
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2017

Non-blocking Priority Queue based on Skiplists with Relaxed Non-blocking Priority Queue based on Skiplists with Relaxed

Semantics Semantics

Ashok Adhikari
University of Nevada, Las Vegas, ashokadhikari42@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Adhikari, Ashok, "Non-blocking Priority Queue based on Skiplists with Relaxed Semantics" (2017). UNLV
Theses, Dissertations, Professional Papers, and Capstones. 2932.
https://digitalscholarship.unlv.edu/thesesdissertations/2932

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2932&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2932&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2932?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2932&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

NON-BLOCKING PRIORITY QUEUE BASED ON SKIPLISTS

WITH RELAXED SEMANTICS

by

Ashok Adhikari

Masters in Computer Science (MS in CS)

University of Nevada, Las Vegas

2017

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2017

c© Ashok Adhikari, 2017

All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

April 26, 2017

This thesis prepared by

Ashok Adhikari

entitled

Non-Blocking Priority Queue Based on Skiplists with Relaxed Semantics

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Ajoy K. Datta, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

John Minor, Ph.D.
Examination Committee Member

Yoohwan Kim, Ph.D.
Examination Committee Member

Venkatesan Muthukumar, Ph.D.
Graduate College Faculty Representative

Abstract

Priority queues are data structures that store information in an orderly fashion. They are of

tremendous importance because they are an integral part of many applications, like Dijkstras

shortest path algorithm, MST algorithms, priority schedulers, and so on.

Since priority queues by nature have high contention on the delete min operation, the design

of an efficient priority queue should involve an intelligent choice of the data structure as well as

relaxation bounds on the data structure. Lock-free data structures provide higher scalability as well

as progress guarantee than a lock-based data structure. That is another factor to be considered in

the priority queue design.

We present a relaxed non-blocking priority queue based on skiplists. We address all the design

issues mentioned above in our priority queue. Use of skiplists allows multiple threads to concur-

rently access different parts of the skiplist quickly, whereas relaxing the priority queue delete min

operation distributes contention over the skiplist instead of just at the front. Furthermore, a non-

blocking implementation guarantees that the system will make progress even when some process

fails.

Our priority queue is internally composed of several priority queues, one for each thread and

one shared priority queue common to all threads. Each thread selects the best value from its local

priority queue and the shared priority queue and returns the value. In case a thread is unable to

delete an item, it tries to spy items from other threads’ local priority queues.

We experimentally and theoretically show the correctness of our data structure. We also com-

pare the performance of our data structure with other variations like priority queues based on

coarse-grained skiplists for both relaxed and non-relaxed semantics.

iii

Acknowledgements

”I would like to express my sincerest gratitude to my thesis advisor, Dr. Ajoy K. Datta for his

continuous guidance, encouragement and support throughout my work. I would like to take this

opportunity to thank him for all the knowledge, both technical and non-technical, that he has

bestowed upon me during the course of my study at UNLV. I plan to carry all his teachings and

spread those to the world as I go.

I would also like to thank Dr. John Minor, Dr. Yoohwan Kim and Dr. Venkatesan Muthukumar

for allocating their precious time in reviewing my work and providing valuable comments. I am

grateful to have people of such stature in my thesis committee.

A special mention goes to my wife Mrs. Benju Koirala for her continuous support during my

thesis work and my life. I cannot imagine being where I am without her. I am also thankful to

my brother Mr. Ajit Adhikari and my sister Mrs. Ajita Adhikari. Both of them have been an

important part of my life.

I am also grateful to all my family and friends who helped me directly or indirectly during the

course of my thesis.

And finally, last but by no means the least, I would like to thank my mother Mrs. Ganga

Adhikari. Her life has always been an inspiration for me. Her unfaltering love and support is what

makes me want to move forward.”

Ashok Adhikari

University of Nevada, Las Vegas

May 2017

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Algorithms ix

Chapter 1 Introduction 1

1.1 Necessity of Multicore . 1

1.2 Necessity of Concurrent Data Structures . 2

1.3 Necessity of Non-blocking data structures . 2

1.4 Necessity of Relaxed data structures . 3

1.5 Why do we care about data structures so much? . 3

1.6 Contribution . 3

1.7 Outline . 4

Chapter 2 Background 5

2.1 Shared Memory System . 5

2.1.1 Uniform Memory Access (UMA) . 6

2.1.2 Non-Uniform Memory Access (NUMA) . 6

2.1.3 Cache-Only Memory Architecture (COMA) 6

2.2 Cache Coherence Protocol . 6

2.3 Atomic Primitives . 7

2.3.1 Compare and Swap (CAS) . 7

v

2.3.2 Test and Set (TAS) . 8

2.3.3 Fetch and Add (FAA) . 8

2.3.4 Load-Linked / Store-Conditional (LL/SC) . 8

2.4 Concurrent Data Structures . 9

2.5 Relaxed Data Structures . 10

2.6 Work Stealing and Work Spying . 10

2.7 Skiplists . 11

2.7.1 Predecessors and Successors . 11

Chapter 3 Literature Review 13

3.1 Lock based Concurrent Data Structures . 13

3.2 Lock-free / Wait-free Concurrent Data Structures . 15

3.3 Work Stealing / Work Spying Concurrent Data Structures 18

3.4 Relaxed Concurrent Data Structures . 18

3.5 Transactional Memory . 20

3.6 Skiplists / Priority Queues . 20

Chapter 4 Implementation 23

4.1 Sequential Skiplist . 23

4.1.1 insert . 23

4.1.2 delete . 24

4.1.3 find . 25

4.2 Distributed Priority Queue . 27

4.2.1 Item . 27

4.2.2 SkipNode . 28

4.2.3 insert . 28

4.2.4 delete-min . 29

4.2.5 spy . 31

4.2.6 find . 31

4.3 Shared Priority Queue . 33

4.3.1 Allowing Duplicates . 33

4.3.2 Relaxed find-min operation . 34

4.3.3 Delete-min operation . 37

vi

4.4 Combined Priority Queue . 37

4.4.1 Relaxation . 40

Chapter 5 Correctness 41

5.1 Distributed Priority Queue . 41

5.2 Shared Priority Queue . 42

5.3 Combined Priority Queue . 43

Chapter 6 Experimental Results 46

Chapter 7 Conclusion and Future Work 50

Bibliography 52

Curriculum Vitae 54

vii

List of Figures

2.1 Structure of a skiplist. 11

4.1 Insertion of node with key 5 in a skiplist. 25

4.2 Deletion of node with key 5 in a skiplist. 26

4.3 Representation of Items and SkipNodes in a distributed priority queue. 28

4.4 Thread 2 spying items from Thread 1. 32

4.5 (a) Logical deletion of a wrong element. (b) Pictorial representation of a SkipNode for

Shared Priority Queue. The bottom-right dot represents the taken flag for the item in

the SkipNode, while the dots attached with the references represent the mark of the

references. 34

6.1 Throughput for uniform workload. 47

6.2 Throughput for split workload. 48

6.3 Throughput for alternating workload. 49

viii

List of Algorithms

1 Possible implementation of CAS operation. 7

2 Possible implementation of TAS operation. 8

3 Possible implementation of FAA operation. 8

4 Possible representation of a SkipNode. 11

5 Implementation of insert operation on a sequential skiplist. 24

6 Implementation of delete operation on a sequential skiplist. 25

7 Implementation of find operation on a sequential skiplist. 26

8 Definition of an Item for distributed priority queue. 28

9 Definition of a SkipNode for distributed priority queue. 28

10 Implementation of insert operation on a distributed priority queue with shared pri-

ority queue as a parameter. 29

11 Implementation of delete min operation on a distributed priority queue. 30

12 Implementation of spy operation on a distributed priority queue. 31

13 Implementation of find operation on a distributed skiplist. 32

14 Implementation of relaxed find min operation on a shared priority queue. 36

15 Implementation of delete min operation on a shared priority queue. 37

16 Implementation of delete min operation on a combined priority queue. 39

ix

Chapter 1

Introduction

1.1 Necessity of Multicore

According to Moores law, the density of transistors that fit into an integrated circuit board expo-

nentially increases each year. Without overheating, the growing number of transistors cannot be

packed into the same space. What this implies is that we can no longer rely on hardware manu-

facturers to produce fast processors to make our computation more efficient. The luxury that we

had on increased speedup because of increased clock speed is now over. Hence, we must change

the way we approach problems. Instead of relying on a single fast processor to do the work for us

efficiently, we must approach the problem so that multiple processors can work on it simultane-

ously. Of course, there is an inherent complication in this approach because one must synchronize

all the different processors acting on it, but it is the only way out that we have. Without exploiting

multicores, it is practically not feasible to get more efficient computations.

To clarify the intent, lets look at this simple example:

Consider a simple program which takes as input a linked list of integers and outputs the sum of

all the elements present. Lets suppose there are n elements in the linked list. Suppose the processor

that we are using can iterate through the elements at a speed of m elements/unit time. If we only

use a single processor to do this task, then the best time we can finish the task would be n/m unit

time. Now if we throw more processors with the same speed at the problem, we can divide the

work such that each processor works on an equally divided part of the linked list, and then we can

do the job faster. For example, if we use two processors, such that the first processor works on the

first half of the list and the second processor works on the second half, then each processor will

take (n/2m) time unit. Hence, we can complete the task in half the time as compare to the time

1

taken by a single processor.

1.2 Necessity of Concurrent Data Structures

Although we used multiple processors to solve the task in the example presented in section (1.1),

the synchronization that we needed to implement it was very low. In fact, we had to do nothing

at all, apart from possibly waiting for all the processes to end, so that the main process can sum

up all the values they computed before returning to the caller. These types of problems are called

embarrassingly parallel problems. They are such problems where we do not have to take care of

synchronization; hence we can simply throw more processors at the problem, and we will get the

speedup. There is a catch here, however. If we throw so many processors such that the time taken

to manage all the processes takes longer, then it may affect or even reduce the speedup.

If the problem at hand is not embarrassingly parallel, then the problem is much more difficult.

Lets look at an example to clarify the intent. Consider a different problem than section (1.1.

Suppose we now have a set of tasks with priorities. The problem now is to execute all the tasks in

the priority queue only once, but with an added condition that the items executed must be ordered

on their priorities. At first glance, a solution might be to use a heap data structure and insert

all the tasks into the heap data structure first, before deleting and executing them. If we observe

carefully, this solution will only work if we use a single processor. On more than one processor,

we may execute a task more than once. One such scenario is when processor p1 and p2 both call

delete min simultaneously and read the value item1 as the item with the lowest priority and try

to execute it. This happens because p1 does not know that p2 was calling delete min concurrently.

Hence, we need to redesign sequential data structures to make them work in a concurrent

environment. These modified data structures are called concurrent data structures.

1.3 Necessity of Non-blocking data structures

There are several ways we can design a concurrent data structure. If we refer to the example

presented in section (1.2), we can use coarse-grained locks on the heap. What this means is that

we apply locks on every operation on the heap. Hence, each processor guarantees that it deletes

a unique item. However, there is a problem with this solution as well. Consider a scenario where

a thread holding a lock while calling delete min crashes. Now the whole program will halt as a

result. Hence, using locks to design parallel data structures, although it guarantees correctness,

2

cannot guarantee progress. We call such data structures blocking data structures. To get rid of

this problem, we need to design a data structure such that failure of a thread does not impact

the overall progress of the system. Such data structures are called non-blocking data structures.

There are several techniques for implementing non-blocking data structures. One thing common

to all non-blocking data structures is that they use some atomic primitives like compare-and-swap,

fetch-and-add, etc. to coordinate the processes, instead of locks.

1.4 Necessity of Relaxed data structures

Relaxing the semantics of a data structure allows the data structure to perform operations that

may not align with the sequential specifications. For example, consider a priority queue with

relaxation parameter k. Whenever a thread calls a delete min operation on the priority queue,

it is still considered correct if it returns the kth smallest item in the queue. Relaxing the data

structure reduces contention spots which occur because of concurrent access by multiple processes.

For example, for a priority queue implemented with either skiplists or log-structured merge trees,

the contention spot during delete min is distributed from the head of the list to the first k elements

in case of skiplists or the head of the first k blocks in case of log-structured merge trees. Relaxing

may not be an option when the requirements dictate higher ordering.

1.5 Why do we care about data structures so much?

Data structures define how we store and manage information in our system so that they can be

retrieved/manipulated efficiently. Data structures are present in almost every software system or

program. There are also many cases where a program or algorithm relies completely on a specific

data structure. For example, a breadth first traversal of a graph requires a queue data structure to

work correctly. Hence, data structures are of huge importance when it comes to solving problems

using computers.

1.6 Contribution

The main contribution of this thesis work is a non-blocking priority queue implementation. We

implemented the priority queue using skiplists and relaxed the delete min operation by a constant

k. What it means is that, whenever a thread calls a delete min operation, the priority queue can

delete any of k smallest elements from the queue. Further, the priority queue is internally composed

3

of several priority queues - one for each process and a shared priority queue common to all of them.

The shared priority queue has a higher ordering guarantee but higher contention, whereas the

local priority queues have lower contention but a lower ordering guarantee. So, by mixing the two

priority queues, and by altering values for relaxation constant k, we can get a priority queue with

relatively low contention and a good ordering guarantee. Further, we also guarantee local ordering

of items, which means that the order in which a thread inserts items into its local queue matches

the order in which it deletes them.

1.7 Outline

In Chapter 2, we will give a background on various terminologies in shared memory systems which

are required to understand the work presented. We discuss concurrent data structures and their

properties. We also give an insight into various priority queue implementations like heaps, skiplists,

etc.

In Chapter 3, we will present a literature review on the topic of concurrent data structures.

We will talk about the recent work being done in and around the topic. We will discuss various

blocking / non-blocking implementations of data structures like binary trees, heaps, tries, skiplists,

log-structured merge trees, etc. We will focus more on priority queues, however. We will look at

the current state of the art implementation of priority queues, analyze the data structures used

and the performance as claimed by the authors.

In Chapter 4, we will dive into the implementation of our priority queue. We will discuss the

high-level design of our algorithm as well as give pseudo-code for it. We will work through the

algorithm in detail as well as highlight cases where synchronization is tricky.

In Chapter 5, we will show that our priority queue is correct theoretically. For theoretical

correctness, we give proofs that our queue operations, i.e. insert and delete min, are lock-free.

For linearization, we only give the linearization points without proving them.

In Chapter 6, we compare the performance of our priority queue with other variations of priority

queues like priority queue based on coarse-grained locking, priority queue based on shared skiplist

and priority queue based on the combination of the two queues just mentioned.

In Chapter 7, we will give concluding remarks which include a summary of our work as well as

talk a bit about future enhancements.

4

Chapter 2

Background

Technology nowadays is shifting from using uni-processors to multicores. The shift is not just a

choice; it is a must. We can no longer expect processor manufacturers to produce processors with

higher clock speed. Processor manufacturers will soon, as Moores Law predicts, be unable to pack

more transistors into a single processor to increase speed without overheating. So, the only way to

gain efficiency is using multicores.

According to [Ven11], a multicore processor is typically a single processor which contains

several cores on a chip. Each core on a multicore consists of both a computational unit and a

cache. Together, the multiple cores combine to replicate the performance of a uni-processor. A

single core is not necessarily as potent as a single uniprocessor, but when multiple cores coordinate

and do the task in parallel, they can usually outperform a uni-processor. Now, the key to multicore

machines being faster than uni-processor machines can be understood by highlighting how the two

types of processors execute programs. In the case of a single processor, the processor would assign a

time-slice to each process sequentially. At any time, only one process will have the processor; hence

if a process takes longer to complete, then all other processes start lagging. However, this is not

the case in multicore systems. In multicore systems, each core is assigned multiple processes, hence

at a single instant, various processes can be executed in parallel, thus boosting the performance.

2.1 Shared Memory System

There are various ways in which different processors working on a problem can interact. One of

the methods is the use of shared memory.

Definition 2.1.1 Shared Memory: A memory that may be simultaneously accessed by multiple

5

programs with the intent to provide communication among themselves or avoid redundant copies.

A system that uses shared memory as a communication bridge for different processors is a

shared memory system. A shared memory system can be either of the following [ERAEB05]:

2.1.1 Uniform Memory Access (UMA)

If each shared memory location is equidistant from every processor, then such architecture is called

UMA. Here, the access time of a memory location is independent of the processor requesting it.

2.1.2 Non-Uniform Memory Access (NUMA)

In the case of non-uniform memory access architecture, the distance between memory locations and

processors may not be uniform. Hence, the memory access times for the same location by different

processors may be different.

2.1.3 Cache-Only Memory Architecture (COMA)

In the case of UMA and NUMA, local memories associated with each processor are the actual main

memory. However, in the case of COMA, local memories are used as cache. So for COMA, access

to a remote data by a processor may cause the complete data to migrate to its cache. Although

the migration of data reduces the number of redundant copies as compared to NUMA architecture,

it puts forward other coherence problems such as, how to find a data if it migrated to someones

cache, what strategy to apply if the local memory fills up, etc.

2.2 Cache Coherence Protocol

In shared memory systems, where each processor may have a separate cache, it is possible to have

multiple copies of the same data in multiple cache locations, i.e. one copy of the data in the main

memory and another copy in the local cache of each processor that requested the memory location.

Hence, whenever the data is updated, the change must propagate properly in all the copies. The

protocol that ensures this timely propagation of shared data in a timely fashion across the system

is called a cache coherence protocol.

Definition 2.2.1 Cache Coherence Protocol: A protocol that ensures a timely propagation of

shared data in a timely fashion across the system is called a cache coherence protocol.

6

There are various models and protocols for implementing cache coherence, some of which are

MSI, MESI, MOSI, Synapse, Berkeley, etc.

2.3 Atomic Primitives

Atomic instructions are such instructions that can temporarily impede CPU interrupts, such that

the currently running processor is not context switched. What this means is that, in the time frame

of an atomic instruction, only one processor is in charge. Atomic primitives are one of the building

blocks of non-blocking algorithms. In this section, we go through some of the most common and

widely available primitives.

2.3.1 Compare and Swap (CAS)

CAS atomically attempts to update the value of a variable with a new value, only if the variable

had an expected value stored in it. The following code clarifies the functionality of CAS:

Algorithm 1: Possible implementation of CAS operation.

Data: address, expected, newvalue
Result: boolean

1 if address == expected then
2 address = newvalue;
3 return true;

4 else
5 return false;
6 end

All the statements inside the function get executed in one atomic step. There are other flavors

of CAS which act on multiple addresses at the same time. Specifically, a CAS that acts on two

memory locations atomically is called Double Compare and Swap (DCAS). Use of such primitives

can help implement certain data structures such as dequeues [ADF+00] with relative ease, but it

is not always the case. The algorithms are as complex and error-prone as they would be when

implemented using just CAS. The reason such primitives are not in widespread use is that they

have slow performance. Further, they are not natively supported in any of the widespread CPUs

in production.

7

2.3.2 Test and Set (TAS)

TAS is an atomic instruction which writes 1 to the memory location specified and returns the old

value. All the steps are performed in one atomic step. Following is a possible implementation of

TAS:

Algorithm 2: Possible implementation of TAS operation.

Data: address
Result: boolean

1 initial = address;
2 address = true;
3 return initial ;

All the statements inside the function are executed in one atomic step.

2.3.3 Fetch and Add (FAA)

2.3.3 Fetch and add (FAA) Also, called get-and-increment, this instruction adds given value to the

contents of the memory location referenced. Following is its possible implementation:

Algorithm 3: Possible implementation of FAA operation.

Data: address, value
Result: old-value

1 initial = address;
2 address += value;
3 return initial ;

All statements inside the function are executed in one atomic step.

2.3.4 Load-Linked / Store-Conditional (LL/SC)

A load-linked instruction, given an address to a memory location, returns the contents of the

memory location. A store-conditional instruction comes paired with a load-linked instruction. If

the contents of the memory location have not changed since a load-linked, a store conditional will

store the new value to the new location and succeed. It will fail otherwise. An LL/SC pair is

stronger than a read followed by a CAS because the latter succeeds even if the memory locations

value has been changed and restored (ABA problem). LL/SC, however, will fail in this case.

8

2.4 Concurrent Data Structures

Like normal data structures, concurrent data structures’ purpose is to store and manage data such

that they can be efficiently accessed and manipulated. The main difference here is that they must

work with multiple threads, which may access the data simultaneously. As such, a concurrent data

structure must provide not just a safety property, as done by sequential versions, but also provide a

liveness property. A safety property ensures that something bad never happens, whereas a liveness

property ensures that something good keeps on happening.

A method is blocking if it causes some other thread, which has called the same method, to

block until the thread currently calling the method is done. As such, lock-based implementations

of concurrent data structures are blocking. Once a thread holds the lock on a method, other threads

wanting to execute the method must wait for the thread to finish its execution and release the lock.

There are two types of liveness properties associated with these sort of implementations:

Definition 2.4.1 Deadlock-freedom: An implementation is deadlock-free if some thread trying to

acquire the lock eventually succeeds.

Definition 2.4.2 Starvation-freedom: An implementation is starvation-free if every thread trying

to acquire the lock eventually succeeds.

In the case of non-blocking algorithms, liveness properties can be any of the following:

Definition 2.4.3 Lock-freedom: An implementation is lock-free if some thread eventually makes

progress.

Definition 2.4.4 Wait-freedom: An implementation is wait-free if all threads eventually make

progress.

Definition 2.4.5 Obstruction-freedom: An implementation is obstruction-free if some thread al-

lowed to run in isolation eventually makes progress.

To summarize, deadlock freedom and lock-freedom guarantee system-wide progress, whereas

starvation-freedom and wait-freedom guarantee per-thread progress.

There are various ways to analyze the correctness of a concurrent data structure. As described by

Herlihy and Shavit in [HS08], we can use the following consistency notions to verify the correctness

of a concurrent data structure:

9

Definition 2.4.6 Sequential Consistency: A system is sequentially consistent if the result of any

execution is the same as if the operations of all the processors were executed in some sequential

order, and the operations of each processor appear in this sequence in the order specified by its

program [Lam79].

Definition 2.4.7 Quiescent Consistency: An execution of a concurrent program is quiescently

consistent if the method calls can be correctly arranged retaining the mutual order of calls separated

by quiescence, a period where no method is being called in any thread.

Definition 2.4.8 Linearizability: An execution history (sequence of method invocations and re-

sponses) is linearizable if the invocations and responses can be reordered to yield a correct sequential

history, such that if a response preceded an invocation in the original history; it still precedes it in

the reordered sequential history.

2.5 Relaxed Data Structures

The semantics of a data structures are relaxed if some method calls in the data structure can

return values that may not necessarily be in order as mandated by the original data structure. For

example, a relaxed stack may pop an item that was not most recently added. For each relaxed data

structure, there is a parameter that defines the relaxation, generally called a relaxation constant.

This constant determines the bound that the operations can deviate from the normal behavior.

Continuing with the above example, a relaxed stack with relaxation constant, say 2, can pop the

last two recently added items.

2.6 Work Stealing and Work Spying

In multithreaded applications, where each processor is assigned a list of tasks, various schemes

define the behavior of a process when it runs out of its task list. One such technique is work-

stealing. In this scheme, whenever a processor runs out of its task list, it picks up a random

processor and moves some items to its local list and then executes them. Another scheme, which

is non-destructive i.e. it does not remove the items from the task list of the victim processor, is

called work-spying [WCV+13]. The only difference is that, in this scheme, the elements are just

copied to the local task list; they are not moved. Work-spying schemes are applied in cases where

local-ordering semantics need to be guaranteed.

10

2.7 Skiplists

Figure 2.1: Structure of a skiplist.

Skiplists [Pug90] are probabilistic data structures that allow efficient searching within an ordered

sequence of elements. A skiplist has two sentinel nodes: head and NIL. In between head and NIL,

all the elements of the skiplist are stored. Each node has a level that is randomly chosen during

its insertion. Some skiplists have a fixed maximum level defined, whereas other variants grow the

maximum level dynamically. The bottom layer of the skiplist is a sorted linked list (can be doubly

linked or singly linked). Each subsequent upper level serves as a shortcut into the lower level layer,

hence find/insert/erase operations can be performed much faster than in a simple linked list. To

search for an element in the skiplist, a thread traverses the skiplist from the maximum level. It

can be shown that at each level, almost half the elements are skipped over, with high probability,

hence the runtime for all the operations in the skiplist is, with high probability, O(log n).

A node of the skiplist consists of the key, value and an array of forward pointers that point to

other nodes in the skiplist. Following is a possible representation of a node in a skiplist:

Algorithm 4: Possible representation of a SkipNode.

Data: key
Data: value
Data: array of pointers to SkipNode

2.7.1 Predecessors and Successors

For each node, two arrays of pointers to nodes can be defined. One of them is predecessors, and

the other is successors. Both are crucial in the implementation of all the methods of the skiplist,

namely, find, insert, erase. For a node, ”predecessors” is the array of links that are incoming towards

the node, whereas ”successors” is the array of links that are outgoing from the node. To give an

11

example, in Fig. 2.1, the predecessor for node four would be [head, head, 2] and successor for it

would be [NIL, 6, 5]. There are three items in the array because the level of node 4 is 3.

12

Chapter 3

Literature Review

The need for concurrent data structure arises from the fact that current technology trend is switch-

ing towards multicore computers. Sequential data structures such as stacks, queues, linked list, etc.

do not work as they are in the concurrent environment. Since multiple processes may access the

same part of the data structure simultaneously, race conditions may arise. These conditions need

explicit addressing when designing such data structures.

Much research is being done in the area of concurrent data structures because they are at the

heart of every algorithm. In this section, we will go through some important works done in the

area in recent years.

3.1 Lock based Concurrent Data Structures

Locking is one of the widely used and simplest ways of creating a parallel data structure. If we just

put locks on all the operations of a sequential data structure [HS08], we typically get a concurrent

version of the data structure. For example, if we use locks for pops and pushes operations of

a stack, we will have a concurrent version of the stack which can work with multiple numbers

of processes safely. Although the concurrent version created this way produces correct results, it

cannot scale with increased number of threads. The reason is that only one process will be accessing

the data structure at a time, hence, rendering the data structure equivalent to a sequential one. A

workaround to this problem is a fine-grained locking scheme.

Herlihy and Shavit in [HS08] show a different version of concurrent linked list implementations.

They start off with a coarse-grained version as described above where they lock all the methods of

the linked list i.e. add, remove, find with the same lock variable. They then go on to describe a

13

finer grained lock whereby all the nodes in the linked list have an internal lock with them. Any

process trying to do an add has to lock the new node, its predecessor, and successor on the list.

Further, on remove, the process has to make sure it locks the node it is removing as well as the

successor node. The key here is that the locks acquired by the processes must be in order, i.e.,

if one of the processes starts acquiring locks from the beginning of the list while the other starts

from the end, then deadlock can occur. This technique of acquiring locks is called hand-over-hand

locking [HS08]. They also present another optimistic scheme of implementing the non-blocking list.

Here, instead of traversing the list by successively acquiring and releasing the locks on each node,

a process traverses the list without caring about the locks. Once it gets to the desired node, it

first validates that the node is present, and then only tries to acquire locks. One of the demerits

of this method is that contains needs to acquire locks, which is unattractive. They also present

another approach which lazily removes nodes from the list. The main concept here is that a deletion

operation has two steps: logical deletion and physical deletion. In logical deletion, a thread sets

a marked flag present in the node to true, meaning that it is no longer a member of the list. In

physical deletion, a thread shifts the node’s links to bypass the deleted node. They then move on

to show a non-blocking implementation of a linked list, which we will discuss in section (3.2).

Lotan and Shavit in [SL00] present a priority queue based on skiplist. Both insert and delete

operation on the priority queue use locks, but on a finer level. They use a similar technique of lazy

synchronization presented in [HS08]. Insertions move upward whereas deletions move downwards.

Upon insertion, a thread acquires locks only on the current level. As in lazy synchronization [HS08],

three locks need to be acquired to safely insert the new node: current node, predecessor node, and

successor node. Once a thread is done linking the new node at a level, it then moves upwards.

For deletion, which works top-bottom, a thread acquires locks on the node to be deleted and its

successor. Once done, it unlinks the node at that level. It then moves downwards until all the

levels are exhausted. Only when a node is unlinked from the bottom level, is it considered to be

not present in the skiplist. Now, the delete min operation simply traverses the bottom level list

of nodes and marks the first unmarked node as deleted. Then it uses the skiplist delete method to

remove the node from the data structure. Starvation is possible in this implementation, but it is

highly unlikely.

14

3.2 Lock-free / Wait-free Concurrent Data Structures

The necessity of non-blocking data structures arises from the fact that lock-based data structures

cannot guarantee progress when a thread holding a lock crashes. Much research has been done on

this very topic. Herlihy and Shavit present a non-blocking linked list in [HS08] where they use a

concept of AtomicMarkableReference. It is a combination of a boolean mark flag and a reference.

Setting of the mark flag and updating the reference can be done atomically. Languages like Java

provide library functionality for such variables, but in languages like C/C++ where we can do

pointer manipulations, we can simply use the last bit of the pointer as the mark bit. The necessity

of using AtomicMarkableReference arises from the fact that, a lookup followed by a CAS while

inserting on a linked list may cause lost inserts/deletes. The implementation technique follows

closely to Lazy Synchronization [HS08], the only difference being, links are updated using CAS on

AtomicMarkableReference, instead of using locks.

Crain et al. [CGR12] present a contention-friendly non-blocking skiplist that relies on CAS en-

sure non-blocking property. In the implementation, they divide insertions into two phases: abstract

modification, meaning insertion at the bottom level, and structural adaption, meaning updating

pointers at higher levels. Similarly, they divide deletions into two phases: logical deletion, meaning

marking of nodes, and physical deletion, meaning actual switching of links and garbage collection.

Links are switched using CAS during deletion. To avoid the lost update problem, they carry out

physical removal in two steps. First, the nodes value is CASed from null to itself; then only it is

deleted. Further, they mark the node’s next field. Now, other inserting threads ensure that no one

else has marked their prev and next nodes before doing the insertion operation. Instead of using a

separate ”marked” field for each node, the data structure uses null marker for logical deletion. A

thread nullifies a node’s value reference to delete the node logically. In the algorithm, structural

adaptation may happen only after many abstract modifications. Such delay in structural adapta-

tion hinders logarithmic time complexity of operations, but as it only happens under contention,

performance is not affected. Delaying structural adaptation has one interesting advantage. If a

deleted node is added again before structural adaptation happens, insertion can simply unmark the

logically deleted node to make it alive. Subsequent structural adaptation does not need to do work

on the node. One another interesting property of the skiplist is worth mentioning: a thread only

deletes the bottom level of any node while deleting it, it leaves the higher levels as they are. It is

only when the deleted nodes’ count reaches some threshold that the thread wipes out the bottom

15

level index list. Apart from this, there is no other mechanism to remove the index level nodes.

Liu et al. show an implementation of a non-blocking hash table [LZS14], which is both lock-

free and wait-free. The hash table they presented is resizable, dynamic and unbounded. They

use freezable set objects [LZS14] as building blocks of the hash table. To copy the keys from old

buckets of the hash table to the new one during the resize operation, each bucket is first frozen.

Freezing ensures that the logical state of a bucket stays the same during the transfer. They also

present a specific lock-free freezable set implementation using CAS. The wait-free version of the

implementation uses helping mechanism, which is similar to the doorway stage of Lamports Bakery

algorithm. An array is used to announce tasks. Each task is assigned a priority using a strictly

increasing counter variable. Once a task is assigned to the announce array, a thread scans the

announce array to see if there is any task with higher priority than the one it has. If it finds one,

it helps it first.

Jayanti and Tarjan present a non-blocking algorithm for disjoint set union [JT16]. They again

us CAS operation in the ”unite” operation when merging two trees to one. They also present

three different implementations of find method using three separate path compression techniques:

compression, splitting, and halving. Compression replaces the parent of every node on the path

by the root of the current tree; splitting replaces the parent of every node on the path by its

grandparent and halving does splitting on every other node on the path.

Ellen et al. present a non-blocking binary search tree in [EFHR14]. They start the paper

by showing their previous implementation of the same problem which had poor amortized time

complexity. There were three main problems with their previous implementation. Firstly, whenever

an update operation failed, search restarted from the beginning. Secondly, traversals may pass

through marked nodes multiple times because no helping mechanism was present. Thirdly, helping

was recursive, which was inefficient. In their new implementation, they address all the above

problems. Instead of starting from the root in case of failed update operation, each operation

backtracks up the tree, until it finds an unmarked node. For the second problem, each marked

node is helped first, ensuring they will not be traversed again unnecessarily. Finally, they omit the

recursive helping business, as it turns out that it is unnecessary. Every update on the tree nodes is

done atomically using CASes.

Kallimanis and Kanellou propose wait-free graph objects with dynamic traversals [KK16]. Their

main contribution is a graph model with addition and removal functionalities of any edge of the

graph, and atomic traversal of a part or the entirety of the graph. They also present a library called

16

Dense, which provides the functionalities mentioned above. The main idea behind the wait-free

implementation is the use of two arrays, namely done[] and ann[]. Each process announces its

operation to the announce array by marking its position in the array to true. Once a process

completes an operation, it marks its location in the done[] array by setting it to true. If done[p]

== ann[p], it implies that an operation by p has completed. Otherwise, it is pending. Each

process alternates between two phases AGREE and APPLY. In AGREE phase, processes detect pending

operations using the ann[] and done[] arrays, whereas, in APPLY phase, the pending operation is

carried out. The implementation uses LL/SC primitives.

Shafiei presents a non-blocking doubly-linked list in [Sha14]. In the algorithm, the list is accessed

using cursors. The data structure supports cursor movements like move-left and move-right. A

thread can traverse the list and land in the desired position to start updating the list by using a

cursor. An interesting technique given in the paper is the way helping is carried out. Each node

in the list has a descriptor field. If the descriptor for a node is null, it implies that no thread is

operating on the node. If a node has a descriptor attached to it, then we know that some thread is

working on the node. For example, if a node has a descriptor attached with information delete,

this means that some thread is trying to remove the node. Once some thread, while traversing the

list, finds that some node has a descriptor attached to it, it helps complete the nodes operation

first, before moving on. The implementation only uses CASes as atomic primitive.

Petrank and Timnath show an implementation of lock-free data structure iterators in [PT13].

Their main contribution is a technique for a wait-free iterator for both lock-free and wait-free

implementations of a set. To implement an iterator, they first obtain a consistent snapshot of the

data structure. At the heart of the algorithm is the snap-collector object. A snap-collector object

contains a list of node pointers and a list of reports. Whenever any process wants a snapshot,

it creates an iterator and calls its TakeSnapshot method. The TakeSnapshot method, in turn,

acquires a snap-collector object and then uses the object to capture snapshot by traversing the

graph and adding unmarked nodes on its way. Finally, the iterator reconstructs the snap-collector

data, and the process gets a consistent snapshot over which it can iterate. While a snapshot

collection is ongoing, and if another process requests a snapshot, then the same snap-collector

object is returned, instead of creating one. If no thread has currently allocated a snap-collector

object, then a new instance is created, and the reference to the object is stored in the iterator

atomically using CAS.

17

3.3 Work Stealing / Work Spying Concurrent Data Structures

Work stealing is a load balancing technique used in the context of multiple processes, where each

process maintains a local set of executable tasks. The owner takes items from its task list and

executes them. Once an owner is done with all of its tasks, to keep itself busy, it tries to steal tasks

from other processes task list. There has been much research going on in the field of work-stealing.

Many authors have published papers proposing various work-stealing algorithms, some of which we

will discuss in this section.

Michael et at. propose idempotent work stealing algorithm in [MVS09]. They present three

variations of their algorithm. First one is a LIFO work-stealing algorithm, where tasks are always

extracted from the tail of the queue and inserted from the head. The second implementation is a

FIFO work-stealing algorithm, where tasks are both inserted and extracted from the head of the

queue. Finally, the third algorithm is a double-ended work-stealing algorithm. In the algorithm,

owner thread extracts items from the tail of the queue, whereas the stealing threads extract items

from the head of the queue. The algorithm presented exploits the relaxed semantics of the problems:

the algorithm guarantees that each inserted task is extracted at least once. The algorithm works

correctly only in problems where the application ensures that each task is executed only once,

e.g. by a mechanism that checks the completion of a task before executing, or in problems where

repeated tasks are allowed. It turns out that the criteria mentioned above apply to most of the

problems. The authors try to minimize the use of atomic instructions to improve the performance

of the algorithms. Each thread has its local queue with put, take, steal and expand methods. Only

the owner is allowed to call put, take and expand methods; it is the thieves that call steal method

when they run out of their tasks. It is only the steal method in their algorithm that uses CAS. The

lower number of CASes is because their algorithm heavily relies on ordering writes.

Wimmer et al. provide another technique similar to work-stealing, called work spying [WCV+13].

Work spying is closely related to work stealing in that it copies tasks from the victim list instead of

moving them. This technique apart from simplifying synchronization helps maintain local ordering.

3.4 Relaxed Concurrent Data Structures

Relaxed data structures allow some deviation in the standard semantics of a data structure. For

example, a relaxed priority work-scheduler can return an item more than once and still be considered

correct; a relaxed stack can pop kth most recently pushed item and still be considered correct. The

18

motivation behind relaxing the semantics of a data structure is to make it more favorable for a

concurrent environment. Relaxation sometimes spreads contention spots, which otherwise would be

a single spot in the conventional data structure, and sometimes reduces synchronization overhead.

Research on how a data structure behaves under relaxation has been done these days [[WGTT15],

[WCV+13], [MVS09]] massively.

Michael et al. present a work-stealing algorithm [MVS09] exploiting relaxed semantics. In the

algorithm, every thread maintains its task list, which can be viewed by other threads to steal tasks.

A standard semantics of the problem would mandate that each item in the task list is extracted

only once, but in the implementation presented by the authors, they relax the semantics and allow

multiple extractions of the same item by different threads. Relaxation works because the program

using this algorithm can externally check for the completion of the work before executing it.

Alistarh et at. present a scalable relaxed priority queue based on skiplists called SprayList

[AKLS15]. The main idea behind SprayList is that delete min operation starts at a randomly

chosen height h, instead of traversing the bottom level list. It then moves forward skipping few

nodes. The number of nodes that it skips horizontally at a level is also determined randomly. Once

done, it then moves to a lower level and continues the above process, until it reaches the bottom

level. Upon reaching the bottom level, it checks to see if the node is available for deletion or not. If

it is, then the operation returns the value, and it completes; otherwise, it retries the Spray operation

just mentioned or becomes a clear thread and traverses the bottom level list linearly until it finds

an unmarked node. The algorithm hence relaxes the delete min operation to allow removal of first

O(plog3p) highest priority elements, where p is the number of processes concurrently accessing the

SkipList. The advantage of relaxing the delete min operation is that the algorithm spreads the

contention spot across the first O(plog3p) items and h levels instead of just the bottom level list

and its first item.

Wimmer et al. show a lock-free k-LSM relaxed priority queue in [WGTT15]. The priority

queue is composed up of two internal priority queues: one local to a thread, other global to all

threads. Each priority queue uses log-structured merge trees internally. In their implementation,

both the insert and delete operations are relaxed. For inserts, each thread can hold up to k-insert

operations, before that are made globally available. For delete min, it is allowed to return any of

k+1 smallest key visible to all threads.

Byrnes et al. propose a k-relaxed lateness queue implementation in [AB]. The queue is closely

related to a FIFO queue, but the dequeue operation is relaxed such that, it does not need to

19

remove the head for every dequeue operation, but it must delete it in no more than k dequeues.

Each process maintains the count of elements dequeued since the head was last dequeued. If the

count is less than a relaxation threshold, the dequeue operation takes a fast route and simply

returns an arbitrary available element in the local queue. On the other hand, if the number of

items dequeued since the dequeue of last head is greater than the relaxation threshold, then a slow

dequeue is called, where it dequeues the head, and resets the count to zero.

3.5 Transactional Memory

Transactional Memory (TM) allows atomic execution of any arbitrary operation. Transactional

memory has been a hot topic of research because the use of TM makes parallel programming

easier.

Timnat et al. describe a transactional memory interface in [THP15]. The interface provided

MCMS operation, an abbreviated form of Multiple Compare Multiple Swap. The operation is

atomic and different from MCAS (Multi-word Compare And Swap) only in that it allows addresses

to be compared without being swapped. The implementation of MCMS uses Hardware Transac-

tional Memory (HTM) whenever it is present in the system, but in case HTM is not present, which

is more common, it uses multiple CASes to do the job. The authors also present an implementa-

tion of two data structures namely, linked lists and binary search trees using the TM interface they

proposed, to show its correctness.

3.6 Skiplists / Priority Queues

Skiplists have gained popularity because they are easy to implement and are favorable for concurrent

accesses. They are a nice alternative to balanced binary search trees because they provide a

logarithmic time insertion, deletion and search functionalities.

Priority queues are another data structures that many problems including priority work-schedulers,

shortest path algorithms, minimum spanning tree algorithms, and so on use. As many algorithms

use them as a core data structure, researchers have focused on efficient implementation of priority

queues. Priority queues can be implemented using various data structures like: heap, sorted lists,

skiplists [[HS08], [LJ13], [SL00], [CMH14], [AKLS15]], log-structured merge trees [WGTT15], etc.

We now take a look at some priority queue implementations proposed by various authors in recent

years.

20

Wimmer et al. propose a priority queue based on log-structured merge trees [WGTT15] with

k-relaxed semantics. Their priority queue is internally composed up of multiple numbers of priority

queues. Each thread owns one priority queue each, called local priority queue. There is also another

priority queue that is visible to all the threads, called a shared priority queue. Both insert and

delete operations are relaxed. Upon a call to a delete min operation, a thread selects the best

result from its local queue and the shared queue before returning the value. If a thread finds out

that both its local queue and the shared queue are empty, then it tries to spy [WCV+13] items

from other threads local task list.

Alistarh et al. propose a scalable relaxed priority queue based on skiplists called SprayList

[AKLS15]. It also has relaxed semantics, meaning every delete min operation is allowed to remove

one of O(plog3p) highest priority elements in the list, where p is the number of processes currently

accessing the skiplist. The algorithm spreads the contention at the head of the skiplist by starting

a delete min operation at a randomly chosen height h. The thread then moves forward at a

particular level for a random number of nodes before descending one level. The thread continues

the above operation until it reaches the lowest level. Once at the lowest level, the thread tries to

delete the item. If it succeeds, the operation is complete, whereas if the operation is unsuccessful,

it either retries the whole operation or it turns to a cleaner thread, where it traverses the bottom

level list cleaning the marked nodes until it finds an unmarked node.

Calciu et al. present an adaptive priority queue with elimination and combining. The presented

data structure is composed up of three layers. An elimination layer is at the front of the data

structure. It serves the purpose of matching inserts and delete min operations. A dedicated

server thread collects the unmatched inserts and moves them into the second layer - the sequential

part. The sequential part consists of items with lower keys, and the concurrent threads do not

traverse it. However, it serves as a source of values to pending delete min operations in the

elimination layer. It is only when the sequential part exceeds in size by a predefined threshold, the

server thread merges it onto the third part - the parallel part. It is the parallel part where the

higher keys in the data structure are present. It is accessed by multiple threads and uses locks to

obtain synchronization.

Linden and Jonsson propose a priority queue based on skiplists [LJ13], with less memory con-

tention. One of the main technique described in this algorithm is the concept of batch deletions. A

thread performing a delete min operation only logically deletes a node; physical deletion is done

by another restructuring thread only when a threshold number of nodes are marked. The algorithm

21

proposed maintains two properties which are essential to the correctness of the algorithm. First,

each node maintains its deletion mark along with the ”reference” of its preceding node, and not the

node itself. This ensures that the deleted nodes form a prefix of the skiplist, hence a batch deletion

is possible. Second, the list contains at least one logically deleted node. An exception to this is

at the beginning when no one has yet deleted a node. This guarantee inserts to be correct. Since

nodes are not immediately physically removed from the skiplist, one can argue that it compromises

performance because threads must traverse marked nodes multiple times. However, this is not

the case, since reads are very cheap. It is instead the reads conflicting with concurrent physical

deletions that hinder the performance. As with non-blocking skiplist implementation in [HS08],

insertions move upwards, whereas deletions move downwards. The algorithm only uses CAS to

synchronize multiple threads. The restructure operation, which a thread calls when the number of

marked nodes in the skiplist crosses a threshold value, simply moves the head past all the marked

nodes to point to the first unmarked node, at each level. Since the deleted nodes are guaranteed

to form a prefix of the skiplist, this operation yields a correct result.

Wimmer et al. presented three different data structures for task-based priority scheduling in

[WCV+13]. The first one uses work-stealing scheme [WCV+13], where processes try to steal tasks

from other processes task list when they run out of tasks. The synchronization overhead needed

in this case is tiny because different processes only interact with each other only when they need

to steal tasks from others. The second one is a centralized k-priority data structure. The data

structure is shared by all the processes. Hence, it requires more synchronization overhead. The

priority queue offers global ordering of tasks on all the tasks present in the system. The ordering

problem of the work-stealing priority queue is solved by the centralized implementation but at the

cost of higher contention. Finally, the authors present a hybrid model of a priority queue, which

uses both work-stealing and centralized priority queue, to obtain a queue with a higher guarantee

and lower contention, which can again be controlled by a variable at runtime.

22

Chapter 4

Implementation

Skiplists [Pug90] were first described by W. Pugh. They are an alternative to balanced search

trees because they provide logarithmic time insertion, deletion and search operations, with high

probability. A skiplist is composed of a sorted linked list, which comprises the bottom level of the

list. Each subsequent upward level acts as a shortcut to the elements in the bottom level. We first

look at how various operations are carried out in a sequential skiplist.

4.1 Sequential Skiplist

4.1.1 insert

An insert operation expects a (key, value) pair as its input and adds an item with priority key

and information value to the skiplist. If an item with key key is already present in the list, the

operation updates the item’s value.

23

Algorithm 5: Implementation of insert operation on a sequential skiplist.

Data: key, value

Result: None

1 found, preds, succs = find(key);

2 if found then

3 succs[0].value = value;

4 return;

5 end

6 height = generate random height(MAXLEVEL);

7 new node = allocate new node(key, value, height);

8 foreach level from 0 to height-1 do

9 new node.forward[level] = preds.forward[level];

10 preds.forward[level] = new-node;

11 end

As shown in the listing (5), an insert first checks to see if any item with the same key is present

in the skiplist (line 2). If such an item exists, which is present in succs[0], it simply replaces its

value with new value value, and the operation returns. In case no item with key key is present

in the skiplist, it allocates a new node with given key, value and a randomly determined height

(lines 6-7). It then links the node to the skiplist using the preds values computed using the find

method (lines 8-10).

Fig. (4.1) illustrates the insertion of a node with key 5 on the skiplist. The dashed lines show

nodes that were unlinked during the insertion and the red lines show the newly added links.

4.1.2 delete

A delete operation expects key of the node to be deleted. If such an item with key key is present

in the skiplist, the operation removes it and returns true. Otherwise, the operation simply returns

false. As shown in the listing (6), the algorithm first calls a find operation to compute preds and

succs of the node with key key. If it is not present, there is nothing to delete; hence it returns

false (line 3). If such a node is present, which will reside in succs[0] (line 5), the operation

switches its forward references from its preds to its succs (lines 6-8).

24

Figure 4.1: Insertion of node with key 5 in a skiplist.

Algorithm 6: Implementation of delete operation on a sequential skiplist.

Data: key

Result: bool

1 found, preds, succs = find(key);

2 if !found then

3 return false;

4 end

5 node to delete = succs[0];

6 foreach level from 0 to node to delete.height-1 do

7 preds[level].forward[level] = node to delete.forward[level];

8 preds.forward[level] = new node;

9 end

Fig. (4.2) illustrates the deletion of a node with key 5 on the skiplist. The dashed lines show nodes

that were unlinked during the deletion and the red lines show the newly added links.

4.1.3 find

A find operation, given a key, computes the predecessor and successor values for a node with key

key. It returns true, if it successfully finds a node with key key. Otherwise, it returns false. The

operation starts at the MAXLEVEL of the skiplist. Until it finds a node with a key greater than key,

25

Figure 4.2: Deletion of node with key 5 in a skiplist.

it traverses the skiplist forward at the current level (lines 4-12). After that, it descends a level

and continues the same operation until it reaches the bottom level. The size of both preds and

succs arrays is equal to MAXHEIGHT of the skiplist. Listing (7) shows the details of a find operation.

Algorithm 7: Implementation of find operation on a sequential skiplist.

Data: key, preds, succs

Result: bool, preds, succs

1 level = MAXLEVEL - 1;

2 while level >= 0 do

3 cur = pred.forward[level];

4 while true do

5 if cur.key < key then

6 pred = cur;

7 cur = succ;

8 end

9 else

10 break;

11 end

12 end

13 preds[level] = pred;

14 succs[level] = cur;

15 end

16 return cur.key == key ;

26

Since skiplists store data in sorted order, they are naturally suited for implementing priority queues.

Further, as skiplists have multiple links to reach to the same node, multiple threads accessing the

list will incur lower contention. Hence, they are one of the popular choices [[WGTT15], [LJ13],

[SL00], [CMH14], [AKLS15]] for implementation of a priority queue. As skiplists are easy to

implement, provide logarithmic time insertion, deletion and search operations, and perform better

in a concurrent environment, we based all the priority queues on skiplists.

4.2 Distributed Priority Queue

Our distributed priority queue is internally composed of skiplists. Each thread that accesses the

priority queue gets an unshared local priority queue. Each thread inserts elements into its local

priority queue and deletes elements from the same queue unless it runs out of elements. Once

a thread runs out of elements in its local priority queue, it selects a random thread from the

available threads to spy. The main advantage of a distributed priority queue is that it has very low

synchronization overhead as well as low contention. The only synchronization needed is during the

spy operation, which we will discuss in section (4.2.5). The main disadvantage of using a distributed

priority queue is that we do not have any global ordering guarantees associated with it. Since a

priority queue is all about the removal of lowest priority elements, a distributed priority queue does

not serve the purpose if used solely. It, however, has a local ordering guarantee, i.e. the order

in which a thread inserts elements matches the order in which it removes them. Our distributed

priority queue is similar to the one proposed by Wimmer et al. in [WGTT15], but our main

contribution is that we use skiplists instead of log-structured merge trees in our implementation.

Before going through the operations of the distributed priority queue in detail, let’s revisit the

SkipNode structure (section (4)) as it requires a small change to work in a concurrent environment.

4.2.1 Item

We first define an item structure and wrap the key, value pair with it. We additionally add an

atomic boolean variable called taken in it. Since our implementation does not use locks, concurrent

threads try to set the boolean taken flag atomically to logically delete the item, and hence the

SkipNode.

27

Algorithm 8: Definition of an Item for distributed priority queue.

Data: key

Data: value

Data: atomic<bool> taken

4.2.2 SkipNode

A SkipNode is composed of an Item (listing (8)) and an array of pointers to other SkipNodes.

Listing (9) shows the definition of a SkipNode used in a distributed priority queue.

Algorithm 9: Definition of a SkipNode for distributed priority queue.

Data: pointer to an Item

Data: array of pointers to SkipNodes

It is also important to note that we maintain a separate list that contains all the items in a SkipList.

SkipNodes simply point to entries in the item list. Figure (4.3) illustrates the idea. A red colored

dot on the bottom-right represents a marked item, and hence a marked SkipNode.

Figure 4.3: Representation of Items and SkipNodes in a distributed priority queue.

4.2.3 insert

Since the distributed priority queue uses skiplists internally, a call to insert on the distributed

priority queue calls the underlying skiplist’s insert method. Listing (6) shows the details of the

implementation of an insert method on a distributed priority queue.

28

Algorithm 10: Implementation of insert operation on a distributed priority queue with

shared priority queue as a parameter.

Data: key, value, shared pq

Result: None

1 if shared pq != nullptr and local pq.size() > k then

2 shared pq.insert(key, value);

3 end

4 else

5 insert(key, value);

6 end

If a shared priority queue is provided as a parameter to the insert method, and if the size of the

local queue is greater than a threshold k, then the insert operation tries to insert the element into

the shared priority queue instead (lines 1-3). However, if no shared priority queue is provided to

the insert method, then the element is inserted into the local priority queue as shown in listing (5).

Since our priority queue allows keys with duplicate priorities, the check for whether an element

with the same key exists in the queue is not done, i.e. the insert method does not use lines 2-4 in

listing (5).

4.2.4 delete-min

A delete min operation only logically deletes the first node with an unmarked item in the bottom

level list. Physical deletion is left to a subsequent find method.

29

Algorithm 11: Implementation of delete min operation on a distributed priority queue.

Data: parent dist pq

Result: boolean, value

1 item = find min(value);

2 if item == nullptr then

3 if spy(parent dist pq) > 0 then

4 item = find min(value);

5 end

6 else

7 return false;

8 end

9 end

10 if item == nullptr then

11 return false

12 end

13 success = TAS(item.taken);

14 find(item.key, preds, succs);

15 return success

A delete min operation calls a find min operation internally. A find min operation starts at the

head of the skiplist and traverses the bottom level list until it finds a node with an unmarked item.

It returns the node without deleting it. If a find min operation fails to find an unmarked item, it

returns a nullptr. In this case, the delete min operation tries to spy on other threads and copy

their data onto its local queue. If the spy operation is successful, the delete min operation tries

find min one more time. If find min returns a nullptr again, then the operation returns false,

meaning it failed to delete an item. However, if an item is successfully peeked using find min, the

thread tries to set the node’s taken flag to true atomically. If it succeeds, the operation succeeds

and returns the value associated with the item; otherwise, the operation fails. The call to find min

in line 14 is an optimizing call. As a side-effect the find method will physically delete the node

from the skiplist.

30

4.2.5 spy

A spy operation, given a distributed priority queue, simply copies all the unmarked items from the

distributed queue’s item list to its local item list.

Algorithm 12: Implementation of spy operation on a distributed priority queue.

Data: dist pq

Result: int

1 victim = dist pq.get random victim();

2 count = 0;

3 foreach item in victim.task list do

4 if item and !item.taken then

5 insert(item);

6 count++;

7 end

8 end

9 return count

One should note that a spy operation does not copy items from the victim’s task list. The operation

simply points to the item in the victim’s task list. We, however, allocate a new SkipNode while

inserting a spied item to the local list. The SkipNode will have a reference to the spied item. As

depicted in Figure (4.4), the spy operation only considers unmarked items. One should note that

multiple threads can spy the same item, and the thread which successfully sets the taken flag to

true returns the value.

For space efficiency, we can allow threads to spy only up to k elements from the victim list

instead of all the available items.

4.2.6 find

A find method is similar to that of a sequential skiplist (listing (7)). The difference here is that,

whenever it finds a marked node on its way, it physically deletes them. Since the owner thread is

the only one who can delete nodes on the skiplist, the ABA problem does not occur.

31

Figure 4.4: Thread 2 spying items from Thread 1.

Algorithm 13: Implementation of find operation on a distributed skiplist.

Data: key, preds, succs

Result: bool, preds, succs

1 level = MAXLEVEL - 1;

2 while level >= 0 do

3 cur = pred.forward[level];

4 while true do

5 succ = cur.forward[level];

6 while cur.item.taken do

7 Physically delete cur, and move forward.

8 end

9 if cur.key < key then

10 Move forward i.e. pred=cur and cur=succ. Break the loop otherwise.

11 end

12 end

13 preds[level] = pred;

14 succs[level] = cur;

15 end

16 return cur.key == key ;

In listing (13), lines 6-11 implement the physical removal of a node found during traversal.

32

4.3 Shared Priority Queue

The main idea behind a shared priority queue is that it provides a strong guarantee on the global

ordering of the items deleted. As a result, it incurs higher contention. Our implementation of a

shared priority queue is based on the skiplist proposed by Herlihy and Shavit in [HS08], with few

changes. Some properties of the skiplist they proposed are as follows:

1. The skiplist is non-blocking and only uses CAS.

2. Insertion moves upwards while deletion moves downwards.

3. Deletion is done in two phases: logical deletion and physical deletion.

4. All forward references are AtomicMarkableReferences. A thread atomically marks the for-

ward references of a node at a level to delete it logically at that level.

5. The skiplist does not store elements with duplicate keys.

Following are the contributions that we made in our work:

1. We changed the skiplist to allow duplicates.

2. We built a relaxed priority queue on top of the skiplist implementation.

3. We changed the SkipNode structure so that it pictorially looks like the one in Figure (4.5)(b).

The figure shows a skipnode with item.key 2 and level 3. The bottom right red dot on a

skipnode indicates a marked item. A white dot instead would indicate an unmarked item.

This mark is used by a delete min operation to claim the node for deletion. The dots

connected with the forward references of the node which indicate the mark of the references,

however, is the concept borrowed from [HS08]. If the dot is red, then the reference is marked;

if the dot is white, the reference is unmarked.

In this section, we will only go through the changes that we proposed on top of the implemen-

tation given in [HS08].

4.3.1 Allowing Duplicates

To allow duplicates, we simply remove the check for whether a node exists in the skiplist or not

before doing an insertion. The deletion proposed in [HS08] however, needs a little more attention.

33

As proposed by Herlihy and Shavit [HS08], the delete operation first searches for a node with

the given key in the skiplist, then logically deletes it by marking all of its forward references. A

subsequent find call then deletes the node physically from the list. Figure (4.5) illustrates the

problem of this approach when duplicates are allowed. Consider a find-min operation traversing

the skiplist. Suppose it successfully marks the node with key 4 and level 2. Now, to prepare the

node for physical deletion, if we call delete(4), then as shown by the red arrow, the operation will

incorrectly choose the node with key 4 and level 3 and start marking its forward references. What

this means is that the delete physically removes the node with key 4 and level 3 without ever

returning it from the list. To remedy this problem, we change the signature of the delete operation

to take a SkipNode as its parameter. Hence, we do not need to do a search on the skiplist as we

already have the node to delete at hand. We then simply use the technique proposed by Herlihy

and Shavit in [WGTT15] to mark the forward references of the node and prepare it for physical

deletion.

Figure 4.5: (a) Logical deletion of a wrong element. (b) Pictorial representation of a SkipNode
for Shared Priority Queue. The bottom-right dot represents the taken flag for the item in the
SkipNode, while the dots attached with the references represent the mark of the references.

4.3.2 Relaxed find-min operation

A find min operation traverses the bottom level list and returns one of the first k unmarked el-

ements from the list. The details of the implementation is shown in listing (14). The algorithm

starts at the head of the skiplist. It chooses a random number num elements to skip in range (0,

k] (line 6). It then traverses the bottom level list until it skips num elements to skip number of

unmarked elements (lines 9-12). It then checks the mark of the element. If the element is marked,

it moves forward until it lands on an unmarked element. It then returns the node. In case the

34

algorithm cannot find a marked node before reaching NIL, it can mean two situations. First is that

the list does not have any unmarked elements. In this case, the value of skip count is 0, in which

case, the algorithm returns nullptr. In the second case, where skip count is greater than 0, it

means that the number of unmarked elements in the list is less than num elements to skip. Hence,

the algorithm now picks a random number in range (0, num elements to skip]. The algorithm

retries this procedure max retries number of times before failing and returning nullptr.

35

Algorithm 14: Implementation of relaxed find min operation on a shared priority queue.

Data: None

Result: min value, peeked node, item

1 skip count = k; // Relaxation constant

2 max attempt = 2;

3 bottom level = 0;

4 repeat

5 cur = head.forward[bottom level];

6 num elements to skip = random number in range [0, skip count);

7 skip count = 0;

8 while cur != NIL do

9 if skip count < num elements to skip then

10 cur = cur.forward[bottom level];

11 if !cur.item.taken then

12 skip count++;

13 end

14 end

15 else

16 if cur.item.taken then

17 cur = cur.forward[bottom level];

18 end

19 else

20 // Found an unmarked node.

21 peeked node = cur;

22 value = cur.item.value;

23 return value, peeked node, cur.item ;

24 end

25 end

26 end

27 return nullptr ;

28 until --max attempt > 0 and skip count > 0 ;

36

4.3.3 Delete-min operation

A delete min operation uses the find min operation to find an unmarked node in the skiplist. It

then uses TAS to atomically set the nodes item.taken flag to true. If it succeeds, it calls a delete

method on the skiplist with the skipnode returned by find min operation to mark the forward

references of the skipnode. If it fails, it retries the operation by calling the find min operation once

more. If it fails this time too, it gives up and returns false. Listing (15) shows the details of the

algorithm.

Algorithm 15: Implementation of delete min operation on a shared priority queue.

Data: None

Result: min value

1 min value, peeked node, item = find min();

2 if TAS(item.taken) succeeds then

3 return delete(peeked node)

4 end

5 else

6 // Retry once.

7 min value, peeked node, item = find min();

8 if delete(peeked node) succeeds then

9 return true ;

10 end

11 else

12 return false ;

13 end

14 end

4.4 Combined Priority Queue

The need for a combined priority queue arises from the fact that a distributed priority queue

has a low guarantee on the ordering of the elements but low contention on delete min and a

shared priority queue has a higher guarantee but low contention on delete min. By combining

the two priority queues, we can get an adjustable priority queue with relatively low contention

and relatively higher ordering guarantees. We define a constant k which determines the relaxation

37

threshold for our queue. The priority queue is composed of a shared queue common to all the

threads accessing the queue, and a separate local priority queue for each thread. The combined

priority queue provides two main functions: insert and delete min. An insert operation simply

calls the local distributed queue’s insert method with the shared queue as a parameter (listing (6)).

A delete min operation, however, tries to return the best value from both the queues. Listing (16)

shows the details of the algorithm. If the algorithm succeeds in peeking items from both its queues

it selects the best one from them. In case an element from the distributed queue is selected, then the

algorithm tries to set its item.taken to true atomically to delete it logically (lines 5-8). Otherwise,

if an element from the shared queue is selected, it first tries to set the item’s taken flag to true

atomically and then calls the shared queue’s delete method to mark the forward references of the

skipnode (lines 9-14). In case both the elements peeked are equal, the algorithm gives priority to

the local element (line 5). If however, the algorithm succeeds in peeking an element from only one

queue (lines 17-27), then it returns the element from that queue, but only if it succeeds in atomically

setting the item.taken flag to true and marking the forward references in case of shared queue.

Finally, if the algorithm finds that both the queues are empty, then it tries to spy elements from

other threads and retries the operation if spying succeeds.

38

Algorithm 16: Implementation of delete min operation on a combined priority queue.

Data: k

Result: min value, bool

1 repeat

2 dist value, dist item = dist pq.find min();

3 shared value, shared item, shared node = shared pq.find min();

4 if dist item and shared item then

5 if dist value <= shared value then

6 if TAS (dist item.taken) succeeds then

7 return dist value, true ;

8 end

9 else

10 if TAS (shared item.taken) succeeds then

11 bool success = shared pq.delete(shared node);

12 return shared value, success;

13 end

14 end

15 end

16 end

17 if dist item then

18 if TAS (dist item.taken) succeeds then

19 return dist value, true ;

20 end

21 end

22 if shared item then

23 if TAS (shared item.taken) succeeds then

24 bool success = shared pq.delete(shared node);

25 return shared value, success;

26 end

27 end

28 until dist pq.spy() > 0 ;

29 return None, false;

39

4.4.1 Relaxation

Since our combined priority queue is relaxed by a constant k, a delete min operation does not

necessarily remove an item with the lowest global priority. If there are N threads concurrently

accessing the priority queue, then our relaxation ensures that a call to a delete min removes any

of the first T*k elements from the queue. The reason is that a thread does not consider keys from

other threads’ local priority queue allowing it to skip a total of (N - 1)*k elements. Further, as

our shared queue is also relaxed by the same constant k, it can skip up to k elements from the

shared queue. Hence, the total number of elements that can be skipped is (N - 1)*k + k = N*k.

To give an example, if the relaxation constant k is 10, and the number of threads concurrently

accessing the queue N is 10, then the delete min operation can remove any of the first 100 smallest

elements from the queue.

40

Chapter 5

Correctness

In this section, we show that our proposed priority queues are lock-free and linearizable according

to our k relaxation semantics. We start by showing the correctness of our distributed priority queue

and then move on to the shared priority queue before moving to the combined priority queue.

5.1 Distributed Priority Queue

Correctness proofs for various operations on a distributed priority queue are as follows:

Lemma 5.1.1 The insert operation on a distributed queue is lock-free.

Proof: Since only one thread can insert elements into the distributed queue, it is trivially wait-free.

Lemma 5.1.2 The find min operation on a distributed queue is wait-free.

Proof: Since a find min operation only loops through the local skiplist and does not mark the

unmarked item found, it is not influenced by the operation of other threads. Hence, it is wait-free.

Lemma 5.1.3 The delete min operation on a distributed queue is lock-free.

Proof: A spying thread can mark an item returned by a find min operation, hence causing

the thread to call find min again, and restart the operation. This process can repeat an arbitrary

number of times, and the operation can fail. However, this means that other threads are successfully

marking the item and hence succeeding. This proves that a delete min operation is lock-free.

Lemma 5.1.4 The spy operation on a distributed queue is wait-free.

41

Proof: A spy operation simply iterates through the victim’s item list. It creates a new SkipNode

for each unmarked item in the victim’s task list. While copying, the spying thread does not try

to mark the item. Hence, multiple threads can spy the same element from a single victim and

succeed. Hence, there is no interference with a spy operation by the operations of other threads.

This concludes that the operation is wait-free.

Lemma 5.1.5 The insert operation on a distributed queue is linerizable.

Proof: The linearization point for an insert operation is when it physically links the bottom

level of the new element to the lowest level of the skiplist.

Lemma 5.1.6 The find min operation on a distributed queue is linearizable.

Proof: The linearization point for a successful find min operation is when a thread successfully

finds an unmarked element. In case of an unsuccessful find min operation, it linearizes at the point

when it reaches the skiplist’s NIL and returns a nullptr value.

Lemma 5.1.7 The delete min operation on a distributed queue is linearizable.

Proof: For a successful delete min operation, the linearization point is when a thread successfully

sets the item’s taken flag to true. In case of an unsuccessful delete min operation, the linearization

point is when it returns a nullptr value.

Lemma 5.1.8 The spy operation on a distributed queue is linearizable.

Proof: For a spy operation, the linearization point is when the spying thread completes iterating

the victim’s task list.

5.2 Shared Priority Queue

The shared skiplist which is used to implement our shared priority queue is lock-free and linearizable

[HS08]. In this section, we will only show proofs for the methods that we added on top of Herlihy

and Shavit’s skiplist [HS08].

Lemma 5.2.1 The find min operation on a shared queue is wait-free.

Proof: Since a find min operation just scans the bottom level list of the shared skiplist without

trying to mark an element, there is no interference by other threads in its operation. A thread

calling find min operation will traverse the bottom level list in search for an unmarked node for a

maximum of max attempt times. Hence, it is wait-free.

42

Lemma 5.2.2 The delete min operation on a shared queue is lock-free.

Proof: A delete min operation calls a delete operation on the node peeked by a find min

operation. Since the delete operation is lock-free [HS08], delete min operation is also lock-free.

Lemma 5.2.3 The find min operation on a shared queue is linearizable with k relaxation seman-

tics.

Proof: A find min operation first chooses a random number in the range [0, k). It then skips k

number of unmarked elements in the queue and starts finding an unmarked element. This means

a find min operation selects one of the first k unmarked elements, which is in accordance to the

k relaxation semantics. The linearization point for a successful find min operation is when the

thread finds an unmarked element. For an unsuccessful find min operation, the linearization point

is the point when it returns a nullptr.

Lemma 5.2.4 The delete min operation on a shared queue is lineriazable with k relaxation se-

mantics.

Proof: A delete min operation calls a find min operation to get an unmarked node in the skiplist.

It then calls the shared skiplist’s detele method to mark the node’s forward references. Since

both find min and delete operations are linerizable with k relaxation semantics, a delete min

operation is also linearizable with k relaxation semantics. The linearization point for a successful

delete min operation is when the underlying delete method successfully marks the bottom level

forward reference of the node being deleted. For an unsuccessful delete min operation, which

occurs as a result of failed TAS on the peeked item’s taken flag, the linearization point is where the

delete min operation returns false. A delete min can also fail as a result of a concurrent thread

trying to delete the same element. In case the competing thread succeeds in deleting the element,

the operation fails and the linearization point is the point when the succeeding thread succeeds in

marking the bottom level forward reference of the node being deleted.

5.3 Combined Priority Queue

We now show that the operations insert and delete min on a combined priority queue is lock-free

and linearizable with k relaxation semantics.

Lemma 5.3.1 The insert method on a combined priority queue is lock-free.

43

Proof: An insert method on a combined priority queue calls the distributed queue’s insert

method with the shared priority queue as a parameter. If the number of elements in the queue is

less than relaxation parameter k, then the element is inserted into the distributed priority queue,

which is wait-free. If, however, the number of elements in the combined queue is greater or equal

to k, then the element is inserted into the shared queue. As mentioned in section (5.2), the shared

priority queue is lock-free. Hence, an insert operation on a combined priority queue is also lock-

free.

Lemma 5.3.2 The delete min operaton on a combined priority queue is lock-free.

Proof: A delete min operation calls find min operation on both distributed queue and shared

queue. It then tries a TAS on the taken flag of the element with the lower key to claim it for deletion.

In this process, it can be beaten by other threads concurrently trying to mark the element, arbitrary

number of times. Although the thread is unable to make progress, it means that other threads are

making progress by marking the element. Hence, the operation is lock-free.

Lemma 5.3.3 The insert operation is linearizable according to k relaxation semantics.

Proof: An insert method can insert the new element in any of the two internal priority queues.

If the size of distributed queue is less that k, insertion is done in the local queue, which is wait-free

as shown in Lemma(5.1.1). If, however, the size of the distributed queue is greater or equal to

k, then the insertion is done in the shared queue, which is linearizable [HS08]. The linearization

point, in this case, is the point when the operation successfully links the bottom level of the new

node in the skiplist.

Lemma 5.3.4 The delete min operation is linearizable with k relaxation semantics.

Proof: A delete min operation can select an element from either the distributed queue or the

shared queue. In case an element from the distributed queue is selected, the operation linearizes

at the point where it successfully sets the peeked item’s taken flag to true. If it fails TAS on the

item’s taken flag, the operation fails, and the linearization point is where it returns false. In case

an element from the shared queue is selected, the linearization point for a successful operation is

when it marks the bottom level reference of the element in the shared skiplist. In case the operation

is unable to mark the peeked item, it fails, and the linearization for an unsuccessful delete min

operation is where it returns false. A delete operation on a shared queue can also fail as a result

of other threads concurrently trying to delete the element under consideration. In this case, the

44

operation fails, and the linearization point is the point where the successful thread succeeds in

deleting the element.

A delete min operation on a combined priority queue skips a total of (N - 1).k elements from

other threads’ local queues, where N is the number of threads. This is because k bounds the size

of the distributed priority queue. It can also skip up to k elements from the shared priority queue.

Hence, the operation can skip a total of Nk number of elements, which is the relaxation bound of

the algorithm.

The operation, however, fulfills the local ordering semantics. This is because, a thread checks

both the local queue and the shared queue, which may contain elements added by the given thread,

before deleting an element.

45

Chapter 6

Experimental Results

We base our performance on throughput i.e. the number of operations completed (insert and

delete min combined) within a certain timeframe. As in [GTW16], we prefill each priority queue

with 106 elements before starting the benchmark. We then measure the throughput for 10 seconds

and then finally report on the number of operations performed per second. The metric is similar

to the one proposed by Wimmer et al. in [GTW16].

The behavior of the throughput is controlled only by the workload parameter (currently).

Workload may be,

• uniform, meaning that each thread may execute roughly equal number of insert and

delete min, or,

• split, meaning that half the threads insert, while half of them delete, or,

• alternating, meaning that each thread alternates between insertions and deletions strictly.

Our benchmark uses 32 bit ascending integers as keys. What this means is that each next key

we feed the priority queue is one more than the previous one. The current benchmark only uses

integers, but we can easily extend it to use other data types like floats, doubles, or other custom

data types.

We use seven different queues for the benchmark.

• LockedPQ: A LockedPQ serves as a baseline for acceptable performance of a priority queue.

It is based on skiplist and coarse-grained locking.

• DistPQ: It is the priority queue proposed in section (4.2).

46

• SharedPQ32/32: It is the priority queue proposed in section (4.3). For benchmark purposes,

we relax the shared queue by k = 32.

• CombinedLockedPQ: A priority queue composed of LockedPQ and DistPQ. Each thread owns

a local DistPQ, and all of them share a global LockedPQ. This is also a relaxed priority queue.

A delete min operation can skip up to N −1∗k elements, where N is the number of threads

concurrently accessing the priority queue, and k is an upper bound on the size of each DistPQ.

• CombinedNBPQ32/32: It is the priority queue proposed in section (4.4) with k = 32.

• CombinedNBPQ128/128: It is the priority queue proposed in section (4.4) with k = 128.

• CombinedNBPQ4096/4096: It is the priority queue proposed in section (4.4) with k = 4096.

The queues were benchmarked on a Macbook Pro (3.1GHz Intel Core i7) with 8GB 1867 MHz

DDR3 RAM with 4 logical cores.

Figure 6.1: Throughput for uniform workload.

Figure (6.1) shows the throughput in Mops of various queues for uniform workload distribution.

As in the figure, the DistPQ has the highest Mops, which peaks to almost 2 Mops for four threads.

47

Since a DistPQ has low contention, it has higher throughput than others. The SharedPQ32/32 has

a relatively lower throughput than the DistPQ. It is because of the contention in it’s delete min

operation. A CombinedNBPQ32/32, which is the combination of a DistPQ and a SharedPQ32/32,

has a throughput somewhere between the above two queues. A combined priority queue is sensitive

to the relaxation parameter, the number of threads and the machine on which it is run. As depicted

in the figure, as we increase the relaxation parameter to 128 and 4096, the performance of the queue

deteriorates. This is partly because of the relaxed find min operation of the shared pq and the

spy operation of the dist pq. A relaxed find min tries to skip a random number of nodes between

0 and k even if an unmarked node is on its way and a dist pq spy operation tries to copy more

elements to the local queue as the relaxation parameter increases.

Figure 6.2: Throughput for split workload.

For split workload, as depicted in Figure (6.2), the scenario is a little different. Here, a

SharedPQ32/32 and a CombinedNBPQ32/32 show higher performance as the number of threads

increase. A DistPQ has a throughput lower than both SharedPQ32/32 and CombinedNBPQ32/32.

The reason behind this is again the spy operation. Since half the threads are inserting threads, the

items in their local queues can be deleted only by the deleting threads’ spy operation. The same

48

reason applies for the decreasing throughput with an increase in relaxation parameter k.

Figure 6.3: Throughput for alternating workload.

Finally, for alternating workload, as expected, a DistPQ has the highest throughput. As threads

have items in their local queues most of the time, the spy operation is minimized, hence increasing

the performance. A CombinedNBPQ32/32 shows a slightly higher throughput than a SharedPQ32/32

for alternating workload.

All the combined priority queue variations are well above the accepted performance given by

the LockedPQ.

49

Chapter 7

Conclusion and Future Work

We presented a non-blocking priority queue based on skiplists with relaxed semantics. Our priority

queue was internally composed of two priority queues with completely different characteristics.

One of them was a distributed priority queue, which had high throughput but a very low ordering

guarantee, while the other was a shared priority queue, which had a higher ordering guarantee,

but relatively lower throughput. By combining the two queues, we were able to get a queue with

higher throughput and good ordering guarantee, i.e., relaxed by k allowing it to remove any of N

* k lowest priority elements. We gave theoretical correctness for our algorithm, which proves that

our algorithm is lock-free and linearizable. We also benchmarked our priority queue with other

variations of priority queues like locked, shared, combined, distributed, etc. and showed that our

proposed queue performs as expected.

One of the places that needs improvement in the proposed algorithm is the relaxed find min

operation of the shared queue. Instead of choosing a random number in range [0, k) and then

doing a bottom-level walk skipping all the nodes (both marked and unmarked) on the way, we

could use a technique similar to the spray operation as described in [AKLS15]. Further, we could

replace the skiplist implementation by the one proposed in [LJ13]. One of the advantages of [LJ13]

is that it allows for batch deletions, hence making deletions super fast. The difficulty in using it

with our implementation, however, is that it is hard to construct a relaxed priority queue on top

of it.

Trying out the priority queue proposed with a mixture of various data structures instead of just

skiplists would be an interesting future work. One such example would be to use a heap in the

local queue implementation and a skiplist in the shared queue implementation.

Currently, our benchmarks only run on a machine with 4 logical cores. It would be interesting

50

to run the benchmarks on a more powerful machine with a higher number of logical cores and see

the results.

Another significant area to work on is the integration of a concurrent memory management

scheme. Implementing a memory management scheme and exposing the priority queue as a library

for public use would be another interesting future work.

51

Bibliography

[AB] Faculty Mentor: Jennifer Welch Alyssa Byrnes, Graduate Mentor: Edward Talmage.

Dreu research.

[ADF+00] Ole Agesen, David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite, Paul A.

Martin, Nir N. Shavit, and Guy L. Steele, Jr. Dcas-based concurrent deques. In

Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Ar-

chitectures, SPAA ’00, pages 137–146, New York, NY, USA, 2000. ACM.

[AKLS15] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist: A scalable

relaxed priority queue. SIGPLAN Not., 50(8):11–20, January 2015.

[CGR12] Tyler Crain, Vincent Gramoli, and Michel Raynal. Brief Announcement: A

Contention-Friendly, Non-blocking Skip List, pages 423–424. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2012.

[CMH14] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue

with elimination and combining. CoRR, abs/1408.1021, 2014.

[EFHR14] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amortized

complexity of non-blocking binary search trees. In Proceedings of the 2014 ACM

Symposium on Principles of Distributed Computing, PODC ’14, pages 332–340, New

York, NY, USA, 2014. ACM.

[ERAEB05] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced Computer Architecture and

Parallel Processing (Wiley Series on Parallel and Distributed Computing). Wiley-

Interscience, 2005.

[GTW16] Jakob Gruber, Jesper Larsson Träff, and Martin Wimmer. Benchmarking concur-

rent priority queues: Performance of k-lsm and related data structures. CoRR,

abs/1603.05047, 2016.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[JT16] Siddhartha V. Jayanti and Robert E. Tarjan. A randomized concurrent algorithm

for disjoint set union. In Proceedings of the 2016 ACM Symposium on Principles of

Distributed Computing, PODC ’16, pages 75–82, New York, NY, USA, 2016. ACM.

52

[KK16] Nikolaos D. Kallimanis and Eleni Kanellou. Wait-Free Concurrent Graph Objects

with Dynamic Traversals. In Emmanuelle Anceaume, Christian Cachin, and Maria

Potop-Butucaru, editors, 19th International Conference on Principles of Distributed

Systems (OPODIS 2015), volume 46 of Leibniz International Proceedings in Informat-

ics (LIPIcs), pages 1–17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes multi-

process programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

[LJ13] Jonatan Lindén and Bengt Jonsson. A skiplist-based concurrent priority queue with

minimal memory contention. In Proceedings of the 17th International Conference on

Principles of Distributed Systems - Volume 8304, OPODIS 2013, pages 206–220, New

York, NY, USA, 2013. Springer-Verlag New York, Inc.

[LZS14] Yujie Liu, Kunlong Zhang, and Michael Spear. Dynamic-sized nonblocking hash tables.

In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,

PODC ’14, pages 242–251, New York, NY, USA, 2014. ACM.

[MVS09] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work

stealing. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’09, pages 45–54, New York, NY, USA,

2009. ACM.

[PT13] Erez Petrank and Shahar Timnat. Lock-Free Data-Structure Iterators, pages 224–238.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[Pug90] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.

ACM, 33(6):668–676, June 1990.

[Sha14] Niloufar Shafiei. Non-blocking doubly-linked lists with good amortized complexity.

CoRR, abs/1408.1935, 2014.

[SL00] N. Shavit and I. Lotan. Skiplist-based concurrent priority queues. In Proceedings 14th

International Parallel and Distributed Processing Symposium. IPDPS 2000, pages 263–

268, 2000.

[THP15] Shahar Timnat, Maurice Herlihy, and Erez Petrank. A Practical Transactional Mem-

ory Interface, pages 387–401. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[Ven11] Balaji Venu. Multi-core processors - an overview. CoRR, abs/1110.3535, 2011.

[WCV+13] Martin Wimmer, Daniel Cederman, Francesco Versaci, Jesper Larsson Träff, and

Philippas Tsigas. Data structures for task-based priority scheduling. CoRR,

abs/1312.2501, 2013.

[WGTT15] Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas. The

lock-free k-lsm relaxed priority queue. CoRR, abs/1503.05698, 2015.

53

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Ashok Adhikari

Degrees:

Bachelor of Computer Engineering 2011

Tribhuwan University, Nepal

Thesis Title: Non-blocking Priority Queue based on Skiplists with relaxed semantics

Thesis Examination Committee:

Chairperson, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. John Minor, Ph.D.

Committee Member, Dr. Yoohwan Kim, Ph.D.

Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

54

	Non-blocking Priority Queue based on Skiplists with Relaxed Semantics
	Repository Citation

	tmp.1509640566.pdf.0joEh

