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Abstract

Researchers have developed efficient techniques, meta-heuristics to solve many Combinatorial Opti-

mization (CO) problems, e.g., Flow shop Scheduling Problem, Travelling Salesman Problem (TSP)

since the early 60s of the last century. Ant Colony Optimization (ACO) and its variants were

introduced by Dorigo et al. [DBS06] in the early 1990’s which is a technique to solve CO problems.

In this thesis, we used the ACO technique to find solutions to the classic Flow shop Scheduling

Problem and proposed a novel method for solution improvement. Our solution is composed of

two phases; in the first phase, we solved TSP using ACO technique which gave us an initial permu-

tation or tour. We used the same trip as an initial solution for our problem and then improved it

by using 2-opt exchanges which yielded in a promising result. Furthermore, we introduced another

improvement technique which gave us a more promising result. We have compared our results with

the best (optimal) and worst solution known till date. A comprehensive experimental study using

existing dataset proves that our approach remarkably gives good results.
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Chapter 1

Ant Colony Optimization

1.1 What is Combinatorial Optimization (CO)

In many areas of Computer Science, Artificial Intelligence, Operations Research, Software Engi-

neering, Machine Learning, and so on,Combinatorial Optimization (CO) [PS82] problems are

critical to approach. A CO problem is an optimization problem, where an optimal solution has to

be identified from a finite set of solutions. The solutions are generally discrete or can be formed

into discrete. Some works have been done on continuous and mixed-variable optimization [Soc04].

So the simple concept is, we always try to optimize an objective function, it can be a minimization

problem or a maximization problem depending on the problem statements. Solutions usually are

expressed as sets, subsets, combinations or permutations. Here are some popular application area

for CO problems.

• portfolio selection

• allocating register memory, picking up packages

• combinatorial auctions winner determination

• best airline network

• protein structure prediction

• allocations of jobs to people

• closure problem

• Internet data packet routing

1



• planning, scheduling, timetabling

There are a large amount of literature and approaches have been published since the early ’60s to

address CO problems. In this thesis, we concentrate on solving the well-known NP-complete discrete

optimization problem named Permutation Flow shop Scheduling Problem in a different way

than the state of the art approaches. There are already many simplified models used to address

our concerned problem. However, Our approach gave a promising result. Some big real-life CO

problems are shown below.

• finding the order of arcs with minimal backward cost and so on.

• finding shortest/cheapest round trips, known as Travelling Salesman Problem (TSP)

• finding models of propositional formulae, known as Boolean satisfiability problem (SAT)

• partitioning graphs or digraphs

• Graph Coloring Problem (GCP)

• finding variable assignment which satisfies constraints known as, Constraint Satisfaction Prob-

lem (CSP)

• partitioning, packing, covering sets

1.2 What is Continuous optimization problem?

In Continuous Optimization, the variable used in the objective function is required to be continuous,

unlike Combinatorial Optimization. e.g., surface, curves, circle. Combinatorial Optimization, in

contrast, has discrete variables in the objective function, a collection of things.

1.3 Ant System

ACO is based on ants systems and works with a set of ants. In this section, we will talk about

virtual ant which is capable of producing many different types of complex behavior. In the book

[Fla98] they have studied on ant system and put some complex scenarios an ant can behave.

In figure 1.1 an ant is located on a grid which is either painted black or white. This grid wraps

around edges to edges. The ant is called Langton’s ant [Lan95] as Langton is the one who first

introduced it which follows the rules mentioned in the following:

2



• The ant takes a step forward.

• Langton’s ant will always face in one of four directions ( north, south, east, or west.)

• If the ant is now standing on a white grid, it will paint the grid black and turns 90 degrees

to the right.

• or if it is standing on a black grid, then it paints it white and turns 90 degrees to the left.

Figure 1.1: Eight steps of Langton’s virtual ant

Figure 1.1 shows the steps of an ant would take. As the rules for Langton’s ant are time reversible,

they had the opportunity to undo the simulation in time. From the rule set of virtual ant we can

imply, if an ant is standing on a black cell, the cell was white at the previous time step. After that,

the ant just made a 90 degree turn to the right. They remarked in the book that the ant’s entire

future is deterministic, as well as the past. This would seem to imply that Langton’s ants in every

perspective are simple, even it has global simplicity. However, time reversibility does not intimate

global integrity. They also tried to confirm that whether the ant is recursive or not in its prior

actions. We can see from figure 1.1 that ant rapidly begins to cooperate with grid areas that it has

been previously, which implies that the ant’s future state and future conduct are a component of

all its past activities. Thus if were to randomly flip the color of a cell at some point in the past, the

ant’s entire future could be dramatically altered. Thus, in a way, Langton’s ants possess a form of

sensitivity to initial conditions.

3



However, this not necessarily means that an ant will always behave in a way that appears

random in the long term. They kept on reenacting the ant from figure 1.1 and after some time the

ant started to build the highway which is a phenomenon discovered by James Propp.

Figure 1.2: Two virtual ant reversing one another’s work

If more than one ants are moving into a single cell space, they can interact and will collide into

each other in a way that they will undo one another’s work using the reversible nature of the ant

rules. It is shown in figure 1.2. However, if two ants are allowed to move for a while before they

intersect one another, then for the remaining of the simulation time they will often go into a stage

of unbuilding a highway and removing random like patterns; therefore they will clean up the grid

after some time. So there is a conclusion might happen, when two ants collide with one another,

they will both start to undo one another’s work which might make an empty grid.

When three or more ants start to roam around in a space more exciting things can happen.

Suppose two ants are working and they intersected in a way they again reversing all their work,

except for the third ant be roaming around and causing minor damage to the work of other two

ants. Then if other two by any chance collide a cell the third one has more recently visited, they

will start building a highway from there stopping the previous reversing project. Consequently,

highways are very common to see being built then only partially unbuilt.

Highway building nature is found on many other virtual ants other than Langton’s ant. Some

examples of generalized virtual ants will behave chaotically for hundreds of thousands of step and

only then start making highways. For other examples, no one knows if they will be able to build a

4



highway ever because of their chaotic nature persistent.

Another interesting observation made by Stewart is that [Ste94] Virtual ant’s long-term behavior

is unnoticed by us. Even though we knew and studied the initial setting of the ant’s world, we do

not know if the ant will be able to build a highway. With this, he made a statement that even

though physicists uncover theory of everything of our universe, also the initial state of this yet we

will be unable to know the long-term behavior of our universe. so he said, ”Theory of everything

predicts everything yet explains nothing.”

1.4 What is Ant Colony Optimization (ACO)

Section 1.3 was to familiarize ourselves with the Ant system and their complex behavior. We will

now study how we can utilize ant’s foraging behavior to solve NP-hard problems. Ant colony

optimization (ACO) [DS04] is an idea of swarm intelligence [DBB+04] introduced by Dorigo et

al. [DBS06] in the early 1990’s which has been later used to solve many CO problems. In swarm

intelligence, each ant is a particle, and swarm means the collection of particles. ACO is one of the

famous meta-heuristics [DC99, BR03, Rai06, HS04, Ree93b] to solve CO problems e.g. Travelling

Salesman Problem [SH96, DG97, JP], routing problem in computer network [CD11], protein folding

problem [UM93]. There are other famous metaheuristic algorithms such as tabu search, simulated

annealing which can solve and improve the performance of CO problems. Optimization is a function

to make the best result by doing effective use of resources. For example, to find the shortest path

from one city to another we need to find some optimization technique by minimizing the time or

money. So, by combining the definitions, we can say, Particle Swarm Optimization (PSO) is a

group-based method of solving any CO problems.

Many complete and approximate algorithms can solve CO problems. However, complete solu-

tion means we need to have the exact optimized solution whatever the time limit [WN99] is which

is practically impossible sometime to give up the time limit that is why approximation algorithms

got popular in recent 30 years to solve NP-hard problems [GJ79]. ACO is one of them which is

inspired by the ants foraging behavior.

1.5 What is Travelling Salesman Problem

Traveling salesman problem(TSP) is classified as an NP-hard problem which states that there given

a set of cities and a salesman needs to travel all the cities and come back to the city he started from

5



by minimizing distance or cost or both. Also, he can not visit a city twice except the starting city.

We know the complexity of the TSP problem is NP-hard, for example, if a salesman is visiting n

cities, there are (n − 1)! possible solutions which make it Np-hard. However, P = NP is yet the

biggest open problem to be solved in computer science.

TSP has several applications, such as,

• planning

• scheduling

• packing, logistics, and manufacturing

• integrated Circuits

• distributing goods

1.6 Artificial Ant’s Foraging Behaviour

Figure 1.3: Ant’s foraging behavior

ACO is a heuristics that help to solve many NP-hard problems as well as TSP. The whole analogy

follows a simple graph G(V,E) model where V consists of two nodes (Nest, Food) from the figure 1.3

and E consists of three links between food and nest where length(e2) < length(e1) < length(e3)

First, each ant randomly chooses a node as a start node. The goal is to bring the food to the

nest. In figure 1.3(a), all ants start looking for food from their nest. As there are three paths and

6



yet no pheromone on the road each of them chooses path randomly. As they advance, they leave

pheromone in the path. In the second section of figure 1.3(b) they have found the source of food

and judged the quantity and quality of the food and started to return to their nest carrying food

with them.

From the figure, edge e2 is more intense as it is the shortest one. Even pheromone evaporation

happens, still, it should have more pheromone than the other two edges. This time they will again

leave pheromone on the road, the quantity of pheromone left on the road depends on the food.

When they are going back, if an ant chooses an edge ei, pheromone value on that edge τi, i = 1, 2, 3

will change as follows, the amount that will be added depends on the length of the chosen path

and Q. Q is a positive constant

τi = τi +
Q

length(ei)
, i = 1, 2, 3 (1.1)

Then they continue to build up their solution by adding edges which are not yet visited which

Figure 1.4: Solution Construction for TSP

is explained in another figure 1.4. For this, they have to keep a memory VISITED where all the

visited edge information will be stored. Once an ant has visited all the nodes, it will return to the

node it started. At each step, it will add the visited edge information to the solution. Whenever

an ant is in any node, it will choose the next edge based on the probability of choosing a path,

whichever path is rich in pheromone using the following formula

pi =
τi

τ1 + τ2 + τ3
, i = 1, 2, 3, (1.2)

Other ants will track the pheromone smell and go to the food source which has been defined

as ’stigmergy’: indirect communication between ants [DAGP90] using pheromone trails. for this
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particular example, τ2 > τ1 > τ3, so probability of choosing e2 is higher. Pheromone also evaporates

over time using the following formula,

τi = (1− ρ) ∗ τi, i = 1, 2, 3, (1.3)

here, the parameter ρ ∈ (0, 1] controls the pheromone evaporation. So whichever path is shortest

tend to have more pheromone concentration left in the path. From the figure, we can see that the

middle path is the shortest yet some ants chose the upper one, and few chose the lower one, but

most of them chose the middle one following the pheromone smell. Eventually, upper and lower

path’s pheromone will fade away, and all ants will take the middle path which is the shortest one

(c). The system will iterate, and per iteration same number of ants will be simulated.

differences between artificial ants and real ant:

From the above scenario, we will point out some major differences between real and artificial ant.

• Real ants move in an asynchronous way where artificial ants are synchronous.

• Artificial ants have memory, they knows the cities they have visited.

• Artificial ant deposits pheromone on its way back while real ants leave pheromone every time

it moves.

• Foraging behavior of real ant is based on the fact that a shorter path will be completed soon

and pheromone will be added quickly. As opposed to this artificial ants do some quality

measure which determines the strength of pheromone during their return trip.

• Artificial ants are not blind; they prefer to choose the nearby city from their position as they

know the distances between two cities

1.7 Parameters and Functions

ACO is a nice technique to solve many NP-hard problems but first it is necessary to find out the

right parameters. ACO algorithm requires a long search. Initially edges contain different quantity

of pheromone but after some time the edge which has taken more by the ants contains more

pheromone. Thus, parameters setting have an important aspect to improve the performance. These

parameters depend on the problem instance. In this paper [SS13], they gave detailed experiment

8



parameter name definition data type

iteration how many times system will iterate (int)

number of ants (na) total number of ants participating (int)

number of cities (n) total number of cities to be visited (int)

τij artificial pheromone value (double)

pij probability of choosing link i to j (double)

ηij the visibility of city j from city i (double)

dij the distance between city i and j (double)

f(s) length of the solution (tour) s (int)

α the parameter to regulate the influence of τij (double)

β the parameter to regulate the influence of ηij (double)

Q positive constant (int)

ρ evaporation factor (double)

initial city (Nest) nest of ants (int)

Table 1.1: Parameter’s table

results for changes of parameter α, β, ρ, and Q. They mentioned as α increase, the more prominent

plausibility of ants picking the path to have a place with the previous tour, on the new tour. In the

ant system, α indicate the importance of collected pheromone on the edges. Again for increasing β,

the possibility of ants choosing the local shortest path will increase the speed of convergence gets

faster. Global optimization and fast convergence both are necessary to obtain an optimal solution.

The algorithm should have a proper balance between them. According to them, The residue of

pheromone left by ant on edge evaporates with time. The parameter ρ directly affect the global

search ability and additionally arbitrariness. At the point when the number of nodes increases, the

pheromones on the way which will never be crossed progressed toward becoming 0.

moreover, lastly, they concluded by saying the effect of amount Q to the performance depends

on the three parameters (pheromone factor α, heuristic factor β and the residues coefficient of

pheromone ρ)

1.8 Ant System for Solving TSP

We will explain the same scenario in 1.6 yet in a generalized manner to solve TSP. Given an n-city,

complete undirected graph G = (V,E) with distance matrix dij , the artificial ants are distributed

to these n cities randomly. According the Ant System (AS) approach [DMC96], the edges of the

TSP graph are the solution components, so each edge eij has a pheromone value τij . First a node

of TSP graph vi is chosen randomly. Each ant will choose the next edge to visit according to the
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nearby city and pheromone trail on the paths. Those edges which are being considered to visit an

unvisitied city by ants will be added to the solution construction starting from the city it is located.

when there is no unvisited city left the ant will go back to the city from where it started which

implies that ants have a memory ’VISITED’ where it stores the already visited nodes. so if an ant

is in node vi the next edge will be chosen based on the following probability in general:

pij =
τij∑

k∈1,...,|V ||vk /∈V ISITED τik
,∀j ∈ 1, ..., |V |, vj /∈ V ISITED (1.4)

Once all the ants in the colony completes their solutions, pheromone evaporation starts as follows:

τij = (1− ρ) ∗ τij , ∀τij ∈ P (1.5)

here, P is the set of all pheromone values. Ants start their return trip and pheromone will be

deposited by following formula:

τij = τij +Q/f(s) (1.6)

where s is the solution set and f(s) is the objective function value of it. Simulation will go until a

stopping condition is satisfied, applying na ants per iteration.

1.9 The ACO metaheuristic

Figure 1.5: Basic Workflow of ACO

In 1999, Dorigo et al. [DBS06] first introduced the ACO metaheuristic, a general framework of

ACO metaheuristic is given below: The basic workflow is mentioned in figure 1.5. From the figure,
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we need solution components and pheromone model to solve a CO problem. Solution components

are used to assemble solutions to the CO problem and Pheromone values is a set of values known

as pheromone model. From a technical side, pheromone model is a parameterized probabilistic

model which is the central component of ACO metaheuristic. The pheromone values τj ∈ P

are normally associated with solution components, and pheromone model is used to generate the

solution probabilistically. ACO follows two steps in general:

• Pheromone model is used to construct the solution which is a parameterized probability

distribution over the solution space.

• Good solutions modify the pheromone values so that it gives the better solution in future.
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Chapter 2

Flow shop Scheduling Problem

2.1 Introduction

Since the early ’60s of last century researchers are working on developing heuristics to solve Flow-

shop Scheduling Problem (FSP) which falls under the NP-complete category. Johnson et al. first

proposed the two and three-stage production schedules [Joh]. After that, many researchers have

talked about many heuristics approaches to address this problem. As this is an NP-hard problem,

we have to be more concerned about obtaining an economically sound and practical application

of the solution than finding an optimal solution which led many other researchers as well as us to

find another unconventional approximate method. There are many review papers on the heuris-

tics [Gup79, PPE84]. By complexity and space, these heuristics and metaheuristics are different.

One approach is to find a good solution by improving the initial sequence. In this thesis, we are

approaching the Permutation Flowshop Scheduling Problem (PFSP), which is a special variant of

FSP. Our approach got the inspiration from various papers [WH89, Moc95] where they improved

the initial sequence using Tabu Search. [Ree93a, Tai90, Ree95] and we used two-opt technique and

another novel technique.

2.2 Definition

This problem is so common that it is well defined even in Wikipedia [wik] where the definition is

given as follows: Flow shop scheduling problems are a class of scheduling problems with a workshop

or group shop in which the flow control shall enable an appropriate sequencing for each one of n

job and processing on a set of m machines or with other resources 1, 2, ...,m in compliance with

given processing orders.

12



2.3 Permutation Flowshop Scheduling Problem

Permutation Flowshop Scheduling Problem is a special type of FSP, defined as, A permutation flow

shop is a flow shop in which jobs are processed in the same order on each machine [Bru04]. It has

no intermediate storage. A job remains on its machine until the next machine is available. It has

many applications in real life. For example,

• production facilities as to computing designs.

• Scheduling

Example

Jobs J1 J2 J3 J4 J5
M1 (p1,Ji) 5 5 3 6 3

M2 (p2,Ji) 4 4 2 4 4

M3 (p3,Ji) 4 4 3 4 1

M4 (p4,Ji) 3 6 3 2 5

Table 2.1: A schedule table for 4 machines and 5 jobs

Every job has some processing time for job i on machine j which is defined as pij(i = 1, ...n; j =

1, ....,m). Table 2.1 shows the processing time table for four machines and five jobs. Our job is to

find the sequence of jobs minimizing the maximum flow time or makespan. In our work, we are

concentrating on reducing the makespan. For small data set optimal solution can be found even

without a computer, or we can do complete enumeration, branch and bound techniques, integer

programming to determine the optimal result but for a larger dataset, it becomes an NP-complete

problem and heuristics are necessary to solve them. For example, in table 2.1 for the permutation

order 0, 4, 1, 2, 3 we got the makespan of 32 also known as Cmax which is the optimal solution shown

in figure 2.2. Another permutation schedule in which the jobs run in order for 0, 3, 1, 2, 4 is shown

in figure 2.1. Also, this gives the makespan of 37.

Sequencing Problem is numerical in Operational Research. Here we have multiple jobs which

are to be processed on multiple machines. So this is an n-jobs m-machines problem. Sequencing

problem emerges when we have different machines and numerous jobs to be handled in the best

and ideal approach to spare time and cost.
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Figure 2.1: makespan for the permutation 0, 3, 1, 2, 4

Figure 2.2: makespan for the permutation 0, 4, 1, 2, 3

2.4 Previous Heuristics Procedure

Widmer and Hertz [WH89] described an efficient algorithm SPIRIT where they first compute the

initial sequence using the analogy from the TSP and then applied Tabu Search technique to improve

the solution. However, with more significant problems like for 100 jobs, SPIRIT did not perform

well.

Nawaz et al. in his paper [NEH83] mentioned about another heuristic NEH where he explained

jobs with higher total process time should be given more top priority than the tasks with less entire

process time. NEH performs well for more massive problems.

Moccellin et al. [Moc95] defined FSHOPH query by incorporating a new heuristic algorithm
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for the FSP which is pretty similar to SPIRIT [WH89]. The main difference between them was

presented as in finding the initial solution for the scheduling problem. The distance between two

jobs is entirely different in SPIRIT. They mainly focused on the feasibility condition between

machine and job’s idle time in the FSP. They used the Farthest Insertion Travelling Salesman

Procedure (FITSP) to find out the good initial solution and then applied Tabu Search to improve

it. For other significant problem, FSHOPH does not perform well either.

In this paper [AB99] they talked about routing-scheduling version of the flow-shop problem.

However, So far NEH and SPIRIT outperform other known heuristics.

2.4.1 Constructive heuristics

According to this paper [Lou96], a constructive heuristic is an algorithm that builds a sequence

of jobs, and once a decision is made, it is never changed. They claimed if the running time is an

important factor, Sevast’yanov’s algorithm can be an excellent alternative especially in the presence

of substantial scale instances with a relatively small number of machines. However, the meaning of

constructive somewhat confusing mentioned in [FGL04] besides being a rather coarse classification

and hence of limited scope. Pinedo defines constructive heuristics as opposed to composite heuristics

in [con96].

2.5 Workflow of Permutation Flowshop Scheduling Problem

In this portion, we will describe the workflow of Permutation Flow shop Scheduling Problem briefly

in a generalized manner. In this review paper [FGL04] they tried to give a general framework by

three phases in the following:

• Phase 1: Index Development

• Phase 2: Solution Construction

• Phase 3: Solution Improvement

2.5.1 Index Development

The output of this phase is an order which can be a solution or can be an input for the next phase

for improvement. How the jobs will be arranged depends on the input data. In this heuristic [cam]

FSP instance is created by machine aggregation from the data given by the original PFSP instance.
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By employing Johnson rule, FSP can be solved in polynomial time which is accepted as a solution

for the original PFSP. Gupta [Gup79] mentioned that if there is no problem analogy, a function to

rank the jobs, it can be interpreted as sorting analogy. In [FGL04] they mentioned two issues to

consider if any problem analogy is employed.

• We should find the polynomial methods to solve problem analogy to ensure the simplicity

optimally. This implies the complexity of the analogy problem indirectly.

• The correspondence between solutions of the analogy and solutions of the original problem.

So far three problem analogies have been used [FGL04] to get an order for Flowshop scheduling

problem.

F2||Cmax -analogy

This is the most widely used analogy via machine aggregation. Here the first issue simplicity can

be achieved by setting m = 2 for which F2||Cmax is optimally solvable in polynomial time [Joh].

However, seems like it is difficult to develop machine aggregation heuristics for m ≥ 2.

TSP analogy

Gupta [Gup79] first introduced the TSP analogy to solve the Flowshop scheduling problem. The

Stinson and Smith in 1982 [SS82] presented six ways to develop distance matrix using the processing

timetable. After that, Widmer and Moccellin also presented a solution with the same analogy. All

these formulas are mentioned in the table 3.1

Vector summation analogy

Sevast’janov et al. first introduced the vector summation analogy [Sev95] and implemented [Lou96]

where the author concluded saying, there is not necessarily a correspondence between good solutions

concerning the maximum norm of the partial sums and good solutions of the Fm|prmu|Cmax-

problem [FGL04]

2.5.2 Solution Construction

Until we get a solution, unscheduled jobs will be inserted into different positions of a partial solution

recursively or iteratively. Therefore, this phase consists of two issues at any iteration:
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• Job selection, which will be done according to the tour obtained from phase one. Jobs will

be inserted following a certain schedule measure. For example, minimizing the makespan of

the resulting partial solution. It is easy to understand, minimizing some idle time may lead

to a low makespan.

• Job Insertion, which needs to be done in a way so that it minimizes some property

(makespan) of the resulting partial schedule. Researchers have tried many different posi-

tions for inserting jobs to improve the solution [SL93, AS]. Nawaz et al. and Woo and Yim

tried to insert the job in all possible position [WY98, NEH83].

2.5.3 Solution Improvement

We follow two main criteria when we want to improve the current solution.

• a current solution should be there which we are trying to improve

• solution output, cost of the objective function should be better or equal than the current

solution.

There have been many studies to improve the initial solution. In this paper Dannenbring et al.

mentioned abstract computational experience with eleven flow shop sequencing heuristics where

two jobs are exchanged [Dan77a]. Alternatively, a set of adjacent jobs are exchanged [Pag61].

Many others presented their work on local search and metaheuristics to improve the makespan.

[KS80, NS96, HC91, St97]. There are some improvements done by the technique genetic algorithm

[CVA95, Ree93a, Ree95]. In this papers [OP89, OS90], they talked about Simulated Annealing to

improve the makespan by a general neighborhood approach.

In the review paper [FGL04], they tried to classify all the works under general and specific

neighborhood. There are again two categories in each, Descending local search and Metaheuristic.

They concluded saying that choice of the general/specific neighborhood does not matter so

much as we all know that the efficient implementation of meta-heuristic involves on its parameters;

also we need to tune them well. Thus, parameter design is more important no matter how general

or specific the techniques are.
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Chapter 3

Our Approach

We tried to solve the PFSP [TB87, Dan77b, NEH83] using the reduction method with the analogy

of the TSP. Later, we tried the two-opt technique and improved our solution.

3.1 Reduction

Figure 3.1: Reduction Technique

In the figure 3.1 we have our whole reduction technique mentioned. Here, we have a black box

algorithm of ACO that can solve a known problem B which is TSP. Now we need to solve another

problem A which is PFSP, and we do not know how to solve it. So here we will apply our reduction

technique to solve B.

A = PFSP

B = TSP

IA = Input for PFSP
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IB = Input for TSP

OA = Output for PFSP

OB = Output for TSP

F (IA) = Function that transform IA to IB

For this, the input of A needs to be transformed into the input of B, and this needs to be done at

a polynomial time. Then when we get the output for B, we will transform that into an output for

A in polynomial time. By this way Problem A can be reduced to problem B or in another word,

Flowshop Scheduling Problem got reduced to the Travelling Salesman Problem. This technique is

known as Reduction technique.

3.2 Transformation of Inputs

As we know from section 2 every job has a processing time and the processing time of each job is

the input of PFSP. The processing time of job i on machine j is Pij(i = 1, ...n; j = 1, ....,m) like

shown in table 2.1.

However, Our black box algorithm takes a different input as it solves a different problem. From

the TSP definition explained in 1.8, we assumed it a complete graph. So we need a distance matrix

to go from every city to others. If there are n cities, the input for this problem will be an n x n

matrix. We need to convert Pij(i = 1, ...n; j = 1, ....,m) to a distance matrix Cuv, which is a n x n

matrix.

3.3 Distance between two jobs

Framinan et al. in this paper [FGL04] mentioned about various distance metric used as heuristics

to get a good solution. In table 3.1, all of them are accumulated.

We took the reference from the papers [WH89, SS82] and calculated our new distance which

worked as the distance between two jobs. Distance is a function of processing times. All these

functions mentioned in table 3.1, takes the processing time as input and gives us the distance ma-

trix. We calculated our distance matrix using three different formulas from the table. We took

the heuristics from Widmer et al.[WH89] and first two heuristics of Stinson and Smith out of six

they mentioned in their paper [SS82]. In the paper of Widmer and Hertz, they have calculated the

distance from job u to job v using the formula in equation 3.1 given that job v is scheduled after the

job u. They claimed their distance formula is the most satisfactory one. The formula is given below
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Reference Distance matrix (1 <= u, v <= n)

Gupta(1968b) Cuv = (CTm(u, v)−
∑m

j=1 puj) where CT0(u, v) = 0, and

CTj(u, v) = max{CTj−1(u, v);
∑j

k=1 pvk
Stinson and Smith (1982) Cuv =

∑m
j=2 |puj − pv,j−1|

Cuv =
∑m

j=2{puj − pv,j−1}2
Cuv =

∑m
j=2 |min{puj − pv,j−1 +min{(pu,j−1 − pv,j−2); 0}; 0}|

Cuv =
∑m

j=2 |puj − pv,j−1 +min{(pu,j−1 − pv,j−2); 0}|
Cuv =

∑m
j=2{puj − pv,j−1 +min{(pu,j−1 − pv,j−2); 0}}2

Cuv =
∑m

j=2max{(puj − pv,j−1); 0}+ 2|min{(pu,j − pv,j−1); 0}|
Widmer and Hertz (1989) Cuv = Pu1 +

∑m
j=2(m− j)|Puj − Pv,j−1|+ Pvm

Moccellin (1995) Cuv = UBX(m)uv where UBX(1)uv = 0, and

UBX(k + 1)uv = max{0;UBX(k)uv + (pvk − pu,k+1)}

Table 3.1: Distance matrices constructed using TSP analogy

Cuv = Pu1 +

m∑
k=2

(m− k)|Puk − Pv,k−1|+ Pvm (3.1)

Jobs J1 J2 J3 J4 J5 J6 J7

M1 5 5 3 6 3 1 3

M2 4 4 2 4 4 4 1

M3 4 4 3 4 1 6 2

M4 3 6 3 2 5 4 2

Table 3.2: A schedule table for 4 machine and 7 jobs table

2 2 4 4 2 6 5

2 2 4 4 2 6 5

7 7 3 9 3 3 4

2 2 4 4 2 6 5

5 5 3 7 5 9 2

4 4 6 6 4 8 6

10 10 4 12 6 2 5

Table 3.3: 7x7 distance matrix created from table 3.2 using Widmer formula

Take the table 3.2 as an example, this is the input matrix for the PFSP, which is 4x7 in

dimension as this is for seven jobs running in 4 machines. Now we will need to transform this

input into the input compatible with our approximation algorithm. As we have used three different

formulas for the distance matrix to compare our result, all three of the distance matrices created

from table 3.2 are shown. Table 3.3 shows the new distance matrix created using the formula in
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2 2 3 3 3 6 5

3 3 6 4 6 3 8

5 5 2 6 4 5 4

3 3 4 4 2 7 4

5 5 4 6 8 7 4

3 3 6 4 6 7 8

8 8 3 9 5 6 3

Table 3.4: 7x7 distance matrix created from table 3.2 using Stinson’s formula(1)

2 2 5 5 5 18 11

5 5 14 8 26 9 26

11 11 2 18 6 11 6

5 5 6 8 2 25 10

11 11 6 14 26 19 10

5 5 18 8 14 17 30

24 24 5 33 9 20 5

Table 3.5: 7x7 distance matrix created from table 3.2 using Stinson’s formula(2)

equation 3.1. Table 3.4 and table 3.5 shows the distance matrices created by using the first two

formulas of Stinson [SS82].

3.4 Run ACO on the new input (Distance Matrix)

Our approach to solving the PFSP is by using reduction. We first solved the TSP using the ACO

approximation algorithm feeding our new distance matrix as input which will give us a tour. This

tour will work as an initial solution for our PFSP. We have implemented the state of the art

approach of Ant system by taking the reference from this paper [DMC96].

3.5 Two-opt techniques for improvement

Croes et al. suggested the two-opt technique [Cro58] which is used to improve the initial solution.

The two-opt technique is mentioned in algorithm 4 We get the tour or permutation from the state

of the art ACO approximation technique. Then at each step, we will take two random cities and

will swap them to come up with a new tour and will check if it is improving the tour cost or not.

In another word, as we are solving PFSP, we will check if the new order is giving us a shorter

makespan. Generally, the idea is to repeat this technique until no improvement is made and save

the iteration number. In our experiment, at first, we have defined a stopping rule to save some
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computation time. We have chosen a fixed number of iteration. As long as we are not reaching

the iteration, we will keep doing Two-opt. This technique has undoubtedly improved our solution.

Moreover, to the best of our knowledge, no one has applied the two-opt method to improve their

solution as us. There are other many improvement techniques for PFSP mentioned in section 2.4.

We have introduced another novel technique to develop our initial solution in the following section

3.6.

3.6 Complete new technique for improvement

We first ran the two-opt technique to improve our solution. This technique has inspired us to come

up with a completely new technique which surprisingly improved the solution’s makespan better.

In the two-opt technique, we only swap two positions for the improvement. In our novel technique,

we will keep changing the sequence on the changed sequence got from the previous iteration. The

results shown in the experiments section will surely appreciate the approach. This new technique

will slightly change the algorithm 2. The new algorithm is shown in algorithm 5.

In Algorithm 2, we ran the ant system algorithm on new distance matrix and got the initial

solution. Then we did two-opt technique which switches two jobs randomly. For example, For

the input data in table 2.1 We got the initial solution as 0, 3, 1, 2, 4. After running the two-opt

technique on this sequence, we got different sequence 0, 4, 1, 2, 3 which gave us the optimal solution

in our setting, the lowest Cmax = 32 shown in figure 2.2 We ran the two-opt technique for certain

iterations as shown in algorithm 2 However, the number of permutation is huge n!. Therefore, we

kept an iteration of 10 initially. Later, increasing the iteration number gave us a better solution

which is also reported in the experiment section.

3.7 Algorithmic Form

while termination conditions not met do
AntBasedSolutionConstruction()

PheromoneUpdate()
end

Algorithm 1: Ant Colony Optimization (ACO)

There are other heuristic functions; For using each of these, we get a different solution. So, we

can consider each of them as different strategies. We have compared our results for other equations
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Input : n : number of jobs
m : number of machines
Pij : Processing time of job i on machine j where i = 1, ..., n, j = 1, ...,m
iter : iteration number

Output: S : sequence that makes the makespan smallest
Cmax : length of the makespan

initial sequence← ACO TSP (n,m,Pij)
while iteration < iter do

iteration← iteration+ 1

new sequence← TWO OPT SWAP (initial sequence)
if f(new sequence) < Cmax then

Cmax ← f(new sequence)

S ← new sequence
end

end

Algorithm 2: Main structure of the algorithm

1: procedure ACO TSP (m,n, Pij)
2: Cij ← distance(Pij)
3: S ← Ant System(m,n,Cij)
4: return S
5: end procedure=0

Algorithm 3: ACO TSP Procedure

1: procedure two opt Swap(S)
2: i← Random()
3: j ← Random()
4: temp← S[i]
5: S[i]← S[j]
6: S[j]← temp
7: return S
8: end procedure

Algorithm 4: Two Opt Swap Procedure
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Input : n : number of jobs
m : number of machines
Pij : Processing time of job i on machine j where i = 1, ..., n, j = 1, ...,m
iter : iteration number

Output: S : sequence that makes the makespan smallest
Cmax : length of the makespan

initial sequence← ACO TSP (n,m,Pij)
while iteration < maxiter do

iteration← iteration+ 1

new sequence ← TWO OPT SWAP(new sequence)
if f(new sequence) < Cmax then

Cmax ← f(new sequence)

S ← new sequence
end

end

Algorithm 5: Main structure of the algorithm for further improvement

too reported the experiment results. However, none of them, being heuristics for solving NP-hard

problems, guarantee the optimal solution.
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Chapter 4

Implementation and Experiments

In this segment, we will assess the execution of our proposed solution for Flowshop Scheduling

Problem, and we will compare it with the best solution (upper and lower bound) reported in this

technical report [Tai93] We ran all our experiments in Mac book Air Processor 1.6 GHz Intel Core

i5 and Memory 8 GB 1600 MHz DDR3. We have actualized the cutting edge ACO algorithm in

C++ language and compiled it in the C-lion compiler. We have evaluated our algorithm using the

dataset of scheduling instances mentioned in this technical report [Tai93]

4.1 Dataset: Processing time generation

In the report [Tai93], they defined Flowshop Sequencing Problem as follows, The flow shop problems

are characterized by the processing times Pij of job j on machine i (1 ≤ i ≤ m, 1 ≤ j ≤ n) and

they have generated the values or dataset in following way by generating a random number: They

while i = 1tom do
while j = 1ton do

dij ← U [1, 99]
end

end

Algorithm 6: Generate processing time

created data sets using a uniform random number (1,99) for 5, 10 and 20 machines and from 20

to 500 jobs and computed the lower and upper bound of the makespan. We compared our result

against the data sets mentioned here. Moreover, some small data we created by ourselves for
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testing.

4.2 Parameter Setup

First, we did some parameter analysis for the ACO algorithm. We took the reference from Dorian

et al. [GC05] where they tried to introduce automatic learning of the optimal parameters for a

given TSP instance. We mostly followed the paper of Dorigo et al. [DMC96] where he mentioned

the interdependencies of parameters on the problem for the quick convergence to the best possible

solution. After getting inspired from the paper [SS13] We kept the parameter values as follows

α = 1, β = 3, ρ = 0.5, and Q=10.

4.3 Implementation of ACO for the Travelling Salesman Problem

Used the Ant Colony Optimization(ACO) meta-heuristics to implement the Np-hard Travelling

Salesman problem. We have followed the algorithm mentioned in [DBS06] and applied it in C++

which takes the Euclidean distance matrix as input. This is a fully connected graph, so salesman

can go to any city from his place but can not visit a city twice according to the definition of TSP.

This will give us a tour of the shortest distance or cost.

4.4 Result

As mentioned, We have used the reduction method to come up with a solution for the PFSP. We

have a black box that can solve the Travelling salesman problem in polynomial time. We are using

that known solution to address the unknown flowshop problem in polynomial time. For this, the

input of Flowshop problems needs to be transformed into the input of the Travelling Salesman

Problem. Moreover, for this, we have built a new distance matrix from the processing time matrix

using a different formula from the table 3.1

Jobs J1 J2 J3 J4 J5 J6 J7 J8 J9

M1 5 5 3 6 3 1 3 9 3

M2 4 4 2 4 4 4 1 5 4

M3 4 4 3 4 1 6 3 2 7

M4 3 6 3 2 5 4 2 6 5

M5 5 1 3 7 6 7 8 9 1

M6 6 3 5 2 3 4 4 3 2

Table 4.1: A schedule table for 6 machine and 9 jobs table
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To calculate the best and worst solution we have ran a Brute force algorithm. We have computed

all the possible orders and makespans for each of them. We found the order which has the minimum

and the maximum makespan. Then we have compared the result with our solution. Brute force is

not natural for more significant problems, So here we explaining our idea for the smaller problem

first.

For 7 jobs 4 machines

For the table in 3.2 where we have four machines and seven jobs, we first converted the input set

to another input set compatible for ACO algorithm using Stinson’s formula(1). The new input set

is shown in table 3.4. Then ran the ACO algorithm using this new distance matrix and we got the

result of the open TSP tour as follows 0, 3, 1, 5, 2, 4, 6 which is a permutation result for the flowshop

problem with a makespan of 44.

We will run the same algorithm now using Stinson’s distance formula 2. We got this open TSP

tour 0, 4, 2, 5, 1, 3, 6 which again a permutation for the flow shop problem with a makespan of 39.

Let us do the same experiment for Widmer formula as well now. Which gives a tour 0, 4, 6, 5, 1, 3, 2

and a makespan 39.

Now, we want to improve our result using the two-opt technique and our novel technique. We

know the current best makespan for this example is 39.

Figure 4.1: Solution 2, 3, 6, 0, 5, 1, 4 with the worst makespan = 46 for table 3.2

We also have the best and worst result in hand which we got after running the brute force

algorithm.

In figure 4.1, shows the worst solution which gives a order 2, 3, 6, 0, 5, 1, 4 and a makespan 46.
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Figure 4.2: Solution 4, 6, 5, 1, 0, 2, 3 with best makespan = 36 for table 3.2

Figure 4.3: Solution 1, 4, 0, 6, 3, 5, 2 with makespan = 36 for table 3.2

And in figure 4.2, shows the best solution which gives a order 4, 6, 5, 1, 0, 2, 3 and a makespan

36.

Our solution did not get the best solution, but it is pretty close to the best solution and quite

far from the worst solution.

We still have room for improvement. So, we will set current makespan as 39 and run some

iterations continuing with the two-opt technique to see if it is improving the makespan.

In each iteration, if we get a new order which is minimizing the makespan, we are saving that

order with the new makespan value. If it is not reducing, we are keeping the current solution.

The iteration number is a variable. We have tried increasing the iteration number until we get

a good solution which comes with a cost of computation. However, it certainly helped in improving

the solution.
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Figure 4.4: This is the solution with worst makespan for table 4.1

So, We have included the iteration value as part of our solution.

After running about 6000 iterations, We got a new order which gives us a makespan of 36 same

as the best solution. Figure 4.3 shows our solution.

There can be multiple solutions which give the best solution. So there is no definite solution.

For 9 jobs 6 machines

We compared our solution for another example of 9 jobs and six machines where we got a satisfactory

result again. For nine jobs we can have 362880 permutations. We generated all of them and found

one of the best solutions and one of the worst solutions shown respectively in figure 4.5 and 4.4

So our solution after improvement gave quite a satisfactory result in figure 4.6

4.5 Drawing of Makespan

We have drawn few makespans to make a clear understanding with visualization. Here we have

presented the worst and best solution as well for two examples.

For drawing the makespan figure, we used Pythons Plotly.

4.6 Deviation

Deviation formula is defined as follows:

deviation(%) = 100 ∗ (our soln− opt)/opt (4.1)
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Figure 4.5: This is the solution with best makespan for table 4.1

where, our soln = soln we got from our algorithm

Opt = solution that gives minimum makespan

Moreover, we can also say, for this particular example deviation(%) is also 0.

4.7 Result Analysis

For other examples of 20, 50, 100 200 jobs it was difficult to calculate the best and worst solution

result using brute force technique. So we for those examples we compared our result against the

lower and upper bound mentioned in the report. For this particular example sets, the optimal

results are reported as the upper bound [Tai93].

4.7.1 Smaller Dataset

We have classified our experiments for smaller datasets and bigger datasets. We are considering

following as smaller datasets:

• 20 jobs 5 machines: Optimal makespan: 1278

Stinson1: 0,1,14,5,4,17,6,19,3,9,13,15,8,7,18,12,11,10,2,16 makespan: 1514

Stinson2: 0,1,12,19,11,10,8,14,13,15,5,18,7,16,2,6,3,4,17,9 makespan: 1395

Widmer: 0,15,14,5,4,6,11,10,8,7,18,12,9,19,17,3,1,13,16,2 makespan: 1465

Improvement1: 8, 16, 9, 6, 3, 14, 10, 18, 5, 11, 12, 2, 1, 4, 19, 17, 0, 13, 15, 7 makespan:

1317
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Figure 4.6: This is the solution our algorithm has found for table 4.1

Improvement2: 1, 6, 15, 2, 3, 16, 17, 10, 13, 19, 4, 11, 5, 18, 7, 12, 14, 8, 0, 9 makespan:

1324

Deviation: 3%

• 20 jobs 10 machines: Optimal makespan: 1582

Stinson1: 0,5,18,4,2,16,6,1,8,12,11,9,10,13,7,19,17,3,14,15 makespan: 1907

Stinson2: 0,5,18,14,11,9,10,17,3,6,4,8,19,2,16,13,1,15,7,12 makespan: 2087

Widmer: 0,5,18,14,17,4,7,12,19,2,16,13,11,10,6,8,9,3,1,15 makespan: 1887

Improvement1: 2, 17, 13, 11, 14, 8, 3, 6, 1, 15, 7, 16, 19, 4, 0, 12, 5, 10, 9, 18 makespan:

1760

Improvement2: 5, 4, 0, 3, 9, 11, 17, 8, 13, 6, 1, 14, 10, 12, 15, 16, 2, 19, 7, 18 makespan:

1758

Deviation: 11%

• 20 jobs 20 machines: Optimal makespan: 2297

Stinson1: 0,12,7,6,8,1,2,14,13,9,19,3,16,10,11,18,17,4,5,15 makespan: 2762

Stinson2: 0,4,9,19,3,14,18,15,17,13,2,16,6,8,1,11,12,10,5,7 makespan: 2549

Widmer: 0,11,13,14,19,17,12,7,8,4,9,15,5,6,18,2,10,1,16,3 makespan: 2649

Improvement1: 1, 17, 4, 14, 2, 8, 11, 10, 3, 0, 19, 6, 13, 15, 7, 5, 16, 9, 12, 18 makespan:

2476
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Improvement2:17, 8, 3, 5, 9, 19, 16, 10, 2, 6, 14, 1, 7, 0, 11, 13, 18, 4, 12, 15 makespan:

2465

Deviation: 7%

• 50 jobs 5 machines: Optimal makespan: 2724

Stinson1: 0,31,49,39,12,46,27,24,42,7,41,15,13,47,19,11,36,35,8,1,10,20,

26,4,32,28,33,29,3,34,22,16,23,2,43,37,25,40,21,14,18,9,45,30,38,48,6,5,17,44 makespan: 3162

Stinson2: 0,31,49,2,12,46,15,34,22,30,38,48,9,23,39,41,18,16,45,25,21,24,

42,20,43,19,11,5,17,27,44,13,14,6,36,35,37,29,10,8,47,1,33,40,3,28,26,4,32,7 makespan: 2986

Widmer: 0,31,37,23,40,27,14,20,24,46,7,41,18,38,48,42,4,34,36,2,12,22,9,30,

29,10,21,32,19,1,33,3,28,15,43,47,16,11,5,35,39,13,44,6,45,25,17,49,26,8 makespan: 3113

Improvement1: 12, 48, 28, 5, 9, 3, 31, 33, 34, 26, 39, 22, 21, 23, 46, 49, 7, 37, 11, 4, 8, 18,

30, 32, 27, 38, 44, 35, 14, 17, 10, 47, 19, 41, 42, 0, 6, 40, 25, 15, 1, 16, 20, 2, 13, 29, 24, 45,

43, 36 makespan: 2855

Improvement2: 25, 36, 22, 5, 15, 13, 38, 45, 47, 0, 37, 35, 11, 7, 34, 32, 33, 4, 29, 1, 42, 19,

49, 24, 14, 2, 48, 8, 44, 23, 17, 40, 3, 39, 20, 21, 41, 28, 31, 9, 6, 30, 12, 16, 18, 46, 10, 43, 26,

27 makespan: 2856

Deviation: 7%

• 50 jobs 10 machines: Optimal makespan: 3025

Stinson1: 0,13,43,29,17,19,41,6,36,21,18,16,31,7,9,47,44,10,11,5,32,1,20,

40,8,27,34,28,39,22,46,15,3,2,35,25,24,37,45,48,23,49,26,30,14,4,12,33,42,38 makespan: 3657

Stinson2: 0,42,33,29,37,2,46,36,6,30,28,19,11,5,25,32,1,13,43,9,27,34,38,

47,26,48,10,3,7,22,8,12,40,49,15,18,45,35,39,14,20,44,21,17,31,41,4,16,24,23 makespan: 3558

Widmer: 0,19,28,33,26,6,49,27,34,43,3,7,22,24,23,30,1,17,11,5,25,13,29,18,

16,2,37,15,39,38,36,42,41,8,4,48,31,12,35,45,14,44,46,20,47,21,40,10,9,32 makespan: 3697

Improvement1: 15, 26, 22, 4, 5, 33, 37, 12, 27, 10, 29, 47, 39, 28, 36, 31, 21, 38, 41, 13, 1,

16, 44, 35, 3, 49, 11, 43, 46, 34, 9, 23, 14, 8, 30, 7, 32, 2, 0, 25, 6, 42, 45, 20, 48, 19, 17, 24,

40, 18 makespan: 3452

Improvement2:30, 24, 13, 48, 34, 1, 21, 4, 12, 46, 19, 7, 28, 6, 25, 42, 43, 3, 31, 17, 49, 27,

35, 14, 26, 36, 32, 0, 10, 5, 47, 44, 33, 22, 15, 16, 9, 45, 11, 38, 23, 37, 41, 18, 20, 39, 40, 8, 2,
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29 makespan: 3355

Deviation: 10%

• 50 jobs 20 machines: Optimal makespan: 3875

Stinson1: 0,23,29,9,37,32,7,30,45,5,38,34,20,26,42,8,44,41,28,3,48,14,18,

21,47,6,36,46,2,11,25,10,49,4,33,16,24,19,27,31,15,13,1,40,43,35,12,39,22,17 makespan: 4672

Stinson2: 0,15,12,3,8,29,23,14,43,13,37,45,2,44,7,30,38,46,34,4,16,49,48,

39,31,17,21,25,27,26,19,28,24,22,41,32,18,35,47,9,33,20,5,6,10,36,40,11,42,1 makespan: 4939

Widmer: 0,20,7,1,3,47,29,35,9,43,28,11,34,5,46,22,31,17,32,49,27,10,19,18,

45,38,39,12,36,4,25,8,21,40,42,33,16,2,15,23,48,41,26,37,6,14,44,30,24,13 makespan: 4809

Improvement1: 32, 49, 27, 2, 17, 7, 10, 29, 20, 5, 44, 19, 12, 13, 38, 40, 37, 18, 8, 46, 30,

16, 6, 39, 48, 4, 0, 9, 35, 3, 11, 23, 33, 25, 26, 34, 15, 41, 36, 47, 14, 24, 42, 22, 45, 28, 21, 31,

1, 43 makespan: 4481

Improvement2: 12, 9, 13, 4, 18, 41, 22, 24, 44, 48, 14, 29, 17, 0, 23, 36, 39, 21, 34, 16, 20,

15, 28, 25, 3, 31, 10, 32, 6, 8, 45, 42, 40, 37, 38, 26, 49, 1, 47, 46, 35, 30, 27, 33, 7, 5, 19, 2,

43, 11 makespan: 4506

Deviation: 15%

Id m n upperbound lowerbound our solution iteration

1 20 5 1278 1232 1424 20000

2 20 5 1359 1290 1504 20000

3 20 5 1081 1073 1313 20000

4 20 5 1293 1268 1552 20000

5 20 5 1236 1198 1390 20000

6 20 5 1195 1180 1381 20000

7 20 5 1239 1226 1347 20000

8 20 5 1206 1170 1451 20000

9 20 5 1230 1206 1396 20000

10 20 5 1108 1082 1326 20000

Table 4.2: Results for 5 machine and 20 jobs table

4.7.2 Larger Dataset

We have experimented against larger datasets as well in the following:
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Id m n upperbound lowerbound our solution iteration

1 50 10 3025 2907 3573 15000

2 50 10 2892 2821 3479 15000

3 50 10 2864 2801 3585 15000

4 50 10 3064 2968 3753 15000

5 50 10 2986 2908 3655 15000

6 50 10 3006 2941 3538 15000

7 50 10 3107 3062 3580 15000

8 50 10 3039 2959 3465 15000

9 50 10 2902 2795 3481 15000

10 50 10 3091 3046 3669 15000

Table 4.3: Results for 10 machine and 50 jobs table

• 100 jobs 5 machines: Optimal makespan: 5493

Stinson1: 0,92,73,66,27,20,96,7,33,94,45,4,98,89,24,88,78,47,1,15,65,60,

23,84,26,42,17,58,55,83,9,18,95,30,62,48,56,13,28,74,32,69,79,61,50,8,80,40,77

,2,86,22,90,5,63,12,43,97,37,36,75,68,52,29,49,6,91,53,64,71,46,35,11,19

,39,44,14,76,82,70,38,10,31,21,57,3,85,16,51,67,34,59,25,81,54,93,87,72,99,41 makespan: 5855

Stinson2: 0,61,15,65,60,82,70,92,18,58,55,83,9,19,39,44,77,2,4,64,71,95,

84,30,79,33,43,16,10,62,78,17,29,49,67,81,63,97,75,45,25,98,89,24,14,90,22,20,96

,32,91,54,86,59,42,47,1,94,76,34,52,31,11,87,3,85,7,12,6,13,41,21,37,36,8

,80,69,56,35,23,48,73,66,27,28,74,57,26,40,51,53,93,38,68,46,88,5,99,72,50 makespan: 5809

Widmer: 0,84,26,42,56,17,64,79,41,21,37,5,55,58,49,24,36,3,29,59,65,6,66,

27,90,50,75,63,7,44,12,67,86,89,54,82,70,92,73,13,28,74,32,33,60,81,9,38,

10,87,52,98,30,69,2,35,23,61,11,14,72,97,71,20,25,95,83,18,16,45,4,19,39,

94,76,1,15,78,46,93,31,48,40,88,22,47,8,91,80,85,99,43,34,57,77,53,68,96,51,62 makespan: 5911

Improvement1: 23, 95, 74, 30, 66, 94, 59, 89, 63, 44, 5, 70, 22, 60, 92, 83, 43, 57, 6, 19, 91,

98, 11, 62, 16, 42, 0, 52, 38, 45, 81, 10, 26, 56, 40, 86, 18, 87, 79, 55, 93, 64, 3, 36, 71, 53, 49,

65, 34, 41, 85, 35, 67, 90, 21, 13, 20, 2, 80, 69, 31, 7, 76, 47, 82, 61, 4, 51, 9, 39, 32, 15, 75,

37, 25, 27, 77, 99, 24, 88, 73, 96, 50, 46, 68, 12, 29, 28, 54, 8, 1, 97, 58, 33, 17, 78, 84, 48, 14,

72 makespan: 5657

Improvement2: 73, 31, 22, 37, 13, 99, 39, 33, 98, 27, 19, 1, 9, 4, 43, 62, 88, 61, 72, 26, 58,

24, 79, 21, 51, 97, 8, 84, 93, 96, 15, 94, 77, 11, 86, 95, 3, 81, 92, 75, 63, 28, 10, 66, 90, 29, 12,

64, 30, 2, 60, 76, 45, 70, 7, 32, 16, 5, 74, 23, 34, 47, 17, 18, 36, 65, 46, 69, 52, 67, 40, 38, 59,

48, 68, 41, 25, 91, 82, 80, 89, 87, 54, 55, 71, 35, 85, 49, 53, 83, 42, 6, 78, 14, 56, 20, 50, 57,
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44, 0 makespan: 5696

Deviation: 2.9%

• 100 jobs 10 machines: Optimal makespan: 5770

Stinson1: 0,31,48,10,33,44,17,77,45,3,2,91,18,52,29,58,64,92,15,6,99,25,

41,79,88,62,34,76,94,13,83,38,4,35,90,55,86,46,54,51,30,20,72,93,21,65,70,

87,69,27,98,53,61,47,73,32,26,96,22,24,14,39,28,75,85,8,71,11,36,59,95,68,

89,37,74,78,80,19,5,56,16,12,82,50,97,1,43,42,7,57,60,84,49,67,40,9,63,

66,23,81 makespan: 6830

Stinson2: 0,87,53,98,61,58,36,39,82,54,32,95,89,85,52,99,10,19,5,84,70,96,

18,29,25,11,35,76,48,80,40,49,20,14,77,73,88,42,63,90,66,38,30,41,62,12,

1,4,47,55,93,45,68,13,64,37,59,33,9,2,46,72,91,56,75,83,78,3,22,67,21,79,

60,34,31,65,86,51,44,17,16,27,24,23,97,28,7,50,43,69,92,94,57,26,8,71,6,

81,15,74 makespan: 6797

Widmer: 0,31,47,79,87,29,25,12,99,78,66,85,9,90,23,97,37,68,15,58,55,82,

46,30,40,44,48,77,2,65,7,10,33,76,19,28,13,49,5,6,59,95,96,54,81,14,39,73,

88,35,80,86,1,92,94,42,64,57,69,60,34,84,70,8,24,51,36,11,61,41,32,89,83,

38,3,22,26,27,98,50,72,18,53,71,20,56,93,21,67,45,52,74,75,17,62,91,4,43,

16,63 makespan: 6972

Improvement1: 9, 38, 5, 31, 53, 81, 87, 47, 26, 1, 96, 56, 69, 70, 63, 74, 54, 59, 68, 98, 36,

7, 11, 30, 24, 58, 43, 46, 78, 76, 95, 80, 3, 18, 48, 79, 88, 27, 19, 66, 10, 77, 92, 52, 6, 17, 8,

61, 15, 44, 50, 57, 29, 94, 4, 89, 93, 25, 2, 32, 39, 37, 97, 82, 34, 23, 71, 0, 41, 84, 22, 86, 75,

42, 62, 73, 67, 51, 64, 28, 83, 14, 99, 60, 16, 35, 55, 45, 33, 90, 91, 20, 85, 12, 72, 21, 65, 40,

13, 49 makespan: 6444

Improvement2: 98, 1, 16, 67, 27, 74, 36, 65, 86, 6, 60, 34, 35, 44, 24, 73, 88, 47, 59, 15, 54,

75, 66, 87, 10, 31, 99, 45, 95, 94, 41, 2, 70, 4, 30, 58, 22, 93, 28, 21, 64, 63, 55, 7, 40, 68, 78,

81, 11, 5, 79, 39, 14, 92, 90, 49, 91, 89, 84, 69, 9, 56, 25, 51, 62, 37, 42, 0, 18, 17, 48, 13, 71,

32, 43, 72, 8, 85, 20, 53, 33, 50, 3, 76, 57, 19, 26, 83, 52, 61, 23, 77, 97, 80, 38, 29, 82, 46, 96,

12 makespan: 6420

Deviation: 11%
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• 100 jobs 20 machines: Optimal makespan: 6286

Stinson1: 0,62,95,61,91,42,68,71,33,66,60,79,50,87,83,99,81,82,25,32,52,13

,73,74,14,70,45,17,57,53,8,38,16,75,43,2,31,86,89,40,6,56,10,55,80,30,41,

54,48,65,88,35,96,69,15,94,21,4,77,46,37,29,18,44,22,26,39,19,47,93,11,3,

28,72,7,24,97,49,84,23,9,27,1,12,98,59,85,5,36,64,76,51,58,67,90,63,20,92

,78,34 makespan: 7827

Stinson2: 0,84,73,79,38,2,59,14,18,16,20,46,7,34,31,47,51,40,13,85,19,4,

15,22,55,96,81,99,62,35,37,65,5,57,74,89,82,24,48,49,71,83,58,45,3,29,52,

54,90,66,53,77,88,44,17,42,12,60,30,32,92,1,6,76,98,25,72,10,64,39,68,75,

36,33,94,21,9,23,67,87,50,56,70,95,11,63,27,97,43,93,69,28,86,61,91,8,41,26,78,80 makespan: 7623

Widmer: 0,37,26,3,88,84,25,28,98,81,12,92,79,6,66,46,31,67,21,53,11,56,8,

50,54,19,39,91,43,69,17,61,44,24,51,22,75,90,60,96,4,38,59,64,57,86,74,18,

93,87,65,76,99,35,85,7,73,47,42,78,40,77,58,41,97,49,94,95,36,30,32,80,5,

2,52,70,9,10,89,15,34,72,82,48,83,14,16,33,62,45,27,68,20,63,29,55,13,23,

1,71 makespan: 7578

Improvement1: 51, 98, 87, 92, 37, 45, 76, 54, 3, 93, 96, 72, 69, 63, 90, 9, 6, 61, 70, 68, 65,

28, 19, 43, 12, 26, 46, 30, 4, 2, 57, 21, 48, 24, 80, 53, 50, 85, 34, 16, 75, 42, 95, 8, 13, 84, 36,

1, 64, 41, 67, 40, 27, 88, 33, 55, 25, 20, 32, 44, 66, 31, 74, 81, 83, 10, 56, 97, 29, 89, 73, 82,

62, 0, 60, 58, 7, 59, 15, 5, 91, 11, 94, 49, 71, 52, 79, 17, 78, 39, 14, 35, 47, 99, 77, 18, 86, 23,

38, 22 makespan: 7350

Improvement2: 56, 30, 12, 18, 0, 13, 32, 49, 26, 66, 3, 83, 2, 71, 46, 99, 38, 62, 20, 31, 9,

48, 39, 14, 50, 98, 40, 95, 37, 51, 85, 77, 92, 44, 41, 61, 75, 91, 78, 24, 52, 96, 15, 97, 17, 28,

16, 25, 5, 42, 72, 67, 10, 81, 68, 43, 11, 35, 90, 59, 73, 54, 23, 80, 45, 7, 33, 8, 79, 6, 34, 70,

93, 19, 76, 47, 65, 53, 55, 4, 60, 21, 29, 82, 88, 84, 36, 69, 1, 64, 22, 86, 94, 58, 74, 87, 63, 89,

57, 27 makespan: 7307

Deviation: 16%

• 200 jobs 10 machines: Optimal makespan: 10868

Stinson1: 0,36,63,141,40,171,149,53,150,55,143,10,28,58,110,39,96,5,159,3,1,109,

75,11,127,23,172,197,199,104,30,187,2,98,79,115,113,118,12,68,148,154,47,

184,4,182,151,166,35,139,91,84,189,95,133,114,49,44,144,176,169,34,60,100,51

,90,163,168,15,178,19,152,198,179,135,87,121,72,14,123,106,61,107,173,158
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,122,116,146,186,196,132,89,136,26,153,117,18,99,188,13,130,112,192,37,67

,41,105,170,175,17,162,33,128,64,167,20,165,25,73,62,190,161,81,50,71,16,

29,56,21,32,42,193,78,48,138,134,155,147,194,46,31,74,94,101,24,181,191,

77,197,120,88,80,69,65,119,76,83,164,66,45,8,70,145,140,103,157,108,9,59,

38,177,183,57,111,142,129,92,54,185,195,22,43,131,93,86,82,180,125,6,137,

7,160,124,126,52,102,27,85,156,174 makespan: 11933

Stinson2: 0,93,154,188,127,107,26,25,34,134,139,23,150,17,24,116,114,

163,103,3,112,140,125,19,152,39,110,71,196,136,6,32,137,173,9,53,7,83,4,165

,195,180,15,45,42,41,149,75,89,157,48,141,76,167,84,104,79,29,151,120,8,

146,124,81,121,40,74,12,10,55,18,67,14,187,147,132,28,33,175,153,156,186,143

,49,62,174,178,1,129,122,60,59,54,158,97,82,47,193,161,199,168,126,56,190

,182,64,66,99,30,11,170,113,198,179,177,94,117,164,90,108,185,138,51,160

,145,181,128,166,36,16,159,46,44,2,98,35,22,176,31,183,155,194,131,69,130

,184,96,68,171,133,169,101,21,192,37,13,115,106,105,100,85,191,73,52,91,63

,72,86,109,197,43,57,148,162,172,70,27,92,38,111,142,144,50,88,65,80,118,

61,78,102,5,119,189,95,20,58,77,87,135,123 makespan: 11956

Widmer: 0,36,63,141,40,171,149,53,150,55,143,10,28,58,110,39,96,5,159,3,

1,109,75,11,127,23,172,197,199,104,30,187,2,98,79,115,113,118,12,68,148,

154,47,184,4,182,151,166,35,139,91,84,189,95,133,114,49,44,144,176,169,34,

60,100,51,90,163,168,15,178,19,152,198,179,135,87,121,72,14,123,106,61,107

,173,158,122,116,146,186,196,132,89,136,26,153,117,18,99,188,13,130,112,

192,37,67,41,105,170,175,17,162,33,128,64,167,20,165,25,73,62,190,161,81,

50,71,16,29,56,21,32,42,193,78,48,138,134,155,147,194,46,31,74,94,101,24,

181,191,77,97,120,88,80,69,65,119,76,83,164,66,45,8,70,145,140,103,157,

108,9,59,38,177,183,57,111,142,129,92,54,185,195,22,43,131,93,86,82,180,125

,6,137,7,160,124,126,52,102,27,85,156,174 makespan: 11978

Improvement1: 139, 71, 100, 105, 158, 112, 89, 184, 103, 29, 42, 179, 185, 99, 169, 123,

142, 131, 38, 8, 159, 96, 28, 197, 176, 190, 156, 175, 93, 18, 69, 174, 48, 56, 122, 157, 59, 51,

41, 194, 78, 30, 104, 189, 66, 9, 47, 178, 3, 81, 192, 154, 61, 187, 94, 147, 17, 177, 115, 20, 53,

39, 162, 57, 12, 141, 180, 46, 173, 119, 153, 22, 5, 198, 6, 199, 37, 171, 25, 127, 172, 91, 121,

11, 102, 114, 150, 77, 40, 136, 14, 106, 191, 182, 23, 149, 82, 92, 167, 197, 76, 50, 101, 58, 95,

86, 168, 10, 111, 126, 16, 170, 151, 128, 73, 2, 132, 125, 4, 36, 67, 72, 135, 195, 124, 85, 140,
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196, 43, 15, 26, 90, 64, 79, 181, 60, 80, 74, 34, 133, 160, 130, 164, 108, 145, 88, 110, 32, 1, 75,

70, 63, 7, 116, 68, 186, 33, 163, 120, 134, 183, 31, 24, 113, 54, 84, 155, 65, 165, 49, 129, 35,

83, 27, 109, 188, 107, 146, 62, 138, 98, 143, 52, 45, 118, 161, 117, 21, 166, 137, 148, 13, 55,

87, 193, 0, 19, 44, 152, 144 makespan: 11605

Improvement2: 61, 121, 21, 119, 143, 139, 171, 120, 5, 113, 23, 157, 180, 25, 158, 118, 35,

18, 52, 29, 92, 70, 164, 98, 46, 115, 106, 124, 194, 66, 65, 166, 3, 7, 81, 159, 181, 184, 142,

151, 99, 32, 149, 48, 64, 56, 102, 132, 0, 104, 60, 150, 101, 36, 196, 8, 71, 43, 160, 153, 54,

199, 197, 74, 22, 162, 133, 161, 131, 127, 170, 37, 182, 31, 109, 197, 177, 55, 188, 147, 191,

192, 49, 111, 11, 40, 173, 62, 85, 90, 78, 77, 51, 145, 165, 75, 24, 30, 176, 73, 148, 84, 94, 189,

122, 42, 168, 186, 17, 190, 91, 167, 183, 79, 34, 134, 136, 114, 19, 88, 178, 110, 140, 146, 28,

107, 76, 1, 59, 112, 12, 69, 89, 135, 45, 128, 4, 10, 185, 33, 80, 14, 137, 96, 187, 154, 47, 39,

38, 50, 87, 156, 86, 117, 27, 95, 6, 16, 195, 93, 116, 2, 126, 67, 82, 44, 141, 26, 20, 9, 125, 169,

152, 15, 58, 163, 103, 193, 130, 41, 129, 53, 123, 198, 13, 63, 155, 83, 179, 175, 100, 72, 174,

105, 138, 144, 108, 172, 57, 68 makespan: 11724

Deviation: 6.7%

Id m n upperbound lowerbound our solution itertion

1 100 20 6286 5851 7545 10000

2 100 20 6241 6099 7544 10000

3 100 20 6329 6099 7759 10000

4 100 20 6306 6072 7568 10000

5 100 20 6377 6009 7461 10000

6 100 20 6437 6144 7612 10000

7 100 20 6346 5991 7491 10000

8 100 20 6481 6084 7723 10000

9 100 20 6358 5979 7679 10000

10 100 20 6465 6298 7969 10000

Table 4.4: Results for 20 machine and 100 jobs table
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Id m n upperbound lowerbound our solution itertion

1 200 20 11294 10979 13191 3000

2 200 20 11420 10947 13779 3000

3 200 20 11446 11150 13400 3000

4 200 20 11347 11127 13370 3000

5 200 20 11311 11132 13513 3000

6 200 20 11282 11085 13694 3000

7 200 20 11456 11194 13318 3000

8 200 20 11415 11126 13580 3000

9 200 20 11343 10965 13881 3000

10 200 20 11422 11122 13589 3000

Table 4.5: Results for 20 machines and 200 jobs table
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Chapter 5

Conclusion and Future work

In this thesis, we have proposed a combinatorial approach to evaluate PFSP by getting inspired

by the foraging behavior of ant. To the extent of our belief, nobody has ever approached the

procedure we followed here to solve PFSP. We have done a detailed analysis of parameter which is

important to have a better starting point. We introduced a new technique for the PFSP solution

improvement. It gave a satisfactory performance for larger input data with a very low deviation.

For smaller input set the solution is almost perfect.

5.1 Future Work

There can be many other directions to solve PFSP which we will try in future.

• Parameter tuning for ACO algorithm might improve the result.

• Applying ACO technique to PFSP without any reduction technique can be another approach

to explore.

• Applying Other methods, e.g., Simulated Annealing, Tabu Search, Genetic Algorithm, Path

Algorithms, Particle Swarm Optimization for improvement we will explore in future as well.
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