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(iii) 

Abstract 

A binary search tree (BST) is a fundamental data structure for maintaining data in a way to allow 

fast search. As multi-core processors are widely used nowadays, such data structures require the 

ability to handle concurrent accesses to exploit the concurrent hardware. There are several 

algorithms on lock-based as well as lock-free BST with and without self-balancing. On the other 

hand, only a few reports can be found on lock-based self-adjusting BST. To the best of our 

knowledge, there are no algorithms for lock-free self-adjusting BST. Lock-free guarantees 

overall progress even if some processes fail, whereas lock-based algorithms fail to progress in 

the case of a faulty process. In this study, a lock-free self-adjusting binary search tree is proposed 

using compare-and-swap (CAS) operations. The algorithm is based on lazy splaying which 

moves frequently accessed items near the root in a contention friendly manner. The algorithm 

will include search, delete, insert, and restructuring operations. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

Computers are used for many different purposes such as simulation, data monitoring, 

image processing, entertainment, record maintenance, controlling transactions etc. Furthermore, 

computers can be found everywhere such as cell phones, ATM machines, game consoles, cars 

and all other modern devices. A significant improvement of computational power made 

computer ubiquitous and is largely due to the increased density of transistors. Since the invention 

of an integrated circuits in 1958, the number of transistors on a single chip was doubling every 

year (Stalling, 2015) improving a clock speed of a computer. However, the pace of shrinking 

transistors is slowly decreasing, making manufactures consider a new technique to enhance 

computer performance such as a multicore processor instead of a single-core processor. In 2005, 

Intel introduced the first dual-core processors soon followed by AMD’s dual-core processors 

(Mueller, 2006). These days, a basic computer uses dual-core processors, and in some case 

processors with more than 20 cores are also available in the market. However, unlike a single-

core processor, a multicore processor causes challenges on developing software. Multicore 

system exploits parallelism. Multicores concurrently execute several threads in different cores 

and cooperatively solve a computational problem by communicating and synchronizing via a 

shared memory. However, modern computer systems can unexpectedly halt or delay their 

activities by interrupts, preemption, cache misses, failures and other events with different time 

scale (Herlihy and Shavit, 2008). In a single-core processor, the processor runs multiple 

processes concurrently by assigning a time-slice to each thread of processes resulting in 
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sequential execution of each process. On the other hand, in a multi-core processor, multiple 

threads are run simultaneously in each core. This results in interleaving steps of concurrently 

running threads, which allows running parallel processes in any order. Therefore, programming 

for multicore processors requires handling an asynchronous concurrent environment.   

The fundamental building block of programming and algorithms is data structures. In a 

multicore system, concurrently running threads access the data structure in a shared memory in 

any order, which can result in different and possibly unexpected outcomes. Therefore, data 

structures require the ability to handle concurrent access. Furthermore, small improvements in 

concurrent data structures can provide a large improvement in overall performance because of 

several threads accessing at the same time. Therefore, increased efficiency and scalability of 

concurrent data structures are crucial for better performance of computation.  

A simple way to build concurrent data structures for multicore processors from sequential 

data structures is to use a mutual exclusion lock. By locking a data structure whenever a thread is 

accessing the data structure, the other threads must wait until the thread accessing the data 

structure releases the lock. However, use of locks introduces high contentions and a sequential 

bottleneck affecting performance of computation. This problem can be eased by fine-grained 

locking which uses multiple locks to protect different parts of the data structure instead of 

blocking the entire data structure. However, lock-based implementation in asynchronous 

environments poses other issues. For instance, if a thread holding a lock fails, the entire program 

fails. Another example of problems is that the rest of the threads must wait unnecessarily longer 

if the thread holding a lock is halted.   

Unlike lock-based implementation, a non-blocking implementation provides a better 

progress condition. Even the weakest progress condition of a non-blocking implementation 
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guarantees progress of any threads that eventually execute in isolation. Therefore, non-blocking 

is desirable even though it is harder to implement correctly. 

There are several lock-based concurrent data structures such as queues, stacks, skiplists 

and binary search trees (BST) (Herlihy and Shavit, 2008). These data structures also have non-

blocking implementations as reported in Herlihy and Shavit (2008), Ellen et al. (2010) and 

several other papers. Among these data structures, BST is one of the fundamental data structures, 

which allows faster lookup, addition and deletion of items by maintaining an ordered map. There 

are popular variations of BST such as AVL tree, red-black tree and splay tree. AVL tree and red-

black tree are self-balancing BST which maintain balanced tree height. Splay tree is a self-

adjusting BST which moves frequently accessed items toward the root of a tree. A self-balancing 

concurrent BST has been implemented by both a lock-based algorithm (Bronson et al., 2010) and 

a lock-free algorithm (Brown et al., 2014). On the other hand, only lock-based algorithms can be 

found for self-balancing concurrent BST such as reported by Afek et al. (n.d.) and Afek et al. 

(2014).  

 

1.2 Objective 

Our objective in this study is to present a lock-free self-adjusting BST algorithm 

including basic BST operations, search, insert and remove. In order to reduce the sequential 

bottleneck, a lazy splay technique is selected as a self-adjusting BST. Furthermore, a contention 

friendly algorithm which runs restructuring operations in the background to avoid contention 

during traversal of a tree is considered to modify the algorithm of LST. Lock-free is designed 

using an atomic operation, the single-word compare-and-swap (CAS), which is compatible with 
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a wide range of systems, and flagging in a pointer, which helps to complete an ongoing operation 

by other threads. Correctness of the algorithm is also discussed in this study.   

  

1.3 Outline 

Basic background concepts and terminology required for this study are presented in 

Chapter 2 including characteristics of concurrent data structures and their implementations. 

Correctness conditions of concurrent data structures are also given in Chapter 2.  

Related work is reviewed in Chapter 3. Mainly, algorithms of BST and splay trees which 

are a variation of BST are discussed in this chapter. 

In Chapter 4, an algorithm for lock-free self-adjusting BST is presented. An overview 

and detailed description, including pseudo-code of the algorithm, are found in this chapter.  

Correctness of our algorithm is discussed in terms of non-blocking and linearization in 

Chapter 5. 

Finally, the work is summarized and possible future work to extend this study is 

presented in Chapter 6.  
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Chapter 2  

Basic Background Concepts 

 

This chapter explains some of the basic background concepts related to the study. Most 

of the information written in this chapter are summarized from books dealing with 

multiprocessors (Moir and Shavit, 2004; Herlihy and Shavit, 2008; Pacheco, 2011; Stallings, 

2015). 

 

2.1 Multicore Processors 

A multicore processor is an integrated circuit which has multiple processors on a single 

chip. A multicore processor may provide increased performance without increasing clock speed. 

However, improvement in performance depends on the effective use of the multicore by 

software. If parts of a program do not require any coordination, it can be easily executed in 

parallel and utilize multicore. Whereas the parts that require coordination affect performance and 

must be effectively programmed to run on a multicore processor.      

 

2.2 Shared Memory 

In a shared-memory system, cores share access to a memory. Multicore processors use a 

shared memory to coordinate to solve computational problems. Multicores concurrently execute 

several threads in different cores. Each thread is a sequential program and threads run at different 

speeds. Therefore, threads must communicate and synchronize to solve a problem. In order for 

threads to communicate, they read from and write to a data structure in a shared memory.   
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2.3 Concurrent Data Structures 

A data structure is a way to store and organize data so that data can be accessed and 

modified efficiently. Since multicores concurrently execute several threads in different cores at 

different speeds, concurrent data structures must handle multiple access and modifications of 

data at the same time. This can be achieved by synchronizing access to a shared data structure so 

that multiple access and modifications of data that cause bad interleaving operations are 

sequentially executed. There are two ways to implement synchronization, which are blocking 

and non-blocking.  

 

2.3.1 Blocking Scheme 

A simple implementation to synchronize access to a data structure is the use of locks. By 

locking a data structure, only one thread is allowed to access while other threads are blocked 

from accessing the data structure. Since access to a data structure is restricted to only one thread 

at a time, use of locks introduces high contentions and sequential bottlenecks affecting 

computation performance. This problem can be eased by fine-grained locking which uses 

multiple locks to protect different parts of the data structure instead of blocking the entire data 

structure. In order to efficiently implement blocking, concurrent data structures must provide 

enough blocking to maintain proper sequential execution while allowing concurrent operations to 

proceed in parallel.  

Even though fine-grained locking can deal with some issues, lock-based implementation 

in an asynchronous environment poses other challenges such as priority inversion, deadlock, and 

convoying. Priority inversion is when a lower-priority thread holding a lock can prevent a high-

priority thread to proceed. Deadlock occurs if a thread holding a lock fails. Convoying is when a 
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thread holding a lock is preempted causing the rest of the threads to wait unnecessarily long. A 

lock-based implementation is called blocking since the delay of any one thread can delay other 

threads.  

 

2.3.2 Non-blocking Scheme 

A non-blocking implementation can overcome problems associated with a blocking 

implementation. Unlike blocking implementations, a non-blocking implementation provides 

better progress conditions, namely wait-freedom, lock-freedom, and obstruction-freedom. Wait-

freedom guarantees every thread to progress regardless of other threads. Lock-freedom 

guarantees system-wide progress even if individual threads may not progress. Obstruction-

freedom guarantees any threads that eventually execute in isolation to progress. Wait-freedom is 

the strongest progress condition and obstruction-freedom is the weakest progress condition 

among these three conditions. All three conditions assure that failure or indefinite delay of a 

thread does not prevent other threads to progress, which blocking implementation does not 

assure.  

Non-blocking can be implemented using hardware synchronization primitives such as 

CAS.  

 

2.4 Compare-and-Swap (CAS) 

Modern multicore processors provide hardware to support synchronizations. These are 

called hardware synchronization primitives which assure that read and modify instructions are 

executed atomically. In other words, read and modify memory locations are executed as one step 

without any interruptions. The CAS is one type of hardware synchronization primitive and is 

commonly used for non-blocking implementations since it is compatible with a wide range of 
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systems. The CAS takes three arguments: address to a memory location, an expected value and a 

new value. The CAS operation loads a value from the address, compares the loaded value with 

the expected value and stores the new value if the loaded and expected values are matched. The 

CAS operation returns true if a new value is stored otherwise it returns false. Since the CAS 

operation is executed atomically, it can be used instead of a lock.     

 

2.5 Correctness of Concurrent Data Structures 

Operations on a sequential data structure are executed one by one in order. Therefore, it 

is easy to see correctness of a data structure by following preconditions and post conditions of 

operations. On the other hand, operations on a concurrent data structure are not totally ordered 

and a state of a concurrent data structure can be at the middle of a method call when an 

instruction in another concurrent method call is executed. An execution of a method call takes 

some time that starts with an invocation and ends with a response. Therefore, method calls by 

concurrent threads can overlap. Because of this reason, correctness of a concurrent data structure 

is harder to show. One way of verifying correctness of concurrent execution is to reorder to a 

sequential execution. There are three correctness conditions that we can use to reorder a 

concurrent execution to sequential execution: quiescent consistency, sequential consistency, and 

linearizability.  Quiescent consistency indicates non-overlapping method calls to take effect in a 

one-at-a-time sequential order, but overlapping method calls may be in any order. Sequential 

consistency indicates that, in any concurrent executions, method calls can be sequentially 

ordered that follows program order. Linearizability indicates that a data structure is sequentially 

consistent and method calls are ordered by the real-time order of the linearization points. A 

linearization point is a time-point that can be considered to take effect of a method call between 

invocation and response of each method call.   
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Chapter 3  

Related Work 

 

As multi-core processors became ubiquitous, efficient and scalable data structures are 

becoming the focus of studies. Since data structures such as queues, stacks, skiplists and BST are 

widely used in the sequential environment, these data structures have also been studied for a 

concurrent environment. In this chapter, some of the past studies related to this are summarized.  

 

3.1 Binary Search Tree (BST) 

The essential operations of BST are insert, remove and search. The insert operation 

places a new node associated to a given key in a tree. The remove operation removes the node 

associated with a given key, or makes no change in a tree if such node does not exist. The search 

operation searches the tree to find a node associated with the given key and returns true if a node 

is found, or returns false otherwise. All three operations must traverse a tree, which increase 

contentions in concurrent BST. Furthermore, a concurrent BST must be able to handle rotations 

to restructure a tree while some threads are traversing the tree. One way to handle contentions is 

the use of fine-grained locking. For instance, Bronson et al. (2010) used hand-over-hand locking, 

which uses a chain of locks with fixed size, to continue the traverse during a concurrent rotation. 

Crain et al. (2013) suggested decoupling search, logical delete and insert operations from 

structural modifications to limit contention. Drachsler et al. (2014) suggested a partially non-

blocking internal BST, which allows searching a tree without locks using logical ordering and 

lock-based insert and delete operations.  
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In BST, the delete operation from an internal tree is more complicated than the insert 

operation. The delete operation of a node with two children in an internal tree requires the 

replacement of the deleted node with its successor. The successor may be located as far away as 

one less than the tree height. While replacing the deleted node with its successor, every node 

along the path from the deleted node to its successor must be locked in a lock-based 

implementation of concurrent BST, which negatively affects performance and scalability. This 

problem can be simplified by the use of an external tree, which only stores key values in leaf 

nodes and the other nodes are only used for routing purposes. Deleting a leaf from an external 

tree is done by replacing the parent routing node with the sibling of the deleted leaf node. 

However, an external tree increases storage overhead and the average search path since an 

external tree with n data requires n-1 routing nodes. Therefore, Bronson et al. (2010) used a 

partially external tree which keeps a deleted node with two children as a routing node and 

removes them when routing nodes have fewer than two children. Similarly, in the algorithm 

reported in Crain et al. (2013), the delete operation was achieved by two steps if a node has two 

children. A node is first flagged as “deleted” and physically removed from a tree later when the 

node has only one child. 

Recent research on concurrent BST is more towards non-blocking implementations since 

non-blocking is fault tolerant unlike a lock-based implementation. The first complete, non-

blocking, linearizable BST implementation was reported by Ellen et al. (2010). It is an 

unbalanced external BST using CAS operations. To achieve a non-blocking implementation, 

their algorithm also uses a helping mechanism which allows a blocked process to progress by 

helping a blocking process. Natarajan and Mittal (2014) suggested a non-blocking external BST 

by flagging edges instead of nodes to reduce CAS operations. The insert operation in their 
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algorithm requires only a single CAS and consequently it does not need to help each other. A 

non-blocking internal binary search tree was introduced by Howley and Jones (2012) using CAS. 

They used a cooperative update by storing details about an ongoing update into a structure and a 

pointer to the structure into the node. Brown et al. (2014) introduced a simple template to obtain 

an implementation of non-blocking trees using load-link extended (LLX), store-conditional 

extended (SCX) and validate-extended (VLX) primitives. LLX, SCX and VLX primitives are 

multiword generalizations of load-link (LL), store-conditional (SC) and validate (VL) which can 

be implemented using CAS (Brown et al., 2013). LL reads the contents of a memory location. 

SC updates the contents of a memory location with a new value, and VL returns true if the 

location has not been modified since LL was last performed on the memory location. Brown et 

al. (2014) provided the implementation of a chromatic tree which is a relaxed-balanced red-black 

tree using their template. In most of non-blocking BST, when an insert or delete operation fails, 

the operation restarts from the root of a tree. Ellen et al. (2014) improved their previous non-

blocking binary search tree (Ellen et al., 2010) to not restart from the root but by backtracking 

the tree.  

More recent work is to improve the efficiency of existing BST algorithms. For instance, 

Ramachandra and Mittal (2015) presented non-blocking internal BST, which is efficient 

especially under a conflict-free condition using ideas from Howley and Jones (2012) and 

Natarajan and Mittal (2014). Chatterjee et al. (2016) reevaluated non-blocking algorithms to 

optimize the number of CAS steps considering efficiency and memory footprint.  
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3.2 Splay Tree 

One type of self-adjusting BST is a splay tree in which the frequently accessed items are 

moved to the root of a tree by performing a sequence of rotations along the path from the node to 

the root (Sleator and Tarjan, 1985). As a splay tree is a variation of BST, items are arranged in 

symmetric order: If a node x contains an item i, its left subtree contains only nodes with items 

less than i, and its right subtree contains only nodes with items greater than i. Once an item is 

accessed, the node with the item is moved to the root by using combinations of three rotations, 

Zig, Zig-Zig, and Zig-Zag. Zig is used when the parent of node x is the tree root. Zig rotates the 

edge joining x with its parent. Zig-Zig is used when the parent of x is not the tree root, and both x 

and its parent are either right children or left children. Zig-Zig first rotates the edge joining the 

parent of x with its grandparent. Then, the edge joining x with its parent is rotated. Zig-Zag is 

used when the parent of x is not the tree root, and x is a left child and the parent of x is a right 

child, or vice-versa. Zig-Zag first rotates the edge joining x with its parent. Then, the edge 

joining x with the new parent of x is rotated. The combination of the rotations to move a node to 

the root is called splaying. Splaying not only moves a node to the root but also changes the depth 

of every node along the access path to roughly half. Therefore, a splay tree becomes more 

efficient as access to the tree continues. However, self-adjusting trees are not suitable for a 

concurrent setting because of constant rotations, especially around the root of a tree.  

Afek et al. (n.d.) suggested a self-adjusting concurrent binary search tree by reducing to 

one local adjustment to the tree on each access, which is called lazy splaying. They implemented 

a lazy splay tree (LST) replacing Bronson et al. (2010)’s re-balancing code. Unlike a sequential 

splay tree, LST has two splaying steps, Zig and Zig-Zag. Zig and Zig-Zag rotations are the same 

as the splay tree reported in Sleator and Tarjan (1985). In LST, each node keeps track of the total 
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number of operations performed on the item (self-count), its left subtrees (left-count) and its 

right subtrees (right-count). The self-counter of the node containing n, and the left/right-counters 

of all the nodes along the path from the root to the node with n’s parent are increased by one 

when an insert(n) or search(n) is successfully executed. Zig is performed if a node is a left child 

of its parent and the total number of its self-count plus left-count is larger than the total number 

of parent’s self-count plus parent’s right count. Zig-Zag is performed if a node is a left child of 

its parent and its right-count is larger than the total number of parent’s self-count plus right-

count. If a node is a right child, Zig and Zig-Zag operations are performed as reflection 

symmetry.    
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Chapter 4  

Algorithm 

 

A lock-free self-adjusting BST is designed by modifying Afek et al. (n.d.)’s LST. In their 

algorithm, tree rotations and modifications (insert and delete) were implemented with the use of 

locking. In our lock-free algorithm, Afek et al. (n.d.)’s LST is modified based on Crain et al. 

(2013)’s contention friendly BST and Howley and Jones (2012)’s non-blocking internal BST. 

 

4.1 Overview  

This algorithm implements LST in a lock-free manner. LST is a self-adjusting BST and 

loosely follows a splay tree condition. In LST, frequently accessed items are moved to the root of 

a tree by performing one local rotation, which is called lazy-splay. Whether to rotate or not is 

decided based on the number of operations performed on the item (selfCount), its left subtree 

(leftCount) and its right subtrees (rightCount) as shown in Figure 4.1. The counters are not 

protected and it is possible to have incorrect counter values which may affect performance but 

not the safety properties of operations. Since Afek et al. (n.d.) reported that the effect of 

inaccurate counters on performances are negligible while elimination of the locking significantly 

improves the overall performances, the counters are used without locks in our algorithm.  

Because of unprotected counters, it is possible to have an unbalanced tree (all nodes are 

right (left) parents of their children). Therefore, rotations are performed from a node with depth 

larger than 2log n, where n is the number of nodes in the tree, to the root. This sequence of 

rotations is called semi-splay (Sleator and Tarjan, 1985). Since the purpose of semi-splay is to 

reduce the depth of the tree, rotations are performed slightly different from lazy-splay as shown 
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in Figure 4.2. Note that zig-zig rotation moves the current node’s parent, y, to the top instead of 

the current node, x. Rotations for lazy-splay and semi-splay are performed by rotating the copy 

of the nodes and replacing the old nodes in the tree to the new rotated nodes.  

Operations of insert, remove and search are included in the algorithm. These operations 

are executed separately from restructuring operations, semiSplay and lazySplay. The idea of 

separate execution is from a contention-friendly BST by Crain et al. (2013). A contention-

friendly BST avoids contentions during traversal of a tree by eagerly updating keys and lazily 

restricting a tree. By separating restructuring operations, it is possible to use processor cores that 

might otherwise be idle to perform the structural adaptation (Crain et al., 2013). Furthermore, the 

remove operation physically removes a node selectively to reduce contention. If the node has 

less than two children, the node is physically removed. If the node has two children, the node is 

logically removed by flagging the field, removed, and postponing physical removal until the 

node has less than two children. The idea of two-step removal is commonly used (Bronson et al., 

2010, Crain et al., 2013). 

Lock-free is achieved using CAS and flagging a pointer that points to an ongoing 

operation. Storing the address of a memory location does not use all the allocated memory for a 

pointer. Therefore, the least significant bits of memory for a pointer can be used to store 

auxiliary data (Howley and Jones, 2012). These extra bits are used for flagging. If a node needs 

to be modified (inserting, removing or rotating a node), the pointer associated with the node is 

flagged and points to the data structure which stores necessary information to complete the 

ongoing operation.  
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Figure 4.1 Lazy-splay conditions and rotations included in the lazySplay operation. Circle 
represents a node and triangle represent subtree. The selfCount, leftCount and rightCount are the 
number of operation performed on the item, its left subtree and its right subtree, respectively.  
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Figure 4.2 Semi-splay conditions and rotations included in the semiSplay operation. Circle 
represents a node and triangle represent subtree. Bold character is the current node.  
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4.2 Detailed Implementation 

4.2.1 Data Structures 

There are four data structures, node, childCASOp, helpRotateOp and findResult, that are 

used in the algorithm.  

4.2.1.1 node 

A node data structure in a tree has the following fields: key, op, removed, leftChild, 

rightChild, selfCount, leftCount and rightCount. The op is a pointer which points to one of two 

operation data structures which are childCASOp and helpRotateOp. The operation data 

structures store necessary information to change a child pointer of a node or to rotate nodes. The 

removed is a Boolean value to indicate if a node is logically removed. The leftChild and 

rightChild point to left and right children of a node, respectively. The selfCount, leftCount and 

rightCount are counters that keep track of the number of operations performed on the node itself, 

its left subtree and its right subtree, respectively. Counted operations are insert and search.   

The op pointer is also used for flagging. Flagging status include NONE, CHILDCAS, 

REMOVE and ROTATE. NONE means no ongoing operation on a node. CHILDCAS means 

one of the child pointers of a node is being modified. REMOVE means the node is going to be 

physically removed, and ROTATE means the node is currently affected by rotations. 

Flagging/unflagging is aided by two macros defined as follow: FLAG(pointer, status) which sets 

the pointer to the status, and GETFLAG(pointer) which returns a status of flag in the pointer. 

4.2.1.2 childCASOp 

A childCASOp data structure is used to save information necessary to change a child 

pointer using CAS. A childCASOp has three fields: isLeft, expected and update. The isLeft is 
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true if modification is to the left child of a node and false otherwise. The expected and update are 

pointers to nodes that are to be there before and after modification, respectively.  

4.2.1.3 helpRotateOp 

A helpRotateOp data structure is used to save information necessary to rotate nodes. A 

helpRotateOp has the two following fields: whichRotation and findResult. The field 

whichRotation stores the choice of rotation, zigRight, zigLeft, zigLeftZag or zigRightZag. The 

field findResult stores a sequence of nodes that is affected by a rotation. See the following 

section for detail for findResult.   

4.2.1.4 findResult 

A findResult data structure keeps the sequence of nodes and their op pointers at the time 

they are found while a node is searched. A findResult has the following fields: ggp, gp, p, n, 

ggpOp, gpOp, pOp and nOp. The ggp, gp, and p are great-grandparent, grandparent, parent of the 

node, n, respectively. The ggpOp, gpOp, pOp and nOp are op pointers of great-grandparent, 

grandparent, parent and node, respectively.   

 

4.2.2 search(key) 

The pseudo-code for the search operation can be found in Algorithm 4.1. The search 

operation takes a key to be searched and returns a Boolean value. The search operation calls the 

find operation. The find operation (Algorithm 4.2) starts from the root and looks for a location of 

the given key or a place to insert the given key in a tree by recursively calling the find operation. 

The find operation takes a key, four nodes, two Boolean values and thread id as input and returns 

a pointer to the data structure, findResult. Necessity of tracking four nodes is because rotation 

affects at the utmost four nodes from the current nodes to its great-grandparent. Since nodes used 

in the algorithm do not have a parent pointer, a sequence of nodes cannot be backtracked. 
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Therefore, nodes must be tracked in the find operation, which is also called by the operations of 

rotations. A Boolean value, isLeft, is used for keeping track of the path to find the given key. If 

the search of the given key takes a left child of a node, isLeft is set to true. Otherwise isLeft is 

false. A Boolean value, isCounting, triggers counting since counters are incremented only for the 

insert and search operations whereas the find operation is called by other operations. The return 

value of a pointer may indicate retry if the find operation encounters a concurrent operation. The 

other possibilities of return values are a data set with the last visited leaf node if the node with 

the given key is not found, and a data set with the node with the given key. For the case of retry, 

the find operation helps completing the ongoing concurrent operation first then returns retry to 

the caller indicating the find operation needs to be restarted because of the existence of a 

concurrent operation. The search operation keeps calling the find operation until it receives a 

return value of a data set. The search operation then returns false if the find operation did not 

find the node with the key and the pointer to the childCASOp hasn’t been changed from the time 

the node is found in the find operation. If the find operation locates the node with the key, the 

search operation checks if the node is logically removed along with an existence of concurrent 

operation. If the node is logically removed and there is no concurrent operation, the search 

operation returns false. If the node is not logically removed and there is no concurrent operation, 

the search operation returns true. Otherwise, the search operation restarts from the beginning.  

  



21 
 

 

 

Algorithm 4.1 search(key) 
1 bool search(key) { 
2 while (true) 
3 // initiate find operation until result is not retry 
4 while ((result = find(key, null, null, null, root, false, true, id)) == retry)  
5 continue 
6  
7 // key is not in the tree and no concurrent operation 
8 if (result.n.key != key && result.nOp == n.op) 
9 return false 

10  
11 // key is in the tree, no concurrent operation and not logically removed 
12 if (result.n.key == key &&  
13 result.nOp == n.op && result.n.removed == false)  
14 return true 
15  
16 // key is in the tree, no concurrent operation and logically removed 
17 if (result.n.key == key &&  
18 result.nOp == n.op && result.n.removed == true)  
19 return false 
20 }    
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Algorithm 4.2 find(key, node, node, node, node, bool, bool, id) 
1 findResult find(key, node ggp, node gp, node p, node n,  
2 bool isLeft, bool isCounting, id) { 
3 If (key == n.key) // found 
4 If (isCounting && n.removed != true)  
5 n.selfCount++ 
6 return result = findResult(ggp, gp, p, n, ggp.op, gp.op, p.op, n.op) 
7  
8 // find next node to search 
9 if (isLeft  = (key < n.key)) 

10 next = n.leftChild 
11 else 
12 isLeft = false 
13 next = n.rightChild 
14  
15 // check if node is valid 
16 if (GETFLAG(next.op) == CHILDCAS) 
17 helpChildCAS(next.op, next) 
18 return restart 
19 else if (GETFLAG(next.op) == REMOVE) 
20 helpRemove(n, n.op, next, id) 
21 return restart 
22 else if (GETFLAG(next.op) == ROTATE) 
23 helpRotate(next.op) 
24 return restart 
25  
26 if (next == null) // not found 
27 return result = findResult(ggp, gp, p, n, ggp.op, gp.op, p.op, n.op) 
28  
29 else  // continue searching 
30 result = find(key, gp,  p, n, next, isLeft, isCounting, isInsert, id) 
31  
32 // counter update 
33 if ((result != null || result != restart) && isCounting) 
34 if (isLeft) 
35 n.leftCount++ 
36 else 
37 n.rightCount++ 
38 return result 
39 }    
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4.2.3 insert(key, id) 

The insert operation takes two values, key and id, and returns a Boolean value as shown 

in Algorithm 4.3. The key is the value to be inserted in a tree, and the id is a thread id which is 

used in calculating a threshold for executing semiSplay. A return value is true if a new node with 

the given key is inserted. A return value is false if a node with the given key already exists in the 

tree.  

The insert operation calls the find operation until the find operation returns a result other 

than retry. If the find operation finds a node with the given key, the insert operation checks if the 

node is logically removed along with the existence of a concurrent operation. In the case of a 

logically removed node and there is no concurrent operation, the removed field of the node is set 

back to false to indicate the node is inserted back in the tree. If the node with the given key is not 

in the tree, a new node is created and inserted in the tree using CAS. First, CAS is used to store 

necessary information to insert the created new node in the current node’s childCASOp data set 

while flagging the pointer as CHILDCAS. The success of the CAS execution means that a new 

node is logically inserted. Since the necessary information to insert a new node is in the 

childCASOp field, any concurrent thread traversing the node can complete inserting the new 

node. Physically inserting a new node is completed by calling helpChildCAS. The 

helpChildCAS uses two CASs. The first CAS inserts a new node and the second CAS flags back 

the operation pointer to NONE indicating the new node is physically inserted (Algorithm 4.4). 

Once a new node is logically inserted in the tree, localCounterInsert (Algorithm 4.5) is called to 

recalculate a threshold for semiSplay. Return values of true or false from the insert operation 

indicate successful insertion, or existence of a node with the given key in the tree, respectively.   
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Algorithm 4.3 insert(key, id) 
1 bool insert(key, id) { 
2 while (true) 
3 while ((result = find(key, null, null, null, root, false, true, id)) == retry)  
4 continue 
5  
6 if (result.n.key == key)  // node with the given key is found 
7 // logically removed case 
8 if (result.n.removed == true && result.nOp == n.op)  
9 CAS(&result.n.removed, true, false) 

10 return true 
11 return false 
12 else    // node with then given key is not found 
13 newNode = new Node(key) 
14 bool isLeft = (result.n.key > key) 
15 if (isLeft) 
16 node old = result.n.leftChild 
17 else 
18 node old = result.n.rightChild 
19 casOp = new childCASOp(isLeft, old, newNode) 
20 if (CAS(&result.n.op, FLAG(result.nOp, NONE),  
21 FLAG(casOp, CHILDCAS))  // considered logically inserted 
22 localCounterInsert(id) 
23 helpChildCAS(casOp, result.n) 
24 return true 
25 }  
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Algorithm 4.4 helpChildCAS(childCASOp, node) 
1 bool hlepChildCAS(childCASOp op, node n){ 
2 // update nodes 
3 if (op.isLeft) 
4 CAS(&n.left, op.expect, op.update) 
5 else 
6 CAS(&n.right, op.expect, op.update) 
7  
8 // set flag in op pointer to NONE 
9 if (CAS(&n.op, FLAG(op, CHILDCAS), FLAG(op, NONE))) 

10 return true 
11 else return false 
12 } 

 

 

 

Algorithm 4.5 localCounterInsert(id) 
1 localCounterInsert(id) { 
2 localCounter[id]++  // local counter per thread 
3 if (localCounter[id] > max[id]) 
4 max[id] = localCounter[id] 
5 if (localCounter[id] > 2*min[id]) 
6 max[id]=min[id]=localCounter[id] 
7 succeeded = false 
8 while(!succeeded) 
9 prevLogSize = logSize; 

10 totalSize = 0 
11 for (i=0; I < NUM_OF_THREADS; i++) 
12 totalSize += localCounter[i] 
13 if (log(totalSize) != logSize) 
14 succeeded = CAS(&logSize, prevLogSize, log(totalSize)) 
15 } 
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4.2.4 remove(key, id) 

The remove operation takes two values, key and id and returns a Boolean value as shown 

in Algorithm 4.6. The key is the value to be removed from the tree, and the id is a thread id 

which is used to calculate a threshold for semiSplay. A return value is true if the node with the 

given key is removed. If the node with the given key is not found in the tree, false is returned. 

The remove operation calls the find operation until the find operation returns a result 

other than retry. If the find operation returns the node with a different key, which means the node 

with the given key is not in the tree, the remove operation checks the existence of a concurrent 

operation. If there is no concurrent operation, the remove operation exits returning false. If the 

find operation finds the node with the given key, the remove operation checks the number of 

children for the node. If the node has less than two children, CAS is executed to store necessary 

information for removing the node from the tree in the node’s childCASOp, and to flag the 

pointer that points to childCASOp to REMOVE. If the CAS failed, then the remove operation 

starts from the beginning. Otherwise, the node is considered as logically removed. Therefore, the 

removed flag is changed to true. Then, helpRemove (Algorithm 4.7) is called to physically 

remove the node. The helpRemove operation replaces the child pointer of the node’s parent with 

the node’s existing child pointer, or null if the node does not have a child, by calling 

helpChildCAS. Once the childCASOp field is set for CHILDCAS, physical removal of the node 

cannot fail. At this point, localCounterRemove (Algorithm 4.8) is called to update a threshold of 

semiSplay and to end the execution. If the node has two children and there is no concurrent 

operation, the removed field is changed to true using CAS and the remove operation returns true. 

Otherwise, the remove operation restarts from the beginning.   
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Algorithm 4.6 remove(key, id) 
1 bool remove(key, id) { 
2 while (true) 
3 while (result = (find(key, null, null, null, root, false, true, id) == retry)) 
4 continue 
5  
6 // key is not in the tree 
7 If (result.n.key != key && result.nOp == n.op) return false 
8  
9 // key found 

10 if (result.n.key == key) 
11 // node with < 2 children 
12 if (result.n.leftChild == null || result.n.rightChild == null) 
13 if (CAS(&n.op, FLAG(result.nOp, NONE), FLAG(n.op, REMOVE)) 
14 CAS(&result.n.removed, false, true) 
15 If (helpRemove(result.p, result.p.op, result.n, id)) 
16 return true 
17 else 
18 CAS(&n.op, FLAG(n.op, REMOVE), FLAG(n.op, NONE)) 
19  
20 // node with 2 children 
21 else if (result.nOp == n.op) 
22 CAS(&result.n.removed, false, true) 
23 return true 
24 } 

 

  



28 
 

 

Algorithm 4.7 helpRemove(node, childCASOp, node, id) 
1 bool helpRemove(node p, childCASOp pOp, node n, id) { 
2 // check which child to replace a deleted node 
3 if (n.leftChild == null) 
4 if (n.rightCHild == null) 
5 node newRef = null 
6 else 
7 node newRef = n.rightChild 
8 else 
9 node newRef = n.leftChild 

10  
11 // physically remove 
12 casOp = new childCASOp(p.childLeft == n, n, newRef) 
13 if (CAS(&p.op, pOp, FLAG(casOp, CHILDCAS)) 
14 helpChildCAS(casOp, p) 
15 localCounterRemove(id) 
16 return true 
17 else  
18 return false 
19 } 

 

 

 

Algorithm 4.8 localCounterRemove(id) 
1 localCounterRemove(id) {   
2 localCounter[id]--  // local counter per thread 
3 if (localCounter[id] < min[id] 
4 min[id] = localCounter[id] 
5 if (localCounter[id] < 2*max[id] 
6 max[id]=min[id]=localCounter[id] 
7 succeeded = false 
8 while(!succeeded) 
9 prevLogSize = logSize; 

10 totalSize = 0 
11 for (i=0; I < NUM_OF_THREADS; i++) 
12 totalSize += localCounter[i] 
13 if (log(totalSize) != logSize) 
14 succeeded = CAS(&logSize, prevLogSize, log(totalSize)) 
15 } 
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4.2.5 lazySplay(node, id) 

The pseudo-code for lazySplay is given in Algorithm 4.9. The lazySplay operation 

traverses through a tree using a depth-first search and calls the find operation to locate the 

sequence of nodes that are required to rotate the given node. If the node is logically removed, the 

lazySplay operation calls the remove operation to try to physically remove the node. If the node 

is physically or logically removed, the node is skipped for lazy-splaying. Otherwise, the node is 

checked for the lazy-splay conditions shown in Figure 4.1. If the node matches one of the lazy-

splay conditions, an appropriate operation to rotate the node is called. There are four operations 

to rotate a node, zigRight, zigLeft, zigLeftZag and zigRightZag. In any outcomes of no rotation 

required, successful rotation, and unsuccessful rotation, the lazySplay operation moves to the 

next node.  

To make the algorithm lock-free, the rotational operations are implemented using CAS. 

The major issue of using CAS to execute a rotation is that a rotation requires several pointers to 

be changed at a time whereas CAS allows only one change at a time. In an asynchronous system, 

this may cause a halt in the middle of a rotation, which may lead to concurrently traversing 

threads to a wrong outcome. Therefore, instead of modifying an existing nodes’ child pointers, 

new nodes are created by copying the old nodes and linking new nodes after the rotated 

condition. At the end, the top most child pointer is changed to point to the new nodes using CAS 

to remove the old nodes and insert the rotated new nodes. Note that the old nodes’ child pointers 

are not modified. Therefore, threads traversing old nodes are still able to reach any nodes that 

were reachable before the rotation. The two particular rotations, zigRight and zigLeftZag, are 

discussed below.   
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Algorithm 4.9 lazySplay(node, id) 
1 void lazySplay(node n, id) { 
2 if (n == null) return 
3 lazySplay(n.leftChild, id) 
4 lazySplay(n.rightChild, id) 
5  
6 while ((result = find(key, null, null, null, root, false, true, id)) == retry) 
7 continue 
8  
9 if (result.n != n) return 

10  
11 if (result.n.removed == true) // logically removed node 
12 remove(n, id)   // try physically removing 
13 return    // if the node is removed, don’t splay 
14  
15 // node n is left child 
16 if (result.n.rightCount >= result.p.selfCount + result.p.rightCount) 
17 if (result.gp.leftChild == result.p || result.gp.rightChild == result.p) 
18 if (result.p.leftChild == result.n) 
19 if (result.n.rightChild != null) 
20 zigLeftZag(result.n.rightChild) 
21 else if (result.n.selfCount + result.n.leftCount >  
22 result.p.selfCount + result.p.rightCount) 
23 if (result.gp.left == result.p || result.gp.right == result.p) 
24 if (result.p.left == result.n) 
25 zigRight(result.n) 
26  
27 // node n is right child 
28 if (result.n.leftCount >= parentPlusLeftCount) 
29 if (gp.leftChild == p || gp.rightChild == p) 
30 if (p.rightChild == n) 
31 if (n.leftChild != null) 
32 zigRightZag(n.leftChild) 
33 else if (result.n.selfCount + result.n.rightCount >  
34 result.p.selfCount + result.p.leftCount) 
35 if (result.gp.left == result.p || result.gp.right == result.p) 
36 if (result.p.right == result.n) 
37 zigLeft(result.n) 
38  
39 return 
40 } 
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The zigRight operation (Algorithm 4.10) calls the find operation to find the sequence of 

nodes that will be affected by rotations. Once the nodes that are affected by a rotation are found, 

the nodes’ op pointers are flagged as ROTATE. If all the pointers cannot be flagged, the pointers 

are un-flagged and the zigRight operation returns without rotations. If all the pointers are 

flagged, the helpRotate operation is called. The helpRotate operation checks which rotation is to 

be made and calls an appropriate operation among four choices, helpRotateZigRight, 

helpRotateZigLeft, helpRotateZigLZag or helpRotateZigRZag (Algorithm 4.11). For the 

zigRight operation, helpRotateZigRight is called (Algorithm 4.12). In the helpRotateZigRight 

operation, if all the nodes affected by a rotation are flagged as ROTATE, new nodes, nn and pn, 

are created copying the old nodes, n and p, respectively (Figure 4.3). Then, the status of flag and 

pointers are modified for nn and pn. The new nodes’ op field is flagged back to NONE. The nn’s 

right child pointer is linked to pn, and the pn’s left child pointer is linked to the n’s right child. 

The counters that are tracking the number of operations applied to the nodes, nn and pn, are 

adjusted at this point. Finally, the grandparent’s child pointer is changed to point to nn replacing 

the old nodes, n and p, by the new nodes, nn and pn by using CAS. The zigLeft operation is the 

mirror operation of zigRight. 

The zigLeftZag operation follows the same flow as zigRight as shown in Algorithm 4.13. 

The difference is the number of nodes affected by a rotation. There are four nodes that are 

affected by the zigLeftZag operations and all nodes must be flagged as ROTATE. Failure of 

flagging means that the rotation is not executed. Once flagging is successful, helpRotateZigLZag 

is called (Algorithm 4.1). If all the nodes affected by a rotation are flagged as ROTATE, new 

nodes, nn, pn and gpn are created copying the old nodes, n, p and gp, respectively (Figure 4.4). 

Then, the new nodes are flagged as NONE, and the child pointers of the new nodes are modified. 
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The node, nn’s left and right child’s pointers are linked to pn and gpn, respectively. The pn’s right 

child pointer is linked to the n’s left child, and the gpn’s left child pointer is linked to the n’s right 

child. The CAS is applied to the great-grandparent’s child pointer to point to nn replacing the old 

nodes, n, p and gp by the new nodes, nn, pn and gpn. The zigRightZag operation is the mirror 

operation of zigLeftZag. 

 

 

 

Algorithm 4.10 zigRight(node) 
1 void zigRight(node n) { // node n is the one to go up 
2 result = find(n.key, null, null, null, root, false, false, id) 
3  
4 // concurrent operation modified the tree 
5 if (result == retry || result.n != n) return 
6  
7 // flag nodes 
8 bool flagSuccess = false 
9 result.gp.op = result.p.op = result.n.op =  new helpRotateOp(zigRight, result) 

10 gpOp = result.gpOp 
11 pOp = result.pOp 
12 nOp = result.nOp 
13 if (CAS(&result.gp.op, FLAG(result.gpOp, NONE),  
14 FLAG(result.gp.op, ROTATE) 
15 if (CAS(&result.p.op, FLAG(result.pOp, NONE),  
16 FLAG(result.p.op, ROTATE))) 
17 if (CAS(&result.n.op, FLAG(result.nOp, NONE),  
18 FLAG(result.n.op, ROTATE))) 
19 flagSuccess = true 
20 if (!flagSuccess) 
21 CAS(&result.n.op, FLAG(result.n.op, ROTATE), nOp) 
22 CAS(&result.p.op, FLAG(result.p.op, ROTATE), pOp)) 
23 CAS(&result.gp.op, FLAG(result.gp.op, ROTATE), gpOp) 
24 return 
25  
26 helpRotate(result.n) 
27  
28 return 
29 } 
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Algorithm 4.11 helpRotate(node) 
1 helpRotate(node n) { 
2 if (n.op.whichRotation == zigRIght) 
3 helpRotateZigRIght(n.op.findResult) 
4 else if (n.op.whichRotation == zigLeft) 
5 helpRotateZigLeft(n.op.findResult) 
6 else if (n.op.whichRotation == zigLeftZag) 
7 helpRotateZigLZag(n.op.findResult) 
8 else 
9 helpRotateZigRZag(n.op.findResult) 

10 } 
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Algorithm 4.12 helpRotateZigRight(findResult) 
1 helpRotateZigRight(findResult result) { 
2 if (GETFLAG(result.gpOp) != ROTATE) return 
3 bool flagSuccess = false 
4 result.p.op = result.n.op =  result.gp.op 
5 pOp = result.pOp 
6 nOp = result.nOp 
7 result.nOpN = FLAG(result.nOp, NONE) 
8 if (GETFLAG(result.pOp) == ROTATE || CAS(&result.p.op,  
9 FLAG(result.pOp, NONE), FLAG(result.p.op, ROTATE) 

10 If (GETFLAG(result.nOp) == ROTATE || CAS(&result.n.op,  
11 FLAG(result.nOp, NONE), FLAG(result.n.op, ROTATE) 
12 flagSuccess = true 
13 if (!flagSuccess) 
14 CAS(&result.n.op, FLAG(result.n.op, ROTATE), nOp) 
15 CAS(&result.p.op, FLAG(result.n.op, ROTATE), pOp) 
16 CAS(&result.gp.op, FLAG(result.n.op, ROTATE), gpOp) 
17 Return 
18  
19 // create new node pnew and nnew 
20 pnew = new Node(result.p) 
21 nnew = new Node(result.n) 
22  
23 // flag pnew and nnew’s op to NONE 
24 FLAG(pnew.op, NONE) 
25 FLAG(nnew.op, NONE) 
26  
27 // set pnew and nnew’s child pointers 
28 pnew,lefChild = result.n.rightChild 
29 nnew.rightChild = result.p 
30  
31 // update counter 
32 pnew.leftCount = result.n.rightCount 
33 nnew.rightCount = result.p.selfCount + result.p.rightCount + result.n.rightCount  
34  
35 // replace p and n with pnew and nnew 
36 bool isLeft = (result.gp.leftChild == p) 
37 casOp = new childCASOp(isLeft, result.p, nnew) 
38 if (CAS(&result.gp.op,  
39 FLAG(result.gp.op, ROTATE), FLAG(casOp, CHILDCAS))) 
40 helpChildCAS(casOp, result.gp) 
41  
42 return 
43 } 
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Figure 4.3 Schematic diagram of zigRight(n) implementation. Lines with allow are newly 
created link and dotted lines are replaced using CAS. The lines without allow are existing link 
before the rotation. 
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Algorithm 4.13 zigLeftZag(node) 
1 void zigLeftZag(node n) { 
2 result = find(n.key, null, null, null, root, false, false, id) 
3  
4 // concurrent operation modified the tree 
5 if (result == retry || result.n != n) return 
6  
7 // flag nodes 
8 result.ggp.op = result.gp.op = result.p.op = result.n.op =   
9 new helpRotateOp(zigRight, result) 

10 ggpOp = result.ggpOp 
11 gpOp = result.gpOp 
12 pOp = result.pOp 
13 nOp = result.nOp 
14 if (CAS(&result.ggp.op, FLAG(result.ggpOp, NONE),  
15 FLAG(result.ggp.op, ROTATE))) 
16 if (CAS(&result.gp.op, FLAG(result.gpOp, NONE),  
17 FLAG(result.gp.op, ROTATE))) 
18 if (CAS(&result.p.op, FLAG(result.pOp, NONE,  
19 FLAG(result.p.op, ROTATE))) 
20 if (CAS(&result.n.op, FLAG(result.nOp, NONE),  
21 FLAG(result.n.op, ROTATE)) 
22 flagSuccess = true 
23 if (!flagSuccess) 
24 CAS(&result.n.op, FLAG(result.n.op, ROTATE), nOp) 
25 CAS(&result.p.op, FLAG(result.p.op, ROTATE), pOp) 
26 CAS(&result.gp.op, FLAG(result.gp.op, ROTATE), gpOp) 
27 CAS(&result.ggp.op, FLAG(result.ggp.op, ROTATE), ggpOp) 
28 return 
29   
30 helpRotate(result.n) 
31  
32 return 
33 } 
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Algorithm 4.14 helpRotateZigLZag(findResult) 
1 helpRotateZigLZag(findResult result) { 
2 if (GETFLAG(result.ggp.op) != ROTATE) return 
3 bool flagSuccess = false 
4 result.gp.op = result.p.op = result.n.op = result.ggp.op 
5 gpOpN = FLAG(result.gpOp, NONE) 
6 pOpN = FLAG(result.pOp, NONE) 
7 nOpN = FLAG(result.nOp, NONE) 
8 if (GETFLAG(result.gp.op) == ROTATE || CAS(&result.gp.op,  
9 FLAG(result.gpOp, NONE), FLAG(result.gp.op, ROTATE) 

10 If (GETFLAG(result.p.op) != ROTATE || CAS(&result.p.op, 
11 FLAG(result.pOp, NONE), FLAG(result.p.op, ROTATE) 
12 If (GETFLAG(result.n.op) == ROTATE || CAS(&result.n.op, 
13 FLAG(result.nOp, NONE), FLAG(result.n.op, ROTATE) 
14 flagSuccess = true 
15 if (!flagSuccess) 
16 CAS(&result.n.op, FLAG(result.n.op, ROTATE), nOp) 
17 CAS(&result.p.op, FLAG(result.p.op, ROTATE), pOp) 
18 CAS(&result.gp.op, FLAG(result.gp.op, ROTATE), gpOp) 
19 CAS(&result.ggp.op, FLAG(result.ggp.op, ROTATE), ggpOp) 
20 // create new node gpnew, pnew and nnew 
21 gpnew = new Node(result.gp) 
22 pnew = new Node(result.p) 
23 nnew = new Node(result.n) 
24 // set gpnew, pnew and nnew’s child pointers and flag op pointers to NONE 
25 gpnew.leftChild = result.n.rightChild 
26 pnew,rightChild = result.n.leftChild 
27 nnew.leftChild = result.p 
28 nnew.rightChild = result.gp 
29 FLAG(gpnew.op, NONE) 
30 FLAG(pnew.op, NONE) 
31 FLAG(nnew.op, NONE) 
32 // update counter 
33 gpnew.leftCount = result.n.rightCount 
34 pnew.rightCount = result.n.leftCount 
35 nnew.rightCount = result.gp.selfCount + result.gp.rightCount + result.n.rightCount  
36 nnew.leftCount = result.p.selfCount + result.p.leftCount + result.n.leftCount  
37 // replace p and n with pnew and nnew 
38 bool isLeft = (result.ggp.leftChild == gp) 
39 casOp = new childCASOp(isLeft, result.gp, nnew) 
40 if (CAS(&result.ggp.op,  
41 FLAG(result.ggp.op, ROTATE), FLAG(casOp, CHILDCAS)) 
42 helpChildCAS(casOp, result.ggp) 
43 return 
44 } 
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Figure 4.4 Schematic diagram of zigLeftZag(n) implementation. Lines with allow are newly 
created link and dotted lines are replaced using CAS. The lines without allow are existing link 
before the rotation. 
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4.2.6 semiSplay(node, height) 

A pseudo-code for semiSplay is given in Algorithm 4.15. The semiSplay operation 

traverses through a tree using a depth-first search. When the height of the tree becomes more 

than 2log n, where n is the total number of nodes in the tree, nodes are rotated to reduce the 

height of the tree. Rotations executed in the semiSplay operation are shown in Figure 4.2. The 

semiSplay operation calls the find operation to locate a sequence of nodes that will be affected 

by rotation. If the current node is logically removed, the semiSplay operation calls the remove 

operation to try to physically remove the node. If the node is physically or logically removed, the 

node is skipped for semi-splaying. Otherwise, depending on the arrangement of nodes as shown 

in Figure 4.2, an appropriate rotation, zigRight, zigLeft, zigRightZag or zigLeftZag, is called.  

The restructuring operations, lazySplay and semiSplay, are executed in the background 

and they can be called through the backgroundRestructure operation (Algorithm 4.16). 
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Algorithm 4.15 semiSplay(node, height) 
1 void semiSplay(node n, int height) { 
2 if (n == null) return 
3 semiSplay(n.leftChild, height+1) 
4 semiSplay(n.rightChild, height+1) 
5  
6 // semi splay when height is more than 2 x log(N) 
7 if (height >= 2*logSize) 
8 while ((result = find(n.key, null, null, null, root, false, false, id)) == retry)  
9 continue 

10  
11 if (result.n != n) return 
12  
13 if (result.n.removed == true) // logically removed node 
14 remove(n, id)   // try physically removing 
15 return    // if the node is removed, don’t splay 
16  
17 if (result.n == n && result.p != null) 
18 If (result.gp == null) // Zig: node n does not have a grand parent 
19 If (result.n == result.p.leftChild) 
20 zigRight(result.n) 
21 else  
22 zigLeft(result.n) 
23 else  // ZigZig or ZigZag: node n has a grand parent 
24 if (result.n == result.p.leftChild) 
25 if (result.p == result.gp.leftChild) 
26 zigRight(result.p) 
27 else 
28 zigRightZag(result.n) 
29 else 
30 if (result.p == result.gp.rightChild) 
31 zigLeft(result.p) 
32 else 
33 zigLeftZag(result.n) 
34  
35 return 
36 } 
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Algorithm 4.16 backgroundRestructure(id) 
1 backgroundRestructure(id){ 
2 while true // restructure is continuously running 
3 semiSplay(root, 0) 
4 lazySplay(root, id) 
5 } 
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Chapter 5  

Correctness 

 

Correctness of our lock-free self-adjusting BST algorithm is discussed in terms of the 

non-blocking condition and linearizability.  

 

5.1 Non-blocking 

In our algorithm, search, insert, remove and restructuring BST are implemented using 

CAS instead of using locks. To show the algorithm is non-blocking, interactions between reading 

and writing are discussed below.  

A thread traversing a tree will eventually locate the key for which it is searching or stop 

at a leaf node. However, the thread may need to restart traversing the tree in a few occasions. If 

there is a concurrent operation which already flagged the node’s operation pointer, the traversing 

thread tries to help complete the ongoing operation, and traversing will be restarted. Flagging an 

operation pointer always happens when the flag of the operation pointer is NONE, meaning that 

no operation is executed at this node. Therefore, successful flagging indicates that no other 

operation can be applied until the current operation finishes. However, successful flagging also 

means that the data structure which stores necessary information to complete the ongoing 

operation is successfully updated for the current operation. Using the stored data, any other 

thread which encounters the ongoing operation can complete the current operation and restart 

traversing the newly updated BST. This implies system-wide progress.  

Other restarts of traversing happen when an operation pointer has been changed after the 

time the key was found. The changes to operation pointers are caused by flagging as 
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CHILDCAS, REMOVE or ROTATE. To be able to change the flag means that another thread is 

making advances, indicating that system-wide progress is happening. 

When a rotation happens, several nodes are affected. However, rotation is done by 

creating new nodes with the rotated condition and replacing the new nodes with the old nodes by 

changing one child pointer in the tree. The child pointers of the old nodes are not modified. 

Therefore, any threads in the old nodes will still be able to traverse after the rotation. 

Furthermore, if a thread traversing the tree encounters the node with the rotating nodes, the 

thread can help complete the rotation by getting information from the stored data. Therefore, a 

rotation will not stop any thread to continue, even if a thread may require restarting a tree 

traversal.  

 

5.2 Linearisability 

The linearisability of our algorithm is discussed by defining the linearization points of the 

search, insert, remove and rotation operations.  

 

5.2.1 Search Operation 

Two possible outcomes can be returned from the search operation: the key is found or not 

found in a tree. The linearization point of finding the key is the point when the matching key is 

found in a tree (line 3 in Algorithm 4.2). However, it is possible that the node has been logically 

deleted or another traversing thread modifies the found node while the search operation waits for 

the find operation to return its result. Therefore, the linearization point of finding a key is when 

the search operation verifies that no changes are made in the operation pointer and the node is 

not logically deleted at line 12 in Algorithm 4.1.  
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There are two cases for the search operation to return false as not finding a key. The first 

case is when a key is not found in a tree. The linearization point of not finding a key is the point 

when the next node is read as null (line 26 in Algorithm 4.2). However, as the same with the 

found case, this result needs to be verified in the search operation. Therefore, the linearization 

point of not finding a key is when the search operation verifies no changes in the operation 

pointer at line 8 in Algorithm 4.1. For the second case, a key is found in a tree but the node was 

logically removed. The linearization point of this case is when the search operation verifies that 

there is no concurrent operation and the node is logically removed at line 17 in Algorithm 4.1. 

 

5.2.2 Insert Operation 

If a key is already in a tree, an insert operation fails. Therefore, similar to the search 

operation of finding the key, the linearization point of failing insertion is when the find operation 

finds the key and the insert operation verifies no change in an operation pointer (line 8 in 

Algorithm 4.3).  

A successful insertion occurs at two places. When the key is found but it was logically 

removed, an insertion occurs when the removed flag is verified to be false using CAS. One of the 

linearization points of a successful insertion happens at line 9 in Algorithm 4.3. The other 

successful insertion occurs when the childCASOp operation is inserted into the inserting node 

using CAS (line 20 in Algorithm 4.3). Once childCASOp is set, any other thread encounter of 

the CHILDCAS flag must help complete the insert operation before moving forward. Therefore, 

when CAS succeeds, the key is considered logically inserted.  
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5.2.3 Remove Operation 

A failure of remove is determined when the key is found in the tree and verified that no 

changes have been made in the operation pointer after the key is found. Therefore, the 

linearization point of a failure of the remove operation is line 7 in Algorithm 4.6.  

A successful removal of the key occurs in two ways. When the node has two children, the 

key is considered as removed when the node’s removed field is marked true. One of the 

linearization points of successful removal is at line 22 in Algorithm 4.6. If the node has less than 

two children, the successful removal of the key is not guaranteed when the node is flagged as 

REMOVE. It occurs when the operation pointer of the current node’s parent is flagged as 

CHILDCAS. Once the parent’s operation pointer is flagged, any other thread encounter 

CHILDCAS flag must help complete the remove operation before moving forward. The 

linearization point for this is at line 13 in helpRemove (Algorithm 4.7). 

 

5.2.4 Rotational Operation 

Unlike insert and remove operations, the rotational operation affects several nodes. By 

flagging the operation pointer of one of the nodes does not guarantee that rotation will succeed. 

Even though any thread which encounters the node with the operation pointer flagged as 

ROTATE can help complete the operation, a successful rotation only occurs when the new 

rotated nodes, which are copied and modified from the old nodes, are replaced with the old 

nodes. This is achieved by changing the top most node of the child pointer from the old node to a 

new node. For the case of zigRight rotation, the linearization point occurs at line 38 in 

helpRotateZigRight (Algorithm 4.12). For the case of zigLeftZag, this occurs at line 40 in 

helpRotateZigLZag (Algorithm 4.14).   
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Chapter 6  

Conclusion and Future Work 

 

In this study, a lock-free self-adjusting BST is proposed using CAS and flagging 

techniques. Specifically, an algorithm for LST is considered based on the contention friendly 

BST. LST executes one local rotation at a time to bring the frequently accessed items to the root 

of a tree. Whether to rotate or not is decided based on non-protected self, left and right counters, 

that track the number of operations performed on a node. Since the counters are not protected, 

semi-splay is also included in the algorithm in order to reduce the height of a tree if the height 

becomes more than 2log n, where n is the total number of nodes. The rotation operations are 

executed in the background following a contention friendly BST algorithm. Furthermore, the 

rotational operation is executed by making new nodes with the rotated condition and changing 

the top most node’s child pointer to replace the old nodes with new rotated nodes. This 

overcomes the issue that rotation requires multiple pointers to be changed while CAS can change 

only one pointer at a time. Use of flagging of the operation pointer that points to a data structure 

which stores necessary information to complete the ongoing operation, allows other threads to 

help. This enables system-wide progress. In this study, pseudo-code of a lock-free self-adjusting 

BST is presented, and linearization points of insert, remove, search and rotation operations are 

established.  

As a future work, considering the memory usage of the algorithm might be helpful since 

the remove operation was executed two ways: physically removing if there are less than two 

children, and logical removing if there are two children. Furthermore, the rotational operation 

starts with making several duplicate nodes. Therefore, memory efficiency of the algorithm may 
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become one of the drawbacks of this algorithm. Additionally, it will be worthwhile to see the 

performance evaluation when implementing and experimenting the algorithm.  
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