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Abstract

Lambda functions have become prevalent in mainstream programming languages, as they are increasingly

introduced to widely used object oriented programming languages such as Java and C++. Some in the

scientific literature argue that this feature increases programmer productivity, ease of reading, and makes

parallel programming easier. Others are less convinced, citing concerns that the use of lambdas makes

debugging harder. This thesis describes the design, execution and results of an experiment to test the

impact of using lambda functions compared to the iterator design pattern for iteration tasks, as a first step

in evaluating these claims. The approach is a randomized controlled trial, which focuses on the percentage

of tasks completed, number of compiler errors, the percentage of time to fix such errors, and the amount of

time it takes to complete programming tasks correctly. The overall goal is to investigate, if lambda functions

have an impact on the ability of developers to complete tasks, or the amount of time taken to complete them.

Additionally, it is tested if developers introduce more errors while using lambda functions and if fixing errors

takes them more time. Lastly, the impact of experience level on productivity is evaluated by comparing the

performance of participants from different levels of experience with one-another. Participants were assigned

one of five levels based on their progress in the computer science major. The five levels were freshman,

sophomore, junior, senior and professional. The professional level was assigned to individuals out of school

with 5 or more years of professional experience.

Results show that the impact of using lambdas, as opposed to iterators, on the number of tasks completed

was significant. The impact on time to completion, number of errors introduced during the experiment and

times spent fixing errors were also found to be significant. The analysis of the difference between the different

levels of experience also shows a significant difference. The percentage of time spent on fixing compilation

errors was 56.37% for the lambda group while it was 44.2% for the control group with 3.5% of the variance

being explained by the group difference. 45.7% of the variance in the sample was explained by the difference

between the level of education. Therefore, this study suggests that earlier findings that student results are

comparable with the results of professional developers are to be considered carefully.
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Chapter 1

Introduction

Programming languages are widely spread over many different domains and are used for a number of different

use-cases. They are the basis on which our modern information society is built with technology as far ranging

as controlling traffic lights, nuclear facilities, space shuttles, the internet, and the smartphone in everyone’s

pocket.

Examples of widely-used programming languages are Java and C++, as they are deployed in a wide

variety of commercial settings. These languages are frequently changed with the hope to improve them and

their usability, effecting developers that use them every day. Along with these modifications come many

effects on the infrastructure built around the languages. Textbooks need to be changed and developers have

to be trained. This can impact development schedules, which has tangible development costs.

Along with trying to avoid excessive costs for programming language features that give no benefit to de-

velopers using a certain language, research on programming language features can also increase the general

understanding of what design choices can improve productivity with programming languages. Research in

software engineering has found that the highest cost factors in software development are development time

and maintenance [Boe88]. This makes it reasonable to assume that improvements in developer productivity

with the chosen programming language might reduce overall software cost as writing and maintaining code

should cost less time. While research focuses on the technical performance of programming languages, such as

compilation and execution speed [ATCL+98, FKR+00, VRCG+99, BS96] and tools for debugging and devel-

opment [KM09, HCIB04], the usability of the programming language itself is only investigated rarely [Han10].

In fact, a survey by Kaijanaho found that only 22 randomized controlled trials on programming language

features were published between 1976 and 2011 [Kai15].

To conduct research on the impact of programming language features on developer productivity, ran-

domized controlled trials can be used, as they provide researchers with a lot of control over the experimental

environment. This enables researchers to study the interaction between the variables of the experiment

closely, which, in turn, enables the researchers to get a detailed understanding of the impact of changes.
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No randomized controlled trials on the topic of lambda functions could be found concerning the design

and usefulness of lambda functions as they were recently introduced in Java 8 and C++11. So, this thesis

will describe a randomized controlled trial to investigate the impact of lambda functions on programmer

productivity to increase the body of evidence on this topic. More specifically, the experiment in this thesis

compares the human productivity difference between lambda functions and iterators for iteration tasks.

Productivity is measured in time to achieve a complete program, in which a program is defined as complete

if it fulfills a set of guidelines measured by unit tests.

As the participants for the experiment, students from the computer science program of the University

Nevada, Las Vegas were recruited. A number of professional developers with more than 5 years of experience

also volunteered. The diversity of participants, in regards to their standing in the academic pipeline, allowed

the experiment to investigate claims made in the literature that the difference between the performance of

students and professionals is small and that results from similar studies with only students as participants

are generalizable to professional developers [SMJ15, HRW00].

The results of this study show that there is a slight, statistically significant, negative impact on the amount

of time the participants took to write a program correctly when using lambdas compared to iterators. This

was also supported when looking at other variables such as the amount of errors the participants encountered

during the experiment and the time they spent in a non-compiling state.

The outcome of the experiment also suggests that there is a significant difference between the different

stages of education and professional developers when it comes to productivity. The professional developers

successfully solved more of the tasks and took less time to develop correct programs than students. This

finding calls the external validity of previous experimental results with students into question.

This thesis is based on an experiment also described in a paper that is going to be published at ICSE

2016 under the same title and, as such, there will be many similarities between the two works.

The rest of this paper is structured as follows: In chapter 2, the reader will be provided with background

information on the design of lambda functions arguments for and against them. Then in chapter 3, infor-

mation on similar work in the field will be given. More information on the design of the experiment can be

found in chapter 4. Results of the experiment will be described in chapter 5 and a discussion of the results

can be found in chapter 6. Threats to the validity of the experiment will be discussed in chapter 7 and future

research ideas will be described in chapter 8. The thesis will finally conclude in chapter 9.

2



Chapter 2

Background

This chapter will focus on what lambdas are and in which context they are investigated in this thesis. First,

the theoretical basis will be described and then the implementation in modern languages will be explained.

2.1 Lambdas

2.1.1 Theoretical Basis

Lambda expressions, or functions, are a programming language construct based on Alonzo Church’s lambda

calculus from 1932 [Chu32], which was used to model theoretical computability. The following will be largely

based on the descriptions of lambda calculus from [Pie02].

A valid λ-expression can either be:

1. a variable, such as x.

2. an abstraction, such as λx.t, where t is another λ-term.

3. an application, such as (x y), where x and y are λ-terms.

A variable, in a modern programming language sense, would be a common variable or parameter.

An abstraction is like a function, method, or procedure definition in a modern programming language.

The λ-abstraction can contain other λ-terms inside of it. A difference between the modern language function

definition and a λ-abstraction is that the abstraction has no name, can only have one parameter, and

is completely untyped. Later variations of the original λ-calculus have added rules for types and other

constructs to expand the possibilities of what can be modelled in λ-calculus. A λ-abstraction with two

parameters could be build by having a second abstraction inside the first one like this:

λx.λy.t

where t is another λ-term. Abstractions translate to first-order functions in contemporary programming

languages, which are function definitions that can be contained in and contain other function definitions.

3



Applications represent the act of calling a function in a programming language and passing a parameter to

that function. The parameter that is being applied can be another λ-term, such as variables and abstractions

or value. Applications can not be passed since they would be evaluated first, unless lazy evaluation is used.

This can also be found in contemporary implementations of lambdas in that lambda function definitions can

be treated like values and be passed as parameters to methods or other lambda functions. It is important

to note that the λ-applications would only apply one parameter at a time, as this is limited by the number

of parameters that λ-abstractions can have. To apply two variables to a function would look like this:

((λx.λy.t a) b)

where a and b are λ-terms. In this, a would first be applied to λx.λy.t by replacing all free instances of x

in λy.t with a and removing the “λx.” part. Then b would be applied to λy.t by replacing all instances of y

in t with b and removing the “λy.” part. One should remember that t, a, and b in this example can always

also be λ-abstractions. These rules are the basis of most functional programming languages such as Lisp,

Scheme, Haskell, and JavaScript.

2.1.2 Lambdas in Object-Oriented Programming Languages

In the context of object-oriented programming languages, lambda functions usually refer to anonymous

functions that can be treated like values and also be defined inside of other functions. As they are treated

like values, they can also be passed to other functions as parameters. Another interesting feature of lambda

functions is that they can refer to names in their surrounding scope.

While the object-oriented language Smalltalk had lambda functions (called blocks) early on, many more

wide-spread object-oriented languages like Java, C++ and C# did not. C++ introduced lambda functions

in C++11 after having a similar feature: function pointers. Java had another feature similar to lambdas in

its anonymous inner classes before introducing lambda functions in Java 8.

Anonymous inner classes, however, are implementations of interfaces or subclasses of other classes and

can require the implementation of multiple methods. They can have their own members like other classes and

they can access the members of the enclosing class. Anonymous inner classes can also access local variables

from their enclosing scope, but only if they are declared as final or must be effectively final. Anonymous

inner classes introduce issues with shadowing, however, which comes from the class having its own scope

in which new declarations shadow declarations from the surrounding scope. Lambdas, which are lexically

scoped in Java 8, do not introduce a new level of scoping and cause and error when an existing variable

would be redeclared. One could argue that the syntax of anonymous inner classes is more verbose than that

of lambda functions, which is not to say that either is easier or harder to work with.

The difference between function pointers in C++ and the newly introduced lambda functions in C++11,

is that the function pointers do not allow to capture the surrounding scope of the application of the function

4



unless references are passed as parameters. Additionally, C++ without lambda functions does not allow for

the definition of functions within other functions.

When the feature was introduced to C++11 and Java 8, in both cases it was claimed to be more intuitive

to use than similar features that can perform mostly the same functionality.1 According to Willcock et

al., lambda functions are “syntactic sugar for defining function object classes” [WJG+06]. They go on to

say that lambda functions must be “significantly less verbose than defining explicit function objects, not

significantly more verbose than explicit loops and clearer and more intuitive than explicit loops.” The C++

designers continue on that “A lambda expression has aspects of a function (it performs an action) and an

object (it has a state). The primary aim is for lambda expressions to serve as ‘actions’ for STL2 algorithms

(the way function objects have traditionally been used) and similar callback mechanisms.”

2.1.3 Definition of Lambda in C++ and Java

A technical definition of the C++11 lambda syntax is defined as:

[cl] (P1 p1, P2 p2, . . . , Pn pn) → t{s1; s2; . . . ; sn}

The cl in the first brackets represents the capture list and can either be a number of variables to capture

from the scope, either as a reference or as a value, or be a & or a = to capture all variables in the scope

as reference or as value, respectively. It can also be left blank to not capture any variables. The element

right after the capture list—(P1 p1, P2 p2, . . . , Pn pn)—represents the list of parameter names and their

types. The t denotes the return type of the function and can be any kind of C++ type. If no return type

is explicitly stated, then the return type is inferred. The arrow is optional if no return type to the function

is given. {s1; s2; . . . ; sn} is a sequence of statements and the last statement of the sequence can be a return

statement. A concrete example in C++ syntax can be seen in code sample 1.

Code sample 1 shows an example without captured scope. The output of this code would be “6”. The

example also shows how the syntax without explicit return type can be used, which also means that the

arrow is not necessary. Additionally, this example shows the function type that was introduced with C++11.

It takes the form function< r(P1, P2, . . . , Pn) > whereas the r is the return type and (P1, P2, . . . , Pn) defines

the parameter types. It defines the type of the variable holding the lambda function and can be substituted

for the auto keyword to use inference.

The Java programming language chose the syntax as follows:

(p1, p2, . . . , pn)→ {s1; s2; . . . ; sn};

where pi is a parameter in form of a variable name and {s1; s2; . . . ; sn} is a list of statements. The last

statement can be a return statement. A specific example of this syntax can be seen in code sample 2. In

1For a more in-depth discussion of these claims see section 2.2.
2Standard Template Library
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function<int (int, int)> func = [] (int p, int q) {

int s = q+p;

return s-p;

};

int a = 5;

int b = 6;

cout << func(a,b) << "\n";

Code Sample 1: C++ lambda function example.

the example, Operation is an interface with a method taking two integers as parameters and returning an

integer and can be seen in code sample 3.

Operation o = (p,q) -> {

int s = q+p;

return s-p;

};

int a = 5;

int b = 6;

System.out.println(o.doOperation(a, b));

Code Sample 2: Java lambda function example.

interface Operation {

public int doOperation(int p, int q);

}

Code Sample 3: Operation interface.

The lambda functions in both of these languages are usable to, for example, provide callbacks for events,

such as for button presses and network messages. They can also be used to create a function that can be

passed to methods that operate on data structures. An example for this could be a method that iterates

over a list of numbers and applies a function to each of the numbers in turn. The function can be provided

as a parameter to the method by the programmer, giving the method more reusability as different functions

can be supplied, which was one of the motivations for adding the feature [Ben13, WJG+06, Sam06].

2.2 Arguments For and Against Lambdas

To get a better view of why lambda function implementation was deemed important enough by Oracle and

the C++ ISO committee to invest the development time into, a literature review was conducted. The aim

was to find arguments for and against lambda functions in marketing materials and other non-peer-reviewed

publications as there was little to be found in the scientific literature.
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2.2.1 Arguments for Lambdas

During the JavaOne technical keynote in 2013, Mark Reinhold, Oracle’s Chief Architect of the Java Platform

Group, stated that lambda expressions are “the single largest upgrade to the programming model ever - larger

even than generics.” Brian Goetz, Oracle Java Language Architect, followed this up with “Programming

well is about finding the right abstractions. We want the code we write to look like the problem statements

it’s trying to solve, so we can look at it and immediately know it’s correct. Java has always given us good

tools for abstracting over data types. I wanted to do better in abstracting over patterns of behavior - that’s

where lambda comes in. . . Lambdas are a nicer syntax, but they are also something deeper. It’s not just a

compiler generating inner classes for you - it uses the invokedynamic feature to get more compact and higher

performance code.” The summary of their claims was that “lambda brings 3 weapons to Java - syntax,

performance and abstraction. . . plus parallelism” [Ben13]. It should be mentioned at this point, that a

study on syntax showed that novice programmers had about as many problems with Java’s syntax as with

a randomly generated language [SS13].

In their document about the implementation of lambda functions in C++, Willcock et al. state that

they think that key libraries of C++ weren’t used as often as they should be, because “The lack of a

syntactically light-weight way to define simple function objects is a hindrance to the effective use of several

generic algorithms in the Standard Library” [WJG+06]. Samko argues in 2006 that “Many algorithms in

the C++ Standard Library require the user to pass a predicate or any other functional object, and yet there

is usually no simple way to construct such a predicate in place. Instead one is required to leave the current

scope and declare a class outside of the function, breaking an important rule of declaring names as close as

possible to the first use. This shows that lambda functions would add a great [sic] to the expressive power

and ease of use of the C++ Standard Library [Sam06].”

Harvey advocates for an extension of the block-based Scratch language to include procedures as arguments

to other procedures which would bring lambda functionality to the language. He states that “these have

proven to be a powerful capability. . . They are useful, for example, as an alternative to recursion or to

looping with index variables when the programmer wants to process all of the elements of a list in a uniform

way” and goes on to say that “by taking key ideas, such as procedures as first class data, from the Scheme

language, we can add only a few features to Scratch and still make it powerful enough to support a serious

introductory computer science curriculum [HM10].”

Lastly, a common argument amongst supporters seems to be that a number of other languages have

implemented the feature already: “Many programming languages offer support for defining local unnamed

functions on-the-fly inside a function or an expression. These languages include Java, with its inner classes;

C# 3.0; Python ECMAScript; and practically all functional programming languages.” Further, claims go

that “anonymous functions within other functions, with access to local variables, are an important feature

in many programming languages” [JFC08].
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2.2.2 Arguments Against Lambdas

The inclusion of lambda functions might be argued against by pointing out that adding new ways to solve

tasks that were already solvable in different other ways does not necessarily improve a language. They

confuse programmers as to which way is the ‘better’ one in a specific case. This might lead to unnecessary

discussions or other wastes of time in a project.

Bjarne Stroustrup, the original designer and implementer of C++, states in a FAQ on his web-page that

the “Primary use for a lambda is to specify a simple action to be performed by some function . . . A lambda

expression can access local variables in the scope in which it is used. . . Some consider this ‘really neat!’;

others see it as a way to write dangerously obscure code. IMO, both are right [Str14].” This brings up the

point that lambda functions could lead to hard-to-read and complex code.

In a blog post called “The Dark Side of Lambda Expressions in Java”, the author argues that adding lamb-

das to Java can create a bigger divide between the Java code and how the JVM byte-code was formed [Wei14].

This can possibly lead to a greater difficulty in understanding stack traces, which can lead to harder-to-debug

programs.
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Chapter 3

Related Work

As argued before in section 2, studies on the effect of programming language constructs on human developers

have been rare. This section will show the results of a number of literature surveys on the topic as well as a

number of randomized controlled trials that have influenced the design of this experiment.

3.1 Literature Surveys

To find studies on empirical evidence about lambda functions, several literature surveys have been consulted.

Studies by Kitchenham et al. and Zhang et al. do not mention any research on lambda functions or related

topics [KPBB+09, ZBT11]. A literature survey on the existence of empirical programming language construct

studies does not mention any relevant studies either [Kai15]. A systematic review of different academic

workshops about the impact of programming language design on developers by Stefik et al., which coded

the quality of evidence in the reviewed papers, found no papers about lambdas either [SHM+14]. A similar

review of the ICFP and OOPSLA venues conducted internally for the publication of this experiment did not

find relevant studies with sufficient evidence standard.

3.2 Repository Mining

Another methodology to research the usage of programming language features is the use of repository mining.

That is, analyzing large amounts of code and the change of code over versions using the data found in version

control systems—also known as source control management tools—such as SVN1, Git2, or Mercurial3. This

is most easily done by analyzing large numbers of open-source projects as they are easily available. Such

studies can especially give a good picture of how the adoption of newly introduced features is progressing.

One example for such a study can be seen in Parnin et al.’s research on the adoption of generic types in

1https://subversion.apache.org/
2https://git-scm.com/
3https://www.mercurial-scm.org/
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the Java language [PBMH11], in which it is shown that this relatively newly introduced feature did not

meet much adoption in open source projects. Other, similar, studies can be seen in [RPFD14] and [NF15].

While these types of studies can provide researchers and language designers with great information about

the impact of programming language constructs on the development process and source code, results can

only be attained after a change was made to the language and the developers of the projects under analysis

had a chance to adopt the new feature. This means this methodology is can only be used after worldwide

deployment, which makes it less useful when trying to determine if a feature should be implemented.

3.3 Research on Programming Language Constructs

Experiments on Syntax: In an attempt to learn more about the effect of programming language syntax

the researchers Stefik et al. [SS13] ran 4 experiments. In an experiment with 196 students, they investigated

which programming language syntax constructs are most intuitive. They found that familiarity with the

C++ programming language correlated with increased rating for how intuitive C++-style programming

language syntax is, suggesting that a rating of intuitiveness from an experienced programmer might be

biased. Non-programmers rated words higher that are common in English and describe the purpose in a

literal way. One example for this was the finding that “repeat” was rated higher than “for” for iteration

tasks.

Additionally the researchers analyzed how accurately programming novices could learn different pro-

gramming languages in a limited time-frame. The accuracy of the programs written by the students was

rated. This showed that static type annotations were problematic for novices and that braces, parentheses,

and semicolons in the languages tended to cause errors. It was also found that accuracy was higher if the

language under test was using syntax that was rated as more intuitive.

Studies focusing more on errors were performed by Denny et al. [DLRTH11, DLRT12], who found that

the most common errors are “Cannot resolve identifier”, “Type mismatch”, and “Missing ;”. Petersen et

al. [PSV15] found that 86% of the errors in C code they analyzed were linker errors and undeclared identifiers,

as well as missing semicolons and other syntax mistakes. A similar analysis with Python code found that

73% of the errors encountered where syntax errors. An analysis of Java code showed that more than 70%

of the errors found were some sort of error related to syntax. Another study on errors in student code was

conducted by Altadmri and Brown [AB15] and found that other than mismatched parentheses and brackets,

semantic and type errors are the most common kinds of errors. While the results of these studies do not

completely agree on what type of error is most common, they show that students are impacted heavily by

the syntax and semantics of a language.

Static Versus Dynamic Type Systems: An experiment by Gannon [Gan77] investigated how many

errors programmers make when using typed languages compared to untyped languages. He found that

statically typed programs were less error-prone than their untyped counterparts.
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A study about how type declarations are used in Groovy by Souza and Figueiredo [SF14] found that

types are more often used in public methods than in private ones, that types are less often used in tests and

scripts and that they are less often used in files that are changed often over the course of a project. Further,

they found that developers with experience in developing with dynamically typed programming languages

tend to use fewer types in their programming than developers who only used statically typed languages.

A randomized controlled trial by Kleinschmager et al. [KHR+12] found that static type systems help

development time over dynamic type systems in unfamiliar code. The experiment also found that there is an

advantage when using statically typed languages over dynamically typed languages when fixing type errors.

The study was later replicated with code completion in IDE’s by Petersen, Hanenberg and Robbes [PHR14].

Another study found in 2014 that static type systems have a positive impact on development time when

using documented APIs [EHRS14].

A study using the Dart programming language by Samuel Spiza found that the use of type names helps

in the use of APIs, even if the type checker is disabled [SH14]. The study also found that this is only true

as long as the type annotations stay correct and that a wrong annotation can cost participants extra time.

Finally, a paper on the use of generic types in Java utilized a randomized controlled trial to test if there is

a difference between using generic types and raw types when using unfamiliar APIs. The researchers found

that generic types seem to give an advantage, but extending class structures such as the strategy pattern

was significantly harder when using generics than when using raw types [HH13]

Other Studies: Rossbach et al. [RHW10] found in a study about transactional programming that it

was perceived as harder by the participants when it was compared to coarse-grained locks and slightly easier

when it was compared to fine-grained locks. Analysis of the errors made by students found that participants

of the experiment introduced fewer errors when they used transactional memory, as opposed to locks.

A series of experiments by Daly et al. [DBM+96] found that a program with a class structures with an

inheritance depth of 3 were quicker to maintain than an identical program that was flattened, the effect

did not hold for inheritance structures with a depth of 5 compared to a flat program. A replication by

Cartwright [Car98] found the opposite to be true. A further study of the topic more focussed on understand-

ing than changing by Prechelt et al. [PUPT03] found that maintenance was faster for programs with less

inheritance depth. Prechelt et al. go on to say that their findings in combination with the previous results

suggest, that inheritance depth might not have an influence on maintenance effort and that the number of

methods that participants have to understand is a better predictor.

3.4 Programmer Experience

Siegmund et al. [SKL+14] evaluated ways that programmer experience is measured in controlled experiments.

They found that the most used measurement was the number of years programmers had spent programming.

Others used the level of education and self-estimation as well as other means. They also found that many of

the publications covered in their literature review did not control for the level of experience of programmers or
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did not specify how it was done. In an experiment with questionnaires and code-evaluation tasks, Siegmund

et al. found that self-evaluation questions from the questionnaires seemed to correlate well with the number

of correct answers in the code-evaluation tasks. Especially self-evaluation in respect to students comparing

themselves to classmates and in respect to their experience with logical programming languages were found

to be good estimates for programming experience in a student population.

Research by Crk et al. [CKS15] found that programming expertise could be measured using EEG. In

their study, participants of different levels of a four year college curriculum had to solve programming tasks.

The class levels correlated with measured brain waves. Interestingly, the experiment found that students

with class level 24 performed the best when it came to correctness while class level 4 had the second best

correctness. The researchers suggest that this result might be explained with the heavy focus on programming

skill and the Java programming language around the point in the curriculum students are in classified as

level 2. Fritz et al. [FBM+14] have found that perceived task difficulty for developers can be predicted using

eye-trackers and other psycho-physiological measures.

On the topic of comparison between students and professionals, a study by Höst et al. [HRW00], inves-

tigated the difference between the performance of students and professionals when rating the importance of

factors that contribute to the lead-time of a software engineering project. The study had 26 students and

18 professionals. The researchers conclude that there is no big difference between students and professionals

in that sort of rating task and state that this probably holds true for masters students of computer science

in their last year.

Another study by Salman et al. [SMJ15] investigated the difference in code quality, measured by a number

of different code metrics, between students and professionals. The quality metrics did not include if the code

runs or works correctly. The programming experiment involved using test-last and test-first development.

Seventeen graduate students were compared to 24 professionals. The study found that there was a difference

in quality between students and professional developers when it comes to test-last development, but that

there was no difference in the test-first development tasks. The researchers harbor doubt that the small

effects they found might be due to differences in tasks the participants worked on. They conclude that there

is no difference between students and professionals as long as the topic is new to both groups and that the

test-first development differences show that experience with a topic makes a significant difference.

Research by Youngs [You74] used an experiment with 30 students and 12 professionals to investigate

which kinds of errors are common when the participants work on a number of programming tasks and how

the amount of errors changes while programmers are working on the task. Programming languages used in

this experiment were Algol, Basic, Cobol, Fortran, and PL/1. Youngs found that novices committed more

errors on average than their professional counterparts. The average amount of errors between the two groups

was the same for the first run of the program.

4Approximately year 2.
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A study by Wiedenbeck [Wie85] found that in an experiment, in which students who were in a pro-

gramming class on Fortran and professionals using Fortran were asked to evaluate if code samples shown to

them on a screen were correct or not, that professionals were significantly more accurate and faster in their

decisions than the students. In a second experiment described in the same paper, the same populations had

to evaluate if a description was fitting a given code sample. Differences between the two groups were once

again significant in favor of the professional programmers.
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Chapter 4

Experiment

The experiment described in this thesis recruited participants to solve a number of programming tasks. Each

participant was assigned to one of two groups. The first group had to use the lambda function language

feature to solve the tasks while the second group had to use the iterator design pattern instead. This

second group functioned as the control group since the iterator design pattern is a commonly used way to

do iterations in programming languages—such as C++—and could be called the “normal” way to go about

solving such tasks. The focus on iteration in this experiment was chosen because of claims that iteration

tasks are easier using the new feature [HM10]. Further claims—such as that the use of parallel programming

is easier in certain cases[Ben13]—were not investigated due to the limited nature of a randomized controlled

trial. C++ was chosen for the experiment as it is the language that is most commonly learned at UNLV,

where the study was planned to recruit most heavily.

4.1 Hypotheses

This experiment aimed to find evidence on the impact of lambda expressions in iterating a data structure

compared to iterators. It aims to answer the following null hypotheses:

H01: There is no impact on the number of tasks developers can correctly solve using lambda expressions

compared to using iterators in C++.

H02: There is no impact on the time it takes developers to correctly complete programming tasks using

lambda expressions compared to using iterators in C++.

H03: There is no impact on the number of compiler errors developers have when they complete program-

ming tasks using lambda expressions compared to using iterators in C++.

H04: There is no impact on the percentage of time developers spend in a non-compiling state when using

lambda expressions compared to using iterators in C++.
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H05: Experience level, defined by the position an individual has within an academic pipeline or profes-

sional status, has no impact on developer performance under any condition.

We can not reject a null hypothesis unless the difference between the two groups of data is significant.

The statistical difference level often chosen in programming language research is 5%. This is the typical

amount of statistical significance used in other sciences such as psychology and sociology [LFH10, 34].

If the groups are significantly different then the null hypothesis is rejected. This means that the opposite

of the null hypothesis is true with a confidence in the results of at least 95%, depending on the p-value.

4.2 Participants

The student-participants for this study were recruited in the computer science department of the University

of Nevada, Las Vegas. We recruited students from the classes CS202, CS302, CS326 as well as CS460 and

CS473. In exchange for the effort, the students were awarded extra credit. The amount of extra credit was

based on what the individual instructors were willing to agree to and ranged from 1 to 2%.

Professional developers were also recruited by asking for volunteers on a mailing list that are interested

in functional programming as well as on twitter. Interested individuals were encouraged to get into contact

with the proctor to arrange for a time to do the experiment.

Overall, 54 participants were found. Of these, 10 were freshmen, 8 sophomores, 17 juniors and 7 seniors

as well as 12 professionals. The categorization of which year the student participants were in was made

based on which class they were enrolled in at the time of the experiment.

The experiment was conducted at the beginning of a semester and freshmen were enrolled in their second

programming class, CS202, or Computer Science II, which concerns itself, according to the official enrollment

information, with “Data structures and algorithms for manipulating linked lists. String and file processing.

Recursion. Software engineering, structured programming and testing, especially larger programs”. A re-

quirement for this class is to take CS135, also known as Computer Science I, which is “Problem-solving

methods and algorithm development in a high-level programming language. Program design, coding, debug-

ging, and documentation using techniques of good programming style. Program development in a powerful

operating environment.” It seems reasonable to assume that students of this level have a basic understanding

of programming.

The sophomores were enrolled in CS302, Data Structures, which is described as “Introduction to sequen-

tial and linked structures. File access including sequential, indexed sequential and other file organizations.

Internal structures including stacks, queues, trees, and graphs. Algorithms for implementing and manipu-

lating structured objects. Big-O-notation.” The requirement to take this class is to have finished CS202 and

a math class. The students in that class did not cover the topic of iterators or lambdas in class at the time

of the experiment.
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Juniors were enrolled in CS326, Programming Languages. The description of this class states that the

following is covered: “Design, evaluation and implementation of programming languages. Includes data

types and data abstraction, sequence control and procedural abstraction, parameter passing techniques,

scope rules, referencing environments and run-time storage management. Study and evaluation of a number

of current programming languages.” More importantly, students taking this class must have taken and

completed CS302, have completed CS219 or another class on computer organization and have advanced

standing.

Seniors were enrolled in either CS460, Compiler Construction, which is described to cover “Current

methods in the design and implementation of compilers. Construction of the components of an actual

compiler as a term project.”, and requires the completion of CS326, Programming Languages, and CS456,

Automata and Formal Languages. Or they were enrolled in CS473, which is a practical class on software

engineering and requires another class on software engineering to be taken before it. In both cases, it

is reasonable to assume that the students are close to the end of their computer science curriculum and

must have gained considerable amounts of knowledge in a variety of computer science topics, including

programming.

4.3 Study Protocol

Before the experiment was conducted, a checklist was created, so that the experiment was conducted in the

same way for every participant. This checklist was used on every student-participant in the study.

The professional participants were distributed throughout the US and Europe and to include them in the

experiment the steps were changed slightly as the experiment was conducted using Skype1.

4.3.1 Recruiting

To ensure the same conditions for the participants, they were treated as similarly as possible from the start.

The experiment advertisement was read in the five classes during normal class hours while copies of it were

handed around the classroom. Then, interested students had and opportunity to ask questions about the time

commitment, the reward in form of extra credit and the room the study would happen at, as well as inquiries

about the possible dates and times when they could come in. Questions about the methodology and content of

the experiment were not answered to avoid the good subject effect and compensatory rivalry [NM08, CC05].

After and during the questions, interested students were able to register for a time-slot on a piece of paper

that was handed around.

It should be noted that every student was able to earn the extra credit even if they did not participate in

the experiment by sending the proctor an essay about a computer science topic of their choice. The length

of the essay had to be a page per possible credit percent earnable as extra credit. This was implemented to

1http://www.skype.com/en/
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allow students to earn the extra credit without having to participate in the experiment if they chose not to.

The instructors of the participants received a list from the proctor of the experiment about who earned the

credit.

For the professional developers, an e-mail was sent by professor Stefik on a functional programming

mailing list. Professor Stefik also sent out a tweet about the experiment on his personal Twitter account,

which was forwarded by other prominent persons in the programming community to ensure that as many

people as possible would read and reply to it. Interested developers answering either the tweet or the e-mail

by sending a direct e-mail to the proctor would be sent the same advertisement information as the students

in the classes had received.

4.3.2 Room setup

To prepare the room for every time slot prospective participants had registered for, the needed computers

were prepared. The setup of the workstations was chosen in a way that made it hard for participants to be

distracted by the screens of other participants, by creating distance between the participants’ workstations.

Furthermore, the workstations had to be set up to provide the correct environment to the participants.

This was done by making sure that VirtualBox2 was installed on each computer, as well as making sure that

the correct virtual machine was prepared on it. Were these conditions met, the proctor made sure to reset

the working environment inside the virtual machine to ensure no information from previous participants

was interfering with new participants. Finally, the proctor made sure the virtual machine was maximized

on the screen and that the task folder for each work station was opened for the right group. Then, the

proctor distributed a number of print-outs at each workstation. One print-out was a number of pages of a

code sample, depending on the group the workstation was assigned to. The second sheet was distributed

to inform the participants about the process and their rights. This was an important document as it had

to be signed, else the participants could not take part in the experiment. Another print-out was the study

protocol which was to be read by, and to, the participants. The last print-out was a questionnaire about the

previous experience of the participants.

Since the professional participants from all over the world were not able to attend the lab time-slots

due to their geographic distribution, the setup of the experiment had to be done differently for them. To

ensure smooth running of the experiment in the time the participants had allotted to partake, the proctor

helped them prepare the necessary software environment beforehand communicating via e-mail and instant

messaging. They were instructed to download VirtualBox, or a similar tool like VMWare, and import the

.ova file which contained the necessary virtual machine image for the experiment. They were also asked

to test if the virtual machine would boot up without error, but not to look at any of the content of the

virtual machine. They were furthermore asked to install Skype, if they hadn’t already, and to register an

2https://www.virtualbox.org/wiki/Download

17



account if needed. The proctor prepared a Google Drive3 folder for each participant. The folder contained

the documents for the specific group of the professional participant, like the ones given to the student

participants as print-outs.

4.3.3 Operation

The participants were assigned to workstations based on order of arrival. During the time of arrival, the

proctor signed off the participants that showed up to make sure they would get their promised extra credit.

To ensure as little distraction as possible, the proctor waited for the arrival of all participants before starting

the experiment. When all participants were present and seated, the proctor instructed the participants to

read and understand the informed consent sheet and if they agreed, to sign it. When all participants had

either signed the consent form or left the room, the proctor instructed the participants to read the study

protocol, which informs the participants about the specifics of how the experiment was going to work. To

ensure the participants read and understood the study protocol, the proctor read the protocol to them

and asked to affirm their understanding. The participants were then to study the code samples, which

were assigned to each work station, for 5 minutes. After that, they were instructed to start the first task.

Participants kept the samples and were allowed to refer back to them at any point.

The professional developers were called on Skype at the agreed-upon time. The screen sharing option

was used so that the proctor could see what the participants were doing. Then they received access to the

Google Drive folder. They were asked to sign the consent form electronically and e-mail it to the proctor.

Then they were read the study protocol and encouraged to follow along. After that, they were also asked to

read the code sample for 5 minutes. When the five minutes were up, the participants were asked to start the

first task. The proctor watched the participants remotely using the screen sharing function to make sure the

participants were following the rules. Especially to prevent them to use copy&paste from the code sample if

they were looking at it on their computers instead of printing it out as that would have been an action the

student-participants could not take.

Each task had a number of automatic tests to ensure that a task was completed correctly. If a participant

felt like the task was done, they could click a button and have the program test their solution, which would

either result in a pop-up informing them that they are done or in the output of the compiler and test

environment being displayed to them. In case they were not done yet, they were able to make further

changes to the program and try again. In case they were done, they were to dismiss the dialog and close the

IDE to stop the task and move on to the next one. If there was no further task for them to do, they were

done and were asked to fill out the questionnaire that was provided to them. After this they were no longer

needed and were asked to leave.

Due to ethical and practical considerations, the design of the experiment took into account that some

of the participants might not be able to solve a task in a practical time frame. To address this issue, a

3https://www.google.com/drive
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maximum time per task was put into place, so that participants which had spent 40 minutes on a single

task were asked to move on to the next one. The task was then marked as not completed. This time-frame

was decided upon based on data from a pilot-study using the same tasks. The decision to add a maximum

time did, however, add an upper limit to task times, which did influence the analysis of the results. One

can argue that the limit added a conservative view to the analysis, as waiting for the tasks to be completely

done might have increased the differences between the groups even more.

4.4 Tasks

Each participant was asked to solve 4 tasks. Each task was provided as a program with the code inside

a single method missing for it to correctly run. The participants’ responsibility was to fill in that method

to complete the program and finish the task. A description of what the method was supposed to do was

provided to the participant as a comment above the method signature. The file they were supposed to work

in was opened automatically upon starting the task.

The tasks also often contained other source and header files to provide the participants with more context

and enable them to solve the task. For example, a task might have all programming logic contained in its

own source file, but its header and a source and header file for a data type that was also used in the logic

was provided in the project folder as well. The participants could look at these other files at any time during

the task.

The very first task was the same between both the groups, as it was the warm-up task. This first task

involved using a simple loop to iterate over a vector object to get the participants used to the environment.

This was especially important to get them used to the procedure of starting the task, solving the task and

using the tests to confirm that the task was correct by pressing the “Run/Proceed”-button. The second task

was the first task specifically for the assigned group.

Task two, three and four were focusing on using the group-specific feature to solve the task. The feature

for each group and its use was shown in the code sample that the participants of that group received at the

beginning of the experiment. The comments in the tasks asked the participants explicitly to use the feature

that was shown in the code sample, so that they would not improvise a solution using other means. The

tasks were always provided in the same order.

4.4.1 Warmup Task

This is the first task any participant had to solve. This task’s purpose was to get the participants used to

the environment and reduce impacts of the environment on the other tasks’ measurements. Additionally,

the hope was that participants would be able to refresh their knowledge of how to use C++. Thus, every

participant had this same task first, independent from which group they were in. In it the requirement is
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#include "task.h"

using namespace std;

/**

* Please implement a loop which puts all elements of numbers into the

* retVal variable.

*/

vector<int> getValues() {

vector<int> numbers;

numbers.push_back(1);

numbers.push_back(5);

numbers.push_back(65);

numbers.push_back(21);

vector<int> retVal;

//Implement solution here

// --------

int index = 0;

while (index < 4) {

retVal.push_back(numbers[index]);

index++;

}

// --------

return retVal;

}

Code Sample 4: Warmup Task.

only to use a simple loop. The participants are deliberately informed which content is in the vector they

have to use.

A possible solution to this task was to use a counting variable and a while loop, or alternatively a for-

loop. Then the participants had to use the push back() method to put the values into the retVal vector.

A solution as found in the results of the experiment can be seen in code sample 4.

4.4.2 Task 1

This task was the first task in which the participants had to use the given programming construct. In this

task the participants had to use the given marketBasket object to achieve their task.

For the iterator group, the expectation was that the participants use the iterator object that they

could call from the marketBasket object using the begin() method. For a look at the marketBasket object

provided to the participants of the group see code sample 5. When the participants acquired the iterator,

they could use the hasNext() method as the loop condition in a while or other loop and add the price of

20



#include "marketBasket.h"

using namespace std;

void marketBasket::insert(string itemName, float itemPrice) {

item newItem;

newItem.name = itemName;

newItem.price = itemPrice;

items.push_back(newItem);

}

marketBasket::iterator::iterator(marketBasket *owner) : owner(owner), index(0) {

}

void marketBasket::iterator::next() {

index++;

}

bool marketBasket::iterator::hasNext() {

return owner->items.size() - index > 0;

}

item marketBasket::iterator::get() {

return owner->items[index];

}

marketBasket::iterator marketBasket::begin() {

return marketBasket::iterator(this);

}

Code Sample 5: Iterator group marketBasket.

the current item to the retVal variable that was provided to them. The last important step was to iterate

to the next item using the next() method on the iterator, either in the body of their loop or inside the loop

header of a for loop. An example of how a participant chose to solve the task can be seen in code sample 6.

The participants of the lambda group were provided with a different marketBasket object as can be

seen in code sample 7. The participants had to use iterateOverItems() by providing it with a function with

the return type void and an item as argument. Examples of how to use lambda functions were provided in

the code sample handout. The participants had to adapt the correct argument type, however, to get the task

complete. This means they had to understand which part of the function<void (person)> function type

of the sample code denotes the type of the argument. The type they needed was function<void (item)>

which was also visible in the marketBasket class, as it is the type that iterateOverItems expects. A

challenge in this task was also to recognize, that the lambda function would be able to use a variable from

the scope it was defined in. This was also visible in the code sample. With that knowledge, participants

could use the retVal variable directly and add the prices to it in the function they defined. A working

example from how a participant solved the task can be found in code sample 8.

21



#include "task.h"

#include "marketBasket.h"

using namespace std;

/**

* Please write a program that calculates the sum of the prices of

* the items using the same technique as seen in the sample code.

* Assign the result to retVal.

**/

float getSum(marketBasket mb) {

float retVal = 0;

// Implement solution here

// --------

marketBasket::iterator iter = mb.begin();

while(iter.hasNext()){

retVal+=iter.get().price;

iter.next();

}

// --------

return retVal;

}

Code Sample 6: Task 1 iterator group.

Another part of the syntax of defining the lambda functions, the [&], which defines how the scope is

captured, was deliberately shown in the code sample the same way as it had to be used to prevent the

participants from getting confused over this part. It was expected that this experiment would be run on

a diversity of different levels of education and thus it was deliberately decided to avoid additional scoping

details.

4.4.3 Task 2

This task was the second one in which participants had to use the specific programming language construct.

This task asked the participants to find the lowest and the highest value in the given object and to return

their sum (lowest+ highest).

The iterator group had to use their marketBasket, which was the same as the one used in task 1 (code

sample 5), to solve the task. The participants were provided with two variables of type float, with one being

assigned to the lowest possible float number and one being assigned to the highest possible float number,

to make it simpler for the participants to go about finding the highest and lowest value by comparing with

these values.

The iterator group used the same approach in going through the objects values as before. They had to

get the iterator with begin(), use hasNext() as their loop condition and go to the next item using next().

For this specific task, they could just use two if-statement in the loops body to compare the value of the
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#include "marketBasket.h"

using namespace std;

void marketBasket::insert(string itemName, float itemPrice) {

item newItem;

newItem.name = itemName;

newItem.price = itemPrice;

items.push_back(newItem);

}

void marketBasket::iterateOverItems(function<void (item)> f) {

for (vector<item>::size_type i = 0; i < items.size(); i++) {

f(items[i]);

}

}

Code Sample 7: Lambda group marketBasket.

current item to the highest variable, which was initialized to the lowest float possible, and if the item’s price

was higher than the current value of highest, they could assign the item’s price value to be the new value of

highest. Similarly they could do this with lowest. Because of how the tests were set up, the if-statements

could not be mutually exclusive. One of the test-cases tested with just one item expected the final value to

be this item’s value multiplied by two as the result. With mutually exclusive if-statements, the tests would

fail. The return statement of the method was given. One solution from the experiment can be seen in code

sample 9.

The lambda group, similar to the iterator group, had to use their marketBasket class (code sample 7).

The solution to this task is very much analogous to the one for the iterator group. The participants just

had to create a lambda function as seen in the first task and use the same structure of if-statements as the

iterator group. A complete solution of this task can be seen in code sample 10.

4.4.4 Task 3

Task 3 was the last task for each participant and the third in which they had to use the given programming

language feature. The task asked the participants to find the items in the marketBasket that have a price

below 30 and put them into the under30 vector using the push back() method. The iterator group had

to use the same approach as in the previous two tasks. The participants would have to get the iterator with

the begin() method and use the hasNext() method as the loop condition. Then, the participants could

just use an if-statement to check if the price of the current item is below 30. If that was true, they could use

the push back() method to add the item to the under30 vector. Then they needed to iterate to the next

item using next(). An example solution for this task can be found in code sample 11.

The lambda group had to create a lambda function of type function<void (item)> and declare the

function to compare the current item’s price with 30 and, if it was 30, use the push back() method on
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#include "task.h"

#include "marketBasket.h"

using namespace std;

/**

* Please write a program that calculates the sum of the prices of

* the items using the same technique as seen in the sample code.

* Assign the result to retVal.

**/

float getSum(marketBasket mb) {

float retVal = 0;

// Implement solution here

// --------

function<void (item)> summer = [&] (item it) {

retVal += it.price;

};

mb.iterateOverItems(summer);

// --------

return retVal;

}

Code Sample 8: Task 1 lambda group.

under30 to insert the item into the given variable. Then the iterateOverItems() had to be called with

the defined lambda function. An example of this can be seen in code sample 12.

4.5 Experiment Environment and Data Recording

To make the digital part of the experimental environment as similar as possible between different computers

and operating systems, it was decided to use a virtual machine. This way, it was possible to conduct the

experiment on a number of different systems and still have largely the same environment for all participants.

This helped especially with the participants that were not able to physically visit the lab in which the

experiment was conducted in and had to use their own computers to take part in the experiment.

Ubuntu was chosen as the operating system of the virtual machine, because it is an easy to set up Linux

system that gives participants a more familiar feeling to Windows and Mac OSX systems. Also, the intended

development environment for the experiment was known to run well on Ubuntu.

The integrated development environment (IDE) of choice was a modified Eclipse installation. It was

decided to use a very simplified system without any supporting features for software development, such as

code completion and in-line error display, to give all of the participants the same experience. This way,

participants with experience in using IDEs, or more specifically the Eclipse IDE, would not be faster than

other participants because they know keyboard shortcuts for the IDE’s features that others didn’t know or

weren’t as familiar with.
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#include <float.h>

#include "task.h"

#include "marketBasket.h"

using namespace std;

/**

* Please write a program that calculates

* the sum of the lowest and highest item using

* code similar to the sample code.

* FLT_MIN is the minimum value for a float.

* FLT_MAX is the maximum value for a float.

**/

float getLowestHighestSum(marketBasket mb) {

float highest = FLT_MIN;

float lowest = FLT_MAX;

// Implement solution here

// --------

marketBasket::iterator iter = mb.begin();

while(iter.hasNext()) {

if(iter.get().price > highest)

highest = iter.get().price;

if(iter.get().price < lowest)

lowest = iter.get().price;

iter.next();

}

// --------

return highest + lowest;

}

Code Sample 9: Task 2 iterator group.

This resulted in the IDE being stripped down to its most basic functions. It only had a very basic text

editor with the usual text editing functionality, such as typical writing and editing as is common in other

visual text editing tools, saving the file, undoing changes and redoing changes. Features like code completion

or automatic error highlighting were not available in the IDE. The IDE also had a project view, which lists

all relevant files to the project in a narrow window on the left-hand side of the screen. This list was modified

so that irrelevant files would not show up, such as build.xml or test files. This was done to not distract the

participants from focusing solely on programming. The only visible files were the source code and header

files that were important for solving the task.

Most of the buttons that are typically above the editor view of the Eclipse IDE were removed and the

IDE only had a button that said “Run/Proceed” that would compile the project and run the automatic tests

against the last saved version of the program to see if it was complete. To make the compilation as flexible

as possible for different occasions, the button triggers a script to run all the tasks needed to run compilation
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#include <float.h>

#include "task.h"

#include "marketBasket.h"

using namespace std;

/**

* Please write a program, which calculates

* the sum of the lowest and highest item using

* code similar to the sample code.

* FLT_MIN is the minimum value for a float.

* FLT_MAX is the maximum value for a float.

**/

float getLowestHighestSum(marketBasket mb) {

float highest = FLT_MIN;

float lowest = FLT_MAX;

// Implement solution here

// --------

function<void (item)> myFunc = [&] (item i){

if(i.price < lowest){

lowest = i.price;

}

if(i.price > highest){

highest = i.price;

}

};

mb.iterateOverItems(myFunc);

// --------

return highest + lowest;

}

Code Sample 10: Task 2 lambda group.

and testing. The script invokes the clang compiler with C++11 arguments to compile the sources and then

uses Googletest test-cases to test the programs of the participants. The output of the compilation and the

test-cases was saved to a file. This output was printed from the file to the console window at the bottom of

the IDE, as is typical. The menus of the IDE were also limited in functionality.

This limited IDE then was extended to save logs of the programmers’ behavior while it was running, so

that we could measure programmer behavior and the time it took the participants to complete a task. The

IDE wrote a log entry every time it was started and when a task was completed successfully, which was

triggered by the automatic tests passing. These log messages were written into a hidden file in the project

folder and included time-stamps, so that the difference of the time-stamps could be used to calculate the

time to completion.

The IDE also logged events for when participants switched between viewing different files. This was done

to see if the switching between files was correlated with overall time to completion. Additionally, the IDE

created zip-archived snapshots of the project environment every time the participants would try to run their
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#include <float.h>

#include "task.h"

#include "marketBasket.h"

using namespace std;

/**

* Please write a program that returns all the items in

* marketBasket with a price under 30 in a vector<item> using code

* similar to the sample code.

**/

vector<item> getAllUnder30(marketBasket mb) {

vector<item> under30;

// Implement solution here

// --------

marketBasket::iterator marketIter = mb.begin();

while(marketIter.hasNext()){

if (marketIter.get().price < 30)

under30.push_back(marketIter.get());

marketIter.next();

}

// --------

return under30;

}

Code Sample 11: Task 3 iterator group.

code. This enabled us to later extract information about their progress over the span of the experiment.

These zip-archives were named with a time-stamp of the time of creation and also contained the output of

the last compilation.

Additionally, we also used the software recordmydesktop to record a video of the participants’ screens

for each task. This way we were able to refer back to these videos if we found any problems with the data.
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#include <float.h>

#include "task.h"

#include "marketBasket.h"

using namespace std;

/**

* Please write a program that returns all the items in

* marketBasket with a price under 30 in a vector<item> using code

* similar to the sample code.

**/

vector<item> getAllUnder30(marketBasket mb) {

vector<item> under30;

// Implement solution here

// --------

function<void (item)> find = [&] (item i){

if(i.price < 30)

under30.push_back(i);

};

mb.iterateOverItems(find);

// --------

return under30;

}

Code Sample 12: Task 3 lambda group.
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Chapter 5

Results

To investigate if the hypotheses are true, the data collected in the experiment were evaluated using descriptive

and inference statistics.

5.1 Demographics

Age Programming Experience C++ Experience
Level of Education N Mean SD Mean SD Mean SD
Freshman 10 23.60 6.95 2.05 1.55 0.85 0.24
Sophomore 8 23.00 6.57 2.31 1.16 1.69 0.70
Junior 17 24.06 3.73 3.28 1.66 2.44 0.75
Senior 7 27.71 5.50 5.57 3.36 4.29 2.29
Professional 12 31.25 3.70 14.00 5.80 3.42 4.85
total 54 25.89 5.88 5.59 5.60 2.49 2.64

Table 5.1: Age and experience of participants by level of education.

Of the 58 participants that participated in the experiment, 11 identified themselves as female (18.9%). 4

results had to be excluded from the analysis of the results. Of these, three were not following the protocol

as instructed and therefore did not produce any usable data. One participant’s data was deleted by accident

while being transferred from the experiment environment. Of the usable participants, 42 were students of

the University of Nevada, Las Vegas, while the 12 remaining were professional developers. The students were

divided as follows: 10 were freshmen, 8 sophomores, 17 juniors and 7 seniors, according to our classification

(see 4.2). The questionnaire revealed an average age of 25.89 years (SD = 5.88) overall. The freshmen had

an average age of 23.60 years (SD = 6.95), while the sophomores had an average age of 23.00 years (SD =

6.57) and the juniors had an average age of 24.06 years (SD = 3.73). The Seniors had an average age of

27.71 years (SD = 5.50) and the professionals had an average age of 31.25 (SD = 3.70).

The participants were asked in the questionnaire how much programming experience they have. Overall,

the participants had a mean programming experience of 5.59 years (SD = 5.60). The freshman participants
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Figure 5.1: The percentage of tasks completed by participants at each experience level.

reported a mean experience of 2.05 years (SD = 1.55), the sophomores reported 2.31 years (SD = 1.16). The

junior participants reported to have 3.28 years of experience on average (SD = 1.66) and the seniors average

of the reported experience was 5.57 years (SD = 3.36). The highest reported programming experience was

by the professionals with a mean of 14.00 years of experience (SD = 5.80).

Additional to the general programming experience with any kind of language, the questionnaire explicitly

asked about the experience with C++ as that was the language being tested. The overall average of

experience with C++ was 2.49 years (SD = 2.64). The mean experience among freshmen was 0.85 years

(SD = 0.24), the sophomores had an average experience of 1.69 years (SD = 0.70). The juniors reported

average experience of 2.44 years (SD = 2.44) and the seniors reported a mean of 4.26 years (SD = 2.29).

Finally, the professionals reported a mean experience of 3.42 years (SD = 4.85). An overview of these data

can be found in table 5.1.

5.2 Completion of Tasks

The first variable under consideration is the number of successfully completed tasks. While the design of the

experiment expected all participants to complete the tasks, not all were able to do so. This is especially

pronounced in the lambda group as can be seen in figure 5.1. In the graph, it can be seen that, while the

freshmen in the experiment could at least sometimes solve the tasks in the iterator group, not one of the

participants in the lambda group was able to solve a single task. The issue is not as severe with the higher

levels of education in the study, as can be seen when looking at the sophomores, juniors, and seniors. These
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Task 1
Education Group N min max mean SD

Freshman
Iterator 6 284 2400 1914.83 859.90
Lambda 4 2400 2400 2400.00 0.00

Sophomore
Iterator 3 1285 2400 1714.67 599.86
Lambda 5 1477 2400 2215.40 412.78

Junior
Iterator 9 346 2400 1227.89 748.77
Lambda 8 1643 2400 2069.50 337.58

Senior
Iterator 3 532 767 657.00 125.53
Lambda 4 2277 2400 2369.25 61.50

Prof.
Iterator 6 169 308 230.33 50.92
Lambda 6 255 1672 873.83 549.35

Total
Iterator 26 169 2400 1151.52 859.76
Lambda 27 255 2400 1924.19 676.81

Table 5.2: Solving time of task 1 by group, level and in total.

had a difference in how many tasks were successfully solved, always in favor of the iterator group, but did

not fail completely. The sophomores show a large difference between the iterator and the lambda group.

Among professionals, all tasks were solved completely within the time limit.

To test these results for significance, an ANOVA was used. The dependent variable in this test was if a

task had been completed. The ANOVA was tested with two independent variables. The first was the level

of education, which was significant, F (4, 152) = 25.414, p < .001, η2p = .401, and the second was the group,

which was also significant with F (1, 152) = 16.094, p < .001, η2p = .096. This shows that H01 can be rejected.

Task 2
Education Group N min max mean SD

Freshman
Iterator 6 515 2400 1777.00 965.20
Lambda 4 2400 2400 2400.00 0.00

Sophomore
Iterator 3 287 1032 642.67 373.64
Lambda 5 487 2400 2017.40 855.52

Junior
Iterator 9 274 1054 494.00 237.55
Lambda 8 283 2400 1396.25 1062.21

Senior
Iterator 3 302 2400 1037.67 1181.07
Lambda 4 307 2400 942.00 979.39

Prof.
Iterator 6 90 424 263.50 106.93
Lambda 6 193 589 295.67 146.14

Total
Iterator 26 90 2400 804.81 803.26
Lambda 27 193 2400 1348.11 1034.03

Table 5.3: Solving time of task 2 by group, level and in total.

5.3 Time to completion

The second variable being analyzed is the time it took participants to solve the different tasks to be accepted

by the test-cases. This analysis has three independent variables. The first of these is the task, from task T1
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to task T3, the second is the group the participants were in, lambda or iterator, and the last is their level of

education, broken down into freshman, sophomore, junior, senior an professional.

There was one more participant in the lambda group, with 27, than in the iterator group. All time

measures are in seconds. The participants of the iterator group took (M = 1047.56, SD = 887.29) to solve

the tasks. The average for the lambda group, however, was (M = 1, 503.38, SD = 977.70). Subsampled by

the level of education, the freshmen took longer to solve the tasks in general with lower times for iterators

(M = 1, 981.78, SD = 756.17) and higher times for lambdas (M = 2, 400, SD = 0.00). As mentioned in

section 5.2 and visible in figure 5.1, all freshmen failed to finish any of the lambda tasks, which leads to

every single freshman having the maximum time allowed for the lambda tasks.

The sophomores had shorter times than the freshmen on iterators (M = 1, 358.89, SD = 872.29) as well

as on lambdas (M = 2, 102.93, SD = 646.53). The juniors’ performance on iterators was (M = 970.48, SD =

735.25) and (M = 1, 524.63, SD = 943.49) on lambdas. The seniors were quicker with (M = 720.56, SD =

660.77) for iterators and (M = 1, 379.08, SD = 1049.82) for lambdas. The professionals had the fastest time

on iterators (M = 236, 78, SD = 71.13) as well as on lambdas (M = 461.39, SD = 438.04). The comparison

of times can be seen in figure 5.2. Further details about the times can be seen in tables 5.2, 5.3, 5.4, and 5.5.

Task 3
Education Group N min max mean SD

Freshman
Iterator 6 1521 2400 2253.50 358.85
Lambda 4 2400 2400 2400.00 0.00

Sophomore
Iterator 3 358 2400 1719.33 1178.95
Lambda 5 765 2400 2073.00 731.19

Junior
Iterator 9 155 2400 1189.56 869.43
Lambda 8 187 2400 1108.13 1061.24

Senior
Iterator 3 168 699 449.00 266.85
Lambda 4 212 2400 826.00 1052.74

Prof.
Iterator 6 147 268 216.50 47.53
Lambda 6 99 397 214.67 138.20

Total
Iterator 26 147 2400 1186.33 972.40
Lambda 27 99 2400 1237.85 1063.86

Table 5.4: Solving time of task 3 by group, level and in total.

In an ANCOVA analysis with the fixed factors group and experience and covariate task—to adjust for

learning effects—, the results show that the task order was significant and accounted for with F (2, 159) =

5.985, p = .016, η2p = .038. This can also be seen in figure 5.2. The results for the group variable also show

statistical significance with F (1, 160) = 20.123, p < .001, η2p = .118. This shows that about 11.8% of the

variation of task times between the participants was accounted for by the difference between iterators and

lambdas. This means that H02 should be rejected as the difference in time between the groups is statistically

significant.

When using the variable experience the test also shows statistical significance with F (3, 158) = 31.710, p <

.001, η2p = .457. This means that 45.7% of the variance was explained by the difference in experience. This
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Average
Education Group N mean SD

Freshman
Iterator 6 1981.78 756.17
Lambda 4 2400.00 0.00

Sophomore
Iterator 3 1358.89 872.29
Lambda 5 2101.93 646.53

Junior
Iterator 9 970.48 735.25
Lambda 8 1524.63 943.49

Senior
Iterator 3 720.56 660.77
Lambda 4 1379.08 1049.82

Prof.
Iterator 6 236.78 72.13
Lambda 6 461.39 438.04

Total
Iterator 26 1047.56 887.29
Lambda 27 1503.38 977.70

Table 5.5: Total average solving time by group, level and in total.

indicates that H05 can be rejected, as the difference in productivity (time) is statistically significant between

the levels of experience.

Different ways to analyze the data were tested but came to the same broad conclusions. Thus, we chose

a conservative statistical model.

5.4 Errors

The last dependent variables under investigation were the number of errors the participants made while

programming and how much time was spent while fixing errors in relation to the total time to solve the

task. The errors were extracted from the participants’ compilation events that were recorded during the

experiment as described in 4.5. The compilation output was investigated for error messages and the amount

of errors per compilation output was established as the number of distinct errors in the output. This means,

that there was a binary variable for each error message that appeared in all of the compilation outputs that

indicated if a specific error exists in an error message. The number of errors in a compilation event is the

sum of these variables. This way, if an error appears twice or more times in a compilation event, it is only

counted once. The amount of time spent solving errors is calculated by taking the time-stamps that are

connected to the compilation events and taking the time differences between the first compilation event in

a sequence of non-compiling events and the first compilation event after this sequence started in which the

program compiles again. These time-intervals are then added together for the total amount of time spent

fixing non-compilable states.

The descriptive statistics for the number of errors encountered show that, generally, the lambda group

had more errors (M = 17.77, SD = 28.58) than the iterator group (M = 8.75, SD = 12.32). This is also

observable when the amount of errors is broken down by task. Task 1 has (M = 27.89, SD = 27.38), 2 has

(M = 10.16, SD = 17.16) and 3 has (M = 13.55, SD = 36.78) for group lambda. The iterator group has lower
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Figure 5.2: Group times compared.

T1 T2 T3 total

group mean SD mean SD mean SD mean SD
lambda 27.89 27.38 10.16 17.16 13.55 36.78 17.77 28.58
iterator 11.23 13.98 5.08 9.15 9.78 12.81 8.75 12.32

Table 5.6: Number of errors.

means with (M = 11.23, SD = 13.98) for task 1, (M = 5.08, SD = 9.15) for 2 and (M = 9.78, SD = 12.81)

for task 3.

An ANOVA shows that there is a significant difference between the groups with F (1, 148) = 5.704, p =

.018, η2p = .039 and for the tasks, F (2, 148) = 4.093, p = .019, η2p = .055. This shows that 3.9% of the variance

in errors can be explained by the groups the participants were in and 5.5% of the variance can be explained

by the differences in the tasks. This means we can reject H03.

T1 T2 T3 total

group mean SD mean SD mean SD mean SD
lambda 65.05 34.32 45.43 37.34 57.75 33.13 56.37 35.54
iterator 57.03 31.34 26.14 24.88 48.54 31.88 44.20 31.99

Table 5.7: Percent of time spent fixing errors.

Looking at the amount of time spent on fixing errors, the pattern was similar. The mean percentage

time spent on working on fixing errors for the lambda group was (M = 56.37, SD = 35.54), while the

iterator group’s mean was (M = 44.20, SD = 31.99). The average for task 1 for the lambda group was
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Figure 5.3: Compiler errors compared.

(M = 65.05, SD = 34.32) compared to (M = 57.03, SD = 31.34) average for the iterator group. For the

second task, (M = 45.43, SD = 37.34) was observed for the lambda group and (M = 26.14, SD = 24.88)

for the iterator group. In task 3, the amount of time spent on fixing errors went up for both the groups

compared to their second tasks with an average of (M = 57.75, SD = 33.13) for the lambda group and

(M = 48.54, SD = 31.88) for the iterator group. An ANOVA shows that there is a significant difference

between the groups, F (1, 148) = 5.178, p = .024, η2p = .035. Additionally, there is a significant difference

between the tasks, F (2, 148) = 8.027, p < .001, η2p = .102, thus hypothesis H04 should be rejected as well.
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Chapter 6

Discussion

As can be seen in the results, the null hypotheses can be rejected based on the analysis of the data. Es-

pecially less trained programmers seemed to struggle with the programming tasks, as can be seen in the

number of completed tasks for freshmen and sophomores. The general results show that there is a significant

difference between how many tasks were solved between the lambda and iterator group. The professionals

in the experiment do, however, not show any difference in how many tasks were solved between the groups.

Investigating H05 also shows that professional and student performance might not be comparable. With this

information, one could make the argument that the difference between the number of solved tasks between

the groups only holds true for students and not professionals.

This distinction does not hold for the amount of time spent to solve tasks, as the times indicate that the

professionals in the lambda group took significantly longer to solve the tasks than the iterator group, as do

all the student levels, too. The timing results do, however, show a decline over the course of the experiment.

It seems as if participants got used to the features they were working with and the style of task they were

given over the time of the experiment. For example, sophomores and professionals reach lower mean times

for the lambda group than the iterator group in task 3, with a higher standard deviation. This seems to

indicate that programmers might be able to reach parity performance with the lambda function feature in

relatively short time. The experiment took the participants only about one and a half hours to complete.

On the one hand, speculatively, if parity performance persists after a programmer spent about 1.5 hours

on the new feature, then introduction of the feature would still be a time investment with no return. If one

assumes that every programmer would have to spent 1.5 hours to learn the feature without any real gain,

then this would be a net loss. That is, totally ignoring the cost of designing and implementing the feature

into the language and the change in textbooks that would be necessary.

On the other hand, it is not predictable if the performance for programmers using lambdas would in-

crease further and times to solve problems in the future would decrease to a level in which the initial

time-commitment to learn the feature is made up over time and there will be a net gain to the industry
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using the language, especially if the accumulated productivity can offset the initial implementation and

textbook changes.

Both of these arguments fully ignore the fact that lambda functions can have more than this one use, of

course. A recommendation to language designers based on the presented data can only be made hesitantly as

there is more research to be done on the effect of lambda functions (see chapter 8). Currently, implementation

of lambda functions into object-oriented lambda functions should be seen critically, as no benefit has been

shown so far.

Compiler error results shown in this experiment indicate that there is a significant difference in how many

errors are encountered by the participants between the two groups and how much time was spent fixing the

errors. A possible reason for this could be the syntax and error design of C++.

It could be argued that C++’s syntax choice for lambdas is not optimal if the results of [SS13] are

taken into account. Apart from the generally bad results for C-like syntax in the publication, as exemplified

by Java, the paper also shows bad results for parentheses, brackets and braces with novices. All of which

are heavily featured in the syntax design of C++ lambdas. Additionally, the type for functions in C++

uses a combination of angle brackets and parentheses without an explicit explanation of their meaning. An

example of this is function<float (int, int)>. This use of templating-style types, with the distinction

between the return type float and the parameter types (int, int) is, to the author’s knowledge, not used

anywhere in a similar way and might confuse programmers with knowledge of templating in C++, as well

as programmers which are mostly unaware of the concept to begin with.

It should be mentioned, however, that this argument does make a logical leap, in that it equates the

results found in novices, which were completely inexperienced in programming languages, with a wide range

of proficiencies. All of the participants had at least had a semester’s worth of C++ programming experience.

It may be that participants found the syntax not challenging.

On the topic of compiler errors for C++ lambdas, the messages might just not be very helpful for

programmers. Studies have shown that type errors could be, next to unresolved identifiers and forgotten

semicolons, a hard type of compiler error to solve [DLRT12, AB15]. While a formal investigation of the errors

encountered in this experiment is out of scope of this publication, a short analysis of the errors finds that the

third most occurring1 error in the experiment was that there was no viable conversion between two types2.

One can of course argue about the quality of the error messages, but, qualitatively, clang’s error messages

do not seem to be particularly informative. One example would be the error “error: member reference base

type “int” is not a structure or union”, which seems hard to understand.

The analysis shows a significant difference between the performance of students and professionals. The

often cited3 Höst et al. [HRW00] states that their findings will probably hold true when comparing graduate

1As found in the collection of compilation outputs. Note that errors can overlap in the error outputs.
2The first most often occurring problem is “member not found” and the second is “use of undeclared

identifier”, which matches well with the findings of the cited study.
3428 times by the time of this writing on April 6th 2016, according to Google Scholar.
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students and professional developers. Since the students used in this experiment are undergraduates, a

comparison with this study is less feasible. Especially when taking into account that Höst et al. focus their

experiment on software engineering based rating tasks instead of programming, which is the focus of this

experiment. Salman et al. [SMJ15] focus on programming tasks and find no significant difference between

students and professionals when they are working with previously unfamiliar skills. Their experiment does

find a difference for the use of familiar skills. As stated earlier, there seems to be a learning effect present for

the participants of the experiment, which suggests, that participants were unfamiliar with the programming

language features used in the experiment. Then the results this experiment contradict the findings of Salman

et al. . The findings hold up well when compared to Wiedenbeck [Wie85] and Youngs [You74] in that the

professionals seemed to be faster and have fewer errors than the students.
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Chapter 7

Limitations and Threats to Validity

While a considerable amount of time was spent trying to design an experiment to formally evaluate this

issue, a single experiment is always limited. This chapter will discuss the validity of this study’s design and

generalizability.

7.1 Internal Validity

Learning Effect: The experiment was designed in a way so that the tasks were always solved in the same

order. One could argue that the complexity of the tasks does not change from task to task and that the

actions required of the students might be repetitive as the steps to solve each task are very similar to solving

the previous task and only slight changes to the code have to be made. This has resulted in a learning effect

as was shown in the analysis in section 5.3. While the effect is taken into account as a covariate in the results,

it might have been better to design the experiment in a way that reduces learning effects by changing the

context of the experiment more thoroughly between tasks.

Time constraint: Due to limitations on recruitment, ethics, and practicality, the time each student

could spent to solve a task was limited to 40 minutes. Participants are only willing to participate if they

can fit the experiment into their busy schedule and 1-2% of extra credit are only worth a certain amount

of effort for students. Additionally, it should be considered how much time commitment can be ethically

expected from participants. So, when the cut-off point was reached, the participants were asked to move on

to the next task, regardless of how close they were to solving the task or not. This results in a ceiling for

the timing and might group participants who were about to solve the task with participants who were far

from reaching the right solution. If participants had more time to solve the tasks, they might have learned

more about the construct they were using in their first task and then moved on to solve the other two tasks

quickly, which could have influenced the studies results.

Recruitment Bias: It is noteworthy, that the students involved in the experiment were recruited from

computer science classes and rewarded with extra credit towards their grades for that class. This might have
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encouraged especially under-performing students to participate in the experiment, which might have effected

the outcome of the study. In contrast, the professional participants that were recruited using a mailing list

and Twitter. It is likely that these participants were highly motivated programmers as they seem to be

engaging with social media related to programming experiments in their free time and accepted considerable

inconvenience and time commitment to participate in an experiment which would not benefit them directly.

As such, they might not represent the population of all professional programmers accurately. This might

have effected how well these developers performed compared to possibly under-performing students.

7.2 External Validity

Limit of Scope: The tasks were designed in a way that the difference between iterators and lambda

functions could be measured in respect to productivity. The tasks therefore completely focus on iteration on

data structures as iterators are exclusively designed to fulfill this task. This limits the experiment to only be

able to provide information about the iteration aspect of lambda functions, leaving out other aspects such as

parallelization. This is due to the limited nature of randomized controlled trials, as they only have a limited

time-frame. Future studies of a similar nature should investigate the other aspects of lambda functions to

gain a more complete understanding of their impact on development.

Previous Knowledge of Participants: The student-participants that were recruited for this exper-

iment were all students at the University of Nevada, Las Vegas. The findings might not be generalizable

to students of other institutions as different teaching methodologies or material might change results. On

the other hand, selecting individuals from different levels of the educational pipeline, before and after they

learned about specific elements of the C++ programming language, might have prevented any effects that

possible differences between institutions might have made.

Number of Participants: The number of participants for this study was limited to 54 individuals. This

has resulted in statistical significant results, but it is still easy to argue that this is a very limited number of

participants and not a representative sample of the population. This could limit the generalizability of the

study.

Choice of Language: This study only focused on the C++ programming language, therefore, it is likely

that the results of this study will not hold true for every other programming language. It seems possible

that the syntax choices made when designing lambda functions in C++ might partly explain the outcome of

this study. Like discussed in chapter 3, syntax choices have been shown to matter at least for programming

novices.

Simplicity of the Tasks: The tasks were designed to be simple on purpose. This has to do with the

limited time frame of the experiment as well as with trying to limit the impact on other complicating factors

on the times measured for the experiment. The design is chosen in a way that should prevent participants

from having to think much about other parts of the programming language than the ones important to the

topic of the study. This is why it was chosen to have participants only fill in a specific part of a method
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as well as ignore the possible different capture list options by just using one approach. This might limit

generalizability in the sense that programmers in a real-world setting might have to write extra code, like

the iterator itself or the method which applies the lambda function, which might have different effects on

the programmers productivity than measured in this specific experiment. Other effects might come into

play from differences in general architectural design, which might impact the usefulness of either of the

programming language constructs.
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Chapter 8

Future Work

As discussed in chapter 7, the study was not completely generalizable to all aspects of lambda functions.

Thus, apart from necessary replications of the presented study, research needs to also focus on other use-cases

of lambda functions and if debugging lambda based code is harder than other code. These might include

the use in parallel streams as were introduced into Java 8 or listener functions for event driven programming

which can be found in UI programming or server applications. C++ is also not the only object-oriented

programming language to recently introduce this feature and as such, replication studies in other language

like the aforementioned Java 8 or C# might give valuable information about the usability and usefulness of

lambda functions in different languages. Such research could also help to find out more about the impact

different approaches to syntax choices for lambda functions might make on developer productivity.

If future studies find that there is indeed a benefit to having lambda functions in broadly-used object-

oriented programming languages, further experiments should investigate the details for the best syntax

choices. This could, for example, involve the use of placebo languages, in which syntax elements are chosen

at random, as control groups similar to [SS13]. Initial ideas about possible syntax choices might be gained

from analyzing what kind of errors programmers make while using lambdas in languages like Java since the

introduction of the new feature.

Another interesting research direction for lambda functions could be to investigate existing usage patterns

in the languages that have recently introduced the lambda function feature. Questions to ask in this regard

might be about how well developers adopted the feature, as in how often it is used instead of other features,

how often it is used in total, which kind of project adopted their use, whether the feature was deliberately used

to replace existing code or if it is mostly used for new code, and which errors developers often encounter while

using the new feature. Some of these questions might be answered by investigating source code repositories,

others could be investigated by surveys.

Other interesting insights might come from longer term studies on the use of lambda functions in a

controlled setting. This could be done by giving the participant a longer term project to work on in multiple
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sessions. Such an experiment might make it possible to make the findings more generalizable as they would

resemble actual programming work more closely.

Apart from further research into lambda functions, other programming language constructs need further

investigation. Such a feature might be enumerated types, which exist in programming languages such as

Java.
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Chapter 9

Conclusion

This thesis described the design and execution of an experiment to gain insight into how lambda functions

effect developer productivity. The experiment is part of a larger set of experiments to gain knowledge on how

aspects of programming languages effect developers to help the design of future languages. The experiment

had 54 participants which were recruited at the University of Nevada, Las Vegas and on the internet. The

experience of the participants varied widely, which enabled the study to also give insight into a common claim

that the results of experiments with only student participants are generalizable to professional developers.

None of the freshman students in the study were able to complete the lambda-based tasks in the given

time frame, while the group solving the iterator tasks solved about a quarter of their tasks successfully.

Percent of completion for both groups increased with experience and only professional developers solved

task at equal rates between the groups.

Statistically, the results of the study show that there was a significant negative impact on the productivity

of participants when they used lambda functions as opposed to iterators for iteration tasks. This finding

might be explained by a learning effect as the difference between the times to completion between the groups

shrinks with the ongoing experiment.

It was also found that the lambda group produced significantly more compiler errors while working on

the tasks than the iterator group. Furthermore, participants of the lambda group spent more time fixing

errors than participants of the iterator group.

Analysis of the differences between experienced and less experienced developers shows that experienced

developers performed significantly better than their peers in how many tasks were completed and how much

time was needed to complete programming tasks correctly. This casts doubt on the claims that student

performance can be generalized to the entire population of developers.

As this is only a first study to investigate the usefulness of lambda functions for procedural or object-

oriented programming languages, no recommendations can be made as of yet whether to implement them.

More research has to be done to validate the findings and investigates possible benefits for other use-cases.
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in Computing, University of Jyväskylä, 2015.
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