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Abstract

The primary focus of this dissertation is the design, analysis, and implementation of numer-

ical methods to enhance Sequential Quadratic Optimization (SQO) methods for solving

nonlinear constrained optimization problems. These enhancements address issues that

challenge the practical limitations of SQO methods.

The first part of this dissertation presents a penalty SQO algorithm for nonlinear

constrained optimization. The method attains all of the strong global and fast local

convergence guarantees of classical SQO methods, but has the important additional feature

that fast local convergence is guaranteed when the algorithm is employed to solve infeasible

instances. A two-phase strategy, carefully constructed parameter updates, and a line search

are employed to promote such convergence. The first-phase subproblem determines the

reduction that can be obtained in a local model of constraint violation. The second-

phase subproblem seeks to minimize a local model of a penalty function. The solutions

of both subproblems are then combined to form the search direction, in such a way that

it yields a reduction in the local model of constraint violation that is proportional to

the reduction attained in the first phase. The subproblem formulations and parameter

updates ensure that near an optimal solution, the algorithm reduces to a classical SQO

method for constrained optimization, and near an infeasible stationary point, the algorithm

reduces to a (perturbed) SQO method for minimizing constraint violation. Global and local

convergence guarantees for the algorithm are proved under reasonable assumptions and

numerical results are presented for a large set of test problems.

In the second part of this dissertation, two matrix-free methods are presented for ap-

proximately solving exact penalty subproblems of large scale. The first approach is a novel
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iterative re-weighting algorithm (IRWA), which iteratively minimizes quadratic models of

relaxed subproblems while simultaneously updating a relaxation vector. The second ap-

proach recasts the subproblem into a linearly constrained nonsmooth optimization problem

and then applies alternating direction augmented Lagrangian (ADAL) technology to solve

it. The main computational costs of each algorithm are the repeated minimizations of con-

vex quadratic functions, which can be performed matrix-free. Both algorithms are proved

to be globally convergent under loose assumptions, and each requires at most O(1/ε2)

iterations to reach ε-optimality of the objective function. Numerical experiments exhibit

the ability of both algorithms to efficiently find inexact solutions. Moreover, in certain

cases, IRWA is shown to be more reliable than ADAL.

In the final part of this dissertation, we focus on the design of the penalty parameter

updating strategy in penalty SQO methods for solving large-scale nonlinear optimization

problems. As the most computationally demanding aspect of such an approach is the

computation of the search direction during each iteration, we consider the use of matrix-free

methods for solving the direction-finding subproblems within SQP methods. This allows

for the acceptance of inexact subproblem solutions, which can significantly reduce overall

computational costs. In addition, such a method can be plagued by poor behavior of the

global convergence mechanism, for which we consider the use of an exact penalty function.

To confront this issue, we propose a dynamic penalty parameter updating strategy to be

employed within the subproblem solver in such a way that the resulting search direction

predicts progress toward both feasibility and optimality. We present our penalty parameter

updating strategy and prove that does not decrease the penalty parameter unnecessarily

in the neighborhood of points satisfying certain common assumptions. We also discuss two

matrix-free subproblem solvers in which our updating strategy can be readily incorporated.
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Chapter 1

Introduction

Mathematical constrained optimization has grown in recent decades to become one of

the most important and influential tools in applied mathematics. However, the classes

of nonlinear optimization (NLO) problems that can be solved analytically are extremely

limited, especially due to issues such as potentially incompatible constraints, large problem

size, nonconexity and degeneracy. As a result, computational optimization methods that

can tackle those issues are critical for solving the complex problems arising in practice.

In this dissertation we present techniques for addressing issues related to incompatible

constraints and large scale problems.

Infeasibility detection, the first focus of this dissertation, is the process of reporting a

valid certificate of infeasibility when given an infeasible optimization problem. Typically,

such a certificate is given by a stationary point of constraint violation, thus named an

infeasible stationary point. To rapidly detect infeasibility of the constraints is an important

issue as many contemporary methods either fail or require an excessive number of iterations

and/or function evaluations before being able to detect that a given problem instance is

infeasible. As a result, modelers are forced to wait an unacceptable amount of time,

only to be told eventually (if at all) that model and/or data inconsistencies are present.

Rapid infeasibility detection is also important in techniques including branch-and-bound

methods for nonlinear mixed-integer and parametric optimization, as algorithms for solving
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such problems often require the solution of a number of nonlinear subproblems. Slow

infeasibility detection by such algorithms can create huge bottlenecks.

The second focus of this dissertation is the challenge of solving large-scale problems.

In particular, we focus on solvers for NLO algorithm subproblems. Along with other

various NLO methods, Sequential Quadratic Optimization (SQO), commonly known as

SQP, has been a standard technique for solving constrained NLO problems for decades.

With an appropriate globalization mechanism, SQO methods can converge from remote

starting points. They are also revered for their fast local convergence guarantees and

impressive practical performance. SQO methods also enjoy the characteristics of being

able to be warm-started effectively and providing highly accurate solutions. However,

the applicability of SQO has traditionally be limited to small-to-medium-scale problems.

This is mainly because a sequence of inequality-constrained Quadratic Optimization (QO)

subproblems of the same size as the origin problem need to be solved. This issue has been

a persistent challenge in SQO when applied to large-scale problems. However, in many

situations, an accurate solution to the subproblem of a SQO method is not necessarily

needed. In fact, an approximate solution with a relatively accurate estimate of the active-

set or yielding sufficient improvement toward optimality or feasibility is often adequate to

ensure progress of the algorithm. This fact motivates us to craft methods that can rapidly

find inexact solutions of SQO subproblems.

The acceptance of inexact subproblem solutions offers the possibility of terminating

the subproblem solver early, perhaps well before an accurate solution has been computed.

This characterizes the types of strategies that we focus on in the third part of this thesis.

Recently, some work has been done to provide global convergence guarantees for SQP

methods that allow inexact subproblem solves [27]. However, the practical efficiency of

such an approach remains an open question. A critical aspect of any implementation

of such an approach is the choice of subproblem solver. This is the case as the solver

must be able to provide good inexact solutions quickly, as well as have the ability to

compute highly accurate solutions—say, by exploiting well-chosen starting points—in the
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neighborhood of a solution of the NLO. In addition, while a global convergence mechanism

such as a merit function or filter is necessary to guarantee convergence from remote starting

points, an NLO algorithm can suffer when such a mechanism does not immediately guide

the algorithm toward promising regions of the search space. To confront this issue when

an exact penalty function is used as a merit function, we propose a dynamic penalty

parameter updating strategy to be incorporated within the subproblem solver so that each

computed search direction predicts progress toward both feasibility and optimality. This

strategy represents a stark contrast to previously proposed techniques that only update

the penalty parameter after a sequence of iterations [40] or at the expense of numerous

subproblem solves within a single iteration [19, 13].

Overall, in this dissertation, we present algorithms for addressing issues related to

infeasibility, the challenge of solving large scale problems, and complicating factors involved

in updating penalty parameters. Specifically, this dissertation includes the following:

1. First, we develop, analyze, and discuss the implementation of a globally convergent

SQO framework. Emphasis is placed on a solid theoretical foundation for its ability

to rapidly converge to an infeasible stationary point in infeasible cases and an opti-

mal solution in feasible cases. To our knowledge, this is a novel feature that most

contemporary methods do not possess.

2. Second, we design, analyze, and compare two matrix-free algorithms for inexactly

solving penalty QO subproblems in a generic penalty SQO framework. Both algo-

rithms are able to rapidly find good inexact solutions. Our primary contribution is

a new iterative-reweighting algorithm, for which we present a convergence proof and

complexity analysis.

3. Finally, we introduce a basic penalty SQO algorithm that will form the framework

for which we will introduce our penalty parameter updating strategy and matrix-free

subproblem solvers. We discuss implementations of our methods and the results of

extensive numerical experiments. Our main contribution is a novel technique for ren-

5



dering an appropriate value of the penalty parameter while solving the subproblem.

The structure of this dissertation is as follows. Chapter 2 discusses some background

of nonlinear optimization methods, including the contemporary solvers and techniques

related to the topics in this dissertation. In Chapter 3 we develop and analyze our proposed

penalty-SQO method and investigate its global and local convergence behavior for both

feasible and infeasible cases under common conditions. Chapter 4 presents two matrix-free

solvers that can quickly find an inexact solution for subproblems with an exact penalty

term. In Chapter 5, we propose an updating strategy for the penalty parameter while

solving the SQO subproblem. Final remarks and comments on all of the methods in this

dissertation are presented in Chapter 6.

6



Chapter 2

Background

2.1 Sequential Quadratic Optimization

We frame this dissertation in the context of the generic constrained NLO

min
x

f(x)

s.t.


cE(x) = 0

cI(x) ≤ 0

(2.1.1)

where f : Rn → R, cE : Rn → RmE , and cI : Rn → RmI are continuously differentiable. In

this dissertation, we are particularly interested in problems where the constraints may be

infeasible, or the number of variables n and the number of constraints m := mE +mI are

very large.

Among algorithms for solving NLO (2.1.1), SQO method has become one of most

powerful methods. Ever since 1963, when it was first proposed by Wilson [82], SQO has

evolved into a powerful class of methods for a wide range of constrained optimization

problems. Define the Lagrangian to (2.1.1) as

L(x, λ) := f(x) + λTE cE(x) + λTI cI(x),
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where λ = (λE , λI) are the Lagrange multipliers. In a basic SQO approach, the search

direction is defined as the solution to the following Quadratic Optimization (QO) subprob-

lem, of which the objective function is a quadratic approximation to the Lagrangian at an

iterate xk, and the constraints are the linearizations of these in (2.1.1) at xk:

min
d
∇f(xk)Td+ 1

2d
THkd

s.t.


cE(x

k) +∇cE(xk)Td = 0,

cI(x
k) +∇cI(xk)Td ≤ 0.

(2.1.2)

Here Hk is the exact or approximate Hessian of L(x, λ) at (xk, λk) with respect to x.

SQO variants typically enjoy global convergence guarantees under certain common

sets of assumptions when globalization techniques are employed. Early global convergence

proofs were accomplished in [47, 68], which still provide the foundations for proving global

convergence for many SQO methods. When explicit second-order derivative information is

used, one can show that SQO methods behave like Newton’s method to solve the Karush-

Kuhn-Tucker (KKT) conditions for the NLO problem (2.1.1) including only the active

constraints at the solution. This result is given by [71], which serves as the foundation

for proving the local convergence rate for many SQO methods. SQO is famous for its fast

local convergence in the neighborhood of a solution point satisfying common assumptions

and an appropriate constraint qualification.

2.2 Contemporary Nonlinear Optimization Solvers

With the growing importance of optimization in many areas, researchers have implemented

many successful optimization algorithms into off-the-shelf solvers, enabling people from

different fields to conveniently apply the solvers for their own applications. Among many

existing most successful NLO solvers, we focus on the software packages Ipopt [78], Knitro

[16, 18, 80], and Filter [36]. All of them implement either an SQO or an Interior Point

(IP) method, and are considered to be the leading computational tools for general-purpose
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NLO problems. Next we review the methods implemented in these three solvers. Detailed

descriptions of other solvers such as Lancelot [25], Snopt [40] and Loqo [50] are not

included.

The basic structure of Ipopt is a primal-dual IP method framework, which solves a

sequence of barrier problems with monotonically decreasing barrier parameters. For each

value of the barrier parameter, the KKT system of the barrier problem is attacked by a

damped Newton method to obtain the search direction. Then a step size is determined

by evaluating the progress toward optimality along the search direction using a filter

technique.

Knitro has three solvers for users to choose: Knitro-Direct, Knitro-CG, and Knitro-

Active, with default option Knitro-Direct. Knitro-Direct implements the IP method

proposed in [80], which solves a sequence of barrier problems to obtain an optimal solution.

Upon computing the search direction for a given barrier problem, a backtracking line search

is employed to determine the step size. The algorithm implemented in Knitro-CG is also an

IP method, though it differs in that the search directions are obtained by (approximately)

solving a QO subproblem with a trust region constraint. The final Knitro algorithm,

Knitro-Active, is a sequential linear-quadratic programming algorithm. It first solves a

Linear Optimization (LO) subproblem, which ends up with a set of “working” constraints

(constraints are that satisfied as equalities) at the LO solution. This working set is used to

formulate an equality-constrained QO subproblem. The search direction is a combination

of the solutions of the LO subproblem and the QO subproblem.

Filter employs a SQO method, computing the search direction by solving a QO

subproblem within a trust-region. A filter technique is used to decide whether the trial

step should be accepted or rejected.

2.3 Infeasibility Detection in Contemporary Solvers

In theory, SQO methods can often guarantee global convergence from remote starting

points to infeasible stationary points in addition to global and fast local convergence for

9



feasible problems. For example, see the trust-region SQO method in [8] or the penalty line

search SQO methods in [19, 21]. For those methods, it is shown that in the neighborhood of

a solution point satisfying common assumptions, fast local convergence to feasible optimal

solutions can be attained. However, most contemporary SQO methods make no attempt

to achieve a theoretical fast rate of convergence to stationary points in the infeasible

case. Rapid infeasibility detection can be shown by [13], though a major deficiency in

that algorithm is that perhaps many QO subproblems are required to be solved in each

iteration to drive fast local convergence.

For an algorithm to be robust and efficient in all practical situations, it should be able

to return a certificate of infeasibility when given an infeasible instance of the NLO problem

(2.1.1). Such a certificate can be developed, for example, through a measure of infeasibility

of the constraints. For our purposes, we consider the following `1-norm constraint violation

measure:

v(x) :=
∑
i∈E
|ci(x)|+

∑
i∈I

max{ci(x), 0}. (2.3.1)

Other types of constraint violation measures can be obtained by choosing different norms;

e.g., `2-norm-squared violation v2(x) :=
∑

i∈E (ci(x))2 +
∑

i∈I (max{ci(x), 0})2 and the

`∞-norm violation v∞(x) = max{|ci(x)|, i ∈ E ; max{ci(x), 0}, i ∈ I}. Different measures

may lead to distinct behavior when incorporated into an algorithm, but a discussion of

these issues is outside the scope of this dissertation. If there is no point satisfying the

constraints of problem (2.1.1), then algorithms should be designed to return a point min-

imizing constraint violation, i.e., in such cases, they should find the optimal solution to

the following infeasibility problem:

min
x

v(x). (2.3.2)

In practice, the priority for such an algorithm is to locate a stationary point for the NLO

problem (2.1.1), but if that is deemed unattainable, then the algorithm should at least

guarantee that a stationary point for the infeasibility problem (2.3.2) (i.e., a stationary

point for v) will be found. A point that is locally stationary for the infeasibility problem

10



(2.3.2) but infeasible for NLO (2.1.1) is called an infeasible stationary point for (2.1.1),

and the detection of such a point is a valid certificate of infeasible for problem (2.1.1). We

are aware that finding an infeasible stationary point does not mean that the constraints

of (2.1.1) are incompatible, but merely means they are locally inconsistent.

While many contemporary solvers have its infeasibility detection mechanism, in prac-

tice they may often fail to locate infeasible stationary points, or at least fail to do so in a

timely manner. In some situations, this inefficiency may be due to the use of a “switching”

technique to tackle potentially infeasible problems. The main intent of such algorithms

is to attempt to solve the NLO problem (2.1.1) until it has been determined that further

progress cannot be obtained, at which point they revert to solving the infeasibility prob-

lem (2.3.2) directly. That is, they revert to attempting to improve constraint satisfaction

during a feasibility restoration phase. If sufficient progress in minimizing constraint viola-

tion is attained in the restoration phase, then the method returns to the main algorithm;

otherwise, an infeasible stationary point may be detected. Such switching approaches are

often effective, but they may lead to inefficiencies for infeasible cases or even certain types

of feasible problems. The main reason for this is that, during the feasibility restoration

phase, an algorithm may obtain a reduction in constraint violation, but at the same time

it may be moving away from the set of optimal solutions. (Specifically, by ignoring the

objective function completely during the feasibility restoration phase, the method may

impair its overall progress.) If such an occurrence happens many times, the cost may

be numerous iterations before escaping this cycle and moving to a new area or claiming

infeasibility. Another inherent difficulty with a switching approach is that it is not easy

to determine when to make a switch between the two phases. All of this motivates us in

Chapter 3 to craft methods that can balance the two tasks of attaining optimality and

constraint violation minimization without the use of a switching technique.

Another method for infeasibility detection involves the use of a penalty function. If the

associated penalty parameter tends to an extreme value, then the algorithm transitions

to minimizing constraint violation. We believe that this is a reasonable approach, but
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may also be inefficient if the convergence of the parameter to its extreme value occurs too

slowly.

In the remainder of this subsection, we illustrate performance of the infeasibility de-

tection techniques implemented in Ipopt, Knitro and Filter. In Ipopt, the restoration

phase is triggered whenever the KKT system is ill-conditioned or the line search procedure

ends up with a tiny step size. In the restoration phase, it improves constraint satisfaction

by solving an `2-norm feasibility problem with an additional proximal term in the objec-

tive which prevents the new iterate from straying far from the previous iterate. This is

motivated by the concern that the restoration phase may impair overall progress if left

unchecked. Infeasibility is detected when an insufficient improvement in the restoration

phase is obtained. Otherwise, it reverts to the optimization phase with a point that is

closer to feasibility.

As in Ipopt, Knitro-Direct handles infeasibility detection via a condition on the step

size. If it is too small, then the algorithm reverts to Knitro-CG. Infeasibility detection in

Knitro-CG is handled through updates of a penalty parameter, which may tend to infinity

in order to place an increasingly higher priority on minimizing constraint violation. In

Knitro-Active, infeasibility is detected whenever the penalty parameter tends to infinity

and the minimizer of an `1-norm model of the linearized constraints does not lead to an

improvement in feasibility.

In Filter, when an infeasible QO is encountered, the algorithm turns to a feasibility

restoration phase. Before entering the restoration phase, their QO solver, an active set

method, returns a solution with some linear constraints being feasible and some infeasible.

Consider the case where only inequalities exist in (2.1.1). In the restoration phase, the

constraint index set I is partitioned into two sets, call them I1(xk) and I2(xk). The first

set I1(xk) contains all the linear feasible constraints, and the other, I2(xk), contains the

remaining indices, i.e., the linear infeasible constraints. While keeping the feasible linear

constraints feasible, they minimize the `1 violation of the linear infeasible constraints.

In the restoration phase, the feasibility restoration phase algorithm is basically an SQO
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method applied to such a problem. The restoration phase is exited whenever an iterate is

determine at which the linearized constraints are all feasible. Otherwise, the algorithm,

if it eventually detects infeasibility, returns a stationary point to the minimization of the

violation of constraints in I1(xk), while satisfying the remaining constraints. Therefore,

this type of infeasible stationary point is defined as one being stationary for the partial

constraint violation measure ∑
i∈I1(xk)

max{ci(x), 0} (2.3.3)

subject to the constraints ci(x) ≤ 0, i ∈ I2(xk).

Overall, the solvers described above use heuristics to handle infeasibility, mostly ap-

plying a switching technique of the type previously mentioned. To show the performance

of their strategies in practice, we provide a few small-scale examples (each with only two

or three variables), all of which are infeasible and have the infeasible stationary point lo-

cated at the origin. Typically, algorithms for NLO require a few assumptions to guarantee

nice convergence properties: regularity, which means the gradients of the equality con-

straints and active inequality constraints are linearly independent; strict complementarity,

which requires the Lagrange multipliers for the equality constraints and active inequal-

ity constraints to be nonzero; second-order sufficiency, which implies the Hessian of the

Lagrangian function is (sufficiently) positive definite on the null space of gradients of the

equality constraints and active inequality constraints. In order to have a variety of inter-

esting test problems, the ones we have constructed satisfy different combinations of these

assumptions (when observed in the context of the infeasibility problem (2.3.2) after slack

variables are added to produce a constrained problem); in total we end up with eight

different combinations which are listed in the Table 1 (Y=Yes, N=No). For Example 4

and Example 6 where the regularity condition does not hold, we observe that the multi-

pliers cannot be uniquely determined, and some of them violate strictly complementarity.

Therefore, it is not possible to create an instance with the regularity condition violated and

strictly complementarity always satisfied, so we indicate Y/N for strict complementarity
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for such cases. The formulations of these examples are given in Appendix 1. Another

problem, Example 9 — which is not mentioned in the table — is a feasible problem for

which we find some curious results from Filter.

If the infeasibility of these examples is known a priori, then the user can directly apply

the solvers to minimize the constraint violation. Table 2.1 provides these test results, where

Iter. denotes the number of iterations and Eval. denotes the function evaluation counts.

These solvers mostly require 20-30 iterations and function evaluations. Now suppose the

infeasibility of these examples is not known by the user, so the solvers are tasked to solve

the given NLO problems as they are stated in the Appendix. The performance information

for this case without any presolve phase is provided in Table 2.2, where an asterisk means

either the maximum iterations are exceeded or wrong information (e.g., that the problem

is feasible) is reported to the user. The results overall seem unimpressive and far from

the results in Table 2.2. We did not include the results of Knitro-CG, Lancelot, Snopt,

and Loqo on these examples in the table since they always ran out of iterations without

detecting infeasibility. The one solver that does produce acceptable-looking results is

Filter, it reports correct information rapidly but fails to provide an accurate infeasible

stationary point. For Example 9, Filter reports the problem is locally infeasible at the

point (−2.4109,−0.1012), but this is not actually an infeasible stationary point.

For cases where function evaluations are expensive or the problem scale is large, these

solvers may run for hours or days without producing useful results, or, in the case of

Filter, it may correct infeasible quickly, but incorrectly on certain problems. Therefore,

one can see that nearly all these solvers may struggle for detecting infeasibility in practice.

2.4 QO Subproblems in Contemporary Solvers

There may be numerous issues arising when using subproblem (2.1.2). First, the con-

straints may be inconsistent, which makes such a basic SQO subproblem not well-defined

in practice. In the past decades, various ingredients have been proposed to enhance SQO

methods to avoid this difficulty. Generally, many of them focus on two aspects: how to
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Table 2.1: Performance measures for solving the feasibility problem.

Problem
Ipopt Knitro-Direct Knitro-Active Filter

Iter. Eval. Iter. Eval. Iter. Eval. Iter. Eval.

1 28 29 14 15 13 24 17 21
2 31 32 31 33 8 9 12 13
3 50 131 10 11 9 12 12 13
4 24 79 18 29 10 13 10 12
5 166 786 29 40 21 24 30 32
6 37 48 20 21 19 22 26 27
7 59 65 31 34 19 20 25 28
8 46 71 19 20 23 28 26 29
9 28 29 18 19 18 54 15 14

Table 2.2: Performance measures for solving the NLO problem.

Problem
Ipopt Knitro-Direct Knitro-Active Filter

Iter. Eval. Iter. Eval. Iter. Eval. Iter. Eval.

1 48 281 38 135 22 235 16 16
2 109 170 ∗10000 ∗10000 23 167 12 12
3 788 3129 12 83 9 202 10 10
4 46 105 25 61 10 201 11 11
5 72 266 ∗1060 ∗3401 18 45 26 26
6 63 141 ∗76 ∗264 16 37 27 27
7 87 152 ∗10000 ∗43652 ∗10000 ∗20091 30 30
8 104 206 33 97 41 560 28 28
9 60 135 30 33 16 31 ∗13 ∗2

determine a step, and how to evaluate the improvement made by a step. For the former

aspect, modern SQO methods involve varying techniques, typically depending on whether

the method is based on a line search or trust-region approach. Both of them need some

“mechanism” to evaluate the progress made by a step, of which there are commonly two

kinds: a filter techinique or a penalty function formed by

φ(x; ρ) = ρf(x) + v(x).

By blending different options for all of these aspects, researchers have developed different

versions of SQO, such as penalty SQO methods with line search (see [19] for example),

penalty trust region SQO methods (see [35] for example), filter SQO methods with line

search (see [79] for example), and filter trust region SQO methods (see [37] for example).
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Each of these techniques yields different practical behavior.

Various other techniques are also proposed to handle other specific issues in SQO

methods. The method of S`1QP [35], also known as the elastic SQO method [4, 40] was

proposed to overcome the difficulties caused by the inconsistency of the subproblem (2.1.2)

constraints. The subproblem in such a penalty SQO method is given by

min
d,r,s,t

ρ∇f(xk)Td+ 1
2d

THkd+ eT (r + s) + eT t

s.t.



cE(x
k) +∇cE(xk)Td = r − s, i ∈ E

cI(x
k) +∇cI(xk)Td ≤ t, i ∈ I

r ≥ 0, s ≥ 0, t ≥ 0

‖d‖∞ ≤ ∆k

(2.4.1)

where constant ρ > 0 is penalty parameter. This subproblem is always feasible, meaning

that the search direction is always well-defined.

Clearly, the major computational cost in an SQO method is the solution of the QO

subproblems, which generally involve equality and inequality constraints. On one hand,

near the optimal solution, once the active set is determined, the QO subproblems then

reverts to equality constrained QOs, which can be solved by solving a system of linear

equations. As a result, fast local convergence can be achieved when active set method is

employed as the subproblem solver. This feature has led to active set SQO methods being

considered powerful solvers for small-to-medium-scale NLOs.

On the other hand, the need of having to solve QO subproblems has prevented SQO

methods from becoming an ideal option for large-scale problems. The existence of inequal-

ities generally makes the QO subproblems difficult to solve. When active set QO solvers

are used, the iterations needed for subproblems could be exponential with the number of

constraints in the worst case. Consequently, the computational time grows rapidly when

the problem size gets larger, and the method could even fail for large-scale cases in a timely

manner.
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An illustration of such an effect can be found in the COPS test set report [29]. We

use an example from [29] to show how the performance of an SQO solver could suffer

from large problem sizes. The comparison is carried out on Filter, Knitro, Loqo, Minos,

and Snopt. This example is to find the polygon of maximal area, among polygons with

nv sides and diameter d ≤ 1. The problem size is summarized in Table 2.3. The test

results are shown in Table 2.4, where the first row for each solver is the computational

time, f , “c violation” and “optimality” in the table represent the function value, constraint

violation, and the optimality error at the final iterate, respectively. A † mark means an

incorrect result was obtained, and ‡ represents a failure within time limit. One can see

from Table 2.4 that the computational time grows dramatically for Filter, Loqo, Minos,

and Snopt when the problem size becomes larger. They fail to solve the problem within

the time limit, or even return an incorrect result (Minos with nv = 200). Another aspect

to notice is that the dramatic growth in the computational time of Filter, which may be

due to the fact that an active set QO method is employed in this solver [36]. Among all

the NLO solvers, Knitro is reported to be most stable, with slow growth in computation

time. This is mainly due to the fact that all the three methods implemented in Knitro

solve subproblems of linear equations, linear optimization, and equality constrained QO

which is equivalent to linear equations. The same effect can be observed in most of the

other examples in [29]. Therefore, the performance of SQO solvers on large-scale problems

relies critically on the efficiency of the QO solvers.

Table 2.3: Largest-small polygon problem data
Variables 2(nv − 1)

Constraints (1
2nv + 1)(nv − 1)− 1

Bounds 2(nv − 1)
Linear equality constraints 0

Linear inequality constraints nv − 2
Nonlinear equality constraints 0

Nonlinear inequality constraints 1
2nv(nv − 1)

Nonzeros in ∇2f(x) 11(nv − 1)− 8
Nonzeros in c′(x) 2nv(nv − 1)− 2

Finally, we comment that in many cases an exact solution of the QO subproblems are
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Table 2.4: Performance on largest small polygon problem
Sover nv = 50 nv = 100 nv = 200

Filter 27.64s 555.2s ‡
f 7.66131e-01 7.77239e-01 ‡

c violation 8.88e-16 1.17e-14 ‡
optimality 8.96e-07 9.90e-07 ‡
Knitro 1.41s 8.99s 59.53s
f 7.60725e-01 7.37119e-01 6.740980e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 7.53e-07 3.99e-07 2.01e-07

Loqo 14.39s ‡ ‡
f 7.63694e-01 ‡ ‡

c violation 1.08e-10 ‡ ‡
optimality 1.02e-10 ‡ ‡
Minos 5.6s 121.3s 223.94s
f 7.66297e-01 6.79085e-01 6.57163e-01†

c violation 8.03-14 1.75e-13 2.66e-15†
optimality 6.32e-08 9.50e-10 9.55e-02†
Snopt 4.34s 69.35s ‡
f 7.84015e-01 7.85023e-01 ‡

c violation 1.11e-10 1.78e-11 ‡
optimality 8.30e-07 1.35e-07 ‡

not necessary. If a given inexact setp can make sufficient progress toward a solution of the

NLO, then global convergence can still be guaranteed. A variety of SQO methods with

inexactness in step computations have been proposed recently [52, 58, 48]. The conditions

that guarantee the global convergence of inexact SQP steps are discussed in [20]. This

feature of the QO subproblem provides the foundation of applying SQO methods to large-

scale applications.

2.5 Penalty Parameter Update in Contemporary Methods

The `1 penalty function φ(x; ρ) has been proved to be an exact penalty function of the

NLO problem (2.1.1). This result is given by the following theorem [84, Theorem 17.3]

Theorem 2.5.1. Suppose that x∗ is a strict local solution of the nonlinear optimization

problem (2.1.1), at which the first order stationary conditions are satisfied, with Lagrange
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multipliers λ∗. Then x∗ is a local minimizer of φ(x; ρ) for all ρ < ρ∗, where 1
ρ∗ = ‖λ∗‖∞.

If, in addition, the second-order sufficient conditions hold and ρ < ρ∗ then x∗ is a strict

local minimizer of φ(x; ρ).

Exact penalty methods, such as S`1QP, solve a local approximation model of φ(x; ρ)

such as

min
‖d‖∞∈∆k

ρ∇f(xk)Td+ 1
2d

THkd+
∑
i∈E
|ci(xk)+∇ci(xk)Td|+

∑
i∈I

max{ci(xk)+∇ci(xk)Td, 0},

which is equivalent to subproblem (2.4.1). Therefore, exact penalty methods are well as

effective techniques for handling the inconsistent constraints arising in the QO subproblem.

Based on Theorem 2.5.1, the penalty parameter ρ is updated at each iteration to

prevent the convergence to an undesirable point. Despite advantages of exact penalty

methods, their performance can be significantly affected by the penalty parameter, making

it difficult to keep efficient over a wide range of problems. Therefore, the penalty parameter

updating strategy is the critical point of constructing penalty methods. It has proved

difficult to designing successful updating strategy.

Early updating strategies may solve the subproblem for a finite sequence of decreasing

ρ [40], or scale down the penalty parameter by the magnitude of the multipliers [34].

This strategy can result in inefficient behavior and also requires heuristics to terminate

the update. Various approaches have been recently proposed to handle this situation.

In [21], the penalty parameter ρ is updated at every iteration so that sufficient progress

toward feasibility and optimality is guaranteed to first order. They solve an auxiliary LO

subproblem to evaluate the progress. Steering rules [19] and other methods [13] also require

the penalty parameter to guarantee sufficient improvement on feasibility and optimality.

Multiple subproblems may be solved per iteration with decreasing penalty parameter until

the desirable value is found.
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Chapter 3

An SQO Algorithm with Rapid

Infeasibility Detection

3.1 Introduction

Sequential quadratic optimization (SQO) methods are known to be extremely efficient

when applied to solve nonlinear constrained optimization problems [47, 67, 82]. Indeed,

it has long been known [7, 8, 9] that with an appropriate globalization mechanism, SQO

methods can guarantee global convergence from remote starting points to feasible optimal

solutions, or to infeasible stationary points if the constraints are incompatible. One of the

main additional strengths of SQO is that in the neighborhood of a solution point satisfying

common assumptions and an appropriate constraint qualification, fast local convergence

to feasible optimal solutions can be attained [70].

Despite these important and well-known properties of SQO methods, there is an im-

portant feature that many contemporary SQO methods lack, and it is for this reason that

the algorithm in this chapter has been designed, analyzed, and tested. Specifically, in

addition to possessing the convergence guarantees mentioned in the previous paragraph,

we have proved that the algorithm proposed in this chapter yields fast local convergence

when applied to solve infeasible problem instances.
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There are two main novel features of our algorithm. Most importantly, it is an algo-

rithm that possesses global and local superlinear convergence guarantees for feasible and

infeasible problems without having to resort to feasibility restoration. This feature, in that

a single approach is employed for solving both feasible and infeasible problems, means that

the algorithm avoids many of the inefficiencies that may arise when contemporary methods

are employed to solve problems with incompatible constraints. The second novel feature of

our algorithm is that it is able to attain these strong convergence properties with at most

two quadratic optimization (QO) subproblem solves per iteration. This is in contrast to

recently proposed methods that provide rapid infeasibility detection, but only at a much

higher per-iteration cost.

In the following section, we compare and contrast our approach with recently proposed

SQO methods, focusing on properties of those methods related to infeasibility detection.

We then present our algorithm in §3.2 and analyze its global and local convergence prop-

erties in §3.3. Our numerical experiments in §5.6 illustrate that an implementation of our

algorithm yields solid results when applied to a large set of test problems.

We remark at the outset that we analyze the local convergence properties of our algo-

rithm under assumptions that are classically common for analyzing that of SQO methods.

We explain that our algorithm can be backed by similarly strong convergence guaran-

tees under more general settings (see our discussion in §3.3.3), but have made the con-

science decision to use these common assumptions to avoid unnecessary distractions in

the analysis. Overall, the main purpose of this chapter is to focus on the novelties of our

algorithm—which include the unique formulations of our subproblems, our use of separate

multiplier estimates for the optimization and a corresponding feasibility problem, and our

unique combination of updates for the penalty parameter—which provide our algorithm

with global and fast local convergence guarantees on both feasible and infeasible problem

instances.
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3.1.1 Literature Review

Our algorithm is designed to act as an SQO method for solving an optimization problem

when the problem is feasible, and otherwise it is designed to act as a perturbed SQO

method [26] for a problem to minimize constraint violation. In this respect, our method

has features in common with those in the class of penalty-SQO methods [35] where search

directions are computed by minimizing a quadratic model of the objective combined with

a penalty on the violation of the linearized constraints. In such algorithms, if the penalty

parameter is driven to an extreme value, then the algorithm transitions to solely minimizing

constraint violation. We believe that this approach is reasonable, though there are two

main disadvantages of the manner in which penalty-SQO methods are often implemented.

One disadvantage is that the penalty parameter takes on all of the responsibility for driving

constraint violation minimization. This leads to a common criticism of penalty methods,

which is that the performance of the algorithm is too highly dependent on the penalty

parameter updating scheme. The second disadvantage is that, if the penalty parameter

is not driven to its extreme value sufficiently quickly, then convergence, especially for

infeasible problems, can be slow. These disadvantages motivate us to design a method

that reduces to a classical SQO approach for feasible problems, and where updates for the

penalty parameter lead to rapid convergence in infeasible cases.

The immediate predecessor of our work is the penalty-SQO method proposed in [13].

In particular, the approach in [13] is also proved to yield fast local convergence guarantees

for infeasible problems. That method does, however, have certain practical disadvantages.

The most significant of these is that, particularly in infeasible cases, the method may

require the solution of numerous QO subproblems per iteration. Indeed, near an infeasible

stationary point, at least three QO subproblems must be solved. The first will reveal that

for the current penalty parameter value it is not possible to compute a linearly feasible step,

the second then gauges the progress toward linearized feasibility that can be made locally,

and the third may produce the actual search direction. (In fact, if the conditions necessary

for global convergence are not satisfied after the third QO subproblem solve, then even
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more QO subproblem solves are needed until the conditions are satisfied.) In contrast,

the algorithm proposed in this chapter solves at most two QO subproblems per iteration.

It also relies less on the penalty parameter for driving constraint violation minimization,

and involves separate multiplier estimates for the optimization and feasibility problems.

This last feature of our algorithm—that of having two separate multiplier estimates—is

quite unique for an optimization algorithm. However, we believe that it is natural as the

optimization algorithm must implicitly decide which of two problems to solve: the given

optimization problem or a problem to minimize constraint violation.

Our algorithm is a multi-phase active-set method that has similarities with other such

methods that have been proposed over the last few decades. For instance, the method

in [13] borrows the idea, proposed in [19] and later incorporated into the line-search

method in [17], of “steering” the algorithm with the penalty parameter. Consequently,

that method at least suffers from the same disadvantages as the method in [13] when it

comes to infeasibility detection. More commonly, multi-phase SQO methods have taken

the approach of solving a first-phase inequality-constrained subproblem—typically a lin-

ear optimization (LO) subproblem—to estimate an optimal active set, and then solving

a second-phase equality-constrained subproblem to promote fast convergence; e.g., see

[21, 15, 23, 31, 32, 39]. A method of this type that solves two QO subproblems is that

in [57], though again the second-phase subproblem in that method is equality-constrained

as it only involves linearizations of constraints predicted to be active at an optimal solu-

tion. Our algorithm differs from these in that we do no active-set prediction, and rather

solve up to two inequality-constrained subproblems. The methods in [44, 45] involve the

solution of up to three subproblems per iteration: one to compute a “predictor” step, one

to compute a “Cauchy” step, and one to compute an “accelerator” step. In fact, various

subproblems are proposed for the “accelerator” step, including both equality-constrained

and inequality-constrained alternatives. Our algorithm differs from these in that ours is a

line search method, whereas they are trust region methods, and our first-phase subprob-

lem computes a pure feasibility step rather than one influenced by a local model of the
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objective. This latter feature makes our method similar to those in [7, 8], though again our

work is unique in that we ensure rapid infeasibility detection, which is not provided by any

of the aforementioned methods besides that in [13]. Finally, we mention that multi-phase

strategies have also been employed in interior-point techniques; e.g., see [14, 59].

3.2 Algorithm Description

We present our algorithm in the context of the generic nonlinear constrained optimization

problem

minimize
x

(min
x

) f(x)

subject to (s.t.) cE(x) = 0, cI(x) ≤ 0,
(3.2.1)

where f : Rn → R, cE : Rn → RmE , and cI : Rn → RmI are twice-continuously differen-

tiable. If the constraints of (3.2.1) are infeasible, then the algorithm is designed to return

an infeasibility certificate in the form of a minimizer of the `1 infeasibility measure of the

constraints; i.e., in such cases it is designed to solve

min
x

v(x), where v(x) := ‖cE(x)‖1 + ‖[cI(x)]+‖1. (3.2.2)

Here, for a vector c, we define [c]+ := max{c, 0} and, for future reference, define [c]− :=

max{−c, 0} (both component-wise). The priority is to locate a stationary point for (3.2.1),

but in all cases the algorithm is at least guaranteed to find a stationary point for (3.2.2),

i.e., a stationary point for v. We say a point x is stationary for v if 0 ∈ ∂v(x), where ∂v(x)

is the Clarke subdifferential of v at x [6, 24] (see [7] for a complete review of first-order

theory for potentially infeasible problems).

Each iteration of our algorithm consists of solving at most two QO subproblems, up-

dating a penalty parameter, and performing a line search on an exact penalty function. In

this regard, the method is broadly similar to that proposed in [7]; however, the algorithm

contains numerous refinements included to ensure rapid local convergence in both feasible

and infeasible cases. In this section, we present the details of each step of the algorithm.
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Of particular importance is the integration of our penalty parameter updates around the

QO solves as this parameter is critical for driving fast local convergence for infeasible

instances. A complete description of our algorithm is presented at the end of this section.

We begin by describing the conditions under which our algorithm terminates finitely.

In short, the algorithm continues iterating unless a stationary point for problem (3.2.1) has

been found. We define such stationary points according to first-order optimality conditions

for problems (3.2.1) and (3.2.2), all of which can be presented by utilizing the Fritz John

(FJ) function for (3.2.1), namely

F(x, ρ, λ) := ρf(x) + λE
T cE(x) + λI

T cI(x).

Here, ρ ∈ R is an objective multiplier and λ, with λE ∈ RmE and λI ∈ RmI , are constraint

multipliers. For future reference, we note that ρ also plays the role of the penalty parameter

in the `1 exact penalty function

φ(x, ρ) := ρf(x) + v(x). (3.2.3)

Our algorithm updates ρ and seeks stationary points for (3.2.1) through decreases in φ.

One possibility for finite termination is that the algorithm locates a first-order optimal

point for (3.2.1). First-order optimality conditions for problem (3.2.1) are

∇xF(x, ρ, λ) = ρ∇f(x) +∇cE(x)λE +∇cI(x)λI = 0,

cE(x) = 0, cI(x) ≤ 0,

λI ≥ 0, λI · cI(x) = 0.

(3.2.4)

Here, ∇f : Rn → Rn is the gradient of f , [∇cE ]T : Rn → RmE×n is the Jacobian of cE

(and similarly for [∇cI ]T ), and for vectors a and b we denote their component-wise (i.e.,

Hadamard or Schur) product by a ·b, a vector with entries (a ·b)i = aibi. If (x∗, ρ∗, λ∗) with

(ρ∗, λ∗) 6= 0 satisfies (3.2.4), then we call (x∗, ρ∗, λ∗) stationary for (3.2.1); in particular,
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it is a FJ point [53]. Of particular interest are those FJ points with ρ∗ > 0 as these

correspond to Karush-Kuhn-Tucker (KKT) points for (3.2.1) [55, 56].

The other possibility for finite termination is that the algorithm locates a stationary

point for (3.2.2) that is infeasible for problem (3.2.1). Hereinafter, defining e as a vector

of ones (whose size is determined by the context), first-order optimality conditions for

problem (3.2.2) are

∇xF(x, 0, λ) = ∇cE(x)λE +∇cI(x)λI = 0,

−e ≤ λE ≤ e, 0 ≤ λI ≤ e,

(e+ λE) · [cE(x)]− = 0, (e− λE) · [cE(x)]+ = 0,

λI · [cI(x)]− = 0, (e− λI) · [cI(x)]+ = 0.

(3.2.5)

If (x∗, λ∗) satisfies (3.2.5) and v(x∗) > 0, then we call (x∗, λ∗) stationary for (3.2.1);

in particular, it is an infeasible stationary point. Despite the fact that such a point is

infeasible for (3.2.1), it is deemed stationary as first-order information indicates that no

further improvement in minimizing constraint violation locally is possible.

We now describe our technique for computing a search direction and multiplier esti-

mates, which involves the solution of the QO subproblems (3.2.7) and (3.2.9) below. Once

the details of these subproblems have been specified, we will describe an updating strategy

for the penalty parameter that is integrated around these QO solves.

At the beginning of iteration k, the algorithm assumes an iterate of the form

(xk, ρk, λ
k
, λ̂k) with ρk > 0, −e ≤ λkE ≤ e, 0 ≤ λkI ≤ e, and λ̂kI ≥ 0. (3.2.6)

As all stationary points for (3.2.1) are necessarily stationary for the constraint violation

measure v, we initiate computation in iteration k by seeking to measure the possible

improvement in minimizing the following linearized model of v at xk:

l(d;xk) := ‖cE(xk) +∇cE(xk)Td‖1 + ‖[cI(xk) +∇cI(xk)Td]+‖1.
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Specifically, defining H(x, ρ, λ) as an approximation for the Hessian of F at (x, ρ, λ), we

solve the following QO subproblem whose solution we denote as (d
k
, rk, sk, t

k
):

min
(d,r,s,t)

eT (r + s) + eT t+ 1
2d

TH(xk, 0, λ
k
)d

s.t.


cE(x

k) +∇cE(xk)Td = r − s

cI(x
k) +∇cI(xk)Td ≤ t

(r, s, t) ≥ 0.

(3.2.7)

As shown in Lemma 3.3.2 in §3.3.1, this subproblem is always feasible and, if H(xk, 0, λ
k
)

is positive definite, then the solution component d
k

is unique. In addition, d
k

yields a

nonnegative reduction in l(·;xk), i.e.,

∆l(d
k
;xk) := l(0;xk)− l(dk;xk) ≥ 0, (3.2.8)

where equality holds if and only if xk is stationary for v.

Upon solving subproblem (3.2.7) and setting

λ
k+1

with − e ≤ λk+1
E ≤ e and 0 ≤ λk+1

I ≤ e

as the optimal multipliers for the linearized equality and inequality constraints in (3.2.7),

we check for termination at an infeasible stationary point. Specifically, we consider the

constraint violation measure v and the following residual for (3.2.5):

Rinf (xk, λ
k+1

) := max{‖∇xF(xk, 0, λ
k+1

)‖∞,

‖(e− λk+1
E ) · [cE(xk)]+‖∞, ‖(e+ λk+1

E ) · [cE(xk)]−‖∞,

‖(e− λk+1
I ) · [cI(xk)]+‖∞, ‖λk+1

I · [cI(xk)]−‖∞}.

If Rinf (xk, λ
k+1

) = 0 and v(xk) > 0, then (xk, λ
k+1

) is an infeasible stationary point.

Otherwise, as shown in Lemma 3.3.2 in §3.3.1, it follows that either v(xk) = 0 or d
k

is a
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direction of strict descent for v from xk.

Having measured, in a particular sense, the possible improvement in minimizing con-

straint violation by solving the QO subproblem (3.2.7), the algorithm solves a second QO

subproblem that seeks optimality. Denoting Ek and Ik as the sets of constraints that

are linearly satisfied at the solution of (3.2.7) (i.e., that have rki = ski = 0 for i ∈ E or

t
k
i = 0 for i ∈ I, respectively), we require that the computed direction maintains this set

of linearly satisfied constraints. The other linearly violated constraints in Ekc ∪ Ikc (where

Ekc := E \ Ek and Ikc := I \ Ik) remain relaxed with slack variables whose values are

penalized in the subproblem objective. The value of the penalty parameter employed at

this stage is the value for ρk immediately prior to this second phase subproblem, which for

future notational convenience we denote as ρ̂k. Overall, we solve the following regularized

QO subproblem whose solution we denote as (d̂k, r̂kEkc
, ŝkEkc

, t̂kIkc
):

min
(d,rEkc

,sEkc
,tIkc

)
ρ̂k∇f(xk)Td+ eT (rEkc + sEkc ) + eT tIkc + 1

2d
TH(xk, ρ̂k, λ̂k)d

s.t.


cEk(xk) +∇cEk(xk)Td = 0, cEkc (xk) +∇cEkc (xk)Td = rEkc − sEkc ,

cIk(xk) +∇cIk(xk)Td ≤ 0, cIkc (xk) +∇cIkc (xk)Td ≤ tIkc ,

(rEkc , sEkc , tIkc ) ≥ 0.

(3.2.9)

Upon solving (3.2.9) and setting

λ̂k+1 with − e ≤ λ̂k+1
Ekc
≤ e, 0 ≤ λ̂k+1

Ikc
≤ e, and λ̂k+1

Ik ≥ 0

as the optimal multipliers for the linearized equality and inequality constraints in (3.2.9), it

is again appropriate to check for finite termination of the algorithm, this time with respect

to the optimality conditions for (3.2.1). Given (xk, ρk, λ̂k+1) we consider the violation

measure v and the following residual corresponding to (3.2.4):

Ropt(xk, ρk, λ̂k+1) := max{‖∇xF(xk, ρk, λ̂k+1)‖∞, ‖λ̂k+1
I · cI(xk)‖∞}.
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We prove in Lemma 3.3.4 in §3.3.1 that if the algorithm reaches this stage, then ρk is

strictly positive. Thus, if Ropt(xk, ρk, λ̂k+1) = 0 and v(xk) = 0, then (xk, ρk, λ̂k+1) is a

KKT point for (3.2.1).

If the algorithm has not terminated finitely due to this last check of optimality, then

the search direction dk is chosen as a convex combination of the directions obtained from

subproblems (3.2.7) and (3.2.9). Given a constant β ∈ (0, 1), our criterion for the selection

of the weights in this combination is

∆l(dk;xk) ≥ β∆l(d
k
;xk). (3.2.10)

For w ∈ [0, 1], the reduction in l(·;xk) obtained by

d(w) := wd
k

+ (1− w)d̂k (3.2.11)

is a piecewise linear function of w. If ∆l(d
k
;xk) = 0, then by the formulation of (3.2.9),

we have ∆l(d̂k;xk) = 0 and so (3.2.10) is satisfied by w = 0. Otherwise, if ∆l(d
k
;xk) > 0,

then since ∆l(d(1);xk) = ∆l(d
k
;xk) > β∆l(d

k
;xk), there exists a threshold w ∈ [0, 1) such

that (3.2.10) holds for all w ≥ w. We define wk as the smallest value in [0, 1) such that

(3.2.10) holds and set the search direction as dk ← d(wk).

We have presented our techniques for computing the primal search direction dk as well

as new multiplier estimates λ
k+1

and λ̂k+1. Within this discussion, we have accounted

for finite termination of the algorithm and highlighted certain consequences of our step

computation procedure (e.g., (3.2.8) and (3.2.10)) that will be critical in our convergence

analysis. All that remains in the specification of our algorithm is our updating strategy

for the penalty parameter and the conditions of our line search, which we now present.

Note that with respect to ρ, an update is considered twice in a given iteration. The first

time an update is considered is between the two QO subproblem solves, as it is at this

point in the algorithm where the solution of (3.2.7) may trigger aggressive action toward

infeasibility detection. The second time an update is considered is after the solution of
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(3.2.9). The update considered at that time is representative of typical contemporary

updating strategies, used to ensure a well-defined line search and global convergence of

the algorithm.

Prior to solving the second subproblem (3.2.9) (and before fixing ρ̂k), we potentially

modify ρk and λ̂k (computed in iteration k−1) to reduce the weight of the objective f and

promote fast infeasibility detection. (Note that ρk and λ̂k will both influence the objective

of (3.2.9).) If the current iterate is infeasible and the reduction in linearized feasibility

obtained by d
k

is small compared to the level of nonlinear infeasibility, then there is

evidence that the algorithm is converging to an infeasible stationary point. In such cases,

we consider modifying ρk before solving subproblem (3.2.9) so that the rest of the iteration

places a higher emphasis on reducing constraint violation. A corresponding modification to

λ̂k is also necessary to guarantee fast infeasibility detection (see Theorem 3.3.11). Defining

constants θ ∈ (0, 1), κρ > 0, and κλ > 0, if

v(xk) > 0 and ∆l(d
k
;xk) ≤ θv(xk), (3.2.12)

then we set ρk by

ρk ← min{ρk, κρRinf (xk, λ
k+1

)2} (3.2.13)

and modify λ̂k so that

‖λ̂k − λk‖ ≤ κλRinf (xk, λ
k+1

)2. (3.2.14)

Otherwise, we maintain the current ρk and λ̂k. For satisfying (3.2.14), a simple approach

is to set λ̂k ← αλλ̂
k + (1− αλ)λ

k
where αλ is the largest value in [0, 1] such that (3.2.14)

is satisfied. (This is the approach taken in our implementation described in §5.6.)

Upon solving (3.2.9) and assuming the algorithm does not immediately terminate, we

turn to a second update for ρ and our line search. For these purposes, we employ the `1

exact penalty function φ (recall (3.2.3)). At xk, a linear model of φ(·, ρ) is

m(d;xk, ρ) := ρ(f(xk) +∇f(xk)Td) + l(d;xk)
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and the corresponding reduction in this model yielded by the search direction dk is

∆m(dk;xk, ρ) := m(0;xk, ρ)−m(dk;xk, ρ) = −ρ∇f(xk)Tdk + ∆l(dk;xk). (3.2.15)

Prior to the line search, the new penalty parameter ρk+1 is set so that its reciprocal is larger

than the largest multiplier (derived from (3.2.9)) and that the reduction ∆m(dk;xk, ρk+1)

is at least proportional to ∆l(dk;xk). That is, we set ρk+1 so that

ρk+1‖λ̂k+1‖∞ ≤ 1 (3.2.16)

and, for a given constant ε ∈ (0, 1), we have

∆m(dk;xk, ρk+1) ≥ ε∆l(dk;xk). (3.2.17)

Given constants δ ∈ (0, 1) and ω ∈ (0, 1), (3.2.16) and (3.2.17) can be achieved by setting

ρk ← min

{
δρk,

(1− ε)
‖λ̂k+1‖∞

}
if ρk‖λ̂k+1‖∞ > 1 (3.2.18)

followed by

ρk ←


δρk if ∆m(dk;xk, ρk) ≥ ε∆l(dk;xk) and wk ≥ ω;

min
{
δρk, ζk

}
if ∆m(dk;xk, ρk) < ε∆l(dk;xk),

(3.2.19)

where

ζk :=
(1− ε)∆l(dk;xk)

∇f(xk)Tdk + 1
2(dk)TH(xk, ρ̂k, λ̂k)dk

,

and then setting ρk+1 ← ρk. Once ρk+1 has been set in this manner, we perform a

backtracking line search along dk to determine αk such that, for η ∈ (0, 1), we have

φ(xk + αkdk, ρk+1)− φ(xk, ρk+1) ≤ −ηαk∆m(dk;xk, ρk+1). (3.2.20)
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Our proposed algorithm, hereinafter nicknamed SQuID , is presented as Algorithm 1.

We claim that the algorithmic framework of SQuID is globally convergent for choices of

subproblems other than (3.2.7). For instance, a linear subproblem with a trust region

would be appropriate for determining the best local improvement in linearized feasibility;

e.g., see [7, 8]. Under certain common assumptions, this choice should also allow for rapid

local convergence for feasible problem instances. We present SQuID as solving two QO

subproblems per iteration, however, as this choice also allows for rapid local convergence

for infeasible instances, the main focus of this chapter. In particular, in the neighborhood

of an infeasible stationary point satisfying the assumptions of §3.3.3, it can be seen that as

ρk → 0 and λ̂k → λ
k
, subproblem (3.2.9) produces SQO-like steps for the minimization of

constraint violation, thus causing rapid convergence toward stationary points for v. This

being said, efficient implementations of SQuID may avoid two QO solves per iteration.

For example, at (nearly) feasible points, one may consider skipping subproblem (3.2.7)

entirely, as we do in our implementation described in §5.6. For the purposes of this

chapter, however, we analyze the behavior of SQuID as it has been presented.

Algorithm 1 Sequential Quadratic Optimizer with Rapid I nfeasibility Detection

1: Choose β ∈ (0, 1), θ ∈ (0, 1), κρ > 0, κλ > 0, ε ∈ (0, 1), ω ∈ (0, 1), δ ∈ (0, 1), η ∈ (0, 1),

and γ ∈ (0, 1). Set k ← 0 and choose (xk, ρk, λ
k
, λ̂k) satisfying (3.2.6).

2: Compute (d
k
, rk, sk, t

k
, λ

k+1
) as the optimal primal-dual solution for (3.2.7).

3: If Rinf (xk, λ
k+1

) = 0 and v(xk) > 0, then terminate; (xk, λ
k+1

) is an infeasible sta-
tionary point for problem (3.2.1).

4: If (3.2.12) holds, then set ρk by (3.2.13) and λ̂k so that (3.2.14) holds. Set ρ̂k ← ρk.
5: Compute (d̂k, r̂kEkc

, ŝkEkc
, t̂kIkc

, λ̂k+1) as the optimal primal-dual solution for (3.2.9).

6: If Ropt(xk, ρk, λ̂k+1) = 0 and v(xk) = 0, then terminate; (xk, ρk, λ̂k+1) is a KKT point
for problem (3.2.1).

7: Set dk by (3.2.11) where wk is the smallest value in [0, 1) such that (3.2.10) holds.
8: Update ρk by (3.2.18), then by (3.2.19), and finally set ρk+1 ← ρk.
9: Let αk be the largest value in {γ0, γ1, γ2, . . . } such that (3.2.20) holds.

10: Set xk+1 ← xk + αkdk and k ← k + 1 and go to step 2.
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3.3 Convergence Analysis

The convergence properties of SQuID are the subject of this section. We prove the well-

posedness of the algorithm along with global and local convergence results for feasible and

infeasible problem instances. A few of the earlier results in this section are well-known in

(nonsmooth) composite function theory, so for the sake of brevity we only provide citations

for proofs.

3.3.1 Well-Posedness

We prove that SQuID is well-posed in that each iteration is well-defined and, if the overall

algorithm does not terminate finitely, then an infinite sequence of iterates will be produced.

This can be guaranteed under the following assumption. (Note that for simplicity here

and in §3.3.2, we assume that subproblems (3.2.7) and (3.2.9) are convex. See §3.3.3 for

a discussion of how this assumption can be relaxed without sacrificing local superlinear

convergence guarantees.)

Assumption 3.3.1. The following hold true for the iterates generated by SQuID :

(a) The problem functions f , cE , and cI are continuously differentiable in an open convex

set containing {xk} and {xk + dk}.

(b) For all k, H(xk, 0, λ
k
) and H(xk, ρ̂k, λ̂k) are positive definite.

Our first lemma reveals that −∆l(d;xk) and −∆m(d;xk, ρ) respectively play the roles

of surrogates for the directional derivatives of v and φ(·.ρ) from xk along the direction

d. For a proof, see [6, Lemma 2.3]. We use the lemma to show that as long as a search

direction dk yields a strictly positive reduction in l(·, xk) (m(·;xk, ρ)), then it is a direction

of strict decrease for v (φ(·, ρ)).

Lemma 3.3.1. The reductions in l(·;xk) and m(·;xk, ρ) produced by d satisfy

Dv(d;xk) ≤ −∆l(d;xk) and Dφ(d;xk, ρ) ≤ −∆m(d;xk, ρ), (3.3.1)
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where Dv(d;xk) and Dφ(d;xk, ρ) represent the directional derivatives of v and φ(·, ρ) at

xk corresponding to a step d, respectively.

The next lemma enumerates relevant properties of subproblem (3.2.7) related to the

well-posedness of SQuID . It states that as long as xk is not stationary for v, the solution

component d
k

will be a descent direction for v from xk. These properties are well-known;

e.g., see [6, Theorem 3.6].

Lemma 3.3.2. Suppose Assumption 3.3.1 holds. Then, during iteration k of SQuID :

(a) Subproblem (3.2.7) is feasible and the solution component d
k

is unique.

(b) ∆l(d
k
;xk) ≥ 0 where equality holds if and only if d

k
= 0.

(c) d
k

= 0 if and only if xk is stationary for v.

(d) d
k

= 0 if and only if (xk, λ
k+1

) satisfies (3.2.5).

Properties of subproblem (3.2.9) related to the well-posedness of SQuID are enumerated

in the next lemma.

Lemma 3.3.3. Suppose Assumption 3.3.1 holds. Then, during iteration k of SQuID :

(a) Subproblem (3.2.9) is feasible and the solution component d̂k is unique.

(b) With ρk > 0 and v(xk) = 0, step 5 yields d̂k = 0 if and only if (xk, ρk, λ̂k+1) is a

KKT point for (3.2.1).

Proof. By straightforward verification of the constraint function values, it follows that d
k

is feasible for subproblem (3.2.9). Moreover, as H(xk, ρ̂k, λ̂k) is positive definite under

Assumption 3.3.1, the objective of (3.2.9) is strictly convex and bounded below over the

feasible set of the subproblem. Together, these statements imply that subproblem (3.2.9)

is feasible and that the solution component d̂k is unique. This proves part (a).
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For part (b), the solution (d̂k, r̂k, ŝk, t̂k, λ̂k+1) satisfies the KKT conditions

ρk∇f(xk) +H(xk, ρ̂k, λ̂k)d̂k +∇cE(xk)λ̂k+1
E +∇cI(xk)λ̂k+1

I = 0, (3.3.2a)

cEk(xk) +∇cEk(xk)T d̂k = 0, cEkc (xk) +∇cEkc (xk)T d̂k = r̂kEkc
− ŝkEkc (3.3.2b)

cIk(xk) +∇cIk(xk)T d̂k ≤ 0, cIkc (xk) +∇cIkc (xk)T d̂k ≤ t̂kIkc (3.3.2c)

λ̂k+1
Ik · (cIk(xk) +∇cIk(xk)T d̂k) = 0, (3.3.2d)

λ̂k+1
Ikc
· (cIkc (xk) +∇cIkc (xk)T d̂k − tkIkc ) = 0, (3.3.2e)

(e− λ̂k+1
Ekc

) · r̂kEkc = 0, (e+ λ̂k+1
Ekc

) · ŝkEkc = 0, (e− λ̂k+1
Ikc

) · t̂kIkc = 0, (3.3.2f)

−e ≤ λ̂k+1
Ekc
≤ e, 0 ≤ λ̂k+1

Ikc
≤ e, and λ̂k+1

Ik ≥ 0 (3.3.2g)

from which it is easily shown that

r̂kEkc
= [cEkc (xk) +∇cEkc (xk)T d̂k]+, ŝkEkc

= [cEkc (xk) +∇cEkc (xk)T d̂k]−,

and t̂kIkc
= [cIkc (xk) +∇cIkc (xk)T d̂k]+.

Since we assume v(xk) = 0, it follows that (d
k
, rk, sk, t

k
) = 0 is optimal for (3.2.7), which

means Ek = E and Ik = I. The optimality conditions (3.3.2) thus reduce to

ρk∇f(xk) +H(xk, ρ̂k, λ̂k)d̂k +∇cE(xk)λ̂k+1
E +∇cI(xk)λ̂k+1

I = 0, (3.3.3a)

cE(x
k) +∇cE(xk)T d̂k = 0, cI(x

k) +∇cI(xk)T d̂k ≤ 0, (3.3.3b)

λ̂k+1
I ≥ 0, λ̂k+1

I · (cI(xk) +∇cI(xk)T d̂k) = 0. (3.3.3c)

Since we assume ρk > 0, by comparing the elements of Ropt(xk, ρk, λ̂k+1) with those of

(3.3.3), it follows that d̂k = 0 if and only if (xk, ρk, λ̂k+1) is a KKT point for (3.2.1).

The next lemma shows that the updates for the penalty parameter in steps 4 and 8 are

well-defined and that the latter update guarantees that ∆m(dk;xk, ρk+1) is nonnegative.

This can then be used to show, as we do in the lemma, that the line search in step 9 will

terminate finitely with a positive step-size αk > 0.
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Lemma 3.3.4. Suppose Assumption 3.3.1 holds. Then, during iteration k of SQuID :

(a) If at the beginning of iteration k we have ρk > 0, then, after step 4, ρk > 0.

(b) If at the beginning of step 8 we have ρk > 0, then, after step 8, ρk+1 > 0 and

∆m(dk;xk, ρk+1) ≥ ε∆l(dk;xk) ≥ βε∆l(dk;xk) ≥ 0. (3.3.4)

(c) The line search in step 9 terminates with αk > 0.

Proof. If at step 4 we have Rinf (xk, λ
k+1

) = 0, then we must have v(xk) = 0 or else SQuID

would have terminated in step 3. Thus, since (3.2.12) does not hold, step 4 will maintain

the current ρk > 0. On the other hand, if at step 4 we have Rinf (xk, λ
k+1

) > 0, then

either ρk will be maintained at its current positive value or (3.2.13) will set ρk > 0. This

proves part (a).

For part (b), first consider (3.2.18). If ‖λ̂k+1‖∞ = 0, then ρk‖λ̂k+1‖∞ < 1, meaning

that (3.2.18) will not trigger a reduction in ρk. On the other hand, if ‖λ̂k+1‖∞ > 0, then

(3.2.18) will only ever yield ρk > 0. Thus, after applying (3.2.18), we have ρk > 0. Now

consider (3.2.19). We have ∆l(dk;xk) ≥ β∆l(d
k
;xk) ≥ 0 due to (3.2.8) and (3.2.10), so

all that remains is to show that ρk+1 > 0 and ∆m(dk;xk, ρk+1) ≥ ε∆l(dk;xk). There

are two cases to consider: ∆l(dk;xk) = 0 and ∆l(dk;xk) > 0. If ∆l(dk;xk) = 0, then

according to (3.2.10) and Lemma 3.3.2 we must have d
k

= 0. Moreover, if v(xk) 6= 0, then

Lemma 3.3.2 implies that the algorithm would have terminated in step 3, so since we are

in step 8, we must have v(xk) = 0, Ek = E , and Ik = I. It follows that in step 7 we

obtain dk = d̂k (i.e., wk = 0) satisfying ∇f(xk)Tdk ≤ 0. Observing (3.2.15), we find that

∆m(dk;xk, ρk) ≥ ε∆l(dk;xk) and wk < ω, so a reduction in ρk is not triggered by (3.2.19),

the algorithm sets ρk+1 ← ρk, and (3.3.4) is satisfied. Now consider when ∆l(dk;xk) > 0.

If ∆m(dk;xk, ρk) ≥ ε∆l(dk;xk) and wk < ω, then there is nothing left to prove as the

algorithm sets ρk+1 ← ρk and (3.3.4) holds. If ∆m(dk;xk, ρk) ≥ ε∆l(dk;xk), but wk ≥ ω,

then

∆m(dk;xk, ρk) ≥ ε∆l(dk;xk) =⇒ ρk∇f(xk)Tdk ≤ (1− ε)∆l(dk;xk).
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Then, since ∆l(dk;xk) > 0, it follows that prior to the update (3.2.19) we have

δρk∇f(xk)Tdk ≤ (1− ε)∆l(dk;xk) =⇒ ∆m(dk;xk, δρk) ≥ ε∆l(dk;xk).

As a result, after the update (3.2.19), we again have that ρk+1 > 0 and (3.3.4) holds.

Finally, if ∆m(dk;xk, ρk) < ε∆l(dk;xk), then by (3.2.15) we must have ∇f(xk)Tdk > 0.

In such cases, after ρk is updated by (3.2.19) (to a positive value since ζk > 0), we have

∆m(dk;xk, ρk) = −ρk∇f(xk)Tdk + ∆l(dk;xk)

≥ − (1− ε)∆l(dk;xk)
∇f(xk)Tdk + 1

2(dk)TH(xk, ρ̂k, λ̂k)dk
∇f(xk)Tdk + ∆l(dk;xk)

≥ (ε− 1)∆l(dk;xk) + ∆l(dk;xk)

= ε∆l(dk;xk),

completing the proof of part (b) of the lemma.

Finally, for part (c), we first claim that ∆m(dk;xk, ρk+1) > 0 in step 9. Indeed, by part

(b), the model reduction satisfies ∆m(dk;xk, ρk+1) = 0 only if ∆l(d
k
;xk) = 0. However, by

Lemma 3.3.2 and the formulation of (3.2.9), this occurs if and only if xk is stationary for v.

If v(xk) > 0, then SQuID would have terminated in step 3; thus, we may assume v(xk) = 0.

Moreover, if dk = 0, then by Lemma 3.3.3, SQuID would have terminated in step 6; thus,

we may assume dk 6= 0. Since under these conditions the point (d, r, s, t) = (0, 0, 0, 0) is

feasible for (3.2.9) and yields an objective value of 0 for that subproblem, we must have

∇f(xk)Tdk < 0, meaning that ∆m(dk;xk, ρk+1) = −ρk+1∇f(xk)Tdk > 0. Overall, we

have shown that if the algorithm enters step 9, then ∆m(dk;xk, ρk+1) > 0. This fact and

Lemma 3.3.1 reveal that dk is a direction of strict descent for φ(·, ρk+1) from xk, implying

that the backtracking line search will terminate with a positive step-size αk > 0.

Our main theorem in this subsection summarizes the well-posedness of SQuID .

Theorem 3.3.2. Suppose Assumption 3.3.1 holds. Then, one of the following holds:
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(a) SQuID terminates in step 3 with (xk, λ
k+1

) satisfying

Rinf (xk, λ
k+1

) = 0 and v(xk) > 0;

(b) SQuID terminates in step 6 with (xk, ρk, λ̂k+1) satisfying

ρk > 0, Ropt(xk, ρk, λ̂k+1) = 0, and v(xk) = 0;

(c) SQuID generates an infinite sequence {(xk, ρk, λk, λ̂k)} where, for all k,

ρk > 0, −e ≤ λkE ≤ e, 0 ≤ λkI ≤ e, −e ≤ λ̂kEkc ≤ e, 0 ≤ λ̂kIkc ≤ e, and λ̂kIk ≥ 0.

Proof. By Lemmas 3.3.2, 3.3.3, and 3.3.4, each iteration of SQuID terminates finitely.

If SQuID itself does not terminate finitely in step 3 or 6, then steps 2 and 5 and the

optimality conditions for subproblems (3.2.7) and (3.2.9) yield the bounds in statement

(c). Moreover, by Lemma 3.3.4(a)–(b), it follows that an infinite number of SQuID iterates

yields {ρk} > 0.

3.3.2 Global Convergence

We now prove properties related to the global convergence of SQuID under the assumption

that an infinite sequence of iterates is generated; i.e., we focus on the situation described

in Theorem 3.3.2(c). These properties require a slight strengthening of our assumptions

from §3.3.1. (As Assumption 3.3.3 is stronger than Assumption 3.3.1, it follows that all

results from §3.3.1 still hold.)

Assumption 3.3.3. The following hold true for the iterates generated by SQuID :

(a) The problem functions f , cE , cI and their first derivatives are bounded and Lipschitz

continuous in an open convex set containing {xk} and {xk + dk}.
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(b) There exist constants µ ≥ µ > 0 such that, for all k and d ∈ Rn,

µ‖d‖2 ≤ dTH(xk, 0, λ
k
)d ≤ µ‖d‖2 and µ‖d‖2 ≤ dTH(xk, ρ̂k, λ̂k)d ≤ µ‖d‖2.

Of particular interest at the end of this section is the behavior of SQuID in the vicinity of

points satisfying the Mangasarian-Fromovitz constraint qualification (MFCQ) for problem

(3.2.1). We define this well-known qualification for convenience.

Definition 3.3.1. A point x satisfies the MFCQ for problem (3.2.1) if v(x) = 0, ∇cE(x)

has full column rank, and there exists d ∈ Rn such that

cE(x) +∇cE(x)Td = 0 and cI(x) +∇cI(x)Td < 0.

In this and the following subsection, at xk, let the sets of positive, zero, and negative-

valued equality constraints be defined, respectively, as

Pk := {i ∈ E : ci(x
k) > 0}, Zk := {i ∈ E : ci(x

k) = 0}, and N k := {i ∈ E : ci(x
k) < 0}.

Similarly, let the sets of violated, active, and strictly satisfied inequality constraints, re-

spectively, be

Vk := {i ∈ I : ci(x
k) > 0}, Ak := {i ∈ I : ci(x

k) = 0}, and Sk := {i ∈ I : ci(x
k) < 0}.

We similarly define the sets P∗, Z∗, N ∗, V∗, A∗, and S∗ when referring to those index

sets corresponding to a point of interest x∗.

The following lemma shows that the norms of the search directions are bounded. This

result can also be seen to follow if one applies [6, Lemma 3.4].

Lemma 3.3.5. Suppose Assumption 3.3.3 holds. Then, the sequences {‖dk‖} and {‖d̂k‖}

are bounded above, so the sequence {‖dk‖} is bounded above.

Proof. Under Assumption 3.3.3, there exists τ > 0 such that v(xk) ≤ τ for any k. In
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order to derive a contradiction to the statement in the lemma, suppose that {‖dk‖} is not

bounded. Then, there exists an iteration k yielding ‖dk‖2 > 2τ/µ. The objective value of

subproblem (3.2.7) corresponding to this d
k

satisfies

l(d
k
;xk) + 1

2(d
k
)TH(xk, 0, λ

k
)d
k ≥ 1

2µ‖d
k‖2 > τ ≥ v(xk).

However, this is a contradiction as v(xk) is the objective value corresponding to (d, r, s, t) =

(0, [cE(x
k)]+, [cE(x

k)]−, [cI(x
k)]+), which is also feasible for this subproblem. Thus, ‖dk‖2 ≤

2τ/µ for all k, so {‖dk‖} is bounded.

Now suppose, in order to derive a different contradiction, that for some k the optimal

solution for (3.2.9) yields µ‖d̂k‖ > 8ρ0‖∇f(xk)‖ and µ‖d̂k‖2 > 2µ‖dk‖2. Then, under

Assumption 3.3.3, we find

− ρk∇f(xk)T d̂k + ρk∇f(xk)Td
k

+ 1
2(d

k
)TH(xk, ρ̂k, λ̂k)d

k

≤ ρ0‖∇f(xk)‖‖d̂k‖+ ρ0‖∇f(xk)‖‖dk‖+ 1
2µ‖d

k‖2

< 1
8µ‖d̂k‖2 + 1

8µ

√
µ

2µ
‖d̂k‖2 + 1

4µ‖d̂k‖2

≤ 1
2µ‖d̂k‖2

≤ 1
2 (̂dk)TH(xk, ρ̂k, λ̂k)d̂k.

Since (d
k
, rk, sk, t

k
) is feasible for (3.2.9) and the above implies

ρk∇f(xk)T d̂k + 1
2 (̂dk)TH(xk, ρk, λ̂k)d̂k > ρk∇f(xk)Td

k
+ 1

2(d
k
)TH(xk, ρk, λ̂k)d

k
,

it follows that (d̂k, r̂k, ŝk, t̂k) cannot be the optimal solution for (3.2.9), a contradiction.

Thus, for all k,

‖d̂k‖ ≤ max
{

8ρ0‖∇f(xk)‖/µ,
√

2µ/µ‖dk‖
}

and since {‖dk‖} and {∇f(xk)} are bounded by the above paragraph and Assumption 3.3.3,

respectively, it follows that {‖d̂k‖} is also bounded.
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The boundedness of {‖dk‖} follows from the above results and the fact that dk is chosen

as a convex combination of d
k

and d̂k for all k.

We also have the following lemma, providing a lower bound for αk for each k.

Lemma 3.3.6. Suppose Assumption 3.3.3 holds. Then, for all k, the stepsize satisfies

αk ≥ c∆m(dk;xk, ρk+1) for some constant c > 0 independent of k.

Proof. Under Assumption 3.3.3, applying Taylor’s Theorem and Lemma 3.3.1, we have

that for all positive α that are sufficiently small, there exists τ > 0 such that

φ(xk + αdk, ρk+1)− φ(xk, ρk+1) ≤ −α∆m(dk;xk, ρk+1) + τα2‖dk‖2.

Thus, for any α ∈ [0, (1− η)∆m(dk;xk, ρk+1)/(τ‖dk‖2)], we have

−α∆m(dk;xk, ρk+1) + τα2‖dk‖2 ≤ −αη∆m(dk;xk, ρk+1),

meaning that the sufficient decrease condition (3.2.20) holds. During the line search,

the stepsize is multiplied by γ until (3.2.20) holds, so we know by the above that the

backtracking procedure terminates with

αk ≥ γ(1− η)∆m(dk;xk, ρk+1)/(τ‖dk‖2).

The result follows from this inequality since, by Lemma 3.3.5, {‖dk‖} is bounded.

We now prove that, in the limit, the reductions in the models of the constraint violation

measure and the penalty function vanish. For this purpose, it will be convenient to work

with the shifted penalty function

ϕ(x, ρ) := ρ(f(x)− f) + v(x) ≥ 0, (3.3.5)

where f is the infimum of f over the smallest convex set containing {xk}. The existence of
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f follows from Assumption 3.3.3. The function ϕ possesses a useful monotonicity property

proved in the following lemma.

Lemma 3.3.7. Suppose Assumption 3.3.3 holds. Then, for all k,

ϕ(xk+1, ρk+2) ≤ ϕ(xk, ρk+1)− ηαk∆m(dk;xk, ρk+1),

so, by Lemmas 3.3.4 and 3.3.6, {ϕ(xk, ρk+1)} is monotonically decreasing.

Proof. By the line search condition (3.2.20), we have

ϕ(xk+1, ρk+1) ≤ ϕ(xk, ρk+1)− ηαk∆m(dk;xk, ρk+1),

which implies

ϕ(xk+1, ρk+2) ≤ ϕ(xk, ρk+1)− (ρk+1 − ρk+2)(f(xk+1)− f)− ηαk∆m(dk;xk, ρk+1).

The result then follows from this inequality, the fact that {ρk} is monotonically decreasing,

and since f(xk+1) ≥ f for all k.

We now show that the model reductions vanish in the limit.

Lemma 3.3.8. Suppose Assumption 3.3.3 holds. Then, the following limits hold:

0 = lim
k→∞

∆m(dk;xk, ρk+1) = lim
k→∞

∆l(dk;xk) = lim
k→∞

∆l(d
k
;xk) = lim

k→∞
∆l(d̂k;xk).

Proof. In order to derive a contradiction, suppose that ∆m(dk;xk, ρk+1) does not converge

to 0. Then, by Lemma 3.3.4, there exists τ > 0 and an infinite subsequence of iterates

K such that ∆m(dk;xk, ρk+1) ≥ τ for all k ∈ K. By Lemmas 3.3.6 and 3.3.7, this would

imply that ϕ(xk, ρk+1) → −∞, which is impossible since {ϕ(xk, ρk+1)} is bounded below

by 0. Hence, ∆m(dk;xk, ρk+1) → 0. The other limits follow by Lemma 3.3.4(b), the fact

that dk is a convex combination of d
k

and d̂k for all k, and the convexity of ∆l(·;xk) for

all k.
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We now show that the primal solution components for the subproblems vanish in the

limit, and thus the primal search directions vanish in the limit.

Lemma 3.3.9. Suppose Assumption 3.3.3 holds. Then, the following limits hold:

0 = lim
k→∞

d
k

= lim
k→∞

d̂k = lim
k→∞

dk.

Proof. First, we prove by contradiction that d
k → 0. Suppose there exists τ > 0 and an

infinite subsequence of iterates K such that ‖dk‖ ≥ τ for all k ∈ K. By Lemma 3.3.8,

there exists k′ ≥ 0 such that for all k ≥ k′ we have ∆l(d
k
;xk) ≤ µτ2/4. (Recall that µ is

defined in Assumption 3.3.3.) Hence, we have that for some k ∈ K such that k ≥ k′, the

optimal objective value of (3.2.7) satisfies

v(xk)−∆l(d
k
;xk) + 1

2d
kT
H(xk, 0, λ

k
)d
k ≥ v(xk)− 1

4µτ2 + 1
2µτ2 > v(xk).

This is a contradiction as v(xk) is the objective value corresponding to

(d, r, s, t) = (0, [cE(x
k)]+, [cE(x

k)]−, [cI(x
k)]+),

which is also feasible. Thus, d
k → 0.

Now we prove that d̂k → 0. To do this, we first prove that

lim
k→∞

ρk∇f(xk)T d̂k = 0. (3.3.6)

Indeed, (3.3.6) clearly holds if ρk → 0 since {∇f(xk)} and {d̂k} are bounded by Assump-

tion 3.3.3 and Lemma 3.3.5, respectively. Otherwise, if ρk 9 0, then due to update (3.2.19)

we must have ∆m(dk;xk, ρk) ≥ ε∆l(dk;xk) and wk < ω for all sufficiently large k. Hence,

by Lemma 3.3.8, (3.2.15), (3.2.11), the fact that {ρk} is monotonically decreasing, the
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boundedness of {∇f(xk)} under Assumption 3.3.3, and d
k → 0, we have

0 = lim
k→∞

(∆l(dk;xk)−∆m(dk;xk, ρk+1))

= lim
k→∞

ρk+1∇f(xk)Tdk

= lim
k→∞

ρk+1∇f(xk)T (wkd
k

+ (1− wk)d̂k)

= lim
k→∞

ρk+1(1− wk)∇f(xk)T d̂k. (3.3.7)

Since (1−wk) > (1− ω) > 0 for all sufficiently large k, and since (ρk+1 − ρk)→ 0 follows

from the facts that {ρk} is monotonically decreasing and bounded below by zero, the limit

(3.3.7) implies (3.3.6).

We may now use (3.3.6) to prove by contradiction that d̂k → 0. Suppose there exists

τ > 0 and an infinite subsequence of iterations K such that ‖d̂k‖ ≥ τ for all k ∈ K. By

(3.3.6), there exists k′ ≥ 0 such that for all k ≥ k′, we have ρk∇f(xk)T d̂k ≥ −µτ2/4. More-

over, since d
k → 0, {ρk} is monotonically decreasing, and {∇f(xk)} and {H(xk, ρ̂k, λ̂k)}

are bounded under Assumption 3.3.3, there exists k′′ ≥ 0 such that for all k ≥ k′′ we have

ρk∇f(xk)Td
k
< 1

16µτ2 and 1
2(d

k
)TH(xk, ρ̂k, λ̂k)d

k
< 1

16µτ2. (3.3.8)

Therefore, for k ∈ K with k ≥ max{k′, k′′}, the above and Assumption 3.3.3(b) imply that

the optimal objective value of (3.2.9) satisfies

ρk∇f(xk)T d̂k + 1
2 (̂dk)TH(xk, ρ̂k, λ̂k)d̂k ≥ 1

4µτ2 > ρk∇f(xk)Td
k

+
1

2
(d
k
)TH(xk, ρ̂k, λk)d

k
.

This contradicts the fact that d̂k is an optimal solution component of (3.2.9) since (d
k
, rk, sk, t

k
)

is feasible for (3.2.9) and the above implies that it yields a lower objective value than

(d̂k, r̂k, ŝk, t̂k). Hence, d̂k → 0.

The remainder of the result, namely that dk → 0, follows from the above and the fact

that dk is a convex combination of d
k

and d̂k for all k.
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We now present our first theorem of this subsection, which states that all limit points

of a sequence generated by SQuID are first-order optimal for problem (3.2.2).

Theorem 3.3.4. Suppose Assumption 3.3.3 holds. Then, the following limit holds:

lim
k→∞

Rinf (xk, λ
k+1

) = 0. (3.3.9)

Therefore, all limit points of {(xk, λk+1
)} are first-order optimal for problem (3.2.2).

Proof. Necessary and sufficient conditions for the optimality of (d
k
, λ

k+1
) with respect to

(3.2.7) are

H(xk, 0, λ
k
)d
k

+∇cE(xk)λk+1
E +∇cI(xk)λk+1

I = 0, (3.3.10a)

−e ≤ λk+1
E ≤ e, 0 ≤ λk+1

I ≤ e, (3.3.10b)

(e− λk+1
E ) · [cE(xk) +∇cE(xk)Tdk]+ = 0, (3.3.10c)

(e+ λ
k+1
E ) · [cE(xk) +∇cE(xk)Tdk]− = 0, (3.3.10d)

(e− λk+1
I ) · [cI(xk) +∇cI(xk)Tdk]+ = 0, (3.3.10e)

λ
k+1
I · [cI(xk) +∇cI(xk)Tdk]− = 0, (3.3.10f)

where we have eliminated

rk = [cE(x
k) +∇cE(xk)Tdk]+, sk = [cE(x

k) +∇cE(xk)Tdk]−,

and t
k

= [cI(x
k) +∇cI(xk)Tdk]+.

By Lemma 3.3.9, we have d
k → 0. Thus, as {H(xk, 0, λ

k
)}, {∇cE(xk)}, and {∇cI(xk)}

are bounded under Assumption 3.3.3 and {λk+1} is bounded by (3.3.10b), it follows from

(3.3.10) that Rinf (xk, λ
k+1

)→ 0.

We now prove that if the penalty parameter remains bounded away from zero, then all

feasible limit points of the iterate sequence correspond to KKT points.
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Theorem 3.3.5. Suppose Assumption 3.3.3 holds. Then, if ρk → ρ∗ for some constant

ρ∗ > 0 and v(xk)→ 0, the following limit holds:

lim
k→∞

Ropt(xk, ρk, λ̂k+1) = 0.

Thus, every limit point (x∗, ρ∗, λ∗) of {(xk, ρk, λ̂k+1)} with ρ∗ > 0 and v(x∗) = 0 is a KKT

point for problem (3.2.1).

Proof. It follows from (3.3.2a) and Lemma 3.3.9 that under Assumption 3.3.3 we have

∇xF(xk, ρk, λ̂k+1) = −H(xk, ρk, λ̂k)dk → 0. (3.3.11)

Thus, it only remains to show that λ̂kI · cI(xk)→ 0 when v(xk)→ 0. By Lemma 3.3.8 and

the fact that

∆l(d̂k;xk) = v(xk)− eT (r̂kEkc
+ ŝkEkc

)− eT t̂kIkc with (r̂kEkc
, ŝkEkc

, t̂kIkc
) ≥ 0,

we have lim
k→∞

‖r̂kEkc ‖1 = lim
k→∞

‖ŝkEkc ‖1 = lim
k→∞

‖t̂kIkc ‖1 = 0. If ‖λ̂k+1‖∞ is unbounded, then

ρk → 0 by (3.2.18), contradicting the conditions of the theorem. Hence, it follows from

Lemma 3.3.9 that under Assumption 3.3.3 we have (̂dk)T∇cI(xk)λ̂k+1
I → 0. Consequently,

from (3.3.2d) and (3.3.2e), we have

cIkc (xk) · λ̂k+1
Ikc

= (t̂kIkc
−∇cIkc (xk)T d̂k)T λ̂k+1

Ikc
→ 0

and cIk(xk) · λ̂k+1
Ik = −∇cIk(xk)T (d̂k)T λ̂k+1

Ik → 0.

(3.3.12)

The result follows from these limits and (3.3.11).

We conclude this subsection with a theorem describing properties of limit points of

SQuID whenever the penalty parameter vanishes.

Theorem 3.3.6. Suppose Assumption 3.3.3 holds. Moreover, suppose ρk → 0 and let Kρ

be the subsequence of iterations during which ρk is decreased by (3.2.13), (3.2.18), and/or
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(3.2.19). Then, the following hold true:

(a) Either all limit points of {xk} are feasible for (3.2.1) or all are infeasible.

(b) If all limit points of {xk} are feasible, then all limit points of {xk}k∈Kρ correspond

to FJ points for problem (3.2.1) where the MFCQ fails.

Proof. For part (a), in order to derive a contradiction, suppose there exist infinite subse-

quences K∗ and K× such that {xk}k∈K∗ → x∗ with v(x∗) = 0 and {xk}k∈K× → x× with

v(x×) = τ > 0. Under Assumption 3.3.3 and since ρk → 0, there exists k∗ ≥ 0 such that

for all k ∈ K∗ with k ≥ k∗ we have ρk+1(f(xk)− f) < τ/4 and v(xk) < τ/4, meaning that

ϕ(xk, ρk+1) < τ/2. (Recall that f has been defined as the infimum of f over the small-

est convex set containing {xk}.) On the other hand, we know that ρk+1(f(xk) − f) ≥ 0

for all k ≥ 0 and there exists k× ≥ 0 such that for all k ∈ K× with k ≥ k× we have

v(xk) ≥ τ/2, meaning that ϕ(xk, ρk+1) ≥ τ/2. This is a contradiction since by Lemma 3.3.7

{ϕ(xk, ρk+1)} is monotonically decreasing. Thus, the set of limit points of {xk} cannot

include feasible and infeasible points at the same time.

For part (b), consider a subsequence K∗ ⊆ Kρ such that {xk}k∈K∗ → x∗ for some limit

point x∗. Let K1 ⊆ K∗ be the subsequence of iterations during which ρk is decreased by

(3.2.13) and let K2 ⊆ K∗ be the subsequence of iterations during which it is decreased by

(3.2.18) and/or (3.2.19). Since K1 ∪ K2 = K∗ and K∗ is infinite, it follows that K1 or

K2 is infinite, or both. We complete the proof by considering two cases depending on the

size of the index set K2. In each case, our goal will be to show that a set of multipliers

produced by SQuID have a nonzero limit point λ∗ such that (x∗, 0, λ∗) is a FJ point for

problem (3.2.1). We then complete the proof by showing that the MFCQ fails at such

limit points.

Case 1: Suppose K2 is finite, meaning that for all sufficiently large k the algorithm

does not decrease ρk in (3.2.18) nor in (3.2.19). Since {λk+1}k∈K1 is bounded by (3.3.10b),

it follows that this subsequence has a limit point. If all limit points of {λk+1}k∈K1 are zero,

then for all sufficiently large k we have −e < λ
k+1
E < e and 0 ≤ λ

k+1
I < e. By (3.3.10c),
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(3.3.10d), and (3.3.10e), this implies

cE(x
k) +∇cE(xk)Tdk = 0 and cI(x

k) +∇cI(xk)Tdk ≤ 0,

meaning that ∆l(d
k
;xk) = v(xk) for all such k. However, this implies that for all such k the

algorithm does not decrease ρk by (3.2.13), implying that K1 is also finite, a contradiction.

Therefore, if K2 is finite, then K1 is infinite and there exists a nonzero limit point λ
∗

of

{λk+1}k∈K1 .

Consider a subsequence Kλ ⊆ K1 such that {(xk, λk+1
)}k∈Kλ → (x∗, λ

∗
). By Theorem

3.3.4, we have

Ropt(x∗, 0, λ∗) = lim
k∈Kλ
k→∞

Rinf (xk, λ
k+1

) = 0,

meaning that (x∗, 0, λ
∗
) is a FJ point for problem (3.2.1).

Case 2: Suppose K2 is infinite. We first prove that ‖λ̂k+1‖∞ > 1− ε for all sufficiently

large k ∈ K2. By contradiction, suppose there exists an infinite subsequence Kε ⊆ K2

such that ‖λ̂k+1‖∞ ≤ 1 − ε for all k ∈ Kε. We will show that ρk will not be updated

by (3.2.18) nor by (3.2.19), contradicting the fact that k ∈ K2. Since ρk → 0, we know

that for all sufficiently large k ∈ Kε we have ρk‖λ̂k+1‖∞ < 1, implying that ρk is not

reduced by (3.2.18). Now consider (3.2.19). By (3.3.2f), we find that for k ∈ Kε we

obtain r̂kEkc
= ŝkEkc

= 0 and t̂kIkc
= 0. This implies that ∆l(d̂k;xk) = ∆l(d

k
;xk) = v(xk), so

we obtain wk = 0 < ω, dk = d̂k, and ∆l(dk, xk) = v(xk). We then find that when the
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algorithm encounters (3.2.19), we have (temporarily using Ĥk to denote H(xk, ρ̂k, λ̂k))

∆m(dk;xk, ρk)− (dk)T Ĥkdk = −ρk∇f(xk)Tdk + ∆l(dk, xk)− (dk)T Ĥkdk

= (dk)T∇cE(xk)λ̂k+1
E + (dk)T∇cI(xk)λ̂k+1

I + ∆l(dk;xk)

=
(
‖cE(xk)‖1 + ‖[cI(xk)]+‖1

)
− cE(xk)T λ̂k+1

E − cI(xk)T λ̂k+1
I

=
(
‖cE(xk)‖1 − cE(xk)T λ̂k+1

E

)
+
(
‖[cI(xk)]+‖1 − cI(xk)T λ̂k+1

I

)
. (3.3.13)

Here, the first equality follows by the definition of ∆m(dk;xk, ρk) and the second follows by

(3.3.2a). Then, since (3.3.2g) implies λ̂k+1
I ≥ 0, we find that for all i ∈ I either λ̂k+1

i = 0

or, by (3.3.2e), λ̂k+1
i > 0 and ∇ci(xk)T d̂k = −ci(xk). Consequently, we have

(dk)T∇cI(xk)λ̂k+1
I = −cI(xk)T λ̂k+1

I . (3.3.14)

This along with (3.3.2b), (3.3.2c), and the definition of ∆l(dk;xk) yield the third and fourth

equalities above, the latter being a rearrangement of the former. Since λ̂k+1
E ≤ ‖λ̂k+1

E ‖∞e,

we have cE(x
k)T λ̂k+1

E ≤ ‖λ̂k+1
E ‖∞‖cE(xk)‖1, and as 0 ≤ λ̂k+1

I ≤ ‖λ̂k+1
I ‖∞e,

cI(x
k)T λ̂k+1

I ≤ [cI(x
k)]+

T
λ̂k+1
I ≤ ‖[cI(xk)]+‖1‖λ̂k+1‖∞.

Consequently, we have from (3.3.13) that

∆m(dk;xk, ρk) ≥ (dk)T Ĥkdk + (1− ‖λ̂k+1‖∞)‖cE(xk)‖1 + (1− ‖λ̂k+1‖∞)‖[cI(xk)]+‖1

= (dk)T Ĥkdk + (1− ‖λ̂k+1‖∞)∆l(dk;xk)

≥ ε∆l(dk;xk), (3.3.15)

meaning that ρk will not be reduced by (3.2.19). Overall, we have contradicted the fact

that k ∈ K2. Hence, we have shown that for large k ∈ K2, we have ‖λ̂k+1‖∞ > 1− ε.
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Now let ρ̃k = ρ̂k/‖λ̂k+1‖ and λ̃k+1 = λ̂k+1/‖λ̂k+1‖∞ be defined for all k ∈ K2 such

that ‖λ̂k+1‖∞ > 1− ε. Since there is an infinite number of such k, it follows that ρ̃k → 0

and there exists a nonzero limit point λ̃∗ of {λ̃k+1}k∈K2 . Consider an infinite subsequence

Kλ ⊆ K2 such that {(xk, λ̃k+1)}k∈Kλ → (x∗, λ̃∗). By (3.3.2a), we find that for k ∈ Kλ,

∇xF(xk, ρ̃k, λ̃k+1) = ρ̃k∇f(xk)T +∇cE(xk)λ̃k+1
E +∇cI(xk)λ̃k+1

I = Ĥkdk/‖λ̂k+1‖∞.

Since dk → 0 by Lemma 3.3.9 and ‖λ̂k+1‖∞ is bounded below for sufficient large k ∈ Kλ,

we have that under Assumption (3.3.3)

∇xF(x∗, 0, λ∗) = lim
k∈Kλ
k→∞

∇xF(xk, ρ̃k, λ̃k+1) = 0.

Moreover, since ‖λ̃k+1‖∞ is bounded, as in (3.3.12), we have

cI(x
∗)T λ̃∗I = lim

k∈Kλ
k→∞

cI(x
k)T λ̂k+1

I /‖λ̂k+1‖∞ = 0.

Overall, we have shown that that (x∗, 0, λ̃∗) is a FJ point for problem (3.2.1).

Let (x∗, 0, λ∗) be a FJ point as described above where λ∗ = λ
∗

if we are in Case 1 and

λ∗ = λ̃∗ if we are in Case 2. Then, from dual feasibility in (3.2.4) we have

∇xF(x∗, 0, λ∗) = ∇cI(x∗)λ∗I +∇cE(x∗)λ∗E = 0. (3.3.16)

Moreover, from the complementarity conditions in (3.2.4), we have

∇cA∗(x∗)λ∗A∗ +∇cE(x∗)λ∗E = 0. (3.3.17)

In order to derive a contradiction, suppose that the MFCQ holds at x∗. Since the MFCQ

holds and v(x∗) = 0, there exists a vector u such that ∇cA∗(x∗)Tu < 0 and ∇cE(x∗)Tu = 0.
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By (3.3.17), we then have

0 = uT∇cA∗(x∗)λ∗A∗ + uT∇cE(x∗)λ∗E = uT∇cA∗(x∗)λ∗A∗ . (3.3.18)

Since ∇cA∗(x∗)Tu < 0 and λ∗A∗ ≥ 0, (3.3.18) implies λ∗A∗ = 0. Thus, from (3.3.17) and

the fact that under the MFCQ the columns of ∇cE(x∗) are linearly independent, we have

λ∗E = 0. Overall, we have shown that λ∗ = 0, which contradicts the fact that (x∗, 0, λ∗) is

a FJ point for problem (3.2.1). Hence, MFCQ fails at x∗.

We end our global convergence theory with a corollary that summarizes the results of

the previous theorems. It also provides a stronger result in a special case when the primal

iterates are bounded. This occurs, e.g., when the sublevel sets of the shifted penalty

function ϕ(·, ρ) (recall (3.3.5)) are bounded for all ρ in the closure of {ρk}.

Corollary 3.3.7. Suppose Assumption 3.3.3 holds and let Kρ be defined as in Theo-

rem 3.3.6. Then, one of the following situations occurs:

(i) ρk → ρ∗ for some constant ρ∗ > 0 and each limit point of {xk} either corresponds to

a KKT point or an infeasible stationary point for problem (3.2.1);

(ii) ρk → 0 and all limit points of {xk} are infeasible stationary points for (3.2.1);

(iii) ρk → 0, all limit points of {xk} are feasible for (3.2.1), and all limit points of

{xk}k∈Kρ correspond to FJ points for (3.2.1) where the MFCQ fails.

Consequently, if {xk} is bounded and all limit points of this sequence are feasible for (3.2.1)

and satisfy the MFCQ, then ρk → ρ∗ for some constant ρ∗ > 0 and all limit points of {xk}

are KKT points for problem (3.2.1).

Proof. The fact that one of situations (i)–(iii) occurs follows from the Theorems 3.3.4–

3.3.6 and the fact that {ρk} is monotonically decreasing and bounded below by zero. All

that remains is to prove the last sentence of the corollary. In order to derive a contra-

diction, suppose that under the stated conditions we have ρk → 0. Then, since {xk} is
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bounded, it follows that the sequence {xk}k∈Kρ has at least one limit point. However, by

Theorem 3.3.6, it follows that such a limit point violates the MFCQ, which in turn con-

tradicts the stated conditions. Hence, ρk → ρ∗ for some constant ρ∗ > 0 and v(xk) → 0,

so the result follows from Theorem 3.3.5.

3.3.3 Local Convergence

We consider the local convergence of SQuID in the neighborhood of first-order optimal

points satisfying certain common assumptions, delineated below. For the most part, our

assumptions in this subsection represent a strengthening of the assumptions in §3.3.2.

However, we loosen our assumptions on the quadratic terms in subproblems (3.2.7) and

(3.2.9) as in this subsection we only require that they are positive definite in the null space

of the Jacobian of the constraints that are active at a given first-order optimal point.

First, for a given x∗, we will use the following assumption.

Assumption 3.3.8. The problem functions f , cE , and cI and their first and second deriva-

tives are bounded and Lipschitz continuous in an open convex set containing x∗.

Second, we make the following assumption concerning a given stationary point x∗ of

(3.2.2). As such a point may be feasible or infeasible for (3.2.1), we make this assumption

throughout our local analysis.

Assumption 3.3.9. Let x∗ be a first-order optimal point for (3.2.2) such that there exists

λ
∗

with (x∗, λ
∗
) satisfying (3.2.5). Then, Assumption 3.3.8 holds at x∗ and

(a) ∇cZ∗∪A∗(x∗)T has full row rank;

(b) −e < λ
∗
Z∗ < e and 0 < λ

∗
A∗ < e;

(c) dTH(x∗, 0, λ
∗
)d > 0 for all d 6= 0 such that ∇cZ∗∪A∗(x∗)Td = 0.

Moreover, the following hold true for the iterates generated by SQuID :

(d) xk → x∗.

52



(e) For all large k, H(xk, 0, λ
k
) and H(xk, ρ̂k, λ̂k) are the exact Hessian of F at (xk, 0, λ

k
)

and (xk, ρ̂k, λ̂k), respectively.

(f) For all large k, αk = 1.

Finally, if xk → x∗, where x∗ is a KKT point for (3.2.1), we make the following

assumption. (While we state Assumption 3.3.10 now, we will not use it until §3.3.3.)

Assumption 3.3.10. Let x∗ be a first-order optimal point for (3.2.1) such that Assump-

tion 3.3.9 holds and there are ρ∗ > 0 and λ̂∗ with (x∗, ρ∗, λ̂∗) satisfying (3.2.4). Then,

(a) ρk → ρ∗;

(b) λ̂∗A∗ + cA∗(x
∗) > 0;

(c) dTH(x∗, ρ∗, λ̂∗)d > 0 for all d 6= 0 such that ∇cE∗∪A∗(x∗)Td = 0.

The assumptions above may be viewed as strong when one considers the fact that

local superlinear convergence guarantees for SQO methods have been provided in more

general settings. Our algorithm is able to achieve such convergence in such settings, but

accounting for more general conditions would only add unnecessary complications to the

analysis and detract attention away from our central focus, i.e., the novel feature of at-

taining superlinear convergence for both feasible and infeasible problem instances with a

single algorithm. In particular, consider Assumptions 3.3.9(e) and (f). The former of these

assumptions is strong since, if an exact Hessian is indefinite, the algorithm must ensure

that of all of the local minimizers of the corresponding QO subproblem, the subproblem

solver computes one satisfying certain conditions (implicit in Lemma 3.23 later on). This

is challenging as nonconvex quadratic optimization is known to be NP-hard [66]. On the

other hand, assuming only that the Hessian is positive definite in the null space of the

active constraint Jacobian, the algorithm could ensure that the QO subproblem has a

unique solution by modifying the Hessian in appropriate ways so that fast local conver-

gence is still possible. For example, this can be achieved by augmenting the Hessian with
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σ∇cZ∗∪A∗(xk)∇cZ∗∪A∗(xk)T for a sufficiently large σ > 0 and then applying the charac-

terization result for superlinear convergence found in [3]. As for Assumption 3.3.9(f), the

primary practical concern is the Maratos effect [60], which makes this assumption inap-

propriate in many cases. However, we may assume that a watchdog mechanism [22] or a

second-order correction [35] is employed to ensure that unit steplengths are accepted by

the line search for large k. We leave it a subject of future research to see how many of the

assumptions above (in addition to Assumptions 3.3.9(e) and (f)) can be relaxed while still

ensuring the convergence guarantees below, potentially with minor algorithmic variations.

Local convergence to an infeasible stationary point

Suppose Assumption 3.3.9 holds where x∗ is an infeasible stationary point for (3.2.1). We

show that, in such cases, SQuID converges quadratically to (x∗, λ
∗
). Some of our analysis

for this case follows that in [13], though we provide proofs for completeness.

A critical component of our local convergence analysis in this subsection is to show

that there is an inherent relationship between problem (3.2.2) and the following:

min
(x,rP∗ ,sN∗ ,tV∗ )

ρf(x) + eT rP∗ + eT sN ∗ + eT tV∗

s.t.


cP∗(x) = rP∗ , cZ∗(x) = 0, −cN ∗(x) = sN ∗ ,

cV∗(x) ≤ tV∗ , cA∗∪S∗(x) ≤ 0,

(rP∗ , sN ∗ , tV∗) ≥ 0.

(3.3.19)

In particular, in our first two lemmas, we establish that solutions of (3.3.19) converge to

that of (3.2.2) as ρ→ 0.

The following lemma shows that x∗ corresponds to a solution of (3.3.19) for ρ = 0.

Lemma 3.3.10. Suppose Assumption 3.3.9 holds and v(x∗) > 0. Then, x∗ and

(r∗P∗ , s
∗
N ∗ , t

∗
V∗) = (cP∗(x

∗),−cN ∗(x∗), cV∗(x∗))

correspond to a first-order optimal point for (3.3.19) for ρ = 0. Moreover, the correspond-
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ing dual solution is the unique λ
∗

such that (x∗, λ
∗
) satisfies (3.2.5).

Proof. First-order optimality conditions for (3.3.19) are the following:

ρ∇f(x) +∇cE(x)λE +∇cI(x)λI = 0, (3.3.20a)

cP∗(x) = rP∗ , cZ∗(x) = 0, −cN ∗(x) = sN ∗ , (3.3.20b)

cV∗(x) ≤ 0, cA∗∪S∗(x) ≤ 0, (3.3.20c)

(rP∗ , sN ∗ , tV∗) ≥ 0, (3.3.20d)

λA∗∪S∗ · cA∗∪S∗(x) = 0, (3.3.20e)

λV∗ · (cV∗(x)− tV∗) = 0, (3.3.20f)

(e− λP∗) · rP∗ = 0, (e+ λN ∗) · sN ∗ = 0, (e− λV∗) · tV∗ = 0, (3.3.20g)

λP∗ ≤ e, λN ∗ ≥ −e, λA∗∪S∗ ≥ 0, 0 ≤ λV∗ ≤ 0. (3.3.20h)

If x∗ is an infeasible stationary point, then by definition there exists λ
∗ 6= 0 such that

(x∗, λ
∗
) satisfies (3.2.5). Then, with rP∗ , sN ∗ , and tV∗ chosen as in the statement of the

lemma, it is easily verified that (x∗, rP∗ , sN ∗ , tV∗ , λ
∗
) satisfies (3.3.20) for ρ = 0. Moreover,

from (3.3.20e) and (3.3.20g), we find λ
∗
S∗ = 0, λ

∗
P∗ = e, λ

∗
N ∗ = −e, and λV∗ = e. These

equations and (3.3.20a) imply that we have

∇cZ∗∪A∗(x∗)λ∗Z∗∪A∗ = −∇cP∗∪V∗(x∗)e+∇cN ∗(x∗)e. (3.3.21)

Under Assumption 3.3.9(a), λ
∗
Z∗∪A∗ in (3.3.21) is unique. Thus, λ

∗
is unique.

We now show that for sufficiently small ρ > 0, the solution of problem (3.3.19) shares

critical properties with that of problem (3.2.2). This result is formalized in our next

lemma, which makes use of the following nonlinear system of equations:

0 = F (x, ρ, λZ∗∪A∗)

:=

ρ∇f(x) +∇cZ∗∪A∗(x)λZ∗∪A∗ +∇cP∗∪V∗(x)e−∇cN ∗(x)e

cZ∗∪A∗(x)

 . (3.3.22)
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By differentiating F with respect to (x, λZ∗∪A∗), we obtain

F ′(x, ρ, λZ∗∪A∗) :=
∂F (x, ρ, λZ∗∪A∗)

∂(x, λZ∗∪A∗)
=

G(x, ρ, λZ∗∪A∗) ∇cZ∗∪A∗(x)

∇cZ∗∪A∗(x)T 0

 (3.3.23)

where

G(x, ρ, λZ∗∪A∗) := ρ∇2f(x) +
∑

i∈P∗∪V∗
∇2ci(x) +

∑
i∈Z∗∪A∗

λi∇2ci(x)−
∑
i∈N ∗

∇2ci(x).

Lemma 3.3.11. Suppose Assumption 3.3.9 holds and v(x∗) > 0. Then, for all ρ suffi-

ciently small, problem (3.3.19) has a solution (xρ, rρP∗ , s
ρ
N ∗ , t

ρ
V∗) where xρ yields the same

sets of positive, zero, and negative-valued equality constraints and violated, active, and

strictly satisfied inequality constraints as x∗. Moreover, for such ρ, the corresponding dual

variables satisfy λ
ρ
P∗ = e, −e < λ

ρ
Z∗ < e, λ

ρ
N ∗ = −e, λρV∗ = e, 0 < λ

ρ
A∗ < e, and λ

ρ
S∗ = 0,

and we have ∥∥∥∥∥∥∥
xρ − x∗
λ
ρ − λ∗


∥∥∥∥∥∥∥ = O(ρ). (3.3.24)

Proof. Under Assumption 3.3.8, F in (3.3.22) is a continuously differentiable mapping

about (x∗, 0, λ
∗
Z∗∪A∗), and under Assumption 3.3.9(a) and (c), the matrix F ′ in (3.3.23)

is nonsingular at (x∗, 0, λ
∗
Z∗∪A∗). Thus, by the implicit function theorem [75, Theorem

9.28], there exist open sets Bx ⊂ Rn, Bρ ⊂ R, and Bλ ⊂ R|Z∗∪A∗| containing x∗, 0,

and λ
∗
Z∗∪A∗ , respectively, and continuously differentiable functions x(ρ) : Bρ → Bx and

λZ∗∪A∗(ρ) : Bρ → Bλ such that

x(0) = x∗, λZ∗∪A∗(0) = λ
∗
Z∗∪A∗ , and F (x(ρ), ρ, λZ∗∪A∗(ρ)) = 0 for all ρ ∈ Bρ.

By the second equation in (3.3.22) and since x(ρ) varies continuously with ρ, we have

cZ∗∪A∗(x(ρ)) = 0, cP∗∪V∗(x(ρ)) > 0, and cN ∗∪S∗(x(ρ)) < 0 (3.3.25)

56



for ρ sufficiently small. Similarly, since −e < λ
∗
Z∗ < e and 0 < λ

∗
A∗ < e under As-

sumption 3.3.9(b), the fact that λZ∗∪A∗(ρ) varies continuously with ρ implies that −e <

λZ∗(ρ) < e and 0 < λA∗(ρ) < e for ρ sufficiently small. If we define

λP∗∪V∗(ρ) := e, λN ∗(ρ) := −e, and λS∗(ρ) := 0

along with

rP∗(ρ) := [cP∗(x(ρ))]+, sN ∗(ρ) := [cN ∗(x(ρ))]−, and tV∗(ρ) := [cV∗(x(ρ))]+,

it follows that (x(ρ), rP∗(ρ), sN ∗(ρ), tV∗(ρ), λ(ρ)) satisfies (3.3.20), and is therefore a first-

order optimal point for (3.3.19) for sufficiently small ρ. Hence, by (3.3.25), we have that

xρ = x(ρ) for ρ sufficiently small has the same sets of positive, zero, and negative-valued

equality and violated, active, and strictly satisfied inequality constraints as x∗.

All that remains is to establish (3.3.24). From the differentiability of xρ = x(ρ) and

λ
ρ
Z∗∪A∗ = λZ∗∪A∗(ρ) and their derivatives given by the implicit function theorem, we have

for ρ sufficiently small that

 xρ

λ
ρ
Z∗∪A∗

 =

 x∗

λ
∗
Z∗∪A∗

− F ′x,λZ∗∪A∗ (x∗, 0, λ∗Z∗∪A∗)−1F
′
ρ(x
∗, 0, λ

∗
Z∗∪A∗)ρ+ o(ρ).

Hence, under Assumption 3.3.9, (3.3.24) is satisfied.

We now turn back to the iterates produced by SQuID . In particular, as in the previous

lemma, we show that in a neighborhood of an infeasible stationary point, subproblems

(3.2.7) and (3.2.9) will suggest the optimal partition of the index sets E and I. This result

is reminiscent of the well-known result in [70].

Lemma 3.3.12. Suppose Assumption 3.3.9 holds and v(x∗) > 0. Then, for all ρ̂k suffi-

ciently small and for all (xk, λ
k
) and (xk, λ̂k) each sufficiently close to (x∗, λ

∗
):

(a) There are local solutions for (3.2.7) and (3.2.9) such that d
k

and d̂k yield the same
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sets of positive, zero, and negative-valued equality and violated, active, and strictly

satisfied inequality constraints as x∗. Moreover, with (ρ,H) =
(

0, H(xk, 0, λ
k
)
)

and (ρ,H) =
(
ρ̂k, H(xk, ρ̂k, λ̂k)

)
, respectively, the optimal solutions for (3.2.7) and

(3.2.9) satisfy

 H ∇cZ∗∪A∗(xk)

∇cZ∗∪A∗(xk)T 0


 d

λZ∗∪A∗


= −

ρ∇f(xk) +∇cP∗∪V∗(xk)−∇cN ∗(xk)

cZ∗∪A∗(x
k)

 (3.3.26)

and

λP∗∪V∗ = e, −e < λZ∗ < e, λN ∗ = −e, 0 < λA∗ < e, and λS∗ = 0. (3.3.27)

(b) The update (3.2.13) is triggered infinitely often, yielding (ρk, ρ̂k)→ 0.

Proof. For part (a), consider subproblem (3.2.7), meaning that we let (ρ,H) = (0, H(xk, 0, λ
k
))

in (3.3.26). With d
k

= 0, (3.3.10) reduces to (3.2.5). Thus, (3.3.10) is solved at (x∗, λ
∗
)

by (d, λ) = (0, λ
∗
). By (3.3.10c)–(3.3.10f), we have λ

∗
P∗∪V∗ = e, λ

∗
N ∗ = −e, and λ

∗
S∗ = 0.

Hence, by (3.3.10a) and the definitions of Z∗ and A∗, the linear system (3.3.26) is satisfied

at (x∗, λ
∗
) by (d, λZ∗∪A∗) = (0, λZ∗∪A∗). Under Assumption 3.3.9(a) and (c), the matrix

in (3.3.26) is nonsingular at (x∗, λ
∗
), and hence the solution of (3.3.26) varies continuously

in a neighborhood of (x∗, λ
∗
). In addition, under Assumption 3.3.9(c), it follows that

H = H(xk, 0, λ
k
) in (3.3.26) is positive definite on the null space of ∇cZ∗∪A∗(xk)T in a

neighborhood of (x∗, λ
∗
).

It follows from the conclusions in the previous paragraph that for all (xk, λ
k
) sufficiently

close to (x∗, λ
∗
), the solution (d

k
, λ

k+1
Z∗∪A∗) to (3.3.26) is sufficiently close to (0, λ

∗
Z∗∪A∗)
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such that it satisfies

−e < λ
k+1
Z∗ < e, 0 < λ

k+1
A∗ < e,

cP∗∪V∗(x
k) +∇cP∗∪V∗(xk)Tdk > 0,

and cN ∗∪S∗(x
k) +∇cN ∗∪S∗(xk)Tdk < 0.

By construction, such a solution (d
k
, λ

k+1
Z∗∪A∗) satisfies (3.3.26) and therefore satisfies

(3.3.10) together with λ
k+1
P∗∪V∗ = e, λ

k+1
N ∗ = −e, and λ

k+1
S∗ = 0. Therefore, (d

k
, λ

k+1
) is

a KKT point of subproblem (3.2.7), and, as revealed above, it identifies the same sets

of positive, zero, and negative-valued equality and violated, active, and strictly satisfied

inequality constraints as x∗.

The proof of the result corresponding to subproblem (3.2.9) is similar. Indeed, from

the discussion above, we find that for ρk (and hence ρ̂k) sufficiently small and (xk, λ
k
)

sufficiently close to (x∗, λ
∗
), the algorithm will set Ek = Z∗, Ekc = P∗ ∪N ∗, Ik = A∗ ∪ S∗

and Ikc = V∗. The remainder of the proof follows as above with H(xk, 0, λ
k
), (3.3.10), and

(d
k
, λ

k+1
) replaced by H(xk, ρ̂k, λ̂k), (3.3.2), and (d̂k, λ̂k+1), respectively.

Now we prove part (b). We first argue that (3.2.12) holds for all sufficiently large

k so that ρk is set by (3.2.13) infinitely many times. Then, we show that this yields

ρk → 0. As xk approaches x∗, we have that v(xk) > 1
2v(x∗) > 0 for all large k. On

the other hand, in a neighborhood of x∗, the constraint functions cE and cI are bounded

under Assumption 3.3.8. Thus, by the definition of ∆l(d
k
;xk) and since for all (xk, λ

k
)

sufficiently close to (x∗, λ
∗
), the solution (d

k
, λ

k+1
) to (3.3.26) is sufficiently close to (0, λ

∗
),

we have that ∆l(d
k
;xk) ≤ θ

2v(x∗) < θv(xk) for sufficiently large k. Overall, this implies

that (3.2.12) holds for such k. Hence, (3.2.13) is triggered infinitely many times. Finally,

to see that (3.2.13) drives ρk → 0, it suffices to see that (d
k
, λ

k+1
) → (0, λ

∗
), (3.3.10a),

and (3.3.10c)-(3.3.10f) yield Rinf (xk, λ
k+1

)→ 0.

Lemma 3.3.12 can be used to show that near (x∗, λ
∗
), the solutions of system (3.3.26)

with (ρ,H) =
(

0, H(xk, 0, λ
k
)
)

and (ρ,H) =
(
ρ̂k, H(xk, ρ̂k, λ̂k)

)
correspond to Newton
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steps for F (x, 0, λZ∗∪A∗) = 0 and F (x, ρ̂k, λZ∗∪A∗) = 0, respectively. We formalize this

property in the following lemma.

Lemma 3.3.13. Suppose Assumption 3.3.9 holds and v(x∗) > 0. Then:

(a) If (xk, λ
k
) is sufficiently close to (x∗, λ

∗
) and (d

k
, λ

k+1
) generated by subproblem

(3.2.7) is obtained via (3.3.26) with (ρ,H) = (0, H(xk, 0, λ
k
)), then

∥∥∥∥∥∥∥
xk + d

k − x∗

λ
k+1 − λ∗


∥∥∥∥∥∥∥ ≤ C

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

(3.3.28)

for some constant C > 0 independent of k.

(b) If (xk, λ̂k) is sufficiently close to (x∗, λ
∗
) and (d̂k, λ̂k+1) generated by subproblem

(3.2.9) is obtained via (3.3.26) with (ρ,H) = (ρ̂k, H(xk, ρ̂k, λ̂k)), then, with (xρ, λρ)

defined as in Lemma 3.3.11, we have

∥∥∥∥∥∥∥
xk + d̂k − xρ

λ̂k+1 − λρ


∥∥∥∥∥∥∥ ≤ Ĉ

∥∥∥∥∥∥∥
xk − xρ
λ̂k − λρ


∥∥∥∥∥∥∥

2

(3.3.29)

for some constant Ĉ > 0 independent of k.

Proof. For both parts (a) and (b), our proof follows that of [13, Lemma 3.5].

For part (a), by Lemma 3.3.12(a), if (xk, λ
k
) is sufficiently close to (x∗, λ

∗
), then

(d
k
, λ

k+1
) generated by subproblem (3.2.7) can be obtained via (3.3.27) and (3.3.26) with

(ρ,H) = (0, H(xk, 0, λ
k
)). Therefore, since H(xk, 0, λ

k
) = G(xk, 0, λ

k
Z∗∪A∗) in such cases,

(3.3.26) constitutes a Newton iteration for F (x, 0, λZ∗∪A∗) = 0 at (xk, 0, λ
k
). We can now

apply standard Newton analysis. By Assumption 3.3.8 we have that F is continuously

differentiable and F ′ is Lipschitz continuous in a neighborhood of (x∗, 0, λ
∗
). By Assump-

tion 3.3.9(a) and (c), the matrix F ′ is nonsingular at (x∗, 0, λ
∗
Z∗∪A∗), so its inverse exists

and is bounded in a neighborhood of (x∗, 0, λ
∗
Z∗∪A∗). By [28, Theorem 5.2.1], if (xk, λ

k
) is

sufficiently close to (x∗, λ
∗
), then we have that (3.3.28) holds true.
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For part (b), by Lemma 3.3.12(a), if (xk, λ̂k) is sufficiently close to (x∗, λ
∗
), then

(d̂k, λ̂k+1) generated by subproblem (3.2.7) can be obtained via (3.3.27) and (3.3.26) with

(ρ,H) = (ρ̂k, H(xk, ρ̂k, λ̂k)). Therefore, since H(xk, ρ̂k, λ̂k) = G(xk, ρ̂k, λ̂kZ∗∪A∗) in such

cases, system (3.3.26) constitutes a Newton iteration for F (x, ρ, λZ∗∪A∗) = 0 at (xk, ρ̂k, λ̂k).

By Assumption 3.3.8 we have that F is continuously differentiable and F ′ is Lipschitz con-

tinuous in a neighborhood of (x∗, ρ, λ
∗
Z∗∪A∗). Moreover, since ρ is bounded, the Lipschitz

constant κ1 for F ′ in a neighborhood of (x∗, ρ, λ
∗
Z∗∪A∗) is independent of ρ. By Assump-

tion 3.3.9(a) and (c), the matrix F ′ is nonsingular at (x∗, 0, λ
∗
Z∗∪A∗), and hence its inverse

exists and is bounded in norm by a constant κ2 in a neighborhood of that point. By [28,

Theorem 5.2.1],

if

∥∥∥∥∥∥∥
xk − xρ
λ̂k − λρ


∥∥∥∥∥∥∥ ≤

1

κ1κ2
then

∥∥∥∥∥∥∥
xk + d̂k − xρ

λ̂k+1 − λρ


∥∥∥∥∥∥∥ ≤ κ1κ2

∥∥∥∥∥∥∥
xk − xρ
λ̂k − λρ


∥∥∥∥∥∥∥

2

.

This can be achieved if ρ is sufficiently small such that (xρ, λρ) and (xk, λ̂k) satisfy

∥∥∥∥∥∥∥
xρ − x∗
λρ − λ∗


∥∥∥∥∥∥∥ ≤

1

4κ1κ2
and

∥∥∥∥∥∥∥
xk − x∗
λ̂k − λ∗


∥∥∥∥∥∥∥ ≤

1

4κ1κ2
.

We are now ready to prove our main theorem concerning the local convergence of

SQuID in the neighborhood of infeasible stationary points. The theorem shows that the

convergence rate is dependent on how fast ρ is decreased and λ̂k approaches λ
k
.

Theorem 3.3.11. Suppose Assumption 3.3.9 holds and v(x∗) > 0. Then, if (xk, λ
k
)

and (xk, λ̂k) are each sufficiently close to (x∗, λ
∗
), (d

k
, λ

k+1
) is obtained via (3.3.27) and

(3.3.26) with (ρ,H) = (0, H(xk, 0, λ
k
)), and (d̂k, λ̂k+1) is obtained via (3.3.27) and (3.3.26)
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with (ρ,H) = (ρ̂k, H(xk, ρ̂k, λ̂k)), then

∥∥∥∥∥∥∥
xk+1 − x∗

λ
k+1 − λ∗


∥∥∥∥∥∥∥ ≤ C

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+O(‖λ̂k − λk‖) +O(ρ) (3.3.30)

for some constant C > 0 independent of k. Consequently, as (3.2.13) and (3.2.14) yield

ρk = O


∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

 and ‖λ̂k − λk‖ = O


∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

 ,

{(xk, λk)} converges to (x∗, λ
∗
) quadratically. If (3.2.13) and (3.2.14) merely yielded

ρk = o


∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥
 and ‖λ̂k − λk‖ = o


∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥
 ,

then {(xk, λk)} would converge to (x∗, λ
∗
) superlinearly.

Proof. For a given ρ > 0, let (xρ, λρ) be defined as in Lemma 3.3.11. Under Assump-
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tion 3.3.9(f), xk+1 = xk + wkd
k

+ (1− wk)d̂k for all k. Thus,

∥∥∥∥∥∥∥
xk+1 − x∗

λ
k+1 − λ∗


∥∥∥∥∥∥∥ ≤ wk

∥∥∥∥∥∥∥
xk + d

k − x∗

λ
k+1 − λ∗


∥∥∥∥∥∥∥+ (1− wk)

∥∥∥∥∥∥∥
xk + d̂k − x∗

λ
k+1 − λ∗


∥∥∥∥∥∥∥

≤ wkC

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+ (1− wk)


∥∥∥∥∥∥∥
xk + d̂k − xρ + xρ − x∗

0


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 0

λ
k+1 − λ∗


∥∥∥∥∥∥∥


≤ wkC

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+ (1− wk)


∥∥∥∥∥∥∥
xk + d̂k − xρ + xρ − x∗

λ̂k+1 − λρ + λρ − λ∗


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
xk + d

k − x∗

λ
k+1 − λ∗


∥∥∥∥∥∥∥


≤ C

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+ (1− wk)


∥∥∥∥∥∥∥
xk + d̂k − xρ

λ̂k+1 − λρ


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
xρ − x∗
λρ − λ∗


∥∥∥∥∥∥∥


≤ C

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+ Ĉ

∥∥∥∥∥∥∥
xk − xρ
λ̂k − λρ


∥∥∥∥∥∥∥

2

+O(ρ) (3.3.31)

Here, the second and fourth inequalities follow from Lemma 3.3.13(a), the third holds

as we have simply augmented the latter two vector norms, and the last follows from
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Lemmas 3.3.11 and 3.3.13(b). By applying Lemma 3.3.11, we also have that

∥∥∥∥∥∥∥
xk − xρ
λ̂k − λρ


∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥
xk − x∗
λ̂k − λ∗


∥∥∥∥∥∥∥

2

+ 2

∥∥∥∥∥∥∥
xk − x∗
λ̂k − λ∗


∥∥∥∥∥∥∥
∥∥∥∥∥∥∥
xρ − x∗
λρ − λ∗


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
xρ − x∗
λρ − λ∗


∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥
xk − x∗
λ̂k − λ∗


∥∥∥∥∥∥∥

2

+O(ρ)

≤

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+ 2‖λ̂k − λk‖

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥+ ‖λ̂k − λk‖2 +O(ρ)

≤

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+O(‖λ̂k − λk‖) +O(ρ). (3.3.32)

By (3.3.31) and (3.3.32), we obtain

∥∥∥∥∥∥∥
xk+1 − x∗

λ
k+1 − λ∗


∥∥∥∥∥∥∥ ≤ (C + Ĉ)

∥∥∥∥∥∥∥
xk − x∗
λ
k − λ∗


∥∥∥∥∥∥∥

2

+O(‖λ̂k − λk‖) +O(ρ). (3.3.33)

Letting C := C + Ĉ, we have shown (3.3.30).

Local convergence to a KKT point

We now consider the local convergence of SQuID in the neighborhood of a KKT point for

(3.2.1) satisfying Assumption 3.3.10. Our first result shows that in the neighborhood of a

solution point, subproblem (3.2.7) yields a linearly feasible search direction, the penalty

parameter remains constant, and the multipliers are not modified outside of the QO solves.

Lemma 3.3.14. Suppose Assumption 3.3.10 holds. Then, for all sufficiently large k with

‖(xk, λk)− (x∗, λ
∗
)‖ and ‖(xk, λ̂k)− (x∗, λ̂∗)‖ each sufficiently small:

(a) A solution of (3.2.7) has (rk, sk, t
k
) = 0, yielding Ek = E and Ik = I;

(b) ρk is not decreased by (3.2.13), (3.2.18), or (3.2.19), and the multipliers λ̂k are not

modified by (3.2.14).
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Proof. The proof of part (a) is similar to the proof of Lemma 3.3.12(a). That is, under

Assumption 3.3.10 (which means that Assumption 3.3.9 holds), a solution of (3.2.7) with

(xk, λ
k
) sufficiently close to (x∗, λ

∗
) has d

k
yielding the same sets of positive, zero, and

negative-valued equality and violated, active, and strictly satisfied inequality constraints

as x∗. In this case, Z∗ = E and S∗ ∪ A∗ = I, so (rk, sk, t
k
) = 0.

Now consider part (b). If xk is feasible, then v(xk) = 0 and (3.2.12) is violated. On the

other hand, if xk is infeasible, then we have ∆l(d
k
, xk) = v(xk) by part (a), which implies

(3.2.12) is violated again. Overall, these conclusions imply that (3.2.13) and (3.2.14) are

both not triggered. As for (3.2.18) and (3.2.19), every time either of these updates is

triggered, ρk is at least reduced by a fraction of its current value. Therefore, if either

of these updates is triggered an infinite number of times, then we would have ρk → 0.

However, under Assumption 3.3.10 we have ρk → ρ∗ > 0, so for all sufficiently large k, ρk

is not decreased by either update.

Our second result is similar to Lemma 3.3.12; again, recall [70].

Lemma 3.3.15. Suppose Assumption 3.3.10 holds. Then, for all sufficiently large k with

‖(xk, λk)− (x∗, λ
∗
)‖ and ‖(xk, λ̂k)− (x∗, λ̂∗)‖ each sufficiently small, there is a local solu-

tion for (3.2.9) such that d̂k yields the same sets of active and strictly satisfied inequality

constraints as x∗. Moreover, (d̂k, λ̂k+1) satisfies

H(xk, ρ∗, λ̂k) ∇cE∪A∗(xk)

∇cE∪A∗(xk)T 0


 d̂k

λ̂k+1
E∪A∗

 = −

ρ∗∇f(xk)

cE∪A∗(x
k)

 (3.3.34)

and

λ̂k+1
A∗ > 0 and λ̂k+1

S∗ = 0. (3.3.35)

Proof. By Lemma 3.3.14, we have Ek = E and Ik = I under the conditions of the lemma.

Thus, with d̂k = 0, the optimality conditions (3.3.2) reduce to (3.2.4), so (3.3.2) is solved

at (x∗, λ̂∗) by (d, λ) = (0, λ̂∗). By (3.3.2d), λ̂∗S∗ = 0. Hence, by (3.3.2a) and the defini-

tion of A∗, the linear system (3.3.34) is satisfied at (x∗, λ̂∗) by (d, λE∪A∗) = (0, λ̂∗E∪A∗).
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Under Assumption 3.3.9(a) and Assumption 3.3.10(c), the matrix in (3.3.34) is nonsingu-

lar at (x∗, λ̂∗), and hence the solution of (3.3.34) varies continuously in a neighborhood

of (x∗, λ̂∗). In addition, under Assumption 3.3.10(c), H(xk, ρ∗, λ̂k) in (3.3.34) is positive

definite on the null space of ∇cE∪A∗(xk)T in a neighborhood of (x∗, λ̂∗).

It follows from the conclusions in the previous paragraph that for all (xk, λ̂k) sufficiently

close to (x∗, λ̂∗), the solution (d̂k, λ̂k+1
E∪A∗) to (3.3.34) is sufficiently close to (0, λ̂∗E∪A∗) such

that it satisfies

λ̂k+1
A∗ > 0 and cS∗(x

k) +∇cS∗(xk)T d̂k < 0.

By construction, such a solution also satisfies (3.3.2) together with λ̂k+1
S∗ = 0. Therefore,

(d̂k, λ̂k+1) is a KKT point of subproblem (3.2.9), and, as revealed above, it identifies the

same sets of active and strictly satisfied inequality constraints as x∗.

We are now prepared to prove our main theorem concerning the local convergence of

SQuID in the neighborhood of KKT points for (3.2.1).

Theorem 3.3.12. Suppose Assumption 3.3.10 holds. Then, for all large k with ‖(xk, λk)−

(x∗, λ
∗
)‖ and ‖(xk, λ̂k)−(x∗, λ̂∗)‖ each sufficiently small, (d̂k, λ̂k+1) is obtained via (3.3.34),

dk ← d̂k, and ∥∥∥∥∥∥∥
xk+1 − x∗

λ̂k+1 − λ̂∗


∥∥∥∥∥∥∥ ≤ C

∥∥∥∥∥∥∥
xk − x∗
λ̂k − λ̂∗


∥∥∥∥∥∥∥

2

(3.3.36)

for some constant C > 0 independent of k.

Proof. By Lemma 3.3.15, under the conditions of the theorem, (d̂k, λ̂k+1) generated by

subproblem (3.2.9) can be obtained via (3.3.34) and (3.3.35). This implies that dk is a

linearly feasible direction, so wk ← 0 and dk ← d̂k. Therefore, since H(xk, ρ∗, λ̂k) =

G(xk, ρ∗, λ̂kE∪A∗) in such cases, (3.3.34) (with d̂ interchanged with dk) constitutes a New-

ton iteration applied to the nonlinear system F (x, ρ∗, λE∪A∗) = 0 at (xk, ρ∗, λ̂k). We can

now apply standard Newton analysis. Under Assumption 3.3.8 we have that F is contin-

uously differentiable and F ′ is Lipschitz continuous in a neighborhood of (x∗, ρ∗, λ̂∗E∪A∗).

Moreover, under Assumption 3.3.9(a) and Assumption 3.3.10(c), the matrix F ′ is nonsin-
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gular at (x∗, ρ∗, λ̂∗E∪A∗), so its inverse exists and is bounded in norm in a neighborhood of

(x∗, ρ∗, λ̂∗E∪A∗). By [28, Theorem 5.2.1], if (xk, λ̂k) is sufficiently close to (x∗, λ̂∗), then we

have that (3.3.36) holds true.

3.4 Numerical Experiments

In this section, we summarize the performance of SQuID as it was employed to solve

collections of feasible and infeasible problem instances. Our code is a prototype Matlab

implementation of Algorithm 1.

Mention of a few specifications of our implementation are appropriate before we present

our numerical results. First, in order to avoid numerical issues caused by poor scaling of

the problem functions, each function was scaled so that the `∞-norm of its gradient at

the initial point was no larger than a given constant gmax > 0. Moreover, our termination

conditions are defined to take into account the magnitudes of the quantities involved in

the computation of the optimality and feasibility errors. Specifically, we terminate and

declare that an optimal solution has been found if

Ropt(xk, ρk, λ̂k+1) ≤ γmax{χopt,k, 1} and vinf (xk) ≤ γmax{vinf (x0), 1} (3.4.1)

where γ > 0 is a given constant,

χopt,k := max{ρk, ‖∇f(xk)‖∞, ‖∇cE(xk)‖∞, ‖∇cI(xk)‖∞, ‖λ̂k+1
E ‖∞, ‖λ̂k+1

I ‖∞},

and vinf (xk) := max{‖cE(xk)‖∞, ‖max{cI(xk), 0}‖∞}.

We terminate and declare that an infeasible stationary point has been found if

Rinf (xk, λ
k+1

) ≤ γmax{χinf,k, 1}, vinf (xk) > γmax{vinf (x0), 1}, and ρk ≤ ρ (3.4.2)
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where ρ > 0 is a given constant and

χinf,k := max{‖∇cE(xk)‖∞, ‖∇cI(xk)‖∞, ‖λk+1
E ‖∞, ‖λk+1

I ‖∞}.

Despite the fact that Theorem 3.3.4 implies that we do not necessarily need ρk → 0 when

converging to an infeasible stationary point, we only terminate and declare infeasibility

when ρk is sufficiently small, as specified in (3.4.2). This may lead to extra iterations being

performed before infeasibility is declared, but aids the algorithm in avoiding declarations

of infeasibility when applied to problem instances that are actually feasible. Since ρk is

decreased rapidly in the neighborhood of an infeasible stationary point due to (3.2.12),

the additional cost is worthwhile. We also take into account the scaling of the problem

functions when considering whether a given point is sufficiently feasible so that subproblem

(3.2.7) may be skipped. Specifically, if vinf (xk) ≤ γmax{vinf (x0), 1} for some γ > 0, then

we save computational expense by approximating the solution of subproblem (3.2.7) with

d
k ← 0 and λ

k+1 ← λ
k
.

Our implementation requires that subproblems (3.2.7) and (3.2.9) are convex, so we

modify H(xk, 0, λ
k
) and H(xk, ρ̂k, λ̂k), if necessary, to make them positive definite. We

do this by iteratively adding multiples of the identity matrix until the smallest com-

puted eigenvalue is sufficiently positive. Specifically, if one of these matrices needs to

be modified at iteration k, then with some ξ > 0 and an initial increment µk, we add

µkI, ξµkI, ξ2µ
kI, . . . until the smallest eigenvalue of the matrix is larger than a positive

parameter µmin. We then set µk+1 ← max{µmin, ψµ
k} for some ψ ∈ (0, 1) to help save the

computational expense of computing eigenvalues and modifying the matrix in the follow-

ing iteration. If a matrix does not need to be modified during iteration k, then we reset

µk+1 ← µmin for the following iteration. (We maintain different increments, µk0 and µkρ, for

H(xk, 0, λ
k
) and H(xk, ρ̂k, λ̂k), respectively.) Of course, these modifications may slow the

local convergence rate of the algorithm in the neighborhood of optimal solutions or infea-

sible stationary points that may fail to satisfy a strict second-order sufficiency condition,

but they allow a prototype implementation such as ours to be well-defined when applied
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to nonconvex problems.

For computing the weight wk required in (3.2.11) for iteration k, we initialize wk ← 0

and check if (3.2.10) holds for dk ← d̂k. If it does, then the algorithm continues with these

values for the weight and step, and otherwise we apply a bisection method to attempt to

find the smallest root wk of

Ψ(w) = ∆l(wd
k

+ (1− w)d̂k;xk)− β∆l(d
k
;xk).

Since when d
k 6= 0 we have Ψ(1) > 0 and Ψ(0) < 0, the bisection method is well-defined

and their exists wk ∈ (0, 1) such that Ψ(wk) = 0. (Note that if d
k

= 0, then both d
k

and

d̂k will be linearly feasible, and so (3.2.10) is satisfied with wk ← 0.) We terminate the

bisection method when the width of the current interval is less than 10−8. This and our

choice of ω ← (1− 10−18) ensure that we always compute wk < ω, effectively making this

threshold value inconsequential for our numerical experiments.

As final notes on the particulars of our implementation, we remark that (3.2.7) and

(3.2.9) are solved using Matlab’s built-in quadprog routine. Also, the parameter values

used are those provided in Table 3.1.

Table 3.1: Input parameters for a prototype Matlab implemenation of Algorithm 1.
Parameter ρ0 β θ κρ κλ ε δ η

Value 10−1 10−2 10−1 10 10 10−2 5× 10−1 10−8

Parameter gmax γ ρ γ ξ µ0 ψ µmin

Value 102 10−6 10−8 10−8 2 10−4 10−1 10−4

We tested our implementation on 123 of the Hock-Schittkowski problems [49] available

as AMPL models [38].1 (Problems hs068 and hs069 were excluded from the original set of

125 problems as the required external function was not compiled.) The original versions of

all of these problems are feasible, but we created a corresponding set of infeasible problems

by adding the incompatible constraints x1 ≤ 0 and x1 ≥ 1, where x1 is the first variable

in the problem statement.

1http://orfe.princeton.edu/~rvdb/ampl/nlmodels/cute/
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Termination results for our implementation applied to these problems are shown in

Tables 3.2 and 3.3, which contain statistics for the feasible and infeasible problems, re-

spectively. In Table 3.2, the “Succeed” column reveals the number and percentage of

problems for which a point satisfying (3.4.1) was obtained, and the “Infeasible” column

reveals those statistics for problems for which a point satisfying (3.4.2) was obtained. Sim-

ilarly, the “Succeed” column in Table 3.3 reveals the number and percentage of problems

for which a point satisfying (3.4.2) was obtained, and the “Feasible” column reveals those

statistics for problems for which a point satisfying (3.4.1) was obtained. In both tables,

a termination result in the latter of these two columns represents a situation where the

algorithm failed to solve the problem correctly. Any time the algorithm fails to terminate

within 103 iterations, the algorithm is deemed to “Fail”. (Problem hs112x was excluded

in the set of feasible problems due to a function evaluation error that occurred during the

run.)

Table 3.2: Performance statistics of SQuID on feasible problems.
Problem type Succeed Fail Infeasible Total

Feasible 110 (90.16%) 11 (9.02%) 1 (0.82%) 122

Table 3.3: Performance statistics of SQuID on infeasible problems.
Problem type Succeed Fail Feasible Total

Infeasible 111 (90.24%) 12 (9.76%) 0 (0.0%) 123

From Tables 3.2 and 3.3, one can see that our code consistently attained a success rate

of at least 90%, which is strong for a prototype implementation. In fact, for most of the

failures and for the feasible problem that was reported to be infeasible, we found the prob-

lems to be very nonconvex. This led to excessive modifications of the Hessian matrices,

and in many cases search directions that were poorly scaled. The results may be im-

proved with a more sophisticated Hessian modification strategy and/or the incorporation

of second-order correction steps.

We conclude our discussion of this set of numerical experiments by illustrating the local

convergence behavior of SQuID on these sets of test problems. For those instances that
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are successfully solved within the iteration limit, we store the logarithms of Ropt and Rinf
for the last 10 iterations for the feasible and infeasible problem instances and plot them

in Figures 3.1 and 3.2, respectively. In the plots, T represents the last iteration for each

run. (If a given problem is solved in fewer than 10 iterations, then its corresponding plot

begins in the middle of the graph.) In Figures 3.1 and 3.2, one can see that most of the

curves turn significantly downward on the right-hand side of the graph. The curves with

a slope less than −1 over the last iterations indicate local superlinear convergence, and

the curves with slope less than −2 indicate quadratic convergence. One finds that many

of the curves possess slopes of this type, providing empirical evidence for the convergence

results in §3.3.
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Figure 3.1: log10Ropt for the last 10 itera-
tions of SQuID applied to feasible instances.
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Figure 3.2: log10Rinf for the last 10 it-
erations of SQuID applied to infeasible in-
stances.

We also compare the performance of SQuID on the 9 small-scale examples used in Chap-

ter 2, where the first 8 examples are infeasible and the last one is infeasible. The numbers

of iterations and function evaluations of SQuID are added to Table 2.2 to form the following

Table 3.4, where a number with an asteroid superscript means the solver fails to solve the

problem. This failure includes three cases: the solver runs out of iterations (Problem 2
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and 7 for Direct, and Problem 7 for Active), an infeasible problem is reported feasible

(Problem 5 and 6 for Direct), or an feasible problem is reported infeasible (Problem 9

for Filter). From the results shown in Table 3.4, one can see SQuID exhibits more stable

performance than other solvers. It successfully solves all the examples, but need fewer

iterations than Ipopt.

Table 3.4: Performance measures for solving the NLO problem.

Problem
SQuID Ipopt Direct Active Filter

Iter. Eval. Iter. Eval. Iter. Eval. Iter. Eval. Iter. Eval.

1 29 30 48 281 38 135 22 235 16 16
2 23 31 109 170 ∗10000 ∗10000 23 167 12 12
3 23 29 788 3129 12 83 9 202 10 10
4 24 33 46 105 25 61 10 201 11 11
5 48 96 72 266 ∗1060 ∗3401 18 45 26 26
6 30 70 63 141 ∗76 ∗264 16 37 27 27
7 22 68 87 152 ∗10000 ∗43652 ∗10000 ∗20091 30 30
8 44 77 104 206 33 97 41 560 28 28
9 23 24 60 135 30 33 16 31 ∗13 ∗2

We close this section with a comparison between SQuID and the algorithm proposed

in [13] when applied to solve the infeasible problems presented in [13]. As previously

mentioned in §3.1.1, the algorithm in [13] represents an immediate predecessor of SQuID

. That algorithm also possesses superlinear convergence guarantees, but, unlike SQuID ,

suffers from the disadvantage that more than 2 QO subproblem solves may be required

in each iteration. After modifying the input parameters in our implementation of SQuID

so that they match those used in [13]—e.g., in [13], the initial penalty parameter was

set to 1—we obtained the results presented in Table 3.5. (Here, the “Iter.” columns

indicate the numbers of (nonlinear) iterations performed and the “QOs” columns indicate

the number of QO subproblems solved prior to termination.) It is clear in these results

that both algorithms detect infeasibility (or locate an optimal solution in the case of

problem “batch”) in few iterations, but SQuID typically requires fewer QO solves. (The

only exception is the problem “robot”. This problem is nonconvex and the performance

of both algorithms varies depending on the input parameters that affect the modifications

of the Hessian approximations to make them positive definite.) These results provide

72



evidence for our claim that SQuID yields consistent improvement over the algorithm in

[13]. That is, SQuID possesses similar theoretical convergence guarantees, but yields better

practical performance by limiting the number of QO subproblem solves per iteration.

Table 3.5: Performance measures for test problems in [13]
unique robot isolated batch batch1 nactive

Alg. Iter. QOs Iter. QOs Iter. QOs Iter. QOs Iter. QOs Iter. QOs

SQuID 9 19 27 55 9 19 10 22 15 31 7 15
Ref 5 9 24 13 34 7 20 11 28 15 40 6 17
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Chapter 4

Matrix-Free Solvers for Exact

Penalty Subproblems

4.1 Introduction

irwa.introduction

The prototypical convex composite optimization problem is

min
x∈X

f(x) + dist (F (x) |C ) , (4.1.1)

where the sets X ⊂ Rn and C ⊂ Rm are non-empty, closed, and convex, the functions

f : Rn → R and F : Rn → Rm are smooth, and the distance function is defined as

dist (y |C ) := inf
z∈C

‖y − z‖ ,

with ‖·‖ a given norm on Rm [6, 33, 69]. The objective in problem (4.1.1) is an exact

penalty function for the optimization problem

min
x∈X

f(x) subject to F (x) ∈ C,
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where the penalty parameter has been absorbed into the distance function. Problem (4.1.1)

is also useful in the study of feasibility problems where one takes f ≡ 0.

Problems of the form (4.1.1) and algorithms for solving them have received a great

deal of study over the last 30 years [1, 35, 72]. The typical approach for solving such prob-

lems is to apply a Gauss-Newton strategy to either define a direction-finding subproblem

paired with a line search, or a trust-region subproblem to define a step to a new point

[6, 69]. This chapter concerns the design, analysis, and implementation of methods for

approximately solving the subproblems in either type of approach in large-scale settings.

These subproblems take the form

min
x∈X

gTx+ 1
2x

THx+ dist (Ax+ b |C ) , (4.1.2)

where g ∈ Rn, H ∈ Rn×n is symmetric, A ∈ Rm×n, b ∈ Rm, and X ⊂ Rn and C ⊂ Rm

may be modified versions of the corresponding sets in (4.1.1). In particular, the set X

may now include the addition of a trust-region constraint. In practice, the matrix H is an

approximation to the Hessian of the Lagrangian for the problem (4.1.1) [10, 33, 69], and

so may be indefinite depending on how it is formed. However, in this chapter, we assume

that it is positive semi-definite so that subproblem (4.1.2) is convex.

To solve large-scale instances of (4.1.2), we develop two solution methods based on

linear least-squares subproblems. These solution methods are matrix-free in the sense that

the least-squares subproblems can be solved in a matrix-free manner. The first approach

is a novel iterative re-weighting strategy [2, 63, 65, 76, 83], while the second is based

on ADAL technology [5, 30, 77] adapted to this setting. We prove that both algorithms

are globally convergent under loose assumptions, and that each requires at most O(1/ε2)

iterations to reach ε-optimality of the objective of (4.1.2). We conclude with numerical

experiments that compare these two approaches.

As a first refinement, we suppose that C has the product space structure

C := C1 × · · · × Cl, (4.1.3)
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where, for each i ∈ I := {1, 2, . . . , l}, the set Ci ⊂ Rmi is convex and
∑

i∈Imi = m.

Conformally decomposing A and b, we write

A =


A1

...

Al

 and b =


b1
...

bl

 ,

where, for each i ∈ I, we have Ai ∈ Rmi×n and bi ∈ Rmi . On the product space Rm1 ×

· · · × Rml , we define a norm adapted to this structure as

∥∥(yT1 , y
T
2 , . . . , y

T
l )T

∥∥ :=
∑
i∈I
‖yi‖2 . (4.1.4)

It is easily verified that the corresponding dual norm is

‖y‖∗ = sup
i∈I
‖yi‖2 .

With this notation, we may write

dist (y |C ) =
∑
i∈I

dist2 (yi |Ci ) , (4.1.5)

where, for any set S, we define the distance function dist2 (y |S ) := infz∈S ‖y − z‖2.

Hence, with ϕ(x) := gTx+ 1
2x

THx, subproblem (4.1.2) takes the form

min
x∈X

J0(x), where J0(x) := ϕ(x) +
∑
i∈I

dist2 (Aix+ bi |Ci ) . (4.1.6)

Throughout our algorithm development and analysis, it is important to keep in mind that

‖y‖ 6= ‖y‖2 since we make heavy use of both of these norms.

Example 4.1.1 (Intersections of Convex Sets). In many applications, the affine constraint

has the representation Âx+ b̂ ∈ Ĉ :=
⋂
i∈I Ci, where Ci ⊂ Rmi is non-empty, closed, and

convex for each i ∈ I. Problems of this type are easily modeled in our framework by setting
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Ai := Â and bi := b̂ for each i ∈ I, and C := C1 × · · · × Cl.

4.1.1 Notation

Much of the notation that we use is standard and based on that employed in [72]. For

convenience, we review some of this notation here. The set Rn is the real n-dimensional

Euclidean space with Rn+ being the positive orthant in Rn and Rn++ the interior of Rn+.

The set of real m × n matrices will be denoted as Rm×n. The Euclidean norm on Rn is

denoted ‖·‖2, and its closed unit ball is B2 := {x | ‖x‖2 ≤ 1}. The closed unit ball of the

norm defined in (4.1.4) will be denoted by B. Vectors in Rn will be considered as column

vectors and so we can write the standard inner product on Rn as 〈u, v〉 := uT v for all

{u, v} ⊂ Rn. The set N is the set of natural numbers {1, 2, . . . }. Given {u, v} ⊂ Rn, the

line segment connecting them is denoted by [u, v]. Given a set X ⊂ Rn, we define the

convex indicator for X by

δ (x |X ) :=


0 if x ∈ X,

+∞ if x /∈ X,

and its support function by

δ∗ (y |X ) := sup
x∈X
〈y, x〉 .

A function f : Rn → R̄ := R∪{+∞} is said to be convex if its epigraph,

epi(f) := {(x, µ) | f(x) ≤ µ} ,

is a convex set. The function f is said to be closed (or lower semi-continuous) if epi(f)

is closed, and f is said to be proper if f(x) > −∞ for all x ∈ Rn and dom (f) :=

{x | f(x) <∞} 6= ∅. If f is convex, then the subdifferential of f at x̄ is given by

∂f(x̄) := {z | f(x̄) + 〈z, x− x̄〉 ≤ f(x) ∀x ∈ Rn } .
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Given a closed convex X ⊂ Rn, the normal cone to X at a point x̄ ∈ X is given by

N (x̄ |X) := {z | 〈z, x− x̄〉 ≤ 0 ∀x ∈ X } .

It is well known that N (x̄ |X) = ∂δ (x̄ |X ); e.g., see [72]. Given a set S ⊂ Rm and a

matrix M ∈ Rm×n, the inverse image of S under M is given by

M−1S := {x |Mx ∈ S } .

Since the set C in (4.1.3) is non-empty, closed, and convex, the distance function

dist (y |C ) is convex. Using the techniques of [72], it is easily shown that the subdifferential

of the distance function (4.1.5) is

∂dist (p |C ) = ∂dist2 (p1 |C1 )× · · · × ∂dist2 (pl |Cl ) , (4.1.7)

where, for each i ∈ I, we have

∂dist2 (pi |Ci ) =


(I−PCi )pi
‖(I−PCi )pi‖2

if i 6∈ A(p),

B2 ∩N (pi |Ci) if i ∈ A(p).

(4.1.8)

Here, we have defined

A(p) := {i ∈ I |dist2 (pi |Ci ) = 0} ∀ p ∈ Rm,

and let PC(p) denote the projection of p onto the set C (see Theorem 4.2.1).

Since we will be working on the product space Rm1 × · · · ×Rml , we will need notation

for the components of the vectors in this space. Given a vector w ∈ Rm1 × · · · × Rml , we

denote the components in Rmi by wi and the jth component of wi by wij for j = 1, . . . ,mi

and i ∈ I so that w = (wT1 , . . . , w
T
l )T . Correspondingly, given vectors wi ∈ Rmi for i ∈ I,

we denote by w ∈ Rm the vector w = (wT1 , . . . , w
T
l )T .
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4.2 An Iterative Re-Weighting Algorithm

We now describe an iterative algorithm for minimizing the function J0 in (4.1.6), where

in each iteration one solves a subproblem whose objective is the sum of ϕ and a weighted

linear least-squares term. An advantage of this approach is that the subproblems can be

solved using matrix-free methods, e.g., the conjugate gradient (CG), projected gradient,

and Lanczos [46] methods. The objectives of the subproblems are localized approximations

to J0 based on projections. In this manner, we will make use of the following theorem.

Theorem 4.2.1. [85] Let C ⊂ Rm be non-empty, closed, and convex. Then, to every

y ∈ Rm, there is a unique ȳ ∈ C such that

‖y − ȳ‖2 = dist2 (y |C ) .

We call ȳ = PC(y) the projection of y onto C. Moreover, the following hold:

1. ȳ = PC(y) if and only if ȳ ∈ C and (y − ȳ) ∈ N (ȳ |C) [73].

2. For all {y, z} ⊂ Rm, the operator PC yields

‖PC(y)− PC(z)‖22 + ‖(I − PC)y − (I − PC)z‖22 ≤ ‖y − z‖22 .

Since H is symmetric and positive semi-definite, there exists A0 ∈ Rm0×n, where

m0 := rank(H), such thatH = AT0 A0. We use this representation forH in order to simplify

our mathematical presentation; this factorization is not required in order to implement our

methods. Define b0 := 0 ∈ Rn, C0 := {0} ⊂ Rn, and I0 := {0} ∪ I = {0, 1, . . . , l}. Using

this notation, we define our local approximation to J0 at a given point x̃ and with a given

relaxation vector ε ∈ Rl++ by

Ĝ(x̃,ε)(x) := gTx+ 1
2

∑
i∈I0

wi(x̃, ε) ‖Aix+ bi − PCi(Aix̃+ bi)‖22 ,
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where, for any x ∈ Rn, we define

w0(x, ε) := 1, wi(x, ε) :=
(
dist2

2(Aix+ bi | Ci) + ε2i
)−1/2 ∀ i ∈ I, (4.2.1)

and W (x, ε) := diag(w0(x, ε)Im0 , . . . , wl(x, ε)Iml).

Define

Ã :=

A0

A

 . (4.2.2)

We now state the algorithm.

Iterative Re-Weighting Algorithm (IRWA)

Step 0: (Initialization) Choose an initial point x0 ∈ X, an initial relaxation vector ε0 ∈ Rl++,

and scaling parameters η ∈ (0, 1), γ > 0, and M > 0. Let σ ≥ 0 and σ′ ≥ 0

be two scalars which serve as termination tolerances for the stepsize and relaxation

parameter, respectively. Set k := 0.

Step 1: (Solve the re-weighted subproblem for xk+1)

Compute a solution xk+1 to the problem

G(xk, εk) : min
x∈X

Ĝ(xk,εk)(x). (4.2.3)

Step 2: (Set the new relaxation vector εk+1)

Set

qki := Ai(x
k+1 − xk) and rki := (I − PCi)(Aixk + bi) ∀ i ∈ I0.

If ∥∥∥qki ∥∥∥
2
≤M

[ ∥∥∥rki ∥∥∥2

2
+ (εki )

2
] 1

2
+γ

∀ i ∈ I, (4.2.4)

then choose εk+1 ∈ (0, ηεk]; else, set εk+1 := εk.

Step 3: (Check stopping criteria)

If
∥∥xk+1 − xk

∥∥
2
≤ σ and

∥∥εk∥∥
2
≤ σ′, then stop; else, set k := k+ 1 and go to Step 1.
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Remark 4.2.2. In cases where Ci = {0} ⊂ R for all i ∈ I and φ ≡ 0, this algorithm has

a long history in the literature. Two early references are [2] and [76]. In such cases, the

algorithm reduces to the classical algorithm for minimizing ‖Ax+ b‖1 using iteratively

re-weighted least-squares.

Remark 4.2.3. If there exists z0 such that AT0 z0 = g, then, by setting b0 := z0, the linear

term gTx can be eliminated in the definition of Ĝ.

Remark 4.2.4. It is often advantageous to employ a stopping criteria based on a percent

reduction in the duality gap rather than the stopping criteria given in Step 3 above [6, 12].

In such cases, one keeps track of both the primal objective values Jk0 := J0(xk) and the

dual objective values

Ĵk0 := 1
2(g +AT ũk)TH−1(g +AT ũk)− bT ũk +

∑
i∈I

δ∗
(
ũki |Ci

)
,

where the vectors ũk := Wkr
k are dual feasible (see (4.5.2) for a discussion of the dual

problem). Given σ ∈ (0, 1), Step 3 above can be replaced by

Step 3’: (Check stopping criteria)

If (J1
0 + Ĵk0 ) ≤ σ(J1

0 − Jk0 ), then stop; else, set k := k + 1 and go to Step 1.

This is the stopping criteria employed in some of our numerical experiments. Nonetheless,

for our analysis, we employ Step 3 as it is stated in the formal description of IRWA for

those instances when dual values Ĵk0 are unavailable, such as when these computations are

costly or subject to error.

4.2.1 Smooth Approximation to J0

Our analysis of IRWA is based on a smooth approximation to J0. Given ε ∈ Rl+, define

the ε-smoothing of J0 by

J(x, ε) := ϕ(x) +
∑
i∈I

√
dist2

2(Aix+ bi | Ci) + ε2i . (4.2.5)
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Note that J0(x) ≡ J(x, 0) and that J(x, ε) is jointly convex in (x, ε) since

J(x, ε) = ϕ(x) +
∑
i∈I

dist2


Ai 0

0 eTi


x
ε

+

bi
0

 |Ci × {0}
 ,

where ei is the ith unit coordinate vector. By [74, Corollary 10.11], (4.1.7), and (4.1.8),

∂J0(x) = ∂xJ(x, 0) = ∇ϕ(x) +AT∂dist (· |C ) (Ax+ b) = (4.2.6)

∇ϕ(x) +
∑

i 6∈A(Ax+b)

ATi
(I − PCi)(Aix+ bi)

‖(I − PCi)(Aix+ bi)‖2
+

∑
i∈A(Ax+b)

ATi (B2 ∩N (Aix+ bi |Ci)).

Given x̃ ∈ Rn and ε̃ ∈ Rl++, we define a weighted approximation to J(·, ε̃) at x̃ by

G(x̃,ε̃)(x) := gTx+ 1
2

∑
i∈I0

wi(x̃, ε̃)dist2
2 (Aix+ bi |Ci ) .

We have the following fundamental fact about solutions of G(x̃, ε̃) defined by (4.2.3).

Lemma 4.2.1. Let x̃ ∈ X, ε̃ ∈ Rl++, ε̂ ∈ (0, ε̃], and x̂ ∈ argminx∈X Ĝ(x̃,ε̃)(x). Set

w̃i := wi(x̃, ε̃) and qi := Ai(x̂ − x̃) for i ∈ I0, W̃ := W (x̃, ε̃), and q := (qT0 , . . . , q
T
l )T .

Then,

G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃) ≤ −1
2q
T W̃ q (4.2.7)

and

J(x̃, ε̃)− J(x̂, ε̂) ≥ 1
2q
T W̃ q. (4.2.8)

Proof. We first prove (4.2.7). Define r̂i := (I−PCi)(Aix̂+bi) and r̃i := (I−PCi)(Aix̃+bi) for

i ∈ I0, and set r̂ := (r̂T0 , . . . , r̂
T
l )T and r̃ := (r̃T0 , . . . , r̃

T
l )T . Since x̂ ∈ argminx∈X Ĝ(x̃,ε̃)(x),

there exists v̂ ∈ N (x̂ |X) such that

0 = g + ÃT W̃ (Ãx̂+ b− PC(Ãx̃+ b)) + v̂ = g + ÃT W̃ (q + r̃) + v̂,
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or, equivalently,

− v̂ = g + ÃT W̃ (q + r̃). (4.2.9)

Moreover, by the definition of the projection operator PCi , we know that

‖r̂i‖2 = ‖(I − PCi)(Aix̂+ bi)‖2 ≤ ‖Aix̂+ bi − PCi(Aix̃+ bi)‖2 = ‖qi + r̃i‖2

so that

‖r̂i‖22 − ‖qi + r̃i‖22 ≤ 0 ∀ i ∈ I0. (4.2.10)

Therefore,

G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃)

= gT (x̂− x̃) + 1
2

∑
i∈I0 w̃i[‖r̂i‖

2
2 − ‖r̃i‖22]

= gT (x̂− x̃) + 1
2

∑
i∈I0 w̃i[(‖r̂i‖

2
2 − ‖qi + r̃i‖22) + (‖qi + r̃i‖22 − ‖r̃i‖22)]

≤ gT (x̂− x̃) + 1
2

∑
i∈I0 w̃i[‖qi + r̃i‖22 − ‖r̃i‖22] (by (4.2.10))

= gT (x̂− x̃) + 1
2

∑
i∈I0 w̃i[‖qi‖

2
2 + 2 〈qi, r̃i〉]

= gT (x̂− x̃) + 1
2

∑
i∈I0 w̃i[−‖qi‖

2
2 + 2 〈qi, qi + r̃i〉]

= − 1
2q
T W̃ q + gT (x̂− x̃) + qT W̃ (q + r̃)

= − 1
2q
T W̃ q + (x̂− x̃)T (g + ÃT W̃ (q + r̃))

= − 1
2q
T W̃ q + (x̃− x̂)T v̂ (by (4.2.9))

≤ − 1
2q
T W̃ q,

where the final inequality follows since x̃ ∈ X and v̂ ∈ N (x̂ |X).

We now prove (4.2.8). Since
√
t is a concave function of t on R+, we have

√
t̂ ≤

√
t̃+

t̂− t̃
2
√
t̃
∀ {t̂, t̃} ⊂ R++,
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and so, for i ∈ I, we have

√
dist2

2(Aix̂+ bi | Ci) + ε̃2i

≤
√

dist2
2 (Aix̃+ bi |Ci ) + ε̃2i +

dist2
2 (Aix̂+ bi |Ci )− dist2

2 (Aix̃+ bi |Ci )
2
√

dist2
2 (Aix̃+ bi |Ci ) + ε̃2i

. (4.2.11)

Hence,

J(x̂, ε̂) ≤ J(x̂, ε̃) = ϕ(x̂) +
∑
i∈I

√
dist2

2(Aix̂+ bi | Ci) + ε̃2i

≤ J(x̃, ε̃) + (ϕ(x̂)− ϕ(x̃)) + 1
2

∑
i∈I

dist2
2 (Aix̂+ bi |Ci )− dist2

2 (Aix̃+ bi |Ci )√
dist2

2 (Aix̃+ bi |Ci ) + ε̃2i

= J(x̃, ε̃) + [G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃)]

≤ J(x̃, ε̃)− 1
2q
T W̃ q,

where the first inequality follows from ε̂ ∈ (0, ε̃], the second inequality follows from (4.2.11),

and the third inequality follows from (4.2.7).

4.2.2 Coercivity of J

Lemma 4.2.1 tells us that IRWA is a descent method for the function J . Consequently,

both the existence of solutions to (4.1.6) as well as the existence of cluster points to IRWA

can be guaranteed by understanding conditions under which the function J is coercive, or

equivalently, conditions that guarantee the boundedness of the lower level sets of J over

X. For this, we need to consider the asymptotic geometry of J and X.

Definition 4.2.5. [74, Definition 3.3] Given Y ⊂ Rm, the horizon cone of Y is

Y∞ :=
{
z
∣∣∣ ∃ tk ↓ 0, {yk} ⊂ Y such that tkyk → z

}
.

We have the basic facts about horizon cones given in the following proposition.

Proposition 4.2.6. The following hold:
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1. The set Y ⊂ Rm is bounded if and only if Y∞ = {0}.

2. Given Yi ⊂ Rmi for i ∈ I, we have (Y1 × · · · × Yl)∞ = Y∞1 × · · · × Y∞l .

3. [74, Theorem 3.6] If C ⊂ Rm is non-empty, closed, and convex, then

C∞ = {z |C + z ⊂ C } .

We now prove the following result about the lower level sets of J .

Theorem 4.2.7. Let α > 0 and ε ∈ Rl+ be such that the set

L(α, ε) := {x ∈ X | J(x, ε) ≤ α}

is non-empty. Then,

L(α, ε)∞ =
{
x̄ ∈ X∞

∣∣ gT x̄ ≤ 0, Hx̄ = 0, Ax̄ ∈ C∞
}
. (4.2.12)

Moreover, L(α, ε) is compact for all (α, ε) ∈ Rl+1
+ if and only if

[
x̄ ∈ X∞ ∩ ker(H) ∩A−1C∞ satisfies gT x̄ ≤ 0

]
⇐⇒ x̄ = 0. (4.2.13)

Proof. Let x ∈ L(α, ε) and let x̄ be an element of the set on the right-hand side of (4.2.12).

Then, by Proposition 4.2.6, for all λ ≥ 0 we have x+ λx̄ ∈ X and λAix̄+ Ci ⊂ Ci for all

i ∈ I, and so for each i ∈ I we have

dist (Ai(x+ λx̄) + bi |Ci ) ≤ dist (Ai(x+ λx̄) + bi |λAix̄+ Ci )

= dist ((Aix+ bi) + λAix̄ |λAix̄+ Ci )

= dist (Aix+ bi |Ci ) .
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Therefore,

J(x+ λx̄, ε) = ϕ(x) + λgT x̄+
∑
i∈I

√
dist2

2 (Ai(x+ λx̄) + bi |Ci ) + ε2i

≤ ϕ(x) +
∑
i∈I

√
dist2

2 (Aix+ bi |Ci ) + ε2i = J(x, ε) ≤ α.

Consequently, x̄ ∈ L(α, ε)∞.

On the other hand, let x̄ ∈ L(α, ε)∞. We need to show that x̄ is an element of the set

on the right-hand side of (4.2.12). For this, we may as well assume that x̄ 6= 0. By the fact

that x̄ ∈ L(α, ε)∞, there exists tk ↓ 0 and {xk} ⊂ X such that J(xk, ε) ≤ α and tkxk → x̄.

Consequently, x̄ ∈ X∞. Moreover,

gT (tkxk) = tk(gTxk) ≤ tkJ(xk, ε) ≤ tkα→ 0

and so

0 ≤
∥∥∥A0(tkxk)

∥∥∥2
= (tkxk)TH(tkxk) = (tk)2(xk)THxk

≤ (tk)22(J(xk, ε)− gTxk) ≤ (tk)22α− tk2gT (tkxk)→ 0.

Therefore, gT x̄ ≤ 0 and Hx̄ = 0. Now, define zk := PC(Axk + b) for k ∈ N. Then, by

Theorem 4.2.1(2), we have

∥∥∥zk∥∥∥
2
≤
∥∥∥(I − PC)(Axk + b)

∥∥∥
2

+
∥∥∥Axk + b

∥∥∥
2
≤ α+

∥∥∥Axk + b
∥∥∥

2
,

which, since A(tkxk) + tkb → Ax̄, implies that the sequence {tkzk} is bounded. Hence,

without loss of generality, we can assume that there is a vector z̄ such that tkzk → z̄,

where by the definition of zk we have z̄ ∈ C∞. But,

0 ≤
∥∥∥A(tkxk) + tkb− (tkzk)

∥∥∥
2

= tkdist2

(
Axk + b |C

)
≤ tkJ(xk, ε)− tkgTxk ≤ tkα− gT (tkxk)→ 0,
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while ∥∥∥A(tkxk) + b− (tkzk)
∥∥∥

2
→ ‖Ax̄− z̄‖2 .

Consequently, x̄ ∈ X∞, gT x̄ ≤ 0, Hx̄ = 0, and Ax̄ ∈ C∞, which together imply that x̄ is

in the set on the right-hand side of (4.2.12).

Corollary 4.2.8. Suppose that the sequence {(xk, εk)} is generated by IRWA with initial

point x0 ∈ X and relaxation vector ε0 ∈ Rl++. Then, {xk} is bounded if (4.2.13) is

satisfied, which follows if at least one of the following conditions holds:

1. X is compact.

2. H is positive definite.

3. C is compact and X∞ ∩ ker(H) ∩ ker(A) = {0}.

Remark 4.2.9. For future reference, observe that

ker(H) ∩ ker(A) = ker(Ã), (4.2.14)

where Ã is defined in (4.2.2).

4.2.3 Convergence of IRWA

We now return to our analysis of the convergence of IRWA by first proving the follow-

ing lemma that discusses critical properties of the sequence of iterates computed in the

algorithm.

Lemma 4.2.2. Suppose that the sequence {(xk, εk)} is generated by IRWA with initial

point x0 ∈ X and relaxation vector ε0 ∈ Rl++, and, for k ∈ N, let qki and rki for i ∈ I0 be

as defined in Step 2 of the algorithm with

qk := ((qk0 )T , . . . , (qkl )T )T and rk := ((rk0)T , . . . , (rkl )T )T .
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Moreover, for k ∈ N, define

wki := wi(x
k, εk) for i ∈ I0 and Wk := W (xk, εk),

and set S :=
{
k
∣∣ εk+1 ≤ ηεk

}
. Then, the sequence {J(xk, εk)} is monotonically decreas-

ing. Moreover, either infk∈N J(xk, εk) = −∞, in which case infx∈X J0(x) = −∞, or the

following hold:

1.
∑∞

k=0(qk)TWkq
k <∞.

2. εk → 0 and H(xk+1 − xk)→ 0.

3. Wkq
k S→ 0.

4. wki r
k
i = rki /

√∥∥rki ∥∥2

2
+ εki ∈ B2 ∩N

(
PCi(Aix

k + bi) |Ci
)
, i ∈ I, k ∈ N.

5. −ÃTWkq
k ∈ (∇ϕ(xk) +

∑
i∈I A

T
i w

k
i r
k
i ) +N

(
xk+1 |X

)
, k ∈ N.

6. If {dist
(
Axk + b |C

)
}k∈S is bounded, then qk

S→ 0.

Proof. The fact that {J(xk, εk)} is monotonically decreasing is an immediate consequence

of the monotonicity of the sequence {εk}, Lemma 4.2.1, and the fact that Wk is positive

definite for all k ∈ N. If J(xk, εk)→ −∞, then infx∈X J0(x) = −∞ since J0(x) = J(x, 0) ≤

J(x, ε) for all x ∈ Rn and ε ∈ Rl+. All that remains is to show that Parts (1)–(6) hold

when infk∈N J(xk, εk) > −∞, in which case we may assume that the sequence {J(xk, εk)}

is bounded below. We define the lower bound J̃ := infk∈N J(xk, εk) = limk∈N J(xk, εk) for

the remainder of the proof.

(1) By Lemma 4.2.1, for every positive integer k̄ we have

1
2

k̄∑
k=0

(qk)TWkq
k ≤

k̄∑
k=0

[J(xk, εk)− J(xk+1, εk+1)]

= J(x0, ε0)− J(xk̄+1, εk̄+1)

≤ J(x0, ε0)− J̃ .
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Therefore, as desired, we have

∞∑
k=0

(qk)TWkq
k ≤ 2(J(x0, ε0)− J̃) <∞.

(2) Since η ∈ (0, 1), if εk 9 0, then there exists an integer k̄ ≥ 0 and a scalar ε̄ > 0

such that εk = ε̄ for all k ≥ k̄. Part (1) implies that (qk)TWkq
k is summable so that

(wki
∥∥qki ∥∥2

)(
∥∥qki ∥∥2

) = wki
∥∥qki ∥∥2

2
→ 0 for each i ∈ I0. In particular, since wk0 := 1 for all

k ∈ N, this implies that qk0 → 0, or equivalently that H(xk+1−xk)→ 0. In addition, since

for each i ∈ I both sequences {
∥∥qki ∥∥2

} and {wki
∥∥qki ∥∥2

} cannot be bounded away from 0,

there is a subsequence Ŝ ⊂ N and a partition {I1, I2} of I such that
∥∥qki ∥∥2

Ŝ→ 0 for all

i ∈ I1 and wki
∥∥qki ∥∥2

Ŝ→ 0 for all i ∈ I2. Hence, there exists k0 ∈ Ŝ such that for all k ≥ k0

we have ∥∥qki ∥∥2
≤ M

[ ∥∥rki ∥∥2

2
+ ε̄2i

] 1
2

+γ
∀ i ∈ I1

and wki
∥∥qki ∥∥2

≤ M
[ ∥∥rki ∥∥2

2
+ ε̄2i

]γ
∀ i ∈ I2.

Therefore, since wki = (‖rki ‖2 + (εki )
2)−1/2, we have for all k0 ≤ k ∈ Ŝ that

∥∥∥qki ∥∥∥
2
≤M

[ ∥∥∥rki ∥∥∥2

2
+ ε̄2i

] 1
2

+γ
∀i ∈ I.

However, for every such k, Step 2 of the algorithm chooses εk+1 ∈ (0, ηεk]. This contradicts

the supposition that εk = ε̄ > 0 for all k ≥ k̄, so we conclude that εk → 0.

(3) It has just been shown in Part (2) that wk0q
k
0 = qk0 → 0, so we need only show that

wki
∥∥qki ∥∥2

S→ 0 for each i ∈ I.

Our first step is to show that for every subsequence Ŝ ⊂ S and i0 ∈ I, there is

a further subsequence S̃ ⊂ Ŝ such that wki0
∥∥qki0∥∥2

S̃→ 0. The proof uses a trick from

the proof of Part (2). Let Ŝ ⊂ S be a subsequence and i0 ∈ I. Part (1) implies that

(wki
∥∥qki ∥∥2

)(
∥∥qki ∥∥2

) = wki
∥∥qki ∥∥2

2
→ 0 for each i ∈ I0. As in the proof of Part (2), this

implies that there is a further subsequence S̃ ⊂ Ŝ and a partition {I1, I2} of I such that∥∥qki ∥∥2

S̃→ 0 for all i ∈ I1 and wki
∥∥qki ∥∥2

S̃→ 0 for all i ∈ I2. If i0 ∈ I2, then we would

be done, so let us assume that i0 ∈ I1. We can assume that S̃ contains no subsequence
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on which wki0
∥∥qki0∥∥2

converges to 0 since, otherwise, again we would be done. Hence, we

assume that wki0
∥∥qki0∥∥2

S̃9 0. Since
∥∥qki0∥∥2

S̃→ 0 as i0 ∈ I1, this implies that there is a

subsequence S̃0 ⊂ S̃ such that wki0
S̃0→∞, i.e., (

∥∥rki0∥∥2

2
+ (εki0)2)

S̃0→ 0. But, by Step 2 of the

algorithm, for all k ∈ S,

∥∥∥qki ∥∥∥
2
≤M

[ ∥∥∥rki ∥∥∥2

2
+ (εki )

2
] 1

2
+γ

∀ i ∈ I,

or, equivalently,

wki

∥∥∥qki ∥∥∥
2
≤M

[ ∥∥∥rki ∥∥∥2

2
+ (εki )

2
]γ
∀ i ∈ I,

giving the contradiction wki0
∥∥qki0∥∥2

S̃0→ 0. Hence, wki0
∥∥qki0∥∥2

S̃→ 0, and we have shown that

for every subsequence Ŝ ⊂ S and i0 ∈ I, there is S̃ ⊂ Ŝ such that wki
∥∥qki ∥∥2

S̃→ 0.

Now, if Wkq
k S9 0, then there would exist a subsequence Ŝ ⊂ S and an index i ∈ I

such that {wki
∥∥qki ∥∥2

}k∈Ŝ remains bounded away from 0. But, by what we have just shown

in the previous paragraph, Ŝ contains a further subsequence S̃ ⊂ Ŝ with wki
∥∥qki ∥∥2

S̃→ 0.

This contradiction establishes the result.

(4) By Theorem 4.2.1, we have

rki ∈ N
(
PCi(Aix

k + bi) |Ci
)
∀ i ∈ I0, k ∈ N,

from which the result follows.

(5) By convexity, the condition xk+1 ∈ argminx∈X Ĝ(xk,εk)(x) is equivalent to

0 ∈ ∇xĜ(xk,εk)(x
k+1) +N

(
xk+1 |X

)
= g +

∑
i∈I0

ATi w
k
i (qki + rki ) +N

(
xk+1 |X

)
= ÃTWkq

k +∇ϕ(xk) +
∑
i∈I

ATi w
k
i r
k
i +N

(
xk+1 |X

)
.

(6) Let i ∈ I. We know from Part (3) that wki
∥∥qki ∥∥2

S→ 0. If
∥∥qki ∥∥2

S9 0, then there

exists a subsequence Ŝ ⊂ S such that {
∥∥qki ∥∥2

}k∈Ŝ is bounded away from 0, which would

90



imply that (
∥∥rki ∥∥2

2
+ (εki )

2)−1/2 = wki
Ŝ→ 0. But then

∥∥rki ∥∥2

Ŝ→∞ since 0 ≤ εk ≤ ε0, which

contradicts the boundedness of {dist
(
Axk + b |C

)
}k∈S .

In the next result, we give conditions under which every cluster point of the subsequence

{xk}k∈S is a solution to minx∈X J0(x), where S is defined in Lemma 4.2.2. Since J0 is

convex, this is equivalent to showing that 0 ∈ ∂J0(x̄) +N (x̄ |X) .

Theorem 4.2.10. Suppose that the sequence {(xk, εk)} is generated by IRWA with initial

point x0 ∈ X and relaxation vector ε0 ∈ Rl++, and that the sequence {J(xk, εk)} is bounded

below. Let S be defined as in Lemma 4.2.2. If either

(a) ker(A) ∩ ker(H) = {0} and {dist
(
Axk + b |C

)
}k∈S is bounded, or

(b) X = Rn,

then any cluster point x̄ of the subsequence {xk}k∈S satisfies 0 ∈ ∂J0(x̄) + N (x̄ |X).

Moreover, if (a) holds, then (xk+1 − xk) S→ 0.

Proof. Let the sequences {qk}, {rk} and {Wk} be defined as in Lemma 4.2.2, and let x̄

be a cluster point of the subsequence {xk}k∈S . Let Ŝ ⊂ S be a subsequence such that

xk
Ŝ→ x̄. Without loss of generality, due to the upper semi-continuity of the normal cone

operator, the continuity of the projection operator and Lemma 4.2.2(4), we can assume

that for each i ∈ A(Ax̄+ b) there exists

ūi ∈ B2 ∩N (Aix̄+ bi |Ci) such that wki r
k
i

Ŝ→ ūi. (4.2.15)

Also due to the continuity of the projection operator, for each i /∈ I(Ax̄+ b) we have

wki r
k
i

Ŝ→ (I − PCi)(Aix̄+ bi)

‖(I − PCi)(Aix̄+ bi)‖2
. (4.2.16)

Let us first suppose that (b) holds, i.e., that X = Rn so that N (x |X) = {0} for all
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x ∈ Rn. By (4.2.15)-(4.2.16), Lemma 4.2.2 Parts (3) and (5), and (4.2.6), we have

0 ∈ ∇ϕ(x̄) +
∑

i/∈A(Ax̄+b)

ATi
(I − PCi)(Aix̄+ bi)

‖(I − PCi)(Aix̄+ bi)‖2
+
∑

i∈A(Ax̄+b)

ATi (B2 ∩N (Aix̄+ bi |Ci))

= ∂J0(x̄).

Next, suppose that (a) holds, i.e., that ker(A)∩ker(H) = {0} and the set {dist
(
Axk + b |C

)
}k∈S

is bounded. This latter fact and Lemma 4.2.2(6) implies that qk
S→ 0. We now show

that (xk+1 − xk) S→ 0. Indeed, if this were not the case, then there would exist a sub-

sequence Ŝ ⊂ S and a vector w̄ ∈ Rn with ‖w̄‖2 = 1 such that {
∥∥xk+1 − xk

∥∥
2
}Ŝ is

bounded away from 0 while xk+1−xk
‖xk+1−xk‖

2

Ŝ→ w̄. But then qk/
∥∥xk+1 − xk

∥∥
2

Ŝ→ 0 while

qk/
∥∥xk+1 − xk

∥∥
2

= Ã xk+1−xk
‖xk+1−xk‖

2

Ŝ→ Ãw̄, where Ã is defined in (4.2.2). But then 0 6=

w̄ ∈ ker(H) ∩ ker(A) = ker(Ã), a contradiction. Hence, (xk+1 − xk)
S→ 0, and so

xk+1 = xk + (xk+1 − xk)
S→ x̄. In particular, this and the upper semi-continuity of

the normal cone operator imply that lim supk∈S N
(
xk+1 |X

)
⊂ N (x̄ |X). Hence, by

(4.2.15)–(4.2.16), Lemma 4.2.2 Parts (3) and (5), and (4.2.6), we have

0 ∈ ∇ϕ(x̄) +
∑

i/∈I(Ax̄+b)

ATi
(I − PCi)(Aix̄+ bi)

‖(I − PCi)(Aix̄+ bi)‖2
+
∑

i∈I(Ax̄+b)

ATi (B2 ∩N (Aix̄+ bi |Ci))

+N (x̄ |X)

= ∂J0(x̄) +N (x̄ |X) ,

as desired.

The previously stated Corollary 4.2.8 provides conditions under which the sequence

{xk} has cluster points. One of these conditions is that H is positive definite. In such

cases, the function J0 is strongly convex and so the problem (4.1.6) has a unique global

solution x∗, meaning that the entire sequence converges to x∗. We formalize this conclusion

with the following theorem.

Theorem 4.2.11. Suppose that H is positive definite and the sequence {(xk, εk)} is gen-

erated by IRWA with initial point x0 ∈ X and relaxation vector ε0 ∈ Rl++. Then, the
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problem (4.1.6) has a unique global solution x∗ and xk → x∗.

Proof. Since H is positive definite, the function J(x, ε) is strongly convex in x for all

ε ∈ Rl+. In particular, J0 is strongly convex and so (4.1.6) has a unique global solu-

tion x∗. By Corollary 4.2.8, the set L(J(x0, ε0), ε0) is compact, and, by Lemma 4.2.1,

the sequence J(xk, εk) is decreasing; hence, {xk} ⊂ L(J(x0, ε0), ε0). Therefore, the set

{dist
(
Axk + b |C

)
}k∈S is bounded and ker(H)∩ker(A) ⊂ ker(H) = {0}, and so, by Theo-

rem 4.2.10, the subsequence {xk}k∈S has a cluster point x̄ satisfying 0 ∈ ∂J0(x̄)+N (x̄ |X).

But the only such point is x̄ = x∗, and hence xk
S→ x∗.

Since the sequence {J(xk, εk)} is monotonically decreasing and bounded below by

Corollary 4.2.8, it has a limit J̃ . Since xk
S→ x∗, we have J̃ = minx∈X J0(x). Let S̃

be any subsequence of N. Since {xk}k∈S̃ ⊂ L(J(x0, ε0), ε0) (which is compact by Corollary

4.2.8(2)), this subsequence has a further subsequence S̃0 ⊂ S̃ such that xk
S̃0→ x̄ for some

x̄ ∈ X. For this subsequence, J(xk, ε0)
S̃0→ J̃ , and, by continuity, J(xk, ε0)

S̃0→ J(x̄, 0) =

J0(x̄). Hence, x̄ = x∗ by uniqueness. Therefore, since every subsequence of {xk} has a

further subsequence that converges to x∗, it must be the case that the entire sequence

converges to x∗.

4.2.4 Complexity of IRWA

A point x̃ ∈ X is an ε-optimal solution to (4.1.6) if

J0(x̃) ≤ inf
x∈X

J0(x) + ε. (4.2.17)

In this section, we prove the following result.

Theorem 4.2.12. Consider the problem (4.1.6) with X = Rn and H positive definite. Let

ε > 0 and ε ∈ Rl++ be such that

‖ε‖1 ≤ ε/2 and ε ≤ 4lε̃, (4.2.18)

where ε̃ := mini∈I εi. Suppose that the sequence {(xk, εk)} is generated by IRWA with
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initial point x0 ∈ Rn and relaxation vector ε0 = ε ∈ Rl++, and that the relaxation vector

is kept fixed so that εk = ε for all k ∈ N. Then, in at most O(1/ε2) iterations, xk is an

ε-optimal solution to (4.1.6), i.e., (4.2.17) holds with x̃ = xk.

The proof of this result requires a few preliminary lemmas. For ease of presentation,

we assume that the hypotheses of Theorem 4.2.12 hold throughout this section. Thus, in

particular, Corollary 4.2.8 and the strict convexity and coercivity of J tells us that there

exists τ > 0 such that ∥∥∥xk − xε∥∥∥
2
≤ τ for all k ∈ N, (4.2.19)

where xε is the solution to minx∈Rn J(x, ε). Let wi for i ∈ I and Ã be given as in (4.2.1)

and (4.2.2), respectively. In addition, define

Ri(ri) :=
ri√

‖ri‖22 + ε2i

, ri(x) := (I − PCi)(Aix+ bi) for i ∈ I

and u(x, ε) := ∇ϕ(x) +
∑
i∈I

wi(x, ε)A
T
i ri(x).

Recall that

∂xJ(x, ε)

= ∇ϕ(x) +
∑

i/∈A(Ax+b)

wi(x, ε)A
T
i ri(x) +

∑
i∈A(Ax+b)

wi(x, ε)A
T
i (B2 ∩N(Aix+ bi|Ci)),

so that u(x, ε) ∈ ∂xJ(x, ε). It is straightforward to show that, for each i ∈ I, we have

∇riRi(ri) =
1√

‖ri‖22 + ε2i

(
I − rir

T
i

‖ri‖22 + ε2i

)

so that

‖∇riRi(ri)‖2 ≤ 1/εi ∀ ri. (4.2.20)

Consequently, for each i ∈ I, the function Ri is globally Lipschitz continuous with Lipschitz

constant 1/εi. This allows us to establish a similar result for the mapping u(x, ε) as a
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function of x, which we prove as our next result. For convenience, we use

ū := u(x̄, ε), û := u(x̂, ε), and uk := u(xk, ε),

and similar shorthand for wi(x, εi), W (x, ε), and ri(x).

Lemma 4.2.3. Let the hypotheses of Theorem 4.2.12 hold. Moreover, let λ be the largest

eigenvalue of H and σ1 be an upper bound on all singular values of the matrices Ai for

i ∈ I. Then, as a function of x, the mapping u(x, ε) is globally Lipschitz continuous with

Lipschitz constant β := λ+ lσ2
1/ε̃.

Proof. By Theorem 4.2.1, for all {x̄, x̂} ⊂ Rn, we have

‖r̄i − r̂i‖2 ≤ ‖Ai(x̄− x̂)‖2 ≤ σ1 ‖x̄− x̂‖2 . (4.2.21)

Therefore,

‖ū− û‖2 =

∥∥∥∥∥H(x̄− x̂) +
∑
i∈I

ATi (Ri(r̄i)−Ri(r̂i))
∥∥∥∥∥

2

≤ ‖H‖2 ‖x̄− x̂‖2 + 1
ε̃

∑
i∈I
‖Ai‖2 ‖r̄i − r̂i‖2

≤ ‖H‖2 ‖x̄− x̂‖2 + 1
ε̃

∑
i∈I
‖Ai‖22 ‖x̄− x̂‖2

≤ (λ+ lσ2
1/ε̃) ‖x̄− x̂‖2 ,

where the first inequality follows from (4.2.20), the second from (4.2.21), and the last from

the fact that the 2-norm of a matrix equals its largest singular value.

By Lemma 4.2.3 and the subgradient inequality, we obtain the bound

0 ≤ J(x̄, ε)− J(x̂, ε)− 〈û, x̄− x̂〉 ≤ 〈ū− û, x̄− x̂〉 ≤ β ‖x̄− x̂‖22 . (4.2.22)
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Moreover, by Part (5) of Lemma 4.2.2, we have

−ÃTWkq
k = −ÃTWkÃ(xk+1 − xk) = uk ∈ ∂xJ(xk, ε).

If we now define Dk := ÃTWkÃ, then xk − xk+1 = D−1
k uk and

(qk)TWkq
k = (xk − xk+1)TDk(x

k − xk+1) = (uk)TD−1
k uk. (4.2.23)

This gives the following bound on the decrease in J when going from xk to xk+1.

Lemma 4.2.4. Let the hypotheses of Lemma 4.2.3 hold. Then,

J(xk+1, ε)− J(xk, ε) ≤ −α‖uk‖22,

where α := ε̃/(2σ2
0) with σ0 the largest singular value of Ã.

Proof. By Lemma 4.2.1 and (4.2.23), we have

J(xk+1, ε)− J(xk, ε) ≤ −1
2(qk)TWkq

k = −1
2(uk)TD−1

k uk.

Since the ‖Dk‖2 ≤ ‖W
1/2
k ‖22‖Ã‖22, we have that the largest eigenvalue of Dk is bounded

above by σ2
0/ε̃. This implies 1

2(uk)TD−1
k uk ≥ α

∥∥uk∥∥2

2
, which gives the result.

The following theorem is the main tool for proving Theorem 4.2.12.

Theorem 4.2.13. Let the hypotheses of Lemma 4.2.4 hold, and, as in (4.2.19), let xε be

the solution to minx∈Rn J(x, ε). Then,

J(xk, ε)− J(xε, ε) ≤ 32l2σ2
0τ

2

kε

[ ‖uε‖2 ε+ τ(λε+ lσ2
1)

‖uε‖2 ε+ τ(λε+ 4l2σ2
1) + 8lτσ2

0/k

]
. (4.2.24)

Therefore, IRWA requires O(1/ε2) iterations to reach ε-optimality for J(x, ε), i.e.,

J(xk, ε)− J(xε, ε) ≤ ε.
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Proof. Set δj := J(xj , ε)− J(xε, ε) for all j ∈ N. Then, by Lemma 4.2.4,

0 ≤ δj+1 = J(xj+1, ε)− J(xε, ε)

≤ J(xj , ε)− J(xε, ε)− α‖uj‖22 = δj − α‖uj‖22 ≤ δj .
(4.2.25)

If for some j < k we have δj = 0, then (4.2.25) implies that δk = 0 and uk = 0, which in

turn implies that xk+1 = xε and the bound (4.2.24) holds trivially. In the remainder of

the proof, we only consider the nontrivial case where δj > 0 for j = 0, ..., k − 1.

Consider j ∈ {0, . . . , k − 1}. By the convexity of J and (4.2.19), we have

δj = J(xj , ε)− J(xε, ε) ≤ (uj)T (xj − xε) ≤ ‖uj‖2‖xj − xε‖ ≤ τ‖uj‖2.

Combining this with (4.2.25), gives

δj+1 ≤ δj − α

τ2
(δj)2.

Dividing both sides by δj+1δj and noting that δj

δj+1 ≥ 1 yields

1

δj+1
− 1

δj
≥ α

τ2

δj

δj+1
≥ α

τ2
. (4.2.26)

Summing both sides of (4.2.26) from 0 to k − 1, we obtain

1

δk
≥ αk

τ2
+

1

δ0
=
αδ0k + τ2

δ0τ2
, (4.2.27)

or, equivalently,

δk ≤ δ0τ2

αδ0k + τ2
. (4.2.28)

The inequality (4.2.22) implies that

δ0 = J(x0, ε)− J(xε, ε) ≤ (uε)T (x0 − xε) + β‖x0 − xε‖22 ≤ τ(‖uε‖2 + βτ),
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which, together with (4.2.27), implies that

αδ0k + τ2

δ0τ2
≥ αk

τ2
+

1

τ(‖uε‖2 + βτ)
.

Rearranging, one has

τ2δ0

αkδ0 + τ2
≤ τ2(‖uε‖2 + βτ)

αk(‖uε‖2 + βτ) + τ
.

Substituting in β = λ + lσ2
1/ε̃ and α = ε̃/(2σ2

0) defined in Lemmas 4.2.3 and 4.2.4,

respectively, and then combining with (4.2.28) gives

δk ≤ τ2(‖uε‖2 + τ(λ+ lσ2
1/ε̃))

(ε̃/(2σ2
0))k(‖uε‖2 + τ(λ+ lσ2

1/ε̃)) + τ
=

2σ2
0τ

2

kε̃

[ ‖uε‖2 ε̃+ τ(λε̃+ lσ2
1)

‖uε‖2 ε̃+ τ(λε̃+ lσ2
1) + 2τσ2

0/k

]
.

Finally, using the inequalities ε ≤ 4lε̃ and ε̃ ≤ ε (recall (4.2.18)) gives

δk ≤ 32l2σ2
0τ

2

kε

[ ‖uε‖2 ε+ τ(λε+ lσ2
1)

‖uε‖2 ε+ τ(λε+ 4l2σ2
1) + 8lτσ2

0/k

]
,

which is the desired inequality.

We can now prove Theorem 4.2.12.

Theorem 4.2.12. Let x∗ = arg minx∈Rn J0(x). Then, by convexity in ε,

J(xε, ε)− J(x∗, 0) ≤ [∂εJ(xε, ε)]T (ε− 0)

=
∑
i∈I

ε2i√
‖ri(xε)‖22 + ε2i

≤
∑
i∈I

εi = ‖ε‖1 ≤ ε/2.

By Theorem 4.2.13, IRWA needs O(1/ε2) iterations to reach

J(xk, ε)− J(xε, ε) ≤ ε/2.

Combining these two inequalities yields the result.
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4.3 An Alternating Direction Augmented Lagrangian Algo-

rithm

For comparison with IRWA, we now describe an alternating direction augmented La-

grangian method for solving problem (4.1.6). This approach, like IRWA, can be solved by

matrix-free methods. Defining

Ĵ(x, p) := ϕ(x) + dist (p |C ) ,

where dist (p |C ) is defined as in (4.1.5), the problem (4.1.6) has the equivalent form

min
x∈X,p

Ĵ(x, p) subject to Ax+ b = p, (4.3.1)

where p := (pT1 , . . . , p
T
l )T . In particular, note that J0(x) = Ĵ(x,Ax + b). Defining dual

variables (u1, . . . , ul), a partial Lagrangian for (4.3.1) is given by

L(x, p, u) := Ĵ(x, p) + 〈u, Ax+ b− p〉+ δ (x |X ) ,

and the corresponding augmented Lagrangian, with penalty parameter µ > 0, is

L(x, p, u, µ) := Ĵ(x, p) + 1
2µ ‖Ax+ b− p+ µu‖22 − µ

2‖u‖22 + δ (x |X ) .

(Observe that due to their differing numbers of inputs, the Lagrangian value L(x, p, u)

and augmented Lagrangian value L(x, p, u, µ) should not be confused with each other, nor

with the level set value L(α, ε) defined in Theorem 4.2.7.)

We now state the algorithm.

Alternating Direction Augmented Lagrangian Algorithm (ADAL)

Step 0: (Initialization) Choose an initial point x0 ∈ X, dual vectors u0
i ∈ Rmi for i ∈ I,

and penalty parameter µ > 0. Let σ ≥ 0 and σ′′ ≥ 0 be two scalars which serve

99



as termination tolerances for the stepsize and constraint residual, respectively. Set

k := 0.

Step 1: (Solve the augmented Lagrangian subproblems for (xk+1, pk+1))

Compute a solution pk+1 to the problem

Lp(xk, p, uk, µ) : min
p
L(xk, p, uk, µ),

and a solution xk+1 to the problem

Lx(x, pk+1, uk, µ) : min
x
L(x, pk+1, uk, µ).

Step 2: (Set the new multipliers uk+1)

Set

uk+1 := uk + 1
µ(Axk+1 + b− pk+1).

Step 3: (Check stopping criteria)

If
∥∥xk+1 − xk

∥∥
2
≤ σ and

∥∥Axk+1 + b− pk+1
∥∥
∗ ≤ σ′′, then stop; else, set k := k + 1

and go to Step 1.

Remark 4.3.1. As for IRWA, one can also base the stopping criteria of Step 3 on a percent

reduction in duality gap; recall Remark 4.2.4.

4.3.1 Properties of Lp(x, p, u, µ) and Lx(x, p, u, µ)

Before addressing the convergence properties of the ADAL algorithm, we discuss properties

of the solutions to the subproblems Lp(x, p, u, µ) and Lx(x, p, u, µ).

The subproblem Lp(xk, p, uk, µ) is separable. Defining

ski := Aix
k + bi + µuki ∀ i ∈ I,
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the solution of Lp(xk, p, uk, µ) can be written explicitly, for each i ∈ I, as

pk+1
i :=


PCi(s

k
i ) if dist2

(
ski |Ci

)
≤ µ

ski − µ

dist2(ski |Ci )
(ski − PCi(ski )) if dist2

(
ski |Ci

)
> µ.

(4.3.2)

Subproblem Lx(x, pk+1, uk, µ), on the other hand, involves the minimization of a convex

quadratic over X, which can be solved by matrix-free methods.

Along with the dual variable estimates {uki }, we define the auxiliary estimates

ûk+1 := uk+1 − 1
µq

k, where qk := A(xk+1 − xk) as in IRWA Step 2.

First-order optimality conditions for (4.3.1) are then given by

0 ∈ ∂dist (p |C )− u, (4.3.3a)

0 ∈ ∇ϕ(x) +ATu+N(x|X), (4.3.3b)

0 = Ax+ b− p, (4.3.3c)

or, equivalently,

0 ∈ ∂J0(x) = ∇ϕ(x) +AT∂dist (· |C ) (Ax+ b) +N (x |X) .

The next lemma relates the iterates and these optimality conditions.

Lemma 4.3.1. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with initial

point x0 ∈ X. Then, for all k ∈ N, we have

ûk+1 ∈ ∂dist
(
pk+1 |C

)
and − 1

µA
T qk ∈ ∇ϕ(xk+1) +AT ûk+1 +N

(
xk+1 |X

)
. (4.3.4)

Therefore,

− 1
µA

T qk ∈ ∇ϕ(xk+1) +AT∂dist
(
pk+1 |C

)
+N

(
xk+1 |X

)
.
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Moreover, for all k ≥ 1, we have

∥∥∥ûk∥∥∥
∗
≤ 1,

∥∥∥sk∥∥∥
∗
≤ µ, and

∥∥∥pk∥∥∥
∗
≤ µ̂, (4.3.5)

where µ̂ := max{µ, sup‖s‖∗≤µ ‖PC(s)‖∗} <∞.

Proof. By ADAL Step 1, the auxiliary variable pk+1 satisfies

0 ∈ ∂dist
(
pk+1 |C

)
− uk − 1

µ(Axk + b− pk+1),

which, along with ADAL Step 2, implies that

uk+1 ∈ ∂dist
(
pk+1 |C

)
+ 1

µ(Axk+1 + b− pk+1)− 1

µ
(Axk + b− pk+1)

= ∂dist
(
pk+1 |C

)
+ 1

µq
k.

Hence, the first part of (4.3.4) holds. Then, again by ADAL Step 1, xk+1 satisfies

0 ∈ ∇ϕ(xk+1) +
1

µ
AT (Axk+1 + b− pk+1 + µuk) +N(xk+1|X).

which, along with ADAL Step 2, implies that

0 ∈ ∇ϕ(xk+1) +ATuk+1 +N(xk+1|X). (4.3.6)

Hence, the second part of (4.3.4) holds.

The first bound in (4.3.5) follows from the first part of (4.3.4). The second bound in

(4.3.5) follows from the first bound and the fact that for k ∈ N we have

sk = Axk + b+ µuk = µuk+1 − qk = µûk+1.

As for the third bound, note that if, for some i ∈ I, we have dist2

(
sk−1
i |Ci

)
≤ µ,

then, by (4.3.2), we have
∥∥pki ∥∥2

≤ µ̂; on the other hand, if dist2

(
sk−1
i |Ci

)
> µ so that
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0 < ξ := µ/dist2

(
sk−1
i |Ci

)
< 1, then, by (4.3.2) and the second bound in (4.3.5),

∥∥∥pki ∥∥∥
2
≤ (1− ξ)

∥∥∥sk−1
i

∥∥∥
2

+ ξµ̂ ≤ µ̂.

Consequently,
∥∥pk∥∥∗ = supi∈I

∥∥pki ∥∥2
≤ µ̂.

For the remainder of our discussion of ADAL, we define the residuals

zk+1 := Axk+1 + b− pk+1.

Lemma 4.3.1 tells us that the deviation of (pk+1, ûk+1) from satisfying the first-order

optimality conditions for (4.3.3) can be measured by

Ek+1 = max{
∥∥∥qk∥∥∥ ,∥∥∥zk+1

∥∥∥
∗
}. (4.3.7)

4.3.2 Convergence of ADAL

In this section, we establish the global convergence properties of the ADAL algorithm. The

proofs in this section are standard for algorithms of this type (e.g., see [5]), but we include

them for the sake of completeness. We make use of the following standard assumption.

Assumption 4.3.2. There exists a point (x∗, p∗, u∗) satisfying (4.3.3).

Since (4.3.1) is convex, this assumption is equivalent to the existence of a minimizer.

Notice that (x∗, p∗) is a minimizer of the convex function L(x, p, u∗) over X. We begin

our analysis by providing useful bounds on the optimal primal objective value.

Lemma 4.3.2. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with initial

point x0 ∈ X. Then, under Assumption 4.3.2, we have for all k ∈ N that

(u∗)T zk+1 ≥ Ĵ(x∗, p∗)− Ĵ(xk+1, pk+1) ≥ (uk+1)T zk+1 − 1

µ
(qk)T (p∗ − pk+1). (4.3.8)

Proof. Since (x∗, p∗, u∗) is a saddle point of L, it follows that Ax∗ + b − p∗ = 0, which
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implies by the fact that xk+1 ∈ X that

Ĵ(x∗, p∗) = L(x∗, p∗, u∗) ≤ L(xk+1, pk+1, u∗).

Rearranging, we obtain the first inequality in (4.3.8).

We now show the second inequality in (4.3.8). Recall that Steps 1 and 2 of ADAL tell

us that (4.3.6) holds for all k ∈ N. Therefore, xk+1 is first-order optimal for

min
x∈X

ϕ(x) + (uk+1)TAx.

Since this is a convex problem and x∗ ∈ X, we have

ϕ(x∗) + (uk+1)TAx∗ ≥ ϕ(xk+1) + (uk+1)TAxk+1. (4.3.9)

Similarly, by the first expression in (4.3.4), pk+1 is first-order optimal for

min
p

dist (p |C )− (ûk+1)T p.

Hence, by the convexity of this problem, we have

dist (p∗ |C )− (ûk+1)T p∗ ≥ dist
(
pk+1 |C

)
− (ûk+1)T pk+1. (4.3.10)

By adding (4.3.9) and (4.3.10), we obtain

Ĵ(x∗, p∗)− Ĵ(xk+1, pk+1)

≥ (ûk+1)T (p∗ − pk+1) + (uk+1)TA(xk+1 − x∗)

= (uk+1)T (p∗ − pk+1)− 1
µ(qk)T (p∗ − pk+1) + (uk+1)TA(xk+1 − x∗)

= (uk+1)T
(

(p∗ −Ax∗)− b)− (pk+1 −Axk+1 − b)
)
− 1

µ(qk)T (p∗ − pk+1)

= (uk+1)T zk+1 − 1
µ(qk)T (p∗ − pk+1),
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which completes the proof.

Consider the distance measure to (x∗, u∗) defined by

ωk := 1
µ

∥∥∥A(xk − x∗)
∥∥∥2

2
+ µ

∥∥∥uk − u∗∥∥∥2

2
.

In our next lemma, we show that this measure decreases monotonically.

Lemma 4.3.3. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with initial

point x0 ∈ X. Then, under Assumption 4.3.2 holds, we have for all k ≥ 1 that

1
µ(
∥∥∥zk+1

∥∥∥2

2
+
∥∥∥qk∥∥∥2

2
) + 2(xk+1 − xk)TH(xk+1 − xk) ≤ ωk − ωk+1. (4.3.11)

Proof. By using the extremes of the inequality (4.3.8) and rearranging, we obtain

(uk+1 − u∗)T zk+1 − 1
µ(qk)T (p∗ − pk+1) ≤ 0.

Since (x∗, p∗, u∗) is a saddle point of L, and so Ax∗ + b = p∗, this implies

(uk+1 − u∗)T zk+1 − 1
µ(qk)T zk+1 + 1

µ(xk+1 − xk)TATA(xk+1 − x∗) ≤ 0. (4.3.12)

The update in Step 2 yields uk+1 = uk + 1
µz

k+1, so we have

(uk+1 − u∗)T zk+1 =

[
(uki − u∗)T zk+1 + 1

2µ

∥∥∥zk+1
∥∥∥2

2

]
+ 1

2µ

∥∥∥zk+1
∥∥∥2

2
. (4.3.13)

Let us now consider the first grouped term in (4.3.13). From ADAL Step 2, we have
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zk+1 = µ(uk+1 − uk), which gives

(uk − u∗)T zk+1 + 1
2µ

∥∥∥zk+1
∥∥∥2

2
= µ(uk − u∗)T (uk+1 − uk) + µ

2‖uk+1 − uk‖22

= µ(uk − u∗)T (uk+1 − u∗)− µ(uk − u∗)T (uk − u∗)

+ µ
2‖(uk+1 − u∗)− (uk − u∗)‖22

= µ
2 (‖uk+1 − u∗‖22 − ‖uk − u∗‖22). (4.3.14)

Adding the final term 1
2µ

∥∥zk+1
∥∥2

2
in (4.3.13) to the second and third terms in (4.3.12),

1
µ

(
1
2

∥∥∥zk+1
∥∥∥2

2
− (qk)T zk+1 + (xk+1 − xk)TATA(xk+1 − x∗)

)
= 1

µ

(
1
2

∥∥∥zk+1
∥∥∥2

2
− (qk)T zk+1 + (xk+1 − xk)TATA((xk+1 − xk) + (xk − x∗))

)
= 1

µ

(
1
2

∥∥∥zk+1 − qk
∥∥∥2

2
+ 1

2‖qk‖22 + (xk+1 − xk)TATA(xk − x∗)
)

= 1
µ(1

2

∥∥∥zk+1 − qk
∥∥∥2

2
+ 1

2‖A((xk+1 − x∗)− (xk − x∗))‖22

+ ((xk+1 − x∗)− (xk − x∗))TATA(xk − x∗))

= 1
2µ

(∥∥∥zk+1 − qk
∥∥∥2

2
+ ‖A(xk+1 − x∗)‖22 − ‖A(xk − x∗)‖22

)
(4.3.15)

From (4.3.13), (4.3.14), and (4.3.15), we have that (4.3.12) reduces to

ωk+1 − ωk ≤ − 1

µ

∥∥∥zk+1 − qk
∥∥∥2

2
.

Since (4.3.6) holds for k ≥ 1, we have

−(vk+1 − vk) = H(xk+1 − xk) +AT (uk+1 − uk),
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for some vk+1 ∈ N(xk+1|X) and vk ∈ N(xk|X). Therefore,

(uk+1 − uk)T qk = −(vk+1 − vk)T (xk+1 − xk)− (xk+1 − xk)TH(xk+1 − xk)

≤ −(xk+1 − xk)TH(xk+1 − xk), (4.3.16)

where the inequality follows since the normal cone operatorN (· |C) is a monotone operator

[72]. Using this inequality in the expansion of the right-hand side of (4.3.16) along with

the equivalence zk+1 = µ(uk+1 − uk), gives

ωk+1 − ωk ≤ − 1
µ

(
‖zk+1‖22 − 2µ(uk+1 − uk)T qk + ‖qk‖22

)
≤ − 1

µ(‖zk+1‖22 + ‖qk‖22) + 2(uk+1
i − uki )T qki

≤ − 1
µ(‖zk+1‖22 + ‖qk‖22)− 2(xk+1 − xk)TH(xk+1 − xk),

as desired.

We now state and prove our main convergence theorem for ADAL.

Theorem 4.3.3. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with

initial point x0 ∈ X. Then, under Assumption 4.3.2, we have

lim
k→∞

qk = 0, lim
k→∞

zk+1 = 0, and so lim
k→∞

Ek = 0.

Moreover, the sequences {uk} and {Axk} are bounded and

lim
k→∞

Ĵ(xk, pk) = Ĵ(x∗, p∗) = J0(x∗).

Proof. Summing (4.3.11) over all k ≥ 1 yields

∞∑
k=1

(
2(xk+1 − xk)TH(xk+1 − xk) + 1

µ(‖zk+1‖22 + ‖qk‖22)
)
≤ ω1,

which, since H � 0, implies that zk+1 → 0 and qk → 0. Consequently, Ek → 0.
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The sequence {uk} is bounded since ûk+1 + (1/µ)qk = uk+1, where {ûk} is bounded by

(4.3.5) and qk → 0. Similarly, the sequence {Axk} is bounded since µ(uk+1−uk)+pk+1−b =

Axk+1, where the sequence {pk} is bounded by (4.3.5). Finally, by (4.3.8), we have that

Ĵ(xk, pk) → Ĵ(x∗, p∗) since both zk → 0 and qk → 0 while {pk} and {uk} are both

bounded.

Corollary 4.3.4. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with

initial point x0 ∈ X. Then, under Assumption 4.3.2, every cluster point of the sequence

{xk} is a solution to (4.1.6).

Proof. Let x̄ be a cluster point of {xk}, and let S ⊂ N be a subsequence such that xk
S→ x̄.

By (4.3.5), {pk} is bounded so we may assume with no loss in generality that there is a p̄

such that pk
S→ p̄. Theorem 4.3.3 tells us that Ax̄ + b = p̄ and Ĵ(x̄, p̄) = J0(x∗) so that

J0(x̄) = Ĵ(x̄, Ax̄+ b) = Ĵ(x̄, p̄) = J0(x∗).

We now address the question of when the sequence {xk} has cluster points. For the

IRWA of the previous section this question was answered by appealing to Theorem 4.2.7

which provided necessary and sufficient conditions for the compactness of the lower level

sets of the function J(x, ε). This approach also applies to the ADAL algorithm, but it is

heavy handed in conjunction with Assumption 4.3.2. In the next result we consider two

alternative approaches to this issue.

Proposition 4.3.5. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with

initial point x0 ∈ X. If either

(a)
[
x̄ ∈ X∞ ∩ ker (H) ∩A−1C∞ satisfies gT x̄ ≤ 0

]
⇐⇒ x̄ = 0, or

(b) Assumption 4.3.2 holds and

[
x̃ ∈ X∞ ∩ ker(H) ∩ ker(A) satisfies gT x̃ ≤ 0

]
⇐⇒ x̃ = 0, (4.3.17)

then {xk} is bounded and every cluster point of this sequence is a solution to (4.1.6).
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Proof. Let us first assume that (a) holds. By Theorem 4.2.7, the condition in (a) (recall

(4.2.13)) implies that the set L(J(x0, 0), 0) is compact. Hence, a solution x∗ to (4.1.6)

exists. By [73, Theorem 23.7], there exist p∗ and u∗ such that (x∗, p∗, u∗) satisfies (4.3.3),

i.e., Assumption 4.3.2 holds. Since

J(xk, 0) = ϕ(xk) + dist
(
Axk + b |C

)
= ϕ(xk) +

∥∥∥(Axk + b)− PC(Axk + b)
∥∥∥

≤ ϕ(xk) +
∥∥∥(Axk + b)− pk

∥∥∥+
∥∥∥pk − PC(pk)

∥∥∥+
∥∥∥PC(pk)− PC(Axk + b)

∥∥∥
= Ĵ(xk, pk) + 2

∥∥∥zk∥∥∥ ,
the second inequality in (4.3.8) tells us that for all k ∈ N we hvae

J(xk+1, 0) ≤ Ĵ(x∗, p∗) + 2
∥∥∥zk∥∥∥− (uk+1)T zk+1 +

1

µ
(qk)T (p∗ − pk+1)).

By Lemma 4.3.1 and Theorem 4.3.3, the right-hand side of this inequality is bounded for

all k ∈ N, and so, by Theorem 4.2.7, the sequence {xk} is bounded. Corollary 4.3.4 then

tells us that all cluster points of this sequence are solutions to (4.1.6).

Now assume that (b) holds. If the sequence {xk} is unbounded, then there is a sub-

sequence S ⊂ N and a vector x̄ ∈ X∞ such that
∥∥xk∥∥

2

S→ ∞ and xk/
∥∥xk∥∥

2

S→ x̄ with

‖x̄‖2 = 1. By Lemma 4.3.1, {pk} is bounded and, by Theorem 4.3.3, zk → 0. Hence,

(Axk + b − pk)/
∥∥xk∥∥

2
= zk/

∥∥xk∥∥
2

S→ 0 so that Ax̄ = 0. In addition, the sequence

{Ĵ(xk, pk)} is bounded, which implies Ĵ(xk, pk)/
∥∥xk∥∥2

2

S→ 0 so that Hx̄ = 0. Moreover,

since H is positive semi-definite, gT (xk/
∥∥xk∥∥

2
) ≤ Ĵ(xk, pk)/

∥∥xk∥∥
2

S→ 0 so that gT x̄ ≤ 0.

But then (b) implies that x̄ = 0. This contradiction implies that the sequence {xk} must

be bounded. The result now follows from Corollary 4.3.4.

Note that, since ker(A) ⊂ A−1C∞, the condition given in (a) implies (4.3.17), and that

(4.3.17) is strictly weaker whenever ker(A) is strictly contained in A−1C∞.

We conclude this section by stating a result for the case when H is positive definite.
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As has been observed, in such cases, the function J0 is strongly convex and so the problem

(4.1.6) has a unique global solution x∗. Hence, a proof paralleling that provided for

Theorem 4.2.11 applies to give the following result.

Theorem 4.3.6. Suppose that H is positive definite and the sequence {(xk, pk, uk)} is

generated by ADAL with initial point x0 ∈ X. Then, the problem (4.1.6) has a unique

global solution x∗ and xk → x∗.

4.3.3 Complexity of ADAL

In this subsection, we analyze the complexity of ADAL. As was done for IRWA in Theo-

rem 4.2.12, we show that ADAL requires at most O(1/ε2) iterations to obtain an ε-optimal

solution to the problem (4.1.6). In contrast to this result, some authors [41, 42] establish

an O(1/ε) complexity for ε-optimality for ADAL-type algorithms applied to more general

classes of problems, which includes (4.1.6). However, the ADAL decomposition employed

by these papers involves subproblems that are as difficult as our problem (4.1.6), thereby

rendering these decomposition unusable for our purposes. On the other hand, under mild

assumptions, the recent results in [81] show that for a general class of problems, which

includes (4.3.1), the ADAL algorithm employed here has Ĵ(xk, pk) converging to an ε-

optimal solution to (4.3.1) with O(1/ε) complexity in an ergodic sense and ‖Ax+ b− p‖22
converging to a value less than ε with O(1/ε) complexity. This corresponds to an O(1/ε2)

complexity for ε-optimality for problem (4.1.6). As of this writing, we know of no result

that applies to our ADAL algorithm that establishes a better iteration complexity bound

for obtaining an ε-optimal solution to (4.1.6).

We use results in [81] to establish the following result.

Theorem 4.3.7. Consider the problem (4.1.6) with X = Rn and suppose that the sequence

{(xk, pk, uk)} is generated by ADAL with initial point x0 ∈ X. Then, under Assumption

4.3.2, in at most O(1/ε2) iterations we have an iterate xk̄ with k ≤ k̄ ≤ 2k − 1 that is

ε-optimal to (4.1.6), i.e., such that (4.2.17) holds with x̃ = xk̄.

The key results from [81] used to prove this theorem follow.
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Lemma 4.3.4. [81, Lemma 2] Suppose that the sequence {(xk, pk, uk)} is generated by

ADAL with initial point x0 ∈ X, and, under Assumption 4.3.2, let (x∗, p∗, u∗) be the

optimal solution of (4.3.1). Then, for all k ∈ N, we have

Ĵ(xk+1, pk+1)− Ĵ(x∗, p∗) ≤ µ
2 (
∥∥∥uk∥∥∥2

2
−
∥∥∥uk+1

∥∥∥2

2
)− 1

2µ

∥∥∥Axk + b− pk+1
∥∥∥2

2

+ 1
2µ(
∥∥∥Ax∗ −Axk∥∥∥2

2
−
∥∥∥Ax∗ −Axk+1

∥∥∥2

2
).

Lemma 4.3.5. [81, Theorem 2] Suppose that the sequence {(xk, pk, uk)} is generated by

ADAL with initial point x0 ∈ X, and, under Assumption 4.3.2, let (x∗, p∗, u∗) be the

optimal solution of (4.3.1). Then, for all k ∈ N, we have

∥∥∥Axk + b− pk
∥∥∥2

2
+
∥∥∥Axk −Axk−1

∥∥∥2

2
≤ 1

k [
∥∥A(x0 − x∗)

∥∥2

2
+ µ2

∥∥u0 − u∗
∥∥2

2
],

i.e., in particular, we have

∥∥∥Axk + b− pk
∥∥∥2

2
≤ 1

k [
∥∥A(x0 − x∗)

∥∥2

2
+ µ2

∥∥u0 − u∗
∥∥2

2
].

Remark 4.3.8. To see how the previous two lemmas follow from the stated results in [81],

the table below provides a guide for translating between our notation and that of [81],

which considers the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c. (4.3.18)
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Problem (4.3.1) Problem (4.3.18)

(x, p) (z, x)

ϕ g

dist (· |C ) f

A B

−I A

−b c

For the results corresponding to our Lemmas 4.3.4 and 4.3.5, [81] requires f and g in

(4.3.18) to be closed, proper, and convex functions. In our case, the corresponding func-

tions dist (· |C ) and ϕ satisfy these assumptions.

By Lemma 4.3.3, the sequence {ωk} is monotonically decreasing, meaning that {‖Axk−

Ax∗‖22} and {‖uk‖22} are bounded by some τ1 > 0 and τ2 > 0, respectively. The proof of

Theorem 4.3.7 now follows as a consequence of the following lemma.

Lemma 4.3.6. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with ini-

tial point x0 ∈ X, and, under Assumption 4.3.2, let (x∗, p∗, u∗) be the optimal solution

of (4.3.1). Moreover, let k̄ ∈ K := {k, k + 1, . . . , 2k − 1} be such that Ĵ(xk̄, pk̄) =

mink∈K Ĵ(xk, pk). Then,

J0(xk̄)− J0(x∗) ≤

√
l(‖A(x0 − x∗)‖22 + µ2 ‖u0 − u∗‖22)

k
+
µτ2 + τ1/µ

k
.

Proof. Summing the inequality in Lemma 4.3.4 for j = k − 1, . . . , 2(k − 1) yields

 2k−2∑
j=k−1

Ĵ(xj+1, pj+1)

− kĴ(x∗, p∗)

≤ µ
2 (
∥∥∥uk−1

∥∥∥2

2
−
∥∥∥u2k−1

∥∥∥2

2
) + 1

2µ(
∥∥∥Ax∗ −Axk−1

∥∥∥2

2
−
∥∥∥Ax∗ −Ax2k−1

∥∥∥2

2
)

≤ µτ2 + τ1/µ. (4.3.19)
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Therefore,

Ĵ(xk̄, pk̄)− Ĵ(x∗, p∗) = min
k≤j≤2k−1

Ĵ(xj , pj)− Ĵ(x∗, p∗)

≤ 1
k

2k−2∑
j=k−1

Ĵ(xj+1, pj+1)− Ĵ(x∗, p∗)

≤ 1
k (µτ2 + τ1/µ), (4.3.20)

where the last inequality follows from (4.3.19).

Next, observe that for any x ∈ Rn and p, we have

J0(x)− Ĵ(x, p) = ϕ(x) + dist (Ax+ b |C )− (ϕ(x) + dist (p |C ))

= dist (Ax+ b |C )− dist (p |C )

≤ ‖Ax+ b− p‖

=
∑
i∈I
‖Aix+ bi − pi‖2

≤
√
l ‖Ax+ b− p‖2 , (4.3.21)

where the first inequality follows since |dist (z |C ) − dist (w |C ) | ≤ ‖z − w‖, and the

second follows by Jensen’s inequality. Combining (4.3.20) and (4.3.21) gives

J0(xk̄)− J0(x∗) = J0(xk̄)− Ĵ(x∗, p∗)

= J0(xk̄)− Ĵ(xk̄, pk̄) + Ĵ(xk̄, pk̄)− Ĵ(x∗, p∗)

≤
√
l
∥∥∥Axk̄ + b− pk̄

∥∥∥
2

+
µτ2 + τ1/µ

k

≤

√
l(‖A(x0 − x∗)‖22 + µ2 ‖u0 − u∗‖22)

k
+
µτ2 + τ1/µ

k
,

where the second inequality follows by Lemma 4.3.5 and the fact that k̄ ≥ k.
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4.4 Nesterov Acceleration

In order to improve the performance of both IRWA and ADAL, one can use an accelera-

tion technique due to Nesterov [61]. For the ADAL algorithm, we have implemented the

acceleration as described in [43], and for the IRWA algorithm the details are given below.

We conjecture that each accelerated algorithm requires O(1/ε) iterations to produce an

ε-optimal solution to (4.1.6), but this remains an open issue.

IRWA with Nesterov Acceleration

Step 0: (Initialization) Choose an initial point x0 ∈ X, an initial relaxation vector ε0 ∈ Rl++,

and scaling parameters η ∈ (0, 1), γ > 0, and M > 0. Let σ ≥ 0 and σ′ ≥ 0

be two scalars which serve as termination tolerances for the stepsize and relaxation

parameter, respectively. Set k := 0, y0 := x0, and t1 := 1.

Step 1: (Solve the re-weighted subproblem for xk+1)

Compute a solution xk+1 to the problem

G(yk, εk) : min
x∈X

Ĝ(yk,εk)(x).

Let

tk+1 :=
1+
√

1+4(tk)2

2

and yk+1 := xk+1 + tk−1
tk+1

(xk+1 − xk).

Step 2: (Set the new relaxation vector εk+1)

Set

q̃ki := Ai(x
k+1 − yk) and r̃ki := (I − PCi)(Aiyk + bi) ∀ i ∈ I0.

If ∥∥∥q̃ki ∥∥∥
2
≤M

[ ∥∥∥r̃ki ∥∥∥2

2
+ (εki )

2
] 1

2
+γ

∀ i ∈ I,
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then choose εk+1 ∈ (0, ηεk]; else, set εk+1 := εk. If J(yk+1, εk+1) > J(xk+1, εk+1),

then set yk+1 := xk+1.

Step 3: (Check stopping criteria)

If
∥∥xk+1 − xk

∥∥
2
≤ σ and

∥∥εk∥∥
2
≤ σ′, then stop; else, set k := k+ 1 and go to Step 1.

In this algorithm, the intermediate variable sequence {yk} is included. If yk+1 yields an

objective function value worse than xk+1, then we re-set yk+1 := xk+1. This modification

preserves the global convergence properties of the original version since

J(xk+1, εk+1)− J(xk, εk)

= J(xk+1, εk+1)− J(yk, εk) + J(yk, εk)− J(xk, εk)

≤ J(xk+1, εk)− J(yk, εk)

≤ − 1
2(xk+1 − yk)T ÃTWkÃ(xk+1 − yk) (4.4.1)

= − 1
2(q̃k)TWkq̃

k,

where the inequality (4.4.1) follows from Lemma 4.2.1. Hence, 1
2(q̃k)TWkq̃

k is summable,

as was required for Lemma 4.2.2 and Theorem 4.2.10.

4.5 Application to Systems of Equations and Inequalities

In this section, we discuss how to apply the general results from §4.2 and §4.3 to the

particular case when H is positive definite and the system Ax + b ∈ C corresponds a

system of equations and inequalities. Specifically, we take l = m, X = Rn, Ci = {0} for

i ∈ {1, . . . , s}, and Ci = R− for i ∈ {s+ 1, . . . ,m} so that C := {0}s × Rm−s− and

J0(x) = ϕ(x) + dist1 (Ax+ b |C )

= ϕ(x) +

s∑
i=1

|Aix+ bi|+
m∑

i=s+1

(Aix+ bi)+. (4.5.1)
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The numerical performance of both IRWA and ADAL on problems of this type will be

compared in the following section. For each algorithm, we examine performance relative to

a stopping criteria, based on percent reduction in the initial duality gap. It is straightfor-

ward to show that, since H is positive definite, the Fenchel-Rockafellar dual [73, Theorem

31.2] to (4.1.6) is

minimize
u

1
2(g +ATu)TH−1(g +ATu)− bTu+

∑
i∈I δ

∗ (ui |Ci )

subject to ui ∈ B2 ∀ i ∈ I,
(4.5.2)

which in the case of (4.5.1) reduces to

minimize
u

1
2(g +ATu)TH−1(g +ATu)− bTu

subject to −1 ≤ ui ≤ 1, i = 1, . . . , s

0 ≤ ui ≤ 1, i = s+ 1, . . . ,m.

In the case of linear systems of equations and inequalities, IRWA can be modified to

improve the numerical stability of the algorithm. Observe that if both of the sequences |rki |

and εki are driven to zero, then the corresponding weight wki diverges to +∞, which may

slow convergence by unnecessarily introducing numerical instability. Hence, we propose a

modification that addresses those iterations and indices i ∈ {s+1, . . . ,m} for which (Aix
k+

bi)− < 0, i.e., those inequality constraint indices corresponding inequality constraints that

are strictly satisfied (inactive). For such indices, it is not necessary to set εk+1
i < εki . There

are many possible approaches to address this issue, one of which is given in the algorithm

given below.

IRWA for Systems of Equations and Inequalities

Step 0: (Initialization) Choose an initial point x0 ∈ X, initial relaxation vectors ε̂0 = ε0 ∈

Rl++, and scaling parameters η ∈ (0, 1), γ > 0, and M > 0. Let σ ≥ 0 and σ′ ≥ 0

be two scalars which serve as termination tolerances for the stepsize and relaxation

parameter, respectively. Set k := 0.
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Step 1: (Solve the re-weighted subproblem for xk+1)

Compute a solution xk+1 to the problem

G(xk, εk) : min
x∈X

Ĝ(xk,εk)(x).

Step 2: (Set the new relaxation vector εk+1)

Set

qki := Ai(x
k+1 − xk) and rki := (I − PCi)(Aixk + bi) ∀ i = 0, . . . ,m.

If ∥∥∥qki ∥∥∥
2
≤M

[ ∥∥∥rki ∥∥∥2

2
+ (εki )

2
] 1

2
+γ

∀ i = 1, . . . ,m, (4.5.3)

then choose ε̂k+1 ∈ (0, ηε̂k] and, for i = 1, . . . ,m, set

εk+1
i :=


ε̂k+1
i , i = 1, . . . , s,

εki , i > s and (Aix
k + bi)− ≤ −ε̂ki ,

ε̂k+1
i , otherwise.

Otherwise, if (4.5.3) is not satisfied, then set ε̂k+1 := ε̂k and εk+1 := εk.

Step 3: (Check stopping criteria)

If
∥∥xk+1 − xk

∥∥
2
≤ σ and

∥∥ε̂k∥∥
2
≤ σ′, then stop; else, set k := k+ 1 and go to Step 1.

Remark 4.5.1. In Step 2 of the algorithm above, the updating scheme for ε can be modified

in a variety of ways. For example, one can also take εk+1
i := εki when i > s and (Aix

k +

bi)− < 0.

This algorithm yields the following version of Lemma 4.2.2.

Lemma 4.5.1. Suppose that the sequence {(xk, εk)} is generated by IRWA for Systems of

Equations and Inequalities with initial point x0 ∈ X and relaxation vector ε0 ∈ Rl++, and,
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for k ∈ N, let qki and rki for i ∈ I0 be as defined in Step 2 of the algorithm with

qk := ((qk0 )T , . . . , (qkl )T )T and rk := ((rk0)T , . . . , (rkl )T )T .

Moreover, for k ∈ N, define

wki := wi(x
k, εk) for i ∈ I0 and Wk := W (xk, εk),

and set S :=
{
k
∣∣ εk+1 ≤ ηεk

}
. Then, the sequence {J(xk, εk)} is monotonically decreas-

ing. Moreover, either infk∈N J(xk, εk) = −∞, in which case infx∈X J0(x) = −∞, or the

following hold:

1.
∑∞

k=0(qk)TWkq
k <∞.

2. ε̂k → 0 and H(xk+1 − xk)→ 0.

3. Wkq
k S→ 0.

4. wki r
k
i = rki /

√∥∥rki ∥∥2

2
+ εki ∈ B2 ∩N

(
PCi(Aix

k + bi) |Ci
)
, i ∈ I, k ∈ N.

5. −ÃTWkq
k ∈ (∇ϕ(xk) +

∑
i∈I A

T
i w

k
i r
k
i ) +N

(
xk+1 |X

)
, k ∈ N.

6. If {dist
(
Axk + b |C

)
}k∈S is bounded, then qk

S→ 0.

Proof. Note that Lemma 4.2.1 still applies since it is only concerned with properties of the

functions Ĝ and J . In addition, note that

ε̂k+1 ≤ ε̂k and ε̂k+1 ≤ εk+1 ≤ εk ∀ k ≥ 1.

With these observations, the proof of this lemma follows in precisely the same way as that

of Lemma 4.2.2, except that in Part (2) {ε̂k} replaces {εk}.

With Lemma 4.5.1, it is straightforward to show that the convergence properties de-

scribed in Theorems 4.2.10 and 4.2.11 also hold for the version of IRWA in this section.
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4.6 Numerical Comparison of IRWA and ADAL

In this section, we compare the performance of our IRWA and ADAL algorithms in a set of

three numerical experiments. The first two experiments involves cases where H is positive

definite and the desired inclusion Ax + b ∈ C corresponds to a system of equations and

inequalities. Hence, for these experiments, we employ the version of IRWA as described

for such systems in the previous section. In the first experiment, we fix the problem

dimensions and compare the behavior of the two algorithms over 500 randomly generated

problems. In the second experiment, we investigate how the methods behave when we

scale up the problem size. For this purpose, we compare performance over 20 randomly

generate problems of increasing dimension. The algorithms were implemented in Python

using the NumPy and SciPy packages; in particular, we used the versions Python 2.7,

Numpy 1.6.1, SciPy 0.12.0 [54, 64]. In both experiments, we examine performance relative

to a stopping criteria based on percent reduction in the initial duality gap. In IRWA, the

variables ũk := Wkr
k are always dual feasible, i.e.,

ũi ∈ B2 ∩ dom (δ∗ (· |Ci )) ∀ i ∈ I

(recall Lemma 4.2.2(4)), and these variables constitute our kth estimate to the dual solu-

tion. On the other hand, in ADAL, the variables ûk = uk − 1
µq

k are always dual feasible

(recall Lemma 4.3.1), so these constitute our kth estimate to the dual solution for this

algorithm. The duality gap at any iteration is the sum of the primal and dual objectives

at the current primal-dual iterates.

In both IRWA and ADAL, we solve the subproblems using CG, which is terminated

when the `2-norm of the residual is less than 10% of the norm of the initial residual. At each

iteration, the CG algorithm is initiated at the previous step xk−1. In both experiments, we

set x0 := 0, and in ADAL we set u0 := 0. It is worthwhile to note that we have observed

that the performance of IRWA is sensitive to the initial choice of ε0 while ADAL is sensitive

to µ. We do not investigate this sensitivity in detail when presenting the results of our
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Figure 4.1: Efficiency curves.

experiments, and we have no theoretical justification for our choices of these parameters.

However, we empirically observe that these values should increase with dimension. For

each method, we have chosen an automatic procedure for initializing these values that

yields good overall performance. The details are given in the experimental descriptions.

More principled methods for initializing and updating these parameters is the subject of

future research.

In the third experiment, we apply both algorithms to an l1 support vector machine

(SVM) problem. Details are given in the experimental description. In this case, we use the

stopping criteria as stated along with the algorithm descriptions in the chapter, i.e., not

criteria based on a percent reduction in duality gap. In this experiment, the subproblems

are solved as in the first two experiments with the same termination and warm-start rules.

First Experiment: In this experiment, we randomly generated 500 instances of problem

(4.5.1). For each, we generated A ∈ R600×1000 and chose C so that the inclusion Ax+b ∈ C

corresponded to 300 equations and 300 inequalities. Each matrix A is obtained by first

randomly choosing a mean and variance from the integers on the interval [1, 10] with equal

probability. Then the elements of A are chosen from a normal distribution having this

mean and variance. Similarly, each of the vectors b and g are constructed by first randomly
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Figure 4.2: Box plot of CG steps for each duality gap threshold.

choosing integers on the intervals [−100, 100] for the mean and [1, 100] for the variance

with equal probability and then obtaining the elements of these vectors from a normal

distribution having this mean and variance. Each matrix H had the form H = 0.1I+LLT

where the elements of L ∈ Rn×n are chosen from a normal distribution having mean 1 and

variance 2. For the input parameters for the algorithms, we chose η := 0.6, M := 104,

γ := 1
6 , µ := 100, and ε0i := 2000 for each i ∈ I. Efficiency curves for both algorithms are

given in Figure 4.1, which illustrates the percentage of problems solved verses the total

number of CG steps required to reduce the duality gap by 50, 75, 90 and 95 percent.

The percentage of the 500 problems solved is plotted verses the total number of CG steps.

IRWA terminated in fewer than 460 CG steps on all problems. ADAL required over 460 CG

steps on 8 of the problems. The greatest number of CG steps required by IRWA was 460

when reducing the duality gap by 95%. ADAL stumbled at the 95% level on 8 problems,

requiring 609, 494, 628, 674, 866, 467, 563, 856, 676 and 911 CG steps for these problems.

Figure 4.2 contains a box plot for the log of the number of CG iterations required by each

algorithm for each of the selected accuracy levels. Overall, in this experiment, the methods

seem comparable with a slight advantage to IRWA in both the mean and variance of the
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Figure 4.3: CG steps for each duality gap and CPU time plot as dimension increases.

number of required CG steps.

Second Experiment: In the second experiment, we randomly generated 20 problems of

increasing dimention. The numbers of variables were chosen to be n = 200+500(j−1), j =

1, . . . , 20, where for each we set m := n/2 so that the inclusion Ax+ b ∈ C corresponds to

equal numbers of equations and inequalities. The matrix A was generated as in the first

experiment. Each of the vectors b and g were constructed by first choosing integers on

the intervals [−200, 200] for the mean and [1, 200] for the variance with equal probability

and then obtaining the elements of these vectors from a normal distribution having this

mean and variance. Each matrix H had the form H = 40I + LDLT , where L ∈ Rn×k

with k = 8 and D was diagonal. The elements of L were constructed in the same way as

those of A, and those of D were obtained by sampling from the inverse gamma distribution

f(x) := ba

Γ(a)x
−a−1e−b/x with a = 0.5, b = 1. We set η := 0.5, M := 104, and γ := 1

6 , and

for each j = 1, . . . , 20 we set ε0i := 102+1.3 ln(j+10) for each i = 1, . . . ,m, and µ := 500(1+j).

In Figure 4.3, we present two plots showing the number of CG steps and the log of the

CPU times versus variable dimensions for the two methods. The plots illustrate that the

algorithms performed similarly in this experiment.

Third Experiment: In this experiment, we solve the l1-SVM problem as introduced in
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[51]. In particular, we consider the exact penalty form

min
β∈Rn

m∑
i=1

1− yi

 n∑
j=1

xijβj


+

+ λ ‖β‖1 , (4.6.1)

where {(xixixi, yi)}mi=1 are the training data points with xxxi ∈ Rn and yi ∈ {−1, 1} for each

i = 1, . . . ,m, and λ is the penalty parameter. In this experiment, we randomly generated

40 problems in the following way. First, we sampled an integer on [1, 5] and another

on [6, 10], both from uniform distributions. These integers were taken as the mean and

standard deviation of a normal distribution, respectively. We then generated an m × s

component-wise normal random matrix T , where s was chosen to be 19+2j, j = 0, 1, . . . , 39

and m was chosen to be 200 + 10j, j = 0, 1, . . . , 39. We then generated an s-dimensional

integer vector β̂ whose components were sampled from the uniform distribution on the

integers between −100 and 100. Then, yi was chosen to be the sign of the i-th component

of T β̂. In addition, we generated an m× t i.i.d. standard normal random matrix R, where

t was chosen to be 200 + 30j, j = 0, 1, . . . , 39. Then, we let [xxx1,xxx2, . . . ,xxxm]T := [T,R].

For all 40 problems, we fixed the penalty parameter at λ = 50. In this application, the

problems need to be solved exactly, i.e., a percent reduction in duality gap is insufficient.

Hence, in this experiment, we use the stopping criteria as described in Step 3 of both

IRWA and ADAL. For IRWA, we set ε0i := 104 for all i ∈ I, η := 0.7, M := 104, γ := 1
6 ,

σ := 10−4 and σ′ := 10−8. For ADAL, we set µ := 1, σ := 0.05 and σ′′ := 0.05. We also

set the maximum iteration limit for ADAL to 150. Both algorithms were initialized at

β := 0. Figure 4.4 has two plots showing the objective function values of both algorithms

at termination, and the total CG steps taken by each algorithm. These two plots show

superior performance for IRWA when solving these 40 problems.

Based on how the problems were generated, we would expect the non-zero coefficients

of the optimal solution β to be among the first s = 19 + 2j, j = 0, . . . , 39 components

corresponding to the matrix T . To investigate this, we considered “zero” thresholds of

10−3, 10−4 and 10−5; i.e., we considered a component as being “equal” to zero if its absolute
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value was less than a given threshold. Figure 4.5 shows a summary of the number of

unexpected zeros for each algorithm. For both thresholds 10−4 and 10−5, IRWA yields

fewer false positives in terms of the numbers of “zero” values computed. The numbers of

false positives is similar for the threshold 10−3. At the threshold 10−5, the difference in

recovery is dramatic with IRWA always having fewer than 14 false positives while ADAL

has a median of about 1000 false positives. These plots show that IRWA has significantly

fewer false positives for the nonzero components, and in this respect returned preferable

sparse recovery results over ADAL in this experiment.
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Figure 4.4: CG Steps and Objective function Comparison.

Finally, we use this experiment to demonstrate Nesterov’s acceleration for IRWA. The

effect on ADAL has already been shown in [43], so we only focus on the effect of accelerating

IRWA. The 40 problems were solved using both IRWA and accelerated IRWA with the

parameters stated above. Figure 4.6 shows the differences in objective function values

(left panel) obtained by normal and accelerated IRWA (normal−accelerated
accelerated

× 100), and

differences in numbers of CG steps (right panel) required to converge to the objective

function value in the left panel (normal−accelerated). Accelerated IRWA always converged

to a point with a smaller objective function value, and accelerated IRWA typically required

fewer CG steps. (There was only one exception, the last problem, where accelerated

IRWA required two more CG steps.) The graphs show that accelerated IRWA performs
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significantly better than unaccelerated IRWA in terms of both objective function values

obtained and CG steps required.

Effect of Nesterov Acceleration
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Chapter 5

A Dynamic Penalty Parameter

Updating Strategy for Matrix-Free

SQO

5.1 Introduction

In this chapter, we consider the use of SQO methods for solving large-scale instances

of nonlinear optimization problems (NLPs). While they have proved to be effective for

solving small- to medium-scale problems, SQO methods have traditionally faltered in large-

scale settings due to the expense of (accurately) solving large-scale quadratic subproblems

(QPs) during each iteration. However, with the use of matrix-free methods for solving

the subproblems, one may consider the acceptance of inexact subproblem solutions. Such

a feature offers the possibility of terminating the subproblem solver early, perhaps well

before an accurate solution has been computed. This characterizes the types of strategies

that we propose in this chapter.

Recently, some work has been done to provide global convergence guarantees for SQO

methods that allow inexact subproblem solves [27]. However, the practical efficiency of

such an approach remains an open question. A critical aspect of any implementation of
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such an approach is the choice of subproblem solver. This is the case as the solver must be

able to provide good inexact solutions quickly, as well as have the ability to compute highly

accurate solutions—say, by exploiting well-chosen starting points—in the neighborhood of

a solution of the NLP. In addition, while a global convergence mechanism such as a merit

function or filter is necessary to guarantee convergence from remote starting points, an NLP

algorithm can suffer when such a mechanism does not immediately guide the algorithm

toward promising regions of the search space. To confront this issue when an exact penalty

function is used as a merit function, we propose a dynamic penalty parameter updating

strategy to be incorporated within the subproblem solver so that each computed search

direction predicts progress toward both feasibility and optimality. This strategy represents

a stark contrast to previously proposed techniques that only update the penalty parameter

after a sequence of iterations [40] or at the expense of numerous subproblem solves within

a single iteration [19, 13].

We organize this chapter as follows. In the remainder of this section, we outline our

notation and introduce various definitions and concepts that will be employed throughout

the chapter. In §5.2, we introduce a basic penalty-SQO algorithm that will form the

framework for which we will introduce our penalty parameter updating strategy (see §5.3)

and matrix-free subproblem solvers (see §5.4). We discuss implementations of our methods

in §5.5 and the results of extensive numerical experiments in §5.6.

5.1.1 Notation

We briefly summarize the notation used in this chapter. Let Rn be the space of real n-

vectors, Rn+ be the nonnegative orthant of Rn (i.e., Rn+ := {x ∈ Rn : x ≥ 0}), and Rn++ be

the interior of Rn+ (i.e., Rn+ := {x ∈ Rn : x > 0}). The set of m×n real matrices is denoted

Rm×n. On Rn, the `2 (i.e., Euclidean) norm is indicated as ‖ · ‖2, with the unit `2-norm

ball defined as B2 := {x ∈ Rn : ‖x‖2 ≤ 1}. For a pair of vectors {u, v} ⊂ Rn, their inner

product is written as 〈u, v〉 := uT v and the line segment between them is written as [u, v].

The middle value operator of {a, b, c} ⊂ R, denoted by mid{a, b, c}, returns the median of
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{a, b, c}. For a scalar a, let (a)+ = max{a, 0} and (a)− = min{a, 0}. The set of natural

numbers is denoted by N.

For a set of scalars bi ∈ R for i ∈ {1, . . . ,m}, we use bold lettering to denote the vector

b = [b1, b2, . . . , bm]T ∈ Rm. (For convenience, we also use 111n to denote the n-vector of

all ones and 000n to denote the n-vector of all zeros.) Similarly, given vectors yi ∈ Rdi for

i ∈ {1, . . . ,m}, we often find it convenient to refer to the element y = (y1, . . . , ym) on the

product space Rd1 ×· · ·×Rdm . Conversely, given y ∈ Rd1 ×· · ·×Rdm , the i-th component

of y (an element of Rdi) is denoted yi while the j-th component of yi is written as yij . In

the product space, we define the norm

‖y‖ = ‖(y1, . . . , ym)‖ :=
m∑
i=1

‖yi‖2 ,

of which the dual norm can be verified to be

‖y‖∗ = sup
i∈{1,...,m}

‖yi‖2 .

For convex sets Ci ∈ Rdi for i ∈ {1, . . . ,m}, we define the set

C := C1 × · · · × Cm ⊂ Rd1 × · · · × Rdm .

We define the distance functions

dist2 (yi |Ci ) := inf
zi∈Ci

‖yi − zi‖2 and dist (y |C) :=

l∑
i=1

dist2 (yi |Ci )

as well as the corresponding projection operators

PCi(yi) := arg min
zi∈Ci

‖zi − yi‖2 and PC(y) := arg min
zzz∈C
‖zzz − y‖.

For an extended-real-valued function f : Rn → R̄, the Legendre-Fenchel conjugate of
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f is denoted as f?. For a convex set X ⊂ Rn, we define the indicator function

δ(x|X) :=


0 if x ∈ X,

∞ otherwise.

The conjugate of δ(·|X) is the support function of X, which we denote by

δ?(x|X) = sup
x∈X
〈y, x〉.

If f is convex, then the subdifferential of f at x is defined as the set

∂f(x) := {y ∈ Rn : f(x) + 〈y, z − x〉 ≤ f(z) for all z ∈ Bn2}.

For example, the subdifferentials of our distance functions are given by (see [74])

∂dist2 (yi |Ci ) :=


(I−PCi )yi
‖(I−PCi )yi‖2

if i /∈ A(y)

B2 ∩N(yi|Ci) if i ∈ A(y),

and ∂dist (y |C ) := ∂dist2 (y1 |C1 )× · · · × ∂dist2 (ym |Cm ) ,

where the index set A(y) is defined as

A(y) := {i ∈ {1, ...,m} : dist2 (yi |Ci ) = 0}

and the normal cone to Ci at yi is defined by

N(yi|Ci) := {zi ∈ Rdi : 〈zi, pi − yi〉 ≤ 0 for all pi ∈ Ci}.

5.2 A Penalty-SQO Framework

In this section, we formulate our problem of interest and outline the basic components of

a penalty-SQO algorithm [34]. This method represents the framework in which we will
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define our dynamic penalty parameter updating strategy and matrix-free solvers whose

purposes, respectively, are to guide the algorithm toward promising areas of the search

space and approximately solve the arising direction-finding subproblems.

We formulate our problem of interest as the following nonlinear optimization problem

with equality and inequality constraints for which we assume that the functions f : Rn → R

and c : Rn → Rm are continuously differentiable:

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ {1, . . . , m̄}

ci(x) ≤ 0, i ∈ {m̄+ 1, . . . ,m}.

(NLP)

For our penalty-SQO framework, we define two functions for use in the algorithm and for

characterizing first-order stationary solutions. First, with a penalty parameter ρ ∈ R+, we

define measure of infeasibility and exact penalty function

v(x) =
m̄∑
i=1

‖ci(x)‖2 +
m∑

i=m̄+1

(ci(x))+ and φ(x; ρ) = ρf(x) + v(x).

Generally speaking, our penalty-SQO framework aims to solve (NLP) through systematic

minimization of φ(x; ρ) for appropriately chosen values of ρ > 0. However, if the constraints

of (NLP) are infeasible, then the algorithm is designed to return an infeasibility certificate

in the form of a stationary point for φ(x; 0) = v(x). Second, we define the Fritz John

function for (NLP) which, given ρ ∈ R+ and η ∈ Rm, is

F (x; ρ, η) = ρf(x) + 〈η, c(x)〉.

We remark that we have defined ρ ∈ R+ as having the dual role of penalty parameter in φ

and objective multiplier in F . In fact, this makes sense from both theoretical and practical

perspectives. First-order stationarity conditions for (NLP) can be written in terms of ∇F ,

the constraint function c, and bounds on the dual variables; see [27].
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In the k-th iteration of our penalty-SQO framework, the search direction computation

is based on a local model of the penalty function about the current primal iterate xk ∈ Rn

that makes use of the dual iterate ηk ∈ Rm. We define this model as

J(d;xk, ρ, ηk) := ρ∇f(xk)Td+ dTH(xk, ρ, ηk)d

+
m̄∑
i=1

|ci(xk) +∇ci(xk)Td|+
m∑

i=m̄+1

max{ci(xk) +∇ci(xk)Td, 0},

where H represents an approximation of ∇2
xxF so that

H(xk, ρ, ηk) ≈ ∇2
xxF (xk, ρ, ηk) = ρ∇2

xxf(xk) +
m∑
i=1

ηki∇2
xxci(x

k).

Ultimately, the search direction computed in the k-th iteration represents, for someX ⊂ Rn

containing {0} and penalty parameter ρk > 0, an approximate solution of the subproblem

min
d∈X

J(d;xk, ρk, ηk). (QP)

(We introduce the set X to allow for the possibility of employing, say, a trust region

constraint; e.g., for some ∆ > 0, we may define X such that X ⊂ {d : ‖d‖2 ≤ ∆}). In fact,

the value ρk ∈ (0, ρk−1] is to be computed during the subproblem solve in order to satisfy

two critical inequalities. First, as is typical in the context of a penalty-SQO method, we

intend for the pair (dk, ρk) to be computed such that the search direction dk is a direction

of sufficient descent for φ(·; ρk) from xk. This is guaranteed if the reduction in the local

model J(·;xk, ρk, ηk) yielded by dk, namely,

∆J(d;xk, ρk, ηk) = J(0;xk, ρk, ηk)− J(dk;xk, ρk, ηk),

is sufficiently positive. This requirement—which we formulate concretely in §5.3.2—

represents the first critical inequality yielded by our search direction. In fact, the second

critical inequality that we impose is similar, except that it relates to the reduction yielded
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by dk in the local model J(·;xk, 0, ηk) along dk, namely,

∆J(d;xk, 0, ηk) = J(0;xk, 0, ηk)− J(d;xk, 0, ηk).

Our dynamic strategy for setting ρk is designed so that this reduction is also sufficiently

positive at the end of the search direction computation, implying that dk is also a direction

of sufficient descent from xk for ρ(·; 0) = v.

Overall, the k-th iteration of our penalty-SQO strategy proceeds in the following man-

ner. First, a search direction and penalty parameter pair (dk, ρk) is computed by a subprob-

lem solver such that the resulting search direction yields reductions in the models of the

penalty function and measure of infeasibility that are sufficiently large. Then—potentially

after additional updates of the penalty parameter—a line search may be performed for

the merit function φ(·; ρk) from xk along the search direction dk, yielding the step-size

αk ∈ R++. Finally, the new iterate is set as xk+1 ← xk +αkdk and the algorithm proceeds

to the (k + 1)-st iteration. We state this framework in (2)

Algorithm 2 A Framework of Sequential Quadratic Optimization Algorithm

1. (Initialization) Choose γ, θl ∈ (0, 1). Set k ← 0 and choose (xk, ρk, ηk).
2. (Subproblem Solution) Solve (QP) to obtain a primal-dual solution (dk, ηk) and the
penalty parameter ρk.
3. (Line Search) Let αk be the largest value in {γ0, γ1, γ2, . . . } such that

φ(xk + αkdk, ρk+1)− φ(xk, ρk+1) ≤ −θlαk∆J(d;xk, ρk, ηk).

4. Set xk+1 ← xk + αkdk and k ← k + 1 and go to step 1.

5.3 A Dynamic Penalty Parameter Updating Strategy

In this section, we present our new dynamic penalty parameter updating strategy. Our

method is unique in that it is intended to be employed within a solver for the subproblem

arising in our penalty-SQO framework. A potential pitfall of such an approach is that,

since the penalty parameter dictates the weight between the objective terms in (QP), one

may disrupt typical convergence guarantees of the subproblem solver by manipulating this
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weight during the solution process. However, under reasonable assumptions, we prove that

for sufficiently small values of the penalty parameter, our updating strategy will no longer

be triggered. Consequently, once the penalty parameter reaches a sufficiently small value,

it will remain fixed and the subproblem solver will effectively be applied to solve (QP) for

a fixed value of ρk. We state our proposed updating strategy in such a way that it can be

incorporated into various subproblem solvers; see §5.4.

5.3.1 Preliminaries

As our penalty parameter updating strategy is to be employed in each iteration of our

penalty-SQO framework, we can present our strategy generically by focusing on the k-th

iteration of the framework. Thus, for ease of exposition in this section, we utilize the

following shorthand notation to drop the dependence of certain quantities on the iteration

number:

g = ∇f(xk), ai = ∇ci(xk), bi = ci(x
k), A = [a1, · · · , am]T ,

Hf ≈ ∇2
xxf(xk), H0 ≈

m∑
i=1

ηki∇2
xxci(x

k), Hρ = ρHf +H0.
(5.3.1)

We also make the following assumption about the subproblem data.

Assumption 5.3.1. The subproblem data matrices A, Hf , and H0 are such that

(i) Hρ is positive definite for any ρ ∈ [0, ρk−1]; and

(ii) ‖ai‖2 > 0 for all i ∈ {1, . . . ,m}.

We claim that this assumption is reasonable due to the following considerations. First, in

large-scale contexts, it is typically impractical or inefficient to construct complete second-

derivative matrices. Hence, as indicated in (5.3.1), we assume that Hf and H0 represent

approximate (low-rank) Hessian matrices with at least H0 being positive definite. (See

§5.5.3 for further discussion of such approximations.) Second, if ai = 0 for any i ∈

{1, . . . ,m}, then the i-th constraint in the subproblem is superfluous and can be removed

from consideration. Such a phenomenon can be detected during a preprocessing phase for
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the subproblem, so for simplicity in our discussion we assume that each constraint gradient

is nonzero. As such, for notational convenience, we may define the scaled quantities

āi := ai/‖ai‖2 and b̄i := bi/‖ai‖2 for all i ∈ {1, . . . ,m}.

Of central importance in the subproblems are the convex sets

Ci := {d ∈ Rn : aTi d+ bi = 0}, i ∈ {1, . . . , m̄}

and Ci := {d ∈ Rn : aTi d+ bi ≤ 0}, i ∈ {m̄+ 1, . . . ,m}.

The penalty term in the model J can thus be written as

m∑
i=1

‖ai‖2 dist2 (d |Ci ) ,

meaning that, without loss of generality (i.e., assuming ‖ai‖2 = 1 for all i ∈ {1, . . . ,m})

we may rewrite (in shorthand) the penalty-SQO subproblem (QP) as

min
d∈Rn

J(d; ρ), where


J(d; ρ) = ϕ(d; ρ) +

m∑
i=1

dist2 (d |Ci ) + δ(d|X)

ϕ(d; ρ) = ρgTd+ 1
2d

THρd.

(QPρ)

We refer to (QPρ) with ρ > 0 as a penalty subproblem, whereas we refer to (QPρ) with

ρ = 0 as the feasibility subproblem. Direct calculation shows the Fenchel–Rockafellar dual

of subproblem (QPρ) is given by

max
u∈Rn×···×Rn

D(u; ρ) s.t. um+1 =
m∑
i=0

ui and ui ∈ B2 for all i ∈ {1, . . . ,m}, (DQPρ)

where the dual objective function is given by

D(u; ρ) = −1

2
(u0 − ρg)TH−1

ρ (u0 − ρg)−
m∑
i=1

δ∗(ui|Ci)− δ∗(um+1|X).

An interesting aspect of the dual subproblem (DQPρ) is that the penalty parameter ap-

pears only in the objective function; thus, if u satisfies the constraints of (DQPρ), then it
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is dual-feasible regardless of the value of ρ appearing in the subproblem. As a result, by

weak duality, we have for any primal-dual feasible pair (d,u) that both

D(u; 0) ≤ J(d; 0) and D(u; ρ) ≤ J(d; ρ). (5.3.2)

We close this subsection by noting that projections onto the set Ci for any i ∈

{1, . . . ,m} is especially easy to compute; in particular,

PCi(x) = x− (āTi x+ b̄i)āi, i ∈ {1, . . . , m̄}

and PCi(x) = x− (āTi x+ b̄i)+āi, i ∈ {m̄+ 1, . . . ,m}.

We also observe that if X = Rn, then the Fenchel-Rockafellar dual of (QPρ) reduces to

max
u∈Rn×···×Rn

D(u; ρ) s.t. 0 =
m∑
i=0

ui and ui ∈ B2 for all i ∈ {1, . . . ,m},

where

D(u; ρ) = −1

2
(u0 − ρg)TH−1

ρ (u0 − ρg)−
m∑
i=1

δ∗(ui|Ci).

5.3.2 Updating ρ

We are now prepared to present our dynamic penalty parameter updating strategy. For a

given ρ > 0, let (d∗ρ,u
∗
ρ) represent an optimal primal-dual pair for the penalty subproblem

corresponding to ρ; in particular, (d∗0,u
∗
0) represents an optimal primal-dual pair for the

feasibility subproblem. We present our algorithm in the context of a subproblem solver

that generates two sequences of iterates: The first sequence of iterates, call it {(d(j),u(j))},

represents a sequence of primal-dual feasible solution estimates for a penalty subproblem,

while the second sequence of iterates, call it {w(j)}, represents a sequence of dual feasible

solution estimates for the feasibility subproblem. (In our strategy, we do not make separate

use of a sequence of primal solution estimates for the feasibility subproblem; rather, the

sequence {d(j)} plays this role as well.) Without loss of generality, we assume that the j-th
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dual solution estimate w(j) represents a better (or no worse) dual solution for the feasibility

subproblem than u(j) in the sense that D(w(j); 0) ≥ D(u(j); 0). This is a reasonable

assumption since if this inequality were not to hold, then one could simply replace w(j)

with u(j) as the j-th dual feasible solution estimate for the feasibility subproblem.

Observe that, by the definition of the model J , we have

J (0) := J(0; 0) = J(0; ρ) =

m̄∑
i=1

|b̄i|+
m∑

i=m̄+1

(b̄i)+ ≥ 0

for any ρ > 0. We then define, for any given value of the penalty parameter ρ > 0, the

following ratios corresponding to the j-th subproblem solver iteration:

r(j)
v :=

J (0) − J(d(j); 0)

J (0) −D(w(j); 0)
and r

(j)
φ :=

J (0) − J(d(j); ρ(j))

J (0) −D(u(j); ρ(j))
. (5.3.3)

The critical property of these ratios is that, if they are sufficiently large, then the corre-

sponding subproblem solver iterate must yield a reduction in the penalty function model

that is proportional to that yielded by an exact subproblem solution. In particular, suppose

that for some prescribed constant βv ∈ (0, 1) we have

r(j)
v ≥ βv. (Rv)

We may then observe that the reduction in the linearized constraint violation model J(·; 0)

(relative to a zero step) yielded by the subproblem solver iterate d(j) satisfies

J (0) − J(d(j); 0) ≥ βv(J (0) −D(w(j); 0))

≥ βv(J (0) −D(u∗0; 0)) ≥ βv(J (0) − J(d∗0; 0)),

where the first inequality follows by (Rv), the second follows by optimality of u∗0 with

respect to the dual of the feasibility subproblem, and the last follows by weak duality.
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Similarly, if for some prescribed constant βφ ∈ (0, 1) and ρ > 0 we have

r
(j)
φ ≥ βφ, (Rφ)

then it follows that

J (0) − J(d(j); ρ(j)) ≥ βφ(J (0) −D(u(j); ρ(j)))

≥ βφ(J (0) −D(u∗
ρ(j)

; ρ(j))) ≥ βφ(J (0) − J(d∗
ρ(j)

; ρ(j))).

(5.3.4)

Our penalty parameter strategy is motivated by the desire to ensure that if the j-th

iterate of the subproblem solver represents a sufficiently accurate solution of the penalty

subproblem for ρ > 0, then it should also represent a sufficiently accurate solution of the

feasibility subproblem; otherwise, then the penalty parameter should be reduced. Specifi-

cally, choosing parameters

0 < βv < βφ < 1, (5.3.5)

we initialize ρ(0) ← ρk−1 (from the preceding iteration of the penalty-SQO framework)

and apply the subproblem solver to (QPρ) to initialize the sequence {(d(j),u(j),w(j))}. If,

at the start of the j-th subproblem solver iteration we have that (Rφ) is not satisfied, then

we continue the iteration to solve (QPρ) for the current value of ρ. Otherwise, if (Rφ) is

satisfied but (Rv) is not, then we reduce the penalty parameter by setting

ρ(j) ← θρρ
(j−1) (5.3.6)

for some prescribed constant θρ ∈ (0, 1). (The remaining case is that (Rφ) and Rv are both

satisfied, in which case we do not change the penalty parameter and may either terminate

the subproblem solver or continue to compute a more accurate solution of (QPρ). The

determination of whether to terminate or continue the subproblem solver should be made

based on the demands of the penalty-SQO method.)
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We summarize our dynamic updating strategy below:

For (d(j),u(j),w(j)), if (Rφ) holds but (Rv) does not, then apply (5.3.6). (DUST)

We close this subsection by making a few practical remarks regarding the use of

(DUST) within a subproblem solver for (QPρ). In particular, while we have defined the

sequence {(d(j),u(j),w(j))} as being generated by (a single run of) the solver, it may be

reasonable to reinitialize the solver—or at least perform some auxiliary computations—

after any iteration in which (5.3.6) is invoked. (Such auxiliary computations may involve

scaling vectors and/or matrices due to the change in the penalty parameter; e.g., see the

discussion of the Hessian approximation strategy in §5.5.3.) That being said, it is reason-

able to assume that, during any sequence of iterations in which ρ does not change, the

subproblem solver would be applied as if it were being applied to a (static) instance of

(QPρ). In such a manner, any convergence guarantees for the subproblem solver would

hold if/when the penalty parameter stabilizes at a fixed value, as is guaranteed to occur

in certain situations described next.

5.3.3 Finite Updates

The purpose of this subsection is to show that if (DUST) is employed within an algorithm

for solving (QPρ), then, under reasonable assumptions on the subproblem data, for any

ρ(j) ∈ (0, ρ̃] for some sufficiently small ρ̃ > 0 whose value depends only on the subproblem

data, if (Rφ) is satisfied, then (Rv) is also satisfied. In other words, after finite iterations,

the updating strategy (5.3.6) will never be triggered. Let λ0 and λ̄0 be the smallest and

largest eigenvalues of H0, and so forth for λρ and λ̄ρ for Hρ. Notice that

λρ(j) ≥ min(λρ(0) , λ0) and λ̄ρ(j) ≤ max(λ̄ρ(0) , λ̄0). (5.3.7)

We formalize our assumptions for this analysis as the following.

Assumption 5.3.2. Let {(d(j),u(j),w(j))} be a sequence such that, for all j ∈ N, the
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vectors u(j) and w(j) are feasible for (DQPρ). Moreover, let {ρ(j)} be a sequence generated

along with {(d(j),u(j),w(j))} by applying (DUST). Then, corresponding to the set

U = {j : (d(j),u(j)) satisfies (Rφ)},

the subsequences {‖u(j)‖2}k∈U and {‖w(j)‖2}k∈U are bounded by a constant κ0 > 0 inde-

pendent of {ρ(j)}.

The boundedness assumption on dual estimates are reasonable since our subproblems

are assumed to be strictly convex. We can also easily show the primal variables {d(j)}j∈U
are also bounded.

Lemma 5.3.1. If Assumption 5.3.1 and 5.3.2 hold, then we know

‖d(j)‖2 ≤ κ1 :=
ρ(0)‖g‖2 +

√
(ρ(0))2‖g‖22 + 4 max(λ̄ρ(0) , λ̄0)J (0)

2 min(λρ(0) , λ0)
, j ∈ U . (5.3.8)

Proof. Notice by Assumption 5.3.2 (i), it holds true that {d(j)}j∈U ⊂ X, which implies

δ(d(j)|X) = 0 for j ∈ U . By (Rφ), every (d(j),u(j), ρ(j)) must satisfies (5.3.4), which

indicates

J(d(j); ρ(j)) = ρ(j)gTd(j) + 1
2(d(j))THρ(j)d

(j) ≤ J (0).

It follows that

λρ(j)‖d(j)‖22 ≤ J (0) + |ρ(j)gTd(j)| ≤ J (0) + ρ(0)‖g‖2‖d(j)‖2.

This implies

‖d(j)‖2 ≤
ρ(0)‖g‖2 +

√
(ρ(0))2‖g‖22 + 4λρ(j)J

(0)

2λρ(j)J
(0)

,

which, together with (5.3.7), proves (5.3.8).

The next lemma shows the difference between the primal values of optimality subprob-

lem and feasibility subproblem at iteration j ∈ U is dependent of ρ, and so is the difference
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between dual values.

Lemma 5.3.2. There exists a constant κ3 > independent of j such that for any j ∈ U ,

|J(d(j); ρ(j))− J(d(j); 0)| ≤ κ2ρ
(j), (5.3.9a)

|D(u(j); ρ(j))−D(w(j); 0)| ≤ κ3ρ
(j), (5.3.9b)

with

κ2 = 1
2‖Hf‖2κ2

1 + ‖g‖2κ1,

κ3 =
κ0 + ρ(0)‖g‖2
min(λρ(0) , λ0)

(‖H−1
0 Hf‖2 + 1

2‖g‖2) + ‖H−1
0 Hf‖2‖g‖2.

Proof. For primal value, it holds true that

|J(d(j); ρ(j))− J(d(j); 0)| = |ρ(j)gTd(j) + 1
2(d(j))THρ(j)d

(j) − 1
2(d(j))TH0d

(j)|

= |ρ(j)gTd(j) + ρ(j)

2 (d(j))THfd
(j)|

≤ ρ(j)(‖g‖2 + 1
2‖Hf‖2‖d(j)‖2)‖d(j)‖2,

(5.3.10)

which combined with Lemma 5.3.1 immediately proves (5.3.9a).

Let ŷ(j) = H−1
ρ(j)

(u
(j)
0 − ρ(j)g) and ȳ(j) = H−1

0 u
(j)
0 . By Lemma 5.3.1, one can show

‖ŷ(j)‖2 ≤
κ0 + ρ(j)‖g‖2

λρ(j)
≤ κ0 + ρ(0)‖g‖2

min(λρ(0) , λ0)
,

and {‖ȳ(j)‖2}j∈U are all bounded by constant

‖ȳ(j)‖2 ≤
κ0

λ0

.

It follows that

ρ(j)g = u
(j)
0 − (u

(j)
0 − ρ(j)g) = H0ȳ

(j) −Hρ(j) ŷ
(j) = H0(ȳ(j) − ŷ(j))− ρ(j)Hf ŷ

(j),
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which implies for any j ∈ U ,

‖ȳ(j) − ŷ(j)‖2 = ‖ρ(j)H−1
0 Hf (ŷ(j) + g)‖2

≤ ρ(j)‖H−1
0 Hf‖2‖ŷ(j) + g‖2

≤ ρ(j)‖H−1
0 Hf‖2

(
κ0 + ρ(0)‖g‖2
min(λρ(0) , λ0)

+ ‖g‖2
)
.

(5.3.11)

The difference between the dual values of optimality subproblem and feasibility subproblem

is then given by

|D(u(j); ρ(j))−D(u(j); 0)|

= | − 1
2(u

(j)
0 − ρ(j)g)TH−1

ρ(j)
(u

(j)
0 − ρ(j)g) + 1

2(u
(j)
0 )TH−1

0 u
(j)
0 |

= |12(ȳ(j) − ŷ(j))Tu
(j)
0 + 1

2ρ
(j)gT ŷ(j)|

≤ 1
2‖ȳ(j) − ŷ(j)‖2‖u(j)

0 ‖2 + 1
2ρ

(j)‖g‖2‖ŷ(j)‖2

≤ ρ(j)

(
‖H−1

0 Hf‖2
(
κ0 + ρ(0)‖g‖2
min(λρ(0) , λ0)

+ Normg2

)
+ 1

2‖g‖2
κ0 + ρ(0)‖g‖2
min(λρ(0) , λ0)

)

= ρ(j)

(
κ0 + ρ(0)‖g‖2
min(λρ(0) , λ0)

(‖H−1
0 Hf‖2 + 1

2‖g‖2) + ‖H−1
0 Hf‖2‖g‖2

)
,

where the last inequality is by (5.3.11) and Lemma 5.3.1. This completes the proof of

(5.3.9b).

Now we are ready to prove our main result.

Theorem 5.3.3. Given g,Hf , H0, ρ
(j) and set C satisfying Assumption 5.3.1. Consider

an algorithm for solving (QPρ) such that Assumption 5.3.2 is satisfied. Let

ρ̃ :=
1−

√
βv/βφ
κ3

(J0 −D(u(j); 0)).

For (QPρ) with any ρ(j) ∈ (0, ρ̃), if the primal-dual iterate {d(j),u(j)} generated by the

algorithm satisfies condition Rφ, then {d(j),w(j)} also satisfy Rv. In other words, for any

ρ(j) ∈ (0, ρ̃), the (DUST) is never triggered.
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Proof. By Lemma 5.3.2, we can see that for problem (QPρ) with sufficiently small ρ(j) > 0,

the primal-dual iterates in U generated by the given algorithm satisfy

J0 − J(d(j); 0)

J0 − J(d(j); ρ(j))
>

√
βv
βφ
, (5.3.12a)

J0 −D(uk; ρ(j))

J0 −D(wk; 0)
≥ J0 −D(uk; ρ(j))

J0 −D(uk; 0)
>

√
βv
βφ
, (5.3.12b)

by the fact that βv
βφ
∈ (0, 1). This implies that for j ∈ U

r
(j)
v

r
(j)
φ

=
J0 − J(d(j); 0)

J0 − J(d(j); ρ(j))

J0 −D(u; ρ(j))

J0 −D(u(j); 0)
≥ βv
βφ
,

yielding

r(j)
v ≥

βv
βφ

r
(j)
φ ≥ βv, j ∈ U

where the last inequality is from the fact that r
(j)
φ ≥ βφ, j ∈ U by the definition of set U .

Now we determine the values of ρ that guarantee (5.3.12b). For any j ∈ U , we have

from (5.3.9b)

−κ3ρ
(j) ≤ D(u(j); ρ(j))−D(u(j); 0) ≤ κ3ρ

(j),

which implies that

1− κ3ρ
(j)

J0 −D(u(j); 0)
≤ J0 −D(u(j); ρ(j))

J0 −D(u(j); 0)
≤ 1 +

κ3ρ
(j)

J0 −D(u(j); 0)
.

It follows that (5.3.12b) holds true for any

ρ(j) ≤ 1−
√
βv/βφ
κ3

(J0 −D(u(j); 0)).

Therefore, for any ρ ∈ [0, ρ̃], the (DUST) is never triggered.
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5.4 SQO Subproblem Solvers

In this section, we will present matrix-free solvers with properties satisfying Assump-

tion 5.3.2 so that DUST can be incorporated in the proposed algorithms. The first algo-

rithm is an Alternating Direction Augmented Lagrangian (ADAL) method, also known

as alternating direction method of multipliers (ADMM). It is designed for solving (QPρ)

with generic convex set X. The second solver is Coordinate Descent Algorithm (CDA),

which solves (QPρ) with X = Rn.

5.4.1 An Alternating Direction Augmented Lagrangian Method

The ADAL algorithm decouples the quadratic function ψ(· ; ρ) and the nonsmooth function

dist (· |C ) by reformulating problem (QPρ) into an equality constrained problem

min
x,p

J̃(x, p; ρ) such that x = pi, i = 1, . . . ,m,

where

J̃(x, p; ρ) := ϕ(x; ρ) + dist (p |C ) + δ(x|X),

and auxiliary variables p = [pT1 , . . . , p
T
m]T with pi ∈ Rdi . Define dual variable vi corre-

sponding to the constraint x = pi, i = 1, . . . ,m, and v = [vT1 , . . . , v
T
m]T . The augmented

Lagrangian for (QPρ), with penalty parameter µ > 0 (we call µ as the subproblem penalty

parameter), is given by

Lµ(x, p, v; ρ) := J̃(x, p; ρ) +
1

2µ

m∑
i=1

(
‖x− pi + µvi‖22 −

µ

2
‖vi‖22

)
.

The iteration of ADAL method then can be stated by Algorithm 3.
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Algorithm 3 ADAL method for penalty-SQO subproblems

1: (Initialization) Given µ, x0 and v0, set k = 0.
2: (Update p) Set

pk+1 ← min
p
Lµ(xk, p, vk; ρ). (5.4.1)

3: (Update x) Set
xk+1 ← min

x
Lµ(x, pk+1, vk; ρ). (5.4.2)

4: (Update v) Set

vk+1
i ← vki +

1

µ
(xk+1 − pk+1

i ), for i = 1, . . . ,m. (5.4.3)

5: Set k ← k + 1.

Define yki = xk + µuki . The solution of (5.4.1) can be calculated explicitly by

pk+1
i =


PCi(y

k
i ) if dist2

(
yki |Ci

)
≤ µ,

yki − µ

dist2(yki |Ci )
(yki − PCi(yki )) if dist2

(
yki |Ci

)
> µ.

Subproblem (5.4.2) is a constrained QO problem. We can write Lµ(x, pk+1, uk; ρ) equiva-

lently as

Lµ(x, pk+1, uk; ρ) =
1

2
xTHρ,µx− (g̃k)Tx+ δ(x|X)

by omitting the constant term, where

Hρ,µ = Hρ +
m

µ
I

g̃k = −ρg +
1

µ

m∑
i=1

(pk+1
i − µvki ).

Notice that we use different notation v for the dual variables. This is because the

dual iterates generated by ADAL may not be dual feasible. Now we discuss approaches

to construct dual feasible multipliers at each iteration. The first approach derives {uki }mi=1
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by projecting {vk} onto the dual feasible region:

uki = ηki āi (5.4.4)

where

ηki =


mid{−1, (vki )T āi, 1}, i = 1, . . . , s,

mid{ 0, (vki )T āi, 1}, i = s+ 1, . . . ,m.

An alternative approach is to set

uki = vki −
1

µ
(xk − xk−1), i = 1, ...,m. (5.4.5)

We know from [11, Lemma 3.2] that estimate (5.4.5) is also dual feasible. At iteration

k − 1, we know by the KKT condition of (5.4.2) that −Hρ,µx
k + g̃k ∈ N(xk|X). We can

set

ukm+1 = −Hρ,µx
k + g̃k, (5.4.6)

so that δ∗(ukm+1|X) = 〈xk, ukm+1〉. Accordingly, we have

uk0 = −
m+1∑
i=1

uki . (5.4.7)

To incorporate DUST, Assumption 5.3.2 must be satisfied by the proposed ADAL

algorithm. We only have to show the boundedness of {ukm+1}j∈U , which is summarized in

the following proposition.

Proposition 5.4.1. Assumption 5.3.2 is satisfied by Algorithm 3 with {ukm+1} set by

(5.4.6), i.e., {‖ukm+1‖2}j∈U are bounded by some constant κ > 0 independent of k and ρ.

Proof. Let Ω := {vρ|ρ ∈ [0, ρ0]} where (xρ, pρ, vρ) is the optimal primal-dual solution of

J̃(x, p; ρ). By optimality condition vρi ∈ ∂dist2 (pρi |Ci ), Ω is bounded by some positive

constant independent of ρ. From [11, Lemma 3.5], we know {‖vk − vρ‖2} is uniformly

bounded for a fixed ρ. Therefore, overall we have {‖vk‖2} are bounded by some positive
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constant independent of k and ρ. This result, combined with [11, Lemma 3.2], implies

{g̃k} is bounded by some constant κ4 > 0 independent of k and ρ. Notice that {‖Hρ‖2|ρ ∈

[0, ρ0]} are bounded by some constant κ5 independent of k and ρ. By Lemma 5.3.1, we

know {‖ukm+1‖2}j∈U are bounded by κ := κ5κ1 + κ4.

5.4.2 A Coordinate Descent Method

In this section, we consider combining the penalty parameter updating with coordinate

descent method. We have the following two problems of interest.

min
x∈Rn

J(x; ρ) :=
1

2
xTHρx+ ρgTx+

s∑
i=1

|aTi x+ bi|+
m∑

i=s+1

(aTi x+ bi)+ (5.4.8)

min
z∈Rn

J(z; 0) :=
1

2
zTH0z +

s∑
i=1

|aTi z + bi|+
m∑

i=s+1

(aTi z + bi)+. (5.4.9)

Direct computation shows the Lagrangian dual problems of (5.4.8) and (5.4.9) are respec-

tively

max
l≤ηηη≤c

D(ηηη; ρ) := −1

2
(ATηηη − g)TH−1

ρ (ATηηη − g) + ηηηTbbb (5.4.10)

max
l≤λλλ≤c

D(λλλ; 0) := −1

2
λλλTAH−1

0 ATλλλ+ λλλTbbb (5.4.11)

where l = [−1−1−1Ts ,000
T
m−s]

T and c = 111m. The solutions to (5.4.8) and (5.4.9) are recovered by

x = −H−1
ρ (ρg +ATηηη) and z = −H−1

0 ATλλλ respectively. At iteration k, define

rkv :=
J (0) − J(xk; 0)

J (0) −max{D(λλλk; 0), D(ηηηk; 0)}

rkφ :=
J (0) − J(xk; ρk−1)

J (0) −D(ηηηk; ρk−1)
.

Now we are ready to present our algorithm which combines the coordinate descent with

dynamic penalty parameter updating.
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Algorithm 4 Coordinate Descent Method for Penalty-SQO Subproblems

1: (Initialization) Set ηηη0, βv, βφ, θρ ∈ (0, 1) and k = 0.
2: (Update ηηηk and λλλk)
3: for i = 1, . . . ,m do
4:

ηηηki := argmin
li≤ηi≤ci

D(ηk1 , . . . , η
k
i−1, ηi, η

k−1
i+1 , . . . , η

k−1
m ; ρk−1) (5.4.12)

λλλki := argmin
li≤λi≤ci

D(λk1, . . . , λ
k
i−1, λi, λ

k−1
i+1 , . . . , λ

k−1
m ; 0) (5.4.13)

5: Update xk := −H−1
ρ (ρg +ATηηηk), rkφ and rkv .

6: (Update ρk)
7: If rkφ > βφ and rkv < βv, set ρk ← θρρ

k−1.
8: Set k ← k + 1.
9: end for

5.5 Implementation

In this section, we discuss the implementation issues of subproblem solvers when applied

to different scenarios.

5.5.1 Inexact Solution

In this subsection, we discuss a strategy to terminate when an inexact solution is found.

Generally, the subproblem (QPρ) need not to be solved accurately. An inexact solution

may be accepted to guarantee the global convergence as long as it achieves sufficient

improvement on the penalty function. We describe a termination criterion based on the

ratio rkφ defined in subsection 5.3.2. At each iteration, if condition Rφ and Rv are both

satisfied, we terminate the algorithm. By doing this, the algorithm ends up with an inexact

solution for (QPρ), along which the duality gap for optimality problem and feasibility

problem can be both reduced by a fraction.
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5.5.2 Adding A Trust Region

If problem (QPρ) is unconstrained (X = Rn), the solution of ADAL subproblem (5.4.2)

can be given by

xk+1 = H−1
ρ,µ g̃

k.

The proposed ADAL algorithm can also handle the case where X is a trust region with

X = {x | ‖x‖2 ≤ ∆} .

In this case, the solution to (5.4.2) is given by

xη := (ηI +Hρ,µ)−1g̃k,

where η is any solution to the equation

φ(η) = 0,

with

φ(η) :=
1

∆
− 1

‖xη‖2
(5.5.1)

on the interval (η̄,+∞). Here η̄ is the smallest eigenvalue of Hρ,µ. Since

φ′(η) =
g̃T (ηI +H(ρ,µ))

−3g̃

‖xη‖32
,

applying Newton’s method to this equation requires the solving systems of the form

(ηI +H(ρ,µ))x = −g̃ and (ηI +H(ρ,µ))
−2x = −g̃

for a few values of η.
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5.5.3 Low-Rank Approximation

We describe an implementation when using low-rank approximation for the Hessian Hf

and H0. Assume the Hessian takes the decomposition

Hρ = σI + ΨΣ−1ΨT ,

H0 = γI + ΦΓ−1ΦT ,

where Ψ ∈ Rn×r with r � n, and Φ ∈ Rn×l with l� n are low rank matrices, and

Σ ∈ Rr×r,Γ ∈ Rl×l are invertible. We investigate the inverse of Hρ and Hρ,µ by us-

ing the following generalized matrix inversion formula. For any given invertible A ∈ Rn×n,

invertible S ∈ Rl×l, and U, V ∈ Rn×l, the following Sherman Morrison formula holds

(A+ USV T )−k = A−k −A−kU(S−1 + V TA−kU)−1WV TA−k , (5.5.2)

where

W =

k−1∑
j=0

(S−1(S−1 + V TA−kU)−1)(j) .

In particular,

(A+ USV T )−1 = A−1 −A−1U(S−1 + V TA−1U)−1V TA−1. (5.5.3)

Let

Hρ,µ = Hρ +
m

µ
I = (σ +

m

µ
)I + ΨΣ−1ΨT .

Using (5.5.3), the inverse of H0, Hρ and Hρ,µ can be computed by

H−1
0 =

1

γ

[
I − Φ(γΓ + ΦTΦ)−1ΦT

]
H−1
ρ =

1

σ

[
I −Ψ(σΣ + ΨTΨ)−1ΨT

]
H−1
ρ,µ =

1

σ + m
µ

[
I −Ψ[(σ +

m

µ
)Σ + ΨTΨ]−1ΨT

]
.
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We can write them in a compact form. Define

ΘT = (γΓ + ΦTΦ)−1ΦT

ΘT
1 = (σΣ + ΨTΨ)−1ΨT

ΘT
2 = [(σ +

m

µ
)Σ + ΨTΨ]−1ΨT

Then

H−1
0 =

1

γ
(I − ΦΘT ) (5.5.4)

H−1
ρ =

1

σ

[
I −ΨΘT

1

]
(5.5.5)

H−1
ρ,µ =

1

σ + m
µ

[
I −ΨΘT

2

]
. (5.5.6)

After reducing ρ to a smaller value ρ̄, we have

Hρ̄ = ρ̄Hf +H0

=
ρ̄

ρ
(H0 + ρHf ) + (1− ρ̄

ρ
)H0

= τHρ + (1− τ)H0

= σ̄I + τΨΣ−1ΨT + (1− τ)ΦΓ−1ΦT

= Hτ + (1− τ)ΦΓ−1ΦT ,

with

τ =
ρ̄

ρ
, σ̄ = τσ + (1− τ)γ, Hτ̄ = σ̄I + τΨΣ−1ΨT .
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So we have

ΘT
3 = (

σ̄

τ
Σ + ΨTΨ)−1ΨT (5.5.7)

H−1
τ̄ =

1

σ̄
[I −ΨΘT

3 ] (5.5.8)

ΘT
4 =

[
1

1− τ Γ + ΦTH−1
τ̄ Φ

]−1

ΦT (5.5.9)

Hρ̄ = H−1
τ̄ −H−1

τ̄ ΦΘT
4 H
−1
τ̄ . (5.5.10)

Substituting σ with σ + m
µ , and repeating (5.5.7), we have the inverse of Hρ̄,µ:

σ̃ = τσ +
m

µ
+ (1− τ)γ, Hτ̃ = σ̃I + τΨΣ−1ΨT (5.5.11)

ΘT
5 = (

σ̄

τ
Σ + ΨTΨ)−1ΨT (5.5.12)

H−1
τ̃ =

1

σ̄
[I −ΨΘT

3 ] (5.5.13)

ΘT
6 =

[
1

1− τ Γ + ΦTH−1
τ̄ Φ

]−1

ΦT (5.5.14)

Hρ̄,µ = H−1
τ̃ −H−1

τ̃ ΦΘT
4 H
−1
τ̃ . (5.5.15)

5.5.4 Coordinate Descent Implementation

Using (5.5.4), (5.4.11) can be written as

max
l≤λλλ≤c

D(λλλ; 0) := − 1

2γ
λλλTAATλλλ+

1

2γ
λλλTAΦΘTATλλλ+ λλλTbbb, (5.5.16)

in large scale setting, we assume it is not practical to calculate and store AAT . Usually A

will have nice sparse structure, while AAT does not. Define Q := AΦ and Q̃ := AΘ, then

(5.5.16) becomes

max
l≤λλλ≤c

D(λλλ; 0) := − 1

2γ
λλλTAATλλλ+

1

2γ
λλλTQQ̃Tλλλ+ λλλTbbb. (5.5.17)
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Direction derivative of D(λ; 0) is given by

∂D(λ; 0)

∂λi
:=

1

γ

m∑
j=1

(−aTi aj + qTi q̃
T
j )λj + bi, (5.5.18)

where qi and q̃i are the i-th row of Q and Q̃ respectively. Then the solution of (5.4.13) is

λki =



li if aTi ai − qTi q̃Ti = 0 and ∂D(λ;0)
∂λi

< 0

[li, ci] if aTi ai − qTi q̃Ti = 0 and ∂D(λ;0)
∂λi

= 0

ci if aTi ai − qTi q̃Ti = 0 and ∂D(λ;0)
∂λi

> 0

mid{γbi−
∑k−1
j=1 (aTi aj−qTi q̃Tj )λkj−

∑n
j=k+1(aTi aj−qTi q̃Tj )λk−1

j

aTi ai−qTi q̃Ti
, li, ci} if aTi ai − qTi q̃Ti 6= 0.

(5.5.19)

Now we see that the main calculation for the solution of (5.4.13) is the directional derivative

(5.5.18). Direct computation of (5.5.18) will take O(n2 + nr) operations. It was shown in

[62] that coordinate descent method will become competitive if there is an efficient way

to compute the directional derivative. Here if we keep track of the following two vectors

v :=
∑n

j=1 λjaj and p :=
∑n

j=1 λj q̃j , then the complexity of the update of the directional

derivative would become O(n+r) which is much better than O(n2 +nr). First notice that

if we have v and p for most recent λ, then

∂D(λ; 0)

∂λi
=

1

γ
(−aTi v + qTi p) + bi,

i.e. given v and p, calculating (5.5.18) takes only O(n+ r). Next let us see how to update

v and p. Assume we update λk−1
i to λki , then

v ← v + (λki − λk−1
i )ai (5.5.20)

p← p+ (λki − λk−1
i )q̃i.
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(5.5.20) shows the update of v and p is O(n + r). In summary, the total complexity for

each coordinate update is O(n+ r). Moreover, if A is a sparse matrix with an average of

ns non zeros per row, then the complexity becomes O(ns + r).

5.6 Numerical Experiments

5.6.1 ADAL

In this section, we test our proposed DUST in an ADAL subproblem solver for solving

small-scale problems. We implemented Algorithm 2 and the algorithm described in §5.4.1

in MATLAB, and name it ADAL-SQO. The implementation is tested on 126 of the Hock-

Schittkowski problems [49] available as AMPL models [38]. As an alternative, we also

apply CPLEX as our subproblem solver. The penalty parameter is updated is updated

according to DUST when an accurate solution xk of (QPρ) is found by CPLEX. If the

penalty parameter is reduced, then (QPρ) is re-solved with the new ρ and xk as the initial

point. This implementation is named as CPLEX-SQO. We use βopt = 0.9 and βfea = 0.1.

The performance statistics is shown in Table 5.1 and the performance profile of both

methods in terms of CPU time and number of iterations are shown in Figure 5.1. One

can see our proposed updating strategy has acceptable performance, and overperforms the

strategy of using CPLEX to accurately solve (QPρ).

Table 5.1: Performance statistics of ADAL-SQO and CPLEX-SQO

Solver Optimal Infeasible Iteration

ADAL-SQO 116 (92.8%) 0 10 (7.2%)

CPLEX-SQO 116 (92.8%) 2 (1.6%) 8 (6.3%)
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Figure 5.1: Performance profile of ADAL-SQO and CPLEX-SQO

5.6.2 Coordinate Descent

In this subsection, we test DUST on 20 Cuter problems of large scale and 107 small scale

problems. Coordinate descent algorithm described in §5.4 is used to solve the subproblems.

We set ρ = 1, βφ = 0.7, βv = 0.05, θρ = 0.5 and the maximum iteration to be 100 for

SQO algorithm. Define the maximum constraint violation v∞(x) and the optimality error

ε∞(x) as

v∞(x) := max{|ci(x)| i = 1, · · · , m̄, (ci(x))+ i = m̄+ 1, · · · ,m},

ε∞(x) := ‖∇f(x) +∇c(x)η‖∞.

We terminate the algorithm if v∞(x) ≤ 10−7 and ε∞(x) ≤ 10−3, or the consecutive im-

provement of constraint violation and objective function value are less than 10−4.

Figure 5.2 presents the update of ρ from iteration to iteration. Table 5.2 shows the

performance statistics on large scale problems and Table 5.3 shows the results on small

problems. For most of the test examples, the algorithm finds the optimal solution. The fi-

nal value of ρ for most test examples are not extremely small, which indicates our proposed

strategy does not always quickly drive ρ to 0.
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Figure 5.2: ρ update
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Table 5.2: Results on 20 Cuter problem
Name Num Con Num Eq Num Var Obj Opt Err ρ Time Violation

1 DTOC1NA 3996 3996 5998 4.1389E+00 3.8650E-05 3.9062E-03 3.6857E+00 9.9967E-08
2 DTOC1NB 3996 3996 5998 7.1388E+00 1.2129E-04 3.9062E-03 1.2981E+01 7.4492E-08
3 DTOC1ND 3996 3996 5998 4.7603E+01 5.5031E-05 4.7684E-07 5.4458E+00 1.9515E-08
4 EG3 20000 1 10001 3.4834E-04 2.6197E-02 1.5625E-02 7.0970E+01 5.2612E-10
5 EIGENA2 1275 1275 2550 3.0204E-12 3.3435E-08 3.9062E-03 1.9689E+00 0.0000E+00
6 EIGENACO 1275 1275 2550 4.5418E-09 6.2817E-07 3.9062E-03 2.1289E+00 1.7764E-15
7 EIGENBCO 1275 1275 2550 4.9000E+01 7.8237E-05 6.2500E-02 1.6198E+00 2.8207E-09
8 GILBERT 1 1 5000 2.4595E+03 3.8443E-05 1.9531E-03 5.5580E-01 9.8979E-09
9 JANNSON4 2 0 10000 9.8020E+03 2.7347E-09 7.8125E-03 1.6501E+00 4.4094E-11

10 LUKVLE1 9998 9998 10000 6.2325E+00 2.7028E-07 2.5000E-01 2.5797E+00 3.6903E-12
11 LUKVLE10 9998 9998 10000 3.5351E+03 5.6940E-04 1.5625E-02 7.4686E+00 9.0493E-08
12 LUKVLE3 2 2 10000 2.7587E+01 7.6157E-06 3.8147E-06 3.5032E+00 2.1330E-10
13 LUKVLE6 4999 4999 9999 6.2864E+05 9.2954E-06 7.4506E-09 5.1310E+00 3.0809E-12
14 LUKVLI10 9998 0 10000 3.5351E+03 2.3222E-03 1.2500E-01 4.9544E+00 2.4736E-09
15 LUKVLI11 6664 0 9998 5.0882E-05 8.3197E-04 2.9802E-08 4.7913E+00 2.6160E-08
16 LUKVLI13 6664 0 9998 1.3219E+02 4.8303E-04 1.8626E-09 9.9030E+00 4.8814E-08
17 LUKVLI18 7497 0 9997 2.8250E-04 7.0668E-04 7.4506E-09 3.3149E+01 8.4118E-09
18 LUKVLI3 2 0 10000 6.7819E+02 9.2782E-06 2.3283E-10 3.9321E+00 4.4420E-12
19 LUKVLI6 4999 0 9999 6.2864E+05 2.2232E-06 1.9531E-03 3.0957E+01 5.8365E-12
20 LUKVLI9 6 0 10000 9.9893E+02 3.9280E-04 7.6294E-06 1.6746E+00 0.0000E+00
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Table 5.3: Results on 107 Cuter problems
Name Num Con Num Eq Num Var Obj Opt Err Rho Time Violation

1 AIRPORT 42 0 84 4.7953e+04 1.3950e-02 3.0518e-05 2.3006e-01 3.6113e-10
2 ALJAZZAF 1 1 1000 3.7439e+04 2.0213e-06 7.8125e-03 6.8390e-01 2.0107e-14
3 ALLINITA 4 2 4 2.8684e+01 1.5524e-04 1.2500e-01 7.2233e-02 6.8748e-08
4 ALSOTAME 1 1 2 8.2085e-02 6.3862e-04 3.9062e-03 2.5290e-02 4.7503e-08
5 BT1 1 1 2 -1.0000e+00 4.3737e-05 1.8626e-09 4.6707e-02 4.8406e-14
6 BT11 3 3 5 8.2489e-01 1.6904e-04 1.2500e-01 4.9819e-02 3.9628e-08
7 BT12 3 3 5 6.1881e+00 1.6299e-07 2.5000e-01 3.2483e-02 6.8876e-08
8 BT2 1 1 3 3.2633e-02 1.4950e-02 3.9062e-03 5.5410e-02 7.5071e-08
9 BT4 2 2 3 -4.5511e+01 3.5266e-05 3.9062e-03 3.2753e-02 2.4067e-09

10 BT5 2 2 3 9.6172e+02 2.1414e-04 1.5625e-02 4.3901e-02 4.9495e-08
11 BT6 2 2 5 2.7704e-01 5.1709e-06 1.1921e-07 6.0202e-02 2.6437e-09
12 BT7 3 3 5 3.0650e+02 4.8483e-06 1.5625e-02 6.6016e-02 1.7396e-08
13 BT8 2 2 5 1.0000e+00 4.2395e-04 3.1250e-02 2.2081e-02 5.9359e-09
14 CHANDHEQ 100 100 100 0.0000e+00 1.7969e-04 1.0000e+00 3.3283e-01 4.6096e-08
15 DIPIGRI 4 0 7 6.8063e+02 3.3466e-04 4.8828e-04 3.1236e-01 1.9433e-09
16 DIXCHLNG 5 5 10 4.2749e+02 3.9897e-06 1.5625e-02 8.4243e-02 3.6375e-08
17 DTOC1NA 3996 3996 5998 4.1389e+00 3.8650e-05 3.9062e-03 3.6857e+00 9.9967e-08
18 DTOC1NB 3996 3996 5998 7.1388e+00 1.2129e-04 3.9062e-03 1.2981e+01 7.4492e-08
19 DTOC1ND 3996 3996 5998 4.7603e+01 5.5031e-05 4.7684e-07 5.4458e+00 1.9515e-08
20 EG3 20000 1 10001 3.4834e-04 2.6197e-02 1.5625e-02 7.0970e+01 5.2612e-10
21 EIGENA2 1275 1275 2550 3.0204e-12 3.3435e-08 3.9062e-03 1.9689e+00 0.0000e+00
22 EIGENACO 1275 1275 2550 4.5418e-09 6.2817e-07 3.9062e-03 2.1289e+00 1.7764e-15
23 EIGENBCO 1275 1275 2550 4.9000e+01 7.8237e-05 6.2500e-02 1.6198e+00 2.8207e-09
24 FLT 2 2 2 4.2055e-13 9.0334e-06 1.0000e+00 4.6640e-02 3.6520e-08
25 GILBERT 1 1 5000 2.4595e+03 3.8443e-05 1.9531e-03 5.5580e-01 9.8979e-09
26 HIMMELP2 1 0 2 -6.2054e+01 6.5287e-04 5.9605e-08 1.4293e-01 0.0000e+00
27 HIMMELP3 2 0 2 -5.9013e+01 6.6207e-01 6.2500e-02 4.2135e-02 0.0000e+00
28 HIMMELP4 3 0 2 -5.9013e+01 6.6207e-01 6.2500e-02 4.1402e-02 0.0000e+00
29 HIMMELP5 3 0 2 -5.9013e+01 2.7917e-01 1.2500e-01 8.1755e-02 0.0000e+00
30 HIMMELP6 5 0 2 -5.9012e+01 9.6979e-04 1.2500e-01 5.6715e-02 0.0000e+00
31 HS100 4 0 7 6.8063e+02 7.8432e-04 4.8828e-04 2.7450e-01 4.2046e-09
32 HS100LNP 2 2 7 6.8063e+02 4.7574e-04 9.7656e-04 1.7785e-01 8.4029e-09
33 HS100MOD 4 0 7 6.7868e+02 4.1630e-04 1.2207e-04 9.7013e-02 2.3844e-08
34 HS104 5 0 8 3.9512e+00 9.7380e-05 1.9531e-03 4.7981e-01 6.2558e-09
35 HS108 13 0 9 -8.6603e-01 3.3550e-06 5.0000e-01 5.5075e-02 5.7265e-08
36 HS11 1 0 2 -8.4985e+00 5.7314e-05 3.1250e-02 4.6349e-02 9.1747e-11
37 HS113 8 0 10 2.4306e+01 1.4980e-09 6.2500e-02 2.0193e-01 8.0283e-09
38 HS12 1 0 2 -3.0000e+01 3.5007e-06 6.2500e-02 5.7973e-02 7.6328e-09
39 HS13 1 0 2 9.9175e-01 5.0040e-05 9.5367e-07 1.4292e-01 7.0685e-08
40 HS14 2 1 2 1.3935e+00 2.3381e-10 1.2500e-01 4.2471e-02 5.2969e-08
41 HS16 2 0 2 2.3145e+01 3.6807e-07 6.2500e-02 3.4749e-02 0.0000e+00
42 HS17 2 0 2 1.0000e+00 6.3146e-10 3.9062e-03 4.4620e-02 0.0000e+00
43 HS18 2 0 2 5.0000e+00 6.0053e-05 1.2500e-01 4.0808e-02 3.4408e-08
44 HS20 3 0 2 4.0199e+01 2.7355e-06 1.2500e-01 4.7416e-02 3.4262e-08
45 HS22 2 0 2 1.0000e+00 1.2487e-07 2.5000e-01 2.7152e-02 3.3388e-11
46 HS23 5 0 2 2.0000e+00 2.1838e-06 3.9062e-03 5.0496e-02 6.8905e-08
47 HS26 1 1 3 5.0373e-12 2.3155e-07 1.5625e-02 1.8848e-01 9.4935e-08
48 HS29 1 0 3 -2.2627e+01 2.7747e-06 7.8125e-03 7.3125e-02 1.3377e-10
49 HS30 1 0 3 1.0017e+00 5.7976e-02 6.2500e-02 1.2873e-01 0.0000e+00
50 HS31 1 0 3 6.0000e+00 1.6950e-04 3.1250e-02 4.5165e-02 1.0233e-10
51 HS32 2 1 3 1.0000e+00 2.2826e-04 6.2500e-02 5.7293e-02 2.6133e-08
52 HS33 2 0 3 -4.0000e+00 3.0884e-06 6.2500e-02 1.3810e-01 0.0000e+00
53 HS40 3 3 4 -2.5000e-01 1.2096e-06 5.0000e-01 4.2027e-02 7.6550e-09
54 HS42 2 2 4 1.3858e+01 7.1245e-06 7.8125e-03 5.7693e-02 5.4777e-11
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Name Num Con Num Eq Num Var Obj Opt Err Rho Time Violation

55 HS43 3 0 4 -4.4000e+01 6.8124e-05 6.2500e-02 3.6393e-02 1.4527e-08
56 HS46 2 2 5 9.3137e-07 2.5550e-05 6.2500e-02 8.9202e-02 6.7832e-09
57 HS47 3 3 5 6.9730e-10 2.2706e-06 1.5625e-02 1.3525e-01 8.0704e-08
58 HS56 4 4 7 -3.4560e+00 1.3664e-04 3.9062e-03 1.2140e-01 3.3481e-08
59 HS57 1 0 2 3.0646e-02 9.6346e-04 6.2500e-02 2.5512e-02 0.0000e+00
60 HS59 3 0 2 -7.8028e+00 3.4936e-04 1.2500e-01 4.9485e-02 0.0000e+00
61 HS6 1 1 2 3.0201e-15 6.0951e-07 1.2500e-01 4.1996e-02 1.3662e-11
62 HS60 1 1 3 3.2568e-02 5.5686e-06 1.9073e-06 7.9263e-02 6.6209e-09
63 HS61 2 2 3 -1.4365e+02 4.3415e-06 6.2500e-02 2.9176e-02 2.2308e-08
64 HS63 2 2 3 9.6172e+02 2.2026e-04 3.1250e-02 5.1150e-02 7.2822e-08
65 HS65 1 0 3 1.0444e+00 3.5713e-01 4.6566e-10 3.1992e-01 4.5364e-08
66 HS68 2 2 4 -5.0049e-01 1.1153e-01 7.4506e-09 1.3554e-01 7.2379e-08
67 HS7 1 1 2 -1.7321e+00 1.2479e-04 6.2500e-02 4.2299e-02 6.5859e-09
68 HS70 1 0 4 7.8439e-03 9.5845e-04 6.2500e-02 3.1567e-01 0.0000e+00
69 HS77 2 2 5 2.4151e-01 1.7935e-04 1.2500e-01 3.7987e-02 9.3021e-08
70 HS78 3 3 5 -2.9197e+00 1.2998e-06 1.2500e-01 4.0654e-02 5.4896e-08
71 HS79 3 3 5 7.8858e-02 8.2159e-03 3.9062e-03 9.7829e-02 3.9336e-09
72 HS80 3 3 5 5.3950e-02 5.7338e-08 6.2500e-02 1.1381e-01 5.3509e-08
73 HS81 3 3 5 5.3950e-02 1.7344e-05 6.2500e-02 1.3362e-01 1.9773e-08
74 HS83 3 0 5 -3.1026e+04 2.6364e-06 2.3842e-07 9.8275e-02 0.0000e+00
75 HS85 21 0 5 -1.2542e+00 2.9804e-02 6.2500e-02 4.0158e-02 0.0000e+00
76 HS88 1 0 2 1.3627e+00 7.3488e-05 9.7656e-04 1.0558e-01 1.6047e-14
77 HS89 1 0 3 1.3627e+00 2.2035e-04 3.9062e-03 1.2265e-01 2.3512e-09
78 HS90 1 0 4 1.3627e+00 2.6604e-04 9.7656e-04 1.2304e-01 1.3842e-09
79 HS91 1 0 5 1.3627e+00 1.1932e-02 1.9531e-03 1.0752e-01 9.3232e-11
80 HS92 1 0 6 1.3627e+00 1.6373e-03 9.7656e-04 1.5294e-01 5.2365e-13
81 JANNSON3 3 1 20000 1.9999e+04 1.6690e-03 5.0000e-01 3.2662e+00 8.4759e-10
82 JANNSON4 2 0 10000 9.8020e+03 2.7347e-09 7.8125e-03 1.6501e+00 4.4094e-11
83 LUKVLE1 9998 9998 10000 6.2325e+00 2.7028e-07 2.5000e-01 2.5797e+00 3.6903e-12
84 LUKVLE10 9998 9998 10000 3.5351e+03 5.6940e-04 1.5625e-02 7.4686e+00 9.0493e-08
85 LUKVLE3 2 2 10000 2.7587e+01 7.6157e-06 3.8147e-06 3.5032e+00 2.1330e-10
86 LUKVLE6 4999 4999 9999 6.2864e+05 9.2954e-06 7.4506e-09 5.1310e+00 3.0809e-12
87 LUKVLI10 9998 0 10000 3.5351e+03 2.3222e-03 1.2500e-01 4.9544e+00 2.4736e-09
88 LUKVLI11 6664 0 9998 5.0882e-05 8.3197e-04 2.9802e-08 4.7913e+00 2.6160e-08
89 LUKVLI12 7497 0 9997 4.3896e-03 1.5834e-02 2.3842e-07 3.8613e+00 0.0000e+00
90 LUKVLI13 6664 0 9998 1.3219e+02 4.8303e-04 1.8626e-09 9.9030e+00 4.8814e-08
91 LUKVLI17 7497 0 9997 7.8051e+02 1.9460e-02 1.8626e-09 7.0678e+01 7.7344e-09
92 LUKVLI18 7497 0 9997 2.8250e-04 7.0668e-04 7.4506e-09 3.3149e+01 8.4118e-09
93 LUKVLI3 2 0 10000 6.7819e+02 9.2782e-06 2.3283e-10 3.9321e+00 4.4420e-12
94 LUKVLI5 9996 0 10002 5.2679e-01 4.8347e-02 9.3132e-10 1.1230e+02 1.1745e-08
95 LUKVLI6 4999 0 9999 6.2864e+05 2.2232e-06 1.9531e-03 3.0957e+01 5.8365e-12
96 LUKVLI9 6 0 10000 9.9893e+02 3.9280e-04 7.6294e-06 1.6746e+00 0.0000e+00
97 MARATOS 1 1 2 -1.0000e+00 1.1276e-08 5.0000e-01 3.8167e-02 1.9167e-09
98 MATRIX2 2 0 6 1.3331e-09 5.1474e-05 1.0000e+00 9.7082e-02 2.5839e-08
99 MISTAKE 13 0 9 -1.0000e+00 3.4154e-05 5.0000e-01 8.5467e-02 8.6954e-09

100 MWRIGHT 3 3 5 2.4979e+01 4.1174e-06 1.0000e+00 1.0378e-01 9.8647e-09
101 ORTHREGB 6 6 27 7.3123e-15 8.7122e-08 1.0000e+00 1.0898e-01 3.2428e-08
102 SYNTHES1 6 0 6 7.5930e-01 9.1389e-06 6.2500e-02 6.5607e-02 1.2977e-10
103 TFI1 101 0 3 5.3347e+00 7.8091e-05 3.9062e-03 1.9285e-01 1.9879e-11
104 TWOBARS 2 0 2 1.5087e+00 1.2967e-05 2.5000e-01 7.9626e-02 3.7149e-10
105 ZECEVIC3 2 0 2 9.7309e+01 4.2420e-05 3.1250e-02 6.8378e-02 1.4316e-10
106 ZECEVIC4 2 0 2 7.5577e+00 6.3717e-02 3.1250e-02 9.0297e-02 0.0000e+00
107 ZY2 2 0 3 2.0000e+00 3.0884e-06 6.2500e-02 8.4606e-02 0.0000e+00
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Chapter 6

Conclusion

In this dissertation, we have presented a SQO method named SQuID that possesses global

and fast local convergence guarantees for both feasible and infeasible problems, two matrix-

free solvers called IRWA and ADAL for approximately solving the exact penalty subprob-

lem. The techniques in methods are incorporated to construct a penalty-SQO method

with dynamic penalty parameter updates for solving large-scale problems.

Novelties of SQuID are its unique two-phase approach and carefully designed updat-

ing strategy for the penalty parameter. The subproblems in each phase and the penalty

parameter update are designed to strike a balance between moving toward feasibility and

optimality in each iteration. Near an optimal point satisfying common assumptions, the

penalty parameter remains constant and the algorithm reduces to a classical SQO method,

yielding fast local convergence. Similarly, near an infeasible stationary point, the penalty

parameter is reduced sufficiently quickly to yield fast infeasibility detection. The conver-

gence properties that we have proved for our algorithm were illustrated empirically on test

sets of feasible and infeasible problems.

We remark, however, that there remain various practical issues that one faces when

considering an implementation of SQuID. As with any SQO method, the primary concern

is the efficiency of the QO subproblem solver. This is especially the case when one wishes

to use exact second order derivative information and the resulting Hessian matrices are
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not positive definite. We have employed a Hessian modification strategy in our numerical

experiments, but as for any SQO method that employs such a strategy, these modifications

are cumbersome in large-scale settings and may inhibit superlinear convergence. We leave

it a subject of future research to investigate ways in which inexactness can be incorporated

into the subproblem solves and negative curvature can be handled, knowing that the

algorithm and analysis presented in this chapter provides a strong backbone for rapid

infeasibility detection when such additional features are developed.

The primary novelty of our subproblem solvers is a newly proposed IRWA for solving

such problems involving arbitrary convex sets of the form (4.1.3). In each iteration of

our IRWA algorithm, a quadratic model of a relaxed problem is formed and solved to

determine the next iterate. Similarly, the ADAL algorithm that we present also has as its

main computational component the minimization of a convex quadratic subproblem. Both

solvers can be applied in large scale settings, and both can be implemented matrix-free.

Variations of our algorithms were implemented and the performance of these imple-

mentations were tested. Our test results indicate that both types of algorithms perform

similarly on many test problems. However, a test on an `1-SVM problem illustrates that

in some applications the IRWA algorithms can have superior performance. While the

accelerated version of both methods is the preferred implementation, we have provided

global convergence and complexity results for unaccelerated variants of the algorithms.

Complexity results for accelerated versions remains an open issue.

We proposed a novel dynamic penalty parameter updating strategy name DUST for

matrix-free SQO for solving nonlinear optimization problems. In contemporary penalty

SQO methods, the common strategy is to update the penalty parameter after a subproblem

(or a sequence of them) has been solved. This may lead to inefficiencies if the parameter is

slow to adapt to the problem scaling or structure. By contrast, we propose an approach to

update a penalty parameter during the optimization process for each subproblem, where

the goal is to produce a search direction that simultaneously predicts progress towards

feasibility and optimality.
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We prove that our approach yields reasonable (i.e., not excessively small) values of the

penalty parameter and illustrate the behavior of our approach via numerical experiments.

We first incorporate DUST in an ADAL QO solver and test it on small-scale problems, and

then in a Coordinate Descent QO solver and test it on small- to medium-scale problems.

Both experiments show the acceptable performance of DUSt.

We have to mention that our implementation is simply a basic SQO framework with-

out thorough theoretical guarantees and techniques handling practical issues. Therefore,

the performance of our strategy may be greatly improved after carefully designing the

algorithm. We have proved the boundedness of ρ during solving a single subproblem. It

is interesting to see whether ρ is still bounded near an optimal solution of the NLO when

running the SQO method.
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Appendix

This appendix includes the small infeasible test examples, (each with only two or three

variables), all of which are infeasible and have the infeasible stationary point located at the

origin. Typically, algorithms for NLO require a few assumptions to guarantee nice conver-

gence properties: regularity, which means the gradients of the equality constraints and ac-

tive inequality constraints are linearly independent; strict complementarity, which requires

the Lagrange multipliers for the equality constraints and active inequality constraints to

be nonzero; second-order sufficiency, which implies the Hessian of the Lagrangian function

is (sufficiently) positive definite on the null space of gradients of the equality constraints

and active inequality constraints. In order to have a variety of interesting test problems,

the ones we have constructed satisfy different combinations of these assumptions (when

observed in the context of the infeasibility problem (3.2.2) after slack variables are added

to produce a constrained problem); in total we end up with eight different combinations

which are listed in the Table 1 (Y=Yes, N=No). For Example 4 and Example 6 where the

regularity condition does not hold, we observe that the multipliers cannot be uniquely de-

termined, and some of them violate strictly complementarity. Therefore, it is not possible

to create an instance with the regularity condition violated and strictly complementarity

always satisfied, so we indicate Y/N for strict complementarity for such cases. The for-

mulations of these examples are given in the Appendix. Another problem, Example 9 —

which is not mentioned in the table — is a feasible problem for which we find some curious

results from Filter.
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Table 1: Properties satisfied by text examples

Example Regularity Strictly complementarity Second-order sufficiency

1 Y N Y

2 N N Y

3 Y Y Y

4 N Y/N Y

5 Y Y N

6 N Y/N N

7 N N N

8 Y N N

The formulations for the examples are given below, with their properties verified.

Example 1. Consider

min x1 + x2

s.t. − x3
1 − x1 ≥ 0

− 1− x2
1 − x2

2 ≥ 0.

The only point is (0, 0)T with λ1 = 0, λ2 = 1, σ1 = 1, σ2 = 0, and r1 = 0, r2 = 1. The

first constraint is active at (0, 0), but the corresponding multiplier is λ1 = 0, so the strictly

complementarity condition is not satisfied. At (0, 0)T , the gradient of the first constraint

is (−1, 0)T , so the regularity condition is satisfied. The matrix

W (x, λ) = −[
∑
i∈A

λi∇2gi(x) +
∑
i∈V
∇2gi(x)] = −λ2∇2g2(x) =

 2 0

0 2


is positive definite for all d 6= 0 and so is positive definite for all d such that (−1, 0)d = 0.

The initial point is (10, 15).
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Example 2. Consider

min x1 + x2

s.t. − ex1 − x2 + 1 ≥ 0

− x2
1 + x2 ≥ 0

− x2
1 − x2 ≥ 0

− x2
2 − 1 ≥ 0.

(0, 0)T is the only KKT point with λ1 = 0, σ1 = 0, r1 = 0, r2 = r3 = 0, λ4 = 1, σ4 = 0,

r4 = 1, σ2 and σ3 can be any value in [0, 1] and λ2 = 1−σ2, λ3 = 1−σ3. The last constraint

is not satisfied. At (0, 0), the gradient of active constraints are (−1,−1)T , (0, 1)T , and

(0,−1)T . They are linearly dependent; so the regularity condition is violated. The matrix

W (x, λ) = −λ2∇2g2(x)− λ3∇2g3(x)− λ4∇2g4(x)

= λ2

 2 0

0 0

+ λ3

 2 0

0 0

+

 0 0

0 2

 ,

and the set {d|(−1,−1)d = 0, (0, 1)d = 0, (0,−1)d = 0, d 6= 0} = ∅. So the second-order

sufficiency condition is satisfied. The initial point is (20, 20).

Example 3. Consider

min x1 + x2

s.t. − x2
1 + x2 + 1 ≥ 0

− x2
1 − x2

2 − 1 ≥ 0.

One can show (0, 0)T is the only KKT point with λ1 = 0, λ2 = 1, r1 = 0, r2 = 1, σ1 = 1

and σ2 = 0. There is no active constraint. So the regularity condition naturally holds.

The matrix

W (x, λ) =

 2 0

0 2


is positive definite, so the second-order sufficiency condition is satisfied. The initial point

is (−20,−20).
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Example 4. Consider

min x1 + x2

s.t. 0.5x2
1 ≥ 0

− x2
1 − x2

2 − 1 ≥ 0.

One can verify that (0, 0)T is the only KKT point with λ1 being any value in [0, 1], λ2 = 1,

r1 = 0, r2 = 1, σ1 being any value in [0, 1] and σ2 = 0. The first constraint is active and

its gradient is (0, 0)T . The matrix

W (x, λ) = λ1

 −1 0

0 0

+

 2 0

0 2


is positive definite (since λ1 ∈ [0, 1]). So the second-order sufficient condition is satisfied.

The initial point is (20, 20).

Example 5. Consider

min x1 + x2

s.t. − x2
1 + x2 + 1 ≥ 0

− x4
1 − x4

2 − 1 ≥ 0.

One can verify (0, 0)T is the only KKT point with λ1 = 0, λ2 = 1, r1 = 0, r2 = 1, σ1 = 1

and σ2 = 0. There is no active constraint. So the regularity condition naturally holds.

The matrix

W (x, λ) =

 0 0

0 0


is not positive definite, so the second-order sufficiency condition is violated. The initial

point is (20, 20).

Example 6. Consider

min x1 + x2 + x3

s.t. − x4
1 − x4

2 − 1 ≥ 0

− x4
3 ≥ 0.
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The only KKT point is (0, 0, 0)T with λ1 = 1, σ1 = 0, r1 = 1, λ2 can be any value in [0, 1],

σ2 = 1−λ2 and r2 = 0. The second constraint is active at (0, 0, 0)T , but the corresponding

multiplier is not necessarily in (0, 1),so the strictly complementarity condition may not hold

for some values. At (0, 0, 0)T , the gradient of the active constraint is (0, 0, 0)T . It is linearly

dependent, so the regularity condition is violated. The matrix

W (x, λ) = −λ1∇2g1(x)− λ2∇2g2(x)

=


0 0 0

0 0 0

0 0 0

+ λ2


0 0 0

0 0 0

0 0 0

 =


0 0 0

0 0 0

0 0 0

 ,

and the set {d|(0, 0, 0)d = 0, d 6= 0} = R3. So the second-order sufficiency condition is not

satisfied. The initial point is (−10, 0.5, 0.5).

Example 7. Consider

min x1 + x2 + x3

s.t. − ex1 − x2 + 1 ≥ 0

− x2
1 + x2 ≥ 0

− x2
1 − x2 ≥ 0

− x2
2 − x4

3 − 1 ≥ 0.

Point (0, 0, 0)T is the only KKT point with λ1 = 0, σ1 = 1, r1 = 0, r2 = r3 = 0, λ4 = 1,

σ4 = 0, r4 = 1, σ2 and σ3 can be any value in [0, 1] and λ2 = 1 − σ2, λ3 = 1 − σ3.

The first constraint is active at (0, 0, 0)T , but the corresponding multiplier is λ1 = 0,so the

strictly complementarity condition is not satisfied. At (0, 0, 0)T , the gradients of the active

constraints are (−1,−1, 0)T , (0,−1, 0)T , and (0,−1, 0)T . They are linearly independent,
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so the regularity condition is violated. The matrix

W (x, λ) = −λ2∇2g2(x)− λ3∇2g3(x)− λ4∇2g4(x)

= λ2


1 0 0

0 0 0

0 0 0

+ λ3


2 0 0

0 0 0

0 0 0

+


0 0 0

0 2 0

0 0 0

 ,

and the set {d|(−1,−1, 0)d = 0, (0, 1, 0)d = 0, (0,−1, 0)d = 0, d 6= 0} = {(0, 0, x3)T |x3 ∈

R}. So the second-order sufficiency condition is not satisfied. The initial point is (20, 20, 20).

Example 8. Consider

min x1 + x2

s.t. − x3
1 − x1 ≥ 0

− 1− x4
1 − x4

2 ≥ 0.

The only KKT point is x1 = 0, x2 = 0 with λ1 = 0, λ2 = 1, σ1 = 1, σ2 = 0, and r1 = 0,

r2 = 1. The first constraint is active, but the corresponding multiplier is λ1 = 0, so

the strictly complementarity condition is violated. At (0, 0)T , the gradient of the first

constraint is (−1, 0)T , so the regularity condition is satisfied. The matrix

W (x, λ) = −[
∑
i∈A

λi∇2gi(x) +
∑
i∈V
∇2gi(x)] = −λ2∇2g2(x) =

 0 0

0 0


is not positive definite. The initial point is (10, 15).

Example 9. The problem is given by

min x3
1 + 7x2

2

s.t. 3x2 − x2(x1 + 6)2 − 1 ≥ 0

9(x1 + 4)2 − 5− (x2 − 3)2 ≥ 0

2x1 − 3(x2 + 2)2 + 104 ≥ 0

− 4(x2 − 5)2 − 2− 3x1 ≥ 0.
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