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Abstract

This thesis focuses on the task of trying to find a Neural Network that is best suited for identifying

vegetation from aerial imagery. The goal is to find a way to quickly classify items in an image as

highly likely to be vegetation(trees, grass, bushes and shrubs) and then interpolate that data and

use it to mark sections of an image as vegetation. This has practical applications as well. The main

motivation of this work came from the effort that our town takes in conserving water. By creating

an AI that can easily recognize plants, we can better monitor the impact they make on our water

resources.
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Chapter 1

Introduction

1.1 Motivation

Many states have limited amount of drinking water which becomes scarcer every year due to

changing climate and growth. To manage their water resources wisely they encourage their residents

to replace the grass on their lawns with xeriscaping. Thus, they pay the residents to take out the

grass which demands a great deal of water and replace it with gravel or desert plants demanding

very little watering, or no more watering than the rainfall. The amount of money paying the

residents to remove the grass and other water consuming vegetation is considerable often in the

order of tens of thousands of dollars. Often, property owners take out the grass, take the money,

and later on they change their mind or sell the property to another person and reseed the grass

on the property. In such a case the authorities must refund money back. In order to automate

the process of who maintains a lawn with grass and who does not, an unmanned aerial vehicle

with LIDAR could be used to automatically recognize grass loans and vegetation areas, as well as

xeriscaping for each address in a city. In this research paper we show the digital image processing

and AI algorithm used on LIDAR aerial imagery in order to classify a residence as having a grass

loan and vegetation, or having a certain percentage of vegetation, and the rest xeriscaping, or all

xeriscaping.

1.2 Objective

As mentioned in the motivation the main objective of this thesis is to figure out an accurate and

efficient way of identifying whether an aerial image contains vegetation.

In this thesis we propose a back propagation neural network whose task it is to work with a small
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subsection of an input image and provide a probability of that section containing vegetation. Once

each section’s probability is measured the image could be reconstructed and the square footage of

how much vegetation exists on the aerial image could be calculated.

The main advantages of this solution is the speed at which each section could be calculated. The

backpropogation neural network is simple and requires few calculation to classify each section. The

process itself could be completely parallelized since each section is independent from each other.

1.3 Outline

In the first chapter, we gave a brief overview of the problem and gave a quick summary for moti-

vation and objective of this thesis.

In the second chapter we will introduce the background to neural networks. Then we will discuss

their history, application and current research being conducted with them. We will delve deeper

into backpropagation and explain the basics of how the classification works. Lastly we will discuss

the limits of backpropogation and drawbacks to using them over other statistical approaches.

In the third chapter we will discuss the approach that was taken for the solution of the objective

of this thesis. Starting with gathering a large enough training set, figuring out the best structure of

the neural network and best values for its super parameters and the process of training the network

itself.

The fourth chapter is dedicated to the actual implementation of the neural network and will

discuss the results that it provided.

The fifth and final chapter is focused on talking about further improvements that could be done

to this research and will have a conlusion on the research done in this paper.

2



Chapter 2

Background and Literature Review

2.1 Four Band Imagery

Four band aerial imagery is commonly used in GIS applications. Generally band 1, 2, and 3 are

Red, Green, and Blue ”true color” values. The 4th band is part of the alpha channel and is generally

known as NIR (near infrared). It is commonly saved as a .tiff or .tif format. Neither tiff nor tif

formats have a real differences in format between them.

The pixel value is stored as a 32 bit integer. Where the first 8 bits are the Alpha channel, the

next 8 are Blue, followed by Green and finishing with Red. The below code sample shows how to

extract a band value of pixel given an input integer by using the logical and operator with 1111

1111 8 bit mask and shifting properly.

Figure 2.1: Structure of a pixel

public static int GetR(int pixel)

return (pixel & 0xff);

public static int GetG(int pixel)

return ((pixel >> 8) & 0xff);

3



public static int GetB(int pixel)

return ((pixel >> 16) & 0xff);

public static int GetA(int pixel)

return ((pixel >> 24) & 0xff);

2.2 Backpropagation Neural Networks

Back Propagation (BP) refers to a broad family of Artificial Neural Networks (ANN), whose ar-

chitecture consists of different interconnected layers. [1] The BP ANNs represents a kind of ANN,

whose learning algorithm is based on the Deepest-Descent technique. If provided with an appro-

priate number of Hidden units, they will also be able to minimize the error of nonlinear functions

of high complexity. [1]

A neural network consists of neurons. They are non-linear processing elements that will sum

the incoming signals in order to generate an output signal via a pre-defined non-linear function.

The neurons are connected by terms with variable weights. The output of one neuron multiplied

by a weight becomes the input of an adjacent neuron of the next layer. [2]

The neurons are arranged into sections called layers. A neural network will always have an

input layer and an output layer. In between the two layers there could be any number of middle

layers known as hidden layers.

The goal of training a neural network is to find weights that will result the minimization of

the error signal in the output layer. The most common form of machine learning is supervised

learning. Supervised learning consists of presenting an input vector into the network’s input layer.

The network’s output is calculated, and compared to the true value of the input layer. The error

between the two is then used in the adjustment of weights until the error reaches acceptable levels.

2.3 Neural Network Hyper Parameters

The equation below shows how to use steepest descent in order to calculate the network parameters

θ at step t. With back propagation, the goal is to use the previous θ at step t− 1 and subtract the

minimization of loss or error function L with respect to θ time the learning rate εt. A mini-batch

size B could be used to have multiple input vectors be part of an iteration.

θ(t) ← θ(t−1) − εt 1B
∑B(t+1)
t′=Bt+1

∂L(zt′ ,θ)
∂θ

4



With batch size of 1, the equation simple becomes:

θ(t) ← θ(t−1) − εt ∂L(zt′ ,θ)∂θ

Thus the hyper parameters of a ANN is the loss/error function L usually represented as

L = 1
2(yi − zi)2

where yi is the true value of the input and zi is the output generated by the ANN. The learning rate

εt governs the rate at which the model tries to converge, the mini-batch size measures the number

of input vectors used per iterations and the set T denotes the number of training set iterators used

in supervised learning.

2.4 Other methods of classification

An alternative to ANN are the Random Forest algorithms. They are both classification algorithms

and use supervised learning. A random forest is made out of many decision trees. Given an input

data the decision trees all evaluate and classify the data. After that the classification which occurred

the most wins out and is chosen by the forest as the correct one.

2.5 Literature Review

Artificial intelligence is a hot topic in the field of computer science. Technological leaders such as

Google, Amazon, Microsoft and Facebook are all investing heavily in building AIs that will give

them advantage in the market. Since the focus of this paper is on research done in classifying aerial

imagery, I chose to focus my research on topics similar to that nature.

2.5.1 Vehicle Detection in Aerial Imagery

Vehicle detection with orientation estimation in aerial images has received widespread interest as

it is important for intelligent traffic management. This is a challenging task, not only because of

the complex background and relatively small size of the target, but also the various orientations of

vehicles in aerial images captured from the top view.[3] The researchers chose to use a a feed-forward

convolutional neural network (CNN) named Oriented SSD (Single Shot MultiBox Detector, SSD).

[3]

The group chose to base their research on the VGG-16 convolution network proposed by Si-

monyan, K., Zisserman, A. in 2014. [4] Figure 2.2 shows the structure of the neural network’s

5



convolution. A 512 by 512 image goes through 5 VGG16 layers, after which additional detection

layers are added as layer 6 through 11. Figure 2.3 explains the architecture of the VGG16 lair.

The main difference between the work for aerial imagery detection is the method used in clas-

sification of the images. With vegetation having the benefit of multi-band imagery allows to use a

simpler form of a back propogation neural network, however since the researchers were only working

with basic three band images, a convolutional layer is needed for further accuracy in classification.[5]

A future research topic could be on combining the use of convolutional neural networks proposed

with the multi-band imagery in order to see if the accuracy of the results improves.

Figure 2.2: Proposed Convolutional Structure

Figure 2.3: VGG 16

6



Chapter 3

Method

The main objective of this thesis and the problem statement is to figure out an accurate and

efficient way of identifying whether an aerial image contains vegetation using a back propagation

neural network. This chapter will go over the methodologies used to solve this problem.

3.1 Gathering a Training Set

In order to create a back propagation neural network a training set is needed in order to allow the

neural network to make a proper classification. In order to achieve a high degree of accuracy said

test must be robust in size, diverse in its contents and simple to consume in training. The first

step in the process was to find aerial imagery that already had classified whether an object in it

was vegetation or not.

I turned to my colleagues at SNWA who collected 4 band 3 inch aerial imagery. Each image

file was roughly .5 to .75 GB in size, covering an area of 100s of square feet. The image needed to

be split up into numerous smaller sections (1000s per single photo). Each sub image would then

be classified using the 4th band of the image.

Since the 4th band would be used to train the network, the 4 band values could be mathemat-

ically transformed to have high infrared values stand out. The figures below show the differences

between true color, basic infrared and sharpened infrared image section.
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Figure 3.1: True Color
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Figure 3.2: Basic Infrared Tn
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Figure 3.3: 2 Standard deviation Td
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Figure 3.4: 1/2 Standard deviation Th
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Each image was split into 10x10 squares, each in need of identification of whether or not its

contains grass or not. The training sets were generated for every type of imagery. Covering basic

infrared, 2 standard deviation of infrared, and for 1/2 standard deviation of infrared.

The classification of the training set image varied on two parameters. One being how many

of the 100 pixels were counted as vegetation, second being what Threshold value of the infrared

channel would classify the pixel as vegetation. Each set had a total of 6 classifications shown below.

Classifcation Number Of Vegetation Pixels

0 0 0 0 0 1 0
0 0 0 0 1 0 1 to 20
0 0 0 1 0 0 21 to 40
0 0 1 0 0 0 41 to 60
0 1 0 0 0 0 61 to 80
1 0 0 0 0 0 81 to 100

Table 3.1: Training Classification

Each training set competed in the training of neural networks. The motivation was to figure

which training set will perform best with different neural network structures and super parameters.

Since the aerial imagery is updated every year, it would be important to retrain the neural network

to adjust to the possibility of a new camera or new resolution. Thus it is important to know what

infrared values are best used in order to classify a test set properly.

A single test set was created, spanning across all types of infrared in order to validate which

training set worked best. An item would only be added to the test set if it was classified the same

by each training set.

3.2 Result of Generating Training Sets

The table below shows the training sets generated from the three types of infrared images. Each

member of the vegetation set size, is one 10x10 image that has atleast 1 pixel that is marked by

the 4th band as vegetation. Non Vegetation set contains all images that do not have a single pixel

marked as vegetation by the 4th band.

In order to have a single test set, 7,200 10x10 sections that were classified the same in all three

training sets were removed out of them and added to a single test set below. The figure below

illustrates the relationship between the sets.

12



Name Deviation Vegetation Set Size Non Vegetation Set Size

Tn None 9,333 114,764
Td 2 11,271 113,826
Th .5 14,122 109,975

Table 3.2: Training sets

Name Vegetation Set Size Non Vegetation Set Size

Tt 3,208 3,992

Table 3.3: Test set

Tt

Th

Tn Td

Figure 3.5: Relationship between the four sets.

3.3 Neural Network Structure

The neural network structure used in the project was a simple 3 layer back propagation model.

The input layer would vary in two ways, one would contain 3 nodes per pixle of the section, the

other would contain only one. Each node would either signify the R, G, B values of the pixel or,

in case of a single neuron per input layer, would signify the fourth channel. Thus if the section

is 10x10 square, containing 100 pixels, a total of 300 input layer nodes would be used in neural

network 1, Nrgb and 100 input neurons for neural network two, Ni The number of hidden layer

neurons would vary, when trying to minimize the error. The output layer would always contain 6

neurons as mentioned above and would result in a vector [abcdef ] with all values between 0 and

1. The maximum of the vector would be treated as 1 and the rest of the values transformed to 0.

Figure 3.1 illustrates the basic structure of the network used below.
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Input #1

Input #2

Input #3

Input #N

Output #1

Output #N

Hidden
layer

Input
layer

Output
layer

Figure 3.6: Typical example of a neural network.

The reason for having two Neural Networks was to be able to identify vegetation with two

types of input. One first input type being the 4th band of the images, the other was the true color

RGB values. Nrgb, would be useful in situations where an image does not have a 4th band.

With the three training sets Tn, Td and Th, it is now important to identify which hyper parameters

would serve best for classification of vegetation of aerial imagery.

3.4 Choosing Hyper Parameters

The goal of selecting the proper hyper parameters is to come up with a neural network which gives

the smallest error over classifying the test set Tt. However since there were 3 training sets Tn, Td

and Th, it is important to train the constructed neural network independently with all training sets

and then compare the resulting errors.

As mentioned before, the size of each training image is 10x10, which resulted in 100 pixels

and required 300 input neurons for Nrgb and 100 inputs for Ni. After that the number of hidden

layers was varied between 5, 30 and 100. The activation function for each neuron would be either

the Sigmoid, hyperbolic tangent or the ReLU functions. The rate of change epsilont would vary

between 0.001 and 0.01. The batch size would remain at 1. The loss function used was the sum of

square error.

The initial value of the learning rate was 0.1, and the process was online learning meaning

that every sample from the learning set as it went through the neural network, starting from the

input layer, going through the hidden layer and then through the output layer, propagated the

error backwards adjusting the weights of the output layer and the hidden layer so that the total

14



error was reduced in every trial. If for one sample going through the total error increased then the

learning rate was reduced and the process restarted.[6]

The training first started with 200 samples for each classification for a total of 1200. 40 epochs

were used to further adjust the weights. The reason 40 epochs were used is that the error would

generally stop improving after 40 and would oscillate between two values. Future trials would see

an increase of samples to 400 per each classification all the way up to 2,400 samples selected from

every classification for a total of 14,400 samples.[6]

There were a total of 50 permutations of neural networks that were tested using these hyper

parameters, the table below shows results of the most successful hyper parameters for every hidden

layer count. The epsilont (learning rate) that allowed for the best convergence was 0.001. While

other epsilont were tested they were not able to converge as quickly as 0.001.

The figure below shows some of the performance for both networks, which training set was

used and which hyper parameters were shown. Accuracy is the percent of the testing set that was

classified correctly. The last two parameters are the networks that performed best and were used.
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NN Type Hidden Layer epsilont Test Set Size F(x) Tn accuracy Td accuracy Th accuracy

Nrgb 5 .01 1,200 RelU 81 83 78
Nrgb 5 .01 1,200 Sigmoid 80 83 79
Nrgb 5 .01 1,200 Tanh 81 83 78
Nrgb 30 .005 2,400 RelU 84 83 80
Nrgb 30 .005 2,400 Sigmoid 89 91 83
Nrgb 30 .005 2,400 Tanh 88 95 82
Nrgb 30 .005 6,000 RelU 89 93 98
Nrgb 30 .005 6,000 Sigmoid 91 90 90
Nrgb 30 .005 6,000 Tanh 90 92 88
Nrgb 100 .001 14,400 RelU 95 96 91
Nrgb 100 .001 14,400 Sigmoid 94 91 92
Nrgb 100 .001 14,400 Tanh 91 92 90

Ni 5 .01 1,200 RelU 74 71 78
Ni 5 .01 1,200 Sigmoid 71 76 70
Ni 5 .01 1,200 Tanh 77 78 70
Ni 30 .005 2,400 RelU 80 80 81
Ni 30 .005 2,400 Sigmoid 81 83 84
Ni 30 .005 2,400 Tanh 88 89 80
Ni 30 .005 6,000 RelU 81 82 78
Ni 30 .005 6,000 Sigmoid 84 84 82
Ni 30 .005 6,000 Tanh 81 83 82
Ni 100 .001 14,400 RelU 83 83 81
Ni 100 .001 14,400 Sigmoid 88 84 81
Ni 100 .001 14,400 Tanh 85 86 88

Ni 30 .001 14,400 Tanh 94 98 96
Nrgb 100 .001 14,400 Tanh 91 92 91

Table 3.4: Hyper parameters performance

3.5 Training Conclusion

The set that generally performed the best was the set Td. It shows that having a smaller variance

between the 4th band values in the image helps the selection of higher quality test samples, however,

if the variance is too small, like in the set Th, the test set does not perform well. Thus the set Th

seemed to have performed the worst. The activation F(x) Tanh performed best, slightly edging out

RelU, and the Ni neural network was able to reach 98 percent accuracy in identifying images using

the 4th infrared band, while the set Nrgb could only get to 92 percent accuracy. If the 4th band

is available, it would seem that simply using the infrared as input and ignoring the RGB values is

the optimal way to go.

16



Chapter 4

Applying the Neural Networks in

Practice

To apply the Nrgb neural network in practice a small program was implemented that would take

in an image, separate it into 10x10 section and then feed each section as the input into the neural

network. If the section was classified as vegetation by the network, it was colored purple, otherwise

it was left as is.

4.1 Implementation Tools

The implementation of the program relied on tools. The usage of these tools will be discussed in

this section.

4.1.1 Hardware and Operating System

All research was done on my personal computer. Below are its specifications:

Operating System Windows 10 Pro, 64 Bit
Processor Intel(R) Pentium(R) CPU G3258 @ 3.20GHz

RAM 8 GB
Graphics Card AMD Radeon R9 200 Series

Hard Disc 1TB

Table 4.1: Specifications
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4.1.2 Programming Language and IDE

All work for this project was done in Microsoft’s Visual Studio IDE by using the C# programming

language. C# allowed me to quickly build a windows form application that would bring the neural

network to practical use.

4.1.3 Neural Network Library

The C# Encog library was used to help with implementation of the neural networks. The library

is licensed under Apache License 2.0 and is has its source open for browsing on github. 1. It was

used mainly for the purpose of handling Input/Output of image data as it has a robust library

that deals well with all types of image data. A custom NeuralNetwork class and BackPropogation

trainer was written for the purposes of this paper.

4.1.4 Parallelization

Since each section of the image could be computed in parallel, majority of the program could be

considered perfectly parallel. Meaning a significant speed up will occur as more resources are added

to the machine.

4.2 Results

The neural network would create a vector [abcdef ]. The program started by marking all sections as

vegetation the vector indicated a result of between .9 and 1, showing all 10x10 section that would

have atleast 90 pixels classified as vegetation. After that it was expanded to mark all vegetation

that would have at least half its pixels classified as vegetation. Lastly the program simply marks

all sections have a non zero amount of vegetation. The below pictures show the results.

1https://github.com/encog/encog-dotnet-core
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Figure 4.1: True color image
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Figure 4.2: Between .9 and 1
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Figure 4.3: Between .5 and 1
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Figure 4.4: Not 0
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Chapter 5

Future Improvements and Possible

Research Topics

The neural network proposed in this thesis performed quite well however there could be future

improvements that could be part of a different research paper. The first part that could improve

the solution is having a better training set.

5.1 Better Training Set

Creating the training set required using a 4 band image where the first three bands were the

standard R, G, B bands with the 4th being an infrared band. The most advanced imagery can go

up to 8 bands, with Thermal, Shortwave/Longwave Infrared, Panchromatic, Cirrus bands. This

type of imagery, while hard to obtain, would provide a much more accurate training set for the

neural network and would allow higher accuracy in vegetation analysis.

5.2 Multiple Neural Networks

Another way to improve the accuracy of the solution is to research the impact of having multiple

neural networks working together on the same image. A neural network that is specifically training

to identify trees could complement a neural network that targets grass, while another neural network

that is trained to identify shrubs and bushes is focusing on its task. By having multiple neural

networks trained focused in on specific tasks, it may be possible to significantly improve the results

of identifying imagery.
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5.3 Conclusion

In conclusion, the research was able to successfully find a method of classifying vegetation in

aerial imagery. Using the multi-band aerial imagery it was possible to extract an accurate training

set. Using that training set numerous neural network structures were tested with different hyper

parameters and the most accurate one was selected. After that the neural network as used part of

a testing application that could be used to visually mark any vegetation provided aerial imagery.
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Appendix A

Source Code

1

2 using System;

3 using System.Collections.Generic;

4 using System.Linq;

5 using System.Text;

6 using System.Threading.Tasks;

7 using System.Drawing;

8 using System.IO;

9 using BitMiracle.LibTiff.Classic;

10 using System.Drawing.Imaging;

11

12 namespace Neural.Utilities

13 {

14 public class TiffConverter

15 {

16 public static int Split(string tiffFilePath , int splitPixelSize

= 100)

17 {

18 string fileName = Path.GetFileName(tiffFilePath).Replace(".

tif", "");

19 using (Tiff image = Tiff.Open(tiffFilePath , "r"))

20 {

21 // Find the width and height of the image
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22 FieldValue [] value = image.GetField(TiffTag.IMAGEWIDTH)

;

23 int width = value [0]. ToInt();

24

25 value = image.GetField(TiffTag.IMAGELENGTH);

26 int height = value [0]. ToInt();

27

28 int imageSize = height * width;

29 int[] raster = new int[imageSize ];

30 image.ReadRGBAImage(width , height , raster);

31 int total = imageSize / splitPixelSize;

32 int rowCount = 0;

33 int colCount = 0;

34 // Read the image into the memory width

35 while (2000 >= rowCount * colCount)

36 {

37 try

38 {

39

40 int counter = 0;

41 using (Bitmap bmp = new Bitmap(splitPixelSize ,

splitPixelSize))

42 {

43

44 for (int i = 0; i < bmp.Width; ++i)

45 for (int j = 0; j < bmp.Height; ++j)

46 {

47 int x = i + (colCount *

splitPixelSize);

48 int y = j + (rowCount *

splitPixelSize);

49

50 int offset = (height - y - 1) *

width + x;

51 int red = Tiff.GetA(raster[offset ])

;
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52 int green = Tiff.GetR(raster[offset

]);

53 int blue = Tiff.GetG(raster[offset

]);

54 if ((red > 160 && red < 200) && (

green > 80 && green < 120) && (

blue > 80 && blue < 120))

55 {

56 counter ++;

57 }

58

59 bmp.SetPixel(i, j, Color.FromArgb(

red , green , blue));

60 }

61 }

62 using (Bitmap bmp = new Bitmap(splitPixelSize ,

splitPixelSize))

63 {

64 for (int i = 0; i < bmp.Width; ++i)

65 for (int j = 0; j < bmp.Height; ++j)

66 {

67 int x = i + (colCount *

splitPixelSize);

68 int y = j + (rowCount *

splitPixelSize);

69

70 int offset = (height - y - 1) *

width + x;

71 int red = Tiff.GetR(raster[offset ])

;

72 int green = Tiff.GetG(raster[offset

]);

73 int blue = Tiff.GetB(raster[offset

]);

74 bmp.SetPixel(i, j, Color.FromArgb(

red , green , blue));

27



75 }

76 string path = @"D:\ Imagery\_Nothing";

77 if (counter > 5)

78 path = @"D:\ Imagery\_Vege";

79 else if (counter == 0)

80 path = @"D:\ Imagery\_Nothing";

81 else

82 continue;

83 path = System.IO.Path.Combine(path , String.

Format("{0}{1}x{2} _real.bmp", fileName ,

rowCount , colCount));

84 bmp.Save(path);

85 }

86

87 }

88 catch { }

89 finally

90 {

91 colCount ++;

92 if (colCount % 10 == 0)

93 {

94 colCount = 0;

95 rowCount ++;

96 }

97 }

98 }

99 return rowCount;

100 }

101 }

102 }

103 }

104 using Microsoft.VisualStudio.TestTools.UnitTesting;

105 using Neural.Utilities;

106 using System;

107 using System.Collections.Generic;

108 using System.IO;
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109 using System.Linq;

110 using System.Text;

111 using System.Threading.Tasks;

112

113 namespace NeuralNet.Test

114 {

115 [TestClass]

116 public class TiffConverterTest

117 {

118 [TestMethod]

119 public void TiffConverterTest_Split ()

120 {

121 string [] fileEntries = Directory.GetFiles(@"D:\ Imagery\");

122 int counter = 0;

123 foreach (var file in fileEntries)

124 {

125 if (file.Contains(".tif"))

126 {

127 counter ++;

128 if (counter > 100)

129 break;

130 var byteRay = TiffConverter.Split(file , 10);

131 }

132 }

133

134 }

135 }

136 }

137 namespace GrassIdentifier

138 {

139 partial class Form1

140 {

141 /// <summary >

142 /// Required designer variable.

143 /// </summary >

144 private System.ComponentModel.IContainer components = null;
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145

146 /// <summary >

147 /// Clean up any resources being used.

148 /// </summary >

149 /// <param name=" disposing">true if managed resources should be

disposed; otherwise , false.</param >

150 protected override void Dispose(bool disposing)

151 {

152 if (disposing && (components != null))

153 {

154 components.Dispose ();

155 }

156 base.Dispose(disposing);

157 }

158

159 #region Windows Form Designer generated code

160

161 /// <summary >

162 /// Required method for Designer support - do not modify

163 /// the contents of this method with the code editor.

164 /// </summary >

165 private void InitializeComponent ()

166 {

167 this.button1 = new System.Windows.Forms.Button ();

168 this.SuspendLayout ();

169 //

170 // button1

171 //

172 this.button1.Location = new System.Drawing.Point(33, 25);

173 this.button1.Name = "button1";

174 this.button1.Size = new System.Drawing.Size (135, 51);

175 this.button1.TabIndex = 0;

176 this.button1.Text = "OpenFile";

177 this.button1.UseVisualStyleBackColor = true;

178 this.button1.Click += new System.EventHandler(this.

button1_Click);

30



179 //

180 // Form1

181 //

182 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F

);

183 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.

Font;

184 this.ClientSize = new System.Drawing.Size (215, 100);

185 this.Controls.Add(this.button1);

186 this.Name = "Form1";

187 this.Text = "Form1";

188 this.ResumeLayout(false);

189

190 }

191

192 #endregion

193

194 private System.Windows.Forms.Button button1;

195 }

196 }

197 using System;

198 using System.Collections.Generic;

199 using System.ComponentModel;

200 using System.Data;

201 using System.Drawing;

202 using System.Linq;

203 using System.Text;

204 using System.Threading.Tasks;

205 using System.Windows.Forms;

206

207 namespace GrassIdentifier

208 {

209 public partial class NeuralForm : Form

210 {

211 public NeuralForm ()

212 {
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213 InitializeComponent ();

214 }

215

216 public Bitmap BitMap { get; internal set; }

217

218 private void NeuralForm_Load(object sender , EventArgs e)

219 {

220

221 this.Width = BitMap.Width;

222 this.Height = BitMap.Height;

223 pbOutPut.Image = BitMap;

224 }

225 }

226 }

227 namespace GrassIdentifier

228 {

229 partial class NeuralForm

230 {

231 /// <summary >

232 /// Required designer variable.

233 /// </summary >

234 private System.ComponentModel.IContainer components = null;

235

236 /// <summary >

237 /// Clean up any resources being used.

238 /// </summary >

239 /// <param name=" disposing">true if managed resources should be

disposed; otherwise , false.</param >

240 protected override void Dispose(bool disposing)

241 {

242 if (disposing && (components != null))

243 {

244 components.Dispose ();

245 }

246 base.Dispose(disposing);

247 }
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248

249 #region Windows Form Designer generated code

250

251 /// <summary >

252 /// Required method for Designer support - do not modify

253 /// the contents of this method with the code editor.

254 /// </summary >

255 private void InitializeComponent ()

256 {

257 this.pbOutPut = new System.Windows.Forms.PictureBox ();

258 (( System.ComponentModel.ISupportInitialize)(this.pbOutPut))

.BeginInit ();

259 this.SuspendLayout ();

260 //

261 // pbOutPut

262 //

263 this.pbOutPut.Location = new System.Drawing.Point(12, 12);

264 this.pbOutPut.Name = "pbOutPut";

265 this.pbOutPut.Size = new System.Drawing.Size (172, 69);

266 this.pbOutPut.SizeMode = System.Windows.Forms.

PictureBoxSizeMode.AutoSize;

267 this.pbOutPut.TabIndex = 0;

268 this.pbOutPut.TabStop = false;

269 //

270 // NeuralForm

271 //

272 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F

);

273 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.

Font;

274 this.ClientSize = new System.Drawing.Size (192, 89);

275 this.Controls.Add(this.pbOutPut);

276 this.Name = "NeuralForm";

277 this.Text = "NeuralForm";

278 this.Load += new System.EventHandler(this.NeuralForm_Load);
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279 (( System.ComponentModel.ISupportInitialize)(this.pbOutPut))

.EndInit ();

280 this.ResumeLayout(false);

281 this.PerformLayout ();

282

283 }

284

285 #endregion

286

287 private System.Windows.Forms.PictureBox pbOutPut;

288 }

289 }

290

291 namespace GrassIdentifier

292 {

293 public partial class Form1 : Form

294 {

295 public Form1 ()

296 {

297 InitializeComponent ();

298 }

299

300 public const string NETWORK_PATH = @"Resources\network_10.

parameters";

301 public const int SIZE = 10;

302 private void button1_Click(object sender , EventArgs e)

303 {

304 using (OpenFileDialog dlg = new OpenFileDialog ())

305 {

306 dlg.Title = "Open Image";

307 dlg.Filter = "Image files (*.bmp , *.jpg , *.jpeg , *.jpe ,

*.jfif , *.png) | *.bmp; *.jpg; *.jpeg; *.jpe; *.

jfif; *.png";

308

309 if (dlg.ShowDialog () == DialogResult.OK)

310 {
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311 var bitMap = new Bitmap(dlg.FileName);

312 NeuralForm n = new NeuralForm ();

313 n.BitMap = bitMap;

314 n.Show();

315

316 //

317 var network = new NeuralNetwork ();

318 FileInfo networkFile = new FileInfo(NETWORK_PATH);

319 if (System.IO.File.Exists(NETWORK_PATH))

320 network = (NeuralNetwork)(NeuralNetwork(

networkFile));

321

322

323 int hCounter = 0; int Wcounter = 0;

324 int hMax = bitMap.Height / SIZE;

325 int wMax = bitMap.Width / SIZE;

326 var outputBitmap = new Bitmap(bitMap.Width , bitMap.

Height);

327 while (hMax > hCounter)

328 {

329 Encog.ML.Data.Image.ImageMLDataSet testingSet =

new Encog.ML.Data.Image.ImageMLDataSet(new

Encog.Util.DownSample.RGBDownsample (), false

, 1, -1);

330 var _SizexSizebitmap = new Bitmap(SIZE , SIZE);

331

332 for (int i = 0; i < SIZE; i++)

333 {

334

335 for (int j = 0; j < SIZE; j++)

336 {

337 var px = bitMap.GetPixel(Wcounter *

SIZE + j, hCounter * SIZE + i);

338 _SizexSizebitmap.SetPixel(i, j, px);

339 }

340 }
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341

342 ImageMLData data = new ImageMLData(

_SizexSizebitmap);

343 testingSet.Add(data , null);

344 testingSet.Downsample(SIZE , SIZE);

345 bool isVege = false;

346

347 foreach (IMLDataPair pair in testingSet)

348 {

349 IMLData output = network.Compute(pair.Input

);

350 if (output [5] < output [0] ||

351 output [5] < output [1] ||

352 output [5] < output [2] ||

353 output [5] < output [3] ||

354 output [5] < output [4] ||)

355 isVege = true;

356 }

357 for (int i = 0; i < SIZE; i++)

358 {

359

360 for (int j = 0; j < SIZE; j++)

361 {

362

363 var px = _SizexSizebitmap.GetPixel(i, j

);

364 if (! isVege)

365 outputBitmap.SetPixel( Wcounter *

SIZE + j, hCounter * SIZE + i,

px);

366 else

367 outputBitmap.SetPixel( Wcounter *

SIZE + j, hCounter * SIZE + i,

Color.FromArgb(px.R , 0, px.B));

368 }

369 }
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370

371 Wcounter ++;

372 if (wMax <= Wcounter)

373 {

374 Wcounter = 0;

375 hCounter ++;

376 }

377

378 }

379

380

381 NeuralForm n2 = new NeuralForm ();

382 n2.BitMap = outputBitmap;

383 n2.Show();

384

385

386 }

387 }

388 }

389 }

390 }
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