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Abstract 

 

In this thesis, we introduce a method to identify the most critical components (e.g., 

generators, transformers, transmission lines) in an existing electric power grid, that 

contains renewable (wind) generators. We assume the power system is under threat of 

intentional attacks. By learning the potentially best attacking plan, the system operator 

can have a better understanding of the most important components in the system. We use 

a bilevel optimization model to describe the problem and a decomposition approach to 

solve the bilevel model by finding maximally disruptive attack plans for attackers who 

have limited attacking resources. The testing data are based on standard reliability test 

networks and we formalized the original data with real data collected from Texas by the 

Electric Reliability Council of Texas (ERCOT). Our results show that the method in this 

thesis can be used by the operator of the power system to find out critical components 

and make better defensive plans to improve system security. 
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1. Introduction 

 

Electric power systems are of great importance to every country’s security and 

economy. In the United States, the system’s vulnerability to physical disruptions from 

various causes has been recognized for a long time [1]. The system’s unreliability is 

continuously becoming more severe in recent years since infrastructure has not expanded 

as quickly as demand has grown, so the system can fail or be damaged more easily [2]. 

What’s more, as The Committee on Science and Technology for Countering Terrorism 

states [3], the threat of human attacks on the system has become more serious, too.  

Wind power is environmental friendly with many benefits [4]. Those advantages 

have led to the rapid increase of wind energy in power systems in recent years all over the 

world. When considering models with wind energy, however, some characteristics of it 

are very different from traditional generators because of high stochasticity and 

intermittency in production output. Due to that, considering wind power in a power 

system will bring uncertainty to its short-term and real-time operation. These factors call 

for new models for power systems operation. 

Considering the problems above, this thesis presents a bilevel interdiction 

optimization model and solution techniques to analyze the vulnerability of an electricity 

power system that contains renewable generators against intentional terrorist attacks. 

We determine important power grid components by locating maximally disruptive, 
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simultaneous attacks on a grid. By studying how the attackers would attack the power 

system, we will eventually have a clear understanding of which components are more 

important to be protected. We search for optimal attacks, i.e., a set of attacks that cause 

the largest extra operational cost given certain offensive resources. And we only consider 

physical attacks on the power system. We report results for our techniques applied to 

reliability-benchmark networks. 
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2. Literature Review 

 

In this chapter, we present an overview of the studies most related to this thesis. We 

will review the interdiction problem, characteristics of electric power system and the 

characteristics of renewable generators in electric power systems. 

 

2.1 Interdiction problem 

A dictionary definition of interdict, in the military sense, is:” to destroy, cut or 

damage by ground or aerial firepower (enemy lines of reinforcement, supply, or 

communication) in order to stop or hamper enemy movement and to destroy or limit 

enemy effectiveness [6].” 

It is obvious that the definition of interdiction can be expanded in different ways. 

Examples of what we call network interdiction are throughout human war history, from 

antiquity to modern war [7]. In these kinds of interdiction, the actions of the interdictors, 

also known as the attackers, are usually modeled using network optimization. In this 

model, they attack the components of the network to disrupt the network’s function. The 

target could be a bridge, road, critical facilities, power transmission line and so on. 

The simplest network interdiction problem arises from the well-known max 

flow-min cut theorem [8]. In the 1950’s, Harris [9] did research about evaluating railway 
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capacity and this method aimed to cut off the function of the railway system. This can be 

regarded as a “single-level” network interdiction problem. After a decade, the earliest 

research about “bi-level” network interdiction problem (BNI) was presented by Wollmer 

[10]. His study focused on a flow capacitated network and give a method to find the most 

critical path. Almost at the same time, Danskin [11] introduced “max-min models” and 

that could be regarded as a generalization of BIN. 

In 1993 Wood [12] considered a problem in which the network operator attempts to 

maximize flow through a known and capacitated network while an interdictor tries to 

minimize this maximum flow by interdicting network arcs using limited resources. Then 

in 1998, Cormican et al. [13] investigated a stochastic version of the previous network 

interdiction problem, and a two-stage stochastic integer program model is made to handle 

uncertain arc capacities. 

In 2002, the National Strategy for Homeland Security deemed 13 infrastructure 

sectors critical to the United States [14], such as Energy, Transportation, Information and 

Telecommunications. After that, a great deal of research has been done to analyze the 

vulnerability of critical infrastructure and their defense plan under intentional attacks in 

various fields. Among these studies, the interdiction model is widely considered. Brown 

et al [15] applied bilevel and trilevel optimization models and methodology accordingly 

to improve the resilience of critical infrastructure against terrorist attacks in general. In 

these models, information is transparent for attacker and defender and the actions are 
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taken alternately by both sides. In the field of supply chain management, Snyder et al. [16] 

presented a broad range of models for designing supply chains resilient to disruptions, 

and Scaparra et al. [17] present a bilevel formulation of the r-interdiction median problem 

with fortification.  

Also, there are papers relevant to interdiction in electric power systems. Yao et al. 

[18] presented a trilevel optimization model of resource allocation and a decomposition 

approach to find optimal solutions in electric power network defense. The most relevant 

literature to this thesis is presented by Salmeron et al. [19]. In their paper, they describe a 

method to analyze and increase the security of a known electric power system facing 

terrorist attacks by identifying the most critical components. The purpose of the attacking 

plan is to cause maximal disruptions to the power system under limited offensive 

resources. The author used a bilevel optimization model and a heuristic to solve the 

model. In this thesis, we use the bilevel model and solution methodology by Salmeron et 

al. [19] as a base. As we take renewable energy in to account, we make changes to their 

model accordingly. 

2.2 Optimal power flow problem 

Among the interdiction and defense problems we talked above, the network operator 

is always intending to find a way to maximize the system’s capacity (e.g. max-flow 

problem) or minimize a certain kind of “price” (e.g. transportation time, transmission cost) 

while the interdictor is trying to do the opposite. When considering electric power 
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systems, in general, the system operator wants to have better control and minimize the 

total operation cost. This problem is often known as the optimal power flow problem 

(OPF).  

In general, the purpose of OPF is to optimize a specific cost, planning, or reliability 

objective by controlling parameters in power generation, transmission, and distribution 

networks within an electrical network without violating network power flow constraints 

and equipment operating limits. OPF was first introduced by Carpentier in 1962. After 

that, this optimization method has been widely used in power system operation, analysis, 

and planning. The general structure of OPF given in the survey of Rebennack et al. [20] 

is as follows: 

 

min 𝑓(𝑢, 𝑥) 

s.t. 

𝑔(𝑢, 𝑥) = 0 

 ℎ(𝑢, 𝑥) ≤ 0, 

 

where 𝑢 represents controllable system variables while 𝑥 are dependent or state 

variables. The objective function 𝑓(𝑢, 𝑥) represents the system's optimization goal 

(most commonly the generation cost). Vector functions 𝑔(𝑢, 𝑥) and ℎ(𝑢, 𝑥) represent 

system equality and inequality constraints, respectively. In the survey of Rebennack et al., 

they show in detail that depending on the selection of 𝑓, 𝑔, and ℎ, the OPF problem has 

many different formulation variations, e.g. linear, mixed integer-linear, nonlinear, or 

mixed integer-nonlinear programming problem. Here, we would like to introduce the 
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most classical formulation and the linearized version which is most closely related to the 

multi-period OPF model in this thesis. The classic formulation can be written exclusively 

in terms of voltage and this formulation given by [21] is as follows: 

 

min
𝑣,𝑝,𝑞

𝑓(𝑣, 𝑝, 𝑞) 

s.t. 

𝑝𝑖𝑗 + 𝑖𝑞𝑖𝑗 = 𝑣𝑖(𝑣𝑖
∗ − 𝑣𝑗

∗)𝑦𝑖𝑗
∗                (OPF1) 

∑ 𝑝𝑖𝑗 =𝑗 𝑝𝑖                            (OPF2) 

∑ 𝑞𝑖𝑗 =𝑗 𝑞𝑖                                                                (OPF3) 

𝑝𝑖 ≤ 𝑝𝑖 ≤ 𝑝
𝑖
                                                             (OPF4) 

𝑞𝑖 ≤ 𝑞𝑖 ≤ 𝑞
𝑖
                                                             (OPF5) 

𝑝𝑖𝑗
2 + 𝑞𝑖𝑗

2 ≤ 𝑠𝑖𝑗
2

                                                           (OPF6) 

𝑣𝑖 ≤ |𝑣𝑖| ≤ 𝑣𝑖                                                             (OPF7) 

 

In this formulation, 𝑓 is the objective function, which is a function of 𝑣, 𝑝, 𝑞.  The 

variables 𝑣, 𝑝, 𝑞 represent voltage, real power flow and reactive power flow respectively. 

In the power system, if node 𝑖 is connected to node 𝑗 by a transmission line, the real 

and reactive power flows between the two nodes are 𝑝𝑖𝑗 and 𝑞𝑖𝑗. If real power goes 

from node 𝑖 to 𝑗, 𝑝𝑖𝑗 > 0 and 𝑝𝑗𝑖 < 0. 𝑦𝑖𝑗 is the admittance and * denotes complex 

conjugate. Constraint (OPF1) determines the relationship between power flows and 

voltages. Constraints (OPF2) and (OPF3) mean that the real and reactive powers into or 

out of node 𝑖 are the sums of the flows through the transmission lines connected to node 

𝑖. And the powers into or out of node 𝑖 have lower and upper bounds 𝑝𝑖 , 𝑝
𝑖
, 𝑞𝑖 , 𝑞

𝑖
 

and the relationship is shown by (OPF4) and (OPF5). In (OPF6), 𝑠𝑖𝑗  denotes the 
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transmission line’s apparent power capacity and this constraint shows that the complex 

power flow magnitude must be below the transmission line’s capacity. (OPF7) ensures 

that the voltage has lower and upper bounds.  

The above classic formulation of OPF is of great advantage when considering the 

accuracy of the system’s behavior. However, constraints (OPF1) are nonlinear and make 

this formulation very hard to solve. From a practical aspect, we usually need the OPF 

problem to be solved in relatively short time (say every 15 minutes), and also the 

requirement on accuracy is relative lower. Thus, it is reasonable to make some 

approximations and relaxations to this optimization problem to make the formulation 

more practical. Based on some observations of the power system features, we could 

linearize the constraints to get a linear feasible set which is known as linearized optimal 

power flow or DC-OPF. The DC-OPF introduced in [21] is as follows: 

 

min
𝜃,𝑝

𝑓(𝜃, 𝑝) 

s.t. 

𝑝𝑖𝑗 = 𝑏𝑖𝑗(𝜃𝑖 − 𝜃𝑗)                   (DC-OPF1) 

∑ 𝑝𝑖𝑗 =𝑗 𝑝𝑖                       (DC-OPF2) 

𝑝𝑖 ≤ 𝑝𝑖 ≤ 𝑝
𝑖
                                                 (DC-OPF3) 

𝑝𝑖𝑗
2 ≤ 𝑠𝑖𝑗

2
                                                     (DC-OPF4) 

 

𝜃𝑖 is the phase angle in node 𝑖. 𝑏𝑖𝑗 is the susceptance between node 𝑖 and 𝑗. In 

this formulation, we get rid of all the reactive power variables and constraints. Now it is 

much easier to solve. 



10 
 

 

2.3 Wind energy, energy storage and multiperiod OPF 

 

In this section, we discuss the characteristics of wind energy and its effect on electric 

power systems in practice and modeling. 

2.3.1 Characteristics of wind energy and its effect on power system operation 

Currently, there is increasing concern over the environmental impact and 

sustainability of conventional fossil-fueled power plants. As a result, renewable energy 

sources are becoming an important part of the generation mix worldwide. In particular, 

wind energy is one of the fastest growing renewable energy technologies in the world [22] 

and will play a crucial role in the future energy supply. According to the forecasts of the 

Global Wind Energy Council, wind energy will supply around 16% worldwide in 2020 

[23]. In the state of California, peak demand for power in the year 2030 will exceed 80 

GW [24], [25]. As fossil fuel and nuclear plants retire in the next few decades, a required 

15% reserve margin, which means 10GW of new generation capacity, will be needed by 

2030. That capacity will be supplied by wind and solar energy. 

Though wind energy is appealing due to its environmentally friendly nature, high 

potential and low generating cost, it also has some characteristics that bring us technical 

difficulties. The notorious drawback of wind generation is the difficulty in its output 
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prediction [26]. This is because wind power plants generate power when the wind is 

blowing, and the plant output depends on the wind speed. Since wind fluctuates from 

minute to minute and hour to hour, we cannot get a high-accuracy prediction of its speed 

or the energy output.  

The poor prediction of wind energy output leads to difficulty in power system 

operation. In a power system, the total power generated by all power generators must 

equal the aggregate demand for electric power at every moment. In the case that both 

wind generators and conventional fossil generators are in the same power system, total 

output given by all generators should be equal to the real-time demand. Since the wind 

power fluctuates a lot, the system operator needs to make the output of conventional 

generators change accordingly to compensate the wind power fluctuation and keep the 

system in balance. That would not only be expensive but also nearly impossible to 

execute in practice, especially when the power generator takes up a large portion of the 

total generation amount. (This kind of characteristic of wind generation is referred to as 

non- dispatchable.) Thus, new tools, technologies and additional grid services are needed 

to provide the required level of system resiliency. [27-28] 

 

2.3.2 Grid-scale energy storage systems (ESS) 

From the last subsection, we know that technologies that help increase power system 

flexibility are critical in implementing renewable generation without decreasing system 
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efficiency and reliability. Grid-scale energy storage is widely believed to have the 

potential to provide this added flexibility. There is a great deal of research and multiple 

types of technology related to this topic [29]. The basic idea of energy storage systems is 

to absorb short-term fluctuations and transmission capacity that not only transports power 

from generation to load, but can also provide spatial diversity in generation to mitigate 

intermittency of renewable sources [30]. In other words, the function of an energy storage 

system is to save extra power when the power demand is low and the generated power is 

high and release that power when the generators in the system cannot provide enough 

power.  
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2.3.3 Multiperiod optimal power flow 

For the classic OPF problem, we are solving a static system. However, when 

considering a storage system, it requires us to model charge/discharge dynamics. Also, if 

the renewable generator takes up a large portion of the whole generation system, we need 

to consider restrictions in the magnitude of changes in conventional generation (ramping). 

In the above case, it is better so model the optimal power flow problem in a multiperiod 

way. Here, we introduce a linearized finite-horizon multiperiod OPF model (FOPF) given 

by Chandy et al. [30]. Later, we use this model as a base and modify the objective 

function in our interdiction OPF model and add the cost for unmet demand. Chandy’s 

model is as follows: 

min
𝜃,𝑞,𝑟,𝑔,𝑏

∑ ∑ (𝑐𝑖(𝑔𝑖(𝑡), 𝑡) + ℎ𝑖(𝑏𝑖(𝑡), 𝑟𝑖(𝑡)))

𝑇

𝑡=1𝑖∈𝐺

+ ∑ ℎ𝑖
𝑇(𝑏𝑖(𝑇))

𝑖∈𝐺

 

s.t.    𝑉𝑖𝑉𝑗𝑌𝑖𝑗 (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)) ≤ 𝑞
𝑖𝑗

(𝑡), 𝑖 ≠ 𝑗 ∈ 𝑁            (FOPF1) 

𝑞𝑖(𝑡) = ∑ 𝑉𝑖𝑉𝑗𝑌𝑖𝑗 (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))𝑗∈𝑁 , 𝑖 ∈ 𝑁           (FOPF2) 

𝑞𝑖(𝑡) = −𝑑𝑖(𝑡), 𝑖 ∈ 𝐷                   (FOPF3) 

𝑞𝑖(𝑡) = 𝑔𝑖(𝑡) + 𝑟𝑖(𝑡), 𝑖 ∈ 𝐺                 (FOPF4) 

𝑔𝑖(𝑡) ≥ 0, 𝑖 ∈ 𝐺                     (FOPF5) 

𝑏𝑖(𝑡) = 𝑏𝑖(𝑡 − 1) − 𝑟𝑖(𝑡), 𝑖 ∈ 𝐺               (FOPF6) 

0 ≤ 𝑏𝑖(𝑡) ≤ 𝐵𝑖, 𝑖 ∈ 𝐺                  (FOPF7) 

In the objective function, the decision variables are 𝜃, 𝑞, 𝑟, 𝑔, 𝑏, and they represent 

for phase angle, power, charging amount, generated power amount and battery level, 
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respectively. Sets 𝐺, 𝐷 represent generation nodes and demand nodes, respectively. 𝑁 =

𝐺 ∪ 𝐷 is the set of all nodes. 𝑡 = 1, … , 𝑇 represents for the time horizon. 𝑐𝑖(𝑔𝑖(𝑡), 𝑡) is 

the generation cost. ℎ𝑖(𝑏𝑖(𝑡), 𝑟𝑖(𝑡)) is the storage cost at the end of each time period. 

ℎ𝑖
𝑇(𝑏𝑖(𝑇)) is the cost for leftover power in the storage system at the end of T. 

In (FOPF1), 𝑉𝑖 and 𝑉𝑗  are the voltage at node i and j, respectively. 𝑌𝑖𝑗  is the 

admittance between nodes 𝑖 and 𝑗. 𝑞
𝑖𝑗

(𝑡) represents the line capacity from nodes 𝑖 to 

𝑗. 

In (FOPF2), 𝑞𝑖(𝑡) represents the net power export from node 𝑖 at time 𝑡. 

In (FOPF3), 𝑑𝑖(𝑡) is the demand in node i at time period t. This constraint means 

that demand must be met by supply from the generation. 

(FOPF4) means that the net power export from a generator node consists of power 

from the node’s generator and battery. 

(FOPF5) means generation power is non-negative. 

(FOPF6) means the battery energy level in a certain time period is equal to its 

energy level in the last time period minus the energy it releases in this time period. 

(FOPF7) sets the battery energy level to be non-negative and has an upper bound. 

 

2.4 Novelty of this thesis 

With the implementation of ESS, there is a trend that the proportion of renewable 

energy will grow in power system. Then it is necessary to take renewables into account 
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when considering system security. However, the interdiction-related literature above does 

not consider renewables when modeling the power system. This thesis considers a bilevel 

interdiction problem of a known power system where we use FOPF instead of OPF to get 

a better model of the system containing wind generator. In the next chapters, we will 

define our problem, describe our model and present an algorithm to solve it. 
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3. Problem Definition and mathematical 

Model  

 

3.1 Overview 

The object of our study is a given electric power system. We consider the situation 

in which the operator of the system (defender) tries to minimize the cost of meeting 

electric power demand while the interdictor (attacker) who is aware of the whole 

information intends to destroy the most critical components of the system under limited 

resources in order to maximize the defender’s subsequent operational cost.  

We assume that the defender can satisfy the system’s power demand in two ways. 

One is using power generated in the system, which has a generation cost. The other is 

when the system cannot meet its own demand, the defender will use methods from 

outside of the system (e.g. buying from another company or using emergency power 

storage), which has a much higher cost. So, by minimizing the total cost of meeting 

demand, the defender will avoid using methods out of the system since they cost much 

more. On the other hand, the attacker will first aim at destroying the components which 

will lead to the most unmet demand. By solving this problem, we will get to know the 

best attack plan, which can help us to identify the most important components in a 

deterministic system. We formulate this problem as a bilevel interdiction problem in an 
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electric power system containing wind generation. 

This problem can be represented by a bilevel optimization model as follows: 

 

    max
𝜹∈Δ

min
𝒑

𝒄𝑇𝒑 

s. t.  g(𝐩, 𝛅) ≤ 𝐛 

𝐩 ≥ 𝟎. 

 

The inner minimization problem is a MOPF problem, we have mentioned the 

mathematical model in the last section and will give a detailed description in the 

following subsection. Here, 𝐩 represents variables in the power system related to the 

cost of meeting demand, including generated power, unmet demand and storage related 

variables and 𝒄𝑇 is the corresponding coefficients. Therefore 𝒄𝑇𝐩 is the total cost of 

meeting demand. The outer maximization problem chooses the best attack plan for the 

attacker which would cause the most severe disruption to the power system and increase 

the operational cost. Here, Δ is a discrete set representing attack plans that the attacker 

might be able to choose, and 𝜹 ∈ Δ is a certain attack plan. Here, 𝜹 is a binary vector, 

whose 𝑘th entry 𝛿𝑘 is 1 if the corresponding kth component of the system is attacked 

and is 0 otherwise. The constraints g(𝐩, 𝛅) ≤ 𝐛 include all physical constraints in the 

power system for the defender and resource constraints for the attacker, and those 

constraints will be introduced in detail in the following subsections. 

The rest of this section presents the detailed mathematical model and algorithms 

used in this thesis. We first explain our original inner MOPF model without considering 
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the interdicting plan, and then explain our interdiction assumptions. After that, we 

combine the elements in the interdiction problem and MOPF together and get our bilevel 

interdiction model. Finally, we give a heuristic algorithm for solving the bilevel 

interdiction model. 

 

3.2 MOPF (Inner problem) 

In section 2.3.3, we introduced the FOPF by Chandy et al. In this subsection, we will 

talk in detail about the model, especially our modification to Chandy’s model. 

In FOPF, we consider the situation in which every wind generator is related to a 

corresponding energy storage. We assume that each generation cost is constant and the 

demands are changing over time in a deterministic manner. 

Consider a set 𝐆 of generator. Instead of using the set N to denote nodes, we use a 

set 𝐁 to denote buses, which can be both loads and generators at the same time. The 

transmission network is modeled by the susceptance matrix 𝐁𝑖𝑗. The element in matrix 

𝐁𝑖𝑗 is the susceptance 𝑏𝑖𝑗 between bus i and j. If two buses are not directly connected 

then 𝑏𝑖𝑗 = 0, where 𝑖 ∈ 𝐁, 𝑗 ∈ 𝐁. Then according to [21, FEASIBLE SET 3.3] we can 

reformulate (FOPF1) as: 

 

−𝑝𝑖𝑗 ≤ 𝑝𝑖𝑗(𝑡) = 𝑏𝑖𝑗 (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)) ≤ 𝑝𝑖𝑗,                          (MOPF1) 

 

where 𝑝𝑖𝑗(𝑡) represents the power flow on transmission line 𝑖𝑗 in period t (positive if 
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power flow is from i to j) with line capacity 𝑝𝑖𝑗 ≥ 0, and 𝜃𝑖(𝑡) is still the phase angle 

on bus i in period t. 

For any bus 𝑖, the power flow through it is balanced, so we have: 

 

∑ 𝑝𝑖𝑗

𝑗

(𝑡) = 𝑔𝑖(𝑡) + 𝑟𝑖(𝑡) + 𝑢𝑖(𝑡) − 𝑑𝑖(𝑡), 

where: 

 𝑔𝑖(𝑡) is the power generated at bus i, period 𝑡 with lower bound 𝑔𝑖(𝑡) and upper 

bound 𝑔𝑖(𝑡), which can be represented by: 

 

𝑔𝑖(𝑡) ≤ 𝑔𝑖(𝑡) ≤ 𝑔𝑖(𝑡);                                             (MOPF2) 

Specially, we make the wind generation in this model deterministic but 

non-dispatchable, e.g. 𝑔𝑖(𝑡) = 𝑔𝑖(𝑡) = 𝑔𝑖(𝑡) for wind generator. 

 𝑟𝑖(𝑡) is the discharged power from storage at bus i, period t. 𝑟𝑖(𝑡) can be positive, 

which means the ESS is discharging, or negative when the ESS is charging; 

  𝑢𝑖(𝑡) is the unmet demand at bus i, period t; 

 𝑑𝑖(𝑡) is the demand at bus i, period t. 

Here we have a big change from (FOPF3-FOPF5). First, we set both lower and 

upper bounds for the generator to make it more practical. Then, for the power flow 

balance constraint, we allow unmet demand to exist and to be satisfied from outside the 

power system with a high cost. We are doing this to make the problem still feasible even 

if many of the system’s generators are destroyed by the attacker and the demand cannot 
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be satisfied from the inside of the system. 

As in (FOPF2), we can similarly define the power flow in bus i as: 

𝑝𝑖(𝑡) = ∑ 𝑝𝑖𝑗

𝑗

(𝑡).                                              (MOPF3) 

Then we can write the power flow balance constraint as follows: 

 

𝑝𝑖(𝑡) = 𝑔𝑖(𝑡) + 𝑟𝑖(𝑡) + 𝑢𝑖(𝑡) − 𝑑𝑖(𝑡)                           (MOPF4) 

 

Combining (FOPF6) and (FOPF7), and using 𝑏𝑖(𝑡) to denote the battery energy 

level at bus i period t we have: 

 0 ≤ 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡 − 1) − 𝑟𝑖(𝑡) ≤ 𝐵𝑖.                          (MOPF5) 

 

Let 𝑐𝑖(𝑔𝑖) be the generation cost related to the amount of power generated in 𝑖 ∈ 𝑮. 

Also, there is a battery storage cost ℎ𝑖(𝑏𝑖) when the energy level is 𝑏𝑖. Finally, there is a 

terminal cost  ℎ𝑖
𝑇(𝑏𝑖(T)) on the final battery energy level 𝑏𝑖(T) and unmet demand 

incurs cost 𝑠𝑖 per unit. 

The formulation of the multi-period OPF problem (MOPF) with energy storage is: 

min
𝜃,𝑝,𝑟,𝑔,𝑏

∑ ∑(𝑐𝑖(𝑔𝑖(𝑡)) + ℎ𝑖(𝑏𝑖(𝑡), 𝑟𝑖(𝑡)) + 𝑢𝑖(𝑡)𝑠𝑖)

𝑇

𝑡=1𝑖∈𝐵

+ ∑ ℎ𝑖
𝑇(𝑏𝑖(𝑇))

𝑖∈𝐵

        (MOPF6) 

 

s.t.  (MOPF1)- (MOPF5) 

Since the constraints and the rest of the terms of the objective function are linear, 

when 𝑐𝑖(∙) is convex, the problem can be solved using a convex optimization solver 

such as CPLEX. 
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3.3 Interdiction assumptions 

In this subsection, we give assumptions about the vulnerability of the electric power 

system and explain how the attacking plans work.  

In our electric power system, the attackable components include buses, generators, 

and transmission lines. We make the following assumptions on the effect of each 

interdiction:  

1. Bus interdiction: All lines and generators connected to the bus are disconnected from 

the system. The load of that bus must be met from outside of the system. 

2. Generator interdiction: The generator is disconnected from the grid. Also, for wind 

generator, we assume its storage is connected with the generator and if the generator 

is attacked, the storage will disconnect from the grid. 

3. Line interdiction: If a transmission line is attacked, it is disconnected from the 

system. 

The Attacker makes an attacking plan, where they are going to interdict some of the 

components of the grid and for each interdiction in this plan, there will be some required 

resources for the attacker. Here we assume the resource to be money. 

3.4 Bilevel interdiction model 

In this subsection, introduce our bilevel interdiction model. We first introduce the 

interdiction elements (i.e., new variables and parameters) related to the attacking plan. 
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Then we modify the MOPF model by adding the interdiction elements. Finally, we give 

our bilevel interdiction model. 

To indicate the attacking plan and introduction resources, we introduce the 

corresponding variables and parameters as follows: 

1. Interdiction Variables:  

𝛿𝑖
𝐵𝑢𝑠, 𝛿𝑔

𝐺𝑒𝑛, 𝛿𝑖𝑗
𝐿𝑖𝑛𝑒: Attacking decision on bus (𝑖 ∈ 𝐵), generator (𝑔 ∈ 𝐺), transmission 

line (𝑖, 𝑗 ∈ 𝐵), respectively. There are binary variables that take the value 1 if the 

corresponding component is attacked and 0 otherwise. 

2. Resource parameters: 

𝑀𝐵, 𝑀𝐺 , 𝑀𝐿: Resources required to interdict a certain bus, generator, line, 

respectively; 

𝑀: total interdiction resource available to attackers. 

   We define our interdiction MOPF (IPF) as: 

𝛾(𝜹𝐺𝑒𝑛, 𝜹𝐿𝑖𝑛𝑒 , 𝜹𝐵𝑢𝑠, 𝜹𝑆𝑢𝑏)

= min
𝜃,𝑝,𝑟,𝑔,𝑏

∑ ∑(𝑐𝑖(𝑔𝑖(𝑡)) + ℎ𝑖(𝑏𝑖(𝑡), 𝑟𝑖(𝑡)) + 𝑢𝑖(𝑡)𝑠𝑖)

𝑇

𝑡=1𝑖∈𝐵

+ ∑ ℎ𝑖
𝑇(𝑏𝑖(𝑇))

𝑖∈𝐵

                                                                                     (IPF1) 

 

s.t.: 

−𝑝𝑖𝑗 ≤ 𝑝𝑖𝑗(𝑡) = 𝑏𝑖𝑗 (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)) (1 − 𝛿𝑖𝑗
𝐿𝑖𝑛𝑒)(1 − 𝛿𝑖

𝐵𝑢𝑠)(1 − 𝛿𝑗
𝐵𝑢𝑠) ≤ 𝑝𝑖𝑗 

∀𝑖, 𝑗 ∈ 𝐵              (IPF2) 

 

𝑝𝑖(𝑡) = 𝑔𝑖(𝑡) + 𝑟𝑖(𝑡) + 𝑢𝑖(𝑡) − 𝑑𝑖(𝑡)                    ∀𝑖 ∈ 𝐵               (IPF3) 
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𝑝𝑖(𝑡) = ∑ 𝑝𝑖𝑗

𝑗

(𝑡)                          ∀𝑖, 𝑗 ∈ 𝐵              (IPF4) 

0 ≤ 𝑔𝑖(𝑡) ≤ 𝑔𝑖(𝑡)(1 − 𝛿𝑔
𝐵𝑢𝑠)                       ∀𝑖 ∈ 𝐵              (IPF5) 

 

0 ≤ 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡 − 1) − 𝑟𝑖(𝑡) ≤ 𝐵𝑖(1 − 𝛿𝑖
𝐵𝑢𝑠)           ∀𝑖 ∈ 𝐵              (IPF6) 

all δ ∈ {0,1}                                                            (IPF7) 

 

 

Note: Nonlinear constraints in 𝛅  are used for ease of understanding; linear 

replacements of those constraints can be written by splitting the above constraints into 

constraints that only contain a single δ. 

 

Then, we can formulate of the bilevel interdiction problem: 

max
𝛿𝐵,𝛿𝐺,𝛿𝐿

𝛾(𝜹𝐵, 𝜹𝐺 , 𝜹𝐿)                                                  (I1) 

s.t.: 

∑ 𝑀𝐵

𝑎𝑙𝑙 𝑏𝑢𝑠𝑒𝑠

𝛿𝐵 + ∑ 𝑀𝐺

𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝛿𝐺 + ∑ 𝑀𝐿

𝑎𝑙𝑙 𝑙𝑖𝑛𝑒𝑠

𝛿𝐿+≤ 𝑀            (I2) 

(IPF2)- (IPF7) 

Equations (IPF2)- (IPF6) are analogues of (MOPF1)- (MOPF5). Here, however, the 

components that have been interdicted are removed from the equations through the binary 

interdiction variables. 

  



24 
 

4. Solution Methodology 

 

4.1 Overview 

In this thesis, we use a decomposition-based heuristic based on the algorithm of 

Salmerson, et, al. [19] to solve our multiperiod interdiction model. This algorithm may be 

viewed as a heuristic version of Benders decomposition [31]. There are three steps in 

each iteration of the algorithm: first solving MOPF under a certain attacking plan (IPF); 

then using the power flow as input to evaluate the “relative value” of grid components; 

finally using the components’ value to make a new attacking plan and go back to the first 

step. In this section, we describe the algorithm in detail both in words and in 

mathematics. 

 

4.2 Subproblem 

We start the algorithm by solving IPF under the original power network conditions. 

Later, we refer to solving IPF under a certain interdiction plan as “the subproblem”. 

However, at the beginning, there is no attack and the power system remains untouched. In 

either condition, by solving the subproblem, we get an optimal power flow in finite 

horizon; these results are parameters of the power grid which minimize generation and 

storage cost. 
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Assume that at iteration t of the algorithm, the interdiction plan is �̂�𝑡 =

(�̂�𝐵𝑢𝑠,𝑡, �̂�G𝑒𝑛,𝑡, �̂�𝐿𝑖𝑛𝑒,𝑡) . We plug these �̂�𝑡  into (IPF1)-(IPF6), which gives us the 

subproblem for iteration t. Its solution yields the optimal power flows, generation, 

discharge amount and unmet demand under the attacking plan represented by �̂�𝑡. We 

write the result as �̂�𝑡(𝑡) = (�̂�𝐿𝑖𝑛𝑒,𝑡(𝑡), �̂�𝐺𝑒𝑛,𝑡(𝑡), �̂�𝐵𝑢𝑠,𝑡(𝑡), �̂�𝐵𝑢𝑠(𝑡), �̂�𝐵𝑢𝑠(𝑡), �̂�𝐵𝑢𝑠(𝑡)). 

In this formulation, the superscript t represents iteration t, and (t) represent the time 

period. 

 

4.3 Value estimates 

The next step is to use the �̂�𝑡(t) to determine the “values” of all the components of 

the power grid. It worth mentioning that when we evaluate the value of each component, 

we are using the average power flow of all previous iterations. This is because if we did 

not use an average and if the power flow through a currently interdicted component is 

zero, which means this component should be important as it was in the attacking plan, 

this component would be regarded as not valuable in the next iteration. which is 

undesirable. 

To estimate the value, we define some parameters which will be used in the master 

problem of the same iteration. For every bus i we compute 
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∑ �̂�𝑡(𝑡)

𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

= (∑ �̂�𝐿𝑖𝑛𝑒,𝑡(𝑡) , ∑ �̂�𝐺𝑒𝑛,𝑡(𝑡) , ∑ �̂�𝐵𝑢𝑠,𝑡(𝑡) , ∑ �̂�𝐺𝑒𝑛,𝑡(𝑡) , ∑ �̂�𝐺𝑒𝑛,𝑡(𝑡) , ∑ �̂�𝐵𝑢𝑠(𝑡)) 

 

We write the summation as: 

 

�̂�𝑡 = (�̂�𝐿𝑖𝑛𝑒,𝑡, �̂�𝐺𝑒𝑛,𝑡, �̂�𝐵𝑢𝑠,𝑡, �̂�𝐺𝑒𝑛,𝑡, �̂�𝐺𝑒𝑛,𝑡, �̂�𝐵𝑢𝑠) 

 

Then we compute: 

𝐹𝑖
𝑂𝑢𝑡,𝑡 = ∑ �̂�𝑙

𝐿𝑖𝑛𝑒,𝑡
𝑙|𝑜(𝑙)=𝑖⋀𝑝𝑙

𝐿𝑖𝑛𝑒>0 + ∑ |�̂�𝑙
𝐿𝑖𝑛𝑒,𝑡|𝑙|𝑑(𝑙)=𝑖⋀𝑝𝑙

𝐿𝑖𝑛𝑒<0 , flow out of bus i 

𝐹𝑖
𝑀𝑒𝑡,𝑡 = ∑ (𝑑𝑖𝑐 − �̂�𝑖𝑐

𝑡 )𝑐 , load supplied to bus i. 

These totals are then used to compute: 

𝑉𝑔
𝐺𝑒𝑛,𝑡 = 𝑤𝐺𝑒𝑛�̂�𝑔

𝐺𝑒𝑛,𝑡 + 𝑤𝑆𝑡𝑜�̂�𝑔
𝐺𝑒𝑛,𝑡 + 𝑤𝑆𝑡𝑜�̂�𝑔

𝐺𝑒𝑛,𝑡, ∀𝑔 ∈ 𝐆 

 𝑉𝑙
𝐿𝑖𝑛𝑒,𝑡 = 𝑤𝐿𝑖𝑛𝑒|�̂�𝑖𝑗

𝐿𝑖𝑛𝑒,𝑡|,                                                       ∀𝑖, 𝑗 ∈ 𝐁 

𝑉𝑖
𝐵𝑢𝑠,𝑡 = 𝑤𝐵𝑢𝑠(𝐹𝑖

𝑂𝑢𝑡,𝑡 + 𝐹𝑖
𝑀𝑒𝑡,𝑡),                                        ∀𝑖 ∈ 𝐁 

The weights 𝑤𝐺𝑒𝑛, 𝑤𝑆𝑡𝑜 , 𝑤𝐵𝑢𝑠, 𝑤𝐿𝑖𝑛𝑒 and 𝑤𝑆𝑢𝑏 are weight coefficients which are 

defined to reflect the relative importance of each type of component. Here we set 

w𝐺𝑒𝑛 = 1, 𝑤𝑆𝑡𝑜 = 1, 𝑤𝐵𝑢𝑠 = 5, 𝑤𝐿𝑖𝑛𝑒 = 1 and 𝑤𝑆𝑢𝑏 = 5. 

 

4.4 Master problem 

After we have the estimated value of each component in the grid, we make a new 

interdiction plan by solving a problem that maximizes the value of the interdicted 

components under limited attacking resources. We call this part the “master problem”. 

Assume that the estimated values of the grid components can be represented by 
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𝑽𝑡 = (𝑽𝐺𝑒𝑛,𝑡, 𝑽𝐿𝑖𝑛𝑒,𝑡, 𝑽𝐵𝑢𝑠,𝑡), which is calculated at iteration 𝑡. Also assume the vector of 

interdiction plans generated in all previous iterations is  Δ̂𝑡= (�̂�1, … , �̂�𝑡). The 

interdiction master problem can be given by: 

max
𝛿𝐺𝑒𝑛,𝛿𝐿𝑖𝑛𝑒,𝛿𝐵𝑢𝑠

∑ 𝑉𝑔
𝐺𝑒𝑛,𝑡𝛿𝑔

𝐺𝑒𝑛

𝑔

+ ∑ 𝑉𝑙
𝐿𝑖𝑛𝑒,𝑡𝛿𝑙

𝐿𝑖𝑛𝑒

𝑙

+ ∑ 𝑉𝑖
𝐵𝑢𝑠,𝑡𝛿𝑖

𝐵𝑢𝑠

𝑖

        (MP0) 

 

s.t. 

∑ 𝑀𝐵

𝑎𝑙𝑙 𝑏𝑢𝑠𝑒𝑠

𝛿𝐵 + ∑ 𝑀𝐺

𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝛿𝐺 + ∑ 𝑀𝐿

𝑎𝑙𝑙 𝑙𝑖𝑛𝑒𝑠

𝛿𝐿+≤ 𝑀            (MP1) 

 

𝛿𝑔
𝐺𝑒𝑛 + 𝛿𝑖

𝐵𝑢𝑠 ≤ 1, ∀𝑔 ∈ 𝐆𝑖, 𝑖 ∈ 𝐁                           (MP2) 

 

𝛿𝑙
𝐿𝑖𝑛𝑒 + 𝛿𝑖

𝐵𝑢𝑠 ≤ 1, ∀𝑙 ∈ 𝐋𝒊, 𝑖 ∈ 𝐁                           (MP3) 

 

∑ (�̂�𝑔
𝐺𝑒𝑛,𝑡′

− 𝛿𝑔
𝐺𝑒𝑛)

�̂�𝑔
𝐺𝑒𝑛,𝑡′=1

+ ∑ (𝛿𝑙
𝐿𝑖𝑛𝑒,𝑡′

− �̂�𝑙
𝐿𝑖𝑛𝑒)

�̂�𝑙
𝐿𝑖𝑛𝑒,𝑡′=1

+ ∑ (𝛿𝑖
𝐵𝑢𝑠,𝑡′

− 𝛿𝑖
𝐵𝑢𝑠)

�̂�𝑖
𝐵𝑢𝑠,𝑡′=1

≥ 1,        𝑡′ ≤ 𝑡                                                                                                (MP4) 

 

The objective function (MP0) maximizes the estimated value of the interdicted grid 

components under limited resources without waste. (MP1) is the same as (I2) which 

limits the resources for interdiction. Constraints (MP2) mean that at a certain bus i, if the 

bus itself is interdicted, then none of its generators can be attacked since they would not 

work at all if the bus is interdicted, so there is no sense attacking them; also, if a 

generator in bus i is interdicted, then we do not allow the bus to be attacked, otherwise it 

would be a waste of resource to interdict the generator. Similarly, (MP3) restricts the 

attacking option among a certain bus i and all transmission lines connected to it. 
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Constraints (MP4) compare the new interdiction plan for this iteration with every 

previous plan and ensures that the new interdiction plan has at least one attacking 

decision which is different from each previous plan from previous iterations.  

Let �̂�𝑡+1 = (�̂�𝐺𝑒𝑛,𝑡+1, �̂�𝐿𝑖𝑛𝑒,𝑡+1, �̂�𝐵𝑢𝑠,𝑡+1) denote the solution to the master problem 

in the current iteration. The vector �̂�𝑡+1 will be used as a parameter in the subproblem to 

start a new iteration of the algorithm which constructs a complete loop. 

 

4.5 Pseudocode of the algorithm 

In this subsection, we summarize the whole algorithm described above with 

pseudocode. 

 

Input Data:  

Grid data (susceptance of transmission lines, generation cost, generation bound 

etc.); interdiction data (resource limit); iteration limit (T). 

 

Output Results: 

 �̂�∗ is a feasible interdiction plan and the cost to meet the system demand 𝛾∗. If the 

algorithm stops because the master problem is infeasible, which means there is no new 

interdiction plan, then �̂�∗ is therefore the best interdiction plan and 𝛾∗ is the highest 

operational cost by this algorithm. 
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Initialization: 

1. Set �̂�1 ≡ (�̂�𝐺𝑒𝑛,1, �̂�𝐿𝑖𝑛𝑒,1, �̂�𝐵𝑢𝑠,1) ← (0,0,0)(initial attacking plan). 

2. Set �̂�∗ ← �̂�1 (𝑏𝑒𝑠𝑡 𝑝𝑙𝑎𝑛 𝑠𝑜 𝑓𝑎𝑟)and Δ̂1← {�̂�1}(𝑎𝑙𝑙 𝑎𝑡𝑡𝑎𝑐𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑠 𝑠𝑜 𝑓𝑎𝑟).  

3. Set 𝛾∗ ← 0 (initial best operational cost). 

4. Set 𝑡 ← 1 (iteration number). 

 

Subproblem: 

1. Solve IPF with �̂�𝑡, get solution �̂�𝑡 = (�̂�𝐿𝑖𝑛𝑒,𝑡, �̂�𝐺𝑒𝑛,𝑡, �̂�𝐵𝑢𝑠,𝑡, �̂�𝐺𝑒𝑛,𝑡, �̂�𝐺𝑒𝑛,𝑡, �̂�𝐵𝑢𝑠) 

and objective value γ(�̂�𝑡). 

2. If γ(�̂�𝑡)> 𝛾∗ then 𝛾∗ ← γ(�̂�𝑡) and �̂�∗ ← �̂�𝑡. 

3. If t=T, then Print (�̂�∗, 𝛾∗) and stop. 

 

Value Estimates 

1. Compute “relative value” using �̂�𝑡′, t’=1, …, t,  

𝑽𝑡 = (𝑽𝐺𝑒𝑛,𝑡, 𝑽𝐿𝑖𝑛𝑒,𝑡, 𝑽𝐵𝑢𝑠,𝑡)=
1

𝑡
∑ (𝑽𝐺𝑒𝑛,𝑡′, 𝑽𝐿𝑖𝑛𝑒,𝑡′, 𝑽𝐵𝑢𝑠,𝑡′)𝑡

1 . 

 

Master problem:  

1. Solve the master problem and get �̂�𝑡+1. 

2. If the master problem is infeasible, then print (𝛾∗, �̂�∗) and stop. 
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Otherwise, update Δ̂𝑡+1← Δ̂𝑡 ∪ {�̂�𝑡+1}. 

3. Set 𝑡 ← 𝑡 + 1. 

4. Return to Subproblem 
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5. Computational Results 

 

5.1 Test-case description  

In this thesis, we used the IEEE 1996 Reliability Test System [32] (24 buses), IEEE 

57-bus system and IEEE 118-bus system to test our model.  

Since the generators in these systems are all conventional generators, they do not fit 

our multi-period model with renewables very well. For this reason, we changed some 

original data; for RTS 1996, we assume the generators at bus #18 and #21 are wind 

generators. The reason we choose these generators is mainly because of their max 

generation capacity. The whole system’s generate on capacity is 3401MW and usually the 

renewable capacity generators take less than 30% of the power in whole system. The max 

generate on capacity of #18 and #21 are both 400MW. Thus, it would be suitable to have 

them modified. We assume their ESS have a storage capacity of 400MWh and their 

generating costs are set to zero. Similarly, we assume the generator at bus #1 in IEEE 

57-BS to be a wind generator with generation capacity 600MW and a corresponding 

storage capacity of 600MWh. For IEEE 118-BS, we assume the generators at bus #10, 

#26, #69, #80 and #89 to be wind generators, with generation capacity of 550MW, 

420MW, 800MW, 600MW and 700MW, respectively; and corresponding storage capacity 

of 550MWh, 420MWh, 800MWh, 600MWh and 700MWh, respectively. 
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To make the original demand data for static OPF fit our finite-horizon OPF model, 

we also modified the demand data of all testing instances by combining them with real 

demand data in Texas. We first randomly take 24 consecutive hourly demand data 

(5000-5023) from the database of Electric Reliability Council of Texas (ERCOT) [33] in 

2014 (shown in Figure 1). When we implement a instance, we scale the demands from 

the instance in each period according to the proportional changes in the ERCOT data.  

 

 
Figure 5-1 Power Demand 

 

Then we distribute the demand according to the percentage of each bus taken in the 

whole system and add 10% random disturbance. 

For interdiction data, we set 𝑀𝐵 = 5, 𝑀𝐺 = 3, and 𝑀𝐿 = 1. For the total resource, 

we will change it to see how it affects load shedding. 
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5.2 Implementation 

The model and algorithm are implemented in AIMMS, which is an algebraic 

modeling language for numerical optimization problems. AIMMS enables easy 

generation and manipulation of the subproblems and master problems, which are solved 

with CPLEX 12.7.0.0. Tests were carried out on a 2GHz personal computer with 8GB of 

RAM.  

In the tests, we assume a fixed per-unit penalty for unmet load of 1000 unit price per 

MW. This shedding cost is much higher than generation costs. 

 

5.3 Testing result 

In this subsection, we show the testing results from three aspects: 1. The relationship 

between interdiction resources given and the total load shedding in all instances; 2. The 

comparison of total time to solve the problem between all instances with different amount 

of interdiction resources; 3. Analyses of the changes between the static OPF model with 

conventional generators and the finite horizon OPF model with renewable generators. 
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5.3.1 Load shed-interdiction resource relationship 

 
Figure 5-2 RTS-96 Testing Result 

 

 
Figure 5-3 57-BS Testing Result 
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Figure 5-4 118-BS Testing Result 

 

Figures 4-2, 4-3 and 4-4 show the relationship between average amount of load shed 

in the grid and the total interdiction resource M. For all the three figures, the amount of 

load shed is nondecreasing as the interdiction resource M increases. Also, there is a 

tendency of the function toward concavity as M increases. 

For both RTS-96 and 57-BS, as M increases to the end of the figure, 95% of the load 

is unmet, which takes 40 and 20 units of resource, respectively. However, for 118-BS, 

though the interdiction resource limit (up to 100 units) is much higher than the other two 

systems, the load shed at the end is only around 60% of the total load, and further testing 

shows that it would cost around 150 units of resource to make the load shed over 95%. 

This observation can be explained by several reasons. The first factor is the relative 

amount of demand and the generation capacity. For RTS-96, the average demand in the 

whole system is over 90% of the generation capacity, so that once the interdiction is made, 
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even if the resource limit is low, there would be obvious load shed. On the other hand, for 

57-BS and 118-BS, the demand is around 50% of the total generation capacity, so that at 

the beginning, the load shed is small. The second factor is about the number of generators 

in the system or the distribution of power generation. For 57-BS, although there are 57 

buses, the total number of generators is only 7 and each of them has a large generation 

capacity. This means it only takes 21 units of resource for the attacker to interdict all the 

generators, which would cause the most load shed. As for RTS-96, though there are only 

24 buses in the system, the number of generators is 33, which would cost the attacker 

more resources to interdict either more generators or higher cost buses. And the situation 

is analogous for 118-BS. 

The other observation is that for each figure, there is a relative big “jump” at the 

beginning of load shed increasing. The reason for that is some of the components in the 

power system carry much power load, for example the low cost renewable generator with 

large generation capacity, and those components are of great value when solving the 

master problem and would be attacked prior. Once these components are interdicted, 

there would be a huge amount of unmet demand, which explains the “jump”. 

 



37 
 

5.3.2 CPU time 

 

Figure 5-5 CPU time comparison 

 

The Figure shows that the 118-BS takes the most CPU time among these three 

instances, with around 35 seconds when the interdiction resource is from 5-20. 

 

5.3.3 Attacking plan comparison between static OPF and finite horizon MOPF 

In this thesis, we also use the static OPF model in the subproblem, which is 

analogous to Salmeron’s paper et al. [19] to get a result for comparison. We use RTS-96 

as our testing example, keeping all generators as conventional generator. 

By comparing results from the two models, we find that the main change in 

attacking plan is that when the interdiction resource is relative little (e.g. 5 units), in the 
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MOPF model, the interdiction plan includes the renewable generator while the static OPF 

model includes other components (transmission lines) instead of the generator. This is 

sensible since the renewable generator has no generation cost, so when solving the MOPF, 

the renewable generator would provide relatively larger generation, which makes it more 

“valuable” when solving the master problem and more likely to be chosen prior. 
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6. Conclusion 

 

In this thesis we formulate a bilevel interdiction model for electric power systems 

containing wind generators and use a decomposition based heuristic algorithm to solve 

the problem. By solving the problem, we will have a better understanding of the 

vulnerability of the system and find out the most critical components. We test our model 

with 3 popular IEEE instances and get some general conclusions for electric power 

systems containing renewables.  

1. From our test, we can see that if we have more generators with less generation 

capacity instead of fewer generators with larger generation capacity, and also 

distributed in more places in the system instead of gathered together, it is harder 

for attackers to cause huge unmet loads. 

2. If our power system has large generation capacity, it would have better tolerance 

towards disturbance from interdiction. 

Also, if we assume some of the components, say generators, cannot be interdicted, 

then by solving our model we can acquire the knowledge of what is the most critical 

component among the infrastructure in a certain system, since we will get the attacking 

plan on buses, transmission lines and so on. This allows us to analyze a system by 

changing conditions and solving our model. 

Numerous issues remain for future work, and they include: 
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1. Considering restoration over time: though we have modeled the OPF as a 

multi-period problem, we do not consider the recovery of the power system’s 

infrastructure. Different kinds of components have different recovery times and 

that would be an important factor for power network security. 

2. Considering defensive action: By analyzing the attacker’s potential behavior, the 

defender would have a better understanding of which component is the most 

vulnerable in the system. After fortification, the attacker would make a new 

attacking plan. If the defender has limited resources on fortification, what would 

be the optimal defensive action? This could be formulated as a trilevel problem. 

3. Considering other ways of solving the original bilevel problem: In this thesis, we 

use a heuristic to find an acceptable attacking plan. However, it might not be the 

optimal solution. We may find some other ways to solve this problem to find the 

optimal solution or reduce the gap. For example, we may find some way to 

linearize the form  

(Mm)    max
𝜹∈Δ

min
𝒑

𝒄𝑇𝒑 

s. t.  g(𝐩, 𝛅) ≤ 𝐛 

𝐩 ≥ 𝟎. 
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