)

26

27 grade = forms . Cho iceFie ld (

28 widget = forms . S e l e c t (

29 a t t r s={

30 ’ c l a s s ’ : ’ form−c o n t r o l ’ ,

31 ’ p l a c eho ld e r ’ : ’ ’ ,

32 }) ,

33 c h o i c e s = ([(’ 1 ’ , ’ 1 ’) , (’ 2 ’ , ’ 2 ’) , (’ 3 ’ , ’ 3 ’) , (’ 4 ’ , ’ 4 ’) , (’ 5 ’ , ’ 5 ’

) , (’ 6 ’ , ’ 6 ’) , (’ 7 ’ , ’ 7 ’) , (’ 8 ’ , ’ 8 ’) , (’ 9 ’ , ’ 9 ’) ,]) ,

34 i n i t i a l= ’ 1 ’ ,

35 r equ i r ed = True ,

36)

Listing 5.9: Logistic Regression Form.

Django allows us to add HTML specific tags to the attributes that are defined in the forms. For

example, the histologicType attribute is a CharField and we have added the placeholder tag

to it with the value of ”HistologicType”. Therefore, we do not have to add these HTML tags to the

templates which will further decouple responsibilities. We use this form in our template so that

clients can submit the data.

View

The most important view function that we have is inside the Calculator application. This view

function will receive the client’s data through the form that have been submitted and will run the

calculations. The function is called form and will then return the result to another view function

called result. The result function will display the outcome of the model.

68

The form view function is given below:

1 de f form (reque s t) :

2

3 i f r eque s t . method == ’GET’ :

4 # Generate the form

5 form = Logi s t i cRegress ionForm ()

6 # Present the form in the form . html template

7 re turn render (request , ’ c a l c u l a t o r / form . html ’ , { ’ form ’ : form , ’ r e s u l t ’ :

0})

8

9 e l i f r eque s t . method == ’POST ’ :

10

11 # Populate the form with C l i en t ’ s data .

12 form = Logi s t i cRegress ionForm (reque s t .POST)

13 # Retr i eve C o e f f i c i e n t s from database .

14 m o d e l C o e f f i c i e n t s = Log i s t i c Reg r e s s i on Mode l . o b j e c t s . va lue s () . f i r s t ()

15 # Check i f the c o e f f i c i e n t s are pre sent in the model .

16 i f m o d e l C o e f f i c i e n t s != None :

17 # check i f the form submitted by the c l i e n t i s v a l i d .

18 i f form . i s v a l i d () :

19 # Calcu la te the r e s u l t

20 r e s u l t = 0

21 f o r i in r eques t .POST:

22 i f i != ’ cs r fmidd lewaretoken ’ :

23 r e s u l t = r e s u l t + (m o d e l C o e f f i c i e n t s [i] ∗ i n t (r eque s t .POST. get (i))

)

24 r e s u l t = r e s u l t + m o d e l C o e f f i c i e n t s [” i n t e r c e p t ”]

25 # Send the outcome to the r e s u l t view func t i on

26 re turn r e d i r e c t (’ r e s u l t ’ , 1 0 . 1)

27

28 re turn render (request , ’ c a l c u l a t o r / form . html ’ , { ’ form ’ : form , ’ r e s u l t ’ :

0})

Listing 5.10: form view function.

The form view function receives an HttpRequest forwarded by the URL configurations that we

have defined. The first thing that the function has to determine is whether it has received a GET

69

or POST request. In case the function has received a GET request, it simply return the form.html

template which presents the LogisticRegressionForm that we have defined. In the event that the

request method is POST, it means that the client has filled in the form and submitted it. Therefore,

we catch the data in the POST request and populate the LogisticRegressionForm object. We also

retrieve the coefficients that we have stored in the data base using the Logistic Regression Model

method called objects. This method will return all the rows of the table and we only catch the

first row using the first() method. Once we have the coefficients and user’s data we run the

calculation and store the result in the result variable. We then use the redirect method to send

the outcome of the prediction to the result view function. The result view function below simply

presents the outcome in the result.html template.

1 de f r e s u l t (request , i d s) :

2

3 re turn render (request , ’ c a l c u l a t o r / r e s u l t . html ’ , { ’ r e s u l t ’ : i d s })

Listing 5.11: result view function.

The above result view function will receive the ids variable along with the request. The ids

variable is the outcome of the prediction that was sent by the form view function. The ids will be

passed to the calculator/result.html template in the dictionary.

The view functions of the Home and Graphic applications simply renders the request in their

corresponding templates:

1 de f map(reque s t) :

2

3 re turn render (request , ” graph ic /map . html”)

4

5 de f chart (r eque s t) :

6

7 re turn render (request , ” graph ic / chart . html”)

8

9 de f home(r eques t) :

10 re turn render (request , ”home/home . html”)

Listing 5.12: Home and Graphic view functions.

70

Templates

The templates that we have defined are all in the templates folder in the root directory. Each

application has its own folder with the HTML files specific to them. The static files such as CSS,

Images and JavaScript are inside the server folder. In order to use the static files in any template

we need to the following code on top of the HTML file.

1 {% load s t a t i c f i l e s %}

Listing 5.13: Load static files.

Django allows inheritance in templates. So, we have defined a base.html template that holds

all the tags and information that will be needed by other pages and templates. Therefore, we don’t

have to write the same code repeatedly. For example, the map.html template only defines the tags

of the map class inside the block content. In order to use base.html template, we can use extend

the base.html template in the map.html.

1 {% extends ’ base . html ’ %}

2

3 {% block content %}

4 <div c l a s s=” conta ine r ”>

5 <div c l a s s=”row”>

6 <div c l a s s=” col−sm−8”>

7 <div id =’map canvas ’></ div>

8 <p c l a s s =’ pu l l−r i ght ’>

9 <div id=”map” s t y l e=”width : 960px ; he ight : 600px”></ div>

10 </p>

11 </ div>

12 </ div>

13

14 </ div>

15 {% endblock %}

Listing 5.14: Map template.

In the above code, the map.html template has extended the base.html template. Once the

framework loads this template, it will generate the contents of the base.html first and then it will

replace the block content part of template with the content of the map.html.

71

We have repeated the same pattern in all the other applications which includes the following

templates:

• calculator

– form.html

– result.html

• home

– home.html

• graphic

– map.html

– chart.html

Static files

The static files that we have mentioned in the previous sections are all stored in the folder named

static. We have set the path to this folder in a variable in the settings.py file. The most general

types of static files in most applications are CSS, Images and JavaScript related libraries. Each

application has its own set of static files. For example, the Graphic application has JavaScript

files that are only used to generate Maps and Graphs. Therefore, we don’t have to include them

in the other applications. The structure of these static folders is given below:

• calculator

– css

– fonts

– img

– js

• home

– css

72

– js

• graphic

– js

In order to create interactive maps by the Graphic application we have used an open source

JavaScript library called Leaflet [Prob]. It has a well-documented open source API and many

plugins that are sufficient for our use case. The Leaflet project uses the OpenStreetMap [Proc]

library and APIs to provide the mapping data. The leaflet-map.js file uses the Leaflet library

to construct and configure the map based on the data in the us-state.js file.

1 var map = L . map(’map ’) . setView ([3 7 . 8 , −96] , 4) ;

2

3 var ac c e s s t ok en = ’ pk . ey ’ ;

4

5 L . t i l e L a y e r (’ https : // api . t i l e s . mapbox . com/v4/{ id }/{ z }/{x}/{y } . png? a c c e s s t ok en

=pk . ey ’ , {

6 maxZoom : 18 ,

7 a t t r i b u t i o n : ’<a h r e f=”http :// openstreetmap . org”> ’ ,

8 id : ’mapbox . s t r e e t s ’

9 }) . addTo(map) ;

Listing 5.15: leaflet-map.js.

To generate charts and graphs we have used another JavaScript library called Highcharts

[Proa]. It provides many different types of interactive and dynamic charts and maps that are

heavily used for data visualization. The highcharts.js uses this library.

1 Highcharts . chart (’ c on ta ine r ’ , {

2 chart : {

3 type : ’ s c a t t e r ’ ,

4 zoomType : ’ xy ’

5 } ,

6 t i t l e : {

7 t ex t : ’ Height Versus Weight o f 507 I n d i v i d u a l s by Gender ’

8 } ,

9 s u b t i t l e : {

73

10 t ex t : ’ Source : Heinz 2003 ’

11 } ,

12 xAxis : {

13 t i t l e : {

14 enabled : true ,

15 t ex t : ’ Height (cm) ’

16 } ,

17 startOnTick : true ,

18 endOnTick : true ,

19 showLastLabel : t rue

20 } ,

21 yAxis : {

22 t i t l e : {

23 t ex t : ’ Weight (kg) ’

24 }

25 } ,

26 l egend : {

27 l ayout : ’ v e r t i c a l ’ ,

28 a l i g n : ’ l e f t ’ ,

29 v e r t i c a l A l i g n : ’ top ’ ,

30 x : 100 ,

31 y : 70 ,

32 f l o a t i n g : true ,

33 backgroundColor : (Highcharts . theme && Highcharts . theme .

legendBackgroundColor) | | ’#FFFFFF ’ ,

34 borderWidth : 1

35 } ,

36 }) ;

Listing 5.16: highcharts.js.

74

Chapter 6

Conclusion

75

In order to build our web application, we needed to choose a programming language and a web

developing framework. Since we have extensively used Python to analyze and process our data

sets, and also the fact that there are open-source and powerful web developing frameworks based

on Python, we have chosen Python and Django for our project.

The Django open source project has many advantages to start developing web applications in a

quick and easy way. The framework has a set of tools that are suitable for developing the apps such

as Django’s developing server and a database. These tools allow us to focus more on developing the

web application during developing stages and not to be concerned much about configuring servers

and databases.

Moreover, Django framework utilizes the standard Python unittest library and has built a

powerful testing framework around it. The testing libraries allow us to have a test-driven approach

in developing our web application. Here we will show the interface of the web application that we

have developed.

6.0.1 Online Survivability Predictor

The online breast cancer survivability predictor web application consists of 2 main parts. The first

part uses a form to collect the information regarding the cancer incident and will generate a report

showing the result of the prediction based on the model. The second part can be used to generate

geographical maps, charts and graphs to provide more information.

The following page is the first page the user will see. It will direct the user to choose one of the

two sections of the app.

76

Figure 6.1: First Page.

The online breast cancer survivability predictor web application that we have developed is using

15 attributes that have the most predictive power in the SEER data. In order to use the online tool,

users need to provide these attributes by filling in the online form provided in the web application.

77

Figure 6.2: Form

Note that all input fields are required to submit the form successfully. After filling in the form

and clicking on the ”submitform” button the data will go through the validation process in the

web application and if any of the required fields are empty or if any wrong inputs have been entered

(that is violating the type of data specified in the instruction), the user will get an error to correct

the data entry. At this point the data will not be submitted until the user modify the input entries

and click on the ”submitform” button again.

78

After submitting the attributes successfully, the web app will use our machine learning model to

process the data and generate the final result. Following the calculations, the user will be redirected

to a new page containing the result of the perdition. The outcome of the calculator is shown in the

report below.

Figure 6.3: Report

79

6.0.2 Maps, Charts and Graphs

Here we show example of the usage of the Maps, Charts and graphs templates that are in the

application and can be used to generate different reports.

Figure 6.4: Map

80

Figure 6.5: Chart

6.0.3 Future Work

So far, we have built a web application in a test-driven development process. The application

uses an internal WSGI gateway and a SQLite3 database that are built in the Django framework.

Once we decide to deploy the application to a production environment the server and database

need to be changed to appropriate server and databases that are built specifically for production

environments. There are open source servers from Apache and Nginx that can be used for heavy

load traffic environments. There are also open source data bases such as MySQL that has more

security and many more options that are useful in a production environment.

Another point to mention is the time taken to train a machine learning model and the time it

takes for the model to generate a prediction for a given input. Any decision regarding implementing

Machine Learning models in web applications need to carefully consider these facts, otherwise the

latency for response to an input would be unacceptable. One solution might be to distribute the

workload of the model among a cluster of servers. Or another solution might be to generate a

model and persist the final model into an in-memory system that can be used to take inputs and

generate predicted output. All these solutions require further study and experiments that will be

left to future works.

81

Bibliography

[App] Django Admin Application. https://docs.djangoproject.com/en/1.11/ref/contrib/admin/.

[Bho09] Arthur; Abhishek Bhowmick. A theoretical analysis of Lloyd’s algorithm for k-means

clustering. 2009.

[Bre84a] J. H.; Olshen R. A.; Stone C. J. Breiman, Leo; Friedman. Classification and regression

trees. Wadsworth Brooks/Cole Advanced Books Software, 1984.

[Bre84b] J. H.; Olshen R. A.; Stone C. J. Breiman, Leo; Friedman. Classification and regression

trees. Wadsworth Brooks/Cole Advanced Books Software, 1984.

[Che09] Tianqi Chen. Training Deep Nets with Sublinear Memory Cost. Cornell University

Library., 2009.

[Dja] Securing Django. https://docs.djangoproject.com/en/dev/topics/security/.

[Dra98] H. Draper, N.R.; Smith. Applied Regression Analysis (3rd ed.). 1998.

[FC] Django Software Foundation and Contributors. https://docs.djangoproject.com/en/1.11/.

[Fora] Django Forms. https://docs.djangoproject.com/en/1.11/topics/forms/.

[Forb] Test Driven Development Forms. http://test-driven-django-

development.readthedocs.io/en/latest/05-forms.html.

[Gai] Decision Trees Information Gain. http://www.cs.cmu.edu/ cga/ai-course/dtree.pdf.

[Mah09] P.; Varadarajan K. Mahajan, M.; Nimbhorkar. The Planar k-Means Problem is NP-Hard.

2009.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[Moda] Django Models. https://docs.djangoproject.com/en/1.11/topics/db/models/.

[Modb] Test Driven Development Models. http://test-driven-django-

development.readthedocs.io/en/latest/02-models.html.

[oC] Charles Zaiontz Basic Concepts of Correlation. http://www.real-

statistics.com/correlation/basic-concepts-correlation/.

[Phi] Django Philosophy. https://docs.djangoproject.com/en/1.7/misc/design-philosophies/.

82

[Proa] Highcharts Project. https://www.highcharts.com/.

[Prob] Leflet Open Source Project. http://leafletjs.com/.

[Proc] OpenStreetMap Project. http://www.openstreetmap.org/.

[PT12] Andrew Ng Stanford CS221 Artificial Intelligence: Principles and Techniques.

http://stanford.edu/ cpiech/cs221/handouts/kmeans.html, 2012.

[Rus03] Peter Russell, Stuart; Norvig. Artificial Intelligence: A Modern Approach (2nd ed.).

Prentice Hall, 2003.

[Sam59] Arthur Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal of Research and Development., 1059.

[Sea67] Hilary L. Seal. The historical development of the Gauss linear model. Biometrika, 1967.

[Sp] Epidemiology Surveillance and End Results program. https://seer.cancer.gov/data/.

[Sto] Django Instagram Story. https://engineering.instagram.com/what-powers-instagram-

hundreds-of-instances-dozens-of-technologies-adf2e22da2ad.

[tBPV] Scaling Django to 8 Billion Page Views. https://blog.disqus.com/scaling-django-to-8-

billion-page-views.

[Viea] Django Views. https://docs.djangoproject.com/en/1.11/topics/http/views/.

[Vieb] Test Driven Development Views. http://django-testing-

docs.readthedocs.io/en/latest/views.html.

[Wis07] Joseph A. Cruz; David S. Wishart. Applications of Machine Learning in Cancer Prediction

and Prognosis. Cancer Informatics, 2007.

[WSG] Django WSGI. https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/.

83

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Armin Esmaeilzadeh

armin.esmaeilzadeh@gmail.com

Degrees:

Master of Science in Computer Science 2017

University of Nevada Las Vegas

Thesis Title: A Test Driven Approach to Develop Web-Based Machine Learning Applications.

Thesis Examination Committee:

Chairperson, Dr. Kazem Taghva, Ph.D.

Committee Member, Dr. Laxmi Gewali, Ph.D.

Committee Member, Dr. Ajoy Datta, Ph.D.

Graduate Faculty Representative, Dr. Emma E. Regentova, Ph.D.

84

	A Test Driven Approach to Develop Web-Based Machine Learning Applications
	Repository Citation

	tmp.1522702090.pdf.agjt7

