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Abstract

Nonsmooth optimization problems arise in a variety of applications including robust con-

trol, robust optimization, eigenvalue optimization, compressed sensing, and decomposition

methods for large-scale or complex optimization problems. When convexity is present,

such problems are relatively easier to solve. Optimization methods for convex nonsmooth

optimization have been studied for decades. For example, bundle methods are a leading

technique for convex nonsmooth minimization. However, these and other methods that

have been developed for solving convex problems are either inapplicable or can be ineffi-

cient when applied to solve nonconvex problems. The motivation of the work in this thesis

is to design robust and efficient algorithms for solving nonsmooth optimization problems,

particularly when nonconvexity is present.

First, we propose an adaptive gradient sampling (AGS) algorithm, which is based

on a recently developed technique known as the gradient sampling (GS) algorithm. Our

AGS algorithm improves the computational efficiency of GS in critical ways. Then, we

propose a BFGS gradient sampling (BFGS-GS) algorithm, which is a hybrid between a

standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the GS method. Our BFGS-

GS algorithm is more efficient than our previously proposed AGS algorithm and also

competitive with (and in some ways outperforms) other contemporary solvers for nons-

mooth nonconvex optimization. Finally, we propose a few additional extensions of the

GS framework—one in which we merge GS ideas with those from bundle methods, one in

which we incorporate smoothing techniques in order to minimize potentially non-Lipschitz

objective functions, and one in which we tailor GS methods for solving regularization prob-

lems.
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We describe all the proposed algorithms in detail. In addition, for all the algorithm

variants, we prove global convergence guarantees under suitable assumptions. Moreover,

we perform numerical experiments to illustrate the efficiency of our algorithms. The test

problems considered in our experiments include academic test problems as well as practical

problems that arise in applications of nonsmooth optimization.
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Chapter 1

Introduction

This dissertation involves a study of the minimization of locally Lipschitz objective func-

tions that may be both nonsmooth and nonconvex. Problems of this type arise in a variety

of applications including robust control [27, 28, 58, 59], robust optimization [3, 23, 60],

eigenvalue optimization [1], compressed sensing [12, 20], and decomposition methods for

large-scale or complex optimization problems [5, 52]. Solutions of such problems often

lie at points of nondifferentiability of the objective. This makes it imperative to design

robust and efficient algorithms for the optimization of nonsmooth functions.

A variety of algorithms have been proposed for nonsmooth optimization. Many, how-

ever, are based on the assumption that the objective function is convex. For example,

bundle methods [34], which rely on the ability to produce linear underestimators of the

objective (i.e., cutting planes) are a leading technique for convex nonsmooth minimization.

There are extensions to traditional bundle methods for solving nonconvex problems, but

these methods are complex and we believe that alternative strategies may be better suited

for handling nonconvexity.

The goal of the research outlined in this thesis is to develop, analyze, and implement

efficient methods for solving nonsmooth optimization problems, particularly when non-

convexity is present. We study and propose extensions for a recently developed technique

known as the gradient sampling (GS) algorithm [9, 39]. In contrast to bundle methods,

GS handles nonconvexity without any extra algorithmic modifications, which makes it

3



an attractive starting point for devising new methods for nonconvex optimization. The

methods that we propose also incorporate quasi-Newton strategies, for which many have

observed good practical performance, even when they are applied to solve nonsmooth

problems [44].

After providing theoretical background on nonconvex optimization problems and algo-

rithms that have been proposed for solving them, we begin the main part of this thesis by

describing research that addresses some efficiency issues of GS. In Chapter 2, we propose an

adaptive gradient sampling (AGS) algorithm, which improves the computational efficiency

of GS by incorporating an adaptive sampling technique and Hessian updating strategies.

Our numerical experiments illustrate that AGS outperforms GS in critical ways. In Chap-

ter 3, we propose a BFGS Gradient Sampling (BFGS-GS) Algorithm, which is a hybrid

between a standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the GS method. The

algorithm has been implemented in C++ and the results of numerical experiments are

presented to illustrate the efficacy of the proposed numerical method.

The remainder of the thesis considers further extensions to the GS framework. In

particular, in Chapter 4.1, we propose a bundle gradient sampling (BGS) algorithm that

merges GS strategies with those of bundle methods so that the overall approach remains

effective for convex problems and does not require algorithmic modifications to handle

nonconvexity. We combine the two strategies into a single “bundle sampling” framework,

provide theoretical convergence guarantees that are on par with those currently held by

GS, and provide the results of numerical experiments to illustrate the computational per-

formance of our new method. In Chapter 4.2, we propose a smoothing BFGS gradient

sampling algorithm, which is based on the smoothing method and our BFGS-GS algorithm

for nonsmooth optimization. A motivation for the smoothing approach is that it has the-

oretical convergence guarantees even when the problem functions are not Lipschitz. (This

is more than can be said about the other algorithms in the thesis.) Numerical results are

presented to illustrate that our algorithm is competitive with another recently proposed

smoothing method for non-Lipschitz optimization. In Chapter 4.3, we tailor GS methods

to solve regularized problems. Global convergence analysis is provided. Preliminary nu-

4



merical experiments are performed to compare different algorithmic variations of GS with

another algorithm proposed for solving regularization problems.

1.1 Theoretical Background

In this section, we provide essential definitions and background for the study of minimizing

nonsmooth functions. We also outline notation that will be used throughout the thesis.

We consider the unconstrained problem

min
x∈Rn

f(x) (1.1)

where f : Rn → R is locally Lipschitz and continuously differentiable in an open dense

(see below) subset D of Rn. A function f : Rn → R is Lipschitz continuous [49] if there

exists a constant L > 0 such that

‖f(x)− f(y)‖2 ≤ L‖x− y‖2 (1.2)

for all x, y ∈ Rn. The constant L is called the Lipschitz constant which is independent of

x and y. There are a variety of convenient features of Lipschitz continuous functions. In

short, a Lipschitz continuous function is limited in how fast it can change. Also, for any

two points on the graph of a Lipschitz continuous function, the absolute value of the slope

of the line joining those two points is bounded above by a constant. Given a particular

point x, a function f : Rn → R is locally Lipschitz continuous [49] at x ∈ Rn with a

constant L > 0 if (1.2) holds for all y and z in a neighborhood of x.

A subset D of Rn is called dense [57] if any neighborhood of x ∈ Rn contains at least

one point in D. Note that this means that the closure of D is Rn and that the interior

of the complement of D is the empty set. An important consequence of our assumption

that f is continuously differentiable in such a set D is that there exist points at which f

is differentiable in any arbitrarily small neighborhood of a given point x.

We now turn to notions of stationarity for locally Lipschitz functions that are essential

5



for deriving optimality conditions for problem (1.1). We define the Euclidean ε-ball about

x to be

Bε(x) := {x : ‖x− x‖2 ≤ ε}. (1.3)

Moreover, let cl convS denote the closure of the convex hull of S ⊆ Rn. The multifunction

Gε(x) := cl conv∇f(Bε(x) ∩ D) (1.4)

can then be seen as the closure of the convex hull of the gradients at all the points in the

intersection of an ε-ball about x and the set D in which f is differentiable. Given these

definitions, the Clarke subdifferential [15] of f at x can be expressed as the following:

∂f(x) =
⋂
ε>0

Gε(x).

A point x is stationary for f if 0 ∈ ∂f(x). The gradient sampling algorithm discussed in

detail later on in this thesis makes use of an extension to the subdifferential, namely the

ε-subdifferential introduced by Goldstein [24]. The Clarke ε-subdifferential is given by

∂εf(x) := cl conv ∂f(Bε(x)),

and x is ε-stationary if 0 ∈ ∂εf(x). Observe from this definition that a reasonable strategy

for computing a stationary point for f is to compute a sequence of ε-stationary points for

ε→ 0.

As previously mentioned, we are interested in the minimization of nonsmooth func-

tions that may also be nonconvex. We do, however, make extensive comments pertaining

exclusively to convex functions, and it is important to distinguish definitions of quantities

that suppose convexity. A function f : Rn → R is convex [53] if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any x, y ∈ Rn and λ ∈ [0, 1]. Namely, a function is said to be convex if the graph of

6



the function lies below the line segment joining any two points of the graph. It is known

that a real-valued convex function is guaranteed to be locally Lipschitz continuous at any

x. Moreover, the subdifferential of a convex function f at x is the set

∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + gT (y − x) ∀y ∈ Rn}.

Each vector g ∈ ∂f(x) is called a subgradient [53] of f at x.

1.2 Classical Algorithms

The nondifferentiability of the objective function f in (1.1) excludes the direct application

of smooth gradient-based algorithms. Therefore, in this section we introduce some basic

methods for solving nonsmooth optimization problems: the subgradient method, cutting

plane method, proximal point method, bundle method, gradient sampling method, and

smoothing method. For the first four algorithms in this section, note that all rely on the

assumption that f is convex. This is important as, later on, we aim to design algorithms

that do not make this assumption. Our descriptions of the first four algorithms in this

section are based on the descriptions in [53]. The description of the gradient sampling

(GS) method is based on the description in [9] and [39]. The description of the smoothing

method is based on the description in [13].

1.2.1 Subgradient Method

As the gradient descent method is the most basic algorithm for smooth differentiable

optimization, the subgradient method is the most basic method for nonsmooth problems.

The approaches are nearly identical, but the idea behind the subgradient method is to

replace the gradient of f at x with any arbitrary subgradient. Given an iterate xk, an

iteration of the subgradient method is given by

xk+1 = xk − αkgk for k = 0, 1, 2, · · · (1.5)

7



where gk ∈ ∂f(xk) is a subgradient of f at xk and αk is a positive step size.

There are some serious drawbacks of the subgradient method. First, note that a

negative subgradient direction gk is not necessarily a direction of descent of f from xk.

Therefore, under various step size selection rules, the sequence {f(xk)} in subgradient

methods is not guaranteed to be nonincreasing. Moreover, some standard line search

techniques (e.g., the Armijo or Wolfe conditions [49]) cannot be applied for choosing αk.

There are certain step size selection rules that do guarantee global convergence of the

method, but in many cases these rules are important only for their theoretical significance

and are rarely used in practice due to their low efficiency. The key property of the

subgradient method is that a small step in the direction negative to gk will decrease the

distance to the optimal solution set. This fact is used in the proofs of many convergence

theorems [53].

Another drawback of the subgradient method is that a theoretically sound and prac-

tically robust termination condition is elusive in many applications. For one thing, the

norm of an arbitrary subgradient does not necessarily become small in the neighborhood

of an optimal point, meaning that termination conditions typical in smooth optimization

do not generally apply for nonsmooth problems.

An important special case of the subgradient method is when gk is always chosen to be

the minimum-norm subgradient of f at xk. In such cases, gk is always a descent direction

from any xk that is not a minimizer of f ; in particular, it defines the direction of steepest

descent for f from xk. Despite this nice feature, however, one finds that as in smooth

optimization, algorithms based on steepest descent directions can be slow to converge in

practice. Moreover, computing the steepest descent direction for a nonsmooth function f

at any point is not always a viable option.

Perhaps the only clear advantage of the subgradient method comes from its simple

structure.

8



1.2.2 Cutting Plane Method

Given an assumption of convexity, the idea behind cutting plane methods is to use sub-

gradient inequalities to construct a convex piecewise linear approximation of the objective

function at each iterate xk. Specifically, given points {x1, . . . , xk}, suppose that values

of the objective {f(x1), . . . , f(xk)} and subgradients {g1, . . . , gk} have been accumulated

from previous iterations. We can then construct the following lower approximation of f

at xk:

mCP
k (x) := max

1≤j≤k
{f(xj) + gTj (x− xj)}. (1.6)

The minimization of the model function (1.6) is called the master problem:

min
x∈Rn

mCP
k (x). (1.7)

After solving (1.7), a new iterate xk+1 is obtained. The iterate xk+1, objective value

f(xk+1) and subgradient gk+1 can then be added to the model to construct a new linear

underestimator of f . Each linear piece f(xj) + gTj (x − xj), added at each iteration, is

called a cutting plane (or simply a cut). A key property of the master problem (1.7) is

that, due to the convexity of f , its optimal value provides a lower bound for the optimal

value of (1.1).

The master problem (1.7) can be written equivalently as the following linear optimiza-

tion (LO) problem:

min
(x,z)∈Rn×R

z

s.t. f(xj) + gTj (x− xj) ≤ z, j = 1, . . . , k.

(1.8)

In this formulation, a new constraint is added to the problem after each cutting plane

is computed, which means the number of dual variables is increased by one after each

iteration. This means that re-optimization by a dual method is an attractive option

because it can start with a feasible solution obtained from a previous iteration.

The cutting plane method, when applied to general convex problems, is rather slow.
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One reason for this is that there exist no reliable rules for removing the old cuts, even

when they are inactive at a given solution (1.8). Usually, very many iterations are needed

to achieve satisfactory accuracy in the solution. Only in the special case when the objec-

tive function is also piecewise linear and convex does the cutting plane method become

consistently efficient. Cutting plane methods are important, however, as they form a basis

for more effective techniques.

1.2.3 Proximal Point Method

Consider the function

h(w) := min
x∈Rn

{
f(x) + 1

2‖x− w‖
2
}
. (1.9)

This is known as the Moreau-Yosida regularization of the objective function f(x). If f is

convex, then it can be shown that h(w) is convex and continuously differentiable. (The

Moreau-Yosida regularization is often defined with a positive scalar weighting the proximal

term 1
2‖x−w‖

2. This weight can affect the practical performance of the method, but it is

not necessary for our purposes here or in the subsection on bundle methods below.) The

variable w can be thought of as a centering term. The goal of (1.9) is to minimize the

true objective f as well as stay close to the center wk. (The reason that we use wk’s as

the iterates instead of the xk’s like we did in previous subsections is that we want to be

consistent with the notation defined in bundle methods, which we will introduce in the

next subsection.) In bundle methods, it is necessary to define two sequences: the iterates

xk’s and the centering terms wk’s. The wk’s can also be thought of as the “best iterates

attained so far”.

Using the Moreau-Yosida regularization of f(x), the proximal point method constructs

the following iterative process. At iteration k, given wk, the point x(wk) is computed as

the solution of the problem (1.9). This then defines the iterative sequence

wk+1 = x(wk), k = 1, 2, . . . . (1.10)

Since (1.9) always has a solution, the proximal point method is well-defined. Moreover,

10



by the construction of the Moreau-Yosida regularization, we have h(wk) ≤ f(wk) if we

plug in a feasible solution x = wk to the problem (1.9) with w = wk. We also have

f(wk+1) ≤ h(wk) if we notice that x = x(wk) is the optimal solution to the problem (1.9)

with w = wk. Therefore, we have f(wk+1) ≤ f(wk), k = 1, 2, . . . , namely, the sequence

f(wk) is nonincreasing.

The proximal point method has its disadvantages. It does not appear to be very

practical, because each iteration involves the solution of the optimization problem (1.9),

which is not easy to solve because of the existence of the original objective function f(x)

in the objective of (1.9). However, the proximal point method is an important theoretical

model of various highly efficient methods such as bundle methods, described next.

1.2.4 Bundle Method

Bundle methods are regarded as very effective and reliable methods for nonsmooth op-

timization. The basic idea of bundle methods is to approximate the subdifferential of

the objective function by gathering subgradient inequalities from previous iterations into

a bundle. This makes them similar to cutting plane methods in that they require the

computation of one arbitrary subgradient and the objective value at each new iterate. A

critical difference, however, is that the search direction is obtained by solving a specially

designed quadratic optimization (QO) problem, not a LO problem. This helps bundle

methods avoid some of the disadvantages of a straightforward cutting plane technique.

The bundle method we introduce in this section is a hybrid of the cutting plane method

and the proximal point method that were introduced in previous sections. At iteration k,

we define the following regularized master problem:

min
x∈Rn

mBM
k (x) + 1

2‖x− wk‖
2. (1.11)

This problem is exactly the same as problem (1.9) except that we use a model mBM
k (x)

instead of the true objective f(x). The model mBM
k (x) is defined as the following, which
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is similar to the model (1.7) defined in the cutting plane method:

mBM
k (x) := max

j∈Jk
{f(xj) + gTj (x− xj)}. (1.12)

Here, similar to before, gj ∈ ∂f(xj) are arbitrary subgradients computed during the

iterations in the index set Jk ⊂ {1, . . . , k}. We may think of Jk as being equal to {1, . . . , k},

but note that under certain circumstances an index can be removed from Jk (i.e., a cutting

plane can be removed from mBM
k ) without adversely affecting the performance of the

algorithm.

Let xk+1 be the solution of the regularized master problem (1.11). If the model

mBM
k (x) is exact in the sense that mBM

k (x) = f(x) for all x ∈ Rn, then (1.11) would

be identical to problem (1.9) defined for the proximal point method. We could then set

wk+1 = xk+1 as in the proximal point method to obtain the new wk+1, and, in this man-

ner, all steps would be descent steps. That is, all steps would be those where the objective

function value has decreased. However, due to the fact that mBM
k (x) only approximates

f(x), the solution of (1.11) is different than the solution of (1.9). In particular xk+1 may

not even be better than wk in terms of minimizing f . This necessitates defining a condi-

tion under which the estimate of the optimal solution (i.e., w) is updated or remains the

same.

For this purpose, we introduce a parameter γ used for updating wk. If the ratio of the

observed improvement in the objective value over the predicted improvement is greater

than γ, namely,

f(wk)− f(xk+1)

f(wk)−mk(xk+1)
≥ γ, (1.13)

then we set wk+1 := xk+1. This is called a descent step as we obtain f(wk+1) < f(xk).

Otherwise, we set wk+1 := wk. This is called a null step. Even though the objective has

not improved due to a null step, by the addition of a new cut, it can be shown that the

model mBM
k+1 is a sufficient improvement over mBM

k in that, after a finite number of null

steps, a descent step will be produced.

Similar to the cutting plane method, the regularized master problem (1.11) can be
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equivalently written as a problem with a quadratic objective function and linear con-

straints:

min
(x,z)∈Rn×R

z + 1
2‖x− wk‖

2

s.t. f(xj) + gTj (x− xj) ≤ z, j ∈ Jk.
(1.14)

We provide a detailed description of a bundle method as Algorithm 1 below.

Algorithm 1 The Bundle Method

1: (Initialization): Choose a parameter γ ∈ (0, 1). Choose an initial x0 ∈ D, set J−1 ← ∅,
z0 ← −∞ and k ← 0.

2: (Bundle addition): Compute f(xk) and gk ∈ ∂f(xk). If f(xk) > zk, then Jk ←
Jk−1 ∪ {k}; otherwise, Jk ← Jk−1.

3: (Step update): If k = 0 or if f(xk) ≤ (1 − γ)f(wk−1) + γzk (recall (1.13)), then set
wk ← xk; otherwise set wk ← wk−1.

4: (Search direction computation): Solve the master problem (1.14) to obtain
(xk+1, zk+1).

5: (Stationarity test): If zk+1 = f(wk), then stop; wk is an optimal solution.
6: (Bundle removal): Remove from Jk some (or all) cuts whose Lagrange multipliers at

the solution of the master problem (1.14) are 0.
7: (Iteration increment): Set k ← k + 1 and go to step 2.

We refer to [53] for the following convergence result for BM.

Theorem 1.2.1. Suppose that the objective function f of problem (1.1) is convex and

that problem has an optimal solution. Then, the sequence {wk} generated by the bundle

method converges to an optimal solution of (1.1).

We close this section with an illustrative example of the workings of the bundle method.

Consider minimizing the following objective function:

f(x) = max
x∈R
{x2, 2x}. (1.15)

Suppose we start with x0 = 1. Then we have the following QO subproblem:

min
(x,z)∈R×R

z + 1
2(x− 1)2

s.t. 2 + 2(x− 1) ≤ z.
(1.16)

The blue curve in Figure 1.1 corresponds to the objective (1.15). In the plot on the

13



left, the red line is the first cut 2 + 2(x − 1); the green line corresponds to the objective

in an unconstrained reformulation of (1.16). After solving the QO subproblem (1.16), we

move to x1 = −1. Then we have the following QO subproblem:

min
(x,z)∈R×R

z + 1
2(x+ 1)2

s.t. 2 + 2(x− 1) ≤ z

1− 2(x+ 1) ≤ z.

(1.17)

We can see from the plot on the right, another cut 1 − 2(x + 1) is added to the plot.

After solving (1.17), we move closer to the optimal point. If we continue this process, the

bundle method will find the optimal solution.

Figure 1.1: Illustration of the Bundle Method.

1.2.5 Gradient Sampling Method

The original GS algorithm was introduced and analyzed by Burke, Lewis, and Overton

[9] for problems of form (1.1). Stronger theoretical results for a slightly revised version

of GS were provided in [39], and further extensions have been considered for constrained

problems [16] and problems for which only function evaluations are available [40].

The algorithmic structure of GS is very straightforward. At each iteration, we first

sample a group of points around the current iterate and evaluate the gradient of f at

the current iterate and at the sample points. The search direction is then set as the

negative of the vector in the convex hull of the available gradients with smallest norm.
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Finally, a backtracking line search is used to obtain a point with a lower objective value.

The algorithm starts with an arbitrary positive initial sampling radius, updating it when

appropriate to ensure that a stationary point for f is obtained.

More precisely, at a given iterate xk and for a given sampling radius εk > 0, the

central idea behind gradient sampling techniques is to approximate Gεk(xk) (recall (1.4))

through the random sampling of gradients in Bk := Bεk(xk) ∩ D. This set, in turn,

approximates the Clarke εk-subdifferential since, at any x, Gε(x) ⊂ ∂εf(x) for any ε ≥ 0

and ∂ε′f(x) ⊂ Gε′′(x) for any ε′′ > ε′ ≥ 0. If the computed search direction is large, then

as it is easily shown to be a direction of descent for f , the line search easily produces

a new iterate with an improved objective value. Otherwise, by locating xk at which

the minimum-norm element of Gεk(xk) is small, reducing the sampling radius, and then

repeating the process for εk → 0, gradient sampling techniques locate stationary points of

f by successively locating (approximate) εk-stationary points for decreasing values of εk.

We now give a detailed description of the GS algorithm. During iteration k, let Xk :=

xk∪Xk where xk is the current iterate and Xk := {xk,1, . . . , xk,p} is composed of p ≥ n+1

points generated independently and uniformly in Bk. With

Gk := conv{gk, gk,1, . . . , gk,p} (1.18)

defined as the convex hull of the gradients at the points in Xk, the search direction is set to

be the negative of the minimum norm vector in Gk, namely, dk = −Proj(0|Gk). This can

be obtained via the solution of a QO problem. Specifically, in order to compare the QO

of GS with the QO of AGS and BGS in later sections, we write the QO in a primal-dual

form. Let

Gk :=

[
gk gk,1 · · · gk,p

]
(1.19)

denote the matrix whose columns are the gradients of f at the points in Xk. Then we
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have the following QO subproblem:

min
z,d

z + 1
2‖d‖

2

s.t. f(xk)e+GTk d ≤ ze.
(1.20)

Here, e denotes a vector of ones whose length is determined by the context. The dual of

(1.20) is given by

max
π
− 1

2‖Gkπ‖
2

s.t. eTπ = 1, π ≥ 0,

(1.21)

The solution (zk, dk, πk) of (1.20)–(1.21) has a relationship that dk = −Gkπk.

A specific GS algorithm is presented as Algorithm 2 below.

Algorithm 2 Gradient Sampling (GS) Algorithm

1: (Initialization): Choose a number of sample points to compute each iteration p > n+1,
sampling radius reduction factor ψ ∈ (0, 1), sufficient decrease constant η ∈ (0, 1), line
search backtracking constant κ ∈ (0, 1), and tolerance parameter ν > 0. Choose an
initial iterate x0 ∈ D, set X−1 ← ∅, choose an initial sampling radius ε0 > 0, and set
k ← 0.

2: (Sample set update): Set Xk ← xk ∪Xk, where Xk := {xk,1, . . . , xk,p}
3: (Search direction computation): Set dk ← −Gkπk, where πk solves (1.21).
4: (Stationarity test): If ‖dk‖ ≤ εk ≤ ν, then stop. Otherwise, if ‖dk‖ ≤ εk, then set
xk+1 ← xk, αk ← 1, and εk+1 ← ψεk and go to step 7.

5: (Backtracking line search): Set αk as the largest value in {κ0, κ1, κ2, . . . } such that
the following sufficient decrease condition

f(xk + αkdk) ≤ f(xk)− ηαk‖dk‖2. (1.22)

is satisfied.
6: (Iterate update): Set εk+1 ← εk. If xk + αkdk ∈ D, then set xk+1 ← xk + αkdk.

Otherwise, set xk+1 as any point in D satisfying the following perturbed line search
conditions

f(xk+1) ≤ f(xk)− ηαk‖dk‖2 (1.23a)

and ‖xk + αkdk − xk+1‖ ≤ min{αk, εk}‖dk‖. (1.23b)

7: (Iteration increment): Set k ← k + 1 and go to step 2.

Note that after the search direction dk is computed, a standard backtracking line

search is performed to find a step size αk. We set xk+1 ← xk + αkdk for αk chosen to

satisfy (1.22), but in order to ensure that all iterates remain within the set D, it may

16



be necessary to perturb such an xk+1; see [39] for the motivation of these perturbed line

search conditions and a description of how, given αk and dk satisfying (1.22), an xk+1

satisfying (1.23) can be found in a finite number of operations. The chance seems to be

very slim for the algorithm to come to the situation that xk +αkdk /∈ D. Therefore, while

one may choose to skip this step in practice, it is necessary in establishing convergence

guarantees.

The GS algorithm structure is very simple, though its convergence analysis in some-

what complicated by the stochastic nature of the algorithm. The convergence result is

stated as the following. Please refer to §3 of [39] for the convergence proof.

Theorem 1.2.2. Let {xk} be a sequence generated by GS with ν = 0. Then, with proba-

bility 1, Algorithm 2 does not stop, and either f(xk)→ −∞, or εk → 0 and every cluster

point of {xk} is stationary for f .

We close this subsection with a description about how GS works on the same example

(1.15) we mentioned before. Suppose we start with x0 = 1. Let ε0 = 2 be the initial

sampling radius and p = 2 be the number of points sampled per iteration. At k = 0,

suppose we generate two points x0,1 = −1 and x0,2 = 1.5. Then we have the following QO

subproblem:

min
(x,z)∈R×R

z + 1
2(x− 1)2

s.t. 2 + 2(x− 1) ≤ z

2− 2(x+ 1) ≤ z.

(1.24)

The blue curve in Figure 1.2 corresponds to objective (1.15). In the plot on the left,

the green line corresponds to the objective in an unconstrainded reformulation of (1.24).

After solving the QO subproblem (1.24), we stay at the same point x1 = 1. However, we

shrink the sampling radius ε1 = 1. In the plot on the right, if we sample again in the

region [0, 2], we will have the following QO subproblem:
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min
(x,z)∈R×R

z + 1
2(x− 1)2

s.t. 2 + 2(x− 1) ≤ z.
(1.25)

If we repeat this process, we will find the optimal solution.

Figure 1.2: Illustration of the Gradient Sampling Algorithm.

1.2.6 Smoothing Method

The central idea behind a smoothing method is to use a parameterized smooth function

to approximate the original nonsmooth objective function. The parameterization of the

function is such that, if the smoothing parameter vanishes, then the original function is

obtained. On the other hand, with a nonzero smoothing parameter, the given smoothed

function can be minimized to produce an approximate minimizer of the original nonsmooth

function, where any algorithm for smooth minimization can be used to minimize the

smoothed function. By updating the smoothing parameter in an appropriate manner, one

can show convergence to a minimizer of the original nonsmooth function.

In the smoothing method, we assume that the parameterized smoothing function sat-

isfies the following assumption.

Assumption 1.2.3. Let f : Rn → R be a continuous function with f̃ : Rn × R+ →

R its corresponding smoothing function. The smoothing function f̃(·, µ) is continuously
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differentiable in Rn for any fixed µ > 0, and we have

lim
z→x,µ→0

f̃(z, x) = f(x)

for any x ∈ Rn.

The smoothing method can be constructed by using the function and gradient value

of the smoothing function, namely, f̃ and ∇xf̃ . We present a description of a specific

smoothing method as Algorithm 3 below.

Algorithm 3 The Smoothing Method

1: (Initialization): Choose a stationarity tolerance parameter ν > 0, a smoothing param-
eter reduction factor ψ ∈ (0, 1), an initial iterate x0 ∈ Rn, and an initial smoothing
parameter µ0 > 0. Set k ← 0.

2: (Inner iteration): Solve the following smooth optimization problem approximately to
obtain an approximate solution xk+1:

min
x
f̃(x, µk)

3: (Outer iteration): If ‖∇xf̃(xk+1, µk)‖ ≥ νµk, then set µk+1 ← µk; otherwise, choose
µk+1 ← ψµk.

4: (Iteration increment): Set k ← k + 1 and go to step 2.

We refer to [13] for the following convergence result for the smoothing method.

Theorem 1.2.4. The smoothing method produces an infinite sequence of iterates {xk}

and either for some µk > 0 we have f̃(xk, µk)→ −∞ or {µk} → 0 and every cluster point

of {xk} is stationary for f .

The advantage of the smoothing method is that we can make use of many existing

optimization algorithms for solving the smooth optimization problem in the inner iteration;

and convergence to a stationary point of the original nonsmooth problem is guaranteed

by updating the smoothing parameter, regardless of what algorithm used in the inner

iteration. The efficiency of the smoothing method depends on the approximation function,

the algorithm used for solving the smooth optimization problem in the inner iteration, and

the updating strategy for the smoothing parameter.

The smoothing method also has its disadvantages. With the smoothing parameter
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approaching zero, the inner subproblem is smooth but may become very nonlinear. Even

though any existing smooth optimization algorithm can be used to solve the inner sub-

problem, in practice they may not yield good solutions. Also, solving the inner subproblem

exactly would be unnecessary and expensive; but on the other hand, there is no clear and

general requirements about how approximately to solve it.
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Chapter 2

An Adaptive Gradient Sampling

Algorithm

We present an algorithm for the minimization of f : Rn → R, assumed to be locally

Lipschitz and continuously differentiable in an open dense subset D of Rn. The objective

f may be nonsmooth and/or nonconvex. The method is based on the gradient sampling

algorithm (GS) of Burke, Lewis, and Overton [SIAM J. Optim., 15 (2005), pp. 751-779].

It differs, however, from previously proposed versions of GS in that it is variable-metric

and only O(1) (not O(n)) gradient evaluations are required per iteration. Numerical ex-

periments illustrate that the algorithm is more efficient than GS in that it consistently

makes more progress toward a solution within a given number of gradient evaluations.

In addition, the adaptive sampling procedure allows for warm-starting of the quadratic

subproblem solver so that the average number of subproblem iterations per nonlinear iter-

ation is also consistently reduced. Global convergence of the algorithm is proved assuming

that the Hessian approximations are positive definite and bounded, an assumption shown

to be true for the proposed Hessian approximation updating strategies.
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2.1 Introduction

The gradient sampling algorithm (GS), introduced and analyzed by Burke, Lewis, and

Overton [8, 9], is a method for minimizing an objective function f : Rn → R that is

locally Lipschitz and continuously differentiable in an open dense subset D of Rn. The

approach is widely applicable and robust [7, 11, 42], and it is intuitively appealing in that

theoretical convergence guarantees hold with probability one without requiring algorithmic

modifications to handle nonconvexity.

The theoretical foundations for GS, as well as various extensions, are developing

rapidly. Stronger theoretical results than in [9] for both the original algorithm and for

various extensions were provided in [39], an extension of the ideas for solving constrained

problems was presented in [16], and a variant using only gradient estimates derived via

function evaluations appeared in [40]. Continued developments along these lines may al-

low GS techniques to one day be competitive with bundle methods [34, 37] in terms of

theoretical might and practical performance.

The main goal of this chapter is to address three practical limitations of GS as it is

presented in [9, 39]. Consider the following remarks.

1. GS produces approximate ε-steepest descent directions by evaluating the gradient of

f at n+ 1 (or more) randomly generated points during each iteration. This results

in a high computational cost that is especially detrimental when search directions

turn out to be unproductive.

2. Each descent direction produced by GS is obtained by the solution of a quadratic

optimization subproblem (QO). As the subproblem data is computed afresh for every

iteration, the computational effort required to solve each of these subproblems can

be significant for large-scale problems.

3. GS may behave, at best, as a steepest descent method. The use of second order

information of the problem functions may be useful, but it is not clear how to

incorporate this information effectively in nonsmooth regions.
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We address both remarks (1) and (2) by the adaptive sampling of gradients over the

course of the optimization process. That is, rather than evaluate gradients at a completely

new set of points during every iteration k, we maintain a history and reuse any recently

stored gradients that were obtained in an ε-neighborhood of xk. This reduces the per-

iteration computational effort of gradient evaluations, and also provides a clear strategy for

warm-starting the QO solver. That is, any gradients corresponding to active subproblem

constraints during iteration k − 1 that remain in the set of sample gradients are included

in the initial active set when solving the QO during iteration k. We show in our numerical

experiments that adaptive sampling allows the algorithm to make much more progress

toward a solution within a fixed number of gradient evaluations.

We address remark 3 by proposing two novel strategies for updating approximations of

second order terms. The first strategy is similar to a limited-memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) update typical in smooth optimization [48]. Our method is

unique, however, in that we incorporate gradient information from sample points instead

of that solely at algorithm iterates. We also control the updates so that bounds on the

Hessian approximations required for our convergence analysis are obtained. The second

strategy we propose — intended solely for nonconvex problems — is entirely novel as

far as we are aware. It also involves the incorporation of function information at sample

points, but is based on the desire to produce model functions that overestimate the true

objective f . Bounds required for our convergence analysis are also proved for this latter

strategy. Our numerical experiments in §2.5 illustrate that our Hessian approximation

strategies further enhance the algorithm’s ability to progress toward a solution within a

given amount of computational effort.

The chapter is organized as follows. A description of our Adaptive Gradient Sampling

algorithm (AGS) is presented in §2.2. Our updating strategies for approximating second

order information are presented and analyzed in §2.3. Global convergence of a generic AGS

algorithm is analyzed in §2.4. Numerical experiments comparing implementations of GS

and variants of AGS on a large test set are presented in §2.5. This implementation involves

a specialized QO solver that has been implemented by enhancing the method proposed in
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[38]; the details of this solver are described in the Appendix. Finally, concluding remarks

are provided in §2.6.

The analysis in this chapter builds on that of Kiwiel in [39]. It should also be noted that

ideas of “incremental sampling” and “bundling past information” were briefly mentioned

by Kiwiel in [40]. However, our methods are unique from those appearing in these papers

as adaptive sampling was not considered in [39], exact gradient information was not used

in [40], and our algorithm involves Hessian approximations that were not considered in

either article. Still, in addition to the original work by Burke, Lewis, and Overton [9],

it is clear that the works of Kiwiel have been inspirational for the work in this chapter,

not to mention the QO algorithm from [38] that has found a new area of applicability in

the context of AGS. Finally, we mention that the idea of sampling function information

about a given point to approximate the subdifferential has been around for decades; e.g.,

see [29].

2.2 Algorithm Description

Consider the unconstrained problem

min
x

f(x) (2.1)

where f : Rn → R is locally Lipschitz and continuously differentiable in an open dense

subset D of Rn. Letting cl convS denote the closure of the convex hull of a set S ⊆ Rn and

defining the multifunction Gε(x) := cl conv∇f(Bε(x) ∩ D) where Bε(x) := {x : ‖x− x‖ ≤

ε} is the Euclidean ε-ball about x, we have the following representation of the Clarke

subdifferential [15] of f at x:

∂f(x) =
⋂
ε>0

Gε(x).

Similarly, the Clarke ε-subdifferential [24] is given by

∂εf(x) := cl conv ∂f(Bε(x)).
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A point x is stationary for f if 0 ∈ ∂f(x) and ε-stationary if 0 ∈ ∂εf(x).

At a given iterate xk and for a given sampling radius εk > 0, the central idea behind

gradient sampling techniques is to approximate Gεk(xk) through the random sampling of

gradients in Bεk(xk) ∩ D. This set, in turn, approximates the Clarke εk-subdifferential

at xk since, at any x, Gε(x) ⊂ ∂εf(x) for any ε ≥ 0 and ∂ε′f(x) ⊂ Gε′′(x) for any

ε′′ > ε′ ≥ 0. Thus, by locating xk at which there is a small minimum-norm element

of (an approximation of) Gεk(xk), reducing the sampling radius, and then repeating the

process, gradient sampling techniques locate stationary points of f by repeatedly locating

(approximate) εk-stationary points for εk → 0.

We now present a generic AGS algorithm of which GS is a special case. During iteration

k, let Xk := {xk,0, . . . , xk,pk} (with xk,i = xk for some i) denote a set of points that have

been generated in Bk := Bεk(xk) ∩ D, let

Gk :=

[
gk,0 · · · gk,pk

]
(2.2)

denote the matrix whose columns are the gradients of f at the points in Xk, and let Hk ∈

Rn×n be a positive definite matrix (i.e., Hk � 0). The main computational component of

the generic algorithm is the solution of the following QO subproblem:

min
z,d

z + 1
2d

THkd

s.t. f(xk)e+GTk d ≤ ze.
(2.3)

Here, and throughout the chapter, e denotes a vector of ones whose length is determined

by the context. Alternatively, one may solve the dual of (2.3), namely

max
π
− 1

2π
TGTkWkGkπ

s.t. eTπ = 1, π ≥ 0,

(2.4)

where Wk := H−1
k � 0. The solution (zk, dk, πk) of (2.3)–(2.4) has dk = −WkGkπk.

The only other major computational component of the algorithm is a backtracking

line search, performed after the computation of the search direction dk. For this purpose,
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we define the sufficient decrease condition

f(xk + αkdk) ≤ f(xk)− ηαkdTkHkdk. (2.5)

We set xk+1 ← xk + αkdk for αk chosen to satisfy (2.5), but in order to ensure that all

iterates remain within the set D, it may be necessary to perturb such an xk+1; in such

cases, we make use of the perturbed line search conditions

f(xk+1) ≤ f(xk)− ηαkdTkHkdk (2.6a)

and ‖xk + αkdk − xk+1‖ ≤ min{αk, εk}‖dk‖. (2.6b)

See [39] for motivation of these line search conditions and a description of how, given

αk and dk satisfying (2.5), an xk+1 satisfying (2.6) can be found in a finite number of

operations.

Our algorithmic framework, AGS, is presented as Algorithm 2.1 below. In the al-

gorithm and our subsequent analysis, we suppose that iteration k involves setting an

approximate Hessian Hk and computing a search direction by (2.3). Note, however, that

the algorithm can be implemented equivalently by setting an approximate inverse Hessian

Wk and computing an optimal solution to (2.4). In the latter case, the search direction

is obtained by setting dk ← −WkGkπk and the quantity dTkHkdk can be replaced by the

equal quantity πTk G
T
kWkGkπk. Thus, in either case, Hk or Wk is needed for all k, but not

both.

If p = p ≥ n + 1 and Hk = I (or Wk = I) for all k, then Algorithm 4 reduces to

GS as proposed in [39]; specifically, it reduces to the variant involving nonnormalized

search directions in §4.1 of that paper. We use AGS, therefore, to refer to instantiations

of Algorithm 4 where p < p with (potentially) variable Hk. Our numerical experiments

in §2.5 illustrate a variety of practical advantages of AGS over GS, while the analysis in

§2.4 shows that nothing is lost in terms of convergence guarantees when p < p.
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Algorithm 4 Adaptive Gradient Sampling (AGS) Algorithm

1: (Initialization): Choose a number of sample points to generate each iteration p ≥ 1,
number of sample points required for a full line search p ≥ n + 1, sampling radius
reduction factor ψ ∈ (0, 1), number of backtracks for an incomplete line search u ≥ 0,
sufficient decrease constant η ∈ (0, 1), line search backtracking constant κ ∈ (0, 1),
and stationarity tolerance parameter ν > 0. Choose an initial iterate x0 ∈ D, set
X−1 ← ∅, choose an initial sampling radius ε0 > 0, and set k ← 0.

2: (Sample set update): Set Xk ← (Xk−1 ∩Bk) ∪ xk ∪Xk, where the sample set Xk :=
{xk,1, . . . , xk,p} is composed of p points generated uniformly in Bk. Set pk ← |Xk|−1.
If pk > p, then remove the pk−p eldest members of Xk\{xk} and set pk ← p. Compute
any unknown columns of Gk defined in (2.2).

3: (Hessian update): Set Hk � 0 as an approximation of the Hessian of f at xk.
4: (Search direction computation): Compute (zk, dk) solving (2.3).
5: (Sampling radius update): If min{‖dk‖2, dTkHkdk} ≤ νε2k, then set xk+1 ← xk, αk ← 1,

and εk+1 ← ψεk and go to step 8.
6: (Backtracking line search): If pk < p, then set αk as the largest value in
{κ0, κ1, . . . , κu} such that (2.5) is satisfied, or set αk ← 0 if (2.5) is not satisfied for
any of these values of αk. If pk = p, then set αk as the largest value in {κ0, κ1, κ2, . . . }
such that (2.5) is satisfied.

7: (Iterate update): Set εk+1 ← εk. If xk + αkdk ∈ D, then set xk+1 ← xk + αkdk.
Otherwise, set xk+1 as any point in D satisfying (2.6).

8: (Iteration increment): Set k ← k + 1 and go to step 2.

2.3 Hessian Approximation Strategies

In this section, we present novel techniques for choosing Hk or Wk in the context of AGS.

We refer to Hk and Wk, respectively, as approximations of the Hessian and inverse Hessian

of f at xk. These are essentially accurate descriptions for our first strategy as we employ

gradient information at sample points to approximate the Hessian or inverse Hessian of f at

xk, or more generally to approximate changes in ∇f about xk. However, the descriptions

are not entirely accurate for our second strategy as in that case our intention is to form

models that overestimate f , and not necessarily to have Hkd ≈ ∇f(xk + d)−∇f(xk) for

all small d ∈ Rn. Still, for ease of exposition, it will be convenient to refer to Hk and Wk

as Hessian and inverse Hessian approximations, respectively, in that context as well.

A critical motivating factor in the design of our Hessian updating strategies is the

following assumption needed for our global convergence guarantees in §2.4.
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Assumption 2.3.1. There exist ξ ≥ ξ > 0 such that, for all k and d ∈ Rn, we have

ξ‖d‖2 ≤ dTHkd ≤ ξ‖d‖2.

For each of our updating strategies, we show that Assumption 2.3.1 is satisfied. We

remark, however, that numerical experiments have shown that for nonsmooth problems

it can be beneficial to allow Hessian approximations to approach singularity [44]. Thus,

our numerical experiments include forms of our updates that ensure Assumption 2.3.1 is

satisfied as well as forms that do not. Either of these forms can be obtained through

choices of the user-defined constants defined for each update. Note also that the bounds

we provide are worst case bounds that typically would not be tight in practice.

Both of the following strategies employ gradient information — and, in the latter case,

function value information — evaluated at points in the sample set Xk. At each iteration,

we reinitialize the approximations Hk ← µkI and Wk ← µ−1
k I and apply a series of updates

based on information corresponding to the sample set. Note that this is different from

quasi-Newton updating procedures that initialize the (inverse) Hessian approximation only

at the start of the algorithm. We have found in our numerical experiments that the value

µk is critical for the performance of the algorithm. See §5 for our approach for setting µk.

For now, all that is required in this section is that, for some constants µ ≥ µ > 0 and all

k, we have

µ ≤ µk ≤ µ. (2.7)

Note that, for simplicity, we discuss updates for Hk and Wk as if they are both com-

puted during iteration k. However, as mentioned in §2.2, only one of the two matrices is

actually needed in each iteration of AGS.

2.3.1 LBFGS Updates on Sampled Directions

We consider an updating strategy based on the well-known BFGS formula [6, 21, 22, 55].

During iteration k, the main idea of our update is to use gradient information at the points

in Xk to construct Hk or Wk. We begin by initializing Hk ← µkI or Wk ← µ−1
k I and
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then perform a series of (at most) pk + 1 ≤ p + 1 updates based on dk,i := xk,i − xk and

yk,i := ∇f(xk,i)−∇f(xk) for i = 0, . . . , pk. As at most pk + 1 updates are performed, this

strategy is most accurately described as a LBFGS approach for setting Hk and Wk [48].

In the end, after all pk + 1 updates are performed, we obtain bounds of the type required

in Assumption 2.3.1 where the constants ξ ≥ ξ > 0 depend only on p and user-defined

constants γ > 0 and σ > 0.

Suppose that updates have been performed for sample points 0 through i − 1 and

consider the update for sample point i. We know from step 2 of AGS that

‖dk,i‖2 ≤ ε2k. (2.8)

Moreover, we will require that

dTk,iyk,i ≥ γε2k (2.9a)

and ‖yk,i‖2 ≤ σε2k (2.9b)

for the constants γ > 0 and σ > 0 provided by the user. We skip the update for sample

point i if (2.9) fails to hold. (For instance, for some i we have xk,i = xk, meaning that

dk,i = yk,i = 0 and (2.9a) is not satisfied. Indeed, it is possible that there is no i such

that (2.9) holds, in which case the overall strategy yields Hk = µkI or Wk = µ−1
k I.) For

ease of exposition, however, we suppose throughout the remainder of this subsection that

no updates are skipped, this assumption not invalidating our main results, Theorem 2.3.3

and Corollary 2.3.4.

The update formulas for Hk and Wk for sample point i are the following:

Hk ← Hk −
Hkdk,id

T
k,iHk

dTk,iHkdk,i
+
yk,iy

T
k,i

yTk,idk,i
(2.10a)

Wk ←

(
I −

yk,id
T
k,i

dTk,iyk,i

)T
Wk

(
I −

yk,id
T
k,i

dTk,iyk,i

)
+
dk,id

T
k,i

dTk,iyk,i
. (2.10b)

The following lemma reveals bounds on inner products with Hk and Wk after the updates
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for sample point i has been performed.

Lemma 2.3.2. Suppose that after updates have been performed for sample points 0 through

i − 1, we have Hk � 0 and Wk � 0, and for any d ∈ Rn we have dTHkd ≤ θ‖d‖2 and

dTWkd ≤ β‖d‖2 for some θ > 0 and β > 0. Then, after applying (2.10), we maintain

Hk � 0 and Wk � 0 and have

dTHkd ≤
(
θ +

σ

γ

)
‖d‖2 (2.11a)

and dTWkd ≤
(

2β

(
1 +

σ

γ2

)
+

1

γ

)
‖d‖2. (2.11b)

We now have the following theorem revealing bounds for products with Hk.

Theorem 2.3.3. For any k, after all updates have been performed via (2.10a) for sample

points 0 through pk, the following holds for any d ∈ Rn:

dTHkd ≥

2p+1

(
1 +

σ

γ2

)p+1

µ−1
k +

1

γ

2p+1
(

1 + σ
γ2

)p+1
− 1

2
(

1 + σ
γ2

)
− 1



−1

‖d‖2; (2.12a)

dTHkd ≤
(
µk +

(p+ 1)σ

γ

)
‖d‖2. (2.12b)

We note that the following corollary follows by applying the Rayleigh-Ritz Theorem

to the result of Theorem 2.3.3.

Corollary 2.3.4. For any k, after all updates have been performed via (2.10b) for sample

points 0 through pk, the following holds for any d ∈ Rn:

dTWkd ≤

2p+1

(
1 +

σ

γ2

)p+1

µ−1
k +

1

γ

2p+1
(

1 + σ
γ2

)p+1
− 1

2
(

1 + σ
γ2

)
− 1


 ‖d‖2; (2.13a)

dTWkd ≥
(
µk +

(p+ 1)σ

γ

)−1

‖d‖2. (2.13b)
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2.3.2 Updates to Promote Model Overestimation

During iteration k, the primal subproblem (2.3) is equivalent to the following:

min
d

mk(d), where mk(d) := f(xk) + max
x∈Xk

{∇f(x)Td}+ 1
2d

THkd.

If mk(d) ≥ f(xk + d) for all d ∈ Rn, then a reduction in f is obtained after a step

along dk 6= 0 computed from (2.3)–(2.4). Thus, it is desirable to choose Hk so that mk

overestimates f to guarantee that such reductions occur in AGS.

It is not economical to ensure through the choice of Hk that mk overestimates f for

any given d ∈ Rn. However, we can promote overestimation by evaluating f(xk,i) at each

sample point xk,i = xk + dk,i and performing a series of updates of Hk to increase, when

appropriate, the value of mk(dk,i). Specifically, we set

Hk ←MT
k,pk
· · ·MT

k,0(µkI)Mk,0 · · ·Mk,pk (2.14)

where Mk,i is chosen based on information obtained along dk,i. (Note that such an Hk can

be obtained by initializing Hk ← µkI and updating Hk ← MT
k,iHkMk,i for i = 0, . . . , pk.)

We choose Mk,i in such a way that Hk remains well-conditioned and obtain bounds of the

type required in Assumption 2.3.1 where ξ ≥ ξ > 0 depend only on p and a user-defined

constant ρ ≥ 1
2 .

Suppose that updates have been performed for sample points 0 through i − 1 and

consider the update for sample point i. We consider Mk,i of the form

Mk,i =


I +

ρk,i
dTk,idk,i

dk,id
T
k,i � 0 if dk,i 6= 0

I if dk,i = 0

(2.15)

where dk,i = xk,i − xk is the ith sample direction and the value for ρk,i depends on the

relationship between f(xk,i) and the model value

mk(dk,i) = f(xk) + max
x∈Xk

{∇f(x)Tdk,i}+ 1
2d

T
k,iHkdk,i.
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Specifically, if mk(dk,i) ≥ f(xk,i), then we choose ρk,i ← 0, which by (2.15) means that

Mk,i ← I. Otherwise, we set

ρk,i = −1 +

√
2∆k,i

dTk,iHkdk,i
(2.16)

where, for the constant ρ ≥ 1
2 provided by the user, we set

∆k,i = min
{
f(xk,i)−mk(dk,i) + 1

2d
T
k,iHkdk,i, ρd

T
k,iHkdk,i

}
. (2.17)

In this latter case when mk(dk,i) < f(xk,i), we have ∆k,i ≥ 1
2d

T
k,iHkdk,i, implying that

ρk,i ≥ 0. Moreover, as (2.17) also yields ∆k,i ≤ ρdTk,iHkdk,i, it follows that ρk,i ≤
√

2ρ− 1.

Thus, ρk,i ∈ [0,
√

2ρ−1]. Notice that in the process of performing the update with dk,i 6= 0

and ρk,i set by (2.16), we have from (2.15) that

1
2d

T
k,iHkdk,i ← 1

2d
T
k,iM

T
k,iHkMk,idk,i

= 1
2d

T
k,i

(
I +

ρk,i

dTk,idk,i
dk,id

T
k,i

)T
Hk

(
I +

ρk,i

dTk,idk,i
dk,id

T
k,i

)
dk,i

= 1
2(1 + ρk,i)

2dTk,iHkdk,i

= ∆k,i.

Thus, by (2.17), if ∆k,i = f(xk,i)−mk(dk,i) + 1
2d

T
k,iHkdk,i, then the model value mk(dk,i)

has been increased to the function value f(xk,i). Otherwise, if ∆k,i = ρdTk,iHkdk,i, then

the model value is still increased since ρ ≥ 1
2 .

The following lemma reveals useful bounds for inner products with Mk,i.

Lemma 2.3.5. Let Mk,i be defined by (2.15). Then, for any d ∈ Rn, we have

‖d‖2 ≤ dTMT
k,iMk,id ≤ (1 + ρk,i)

2‖d‖2. (2.18)

We then have the following theorem revealing bounds for products with Hk.

Theorem 2.3.6. For any k, with Hk defined by (2.14), Mk,i defined by (2.15), and ρk,i ∈
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[0,
√

2ρ− 1] for i = 0, . . . , pk, the following holds for any d ∈ Rn:

µk‖d‖2 ≤ dTHkd ≤ µk(2ρ)p+1‖d‖2. (2.19)

The approximation Wk = H−1
k for the inverse Hessian corresponding to (2.14) is

Wk ←M−Tk,pk · · ·M
−T
k,1 (µ−1

k I)M−1
k,1 · · ·M

−1
k,pk

(2.20)

where the Sherman-Morrison-Woodbury formula [25] reveals that for each i = 0, . . . , pk

we have

M−1
k,i =


I − ρk,i

(1+ρk,i)d
T
k,idk,i

dk,id
T
k,i � 0 if dk,i 6= 0

I if dk,i = 0.

(2.21)

The following corollary follows by applying the Rayleigh-Ritz Theorem to the result

of Theorem 2.3.6.

Corollary 2.3.7. For any k, with Wk defined by (2.20), M−1
k,i defined by (2.21), and

ρk,i ∈ [0,
√

2ρ− 1] for 0 = 1, . . . , pk, the following holds for any d ∈ Rn:

µ−1
k (2ρ)−p−1‖d‖2 ≤ dTWkd ≤ µ−1

k ‖d‖
2. (2.22)

We conclude this subsection by showing that the updating strategy described here is

intended solely for nonconvex problems. That is, if f is convex, then the updates will

maintain Hk = µkI and Wk = µ−1
k I.

Theorem 2.3.8. Suppose f is convex. Then, for any k, the matrices Hk and Wk described

in Theorems 2.3.6 and 2.3.7, respectively, satisfy Hk = µkI and Wk = µ−1
k I.

2.4 Global Convergence Analysis

We make the following assumption about the objective function f of (2.1) throughout our

global convergence analysis.
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Assumption 2.4.1. The objective function f : Rn → R is locally Lipschitz and continu-

ously differentiable in an open dense subset D ⊂ Rn.

We also make Assumption 2.3.1 stated previously at the beginning of §2.3.

The result we prove is the following.

Theorem 2.4.2. AGS produces an infinite sequence of iterates {xk} and, with probability

one, either f(xk)→ −∞ or {εk} → 0 and every cluster point of {xk} is stationary for f .

Our analysis follows closely that of Kiwiel in [39]. However, there are subtle differences

due to the adaptive sampling procedure and the variable-metric Hessian approximations.

Thus, we analyze the global convergence behavior of AGS for the sake of completeness.

We begin our analysis for proving Theorem 2.4.2 by showing that AGS is well-posed

in the sense that each iteration terminates finitely. It is clear that this will be true as long

as the backtracking line search in step 6 terminates finitely.

Lemma 2.4.3. If pk < p in step 6, then αk > 0 is computed satisfying (2.5) or αk ← 0.

If pk ≥ p in step 6, then αk > 0 is computed satisfying (2.5).

Proof. If pk < p in step 6, then the statement is obviously true since only a finite number

of values of αk are considered. Next, we consider the case when pk ≥ p. The Karush-

Kuhn-Tucker conditions of (2.3) are

ze− f(xk)e−GTk d ≥ 0 (2.23a)

π ≥ 0 (2.23b)

1− πT e = 0 (2.23c)

Hkd+Gkπ = 0 (2.23d)

πT (ze− f(xk)e−GTk d) = 0. (2.23e)

Let (zk, dk, πk) be the unique solution of (2.23). Then, (2.23c)–(2.23e) and the fact that

Hk is symmetric yield

zk − f(xk) = πTk G
T
k dk = −dTkHkdk. (2.24)
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Plugging the above equality into (2.23a), we have

GTk dk ≤ zke− f(xk)e = −(dTkHkdk)e.

In particular, as ∇f(xk) is a column of Gk, we have

∇f(xk)
Tdk ≤ −dTkHkdk. (2.25)

Since by step 5 we must have dTkHkdk > 0 in step 6, it follows that dk is a direction of

strict descent for f at xk, so there exists αk > 0 such that (2.5) holds:

f(xk + αkdk) ≤ f(xk) + ηαk∇f(xk)
Tdk ≤ f(xk)− ηαkdTkHkdk.

Lemma 2.4.3 reveals that the line search will yield αk ← 0 or αk > 0 satisfying (2.5).

Our next lemma builds on this result and shows that there will be an infinite number of

iterations during which the latter situation occurs.

Lemma 2.4.4. There exists an infinite subsequence of iterations in which αk > 0.

Proof. By step (5), if min{‖dk‖2, dTkHkdk} ≤ νε2k an infinite number of times, then the

result follows as the algorithm sets αk ← 1 for such iterations. Otherwise, to derive a

contradiction, suppose there exists k′ ≥ 0 such that for k ≥ k′, step 6 is reached and sets

αk ← 0. By Lemma 2.4.3, this means that for k ≥ k′, we have pk ≤ p − 1. However, by

steps 7, 8, and then 2, it is clear that if αk ← 0, then pk+1 = min{p, pk +p}, contradicting

the conclusion that {pk} is bounded above by p− 1 for all k ≥ k′.

We now show a critical result about the sequence of decreases produced in f . A similar

result was proved in [39].

Lemma 2.4.5. The following inequality holds for all k:

f(xk+1) ≤ f(xk)− 1
2ηξ‖xk+1 − xk‖‖dk‖.
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Proof. By the triangle inequality, condition (2.6b) ensures that

‖xk+1 − xk‖ ≤ min{αk, εk}‖dk‖+ αk‖dk‖ ≤ 2αk‖dk‖. (2.26)

Indeed, this inequality holds trivially if the algorithm sets xk+1 ← xk in step 5 or sets

αk ← 0 in step 6, and holds by the triangle inequality if step 6 yields xk+1 ← xk + αkdk.

Thus, by (2.5), (2.6), and (2.26), we find that for all k,

f(xk+1)− f(xk) ≤ −ηαkdTkHkdk

≤ −ηαkξ‖dk‖2

≤ −1
2ηξ‖xk+1 − xk‖‖dk‖,

as desired.

We now consider the ability of the algorithm to approximate the set Gεk(x′) when xk

is close to a given point x′. For this purpose, consider the following subproblem:

inf
d

q(d;x′,Bεk(x′), Hk) (2.27)

where

q(d;x′,Bεk(x′), Hk) := f(x′) + sup
x∈Bεk (x′)∩D

{∇f(x)Td}+ 1
2d

THkd.

Given a solution d′ of (2.27), we have the following reduction in its objective:

∆q(d′;x′,Bεk(x′), Hk) := q(0;x′,Bεk(x′), Hk)− q(d′;x′,Bεk(x′), Hk) ≥ 0.

Similarly, writing (2.3) in the form

min
d

q(d;xk, Xk, Hk)

(see [38]), we have the following reduction produced by the search direction dk:

∆q(dk;xk, Xk, Hk) = q(0;xk, Xk, Hk)− q(dk;xk, Xk, Hk) ≥ 0.
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We now show a result about the above reduction.

Lemma 2.4.6. The following equality holds:

∆q(dk;xk, Xk, Hk) = 1
2d

T
kHkdk.

Proof. By the definition of q, we have q(0;xk, Xk, Hk) = f(xk). Moreover, by

(2.24), we have q(dk;xk, Xk, Hk) = zk + 1
2d

T
kHkdk = f(xk) − 1

2d
T
kHkdk. Therefore,

∆q(dk;xk, Xk, Hk) = 1
2d

T
kHkdk.

The purpose of our next lemma is to show that for any desired level of accuracy (though

not necessarily perfect accuracy), as long as xk is sufficiently close to x′, there exists a

sample set Xk such that the reduction ∆q(dk;xk, Xk, Hk) produced by the solution dk

of (2.3) will be sufficiently close to the reduction ∆q(d′;x′,Bεk(x′), Hk) produced by the

solution d′ of (2.27). For a given x′ and tolerance ω, we define

Tk(x′, ω) :=

{
Xk ∈

pk∏
0

Bk : ∆q(dk;xk, Xk, Hk) ≤ ∆q(d′;x′,Bεk(x′), Hk) + ω

}
.

This set plays a critical role in the following lemma. A similar result was proved in

[39], and in the context of constrained optimization in [16].

Lemma 2.4.7. If pk ≥ n+ 1, then for any ω > 0, there exists ζ > 0 and a nonempty set

T such that for all xk ∈ Bζ(x′) we have T ⊂ Tk(x′, ω).

Proof. Under Assumption 2.4.1, there exists a vector d satisfying

∆q(d;x′,Bεk(x′), Hk) < ∆q(d′;x′,Bεk(x′), Hk) + ω

such that for some g ∈ conv∇f(Bεk(x′) ∩ D) we have

q(d;x′,Bεk(x′), Hk) = f(x′) + gTd+ 1
2d

THkd.

Then, since pk ≥ n + 1, Carathéodory’s theorem [51] implies that there exists
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{y0, . . . , ypk} ⊂ Bεk(x′) ∩ D and a set of nonnegative scalars {λ0, . . . , λpk} such that

pk∑
i=0

λi = 1 and

pk∑
i=0

λi∇f(yi) = g.

Since f is continuously differentiable in D, there exists ζ ∈ (0, εk) such that the set

T :=

pk∏
i=0

int Bζ(yi)

lies in Bεk−ζ(x′) and the solution dk to (2.3) with Xk ∈ T satisfies

∆q(dk;xk, Xk, Hk) ≤ ∆q(d′;x′,Bεk(x′), Hk) + ω.

Thus, for all xk ∈ Bζ(x′), Bεk−ζ(x′) ⊂ Bεk(xk) and hence T ⊂ Tk(x′, ω).

We are now prepared to prove Theorem 2.4.2. Our proof follows closely that of [39,

Theorem 3.3]. We provide a proof for the sake of completeness and since subtle changes

to the proof are required due to our adaptive sampling strategy.

Proof. If f(xk)→ −∞, then there is nothing to prove, so suppose that

inf
k→∞

f(xk) > −∞.

Then, we have from (2.5), (2.6), and Lemma 2.4.5 that

∞∑
k=0

αkd
T
kHkdk < ∞, and (2.28a)

∞∑
k=0

‖xk+1 − xk‖‖dk‖ < ∞. (2.28b)

We continue by considering two cases, the first of which has two subcases.

Case 1 : Suppose that there exists k′ ≥ 0 such that εk = ε′ > 0 for all k ≥ k′. According

to step 5, this occurs only if

min{‖dk‖2, dTkHkdk} > νε′2 for all k ≥ k′. (2.29)
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In conjunction with (2.28), this implies αk → 0 and xk → x′ for some x′. Moreover, the

fact that αk → 0 implies that there exists an infinite subsequence of iterations in which

pk = p. Indeed, if pk < p for all large k, then since αk → 0, step 6 implies that αk ← 0

for all large k. However, as in the proof of Lemma 2.4.4, this leads to a contradiction as

we eventually find pk = p for some k. Therefore, we can define K as the subsequence of

iterations in which pk = p and know that K is infinite.

Case 1a: If x′ is ε′-stationary for f , then for any Hk � 0, the solution d′ to (2.27) satis-

fies ∆q(d′;x′,Bε′(x′), Hk) = 0. Thus, with ω = νε′2/2 and (ζ, T ) chosen as in Lemma 2.4.7,

there exists k′′ ≥ k′ such that xk ∈ Bζ(x′) for all k ≥ k′′ and

1
2d

T
kHkdk = ∆q(dk;xk, Xk, Hk) ≤ 1

2νε
′2 (2.30)

whenever k ≥ k′′, k ∈ K, and Xk ∈ T . Together, (2.29) and (2.30) imply that Xk /∈ T

for all k ≥ k′′ with k ∈ K. However, this is a probability zero event since for all such k

the set Xk continually collects points generated uniformly from Bk, meaning that it will

eventually include an element of the set T yielding (2.30).

Case 1b: If x′ is not ε′-stationary, then for all k ≥ k′, any α not satisfying the sufficient

decrease condition (2.5) yields

f(xk + αdk)− f(xk) > −ηαdTkHkdk,

and along with (2.25) yields

f(xk + αdk)− f(xk) ≤ −αdTkHkdk + α2Lk‖dk‖2.

Here, Lk is a finite upper bound for (f ′(xk + αdk) − f ′(xk))/(α‖dk‖) on the interval

[xk, xk + αdk] whose existence follows from Assumption 2.4.1. Combining the above in-

equalities yields a lower bound on any α not satisfying (2.5), which, since step 6 invokes

the backtracking factor κ, yields the bound

αk > κ(1− η)dTkHkdk/(Lk‖dk‖2).
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However, with ω = ∆q(d′;x′,Bε′(x′), Hk) (which is strictly positive since x′ is not ε′-

stationary) and (ζ, T ) again chosen as in Lemma 2.4.7, there exists k′′ ≥ k′ such that

xk ∈ Bζ(x′) for all k ≥ k′′ and

∆q(dk;xk, Xk, Hk) ≤ 2∆q(d′;x′,Bε′(x′), Hk)

whenever k ≥ k′′, k ∈ K, and Xk ∈ T . Under Assumptions 2.4.1 and 2.3.1 and since

xk → x′, we have that for all k sufficiently large, Lk‖dk‖2 ≤ L for some constant L > 0,

implying that for all k ≥ k′′ with k ∈ K such that Xk ∈ T , αk is bounded away from zero.

Together, this and the fact that αk → 0 imply that Xk /∈ T for all k ≥ k′′ with k ∈ K.

Again, this is a probability zero event.

Case 2 : Suppose {εk} → 0 and {xk} has a cluster point x′. First, we show that

lim inf
k→∞

max{‖xk − x′‖, ‖dk‖} = 0. (2.31)

If xk → x′, then by construction in the algorithm, {εk} → 0 if and only if there exists an

infinite subsequence K′ of iterations where

min{1, ξ}‖dk‖2 ≤ min{‖dk‖2, dTkHkdk} ≤ νε2k.

Thus, since {εk} → 0, we have

lim
k∈K′
‖dk‖ = 0,

yielding (2.31). On the other hand, if xk 9 x′, then we proceed by contradiction and

suppose that (2.31) does not hold. Since x′ is a cluster point of {xk}, there is an ε′ > 0

and an index k′ ≥ 0 such that the set K ′ := {k : k ≥ k′, ‖xk − x′‖ ≤ ε′, ‖dk‖ > ε′} is

infinite. By (2.28b), this means

∑
k∈K′

‖xk+1 − xk‖ <∞. (2.32)

Since xk 9 x′, there exists an ε > 0 such that for all k1 ∈ K ′ with ‖xk1 − x′‖ ≤ ε′/2 there
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is k2 > k1 satisfying ‖xk1 − xk2‖ > ε and ‖xk − x′‖ ≤ ε′ for all k1 ≤ k ≤ k2. Thus, by the

triangle inequality, we have ε < ‖xk1 − xk2‖ ≤
∑k2−1

k=k1
‖xk+1 − xk‖. However, for k1 ∈ K ′

sufficiently large, (2.32) implies that the right-hand side of this inequality must be strictly

less than ε, a contradiction.

Finally, since for all k the elements of Xk lie in Bk, equation (2.31) and {εk} → 0

imply that the cluster point x′ is stationary for f .

2.5 An Implementation

We have implemented Algorithm 4 in Matlab along with the QO subproblem solver de-

scribed in the Appendix. In this section, we describe the algorithm variations that we

have tested, the test problems that we have solved, and the results of our numerical ex-

periments. All tests were performed on a machine running Debian 2.6.32 with two 8-Core

AMD Opteron 6128 2.0GHz processors and 32GB RAM.

Despite the fact that our algorithm has been presented with the approximations {Hk},

the QO solver in the Appendix only requires {Wk}, the inverse Hessian approximations.

Thus, in this section, we refer only to Wk, and not to Hk.

2.5.1 Algorithm Variations

Given varying values for the input parameters, our implementation of Algorithm 4 yields

the algorithm variations described below.

• GS. This is a basic gradient sampling algorithm with nonnormalized search directions

[39, §4.1], obtained by choosing p = p ≥ n + 1 with Wk = I for all k. We consider

this variant of GS for comparison purposes as it is the most similar with the AGS

variations described below. The global convergence analysis in §2.4 applies for this

algorithm as long as Assumption 2.4.1 holds.

• AGS. This algorithm samples gradients adaptively as we choose p < p, but it does

not use either Hessian updating strategy as we choose Wk = I for all k. The global
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convergence analysis in §2.4 applies for this algorithm as long as Assumption 2.4.1

holds.

• AGS-LBFGS. This algorithm is an enhanced version of AGS where the updating strat-

egy in §2.3.1 is used to set Wk for all k. We choose γ = 0.1 and σ = 100 in the

updates, which by Corollary 2.3.4 means that the global convergence analysis in §2.4

applies as long as Assumption 2.4.1 holds.

• AGS-LBFGS-ill. This algorithm is similar to AGS-LBFGS, except that we choose

γ = 0 and σ = ∞ so that Wk may become ill-conditioned. The global convergence

analysis in §2.4 does not apply for this method.

• AGS-over. This algorithm is an enhanced version of AGS where the updating strategy

in §2.3.2 is used to set Wk for all k. We choose ρ = 100 in the updates, which by

Corollary 2.3.7 means that the global convergence analysis in §2.4 applies as long as

Assumption 2.4.1 holds.

• AGS-over-ill. This algorithm is similar to AGS-over, except that we choose ρ =∞

so that Wk may become ill-conditioned. The global convergence analysis in §2.4

does not apply for this method.

We summarize the differing inputs for these six algorithm variations in Table 2.1.

Name Samples per Iteration Hessian updates γ σ ρ

GS p = p ≥ n+ 1 None - - -
AGS p < p ≥ n+ 1 None - - -

AGS-LBFGS p < p ≥ n+ 1 Strategy in §2.3.1 0.1 100 -
AGS-LBFGS-ill p < p ≥ n+ 1 Strategy in §2.3.1 0 ∞ -

AGS-over p < p ≥ n+ 1 Strategy in §2.3.2 - - 100
AGS-over-ill p < p ≥ n+ 1 Strategy in §2.3.2 - - ∞

Table 2.1: Summary of six algorithm variations used to test the adaptive sampling proce-
dure in Algorithm 4 along with the Hessian approximation updating strategies described
in §2.3.1 and §2.3.2.

Specific values for the input parameters mentioned above, as well as for the remaining

parameters that were set consistently for all algorithm variations, were chosen as those

that yielded the best overall results in our experiments. As recommended in [9, 39], we
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choose p = 2n as the number of sample points required for a complete line search. (Note

that this is also the number of sample points and sample gradients computed per iteration

for GS.) For AGS and the remaining variants, we experimented with various values for p,

eventually finding that p = n/10 yielded nice results. Our convergence analysis in §2.4

requires only O(1) gradients per iteration, but we suggest that setting p as a fraction

of n may generally yield a good balance between overall gradient evaluations and search

direction quality. We set the line search backtracking constant to be κ = 0.5, sufficient

decrease constant to be η = 10−8, and number of backtracks in an incomplete line search

to be u = 7. The initial sampling radius is chosen to be ε0 = 0.1 and ψ = 0.1 is set as

the sampling radius reduction factor. We choose the stationarity tolerance parameter to

be ν = 10 and limit the number of gradient evaluations to 100n before terminating the

algorithm.

The inverse Hessian approximations are initialized during iteration k as Wk = µ−1
k I.

The scalar value µk itself is initialized at the start of a run of the algorithm as µ0 = 1

and is updated dynamically at the end of each iteration k based on the steplength αk.

Specifically, we set

µk+1 ←


min{2µk, µ} if αk < 1

max{1
2µk, µ} if αk = 1

where we choose µ = 10−2 and µ = 103. This strategy decreases the eigenvalues of the

initialized inverse Hessian if, during the current iteration, the line search had to backtrack

from αk = 1, thus promoting a shorter search direction in iteration k+ 1. Similarly, if the

current iteration yielded αk = 1, then the eigenvalues of the initialized inverse Hessian are

increased to promote a longer search direction in iteration k + 1.

We implemented Algorithm 4 along with the QO subproblem solver described in the

Appendix. We set the subproblem optimality tolerance to 10−10 and maximum number

of iterations to min{1000, 2max{n,pk}}.
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2.5.2 Test Problems

We tested the algorithm variations with 26 nonsmooth minimization problems, some con-

vex and some nonconvex. The first 20 of these problems were considered in [30] and

the last 6 were considered in [56]. All problems are scalable in the sense that they can

be defined to have different numbers of variables n. The first 10 problems, introduced

in [31], are all nonsmooth at their respective minimizers: MAXQ, MXHILB, CHAINED LQ,

CHAINED CB3 I, CHAINED CB3 II, ACTIVE FACES, BROWN FUNCTION 2, CHAINED MIFFLIN 2,

CHAINED CRESCENT I, and CHAINED CRESCENT II. The first 5 of these problems are convex

and the second 5 are nonconvex. The second 10 problems in our set, some of which are non-

convex, were introduced in the test library TEST29 [45]: TEST29 2, TEST29 5, TEST29 6,

TEST29 11, TEST29 13, TEST29 17, TEST29 19, TEST29 20, TEST29 22, and TEST29 24. Of

the 6 remaining problems, the first four were introduced in [43], the fifth was introduced in

[26], and the sixth is a problem to minimize the Schatten norm [56]: TILTED NORM COND,

CPSF, NCPSF, EIG PROD, GREIF FUN, and NUC NORM.

2.5.3 Numerical Results

We chose n = 50 for all problems. The only exception was EIG PROD, for which we choose

n = 64, as the variables for this problem need to compose a square matrix. We ran each

problem 10 times, the first time using a fixed initial point x′0 and the remaining nine times

using a starting point generated randomly from a ball about x′0 with radius ‖x′0‖. (We

choose x′0 6= 0 for all problems, so the initial points for each run were unique.) For the

first 20 problems, we choose x′0 as the initial point defined in [30]. For the remaining

6 problems, we choose x′0 = e. The input parameters we use for TILTED NORM COND,

CPSF, NCPSF, and NUC NORM are those used in [56]. The only remaining problem inputs

that require specification are the matrices involved in EIG PROD and GREIF FUN. For the

former we used the leading 8 × 8 submatrix of A from [1] and for the latter we used

a randomly generated 10 × 10 symmetric positive definite matrix A (with the n = 50

variables composing a 10× 5 matrix X so that the product XTAX is well defined).

The performance measures we considered were the final sampling radius and the av-
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erage QO iterations per nonlinear iteration when the limit on gradient evaluations (100n)

was reached. The first measure shows the progress toward optimality that the solver makes

within a fixed gradient evaluation limit, and the second shows the benefit (or lack thereof in

the case of GS) of warm-starting the QO solver. We put a lower bound of 10−12 on the final

sampling radius ε. Thus, the performance profiles below are for log10 max{ε, 10−12}+ 13

whose values lie in {1, 2, . . . , 12}.

First, we compare the results obtained by applying the algorithms GS and AGS to the

26 × 10 = 260 test problems. Performance profiles [19] for the final sampling radius and

average QO iterations are given in Figure 2.1. The profiles clearly illustrate the benefits

of AGS over GS. Given the same limit on the number of gradient evaluations, AGS is able to

perform many more nonlinear iterations than GS due to the fact that AGS requires many

fewer gradient evaluations per nonlinear iteration. This allows AGS to make much more

progress toward the solution, as evidenced by the final sampling radius consistently being

much smaller.

One additional remark to make about the performance profiles in Figure 2.1 is that

the number of average QO iterations is significantly fewer for AGS as compared to GS. This

can be attributed to the fact that the subproblems in AGS are often smaller than those in

GS, and when they are the same size as in GS, warm-starting the solver reduces the number

of QO iterations required.
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Figure 2.1: Performance profiles for the final sampling radius (left) and average QO iter-
ations per nonlinear iteration (right) comparing algorithms GS and AGS.

Our second set of performance profiles illustrate the benefits of the Hessian updating

strategies in §2.3 by comparing the results for AGS-LBFGS and AGS-over with those for
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AGS. AGS-over performs better than AGS-LBFGS in terms of the final sampling radius, while

it is dominated by AGS-LBFGS in terms of average QO iterations. Both AGS-over and

AGS-LBFGS perform better than AGS no matter which performance measure is considered.

We did not expect to see a reducton in average QO iterations when the inverse Hessian

updates are employed, but in any case our experiments reveal that the updates bring

benefits in terms of progress toward a minimizer.
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Figure 2.2: Performance profiles for the final sampling radius (left) and average QO itera-
tions per nonlinear iteration (right) comparing algorithms AGS, AGS-LBFGS, and AGS-over.

We close this section with performance profiles comparing AGS-over and AGS-LBFGS

with AGS-over-ill and AGS-LBFGS-ill, the latter two being variants for which our global

convergence analysis in §2.4 does not apply. Despite the fact that in some situations it

is believed that allowing Hessian approximations to tend to singularity can be beneficial

[44], we do not see much of an impact in our numerical results. (In fact, there appears to

be a disadvantage in terms of the final sampling radius when allowing ill-conditioning of

AGS-LBFGS-ill.) There are at least a couple possible explanations for this phenomenon.

First, due to the fact that we reinitialize Wk during each iteration and perform only a

finite number of updates based on sample point information, our Hessian approximations

may naturally remain better conditioned than those obtained by standard quasi-Newton

updating techniques that continually build these matrices based on gradient information

obtained at all previous algorithm iterates. Second, our input parameter choices may be

generous enough that, e.g., AGS-over and AGS-over-ill produce similar Hessian approx-

imations during most iterations.
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Figure 2.3: Performance profiles for the final sampling radius (left) and average QO iter-
ations per nonlinear iteration (right) comparing algorithms AGS-LBFGS, AGS-LBFGS-ill,
AGS-over and AGS-over-ill.

2.6 Conclusion

In this chapter, we have addressed major practical limitations of the rapidly-developing

class of gradient sampling (GS) algorithms for nonsmooth optimization. Our proposed

enhancements that attempt to correct for these limitations of GS take the form of an

adaptive sampling procedure and variable-metric Hessian updating strategies. We have

shown that our enhanced framework, AGS, maintains the global convergence guarantees

of GS while providing many practical advantages. These advantages have been illustrated

via numerical experiments on a diverse set of test problems without requiring tailored

inputs for each test problem.

In addition to representing an enhanced version of GS, we believe that the development

of AGS represents a step toward merging the algorithmic frameworks of gradient sampling

and bundle methods. Indeed, by incorporating information obtained during previous

iterations, the subproblems formed and solved in AGS closely resemble those typically

found in bundle methods (after a “descent” or “serious” step has been made). We intend

to investigate the marriage of gradient sampling and bundle method strategies in our

future work.

Finally, we remark that there are interesting similarities between AGS and a forerunner

of bundle methods, namely Wolfe’s conjugate subgradient method [61]. Wolfe’s method,

a reasonably effective method for nondifferentiable convex optimization, is an extension of

the conjugate gradient algorithm for minimizing differentiable functions. It is similar to
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AGS in that the central idea behind both algorithms is to approximate the subdifferential

at (or near) a nondifferentiable point via (sub)gradients at nearby points. In particu-

lar, both algorithms compute search directions by finding the minimum norm vector in

the convex hull of (sub)gradients evaluated at these nearby points. A major difference,

however, is that the (sub)gradients in Wolfe’s method are the (sub)gradients and search

directions obtained at previous iterates, whereas AGS employs random sampling and does

not utilize previous search directions in place of gradients. Another important difference

between AGS and Wolfe’s method is that the latter has guarantees only for convex ob-

jective functions, whereas the former can also solve nonconvex problems. Still, despite

these differences, we plan to investigate whether borrowing ideas from Wolfe’s method,

namely that of including previous search directions in the collection of sampled gradients,

can help enhance the practical performance of AGS methods.
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Chapter 3

A BFGS Gradient Sampling

Algorithm

We present a line search algorithm for minimizing nonconvex and/or nonsmooth objective

functions. The algorithm is a hybrid between a standard Broyden-Fletcher-Goldfarb-

Shanno (BFGS) and an adaptive gradient sampling (GS) method. The BFGS strategy is

employed as it typically yields fast convergence to the vicinity of a stationary point, and

along with the adaptive GS strategy the algorithm ensures that convergence will continue

to such a point. Under suitable assumptions, we prove that the algorithm converges

globally with probability one. The algorithm has been implemented in C++ and the

results of numerical experiments are presented to illustrate the efficacy of the proposed

numerical method. Compared to the AGS algorithm proposed in the previous chapter,

the BFGS-GS algorithm is even faster because it behaves like a BFGS method most of

the time; and nothing is lost in terms of convergence guarantees.

3.1 Introduction

Our algorithm in this chapter is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method [6, 21, 22, 55]. Since its inception, this approach—arguably the most effective

quasi-Newton method [49]—has been extremely popular for solving smooth optimization
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problems. This popularity stems from the fact that the method only requires first-order

derivatives of the objective function, and yet can achieve a superlinear rate of local con-

vergence. Moreover, many have witnessed good performance of BFGS when solving non-

smooth problems [30, 31], despite the fact that global convergence guarantees for the

algorithm in this context are rather limited [44]. In order to overcome this theoretical

deficiency, our algorithm enhances BFGS with an adaptive gradient sampling (GS) strat-

egy adopted from the method in [18]. With this enhancement, as well as other practical

features, we have designed an algorithm that exhibits good practical behavior, and for

which we have established global convergence guarantees under suitable assumptions.

A feature critical to the practical performance of our algorithm is that, when it is

applied to solve many problem instances, the algorithm reduces to an unadulterated BFGS

strategy for the majority of the iterations. This feature is intentional, and is motivated

by the encouraging results presented in [44]. Indeed, a straightforward BFGS algorithm

applied to solve a nonsmooth, nonconvex optimization problem is often very effective in

making progress toward a solution. However, it suffers from two important drawbacks:

(i) it does not inherently offer termination conditions related to a stationarity measure

that can theoretically be guaranteed to eventually be satisfied, meaning that there is no

certain way of determining whether a solution has been reached, and (ii) guaranteeing

global convergence appears to be difficult in general due to the fact that the (inverse)

Hessian approximations may tend to singularity in the neighborhood of any solution point

at which the objective function is not differentiable. (To address issue (i), the method in

[44] employs a termination condition using a stationarity measure that is similar to the

one we use in this paper for solution quality; see §3.4.3 for further discussion.) Overall,

these deficiencies suggest that while BFGS may be able to converge to a neighborhood

of a solution, enhancements—such as our adaptive GS procedure—may be needed to

obtain high accuracy and provide the means to guarantee a certificate of stationarity

(even though, in some cases, a straightforward BFGS approach can achieve a reasonable

certificate of stationarity in practice).

The GS algorithm was introduced by Burke, Lewis, and Overton in [10]. Employ-
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ing a strategy of randomly sampling gradients to approximate the ε-subdifferential of the

objective about each iterate [8], the algorithm was motivated as a strategy for establish-

ing global convergence guarantees when solving nonconvex, locally Lipschitz optimization

problems. Enhancements to the algorithm have also been established over the past few

years, both to improve the theoretical and practical behavior of the algorithm [18, 39] and

extend the methodology to broader classes of problems [17, 32, 33, 40]. The main disad-

vantage of the algorithm, however, is that each iteration is significantly more expensive

than that of an algorithm such as a BFGS method. Moreover, the algorithm in [10] does

not employ variable-metric (inverse) Hessian approximations, and thus it may fail to fully

capture the curvature information that makes an algorithm such as BFGS so effective.

These disadvantages motivated the enhancements proposed in [18], though a drawback

of the algorithm in that paper is that each iteration requires the sampling of gradient

information in every iteration (along with a gradient evaluation at each iterate).

In summation, our proposed BFGS-GS algorithm possesses theoretical and practical

advantages. It typically behaves as an unadulterated BFGS algorithm, and thus often

converges to a neighborhood of a solution with a computational effort on the order of

one gradient evaluation and one matrix-vector product per iteration. Throughout, the

algorithm dynamically employs an adaptive GS strategy in order to provide a practical

stationarity certificate as well as global convergence guarantees. Careful attention has

been paid to the design of our line search, sample set update, and (inverse) Hessian

approximation subroutines so that the algorithm attains this desirable behavior. For

example, in certain situations, we replace a BFGS (inverse) Hessian approximation with

a carefully constructed limited memory BFGS (L-BFGS [48]) approximation to ensure

positive definiteness and boundedness. We have also implemented the algorithm in C++

and performed a variety of experiments to illustrate the efficacy of our proposed numerical

method.

The remainder of the paper is organized into a few sections. In §3.2, we present our

main algorithm, including its relevant subroutines for the line search, sample set update,

and (inverse) Hessian approximation strategies. We then analyze the well-posedness and
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global convergence properties of the algorithm in §3.3, building on results proved during

the algorithmic development in §3.2. An implementation of our algorithmic framework

and the results of numerical experiments on a set of test problems is the subject of §3.4.

Concluding remarks are provided in §3.5.

Notation and definitions

The sets of n-dimensional real, natural, and positive natural numbers are denoted by Rn,

Nn, and Nn+, respectively, where N := {0, 1, 2, . . . } and N+ := {1, 2, . . . }. The ith element

of a vector x ∈ Rn is written as xi. We denote the closure and convex hull of a subset

S ⊆ Rn as clS and convS, respectively. The closed Euclidean ε-ball about x ∈ Rn is

denoted as Bε(x) := {x ∈ Rn : ‖x − x‖2 ≤ ε}. The cardinality of a finite subset S ⊂ Rn

is written as |S| ∈ N. For a matrix W , we write W � 0 to indicate that W is real,

symmetric, and positive definite. Given W � 0 and x ∈ Rn, we define the “W -norm” of

x as ‖x‖W := ‖W 1/2x‖2 so that ‖x‖2W = xTWx. Given W � 0 and nonempty bounded

S ⊆ Rn, we define the (oblique) “W -projection” of the origin onto cl convS as PW (S),

which is the unique solution of minx ‖x‖2W subject to x ∈ cl convS. The quantities e and I

respectively represent a vector of ones and an identity matrix whose sizes are determined

by the context in which each quantity appears. For {a, b} ⊂ Rn, we write a ⊥ b to indicate

that a and b are complementary, i.e., that aibi = 0 for all i ∈ {1, . . . , n}. We use a subscript

for a quantity to denote the iteration number of an algorithm to which it corresponds;

e.g., the value for a vector x in the kth iteration of an algorithm is written as xk. If the

limit of a sequence {ak} as k →∞ exists and equals a, then we write {ak} → a.

For a function f : Rn → R, the sublevel set corresponding to a point x ∈ Rn is

written as Lf (x) := {x ∈ Rn : f(x) ≤ f(x)}. Such a function is locally Lipschitz over

Rn if for every compact subset S ⊂ Rn, there exists a constant LS ≥ 0 such that |f(x)−

f(y)| ≤ LS‖x − y‖2 for any {x, y} ⊆ S. If f is locally Lipschitz on Rn, then the Clarke

subdifferential [15] of f at x can be written as

∂f(x) :=
⋂
ε>0

cl conv∇f(Bε(x) ∩ D),
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and the Clarke ε-subdifferential [24] of f at x is

∂εf(x) := cl conv ∂f(Bε(x)).

For such a function, a point x ∈ Rn is Clarke stationary if 0 ∈ ∂f(x), and is Clarke ε-

stationary if 0 ∈ ∂εf(x). For the sake of brevity, hereafter we drop the distinction “Clarke”

from all of the terms defined here.

3.2 Algorithm Description

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (3.1)

where f : Rn → R satisfies the following assumption.

Assumption 3.2.1. The objective function f : Rn → R of problem (3.1) is locally Lips-

chitz over Rn and continuously differentiable in an open, dense subset D of Rn.

While our convergence analysis of our algorithm rely on the properties of f assured under

Assumption 3.2.1, we also believe that our algorithm could be a viable alternative to other

approaches when f is not locally Lipschitz.

Given an initial iterate x0 ∈ D, our desire is to compute a solution of (3.1). However,

since f may be nonconvex and/or nonsmooth, our algorithm is designed simply to locate a

stationary point for f in the sublevel set Lf (x0). More precisely, it is designed to compute

a sequence of (approximately) εk-stationary points for a sequence {εk} → 0 that is set

dynamically within the algorithm.

We present our algorithm in four subsections. The first subsection describes the main

algorithm, at the heart of which is the search direction computation. We then discuss, in

turn, the details of our line search, sample set generation scheme, and (inverse) Hessian

approximation strategy. (As f may be nonsmooth, we use the term “Hessian” loosely as

a matrix that approximates changes in ∇f about a given point in D, changes that may
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be arbitrarily large relative to the distance between the given point and nearby points

in D.) Each of these latter algorithmic components are carefully constructed so that the

main algorithm is well-posed and globally convergent to a stationary point (or points) of

f under Assumption 3.2.1.

Our algorithm employs various user-specified parameters, which, for convenience, we

enumerate upfront in Table 3.1. Our global convergence theory allows for any choices of

these parameters in the given ranges, except for a restriction on the curvature threshold ξ

and its relationship to other parameter values. This restriction, which is required due to

a technical lemma revealed in the development of our algorithm, is given at the beginning

of §3.3.

Table 3.1: User-specified constants for the proposed algorithm and subroutines
Parameter(s) Range Description

ν (0,∞) Stationarity measure tolerance
ψ (0, 1) Sampling radius reduction factor
ξ (0,∞) Model curvature threshold

η < η (0, 1) Armijo–Wolfe line search constants

α ≤ α (0,∞) Step size thresholds
γ (0, 1) Step size modification factor

J ≤ J N Iteration thresholds for line search
J N Iteration threshold for iterate perturbation
p [n+ 1,∞) ∩ N Sample set size threshold

µ < 1 < µ (0,∞) (L-)BFGS updating thresholds

w ≤ w (0,∞) (L-)BFGS updating thresholds
m N L-BFGS memory length

3.2.1 Main Algorithm

We now present our main algorithm, designed to converge to a stationary point of f in the

sublevel set Lf (x0). Ideally, such a point would be revealed as a cluster point of the iterate

sequence {xk} obtained via a standard BFGS method, but since such a method generally

has unknown convergence properties when employed to solve (3.1), our algorithm includes

enhancements with which we guarantee global convergence with probability one. These

enhancements are similar to those developed in the adaptive GS method proposed in [18],

though are less expensive in the sense that, in many iterations, gradient sampling is not
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required.

At a given iterate xk ∈ D and with a given inverse Hessian approximation of f at xk,

call it Wk � 0, a standard BFGS method computes a search direction as

dk ← −Wk∇f(xk). (3.2)

However, in our approach, we incorporate gradient information at points in a set Xk :=

{xk,0, . . . , xk,pk} that has xk,i = xk for some i ∈ {0, . . . , pk} and includes pk other points

from Bk := Bεk(xk)∩D. (We refer to Xk as the sample set and pk as the sample set size,

even though pk = 0 corresponds to |Xk| = 1.) With this information, we desire the search

direction dk that is the minimizer of a local piece-wise quadratic model of f at xk; i.e., we

desire dk to be the solution of

min
d∈Rn

qk(d), where qk(d) :=

(
max
x∈Xk

{
∇f(x)Td

}
+ 1

2‖d‖
2
W−1
k

)
. (3.3)

Defining the matrix of gradients

Gk :=

[
gk,0 · · · gk,pk

]
with gk,i := ∇f(xk,i) for all i ∈ {0, . . . , pk}, (3.4)

the solution dk of (3.3) can be obtained by solving the primal-dual pair


min

(z,d)∈Rn+1
z + 1

2‖d‖
2
W−1
k

s.t. GTk d ≤ ze




max
y∈Rpk+1

− 1
2‖Gky‖

2
Wk

s.t. eT y = 1, y ≥ 0

 , (3.5)

the primal-dual solution of which we denote as (zk, dk, yk).

If the sample set has only one element, i.e., if pk = 0 with Xk = {xk,0} = {xk}, then it

is easily seen that our notation is consistent in that dk from (3.5) is that in (3.2). Thus,

henceforth we may refer to dk as the solution of (3.3), knowing that if pk = 0, then it can

be obtained directly from (3.2), and otherwise it can be obtained by solving the former

(i.e., primal) quadratic optimization subproblem (QP) in (3.5). In fact, if instead one

solves the latter (i.e., dual) QP in (3.5) to obtain yk, then the search direction can be
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obtained as dk ← −WkGkyk. This is the approach that we take in our implementation

described in §3.4, and so it will be the approach used in the remainder of our discussion

and analysis. Note that a benefit of this strategy is that the Hessian approximation W−1
k

need not be computed; i.e., we only need the matrix Wk appearing in (3.2) and (3.5) as all

subsequent computations will be written in such a way that W−1
k is not explicitly needed.

Overall, there are two interpretations of the search direction dk. First, it can be

viewed, as in subproblem (3.3), as the minimizer of a local piece-wise quadratic model

of f at xk with gradient information sampled at the points in Xk. Second, it can be

viewed, in terms of the dual QP in (3.5), as Wk times the negation of the oblique Wk-

projection of the origin onto the convex hull of the gradients of f at the points in the

sample set Xk, i.e., as dk = −WkPWk
({∇f(x)}x∈Xk), which is to say that it is Wk times the

negation of the minimum Wk-norm element in conv{∇f(x)}x∈Xk . (Clearly, with Wk = I,

the search direction reduces to the negation of the minimum Euclidean norm element in

conv{∇f(x)}x∈Xk , which is precisely the “nonnormalized search direction” interpretation

described in [39, §4.1].) The former interpretation is perhaps more intuitively appealing

as that of a search direction for an optimization algorithm, though we will make more use

of the second interpretation in our global convergence analysis.

Once the pair (dk, yk) has been computed via (3.5), we either compute a null step size

(to produce a null step, which may be necessary in some cases) or a positive step size

αk > 0 such that the trial point xk + αkdk yields a sufficiently lower objective value than

that yielded by xk. If xk + αkdk ∈ D, then the next iterate xk+1 is set to be this trial

point; otherwise a point xk+1 ∈ D in the vicinity of xk+αkdk is computed that also yields

sufficient decrease in f . (In fact, the step size αk and new iterate xk+1 may be chosen

also to satisfy a curvature condition to ensure that an unadulterated BFGS update will

produce a positive definite Hessian approximation in the following iteration.) All of the

details of these procedures are given in §3.2.2. Overall, starting with x0 ∈ D, we ensure

that {xk} ⊂ D.

Once the pair (dk, yk), step size αk ≥ 0, and next iterate xk+1 ∈ D have been computed,

the remainder of the iteration involves setting the next sampling radius εk+1 ∈ (0, εk],
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sample set Xk+1 (and related quantities), and inverse Hessian approximation Wk+1. In

particular, the value to which the next sampling radius εk+1 is set depends on whether or

not the following inequalities hold:

‖Gkyk‖Wk
≤ νεk; (3.6a)

‖Gkyk‖Wk
≥ ξ‖dk‖2; (3.6b)

αk > 0. (3.6c)

The details pertaining to the updates of sample set and (inverse) Hessian approximation

are the subjects of §3.2.3 and §3.2.4, respectively.

We now present our main algorithm, stated as Algorithm 5.

Algorithm 5 BFGS Gradient Sampling Algorithm

1: Choose an initial iterate x0 ∈ D, inverse Hessian approximation W0 � 0, and sampling
radius ε0 > 0. Set the initial sample set X0 ← {x0}, sample set size p0 ← 0, matrix of
sample gradients G0 as defined in (3.4), and iteration counter k ← 0.

2: If ∇f(xk) = 0, then terminate and return the stationary point xk.
3: Compute a search direction dk ← −WkGkyk where yk solves the dual QP in (3.5).
4: Compute a step size αk ≥ 0 via Algorithm 6 in §3.2.2.
5: Compute a new iterate xk+1 ∈ D via Algorithm 7 in §3.2.2.
6: If (3.6) holds, then set the new sampling radius εk+1 ← ψεk; otherwise, set εk+1 ← εk.
7: Compute a new sample set Xk+1 with pk+1 ← |Xk+1| − 1 via Algorithm 8 in §3.2.3.
8: Compute the matrix of gradients Gk+1 as defined in (3.4).
9: Compute a new inverse Hessian approximation Wk+1 � 0 via Algorithm 9 in §3.2.4.

10: Set k ← k + 1 and go to Step 2.

We close this subsection by showing that if Algorithm 5 reaches Step 3 during iteration

k, then it computes dk as null or as a direction of strict descent for f from xk ∈ D. We

state this result, which also proves an important relationship between the search direction

dk and the dual QP solution yk, as it will be used to motivate algorithmic choices made in

the following subsections. We provide a proof of this result for the sake of completeness;

see also [18, Lemma 4.3].

Lemma 3.2.2. If Algorithm 5 reaches Step 3 during iteration k, then it computes a search

direction dk that is zero or a direction of strict descent for f from xk ∈ D. In addition,

the primal-dual solution (zk, dk, yk) of (3.5) satisfies ‖Gkyk‖Wk
= ‖dk‖W−1

k
.
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Proof. The primal and dual subproblems in (3.5) are both feasible. Moreover, since Wk �

0, they are strictly convex, so dk and yk are part of the unique tuple (zk, dk, yk) satisfying

the Karush-Kuhn-Tucker (KKT) conditions for (3.5):

dk +WkGkyk = 0; (3.7a)

eT yk − 1 = 0; (3.7b)

0 ≤ yk ⊥ zke−GTk dk ≥ 0. (3.7c)

Equation (3.7a) implies ‖Gkyk‖Wk
= ‖dk‖W−1

k
. Moreover, observing (3.7), we find

0 = yTk (zke−GTk dk) =⇒ zk = zke
T yk = yTk G

T
k dk = −‖Gkyk‖2Wk

,

which, along with the fact that (3.7c) states zke−GTk dk ≥ 0, implies that

GTk dk ≤ zke ≤ −(‖Gkyk‖2Wk
)e.

In particular, as ∇f(xk) is a column of Gk, we have

∇f(xk)
Tdk ≤ −‖Gkyk‖2Wk

= −‖dk‖2W−1
k

. (3.8)

If dk = 0, then there is nothing left to prove. Moreover, if ∇f(xk) = 0, then Algorithm 5

would have terminated in Step 2. Hence, from (3.8) and W−1
k � 0, it follows that if Step 3

is reached and it produces dk 6= 0, then ∇f(xk)
Tdk < 0.

We remark that due to Lemma 3.2.2, the conditions in (3.6) could be written as

ξ‖dk‖2 ≤ ‖dk‖W−1
k
≤ νεk and αk > 0, (2.6′)

from which it is clear that, in Algorithm 5, the sampling radius is decreased if and only

if the step size is nonzero and the search direction has a W−1
k -norm that is both rela-

tively large compared to its Euclidean norm and relatively small compared to the current

sampling radius.
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3.2.2 Line Search

At an iterate xk ∈ D, Algorithm 5 either terminates in Step 2 or, by Lemma 3.2.2, it

continues to Step 3 to produce a null or strict descent direction dk for f from xk. If

dk = 0, then we simply set αk to its initial (positive) value, xk+1 ← xk, and continue to

the next step of the algorithm. If dk 6= 0, then our line search aims to compute a step

size αk > 0 such that xk + αkdk yields an objective value that is sufficiently less than

that yielded by xk. In fact, it attempts to compute such a step size so that a curvature

condition is also satisfied, as this would guarantee that an unadulterated BFGS update

will yield Wk+1 � 0; see §3.2.4. However, to ensure that the line search is well-posed under

loose assumptions, this latter requirement is abandoned if such a step size is not computed

within a predetermined number of line search iterations. We also terminate the search

completely (and simply set αk ← 0 and xk+1 ← xk) if the sample set Xk is not sufficiently

large and, after a predetermined number of line search iterations, a sufficient decrease in

f has not been obtained. This choice is motivated by the fact that if the sample set is

not sufficiently large and a relatively large step size is not acceptable according to the

line search conditions, then the algorithm may benefit by collecting more local gradient

information before accepting a positive step size (which it can be seen to do by observing

the sample set update in §3.2.3).

Given an iterate xk and pair (dk, yk) from (3.5) with dk 6= 0, we aim to compute a

step size αk > 0 satisfying the following Armijo and curvature conditions, which together

compose the well-known (weak) Wolfe line search conditions [49]:

f(xk)− f(xk + αkdk) > ηαk‖Gkyk‖2Wk
; (3.9a)

vTdk ≥ η∇f(xk)
Tdk, where v ∈ ∂f(xk + αkdk). (3.9b)

(Technically, we are abusing this terminology as the traditional Armijo condition employs

the negative directional derivative −∇f(xk)
Tdk in place of ‖Gkyk‖2Wk

in (3.9a). However,

our abuse of this terminology is reasonable since, due to (3.8), the condition (3.9a) also

ensures sufficient decrease in f from xk after the step αkdk.) If the resulting trial point
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satisfies xk + αkdk ∈ D, then xk+1 is set to be this trial point; otherwise, we aim to

compute xk+1 ∈ D satisfying

f(xk)− f(xk+1) ≥ ηαk‖Gkyk‖2Wk
, (3.10a)

∇f(xk+1)Tdk ≥ η∇f(xk)
Tdk, (3.10b)

and ‖xk + αkdk − xk+1‖2 ≤ min{αk, εk}‖dk‖2. (3.10c)

Note that these conditions are also satisfied when xk+1 ← xk +αkdk ∈ D, so we may refer

to (3.10) as being satisfied whenever (3.9) holds and xk+1 ← xk + αkdk.

There are a variety of situations in which it may not be possible to compute a step

size αk > 0 satisfying (3.9), or at least not within a predetermined number of iterations.

For example, such a situation occurs when f is unbounded below along the ray {xk +

αdk : α ≥ 0}. However, even if f is bounded below over this ray, finite termination

of a straightforward line search scheme may not be guaranteed without strengthening

Assumption 3.2.1, or at least not without additional assumptions about f at xk along dk;

see Lemma 3.2.4 below. Hence, we propose Algorithm 6 that guarantees finite termination

by abandoning the curvature condition (3.9b) after a finite number of trial step sizes have

been rejected. We also completely abandon the search for a positive step size (and set

αk ← 0, xk+1 ← xk, and eventually εk+1 ← εk due to (3.6c)) if Xk is not sufficiently large

and the search has not been successful after a predetermined number of iterations. This

truncation of the line search is required to prove our global convergence guarantees as it

will result (by the method in §3.2.3) in additional gradient sampling about xk+1.

After employing Algorithm 6 to compute a step size αk ≥ 0, we employ Algorithm 7

to compute a new iterate xk+1 ∈ D. If αk = 0, then xk+1 ← xk, but if αk > 0, then xk+1

will satisfy the perturbed line search conditions (3.10), or at least (3.10a) and (3.10c). (If

αk > 0, but (3.9b) does not hold, then we effectively ignore (3.10b) by immediately setting

j ← J + 1 in Step 3 of Algorithm 7.)

We present the following lemma to show that our line search and iterate perturbation

algorithms are well-posed. The lemma also delineates various situations that may result
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Algorithm 6 Armijo-Wolfe Line Search

1: Take as input the quantities (xk, Gk,Wk, dk, yk) from Algorithm 5. Set the initial step
size boundaries l0 ← 0 and u0 ← α, step size αk ← γα, and iteration counter j ← 0.

2: If the step is null, i.e., dk = 0, then terminate and return αk.
3: If the sample set is not sufficiently large in that pk < p and the upper iteration

threshold has been surpassed in that j > J , then set αk ← 0, terminate, and return
αk.

4: If the lower iteration threshold has been surpassed in that j > J , then reset lj ← 0.
5: If the Wolfe conditions (3.9) hold, or if the Armijo condition (3.9a) holds and the lower

iteration threshold has been surpassed in that j > J , then terminate and return αk.
6: If the Armijo condition (3.9a) does not hold, then set lj+1 ← lj and uj+1 ← αk;

otherwise, the curvature condition (3.9b) does not hold, so set lj+1 ← αk and uj+1 ←
uj .

7: Set αk ← (1− γ)lj+1 + γuj+1.
8: Set j ← j + 1 and go to Step 3.

Algorithm 7 Iterate Perturbation

1: Take as input the quantities (xk, εk, Gk,Wk, dk, yk, αk) from Algorithm 5. Set the
initial new iterate xk+1 ← xk + αkdk and iteration counter j ← 0.

2: If the step or step size is null, i.e., dk = 0 or αk = 0, then terminate and return xk+1.
3: If the curvature condition (3.9b) does not hold, then set j ← J + 1.
4: If xk+1 /∈ D, then continue to Step 5. Otherwise, if the (perturbed) Wolfe conditions

(3.10) hold, or if the (perturbed) Armijo conditions (3.10a) and (3.10c) hold and the
iteration threshold has been surpassed in that j > J , then terminate and return xk+1.

5: Sample xk+1 from a uniform distribution on Bmin{αk,εk}/j(xk + αkdk).
6: Set j ← j + 1 and go to Step 4.

after employing these two subroutines.

Lemma 3.2.3. If Algorithm 5 reaches Step 4 during iteration k, then it either computes

a null or positive step size αk, where αk is guaranteed to be positive if pk ≥ p. Moreover,

if αk > 0, then the Wolfe conditions (3.9), or at least the Armijo condition (3.9a), is

satisfied. Algorithm 5 then proceeds to Step 5, where with probability one it computes a

new iterate xk+1 ∈ D with which the (perturbed) Wolfe conditions (3.10), or at least the

(perturbed) Armijo conditions (3.10a) and (3.10c), are satisfied.

Proof. If dk = 0, then (3.9) holds for any value of αk ≥ 0, so Algorithm 6 terminates in

iteration j = 0 and returns αk ← γα > 0. In this case, or if Algorithm 6 sets αk ← 0, then

since xk+1 ← xk + αkdk = xk ∈ D satisfies (3.10), it follows that Algorithm 7 terminates

in iteration j = 0 and returns xk+1 ← xk + αkdk. Now suppose dk 6= 0, from which it

follows from Lemma 3.2.2 that dk is a direction of strict descent for f from xk. Without
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loss of generality, we may assume that Algorithm 6 performs at least J iterations, at which

point it (re)sets lj ← 0, and that it never sets αk ← 0. It then follows from the fact that

xk ∈ D and Lemma 3.2.2 that, after a finite number of additional iterations, αk > 0 will be

produced at least satisfying the Armijo condition (3.9a). Turning to Algorithm 7, we may

assume without loss of generality that at least J iterations will be performed, after which

it follows from the strict inequality in (3.9a), the continuity of f , and Assumption 3.2.1

that, after a finite number of additional iterations and with probability one, a new iterate

xk+1 will be produced satisfying (3.10a) and (3.10c).

With additional assumptions about f , one could employ Algorithm 6 with the step

size threshold set to α←∞ (assuming αk is initialized to some finite value) and iteration

thresholds set to J ← ∞ and J ← ∞ and still have a well-posed algorithm. To make

this claim concrete, we present the following result, the proof of which follows from the

results in [44, §4]; see also [41, 61, 46]. Although we do not wish to make the additional

assumptions required in this lemma, we present this result to motivate the appeal of our

line search strategy.

Lemma 3.2.4. Suppose fk(α) := f(xk +αdk)− f(xk) is bounded below and weakly lower

semismooth [46] over {α : α > 0}. Then, if Algorithm 5 reaches Step 4 during iteration k

and the function fk is differentiable at all trial step sizes, Algorithm 6 with αk initialized

in (0,∞), α←∞, J ←∞, J ←∞, and Step 7 replaced by

“7: If uj+1 <∞, then set αk ← (1− γ)lj+1 + γuj+1; else, set αk ← αk/γ.”

terminates finitely with αk > 0 satisfying (3.9).

3.2.3 Sample Point Generation

After the pair (dk, yk), step size αk, and new iterate xk+1 have been computed, we are

ready in Algorithm 5 to establish the new sample set Xk+1. As previously mentioned, we

claim that the ideal behavior of the algorithm is that of an unadulterated BFGS method, at

least when such a method continues to make sufficient progress in reducing the objective
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function f . Hence, if the curvature of Wk along Gkyk (equal, by Lemma 3.2.2, to the

curvature of W−1
k along dk) is bounded below in that (3.6b) holds, and if the computed

step size is sufficiently large in that

αk ≥ α, (3.11)

then we set the default value of Xk+1 ← {xk+1} so that an unadulterated BFGS step will

be computed in the following iteration. However, if either of these conditions does not

hold, then we augment the sample set with points obtained from the previous sample set

and some randomly generated in an εk+1-neighborhood about xk+1. The details of our

sample set update are stated in Algorithm 8, and the salient consequences of this strategy

are provided in the following lemma.

Algorithm 8 Sample Set Update

1: Take as input the quantities (xk+1, εk+1, Gk,Wk, dk, yk, αk) from Algorithm 5.
2: If the curvature of the inverse Hessian approximation is bounded below in that (3.6b)

holds and the step size is sufficiently large in that (3.11) holds, then set Xk+1 ← {xk+1}
and pk+1 ← 0, terminate, and return (Xk+1, pk+1).

3: Set Xk+1 ← (Xk ∩Bk+1) ∪ {xk+1} and choose pk+1 ∈ N+.
4: Set Xk+1 as a collection of pk+1 points generated independently from a uniform dis-

tribution over Bεk+1
(xk+1).

5: If Xk+1 6⊂ D, then go to Step 4.
6: Set Xk+1 ← Xk+1 ∪Xk+1 and pk+1 ← |Xk+1| − 1.
7: If pk+1 > p, then remove the pk+1−p eldest members of Xk+1\{xk+1} and set pk+1 ←
p.

8: Terminate and return (Xk+1, pk+1).

Lemma 3.2.5. If Algorithm 5 reaches Step 7 during iteration k, then it either sets Xk+1 ←

{xk+1} and pk+1 ← 0, or, with probability one, it produces

Xk+1 ← ((Xk ∩Bk+1) ∪ {xk+1} ∪Xk+1) ⊂ Bk+1

and pk+1 ≥ min{pk + 1, p}.

Proof. If (3.6b) and (3.11) hold, then the algorithm sets Xk+1 ← {xk+1} and pk+1 ←

0, which is the first desirable result. Otherwise, the result follows by the construction

of Algorithm 8, Assumption 3.2.1, and the fact that the points in Xk+1 are generated

independently and uniformly in Bεk+1
(xk+1).
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3.2.4 Hessian Approximation Strategy

Upon computing the pair (dk, yk), step size αk, new iterate xk+1, and new sample set Xk+1,

the final main step of Algorithm 5 is to compute a new inverse Hessian approximation

Wk+1. If the curvature along Gkyk determined by Wk is bounded below in that (3.6b)

holds and if the step size is sufficiently large in that (3.11) holds, then we obtain Wk+1 � 0

from Wk � 0 via a standard (damped) BFGS update. However, if one of these conditions

does not hold, then we have reason to believe that a standard BFGS update may lead

to an approximation whose ill-conditioning may be detrimental to the performance of

the algorithm (or at least to our mechanisms for guaranteeing productive steps and/or

verifying stationarity). Hence, in such cases, we set Wk+1 � 0 by an L-BFGS strategy

in which we monitor the updates so that the resulting matrix has a provably bounded

condition number.

The algorithm presented in this section makes use of the quantities

sk := xk+1 − xk and tk := ∇f(xk+1)−∇f(xk) for all k ≥ 0. (3.12)

It also potentially uses the set of pairs {(sk−m+1, tk−m+1), . . . , (sk−1, tk−1)}, where each

element is defined similarly as in (3.12) for the previous m − 1 iterations. We did not

mention these pairs in our description of Algorithm 5, though it is obvious that these

vectors may be stored in Algorithm 5 (having no effect on any other quantities or steps of

Algorithm 5) for use in the algorithm in this subsection.

If sk = 0 or tk = 0, then we claim that we have obtained no useful curvature information

from the step from xk to xk+1, so we set Wk+1 ← Wk. Otherwise, if (3.6b) and (3.11)

hold, then we damp the BFGS update by setting

rk ← δksk + (1− δk)Wktk, (3.13)
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where the scalar δk is defined by

δk ←


1 if sTk tk ≥ µtTkWktk

(1− µ)tTkWktk/(t
T
kWktk − sTk tk) if sTk tk < µtTkWktk,

(3.14)

then employ the standard BFGS formula with (sk, tk) replaced by (rk, tk) [49]:

Wk+1 ←
(
I −

rkt
T
k

rTk tk

)
Wk

(
I −

tkr
T
k

rTk tk

)
+
rkr

T
k

rTk tk
. (3.15)

On the other hand, if sk 6= 0 and tk 6= 0, but at least one of (3.6b) or (3.11) does not

hold, then we employ a damped L-BFGS strategy, proceeding in the following manner.

First, choosing a scalar wk > 0, we initialize W
(k−m)
k+1 ← wkI. Then, for increasing j in

the ordered set {k −m+ 1, . . . , k}, we set

rj ← δjsj + (1− δj)W (j−1)
k+1 tj , (3.16)

where

δj ←


1 if sTj tj ≥ µtTj W

(j−1)
k+1 tj

(1− µ)tTj W
(j−1)
k+1 tj/(t

T
j W

(j−1)
k+1 tj − sTj tj) if sTj tj < µtTj W

(j−1)
k+1 tj ,

(3.17)

and

W
(j)
k+1 ←

(
I −

rjt
T
j

rTj tj

)
W

(j−1)
k+1

(
I −

tjr
T
j

rTj tj

)
+
rjr

T
j

rTj tj
. (3.18)

Finally, we set Wk+1 ←W
(k)
k+1. In this procedure, in order to guarantee that the resulting

inverse Hessian approximation has a bounded condition number, for each j we skip the

update in (3.18) (and simply set W
(j)
k+1 ←W

(j−1)
k+1 ) unless

sj 6= 0, tj 6= 0, and max{‖rj‖22, ‖tj‖22} ≤ µrTj tj . (3.19)

We formalize our inverse Hessian approximation strategy as Algorithm 9. We assume

that the vectors in {(s−m+1, t−m+1), . . . , (s−1, t−1)} are initialized to zero so that if the
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L-BFGS strategy is employed in iteration k < m, then, as a consequence of the condition

(3.19), at most k updates will be performed.

Algorithm 9 Inverse Hessian Approximation Update

1: Take as input the quantities (xk, xk+1,∇f(xk),∇f(xk+1),Wk) from Algorithm 5 and
the previously computed sequence {(sk−m+1, tk−m+1), . . . , (sk−1, tk−1)}.

2: Set sk and tk by (3.12).
3: If sk = 0 or tk = 0, then set Wk+1 ←Wk, terminate, and return Wk+1.
4: If the curvature of the inverse Hessian approximation is bounded below in that (3.6b)

holds and the step size is sufficiently large in that (3.11) holds, then set rk, δk, and
Wk+1 by (3.13)–(3.15), terminate, and return Wk+1.

5: Choose wk ∈ [w,w] and initialize W
(k−m)
k+1 ← wkI.

6: for increasing j ∈ {k −m+ 1, . . . , k} do
7: Set rj and δj by (3.16)–(3.17).
8: if (3.19) holds then

9: Set W
(j)
k+1 by (3.18).

10: else
11: Set W

(j)
k+1 ←W

(j−1)
k+1 .

12: Set Wk+1 ←W
(k)
k+1, terminate, and return Wk+1.

In the remainder of this section, we prove properties of the inverse Hessian approxi-

mation Wk+1 returned by Algorithm 9 during iteration k of Algorithm 5. First, we state

the result that the damped BFGS update (3.15) yields Wk+1 � 0. This fact is well known

[49], so we state it without proof.

Lemma 3.2.6. With Wk � 0, sk 6= 0, and tk 6= 0, the update (3.15) yields Wk+1 � 0.

Next, we prove a result about the update (3.18). We prove this result for completeness,

but see also the similar result [18, Lemma 3.2].

Lemma 3.2.7. Suppose that for θ ≥ θ > 0 we have

θ‖t‖22 ≤ tTW
(j−1)
k+1 t ≤ θ‖t‖22 for all t ∈ Rn. (3.20)

Then, with (rj , sj , tj) satisfying (3.19), the update (3.18) yields W
(j)
k+1 such that

(θ−1 + µ)−1‖t‖22 ≤ tTW
(j)
k+1t ≤ (2θ(1 + µ2) + µ)‖t‖2 for all t ∈ Rn. (3.21)
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Proof. Applying the Sherman-Morrison-Woodbury formula [25] to (3.18), we obtain

(W
(j)
k+1)−1 ← (W

(j−1)
k+1 )−1 −

(W
(j−1)
k+1 )−1rjr

T
j (W

(j−1)
k+1 )−1

rTj (W
(j−1)
k+1 )−1rj

+
tjt

T
j

rTj tj
. (3.22)

The fact that (3.20) holds implies that W
(j−1)
k+1 � 0, which along with the Rayleigh-Ritz

theorem [35] implies that

tT (W
(j−1)
k+1 )−1t ≤ θ−1‖t‖22 for all t ∈ Rn.

From this inequality, (3.19), (3.22), and the Cauchy-Schwarz inequality, we have

tT (W
(j)
k+1)−1t = tT (W

(j−1)
k+1 )−1t−

(rTj (W
(j−1)
k+1 )−1t)2

rTj (W
(j−1)
k+1 )−1rj

+
(tTj t)

2

rTj tj

≤ tT (W
(j−1)
k+1 )−1t+

(tTj t)
2

rTj tj

≤ (θ−1 + µ)‖t‖22 for all t ∈ Rn.

Hence, again applying the Rayleigh-Ritz theorem, we obtain the former inequality in

(3.21). As for the latter inequality in (3.21), first note that from (3.19), we have

tT

(
rjr

T
j

rTj tj

)
t =

(rTj t)
2

rTj tj
≤ µ‖t‖22. (3.23)

Since (3.20) implies W
(j−1)
k+1 � 0, we may write W

(j−1)
k+1 = NT

j Nj for some nonsingular

Nj ∈ Rn×n. Moreover, from (3.20), we have

tTW
(j−1)
k+1 t = ‖Njt‖22 ≤ θ‖t‖22 for all t ∈ Rn,

which, along with (3.19), implies that

∥∥∥∥∥Njtjr
T
j t

rTj tj

∥∥∥∥∥
2

2

=

(
rTj t

rTj tj

)2

‖Njtj‖22 ≤ µ2θ‖t‖22. (3.24)

Thus, from (3.24) and the fact that for any vectors a and b of equal length we have
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‖a− b‖2 ≤ 2(‖a‖2 + ‖b‖2), it follows that

∥∥∥∥∥Nj

(
I −

tjr
T
j

rTj tj

)
t

∥∥∥∥∥
2

2

≤ 2

‖Njt‖22 +

∥∥∥∥∥Njtjr
T
j t

rTj tj

∥∥∥∥∥
2

2

 ≤ 2θ(1 + µ2)‖t‖22.

Overall, the above and (3.23) yield

tTW
(j)
k+1t =

∥∥∥∥∥Nj

(
I −

tjr
T
j

rTj tj

)
t

∥∥∥∥∥
2

+ tT

(
rjr

T
j

rTj tj

)
t ≤ (2θ(1 + µ2) + µ)‖t‖22,

which is precisely the latter inequality in (3.21).

We conclude this section with the following lemma revealing that for any k, the matrix

Wk+1 returned by Algorithm 9 is positive definite, and is also bounded in certain important

situations; see the similar result [18, Theorem 3.3].

Lemma 3.2.8. Algorithm 9 with input Wk � 0 yields Wk+1 satisfying the following.

(a) If sk = 0 or tk = 0, then Wk+1 ←Wk � 0.

(b) If sk 6= 0, tk 6= 0, and (3.6b) and (3.11) hold, then Wk+1 � 0.

(c) If sk 6= 0 and tk 6= 0, but at least one of (3.6b) or (3.11) does not hold, then

Wk+1 � 0 and for all t ∈ Rn we have

tTWk+1t ≥ (w−1 +mµ)−1‖t‖22 (3.25a)

tTWk+1t ≤

(
2m
(
1 + µ2

)m
w + µ

(
2m
(
1 + µ2

)m − 1

2
(
1 + µ2

)
− 1

))
‖t‖22. (3.25b)

Proof. If sk = 0 or tk = 0, then, by Step 3, Algorithm 9 sets Wk+1 ←Wk � 0, as desired.

Otherwise, if (3.6b) and (3.11) hold, then, by Step 4, Algorithm 9 sets Wk+1 by (3.15),

which by Lemma 3.2.6 implies that Wk+1 � 0, as desired.

All that remains is to consider the case when sk 6= 0 and tk 6= 0, but at least one

of (3.6b) or (3.11) does not hold. In this case, by Steps 5–12, Algorithm 9 sets Wk+1

by choosing wk ∈ [w,w], initializing W
(k−m)
k+1 = wkI � 0, applying (at most) m updates

of the form (3.18) with quantities satisfying (3.19), and finally setting Wk+1 ← W
(k)
k+1.
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Since, by Lemma 3.2.7, each application of (3.18) takes the bounds in (3.20) and produces

the wider bounds in (3.21), we may assume without loss of generality that all m updates

are performed, i.e., that (3.19) holds for all j ∈ {k − m + 1, . . . , k}. Thus, starting

with θ = θ = wk, the result of Lemma 3.2.7 can be applied repeatedly for increasing

j ∈ {k − m + 1, . . . , k}. In particular, as seen in the proof of Lemma 3.2.7, the upper

bound corresponding to the inverse of the approximation increases by the constant factor

µ > 0 with each update, so after m updates we obtain (3.25a). As for the upper bound

(3.25b), by applying Lemma 3.2.7 for increasing j ∈ {k −m+ 1, . . . , k} we obtain for all

t ∈ Rn that

tTWk+1t ≤ (2m(1 + µ2)mwk + 2m−1(1 + µ2)m−1µ+ · · ·+ 2(1 + µ2)µ+ µ)‖t‖22

=

(
2m(1 + µ2)mwk + µ

(
2m(1 + µ2)m − 1

2(1 + µ2)− 1

))
‖t‖22,

which, since wk ∈ [w,w], implies that (3.25b) holds.

LewiOver13

3.3 Global Convergence Analysis

In this section, we prove that Algorithm 5 is globally convergent from remote starting

points. Specifically, with the restriction that

0 < ξ ≤

(
2m
(
1 + µ2

)m
w + µ

(
2m
(
1 + µ2

)m − 1

2
(
1 + µ2

)
− 1

))−1

(3.26)

the result that we prove is the following.

Theorem 3.3.1. Algorithm 5 either terminates finitely with a stationary point for f or,

with probability one, it produces an infinite sequence of iterates {xk}. In the latter case,

with probability one, either {f(xk)} → −∞ or {εk} → 0 and every cluster point of the

iterate sequence {xk} is stationary for f .

We begin our analysis for proving Theorem 3.3.1 by summarizing the results of the

previous section to prove that Algorithm 5 is well-posed.
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Lemma 3.3.2. Algorithm 5 is well-posed in the sense that it either terminates in Step 2

with a stationary point for f or, with probability one, it produces an infinite sequence of

iterates {xk}. In either case, for each k, the following hold true:

(a) The primal-dual solution (zk, dk, yk) of (3.5) satisfies ‖Gkyk‖Wk
= ‖dk‖W−1

k
where

dk is either zero or is a direction of strict descent for f from xk ∈ D.

(b) The step size αk is nonnegative, and is positive if pk ≥ p. If αk > 0, then either the

Wolfe conditions (3.9) hold or at least the Armijo condition (3.9a) holds.

(c) With probability one, xk+1 ∈ D is computed satisfying the (perturbed) Wolfe condi-

tions (3.10) or at least the (perturbed) Armijo conditions (3.10a) and (3.10c).

(d) If Step 6 is reached and (3.6) holds, then εk+1 ← ψεk; otherwise, εk+1 ← εk.

(e) If Step 7 is reached and (3.6b) and (3.11) hold, then Xk+1 ← {xk+1} along with

pk+1 ← 0; otherwise, with probability one,

Xk+1 ← ((Xk ∩Bk+1) ∪ {xk+1} ∪Xk+1) ⊂ Bk+1

is generated and pk+1 ≥ min{pk + 1, p}.

(f) If Step 9 is reached, then Wk+1 � 0, where if sk 6= 0, tk 6= 0, and at least one of

(3.6b) or (3.11) does not hold, then Wk+1 satisfies the bounds in (3.25).

Proof. The result follows by the construction of Algorithms 5, 6, 7, 8, and 9 along with

the results of Lemmas 3.2.2, 3.2.3, 3.2.5, 3.2.6, and 3.2.8.

For simplicity in our analysis until our proof of Theorem 3.3.1 at the end of this sec-

tion, we assume without loss of generality that Algorithm 5 produces an infinite iterate

sequence {xk}. Implicit in this assumption is that the procedures to compute xk+1 and

Xk+1 terminate finitely for all k, i.e., that these procedures may be considered determin-

istic. This is reasonable since, by Lemma 3.3.2, these procedures terminate finitely with

probability one, and since there is nothing else that we aim to prove when they fail to

terminate finitely.
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In our next result, we prove that there exists an infinite subsequence of iterates in

which the algorithm produces a positive step size.

Lemma 3.3.3. There exists an infinite subsequence of iterations in which αk > 0.

Proof. To derive a contradiction, suppose that there exists an iteration number k′ such

that for all k ≥ k′ we have αk = 0. By Lemma 3.3.2(b), this must mean that for all k ≥ k′

we have pk ≤ p − 1. However, with αk = 0, we have that (3.11) does not hold, which by

Lemma 3.3.2(e) implies that the algorithm will set pk+1 ≥ min{pk + 1, p}. This means

that for some k′′ ≥ k′ we have pk′′ ≥ p, which contradicts the conclusion that pk ≤ p− 1

for all k ≥ k′.

We now prove a critical inequality for a subset of iterations.

Lemma 3.3.4. If (3.6b) holds during iteration k, then

f(xk+1) ≤ f(xk)− 1
2ηξ‖xk+1 − xk‖2‖dk‖2.

Proof. By the reverse triangle inequality, (3.10c) ensures that

‖xk+1 − xk‖2 ≤ min{αk, εk}‖dk‖2 + αk‖dk‖2 ≤ 2αk‖dk‖2. (3.27)

Thus, by (3.10a), (3.6b), and (3.27), we have

f(xk+1)− f(xk) ≤ −ηαk‖Gkyk‖2Wk

≤ −ηαkξ‖dk‖22

≤ −1
2ηξ‖xk+1 − xk‖2‖dk‖2,

as desired.

We now prove a useful lemma on approximate least W -norm elements in certain types

of sets of interest. For the lemma, recall that for W � 0 and nonempty bounded S ⊆ Rn,

we define PW (S) as the (oblique) W -projection of the origin onto cl convS. The lemma

can be seen as a variation of [39, Lemma 3.1].
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Lemma 3.3.5. Consider W � 0, a nonempty bounded set S ⊆ Rn, and a constant

β ∈ (0, 1). If 0 /∈ cl convS, then there exists a constant κ > 0 such that for any {u, v} ⊆

cl convS the inequality ‖u‖2W ≤ ‖PW (S)‖2W + κ implies vTWu > β‖u‖2W .

Proof. By definition, we have

PW (S) := arg min
x∈cl convS

‖x‖2W ,

which implies (e.g., see [4, Proposition 1.1.8]) that for all v ∈ cl convS we have

vTWPW (S) ≥ ‖PW (S)‖2W . (3.28)

We now prove the result by contradiction. If the result were false, then there exist

sequences {ui} ⊆ cl convS and {vi} ⊆ cl convS satisfying ‖ui‖2W ≤ ‖PW (S)‖2W + 1/i and

vTi Wui ≤ β‖ui‖2W for all i ≥ 0. Then, {ui} → u = PW (S) 6= 0, and since S is bounded, it

follows that cl convS is compact, meaning that we may assume that {vi} → v ∈ cl convS

such that vTWu ≤ β‖u‖2W . On the other hand, we have from (3.28) that vTWu ≥ ‖u‖2W

for all v ∈ cl convS, a contradiction.

Next, we prove a technical lemma pertaining to the discrepancy between two related

measures of proximity to ε-stationarity. Given x′ ∈ Rn, we define

Gk(x′) := cl conv∇f(Bεk(x′) ∩ D),

and, also given a tolerance ω > 0, we define

Tk(x′, ω) :=

{
Xk ∈

pk∏
0

Bk : ‖PWk
({∇f(x)}x∈Xk)‖2Wk

≤ ‖PWk
(Gk(x′))‖2Wk

+ ω

}
.

The purpose of the lemma is to show that for a sufficiently large sample set size pk,

an iterate xk sufficiently close to x′, and any ω > 0, there exists a nonempty subset of

Tk(x′, ω); see the similar result [39, Lemma 3.2(i)].
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Lemma 3.3.6. If pk ≥ n+ 1, then for any ω > 0, there exists ζ > 0 and a nonempty set

T such that for all xk ∈ Bζ(x′) we have T ⊆ Tk(x′, ω).

Proof. Under Assumption 3.2.1, there exists g ∈ conv∇f(Bεk(x′) ∩ D) such that

‖g‖2Wk
≤ ‖PWk

(Gk(x′))‖2Wk
+ ω.

Then, since pk ≥ n+ 1, Carathéodory’s Theorem (e.g., see [4, Proposition 1.2.1]) implies

the existence of a set of points {x′0, . . . , x′pk} ⊂ Bεk(x′)∩D and a set of nonnegative scalars

{λ0, . . . , λpk} such that

pk∑
i=0

λi = 1 and

pk∑
i=0

λi∇f(x′i) = g.

Since f is continuously differentiable in D, there exists ζ ∈ (0, εk) such that

T :=

pk∏
i=0

int Bζ(x′i)

lies in Bεk−ζ(x′) and for any Xk ∈ T we have

‖PWk
({∇f(x)}x∈Xk)‖2Wk

≤ ‖PWk
(Gk(x′))‖2Wk

+ ω.

Thus, for all xk ∈ Bζ(x′), the fact that Bεk−ζ(x′) ⊂ Bεk(xk) and the above conclusion

implies that ∅ 6= T ⊂ Tk(x′, ω).

We are now prepared to prove our main result.

Theorem 3.3.1. If Algorithm 5 terminates finitely with a stationary point for f , or if

Algorithm 7 or 8 is called and fails to terminate finitely, then there is nothing left to

prove. Otherwise, by Lemma 3.3.2, Algorithm 5 produces an infinite sequence of iterates

{xk}. In this case, if {f(xk)} → −∞, then again there is nothing left to prove, so for the

remainder of our analysis we suppose that an infinite iterate sequence {xk} is generated

and that

inf
k→∞

f(xk) > −∞. (3.29)
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Our first main goal is to show that {εk} → 0. To prove this, we consider two cases.

Case 1: Suppose there exists an infinite iteration index set K such that (3.6b) and

(3.11) hold for all k ∈ K. Then, along with (3.10a), we have

f(xk+1)− f(xk) ≤ −ηαk‖Gkyk‖2Wk
≤ −ηαξ2‖dk‖22 for all k ∈ K.

Since f is bounded below by (3.29), this implies that

lim
k∈K
‖dk‖2 = 0,

which, by Step 6 of Algorithm 5, implies that {εk} → 0.

Case 2: Suppose that at least one of (3.6b) or (3.11) does not hold for all sufficiently

large k. By the construction of Steps 3–4 of Algorithm 9, it follows that this algorithm

will set Wk+1 satisfying (3.25) for all such k, and hence, with (3.26), it follows that for all

sufficiently large k we have

ξ‖d‖22 ≤ dTW−1
k+1d for all d ∈ Rn,

or, equivalently, tTWk+1t ≤ ξ−1‖t‖22 for all t ∈ Rn.
(3.30)

Indeed, in this case, we may assume without loss of generality that these inequalities hold

for all k. We now prove that {εk} → 0 with probability one by showing that the event

that {εk} remains bounded away from zero has probability zero.

Suppose that there exists k′ such that εk = ε′ > 0 for all k ≥ k′. From this fact, it

follows that at least one of (3.6a), (3.6b), or (3.6c) does not hold for all k ≥ k′. In fact,

since (3.30) and Lemma 3.3.2(a) imply that (3.6b) holds for all k, we must have that (3.6a)

or (3.6c) does not hold for all k ≥ k′. However, by Lemma 3.3.3, we have the existence of

the infinite iteration index set Kα := {k : k ≥ k′ and αk > 0}. Thus, overall,

‖Gkyk‖Wk
> νε′ for all k ∈ Kα. (3.31)

On the other hand, the fact that {f(xk)} is bounded below by (3.29), the sufficient decrease
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condition (3.10a), Lemma 3.3.4 (since (3.6b) holds for all k), and the fact that αk = 0 for

all k ≥ k′ with k /∈ Kα together imply that

∞∑
k=k′

αk‖Gkyk‖2Wk
< ∞, and (3.32a)

∞∑
k=k′

‖xk+1 − xk‖2‖dk‖2 < ∞. (3.32b)

In conjunction with (3.31), the bound (3.32a) implies αk → 0. Similarly, (3.32b), (3.31),

Lemma 3.3.2(a), and (3.30) imply that {xk} is a Cauchy sequence, and hence xk → x′ for

some x′ ∈ Rn. We claim that this implies the existence of an infinite iteration index set

Kp := {k : k ≥ k′ and pk = p}, for which Lemma 3.3.2(b) implies Kp ⊆ Kα. Indeed, if

pk < p for all large k, then, since αk → 0, Step 3 of Algorithm 6 implies that αk = 0 for

all large k. However, as in the proof of Lemma 3.3.3, this leads to a contradiction as we

eventually find pk = p for some large k. Therefore, we can define Kp as stated and know

|Kp| =∞. We continue by considering two subcases.

Subcase 2.a: If x′ is ε′-stationary for f , then ‖PWk
(Gk(x′))‖2Wk

= 0 for any Wk � 0.

Thus, with ω = (νε′)2 > 0 and (ζ, T ) chosen as in Lemma 3.3.6, there exists k′′ ≥ k′ such

that xk ∈ Bζ(x′) for all k ≥ k′′ and

‖Gkyk‖Wk
= ‖PWk

({∇f(x)}x∈Xk)‖Wk
≤ νε′ (3.33)

whenever k ≥ k′′, k ∈ Kp, and Xk ∈ T . Together, (3.31) and (3.33) imply that Xk /∈ T for

all k ≥ k′′ with k ∈ Kp. However, this is a probability zero event since the construction

of Algorithm 8 implies that for all such k the set Xk will contain newly generated points

from Bk, meaning that with probability one there exists some sufficiently large k such

that Xk ∈ T , yielding (3.33).

Subcase 2.b: Now suppose that x′ is not ε′-stationary for f . It follows from

Lemma 3.3.2(b) (in particular, the Armijo condition (3.9a)) that for all k we have

f(xk + γ−1αkdk)− f(xk) ≥ −ηγ−1αk‖Gkyk‖2Wk
, (3.34)
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while Lebourg’s Mean Value Theorem [15, Theorem 2.3.7] implies the existence of x̃k ∈

[xk, xk + γ−1αkdk] and a corresponding subgradient vk ∈ ∂f(x̃k) such that

f(xk + γ−1αkdk)− f(xk) = γ−1αkv
T
k dk. (3.35)

Together, (3.34), (3.35), and the fact that dk = −WkGkyk imply

vTkWkGkyk ≤ η‖Gkyk‖2Wk
. (3.36)

Moreover, with ω > 0 and (ζ, T ) chosen as in Lemma 3.3.6, there exists k′′′ ≥ k′ such that

xk ∈ Bε(x′) with ε = min{ζ, ε′/3} for all k ≥ k′′′ and

‖Gkyk‖2Wk
= ‖PWk

({∇f(x)}x∈Xk)‖2Wk
≤ ‖PWk

(Gk(x′))‖2Wk
+ ω

whenever k ≥ k′′′, k ∈ Kp, and Xk ∈ T ; hence, by Lemma 3.3.5, for such k we have

vTWkGkyk > η‖Gkyk‖2Wk
for all v ∈ Gk(x′). (3.37)

Together, (3.36) and (3.37) imply that vk 6∈ Gk(x′) whenever k ≥ k′′′, k ∈ Kp, and

Xk ∈ T . However, from the facts that dk = −WkGkyk and eT yk = 1 (recall (3.5)), (3.30),

Assumption 3.2.1, and [15, Proposition 2.1.2], we have for all k ≥ k′′′ that

‖dk‖2 = ‖WkGkyk‖2 ≤ ‖Wk‖2‖Gkyk‖2 ≤ ξ−1LBε(x′),

where LBε(x′) ≥ 0 is the Lipschitz constant for f over Bε(x′); see the similar result [39,

Lemma 4.1]. That is, {‖dk‖2} is bounded for k ≥ k′′′. This, along with the fact that αk →

0, implies that αk ≤ γε′/(3‖dk‖2) for all sufficiently large k, i.e., γ−1αk‖dk‖2 ≤ ε′/3 for all

sufficiently large k. Combining this with the fact that xk ∈ Bε(x′) with ε = min{ζ, ε′/3}

implies ‖xk − x′‖ ≤ ε′/3, we obtain that x̃k ∈ B2ε/3(x′) and hence vk ∈ Gk(x′) for all

sufficiently large k ≥ k′′′. Overall, since vk 6∈ Gk(x′) whenever k ≥ k′′′, k ∈ Kp, and

Xk ∈ T , yet vk ∈ Gk(x′) for all sufficiently large k ≥ k′′′, it follows that Xk /∈ T for all
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sufficiently large k ≥ k′′′ with k ∈ Kp. However, since |Kp| = ∞, it follows as in the

situation in Subcase 2.a that this is a probability zero event.

We have proved that the situations in Subcases 2.a and 2.b have probability zero,

which implies that the event that there exists k′ such that εk = ε′ > 0 for all k ≥ k′ has

probability zero. This result and the proof of Case 1 shows that {εk} → 0 with probability

one, as desired.

All that remains is to show that when {εk} → 0, all cluster points of {xk} are stationary

for f . The proof is exactly that of [18, Theorem 4.2, Case 2].

3.4 Implementation and Numerical Experiments

In this section, we describe a C++ implementation of our algorithm along with the results

of numerical experiments that we performed to compare our code against other available

software for solving problem (3.1). All of our experiments were performed on a machine

running Debian 2.6.32 with two 8-Core AMD Opteron 6128 2.0GHz processors and 32GB

of RAM.

3.4.1 An Implementation and Alternative Software

Hereafter, we refer to our implementation of Algorithm 5, along with all the subroutines

described as Algorithms 6, 7, 8, and 9, as bfgs-gs. For convenience, bfgs-gs utilizes the

linear algebra library armadillo (version 4.300.0) [54]. A critical part of the implemen-

tation is the method for solving the QP (3.5), for which we implemented a specialized

active set solver adapted from that proposed in [38]; further details for a similar Matlab

implementation are discussed in [18, Appendix].

Recalling Table 3.1, the values of the input parameters used in our implementation are

given in Table 3.2. (The format is consistent with that of Table 3.1 for ease of reference.)

The only exception is that we do not set a value for the parameter J—i.e., the iteration

threshold for iterate perturbation—since, in bfgs-gs, we do not check whether the iterates

or sample points lie in the set D. That is, at all steps in the algorithm (and subroutines)

where one would normally check for a point’s inclusion in D, bfgs-gs determines that
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the point is indeed included. At such points, bfgs-gs assumes that a (sub)gradient of f

is provided. Such an approach was also employed in the gradient sampling algorithms in

[10, 17, 18], where it was argued—as we claim here in terms of our experiments—that,

due to the presence of a GS strategy, this is a reasonable approach for practically handling

nondifferentiability of f at certain points. We remark that our choice of a sample set size

threshold of p = 100 was based on the fact that this value worked well in our tests, which

all involved n ≈ 50; see §3.4.2. We also remark that our model curvature threshold ξ

does not satisfy the upper bound in (3.26); instead, we chose a relatively large value that

worked well in our experiments.

Table 3.2: Summary of input parameters for algorithm bfgs-gs.
Parameter(s) Value(s) Description

ν 1 Stationarity measure tolerance
ψ 0.5 Sampling radius reduction factor
ξ 10−4 Model curvature threshold

η < η 10−8 < 0.9 Armijo–Wolfe line search constants

α ≤ α 10−4 ≤ 1 Step size thresholds
γ 0.5 Step size modification factor

J ≤ J 5 ≤ 10 Iteration thresholds for line search
p 100 Sample set size threshold

µ < 1 < µ 0.2 < 1 < 100 (L-)BFGS updating thresholds

w ≤ w 10−4 ≤ 1 (L-)BFGS updating thresholds
m 100 L-BFGS memory length

We also use the following input parameters for bfgs-gs. We set the initial sampling

radius to ε0 ← 0.1 as this value generally worked well in our experiments. For the QP solver

for subproblem (3.5), we set an optimality tolerance of 10−8 and a maximum iteration

limit of 103; i.e., the QP solver terminates once the `∞-norm of the residual of the KKT

conditions (recall (3.7)) is less than this tolerance or the iteration counter exceeds this

limit. (Regardless of the reason for termination of the QP solver, bfgs-gs uses the search

direction yielded by the final QP solver iterate; i.e., bfgs-gs does not terminate if the QP

solver fails to provide an accurate solution as determined by the optimality tolerance.)

For Algorithm 8, we found a good choice to be pk+1 ← 5 for all k. The initial inverse

Hessian approximation corresponding to k = 0 is set as Wk ← wkI, where the scalar wk
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is set as

wk ←
1

max{1,min{104, ‖∇f(xk)‖2}}
.

This is also the value for wk employed in the L-BFGS strategy in Algorithm 9. Finally,

bfgs-gs terminates when the iteration counter k exceeds 104 or when

εk ≤ εf , (3.38a)

‖Gkyk‖Wk
≤ εf , (3.38b)

‖Gkyk‖Wk
≥ ξ‖dk‖2, (3.38c)

and αk > 0, (3.38d)

for some constant εf > 0. (In our tests below, we consider εf ∈ {10−4, 10−6}.) Rem-

iniscent of (3.6) and (2.6′), these criteria require—recalling that Lemma 3.2.2 implies

‖Gkyk‖Wk
= ‖dk‖W−1

k
—that the sampling radius has already been reduced to a suffi-

ciently small value and the current step is sufficiently small while the curvature of the

current Hessian approximation is sufficiently positive along dk.

For comparison purposes, we ran implementations of three other algorithms for our

numerical experiments. The first two are variants of the software available at [50], which

we refer to as hanso-bfgs and hanso-default. The former solver (obtained by setting

options.samprad = []) employs a standard BFGS method with a weak Wolfe line search

(see [44]), whereas the latter solver (obtained by leaving options.samprad at its default

value) runs the same approach followed by the application of a GS method (as it is

proposed in [10]) to obtain an improved solution. Despite the fact that these solvers are

implemented in Matlab while bfgs-gs is implemented in C++, we believe our comparisons

are appropriate, at least since we focus on performance measures other than CPU time

(in terms of which one would expect a Matlab implementation to have a disadvantage).

In particular, our method represents a technique for incorporating a GS strategy while

optimizing with a BFGS-type approach, whereas hanso-bfgs exhibits the behavior of a

BFGS method (with no safeguarding for handling nonsmoothness) and hanso-default

exhibits the behavior of an algorithm that switches from BFGS to a GS method. It is
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worthwhile to note that by switching to a GS method, hanso-default has theoretical

convergence guarantees that are similar to the algorithm proposed in this paper, whereas

the BFGS algorithm in hanso-bfgs only has the convergence guarantees provided in [44],

which are limited to only a few types of simple problems representing a small subset of

the test set that we consider.

The third algorithm to which we compare our code is the Fortran 77 solver available

(along with a mex-driver for Matlab users, which we used) at [36], which is an imple-

mentation of the limited memory bundle method proposed in [30, 31]. We refer to this

solver as lmbm, and include it in our experiments so as to illustrate the performance of

our approach compared to an alternative quasi-Newton method for solving nonconvex,

nonsmooth optimization problems.

The input parameters for hanso-bfgs, hanso-default, and lmbm (besides

options.samprad = [] for hanso-bfgs) are left at their default values, except that

we set maximum iteration and CPU time limits on par with that chosen for bfgs-gs.

In particular, for hanso-bfgs, we changed the maximum number of (BFGS) iterations

to options.maxit = 1e+4. This value was also used for hanso-default, but it should

be noted that, once its BFGS method terminates, hanso-default may do as many as

300 GS iterations—meaning that we allowed hanso-default to perform as many as 104

(BFGS) + 300 (GS) iterations. For lmbm, we changed the maximum number of iterations

to IPAR(2) = 1e+4 and set the maximum time limit to a large enough number that the

solver never terminated due to a time limit in our tests. Overall, none of the solvers that

we tested had a CPU time limit that led to termination in any of our experiments.

3.4.2 Test Problems

For our numerical experiments, we measured the performance of all algorithms on

26 nonsmooth minimization problems, some convex and some nonconvex. The first

20 of these problems were considered in [30] and the last six were considered in

[56]. All problems are scalable in the sense that they can be defined to have differ-

ent numbers of variables. The first ten problems—called MAXQ, MXHILB, CHAINED LQ,
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CHAINED CB3 I, CHAINED CB3 II, ACTIVE FACES, BROWN FUNCTION 2, CHAINED MIFFLIN 2,

CHAINED CRESCENT I, and CHAINED CRESCENT II—can also be found in [31] and are all

nonsmooth at their respective minimizers. The first five of these problems are convex and

the remaining five are nonconvex. The next ten problems in our set, some of which are non-

convex, were introduced in the library TEST29 [45]. They are called TEST29 2, TEST29 5,

TEST29 6, TEST29 11, TEST29 13, TEST29 17, TEST29 19, TEST29 20, TEST29 22, and

TEST29 24. Of the six remaining problems in our set, the first four were introduced in

[44], the fifth was introduced in [26], and the sixth is a problem to minimize the Schatten

norm [56]. These problems are referred to as TILTED NORM COND, CPSF, NCPSF, EIG PROD,

GREIF FUN, and NUC NORM.

We chose n = 50 for all problems, except for the case of EIG PROD that requires the

number of variables to be the square of an integer, for which we choose n = 64. We ran

each problem ten times with ten different starting points. For the first 20 problems, the

first run was performed with the initial point x0 stated in [30] while for the remaining nine

runs we used a starting point that was randomly generated from a Euclidean ball about

x0 with radius ‖x0‖2. (We remark that the initial points in [30] satisfy x0 6= 0 and that

the initial points for each run were unique.) For the remaining six problems, we chose

the initial point as a randomly generated point from a Euclidean ball about e with radius

‖e‖2.

The last six problems in our test set require input parameters; see [56]. Problems

TILTED NORM COND, CPSF, and NCPSF require symmetric positive definite matrices with

a specified condition number. To generate these, we used Matlab’s built-in sprandsym

function. Similarly, problem NUC NORM requires an input matrix and vector, which we

generated using Matlab’s built-in randn function. For the matrix required in EIG PROD,

we used the leading 8×8 submatrix of A from [1]; see also the experiments in [10, 17]. For

GREIF FUN, we multiplied the transpose of a 10× 10 matrix randomly generated by randn

with the matrix itself to create a symmetric positive definite matrix A so that the n = 50

variables composing the 10× 5 variable matrix X has the well defined sum A+XXT .

We personally implemented all of the test problems in C++ for use by bfgs-gs. For
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the remaining solvers, we personally implemented the first 20 test problems in Matlab and

obtained the remaining six from the website of [56].

3.4.3 Numerical Results

The purpose of presenting the results of our numerical experiments is to illustrate the

efficiency and reliability of our bfgs-gs solver in comparison to hanso-bfgs, hanso-

default, and lmbm (with their default parameter settings) when run on the 26×10 = 260

problems in our test set. (That is, we tested our 26 problem formulations, each run with

ten different starting points.) Since the codes are written in various languages and were run

in different environments (i.e., compiled C++ code versus Matlab), we ignore CPU time

and focus on the performance measures of iterations, function evaluations, and gradient

evaluations required until termination. Despite the fact that we ignore CPU time, we

claim that the per-iteration costs of the algorithms underlying bfgs-gs, hanso-default,

and lmbm are all relatively similar—especially when averaged over all iterations that

may be performed—so by being successful in terms of the performance measures that we

consider, we claim that one should expect success in terms of CPU time if all codes were

implemented in the same language and run in the same environment. By contrast, the

average per-iteration cost of hanso-bfgs is typically less than all other solvers (at least

when ignoring computations performed to evaluate a stationarity measure). However, due

to the fact that it is based on an algorithm that lacks theoretical convergence guarantees,

one would expect hanso-bfgs to be less reliable (at least when compared to the related

method in hanso-default). Indeed, this is evident in our numerical results presented in

this section.

When running our experiments with hanso-bfgs, hanso-default, and lmbm, we

observed that the default settings of these codes resulted in markedly different perfor-

mance. In particular, the default settings of lmbm led to runs that terminated after many

fewer iterations, function evaluations, and gradient evaluations as compared to hanso-

bfgs and hanso-default. However, when comparing solvers for nonsmooth optimization

problems, one should not necessarily rely upon the termination conditions employed in a
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given implementation to have a sense of the quality of the provided solutions. As opposed

to smooth optimization where one can simply observe the magnitude of the objective

function gradient at the final iterate, stationarity measures for nonsmooth problems re-

quire information about the subdifferential (or ε-subdifferential) of the objective at the

final iterate, which often can only be approximated. Hence, rather than focus solely on

the performance measures mentioned above, we investigated further and found that the

performance of lmbm as compared to hanso-bfgs and hanso-default was not as good

when considering a measure of quality of the provided solutions. (We define our quality

measure later in this section.) Based on these observations, we could have adjusted the in-

put parameters for all of the codes in order to ensure that solutions of similar quality were

found before a given code was allowed to terminate. However, we found this to be difficult

due to the numerous termination conditions employed in the codes; some are based on

stationarity measures, but others are based on changes in the function values, failure to

compute a direction of strict descent, etc. Hence, instead, we decided to leave the default

inputs for these solvers, but present results for two separate runs of our code: one with

the stationarity tolerance of εf ← 10−4 in (3.38) and one with εf ← 10−6. We show that

with the former setting, our code—bfgs-gs(10−4)—was able to obtain solutions of similar

quality as those obtained by lmbm, and could generally do so with fewer iterations, func-

tion evaluations, and gradient evaluations. On the other hand, with the latter setting, our

code—bfgs-gs(10−6)—continued on to obtain solutions that often had similar quality as

those obtained by hanso-bfgs and hanso-default. Overall, our goal in presenting two

sets of results for our code is to demonstrate the versatility of our software; it can quickly

obtain solutions of reasonable quality, and, when desired, it can be forced to continue to

obtain higher solution accuracy.

Table 3.3, below, summarizes the termination flags returned by all of the codes for all

of the problems in our tests. We group the flags into three types:

(1) a stationarity measure tolerance was satisfied,

(2) the maximum iteration limit was reached, and
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(3) other.

As previously mentioned, termination flags of the last type indicate termination based on

various occurrences such as small changes in the objective, a failure to compute a direction

of strict descent, etc. Overall, Table 3.3 reveals that with both termination tolerances our

code was very successful in satisfying our termination criteria (3.38), whereas the other

codes often terminated due to other reasons.

Flag bfgs-gs(10−4) bfgs-gs(10−6) hanso-bfgs hanso-default lmbm

(1) 253 229 68 68 20

(2) 7 31 31 19 0

(3) 0 0 161 173 240

Table 3.3: Counts of termination flag types

Next, we illustrate the performance of the algorithms in terms of iterations, function

evaluations, and gradient evaluations via profiles in the style of Dolan and Moré [19].

Typically, when preparing such profiles, it is incumbent upon the user to decide when

a particular run should be considered successful or unsuccessful. In our experiments,

making this distinction was a difficult task due to the various termination flags returned

by hanso-bfgs, hanso-default, and lmbm. Indeed, if we only considered a termination

flag of type (1) to be the indicator for a successful run, then the profiles would be skewed

in favor of the codes that yielded such a flag most often (namely, ours), even though we

often found that other runs also yielded good quality solutions (as we show later in this

section). Hence, having presented the counts for the termination types in Table 3.3 above,

we present performance profiles considering all runs by all codes to be successful. Despite

the fact that this means, e.g., that a termination flag of type (2) is not considered a failure,

we believe that the profiles are still meaningful since, for one thing, our iteration limit

(namely, 104) was quite large; this means that if a code performed the maximum number

of iterations, then this had an adverse affect for the code in the profile, as it would if such

a run were considered a failure.

Figures 3.1, 3.2, and 3.3 are the performance profiles we obtained in terms of itera-

tions, function evaluations, and gradient evaluations, respectively. Based on these profiles,

we have a few observations, all of which should be considered along with the results in
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Table 3.3 and the solution quality measures that we present later (see Table 3.4) to obtain

a complete picture of the results of our experiments. First, the profiles reveal the ob-

servation that we made earlier about lmbm typically terminating after performing fewer

iterations, function evaluations, and gradient evaluations as compared to hanso-bfgs

and hanso-default. (Recall that this motivated us to present two sets of results for our

algorithm with different termination tolerances.) Second, the profiles reveal that bfgs-

gs(10−4) often outperforms lmbm in terms of all three measures; this is most interesting

when one observes that these methods often obtained solutions of similar quality, as we

show later. Third, the profiles reveal that bfgs-gs(10−6) is more similar to hanso-bfgs

and hanso-default in terms of all three measures than is bfgs-gs(10−4), so—in terms

of our code and the solution quality results shown later—it is reasonable to compare the

results of bfgs-gs(10−6) to hanso-bfgs and hanso-default.
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Figure 3.1: Performance profile for iterations
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Figure 3.2: Performance profile for function evaluations
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Figure 3.3: Performance profile for gradient evaluations

We are now prepared to consider the results of our experiments in terms of the quality

of the provided solutions. For this purpose, we collected the final iterates provided by

all of the codes on all of the problems in our test set. For each final iterate, say xf , we

randomly generated 103 points from a uniform distribution defined in a Euclidean 10−2-

ball about xf . Then, using a Matlab implementation of our QP solver, we computed the

minimum Euclidean norm element of the convex hull of the gradients of the objective

evaluated at these points. The norm of this minimum norm vector represents a reasonable

approximation of 10−2-stationarity of xf with respect to f . (As previously mentioned in

§3.1, this type of measure was employed in [44] as a certificate of stationarity, except that,

in that article, the authors employed iterates generated in the algorithm as opposed to

randomly generated ones. We could have used iterates in this way as well, but we believe

that by randomly generating the points—independent of the algorithm iterates—we obtain

a fairer measure for comparing solution quality for the different codes.)

For each solver and each of the 26 problems in our original test set, Table 3.4 provides

the geometric means of the norms of the minimum Euclidean norm vectors (as described

in the previous paragraph) for the ten runs for each problem. We use geometric means as

opposed to arithmetic means so that each mean is not skewed by one (or a few) large terms.

Overall, one can see that, for all codes, results can vary in terms of this measurement of

solution quality. All of the solvers are competitive, though, broadly speaking, the quality

of the solutions provided by bfgs-gs(10−4) and lmbm are not as good as those provided by

bfgs-gs(10−6), hanso-bfgs, and hanso-default. In terms of hanso-bfgs and hanso-
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default, we believe that the improved solution quality is due to the termination criteria

employed in the software. In particular, these algorithms check for stationarity in a similar

way that we measure it here: they compute the minimum Euclidean norm element in the

convex hull of gradients evaluated around a given iterate. By contrast, bfgs-gs (with

both tolerances) and lmbm have termination criteria that are influenced by the employed

quasi-Newton Hessian approximations. Due to this fact, we could include in bfgs-gs an

extra step to measure stationarity using a Euclidean norm measure, but we chose not to

do this in order to avoid extra computational expense (of perhaps generating additional

sample points and solving a large QP) in our software. We feel that this is appropriate

since, with its tightened stationarity tolerance, bfgs-gs(10−6) is able to obtain solutions

of similar quality as those yielded by hanso-bfgs and hanso-default. (That being said,

there are cases where bfgs-gs(10−6) yields better or worse solutions. For example, for a

few starting points, our solver performs poorly on problem 20.)

3.5 Conclusion

We have proposed an algorithm for solving nonconvex, nonsmooth optimization problems.

The main features of the algorithm are that it typically behaves as an unadulterated

BFGS method—and, hence, it often has very low per-iteration computational costs—but

dynamically incorporates gradient sampling to ensure progress toward stationarity. We

have proved that the algorithm has global convergence guarantees with probability one,

and, on a set of test problems, we have shown that an implementation of it is competitive

with—and in some ways outperforms—other available software for solving such problems.

We close this article by remarking that while the theoretical convergence guarantees of

our algorithm in some cases rely on an L-BFGS strategy that ensures sufficiently positive

definite and bounded Hessian approximations, one can consider a variant of our algorithm

that allows these matrices to approach singularity and tend to unboundedness as {εk} → 0

while preserving our convergence guarantees. In particular, our convergence guarantees

rely on the fact that for a given sampling radius, the method eventually satisfies our

conditions for reducing this radius with probability one. Hence, one could allow our model
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bfgs-gs(10−4) bfgs-gs(10−6) hanso-bfgs hanso-default lmbm

1 5.5115e-02 3.2624e-03 1.0931e-14 1.0931e-14 2.9769e-14

2 2.6008e-06 4.0027e-12 2.0981e-14 2.0981e-14 7.4413e-11

3 1.0032e-01 7.9324e-03 1.9953e-01 1.9953e-01 3.6743e-01

4 6.6657e-15 8.0674e-15 6.5293e-15 6.7015e-15 1.1089e-04

5 5.1371e-02 1.4784e-11 1.4116e-11 1.4116e-11 1.5361e-09

6 1.5343e-01 1.5343e-01 2.5912e-16 2.5912e-16 0.0000e+00

7 2.7203e-15 2.3324e-15 2.3766e-15 2.3766e-15 3.9072e-02

8 4.4343e+00 8.8031e-01 5.6539e+00 5.6539e+00 3.5372e+00

9 7.2550e-03 4.7572e-11 9.7894e-12 9.7894e-12 5.0344e-10

10 2.1219e+00 2.3921e+00 2.4665e+00 2.3562e+00 2.2678e+00

11 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 5.3619e-01

12 1.2268e-09 1.4630e-06 1.4011e-06 1.4011e-06 4.9237e-08

13 1.2418e-06 3.1166e-07 3.3843e-03 2.8826e-03 1.4463e-02

14 2.2987e+01 2.5143e+01 2.5657e+01 2.2958e+01 2.0717e+01

15 1.3441e+01 1.2830e+01 2.1905e+02 1.9625e+02 9.4820e-01

16 3.4085e-16 2.4520e-16 9.5007e-15 3.0778e-16 1.4537e-11

17 1.7747e-01 4.2699e-03 2.4028e-03 1.1057e-03 5.3772e-01

18 3.8821e-09 3.1459e-10 1.0375e-06 6.3327e-07 2.1108e-01

19 1.9198e-11 9.5458e-13 1.5087e-13 1.5087e-13 1.7270e-02

20 1.6003e+07 1.1290e+07 1.4061e+00 4.4723e-01 4.4147e+09

21 6.2899e-03 1.4594e-06 1.6764e-06 1.6764e-06 5.4393e-06

22 7.4602e-03 7.2946e-04 1.7976e-06 1.7976e-06 1.5031e-02

23 1.2722e-03 8.8772e-05 6.6831e-07 6.6831e-07 4.9783e-02

24 2.9884e-01 1.1171e-02 4.7271e-09 4.7271e-09 3.5170e-02

25 2.5222e-02 3.6621e-05 4.6504e-07 4.6504e-07 1.0049e-05

26 6.6878e-03 9.3793e-06 1.1201e-06 1.1201e-06 1.4454e-05

Table 3.4: For each solver and each test problem, the geometric means of stationarity
measures

curvature threshold and lower (L-)BFGS updating threshold, namely ξ and µ, to decrease

to zero along with the sampling radius (while respecting the requirements in Table 3.1 and

(3.26)) and the upper (L-)BFGS updating threshold, namely µ, to correspondly increase

to ∞. Our theoretical convergence guarantees hold as long as these parameters remain

fixed until the sampling radius is reduced. However, we decided not to propose this

variant in the paper since it would require more complicated conditions and a slightly

more complicated analysis, and we did not see any benefits of such a strategy in any

numerical experiments that we performed.
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Chapter 4

Algorithmic Extensions

In this chapter, we propose several algorithmic extensions of the gradient sampling (GS)

framework. In Section 4.1, we propose a bundle gradient sampling (BGS) algorithm, which

is a hybrid of the bundle method and the previously proposed adaptive gradient sampling

(AGS) algorithm. In Section 4.2, we propose a smoothing BFGS gradient sampling algo-

rithm, which is based on the smoothing method and the BFGS gradient sampling (BFGS-

GS) algorithm proposed in the previous chapter. In Section 4.3, we tailor GS methods

for solving regularization problems. For all the algorithmic extensions proposed in this

chapter, global convergence analysis is provided; and numerical results are presented to

illustrate the performance of the algorithms.

4.1 A Bundle Gradient Sampling Algorithm

In order to get a deeper understanding of the similarities and differences between BM and

AGS, in this section we write the QO subproblems of BM and AGS in similar forms.

At iteration k of BM, suppose the previous iteration is a descent step (i.e., wk = xk).

Moreover, let the search direction d be defined as a step from the current iterate wk = xk;

that is, let d = x − wk = x − xk in (1.14). Then, instead of minimizing over z and the

next iterate x, here we are minimizing over z and the search direction d. The regularized
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master problem (1.14) can then be written as

min
z,d

z + 1
2‖d‖

2

s.t. lk +GTk d ≤ ze.
(4.1)

Here, Gk is defined as the matrix whose columns consist of the (sub)gradients of f at the

points in Xk := {xj : j ∈ Jk} (where Jk is a subset of indices from previous iterates) and

lk is a vector with elements

lk,j := f(xj) + gTj (xk − xj), j ∈ Jk.

The dual of (4.1) has the following form:

max
π

lTk π − 1
2‖Gkπ‖

2

s.t. eTπ = 1, π ≥ 0.

(4.2)

Observing (4.1) and (4.2) and comparing their forms to that of (2.3) and (2.4) in AGS,

we arrive at the following generic primal-dual QO subproblems:

(P) :=


min
z,d

z + 1
2d

THkd

s.t. ξk +GTk d ≤ ze

 (D) :=


max
π

ξTk π − 1
2π

TGTkWkGkπ

s.t. eTπ = 1, π ≥ 0.


Here, the similarities and differences between BM and AGS are apparent. With ξk = lk

and Hk = I, we arrive at the QO subproblems for BM, whereas with ξk = f(xk)e we

arrive at the QO subproblems for AGS. For convex functions, the constraints in the primal

subproblem have the nice interpretation as cutting planes, i.e., local linear underestimators

of the objective f . However, for nonconvex problems, a benefit in the AGS formulation is

that the subproblem remains well-defined and leads to productive search directions.

An important point to make here is that with our extensions from GS to AGS, the

sample set Xk in AGS has similar properties to that in BM. Specifically, Xk in AGS

contains points obtained during previous iterations, whereas Xk in GS does not. We have
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added restrictions in AGS that the points in Xk correspond to points within an εk-ball

at which f is differentiable, but we believe that in practice these restrictions are not as

significant as the difference resulting from the differing choices of the vector ξk.

Consider the primal form of the subproblems of GS and BM, the only difference comes

from the constant term in the constraints. In GS we have the constant term f(xk), while in

BM we have the constant term f(xj)+gTj (xk−xj). This difference makes GS an approach

that can handle both convex and nonconvex problems, and makes BM an efficient method

for convex problems. An intuitive option is to consider both of the constant terms in the

subproblem. In particular, we propose the following form of the subproblem:

min
z,d

z + 1
2d

THkd

s.t. min{f(xk), f(xj) + gTj (xk − xj)}+ gTj d ≤ z, j ∈ Jk.
(4.3)

The following example in Figure 4.1 is used to illustrate the subproblem (4.3). At

iteration k, suppose we have a set of points {xk, xk1, xk2}, where xk = 4.5, xk1 = 6 and

xk2 = 2.5. Suppose we also have the values of the corresponding objective functions

{f(xk), f(xk1), f(xk2)} and (sub)gradients {gk, gk1, gk2}. Suppose the current approxima-

tion of the Hessian is Hk = 0.2. Based on (4.3), we construct a subproblem as the following

one:

min
z,d

z + 1
2d

THkd

s.t. f(xk) + gTk d ≤ z

f(xk) + gTk1d ≤ z

f(xk2) + gTk2(xk − xk2) + gTk2d ≤ z.

(4.4)

In nonconvex regions (for example, in the neighborhood of xk1), the cutting plane

f(xk1) + gTk1(xk − xk1) + gTk1d is no longer a local linear underestimator of the objective

f . In this case, (4.4) acts like GS since f(xk) < f(xk1) + gTk1(xk − xk1). In convex

regions (for example, in the neighborhood of xk2), (4.4) acts like BM since f(xk) >

f(xk2) + gTk2(xk − xk2).
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Figure 4.1: Illustration of bundle sampling method.

4.1.1 Algorithm Description

We now present a BGS algorithm of which AGS is a special case. At a given iterate xk ∈ D

with a given sampling radius εk > 0, the sample ball Bεk(xk) is defined as the following

Euclidean ball centered at xk with radius εk: Bεk(xk) := {x : ‖x − xk‖ ≤ εk}. During

iteration k, we generate the sample set

Xk := {xk,0, . . . , xk,pk}, (4.5)

where xk,0 := xk and xk,i for i = 1, · · · , pk are sampled uniformly and independently in

Bk := Bεk(xk) ∩ D, and then compute the gradient matrix

Gk :=

[
gk,0 · · · gk,pk

]
, (4.6)

where columns in Gk are the gradients of f at the points in Xk. Let Hk ∈ Rn×n be a

positive definite matrix (i.e., Hk � 0), and Wk := H−1
k � 0. The main computational

expense in an iteration of the method is to solve the following primal-dual QO subproblems
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to compute the search direction dk:

(P) :=


min
z,d

z + 1
2d

THkd

s.t. ξk +GTk d ≤ ze

 (D) :=


max
π

ξTk π − 1
2π

TGTkWkGkπ

s.t. eTπ = 1, π ≥ 0.

 (4.7)

Here, ξk is a vector with elements

ξk,i := min{f(xk), f(xk,i) + gTk,i(xk − xk,i)}. (4.8)

Note that either the primal or the dual (not both) needs to be solved; and the solution

(zk, dk, πk) of (4.7) has dk = −WkGkπk and zk = ξTk π − πTk GTkWkGkπk.

After the computation of the search direction dk, a standard backtracking line search

is performed to find a step size αk satisfying the following sufficient decrease condition

f(xk + αkdk) ≤ f(xk)− ηαkdTkHkdk. (4.9)

We set xk+1 ← xk +αkdk if we have xk +αkdk ∈ D; otherwise, in order to make sure that

all iterates are differentiable, we perturb an xk+1 ∈ D satisfying the following perturbed

line search conditions

f(xk+1) ≤ f(xk)− ηαkdTkHkdk (4.10a)

and ‖xk + αkdk − xk+1‖ ≤ min{αk, εk}‖dk‖. (4.10b)

See [9] and [39] for perturbation procedures that terminate finitely.

After computing the search direction dk and the step size αk, we need to test station-

arity and update the sampling radius εk. At an ε-stationary point of AGS, we produce a

small step for certain generated sample sets. However, at an ε-stationary point of BGS, we

do not necessarily compute as small of a step. Therefore, we also solve the primal-dual QO

subproblems in AGS and update the sampling radius εk by the solution. To distinguish

the solution of the QO subproblems from AGS and that from BGS, we use (zAk , d
A
k , π

A
k )

and (zBk , d
B
k , π

B
k ) to denote the solutions, respectively.
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The BGS algorithm is presented as Algorithm 10 below.

Algorithm 10 Bundle/Gradient Sampling (BGS) Algorithm

1: (Initialization): Choose a number of sample points to compute each iteration p ≥ 1,
number of sample points required for a complete line search p ≥ n+1, sampling radius
reduction factor ψ ∈ (0, 1), number of backtracks for an incomplete line search q ≥ 0,
sufficient decrease constant η ∈ (0, 1), line search backtracking constant κ ∈ (0, 1),
and tolerance parameter ν > 0. Choose an initial iterate x0 ∈ D, set X−1 ← ∅, choose
an initial sampling radius ε0 > 0, and set k ← 0.

2: (Sample set update): Set Xk ← (Xk−1 ∩Bk) ∪ xk ∪Xk, where the sample set Xk :=
{xk,1, . . . , xk,p} is composed of p points generated uniformly in Bk. Set pk ← |Xk|−1.
If pk > p, then remove the pk−p eldest members of Xk and set pk ← p. Compute any
unknown columns of Gk defined in (4.6).

3: (Hessian update): Set Hk � 0 and Wk = H−1
k � 0, respectively, as approximations

of the Hessian and inverse Hessian of f at xk.
4: (Search direction computation): Compute (zBk , d

B
k , π

B
k ) solving the QO subproblems

(4.7) with ξk defined as in (4.8).
5: (Sampling radius update): Compute (zAk , d

A
k , π

A
k ) solving the QO subproblems (4.7)

with ξk = f(xk)e as in AGS. If min{‖dAk ‖2, (dAk )THkd
A
k } ≤ νε2k, then set xk+1 ← xk,

αk ← 1, and εk+1 ← ψεk and go to step 8.
6: (Backtracking line search): If pk < p, then set αk as the largest value in
{κ0, κ1, . . . , κq} such that (4.38) is satisfied, or set αk ← 0 if (4.38) is not satisfied for
any of these values of αk. If pk = p, then set αk as the largest value in {κ0, κ1, κ2, . . . }
such that (4.38) is satisfied.

7: (Iterate update): Set εk+1 ← εk. If xk + αkd
B
k ∈ D, then set xk+1 ← xk + αkd

B
k .

Otherwise, set xk+1 as any point in D satisfying (4.10).
8: (Iteration increment): Set k ← k + 1 and go to step 2.

4.1.2 Global Convergence Analysis

We make the following assumption about the objective function f throughout our global

convergence analysis.

Assumption 4.1.1. The objective function f : Rn → R is locally Lipschitz in Rn and

continuously differentiable in an open dense subset D ⊂ Rn.

We also make the following assumption about the Hessian approximation Hk throughout

our global convergence analysis.

Assumption 4.1.2. There exist ξ ≥ ξ > 0 such that, for all k and d ∈ Rn, we have

ξ‖d‖2 ≤ dTHkd ≤ ξ‖d‖2.
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The result we prove is the following.

Theorem 4.1.3. BGS produces an infinite sequence of iterates {xk} and, with probability

one, either f(xk)→ −∞ or {εk} → 0 and every cluster point of {xk} is stationary for f .

We begin our analysis by showing that the search direction produced by solving the

QO subproblem of BGS is a descent direction. This ensures that the backtracking line

search is well defined, and BGS is well-posed in the sense that each iteration terminates

finitely.

Lemma 4.1.4. The search direction dBk produced by solving the QO subproblem (4.7) of

BGS is a descent direction for f from xk.

Proof. The KKT conditions of (4.7) are

eTπ = 1, π ≥ 0, (4.11a)

ze+GTkWkGkπ − ξk ≥ 0, (4.11b)

πT (ze+GTkWkGkπ − ξk) = 0, (4.11c)

where z and ze+GTkWkGkπ−ξk are the Lagrange multipliers of the equality and inequality

constraints of the dual form of (4.7).

Equation (4.11c) is equivalent to

πT (ze+GTkWkGkπ − ξk) = 0⇔ z = πT ξk − πTGTkWkGkπ. (4.12)

Plugging the expression of v from (4.12) into (4.11b), we have

GTkWkGkπ − ξk + (πT ξk − πTGTkWkGkπ)e ≥ 0. (4.13)

Since dBk = −WkGkπ
B
k and ∇f(xk) is one column in Gk, we get

∇f(xk)
TdBk ≤ −f(xk) + πT ξk − πTGTkWkGkπ. (4.14)

We know ξk,i ≤ f(xk) for all i by the definition of ξk in (4.8), and so the convex combination
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of ξk is also no greater than f(xk), namely, πT ξk ≤ f(xk). Also, we have GTkWkGk � 0

by Assumption 4.1.2. Therefore, we have

∇f(xk)
TdBk < 0, (4.15)

which means that the search direction produced by the QO subproblem of BGS is a descent

direction.

Our next lemma shows that there exists an infinite number of iterations during which

αk > 0.

Lemma 4.1.5. There exists an infinite subsequence of iterations in which αk > 0.

Proof. We refer to the proof of Lemma 4.4 in the AGS paper [18] for the proof here. It

follows here since the assumptions about the objective function and search direction are

the same as those in [18].

We now show a critical result about the sequence of decreases produced in f .

Lemma 4.1.6. The following inequality holds for all k:

f(xk+1) ≤ f(xk)− 1
2ηξ‖xk+1 − xk‖‖dBk ‖.

Proof. We refer to the proof of Lemma 4.5 in the AGS paper [18] for the proof here. It

also follows here since the assumptions about the objective function and search direction

are the same as those in [18].

We now establish some properties of the set of sample gradients used to approximate

the subdifferential. Consider the following subproblem, which is a variation of the sub-

problem defined in Section 2.4 of the AGS algorithm:

inf
d

q(d;x′,Bεk(x′), Hk), (4.16)
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where

q(d;x′,Bεk(x′), Hk) := sup
x∈Bεk (x′)∩D

{min
x
{f(x′), f(x)+∇f(x)T (x′−x)}+∇f(x)Td}+1

2d
THkd.

Given a solution d′ of (4.16), we have the following reduction in its objective:

∆q(d′;x′,Bεk(x′), Hk) := q(0;x′,Bεk(x′), Hk)− q(d′;x′,Bεk(x′), Hk) ≥ 0.

Similarly, writing (4.7) in the form

min
d

q(d;xk, Xk, Hk),

where

q(d;xk, Xk, Hk) := max
x∈Xk

{min
x
{f(xk), f(x) +∇f(x)T (xk − x)}+∇f(x)Td}+ 1

2d
THkd,

we have the following reduction produced by the search direction dk:

∆q(dk;xk, Xk, Hk) = q(0;xk, Xk, Hk)− q(dk;xk, Xk, Hk) ≥ 0.

We now show a result about the above reduction. We use qA and qB to denote the

subproblem objectives from AGS and that from BGS, respectively, to distinguish them.

Lemma 4.1.7. Suppose we have the same Xk, Gk, Hk, Wk for the primal and dual QO

subproblems of AGS and BGS. Then we have the following inequalities:

(dAk )THkd
A
k ≤ (dBk )THkd

B
k ≤ (

√
(dAk )THkd

A
k +Dk)

2 (4.17a)

∆qA(dAk ;xk, Xk, Hk) ≤ ∆qB(dBk ;xk, Xk, Hk). (4.17b)

Here, Dk is the diameter of the convex hull of the column vectors of the matrix NkGk,

namely, Dk = sup{‖x − y‖ : x, y ∈ conv col(NkGk)}, where col(·) denotes the set of

column vectors of a matrix; and Nk is some matrix such that Wk = NT
k Nk (since Wk � 0).
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Proof. We first prove inequality (4.17a). Consider the dual QO subproblem of AGS, which

is a problem to find the vector with smallest norm in the convex hull of the column vectors

of the matrix NkGk. Based on this interpretation, it clearly follows that ‖NkGkπ
A
k ‖ ≤

‖NkGkπ
B
k ‖, namely (dAk )THkd

A
k ≤ (dBk )THkd

B
k .

By the definition of Dk, we have ‖NkGkπ
B
k −NkGkπ

A
k ‖ ≤ Dk. Then, by the triangle

inequality, we have ‖NkGkπ
B
k ‖ ≤ ‖NkGkπ

A
k ‖+Dk, namely, (dBk )THkd

B
k ≤ (

√
(dAk )THkd

A
k +

Dk)
2.

We now prove inequality (4.17b). By Lemma 2.4.6 in Chapter 2 of the AGS algorithm,

we have ∆qA(dAk ;xk, Xk, Hk) = 1
2(dAk )THkd

A
k .

By the definition of the model qB, we have qB(0;xk, Xk, Hk) = maxj{ξk,j} = f(xk).

Moreover, by (4.11c), we have qB(dBk ;xk, Xk, Hk) = zBk + 1
2(dBk )THkd

B
k = ξTk π

B
k −

1
2(dBk )THkd

B
k . Therefore, ∆qB(dBk ;xk, Xk, Hk) = 1

2(dBk )THkd
B
k + f(xk)− ξTk πBk .

We know ξk,i ≤ f(xk) for all i by the definition of ξk in (4.8), and so the con-

vex combination of ξk is also no greater than f(xk), namely, ξTk π
B
k ≤ f(xk). Also,

we have (dBk )THkd
B
k ≥ (dAk )THkd

A
k by (4.17a), we then have ∆qA(dAk ;xk, Xk, Hk) ≤

∆qB(dBk ;xk, Xk, Hk).

For a given x′ and tolerance ω, we define

Tk(x′, ω) :=

{
Xk ∈

pk∏
0

Bk : ∆qA(dAk ;xk, Xk, Hk) ≤ ∆qA(d′;x′,Bεk(x′), Hk) + ω

}
.

The purpose of the following lemma is to show that for an iterate xk sufficiently close

to x′ and any tolerance ω > 0, there exists a nonempty subset of Tk(x′, ω) if the sample

set size pk ≥ n+ 1; see the similar result [39, Lemma 3.2(i)].

Lemma 4.1.8. If pk ≥ n+ 1, then for any ω > 0, there exists ζ > 0 and a nonempty set

T such that for all xk ∈ B(x′, ζ) we have T ⊆ Tk(x′, ω).

We are now prepared to prove Theorem 4.1.3. Our proof follows closely that of [39,

Theorem 3.3]. We provide a proof for the sake of completeness, and also because some

changes to the proof are required due to the different QO subproblem used in BGS.
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Proof. If f(xk)→ −∞, then there is nothing to prove, so suppose that

inf
k→∞

f(xk) > −∞.

Then, we have from (4.9), (4.10), and Lemma 4.1.6 that

∞∑
k=0

αk(d
B
k )THkd

B
k < ∞, and (4.18a)

∞∑
k=0

‖xk+1 − xk‖‖dBk ‖ < ∞. (4.18b)

We continue by considering two cases, the first of which has two subcases.

Case 1 : Suppose that there exists k′ ≥ 0 such that εk = ε′ > 0 for all k ≥ k′. According

to step 5, this occurs only if

min{‖dAk ‖2, (dAk )THkd
A
k } > νε′2 for all k ≥ k′. (4.19)

Together with Lemma 4.1.7 and Assumption 4.1.2, we know that ‖dBk ‖ and (dBk )THkd
B
k

are also bounded below for all k ≥ k′.

In conjunction with (4.18), this implies αk → 0 and xk → x′ for some x′. Moreover,

the fact that αk → 0 implies that there exists an infinite subsequence of iterations in which

pk = p. A similar argument is made in [18, Theorem 4.2]. Therefore, we can define K as

the subsequence of iterations in which pk = p and know that K is infinite.

Case 1a: If x′ is ε′-stationary for f , then for any Hk � 0, the solution d′ to the

subproblem qA of (2.27) in AGS satisfies ∆qA(d′;x′,Bε′(x′), Hk) = 0. Thus, with ω =

νε′2/2 and (ζ, T ) chosen as in Lemma 4.1.8, there exists k′′ ≥ k′ such that xk ∈ Bζ(x′) for

all k ≥ k′′ and

1
2(dAk )THkd

A
k = ∆qA(dAk ;xk, Xk, Hk) ≤ 1

2νε
′2 (4.20)

whenever k ≥ k′′, k ∈ K, and Xk ∈ T . Together, (4.19) and (4.20) imply that Xk /∈ T

for all k ≥ k′′ with k ∈ K. However, this is a probability zero event since for all such k

the set Xk continually collects points generated uniformly from Bk, meaning that it will
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eventually include an element of the set T yielding (4.20).

Case 1b: If x′ is not ε′-stationary, then for all k ≥ k′, any α not satisfying the sufficient

decrease condition (4.9) yields

f(xk + αdBk )− f(xk) > −ηα(dBk )THkd
B
k ,

and along with (4.14) yields

f(xk + αdBk )− f(xk) ≤ −α(dBk )THkd
B
k + α2Lk‖dBk ‖2.

Here, Lk is a finite upper bound for (f ′(xk + αdBk ) − f ′(xk))/(α‖dBk ‖) on the interval

[xk, xk + αdBk ] whose existence follows from Assumption 4.1.1. Combining the above

inequalities yields a lower bound on any α not satisfying (4.9), which, since step 6 invokes

the backtracking factor κ, yields the bound

αk > κ(1− η)(dBk )THkd
B
k /(Lk‖dBk ‖2).

However, with ω = ∆qA(d′;x′,Bε′(x′), Hk) (which is strictly positive since x′ is not ε′-

stationary) and (ζ, T ) again chosen as in Lemma 4.1.8, there exists k′′ ≥ k′ such that

xk ∈ Bζ(x′) for all k ≥ k′′ and

∆qA(dAk ;xk, Xk, Hk) ≤ 2∆qA(d′;x′,Bε′(x′), Hk)

whenever k ≥ k′′, k ∈ K, and Xk ∈ T . Under Assumptions 4.1.1 and 4.1.2 and since

xk → x′, we have that for all k sufficiently large, Lk‖dBk ‖2 ≤ L for some constant L > 0,

implying that for all k ≥ k′′ with k ∈ K such that Xk ∈ T , αk is bounded away from zero.

Together, this and the fact that αk → 0 imply that Xk /∈ T for all k ≥ k′′ with k ∈ K.

Again, this is a probability zero event.

Case 2 : Suppose {εk} → 0 and {xk} has a cluster point x′. We want to show that x′

is stationary for f̃ . The proof is exactly that of [18, Theorem 4.2, Case 2].
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4.1.3 Numerical Experiments

We implement Algorithm 10 in Matlab and call the QO subproblem solver in Appendix A

to solve the QO subproblem (4.7). In this section, we describe the algorithm variations

that we have tested, the test problems that we have solved, and the results of our numerical

experiments. All tests are performed on a machine running Debian 2.6.32 with two 8-Core

AMD Opteron 6128 2.0 GHz processors and 32 GB RAM.

We consider two algorithm variations described below.

• AGS This is the adaptive gradient sampling algorithm which is obtained by the

implementation of Algorithm 10 with the linear term ξk in the QO subproblems

(4.7) defined as ξk = f(xk)e.

• BGS This is the bundle gradient sampling algorithm which is obtained by the im-

plementation of Algorithm 10 with the linear term ξk in the QO subproblems (4.7)

defined as in (4.8).

Specific values for the input parameters of Algorithm 10 are set as the following. We

choose p = 2n as the number of sample points required for a complete line search; and

p = 2n as the number of sample points to compute each iteration. We set the sampling

radius reduction factor to be ψ = 0.5, number of backtracks for an incomplete line search to

be q = 7, sufficient decrease constant η = 10−8, line search backtracking constant κ = 0.5,

and tolerance parameter ν = 1. We choose the initial sampling radius to be ε0 = 0.1. We

terminate Algorithm 10 either when the optimality conditions min{‖dAk ‖2, (dAk )THkd
A
k } ≤

εk ≤ 10−4 are satisfied, or when the maximum number of iterations 104 is reached. The

QO subproblem solver is implemented as described in Appendix. We set the subproblem

optimality tolerance to be 10−10 and maximum number of iterations to be 103. The

Hessian and inverse Hessian approximations are set to be Hk = Wk = I.

We test algorithm variations AGS and BGS with the same 26 nonsmooth problems as

described in Chapter 2 and Chapter 3. We choose n = 50 for all the 26 problems. The only

exception is problem 24, for which we choose n = 64, as the variables for this problem need

to compose a square matrix. We run each problem 10 times, each with different starting
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points. Please refer to previous chapters for details of starting points and parameters of

the test problems.

The performance measures we consider are nonlinear iterations, function evaluations,

gradient evaluations, and overall QO iterations. We present the numerical results by using

performance profiles in Figure 4.2. From the performance profiles, we can see that AGS

solved almost 90% of the test problems, while BGS only solved 80%. In terms of computa-

tional efficiency, BGS uses more function and gradient evaluations, and significantly more

overall QO iterations because two QO subproblems are solved each iteration in BGS. The

only major difference between AGS and BGS comes from the QO subproblems. The QO

subproblem of BGS is motivated by the combination of the bundle method (BM) and the

gradient sampling (GS) method. We have proved that the QO subproblem of BGS can

produce a longer step than AGS; and therefore bigger predicted function value reduction.

However, the longer step may not necessarily be a productive step. In particular, when

the sampling radius is small, perhaps more backtracks are required to get sufficient de-

crease in terms of the true function value, resulting in more nonlinear iterations, function

evaluations and gradient evaluations.

4.2 A Smoothing BFGS Gradient Sampling Algorithm

In this section, we propose a smoothing BFGS gradient sampling algorithm, which is

based on the smoothing method and the BFGS-GS algorithm proposed in Chapter 3. A

motivation for the smoothing approach is that it has theoretical convergence guarantees

even when the problem functions are not Lipschitz. Numerical results are presented to

illustrate that our algorithm is competitive with another recently proposed smoothing

method [14] for non-Lipschitz optimization.

In the smoothing BFGS-GS algorithm, a sequence of parameterized smoothing func-

tions is used to approximate the original nonsmooth objective function. The BFGS-GS

algorithm is employed to solve the smooth but perhaps very nonlinear subproblems. By

updating the smoothing parameter, the smoothing BFGS-GS algorithm can find a point

satisfying the first order necessary condition of the original nonsmooth problem.
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Figure 4.2: Performance profiles for nonlinear iterations (upper left), function evaluations
(upper right), gradient evaluations (lower left), and overall QO iterations (lower right)
comparing algorithms AGS and BGS.

4.2.1 Algorithm Description

We consider the following unconstrained minimization problem:

min
x

f(x) := θ(x) + λ
m∑
i=1

φ(|dTi x|), (4.21)

where θ : Rn → R+, φ : R+ → R+, λ ∈ R+, and di ∈ Rn, i = 1, ...,m. In particular, we

are interested in problems of this form in which θ represents a data-fitting term while φ

represents a penalty function designed to instill certain properties in the solution vector,

such as sparsity. We assume that the objective function f has bounded level sets, the

data fitting function θ is twice continuously differentiable, and the penalty function φ

satisfies the following assumption. Note that the penalty function φ maybe non-convex,

non-differentiable, and perhaps even non-Lipschitz.

Assumption 4.2.1. (i) φ is differentiable in (0,∞), and φ′ is locally Lipschitz continuous
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in (0,∞). (ii) φ is continuous at 0 with φ(0) = 0, φ′(0+) > 0, and φ′(t) ≥ 0 for all t > 0.

To develop the smoothing BFGS-GS algorithm for (4.21), we construct a C2 smooth-

ing function f̃(·, µ) for the objective function f(·) in (4.21), where µ is the smoothing

parameter. Since the first term θ(·) of f(·) is twice continuously differentiable, we only

need to construct a C2 smoothing function φ̃(·, µ) for the second term φ(·). In particular,

we assume φ̃(·, µ) satisfy Assumption 2.1 in [14].

The smoothing BFGS-GS algorithm is a line search algorithm. At each iteration, for

a given smoothing parameter µk and a given iterate xk, we desire the search direction dk

to be the minimizer of a quadratic model of f̃(xk, µk), which is equivalent to solving the

following primal and dual pair:


min

(z,d)∈Rn+1
z + 1

2‖d‖
2
W−1
k

s.t. GTk d ≤ ze




max
y∈Rpk+1

− 1
2‖Gky‖

2
Wk

s.t. eT y = 1, y ≥ 0

 (4.22)

where Gk is the gradient matrix defined as the following:

Gk :=

[
gk,0 · · · gk,pk

]
, (4.23)

where gk,i := ∇f̃(xk,i, µk) for all i ∈ {0, . . . , pk}. Then we compute a positive step size

αk > 0 satisfying the well-known (weak) Wolfe line search conditions.

f̃(xk, µk)− f̃(xk + αkdk, µk) ≥ ηαk‖Gkyk‖2Wk
; (4.24a)

∇f̃(xk + αkdk, µk)
Tdk ≥ η∇f̃(xk, µk)

Tdk. (4.24b)

Once the search direction dk and step size αk ≥ 0 have been computed, the remain-

der of the iteration involves setting the next sampling radius εk+1 ∈ (0, εk], smoothing

parameter µk+1 ∈ (0, µk], sample set Xk+1 (and related quantities), and inverse Hessian

approximation Wk+1.

Define the following conditions for updating the sampling radius εk+1, sample set Xk+1,
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and smoothing parameter µk+1:

‖Gkyk‖Wk
≤ νεk; (4.25a)

‖Gkyk‖Wk
≥ ξ‖dk‖2; (4.25b)

αk ≥ α; (4.25c)

‖∇f̃(xk, µk)‖ ≤ νµk. (4.25d)

We summarize parameters employed in our algorithm in Table 4.1.

Table 4.1: User-specified constants for the proposed algorithm

Parameter(s) Range Description

ν (0,∞) Stationarity measure tolerance

ψ (0, 1] Sampling radius reduction factor

ζ (0, 1] Smoothing parameter reduction factor

ξ (0,∞) Model curvature threshold

η < η (0, 1) Armijo–Wolfe line search constants

α (0,∞) Step size threshold

p [n+ 1,∞) ∩ N Sample set size threshold

µ < 1 < µ (0,∞) (L-)BFGS updating thresholds

w ≤ w (0,∞) (L-)BFGS updating thresholds

m N L-BFGS memory length

We now present our main algorithm, stated as Algorithm 11.

4.2.2 Global Convergence Analysis

We first show that if Algorithm 11 reaches Step 2 during iteration k, then it computes dk

as null or as a direction of strict descent for f from xk ∈ D. We state this result, which

also proves an important relationship between the search direction dk and the dual QP

solution yk; see also [18, Lemma 4.3].

Lemma 4.2.2. If Algorithm 11 reaches Step 2 during iteration k, then it computes a
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Algorithm 11 Smoothing BFGS Gradient Sampling Algorithm

1: Choose an initial iterate x0, inverse Hessian approximation W0 � 0, sampling radius
ε0 > 0, and smoothing parameter µ0 > 0. Set the initial sample set X0 ← {x0},
sample set size p0 ← 0, matrix of sample gradients G0 ← ∇f̃(x0, µ0) and iteration
counter k ← 0.

2: Compute a search direction dk ← −WkGkyk where yk solves the dual QP in the
primal-dual pair (4.22).

3: Compute a step size αk ≥ 0 satisfying the well-known (weak) Wolfe line search
conditions (4.24).

4: Compute a new iterate xk+1 ← xk + αkdk.
5: If conditions (4.25a) and (4.25b) hold, then set the new sampling radius εk+1 ← ψεk;

otherwise, set εk+1 ← εk.
6: If the condition (4.25d) holds, then set the new smoothing parameter µk+1 ← ψµk

and reset the sampling radius εk+1 ← ε0; otherwise, set µk+1 ← µk.
7: Compute a new sample set Xk+1 with pk+1 ← |Xk+1| − 1 as the following. If con-

ditions (4.25b) and (4.25c) hold, then set Xk+1 ← {xk+1} and pk+1 ← 0, terminate.
Otherwise, set Xk+1 ← (Xk ∩ Bk+1) ∪ {xk+1} ∪Xk+1 and pk+1 ← |Xk+1| − 1. Here,
Xk+1 is a collection of pk+1 points generated independently from a uniform distribu-
tion over Bk+1. If pk+1 > p, then remove the pk+1−p eldest members of Xk+1\{xk+1}
and set pk+1 ← p.

8: Compute the matrix of gradients Gk+1 defined in (4.23).
9: Compute a new inverse Hessian approximation Wk+1 � 0 via Algorithm 9 in §3.2.4.

10: Set k ← k + 1 and go to Step 2.

search direction dk that is zero or a direction of strict descent for f̃ from xk. In addition,

the primal-dual solution (zk, dk, yk) of (4.22) satisfies ‖Gkyk‖Wk
= ‖dk‖W−1

k
.

Proof. In the proof of [18, Lemma 4.3], we have the following inequality from the KKT

conditions of the primal and dual subproblems:

∇f̃(xk, µk)
Tdk ≤ −‖Gkyk‖2Wk

= −‖dk‖2W−1
k

. (4.26)

If dk = 0, then there is nothing left to prove. Hence, from (4.26) and W−1
k � 0, it follows

that if Step 2 is reached and it produces dk 6= 0, then ∇f̃(xk, µk)
Tdk < 0.

We now prove a critical inequality for a subset of iterations; see also [18, Lemma 4.5].

Lemma 4.2.3. If ξ‖dk‖2 ≤ ‖Gkyk‖Wk
holds during iteration k, then

f̃(xk+1, µk) ≤ f̃(xk, µk)− ηξ‖xk+1 − xk‖2‖dk‖2.
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Proof. By Step 4 of Algorithm 11, we have

‖xk+1 − xk‖2 = αk‖dk‖2. (4.27)

Thus, by the sufficient decrease condition (4.24a), we have

f̃(xk+1)− f̃(xk) ≤ −ηαk‖Gkyk‖2Wk

≤ −ηαkξ‖dk‖22

= −ηξ‖xk+1 − xk‖2‖dk‖2.

Given x′ ∈ Rn, we define

Gk(x′) := cl conv∇f̃(B(x′, εk), µk),

and, also given a tolerance ω > 0, we define

Tk(x′, ω) :=

{
Xk ∈

pk∏
0

Bk : ‖PWk
({∇f̃(x, µk)}x∈Xk)‖2Wk

≤ ‖PWk
(Gk(x′))‖2Wk

+ ω

}
.

The purpose of the following lemma is to show that for an iterate xk sufficiently close

to x′ and any tolerance ω > 0, there exists a nonempty subset of Tk(x′, ω) if the sample

set size pk ≥ n+ 1; see the similar result of Lemma 4.1.8.

Lemma 4.2.4. If pk ≥ n+ 1, then for any ω > 0, there exists ζ > 0 and a nonempty set

T such that for all xk ∈ B(x′, ζ) we have T ⊆ Tk(x′, ω).

The purpose of the following lemma is to show that if the sample set size pk ≥ n+ 1,

for an iterate xk sufficiently close to a non-stationary point x′, Algorithm 11 eventually

computes a step size αk that is bounded below, so that the iterates {xk} move away from

the non-stationary point x′; see the similar result [39, Lemma 3.2(ii)].

Lemma 4.2.5. Assuming 0 6∈ Gk(x′) and the sample set size pk ≥ n+ 1, pick ω > 0 and

then (ζ, T ) as in Lemma 4.2.4. Suppose at iteration k of Algorithm 11, Step 3 is reached
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with xk ∈ B(x′,min{ζ, εk/3}) and Xk ∈ T . Then αk ≥ γεk/3κ, where κ is the Lipschitz

constant of f on B(x′, 2εk).

The following lemma is critical to the global convergence proof.

Lemma 4.2.6. Consider the iterates {xk} and {µk} generated by applying Algorithm 11

to problem (4.21). Then Kµ defined in (4.32) is an infinite set.

Proof. Suppose for contradiction that Kµ defined in (4.32) is finite. Then there exists

µ̄ > 0 such that µk = µ̄ and ‖∇f̃(xk, µk)‖ > νµk for all sufficiently large k.

Define the index sets

Kε := {k | ξ‖dk‖2 ≤ ‖Gkyk‖Wk
≤ νεk}, (4.28)

and

Kd := {k | ξ‖dk‖2 ≤ ‖Gkyk‖Wk
and αk ≥ α}. (4.29)

Our first main goal is to show that {εk} → 0. To prove this, we consider two cases.

Case 1: Suppose Kd defined in (4.29) is an infinite set. Then, along with the sufficient

decrease condition (4.24a), we have

f̃(xk+1, µk)− f̃(xk, µk) ≤ −ηαk‖Gkyk‖2Wk
≤ −ηαξ2‖dk‖22 for all k ∈ Kd.

From Assumption 2.1 in [14], we know f̃(x, µ) ≥ f(x) which implies that the level set of f̃

is a subset of the level set of f . Since f has bounded level sets, f̃ has also bounded level

sets for any given µ > 0. This implies that

lim
k∈Kd

‖dk‖2 = 0,

which, by Step 5 of Algorithm 11, implies that {εk} → 0.

Case 2: Suppose Kd defined in (4.29) is finite. Then either ξ‖dk‖2 ≤ ‖Gkyk‖Wk
or

αk ≥ α does not hold for all sufficiently large k.

According to the inverse Hessian updating strategy, it follows that for all sufficiently
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large k we have W−1
k+1 and Wk+1 be bounded. Indeed, in this case, we may assume without

loss of generality that W−1
k+1 and Wk+1 being bounded for all k.

We now prove that {εk} → 0 with probability one by showing that the event that {εk}

remains bounded away from zero has probability zero.

Suppose that there exists k′ such that εk = ε′ > 0 for all k ≥ k′. From this fact, it

follows that either ξ‖dk‖2 ≤ ‖Gkyk‖Wk
or ‖Gkyk‖Wk

≤ νεk does not hold for all k ≥ k′.

In fact, since ξ‖dk‖2 ≤ ‖Gkyk‖Wk
holds for all k, we must have

‖Gkyk‖Wk
> νε′ for all k ≥ k′. (4.30)

On the other hand, the fact that {f̃} is bounded below, the sufficient decrease condi-

tion, and the inequality in Lemma 4.2.3 together imply that

∞∑
k=k′

αk‖Gkyk‖2Wk
< ∞, and (4.31a)

∞∑
k=k′

‖xk+1 − xk‖2‖dk‖2 < ∞. (4.31b)

In conjunction with (4.30), the bound (4.31a) implies αk → 0. Similarly, (4.31b) and (4.30)

imply that {xk} is a Cauchy sequence, and hence xk → x′ for some x′ ∈ Rn. We claim that

this implies the existence of an infinite iteration index set Kp := {k : k ≥ k′ and pk = p}.

We continue by considering two subcases.

Subcase 2.a: Suppose x′ is ε′-stationary for f̃ . See the proof of [18, Theorem 3.1,

Subcase 2.a], we have Xk /∈ T for sufficiently large k ∈ Kp. This is a probability zero

event.

Subcase 2.b: Suppose x′ is not ε′-stationary for f̃ . See the proof of [18, Theorem 3.1,

Subcase 2.b], we have Xk /∈ T for sufficiently large k ∈ Kp. This is also a probability zero

event.

Now since we have {εk} → 0 and {xk} has a cluster point x′, all that remains is to

show that x′ is stationary for f̃ . The proof is exactly that of [18, Theorem 4.2, Case 2].
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Then we have

lim inf
k→∞

‖∇f̃(xk, µk)‖ = 0,

which contracts with the supposition that Kµ defined in (4.32) is finite.

We are now prepared to prove the global convergence theory.

Theorem 4.2.7. Consider the iterates {xk} and {µk} generated by applying Algorithm 11

to problem (4.21). Define the index set

Kµ := {k | ‖∇f̃(xk, µk)‖ ≤ νµk}. (4.32)

If Kµ is an infinite set, then

lim
k→∞

µk = 0, (4.33a)

lim inf
k→∞

‖∇f̃(xk, µk)‖ = 0, (4.33b)

and any accumulation point of {xk} satisfies the first-order necessary condition in Theorem

4.4 of [14].

Proof. We know by Lemma 4.2.6 that Kµ is an infinite set, by Step 6 we have

lim
k→∞

µk = 0

because Algorithm 11 generates a monotonically decreasing sequence {µk}∞k=0. Therefore,

we also have

lim inf
k→∞

‖∇f̃(xk, µk)‖ = 0.
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4.2.3 Numerical Experiments

In this section, we compare our smoothing BFGS-GS algorithm (SBFGSGS) with a smooth-

ing trust region Newton method (STR) proposed in [14]. Both algorithms are implemented

in Matlab. The QO subproblem solver in Appendix A is called to solve the QO sub-

problem (4.22) in SBFGSGS. The Fortran subroutine GQTPAR in [47] is called to solve the

trust region subproblem in STR. For fair comparison, the termination conditions for both

algorithms are either that the maximum iteration number is reached, or that the following

optimality conditions are satisfied:

µk ≤ ν and ‖∇f̃(xk, µk)‖ ≤ ν,

where ν > 0 is a given optimality tolerance. In particular, we set the initial smoothing

parameter to be µ0 = 0.01, the smoothing parameter reduction factor to be ζ = 0.1,

the optimality tolerance to be ν = 10−4, and the maximum iteration number to be 104

for both algorithms. We refer to [14] for specific values of other parameters of STR, and

Chapter 3 for other parameter values of SBFGSGS.

We test both algorithms for six penalty functions of φ(·) in (4.21): φ1, ..., φ6. The six

penalty functions are called fraction penalty, log-penalty, `q penalty (or bridge penalty),

hard thresholding penalty, smoothingly clipped absolute deviation penalty, and minimax

concave penalty. Please refer to Section 1 of [14] for details of the six penalty functions. We

consider the three test problems from Section 5 of [14]: prostate cancer, linear regression,

logistic regression.

Example: Prostate Cancer

The prostate cancer problem studies the correlation between the level of prostate specific

antigen (lpsa) and eight clinical measures. The problem is formulated as in (4.21) with

the data-fitting function being θ(x) = ‖Ax− b‖2 and the six penalty functions mentioned

before: φ1, ..., φ6.

The data set (A and b) are available on the website http://statweb.stanford.edu/
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~tibs/ElemStatLearn/. The data set consists of medical records of 97 patients, which

is divided into two parts: a training set with 67 observations and a test set with 30

observations. The prediction error is defined as the mean squared errors (MSEs) over the

test set.

In the first set of experiments, we apply both algorithms to solving the prostate cancer

problem with specific parameter values for the six penalty functions. Final solution and

MSE from SBFGSGS and STR are reported in Table 4.2 and Table 4.3, respectively. From

the tables, we can see that the results returned by both algorithms are almost identical

for this test problem.

φ1 φ2 φ3(q = 1.0) φ3(q = 0.5) φ4 φ5 φ6

λ 14.5 14.5 14.5 14.5 14.5 14.5 14.5

α 1.0 1.0 (-) (-) (-) 3.7 2.7

0.6800 0.6800 0.5487 0.6461 0.5590 0.5487 0.5506

0.2635 0.2635 0.2157 0.2752 0.2152 0.2157 0.2158

0 0 0 0 0 0 0

0.2107 0.2107 0.0909 0 0.0871 0.0909 0.0909

0.3047 0.3047 0.1578 0.1277 0.1522 0.1578 0.1573

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.2634 0.2634 0.0606 0 0.0554 0.0606 0.0600

MSE 0.5185 0.5185 0.4514 0.4283 0.4497 0.4514 0.4511

Table 4.2: Results for prostate cancer from algorithm SBFGSGS

φ1 φ2 φ3(q = 1.0) φ3(q = 0.5) φ4 φ5 φ6

λ 14.5 14.5 14.5 14.5 14.5 14.5 14.5

α 1.0 1.0 (-) (-) (-) 3.7 2.7

0.6800 0.6800 0.5487 0.6461 0.5590 0.5487 0.5506

0.2635 0.2635 0.2157 0.2752 0.2152 0.2157 0.2158

0 0 0 0 0 0 0

0.2107 0.2107 0.0909 0 0.0871 0.0909 0.0909

0.3047 0.3047 0.1578 0.1277 0.1522 0.1578 0.1573

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.2634 0.2634 0.0606 0 0.0554 0.0606 0.0600

MSE 0.5185 0.5185 0.4514 0.4283 0.4497 0.4514 0.4511

Table 4.3: Results for prostate cancer from algorithm STR

As in [14], we focus on the `q penalty function φ3 in the second set of experiments,
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since φ3 with q = 0.5 performs the best on the previous tables. Numerical results with

λ = 8 and q = 0.9, 0.8, ..., 0.3 are presented in Table 4.4 and Table 4.5. Similarly here, the

results returned by both algorithms are almost identical.

q = 0.9 q = 0.8 q = 0.7 q = 0.6 q = 0.5 q = 0.4 q = 0.3

0.5659 0.5827 0.6091 0.6202 0.6461 0.7254 0.6543

0.2264 0.2257 0.2229 0.229 0.2752 0.2782 0.2838

0 0 0 0 0 0 0

0.1316 0.1227 0.1141 0.0982 0 0 0

0.1879 0.1837 0.1914 0.1784 0.1277 0 0.1295

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.0747 0.0531 0 0 0 0 0

MSE 0.4526 0.4458 0.4358 0.4332 0.4283 0.4895 0.4268

Table 4.4: Results for prostate cancer with penalty function φ3 from algorithm SBFGSGS

q = 0.9 q = 0.8 q = 0.7 q = 0.6 q = 0.5 q = 0.4 q = 0.3

0.5659 0.5827 0.6091 0.6202 0.6461 0.656 0.6543

0.2264 0.2257 0.2229 0.229 0.2752 0.2784 0.2838

0 0 0 0 0 0 0

0.1316 0.1227 0.1141 0.0982 0 0 0

0.1879 0.1837 0.1914 0.1784 0.1277 0.1189 0.1295

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.0747 0.0531 0 0 0 0 0

MSE 0.4526 0.4458 0.4358 0.4332 0.4283 0.4311 0.4268

Table 4.5: Results for prostate cancer with penalty function φ3 from algorithm STR

Example: Linear Regression

Now we consider a linear regression problem (i.e., θ(x) = ‖Ax − b‖2) also with the six

penalty functions. Each rows of the matrix A is an eight-dimensional vector from multi-

variate normal distribution with covariance between ai and aj being 0.5|i−j| (1 ≤ i, j ≤ 8).

Each component of the vector b is computed from the following data model:

b = aTx+ σε,
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where x = (3, 1.5, 0, 0, 2, 0, 0, 0) and ε∼N(0, 1). Let n be the sample size. Three sets of

experiments are performed: (n, σ) = (40, 3), (40, 1), and (60, 1). For each pair (n, σ), the

results are based on the average of randomly generated 100 runs. The sparsity of the

solutions is measured by computing the average number of correct zeros and incorrect

zeros. To reflect the quality of the solutions returned by the two algorithms, we report

the median relative model error (MRME). The relative model error (RME) is defined as

the following

RME(x̄) =
(x̄− x∗)T

∑
(x̄− x∗)

(xLS − x∗)T
∑

(xLS − x∗)
,

where x∗ is the true solution, x̄ is the solution returned by the two algorithms, and xLS

is the least squares solution. Problem parameters and numerical results are illustrated in

Table 4.6 and Table 4.7, respectively. From the tables, we can see that both algorithms

perform poorly with the first two penalty functions φ1 and φ2. However, both algorithms

perform similarly well with the last four penalty functions.

Example: Logistic Regression

The logistic regression example is similar to the previous linear regression example ex-

cept that, instead of using the linear regression function as the data-fitting function, this

example uses the following logistic regression function:

θ(x) =
n∑
i=1

ln
e−bi(x

T ai)

1 + exT ai
,

where x = (3, 1.5, 0, 0, 2, 0, 0, 0) is the same as in the previous example; the first six

components of a are the same as before and the last two components of a are independently

identically distributed as a Bernoulli distribution with probability of success 0.5; and the

the vector b is computed by the model b∼Beroulli{p(aTx)}, where p(u) = exp(u)/(1 +

exp(u)). Similar results from both algorithms are reported in Table 4.8 and Table 4.9.
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Method Parameters MRME Correct 0’s Incorrect 0’s

n = 40, σ = 3

φ1 λ = 70.0, α = 1.0 1 0 0

φ2 λ = 70.0, α = 1.0 1 0 0

φ3 λ = 49.0, q = 0.5 0.3966 4.72 0.34

φ3 λ = 50.0, q = 1.0 1.0998 3.80 0.05

φ4 λ = 26.0 0.6692 3.93 0.11

φ5 λ = 57.0, α = 3.7 1.0721 4.02 0.10

φ6 λ = 47.5, α = 2.7 1.0244 3.82 0.08

n = 40, σ = 1

φ1 λ = 41.5, α = 1.0 1 0.02 0

φ2 λ = 40.0, α = 1.0 1 0.02 0

φ3 λ = 19.0, q = 0.5 0.2435 4.97 0

φ3 λ = 20.0, q = 1.0 1.5653 4.04 0

φ4 λ = 8.5 0.6044 4.15 0

φ5 λ = 17.5, α = 3.7 1.0181 3.88 0

φ6 λ = 19.5, α = 2.7 1.1236 4.08 0

n = 60, σ = 1

φ1 λ = 44.5, α = 1.0 1 0.07 0

φ2 λ = 44.5, α = 1.0 1 0.03 0

φ3 λ = 20.0, q = 0.5 0.1290 4.97 0

φ3 λ = 22.5, q = 1.0 0.7292 4.01 0

φ4 λ = 11.5 0.5315 4.19 0

φ5 λ = 24.5, α = 3.7 1.1932 4.06 0

φ6 λ = 22.5, α = 2.7 0.8174 3.81 0

Table 4.6: Results of linear regression from algorithm SBFGSGS

4.3 Gradient Sampling for `1-Regularization

In this section, we propose an algorithm motivated by the gradient sampling (GS) idea for

solving `1 regularization problems. Global convergence analysis is provided. Preliminary

numerical experiments are performed to compare different algorithmic variations of GS

with an iterative shrinkage-thresholding algorithms (ISTA).

4.3.1 Algorithm Description

Consider the unconstrained minimization problem

min
x

f(x) := fs(x) + µ‖x‖1, (4.34)
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Method Parameters MRME Correct 0’s Incorrect 0’s

n = 40, σ = 3

φ1 λ = 70.0, α = 1.0 1 0.01 0

φ2 λ = 70.0, α = 1.0 1 0 0

φ3 λ = 49.0, q = 0.5 0.4697 4.72 0.42

φ3 λ = 50.0, q = 1.0 0.6195 3.88 0.07

φ4 λ = 26.0 0.8197 3.92 0.08

φ5 λ = 57.0, α = 3.7 0.9466 3.94 0.06

φ6 λ = 47.5, α = 2.7 0.6581 3.74 0.05

n = 40, σ = 1

φ1 λ = 41.5, α = 1.0 1 0.04 0

φ2 λ = 40.0, α = 1.0 1 0.01 0

φ3 λ = 19.0, q = 0.5 0.1384 4.99 0

φ3 λ = 20.0, q = 1.0 1.0758 4.03 0

φ4 λ = 8.5 0.4705 3.91 0

φ5 λ = 17.5, α = 3.7 0.8022 3.84 0

φ6 λ = 19.5, α = 2.7 1.0153 4.11 0

n = 60, σ = 1

φ1 λ = 44.5, α = 1.0 1 0 0

φ2 λ = 44.5, α = 1.0 1 0.02 0

φ3 λ = 20.0, q = 0.5 0.1585 4.97 0

φ3 λ = 22.5, q = 1.0 0.7413 3.99 0

φ4 λ = 11.5 0.7410 3.99 0

φ5 λ = 24.5, α = 3.7 0.9800 3.99 0

φ6 λ = 22.5, α = 2.7 0.9432 4.04 0

Table 4.7: Results of linear regression from algorithm STR

where fs(x) : Rn → R is a smooth function. Let D be the set where the function ‖x‖1 is

smooth, i.e., D := {x ∈ Rn : xi 6= 0, ∀i = 1, ..., n}, where xi is the ith component of x. Let

Bε(x) be the “box” centered at x with “radius” ε, i.e., Bε(x) := {x̄ ∈ Rn : ‖x̄− x‖∞ ≤ ε}.

At a given iterate xk ∈ D and for a given radius εk > 0, let qk be the number of

components satisfying |xik| < εk, ∀i = 1, ..., n, and then pk = 2qk is the number of all

possible gradients of the function ‖x‖1 evaluated at x ∈ Bk := Bεk(xk) ∩ D. Let

Gk = Gsk +G1
k,

where

G1
k :=

[
gk,1 · · · gk,pk

]
(4.35)
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Method Parameters MRME Correct 0’s Incorrect 0’s

φ1 λ = 11.0, α = 1.0 0.0028 0 0

φ2 λ = 10.5, α = 1.0 0.0020 0 0

φ3 λ = 7.5, q = 0.5 0.0111 4.97 0.01

φ3 λ = 21.5, q = 1.0 0.4637 4.88 0.03

φ4 λ = 9.5 0.3549 4.87 0.02

φ5 λ = 21.0, α = 3.7 0.4557 4.88 0.03

φ6 λ = 20.0, α = 2.7 0.4226 4.88 0.04

Table 4.8: Results of logistic regression from algorithm SBFGSGS

Method Parameters MRME Correct 0’s Incorrect 0’s

φ1 λ = 11.0, α = 1.0 0.0026 0 0

φ2 λ = 10.5, α = 1.0 0.0025 0.02 0

φ3 λ = 7.5, q = 0.5 0.0102 4.96 0.04

φ3 λ = 21.5, q = 1.0 0.4728 4.83 0.02

φ4 λ = 9.5 0.3555 4.89 0.03

φ5 λ = 21.0, α = 3.7 0.4478 4.83 0

φ6 λ = 20.0, α = 2.7 0.4204 4.89 0.03

Table 4.9: Results of logistic regression from algorithm STR

denote the matrix whose columns are all possible gradients of the function ‖x‖1 evaluated

at x ∈ Bk, and

Gsk :=

[
∇fs(xk) · · · ∇fs(xk)

]
(4.36)

denote the matrix that also has pk columns and each column is simply the gradient of the

function fs at the current iterate xk.

One should notice that gradients in G1
k are n-dimensional vectors with different com-

binations of 1’s and −1’s. In Figure 4.3, the contour of the function ‖x‖1 and the “box”

centered at xk with “radius” εk are plotted. The current iterate is xk = (0.4, 0.2)T . The

“radius” in the left plot is εk = 0.3; and in the right plot εk = 0.5. The corresponding

gradient matrix G1
k is computed as the following:

G1
k =

1 1

1 −1

 and G1
k =

1 −1 1 −1

1 1 −1 −1

 .

Let Hk ∈ Rn×n be a positive definite matrix (i.e., Hk � 0), and Wk := H−1
k � 0.
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Figure 4.3: Illustration of the gradient matrix G1
k.

The main computational expense in an iteration of the method is to solve the following

primal-dual QO subproblems to compute the search direction dk:

(P) :=


min
z,d

z + 1
2d

THkd

s.t. f(xk)e+GTk d ≤ ze

 (D) :=


max
π

f(xk)− 1
2π

TGTkWkGkπ

s.t. eTπ = 1, π ≥ 0.

 (4.37)

Note that either the primal or the dual (not both) needs to be solved; and the solution

(zk, dk, πk) of (4.7) has dk = −WkGkπk and zk = f(xk)− πTk GTkWkGkπk.

After the computation of the search direction dk, a standard backtracking line search

is performed to find a step size αk satisfying the following sufficient decrease condition

f(xk + αkdk) ≤ f(xk)− ηαkdTkHkdk. (4.38)

The Algorithm for `1 Regularization is presented as Algorithm 12 below.

4.3.2 Global Convergence Analysis

We make the following assumptions about the function fs and the Hessian approximation

Hk throughout our global convergence analysis.

Assumption 4.3.1. The function fs : Rn → R is bounded below, continuously differen-

tiable, and the gradient ∇fs is Lipschitz continuous.
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Algorithm 12 Algorithm for `1 Regularization (L1R)

1: (Initialization): Choose a sampling radius reduction factor ψ ∈ (0, 1), sufficient de-
crease constant η ∈ (0, 1), line search backtracking constant κ ∈ (0, 1), and tolerance
parameter ν > 0. Choose an initial iterate x0, an initial sampling radius ε0 > 0, and
set k ← 0.

2: (Hessian update): Set Hk � 0 as an approximation of the Hessian of f at xk.
3: (Search direction computation): Compute (zk, dk) solving (4.37).
4: (Sampling radius update): If min{‖dk‖2, dTkHkdk} ≤ εk, then set xk+1 ← xk, αk ← 1,

and εk+1 ← ψεk and go to step 7.
5: (Backtracking line search): Set αk as the largest value in {κ0, κ1, κ2, . . . } such that

(4.38) is satisfied.
6: (Iterate update): Set εk+1 ← εk and xk+1 ← xk + αkdk.
7: (Iteration increment): Set k ← k + 1 and go to step 2.

Assumption 4.3.2. There exist ξ ≥ ξ > 0 such that, for all k and d ∈ Rn, we have

ξ‖d‖2 ≤ dTHkd ≤ ξ‖d‖2.

The result we prove is the following.

Theorem 4.3.3. L1R produces infinite sequences of iterates {xk} and sampling radius

{εk}. The sequence of sampling radius {εk} → 0 and every cluster point of {xk} is sta-

tionary for f .

We begin our analysis with the following Lemma 4.3.4 that shows the sufficient decrease

condition (4.38) is well defined.

Lemma 4.3.4. There exists αk > 0 that satisfies the sufficient decrease condition (4.38).

Proof. We have showed

∇f(xk)
Tdk ≤ −dTkHkdk. (4.39)

Since dTkHkdk > 0, it follows that dk is a direction of strict descent for f at xk, so there

exists αk > 0 such that (4.38) holds:

f(xk + αkdk) ≤ f(xk) + ηαk∇f(xk)
Tdk ≤ f(xk)− ηαkdTkHkdk.
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We now show a highly useful result about the sequence of decreases produced in f .

Lemma 4.3.5. The following inequality holds for all k:

f(xk+1) ≤ f(xk)− ηξ‖xk+1 − xk‖‖dk‖.

Proof. By Algorithm 12 and Assumption 4.3.2, we have

‖xk+1 − xk‖ = αk‖dk‖ and ξ‖d‖2 ≤ dTHkd

which, along with the sufficient decrease condition (4.38), yield

f(xk+1)− f(xk) ≤ −ηαkdTkHkdk

≤ −ηαkξ‖dk‖2

≤ −ηξ‖xk+1 − xk‖‖dk‖,

The next Lemma 4.3.6 shows that if two points x′ and x̄ are “close”, the ε-

subdifferential of ‖x‖1 at those two points can also be “close”.

Lemma 4.3.6. Let ε > 0 and x′ ∈ Rn. Suppose |x′i| 6= ε for all i = 1, . . . , n. There exists

δ > 0 and x̄ ∈ Rn such that, if ‖x′ − x̄‖ < δ, then ∂ε(‖ · ‖1)|x′ = ∂ε(‖ · ‖1)|x̄.

Proof. Pick δ = δε(x
′) := min{||x′i| − ε| : 1 ≤ i ≤ n}.

For the rest of analysis, we suppose Hk = Wk = I. Let ε > 0 and x ∈ Rn. Define

pε(x) := Proj(−∇fs(x)|∂ε(‖ · ‖1)|x).

Notice that the search direction dk in step 3 of Algorithm 12 is characterized by

dk = −Proj(0|∇fs(xk) + ∂εk(‖ · ‖1)|xk)

= −∇fs(xk)− Proj(−∇fs(xk)|∂εk(‖ · ‖1)|xk)

= −∇fs(xk)− pεk(xk).
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In particular, notice that

dk 6= −Proj(0|∂εkf(xk)) 6= −Proj(−∇fs(xk)|∂εk(‖·‖1)|xk) 6= −∇fs(xk)−Proj(0|∂εk(‖·‖1)|xk).

Also, if x′ is stationary for f , then −∇fs(x′) ∈ ∂ε′(‖ · ‖1)|x′ for any ε′ ≥ 0, then

pε′(x
′) = −∇fs(x′) for any ε′ ≥ 0. Therefore, if Algorithm 12 arrives at a stationary point

x′, the corresponding search direction computed is

d′ = −∇fs(x′)− pε′(x′) = −∇fs(x′) +∇fs(x′) = 0.

The next Lemma 4.3.7 showes that if two points x′ and x̄ are “close”, the projections

from the vector −∇fs(xk) to the corresponding ε-subdifferential can be also “close”. This

result will be useful as we mentioned the relationship between the projection and the

search direction. If we are at a stationary point, the search direction is zero. If we are

“close” to a stationary point, the search direction can be “close” to zero.

Lemma 4.3.7. Let ε > 0 and x′ ∈ Rn. Suppose |x′i| 6= ε for all i = 1, . . . , n. There exists

δ > 0 and x̄ ∈ Rn such that, if ‖x′ − x̄‖ < δ, then ‖pε(x′) − pε(x̄)‖ < Lδ, where L is the

Lipschitz constant of ∇fs.

Let d′ and d̄ be the corresponding search directions computed in step 3 of Algorithm 12

at points x′ and x̄, respectively, with radius ε > 0. Then ‖d′ − d̄‖ < 2Lδ.

Proof. Pick δ in Lemma 4.3.6 such that ‖x′ − x̄‖ < δ and ∂ε(‖ · ‖1)|x′ = ∂ε(‖ · ‖1)|x̄. By

the fact that projection is nonexpansive and the Assumption 4.3.1 that fs has Lipschitz

gradient, we have

‖pε(x′)− pε(x̄)‖ ≤ ‖∇fs(x′)−∇fs(x̄)‖ ≤ L‖x′ − x̄‖ < Lδ.

Similarly, we have

‖d′−d̄‖ = ‖−∇fs(x′)−pε(x′)+∇fs(x̄)+pε(x̄)‖ ≤ ‖∇fs(x̄)−∇fs(x′)‖+‖pε(x̄)−pε(x′)‖ < 2Lδ.
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We are now prepared to prove Theorem 4.3.3.

Proof. By Assumption 4.3.1, we know f is bounded below. Then, we have from the

sufficient decrease consition (4.38), and the inequality in Lemma 4.3.5 that

∞∑
k=0

αkd
T
kHkdk < ∞, and (4.40a)

∞∑
k=0

‖xk+1 − xk‖‖dk‖ < ∞. (4.40b)

We continue by considering two cases, the first of which has two subcases.

Case 1 : Suppose for contradiction that there exists k′ ≥ 0 such that εk = ε′ > 0 for

all k ≥ k′. According to step 4, this occurs only if

‖dk‖2 ≥ min{‖dk‖2, dTkHkdk} > ε′ for all k ≥ k′. (4.41)

In conjunction with (4.40), this implies αk → 0 and xk → x′ for some x′.

Case 1a: : If x′ is stationary for f , then d′ = 0. Let δ = min{δε′(x′),
√
ε′/(2L)},

where L is the Lipschitz constant of ∇fs. Since xk → x′, there exists k′′ > k′ such that

‖x′ − xk‖ < δ for all k ≥ k′′. By Lemma 4.3.7, we have

‖dk − d′‖ = ‖dk‖ < 2Lδ ≤
√
ε′, (4.42)

whenever k ≥ k′′. This contradicts with (4.41).

Case 1b: : If x′ is not stationary, then for all k ≥ k′, by construction of the sufficient

decrease condition (4.38)

f(xk + κ−1αkdk)− f(xk) > −ηκ−1αkd
T
kHkdk,

whereas Lebourg’s mean value yields the existence of x̃k ∈ [xk + κ−1αkdk, xk] and ṽk ∈
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∂f(x̃k) such that

f(xk + κ−1αkdk)− f(xk) = κ−1αkṽ
T
k dk.

Combining the above two inequalities yields

ṽTk dk > −ηdTkHkdk. (4.43)

Since ṽk ∈ ∂f(x̃k) = ∇fs(x̃k) + ∂(‖ · ‖1)|x̃k ⊆ ∇fs(x̃k) + ∂εk(‖ · ‖1)|x̃k and αk → 0, by

Lemma 4.3.6, there exists k′′ > k′ and vk ∈ ∇fs(xk)+∂εk(‖·‖1)|xk such that ∂εk(‖·‖1)|x̃k =

∂εk(‖ · ‖1)|xk and

‖ṽk − vk‖ ≤ ‖∇fs(x̃k)−∇fs(xk)‖ ≤ L‖κ−1αkdk‖. (4.44)

Since vk ∈ ∇fs(xk)+∂εk(‖·‖1)|xk and recall that dk = −Proj(0|∇fs(xk)+∂εk(‖·‖1)|xk),

then we have

vTk dk ≤ −‖dk‖2. (4.45)

Since we assume Hk = Wk = I, subtracting (4.45) from (4.43), and with (4.44) , we

have

(1− η)‖dk‖2 < (ṽk − vk)Tdk ≤ ‖ṽk − vk‖‖dk‖ ≤ Lκ−1αk‖dk‖2,

namely,

αk ≥ κ(1− η)/L.

whenever k ≥ k′′. This contradicts with that αk → 0.

Case 2 : Suppose {εk} → 0 and {xk} has a cluster point x′. We want to show that x′

is stationary for f̃ . The proof is exactly that of [18, Theorem 4.2, Case 2].

4.3.3 Numerical Experiments

In this section, we compare our proposed algorithm L1R with an iterative shrinkage-

thresholding algorithm (ISTA) proposed in [2]. Both algorithms are implemented in Mat-

lab. We terminate L1R when optimality conditions ‖dk‖ ≤ εk ≤ 10−6 are satisfied. For fair
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comparison, we also implement a subroutine in ISTA to compute a search direction dk by

solving a QO subproblem, and then terminate ISTA when the same optimality conditions

are satisfied. We consider four algorithm variations described below.

• L1R-H: L1R with Hk being the exact Hessian of fs at xk;

• L1R-I: L1R with Hk = I;

• ISTA-constant: ISTA with constant stepsize in Section 3 of [2];

• ISTA-backtrack: ISTA with backtracking in Section 3 of [2].

We solve the problem (4.34) with fs being randomly generated convex quadratics. We

test for problem dimension n = 10, 20, 50, each with 10 runs. We consider the number of

iterations required to arrive at optimality as the performance measure. We present the

numerical results in the performance profile in Figure 4.4. Based on the profile, we have

two observations. First, L1R-H outperforms all other algorithm variations; and this makes

sense since L1R-H makes use of the exact Hessian of the smooth function fs. Second,

L1R-I is competitive with ISTA-backtrack in terms of both efficiency and robustness.
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Figure 4.4: Performance profile comparing L1R and ISTA
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Chapter 5

Conclusion

In this thesis, we consider unconstrained minimization problems in which the objective

functions are not necessarily smooth or convex. This is an important and challenging class

of optimization problems; and it is desirable to design efficient algorithms for solving this

type of problems.

First, we propose an adaptive gradient sampling (AGS) algorithm, which is based on a

recently developed technique known as the gradient sampling (GS) algorithm. Our AGS

algorithm improves the computational efficiency of GS in critical ways. We achieve this

goal by implementing two strategies: adaptive sampling and approximating the Hessian.

We obtained two benefits by sampling gradients adaptively. The first benefit is that

the number of gradient evaluations required in AGS is significantly smaller than that in

GS. The second benefit is that the QO solver can be warm started because some of the

gradients corresponding to the active constraints of the previous QO subproblem are still

in the current sample set. We show in our numerical experiments that adaptive sampling

allows the algorithm to make much more progress toward a solution within a fixed number

of gradient evaluations.

We propose two strategies for approximating Hessian approximations. The first strat-

egy is similar to a limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) updating

strategy that is typical in smooth optimization, but differs in that we make use of gradient

information at sample points as well as iterates. The basic idea of the second strategy is
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to produce model functions that overestimate the true objective function by incorporating

the function information at sample points. We control both of the updating strategies

so that the Hessian approximations are bounded, which is required for our convergence

analysis. Our numerical experiments illustrate that our Hessian approximation strate-

gies further enhance the algorithm’s ability to progress toward a solution within a given

amount of computational effort.

Second, we propose a BFGS gradient sampling (BFGS-GS) algorithm, which is a hybrid

between a standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the AGS method.

The BFGS-GS algorithm is more efficient than our previously proposed AGS algorithm in

that it typically behaves as an unadulterated BFGS algorithm for the majority of the itera-

tions when applied to solve many problem instances. In addition, the BFGS-GS algorithm

possesses not only practical but also theoretical advantages. Throughout, the algorithm

dynamically employs the AGS strategy in order to provide a practical stationarity cer-

tificate as well as global convergence guarantees. Our numerical experiments show that

our implementation of the BFGS-GS algorithm is competitive with (and in some ways)

outperforms other available software.

Finally, we propose a few additional extensions of the GS framework—one in which we

merge GS ideas with those from bundle methods, one in which we incorporate smoothing

techniques in order to minimize potentially non-Lipschitz objective functions, and one in

which we tailor GS methods for solving regularization problems. For all the proposed al-

gorithm extensions, we write algorithm descriptions in detail. In addition, we prove global

convergence guarantees under suitable assumptions. Moreover, we solve test problems to

illustrate the performance of our algorithms.

In summary, we have proposed various randomized algorithms for nonsmooth noncon-

vex optimization, based on the gradient sampling idea. Possible directions to future work

include the following: tune parameters to obtain better performance of our algorithmic

extensions; perform more numerical experiments with practical application problems in

nonsmooth optimization; extend the proposed algorithms to handle constraints.
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Appendix A

QO Subproblem Solver

In this appendix, we discuss a specialized technique for solving the primal-dual pair (2.3)

and (2.4) during step 4 of AGS. Specifically, we present an approach for solving (2.4) that

follows the technique described in [38] for solving a similar subproblem. The differences are

that, in our subproblem, there is no linear term in the objective, and we allow for the use

of general positive definite Hessian approximations. We drop iteration number subscripts

in this section. Now, subscripts are used to indicate column number of a matrix or element

number(s) in a vector.

The benefits of our QO solver are that it can produce more accurate solutions than, say,

an interior-point method, and we can easily warm-start the approach to take advantage of

the fact that the columns of G often do not change drastically between iterations of AGS.

The algorithm also carefully handles ill-conditioning in G, which is extremely important

in our context as the columns of G come from the calculation of gradients of f at points

that may be very close to one another.

By (2.23), we can write necessary and sufficient conditions for (2.4) as

gTj WGπ − (πTGTWGπ) ≥ 0, j = 1, . . . , q (A.1a)

eTπ = 1, π ≥ 0. (A.1b)

A vector π satisfying these conditions is the unique optimal solution to (2.4), with which
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the unique optimal solution d to (2.3) can be computed as d← −WGπ.

It is clear from (A.1b) that any solution π to (A.1) must have at least one positive

entry. Thus, the method commences with a nonempty estimate A ⊆ {1, . . . , q} of the

optimal positive set, i.e., the indices corresponding to positive values of π in the solution

to (A.1). Denoting Ĝ and π̂, respectively, as the ordered submatrix of G and the ordered

subvector of π corresponding to the indices in the positive-set estimate A, we begin with

π̂ ≥ 0 solving

min
π

1
2π

T ĜTWĜπ s.t. eTπ = 1, (A.2)

i.e., π̂ ≥ 0 where (π̂, v̂) is the unique solution to

ĜTWĜ e

eT 0


π
v

 =

0

1

 . (A.3)

(If for a given A the solution π̂ of (A.2) does not satisfy π̂ ≥ 0, then A is replaced by {i}

for some i ∈ {1, . . . , q} and (A.2) is re-solved to obtain π̂ with π̂i = 1 and π̂{1,...,q}\{i} = 0.)

Assuming always that the elements of the solution corresponding to {1, . . . , q}\A are set

to zero, this solution is either optimal or, for some j /∈ A,

gTj WĜπ̂ − (π̂T ĜTWĜπ̂) < 0. (A.4)

An improvement in the objective of (2.4) can then be obtained by including j in A. If

the direct inclusion of j in A yields a new Ĝ such that

[
e ĜT

]
has full row rank, then A

is simply augmented to include j. (Determining whether or not this matrix has full row

rank can be done by solving the least-squares system

(ĜTWĜ+ eeT )π̃ = e+ ĜTWgj (A.5)

and then determining whether eT π̃ = 1 and Ĝπ̃ = gj .) Otherwise, j is swapped with an

appropriate element in A to avoid rank-deficiency. In either case, a new trial solution (π, v)

is obtained by solving (A.3). If π > 0, then π̂ ← π becomes the new solution estimate
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and the above procedures are repeated. Otherwise, a step from π̂ in the direction of π is

made until some element hits zero (say, corresponding to the jth column of G), in which

case j is removed from A and (A.3) is reformulated and re-solved for the new positive set

estimate.

A complete description of our subproblem solver, ASQO, is presented as Algorithm 13

on page 135. The algorithm returns a vector π̂ corresponding to A. This vector is to be

permuted and augmented with zeros in the appropriate entries to construct the optimal

π from which the optimal primal solution d is obtained.

Algorithm 13 Active-Set Quadratic Optimization Subproblem Solver (ASQO)

1: (Initialization) Choose A such that, with Ĝ as the submatrix of G corresponding to
the indices in A, the solution (π̂, v̂) of (A.3) has π̂ ≥ 0.

2: (Termination check) If (A.1a) holds, then terminate. Otherwise, choose an index
j ∈ {1, . . . , q}\A such that (A.4) holds.

3: (Rank-deficiency check) Solve (A.5) for π̃. If π̃T [e ĜT ] = [1 gTj ], then go to step 5;
otherwise, continue.

4: (Column augmentation) Append j to A, gj to Ĝ, and 0 to π̂. Go to step 6.
5: (Column exchange) Replace π̂ by π̂ − tπ̃ where

t = min
i
{π̂i/π̃i : π̃i > 0}.

Find some i such that π̂i = 0. Delete the ith index from A, the ith column from Ĝ,
and the ith component from π̂. Append j to A, gj to Ĝ, and t to π̂.

6: (Subproblem solution) Solve (A.3) for (π, v). If π > 0, then set π̂ = π and go to step 2;
otherwise, continue.

7: (Column deletion) Replace π̂ by tπ + (1− t)π̂ where

t = min{1,min
i
{π̂i/(π̂i − πi) : πi < 0}}.

Find i such that π̂i = 0. Delete the ith index from A, the ith column from Ĝ, and the
ith component from π̂. Go to step 6.

Our implementation of ASQO actually maintains a Cholesky factorization of (ĜTWĜ+

eeT ) that is updated during each iteration. Specifically, we maintain an upper triangular

matrix R satisfying

RTR = ĜTWĜ+ eeT ,

with which it can easily be verified that the solutions to (A.3) and (A.5) can be obtained,
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respectively, by solving


RT r1 = e+ ĜTWgj

Rπ̃ = r1

 and


RT r2 = e

Rπ = r2/‖r2‖2.

 .

The maintenance of R and calculation of the intermediate vectors above allows for so-

phisticated extensions of the rank-deficiency check in step (3) of ASQO so that it is less

susceptible to numerical errors. We have implemented these extensions in our code, but

suppress the details here as they are out of the scope of this thesis; see [38] for details.
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Appendix B

Nonsmooth Test Problems

# Name Convexity f(x∗) Source

1 MAXQ Y 0.0 [31]
2 MXHILB Y 0.0 [31]

3 CHAINED LQ Y −
√

2(n− 1) [31]
4 CHAINED CB3 I Y 2(n− 1) [31]
5 CHAINED CB3 II Y 2(n− 1) [31]
6 ACTIVE FACES N 0.0 [31]
7 BROWN FUNCTION 2 N 0.0 [31]
8 CHAINED MIFFLIN 2 N −34.795(n = 50) [31]
9 CHAINED CRESCENT I N 0.0 [31]
10 CHAINED CRESCENT II N 0.0 [31]

# Name Convexity f(x∗) Source

11 TEST29 2 NA NA [45]
12 TEST29 5 NA NA [45]
13 TEST29 6 NA NA [45]
14 TEST29 11 NA NA [45]
15 TEST29 13 NA NA [45]
16 TEST29 17 NA NA [45]
17 TEST29 19 NA NA [45]
18 TEST29 20 NA NA [45]
19 TEST29 22 NA NA [45]
20 TEST29 24 NA NA [45]

# Name Convexity f(x∗) Source

21 TILTED NORM COND NA NA [43]
22 CPSF Y NA [43]
23 NCPSF N NA [43]
24 EIG PROD NA NA [43]
25 GREIF FUN NA NA [26]
26 NUC NORM NA NA [56]

Table B.1: Number, name, convexity, f(x∗), and source for nonsmooth test problems.
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