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Abstract

This dissertation provides robust, quantitative models in healthcare finance to aid

decision-makers with rigorous, analytical tools that capture high complexity and

high uncertainty of problem. The first chapter investigates the impact of parameter

uncertainty on risk scoring, and presents an approach to obtain robust risk scores to

address uncertainty in risk adjustment, which is used to quantify payment transfers

across health plans under the Affordable Care Act. We provide a tractable method-

ology to incorporate uncertainty in the risk factor weights via linear programming

to improve risk adjustment among payers and discuss the impact of uncertainty on

the risk scores. In the second chapter, we provide an analytical methodology to help

individuals narrow down plan choices in the Health Insurance Exchanges (HIX) by

identifying plans that are dominated by competitors’ offerings in terms of premium,

metal level, maximum out of pocket payment and plan type. We further quantify

the amount by which the premium of a dominated plan should be reduced to make

it competitive in our framework. This part of our work provides important quan-

titative tools to guide the discussions between payers and policy-makers regarding

HIX. Our approach also provides payers with a novel way to analyze their own plans

in the HIX landscape. The third chapter identifies the key factors that drive en-

rollment rates of the two major types of Medicare Part D prescription drug plans:

MAPD and PDP, to assist policy makers in better promoting their plans to Medi-

1



care beneficiaries. The fourth chapter investigates trends in physician services usage

and Medicare reimbursement rate from CMS public files. We analyze the HCPCS

(Healthcare Common Procedure Coding System) codes and investigate the validity

of the concern that doctors tend to upcode on purpose for more reimbursement. We

also utilize time series analysis to predict Medicare spending in ten years. In the last

chapter, we survey and propose robust optimization models in healthcare systems

engineering, particularly in the applications of healthcare costs prediction, disease

management, IMRT fluence map optimization, and operating room planning, among

others.
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Chapter 1

Contributions

The health care system in the United States is complex and health care costs are

growing at unsustainable rates. In 2013, U.S. health care spending reached $2.9

trillion, an average of $9,255 per person. It accounted for 17.4 percent of GDP of

that year. Although the United States has the most expensive health care system in

the world, the Commonwealth Fund [30] ranked the United States last in the quality

of health care among seven developed countries - Australia, Canada, Germany, the

Netherlands, New Zealand, and the United Kingdom - on measures of health system

performance in five areas: quality, efficiency, access to care, equity and the ability

to lead long, healthy, productive lives. In order to improve the health care system,

President Obama signed comprehensive health reform, the Patient Protection and

Affordable Care Act, into law on March 23, 2010. The ultimate goals of healthcare

reform are to expand coverage, control health care costs, and improve health care

delivery system. However, according to preliminary data released on April 30 by

the Bureau of Economic Analysis, total health care spending during the first quarter

of 2014 increased by 9.9% to $43.3 billion and contributed 1.1 percentage points

to growth in the total gross domestic product. The purpose of this dissertation is

3



to provide robust, quantitative models in healthcare finance to aid decision-makers

with rigorous, analytical tools that capture high complexity and high uncertainty of

problem. The contributions of each chapter are as follows.

We investigate healthcare financing systems from five different perspectives: risk

adjustment under uncertainty to help payers be properly compensated for the health

status of their enrollees, the efficiency of health insurance plans offered on public ex-

changes to help customers get the most value out of their money, Medicare enrollees’

choice regarding Medicare Advantage and stand-alone prescription drug plans to en-

sure long-term affordability of prescription drugs for an aging population, the trends

in physician services usage for the Medicare population and Medicare reimbursement

rates, and the use of robust optimization techniques to protect decision-makers under

uncertainty in a wide range of health systems engineering settings.

Regarding risk adjustment under uncertainty, our contributions are: (1) We dis-

cuss the impact of parameter uncertainty on risk scoring and risk adjustment; (2)

We present a highly tractable approach to create robust risk scores to incorporate

ambiguity and uncertainty in risk adjustment model. The highly tractable approach

is based on solving linear programming problems; (3) We provide empirical results

on the impact of robust risk scoring on actual money transfer for insurers.

Regarding the efficiency of health insurance plans on HIX, our contributions are:

(1) We investigate the main drivers of plan premiums in the health exchanges, with

examples drawn from the Pennsylvania and Massachusetts health insurance mar-

ketplaces; (2) We propose a simple algorithm based on linear regression to identify

inefficient (dominated) plans in the exchanges based on plans’ attributes, and to

assign letter grades to payers; (3) We identify the excess premium by which certain

plans are less competitive than others based on an analysis of plans’ features such

4



as premiums and deductibles.

On Medicare beneficiaries’ choice between Medicare Advantage and stand-alone

prescription drug plans, our contributions are: (1) We provide an overview of the

major two types of Medicare Part D prescription drug plans: Medicare Advantage

prescription plans (MAPDs), and stand-alone prescription plans (PDPs); (2) We

identify the key factors that drive enrollment rates of MAPDs and PDPs in all

counties in the United States using beta regression, and discuss the differences in

factors driving MAPD and PDP enrollment; (3) We make recommendations to assist

policy makers in better promoting their plans to Medicare beneficiaries.

On the trends in physician services usage for the Medicare population and Medi-

care reimbursement rates, our contributions are: (1) We investigate trends in physi-

cian services usage and Medicare reimbursement rate from CMS public files; (2)

We analyze the HCPCS (Healthcare Common Procedure Coding System) codes and

investigate the validity of the concern that doctors tend to upcode on purpose to

get more reimbursement; (3) We utilize time series analysis and linear regression to

predict Pennsylvania’s Medicare spending in ten years.

On the applications of robust optimization techniques to protect decision-makers

under uncertainty in a wide range of health systems engineering settings, our con-

tributions are: (1) We provide an overview of the healthcare systems, including

payment systems and delivery systems, in the United States; (2) We survey and pro-

pose robust optimization models in healthcare systems engineering, particularly in

the applications of healthcare costs prediction, disease management, IMRT fluence

map optimization, and operating room planning, among others.

5



Chapter 2

Robust Risk Adjustment in Health

Insurance

2.1 Introduction

Risk adjustment is defined in the Specifications Manual for National Hospital Quality

Measures as “a statistical process used to identify and adjust for variation in patient

outcomes that stem from differences in patient characteristics (or risk factors) across

health care organizations.” [77] The goal of risk adjustment is to reflect that “patients

may experience different outcomes regardless of the quality of care provided by the

health care organization” due to patient-specific characteristics, such as age or clinical

diagnoses [77]. Without appropriate risk adjustment, comparing patient outcomes

across organizations can be misleading. For instance, a best-in-class health provider

may attract particularly ill patients, who may face dire prognoses and thus may

have worse outcomes than patients who are only moderately ill and go to a less-

skilled provider. By accounting for existing risk factors, risk adjustment facilitates

6



a more fair and accurate inter-organizational comparison. The broad concepts and

applications of risk adjustment are presented in Ellis [35].

Risk adjustment is further defined by the American Academy of Actuaries as

“an actuarial tool used to calibrate payments to health plans or other stakeholders

based on the relative health of the at-risk populations.” [1] In that context, it ex-

tends beyond risk measurement into risk mitigation, and helps ensure that health

plans are appropriately compensated for the risks they enroll. Risk adjustment is a

permanent “zero-sum game” in that the total amounts paid by health plans into the

risk adjustment pool are received by other health plans each year. The goal of this

program is to stabilize a competitive marketplace in which health plans compete on

plan features and services rather than on avoidance of high risk individuals. This is

beneficial to consumers, particularly those with high-cost health conditions, as it is

more likely to give them continued choice of health plans. Specifically, risk adjust-

ment – when done well – can help remove the incentive for health plans to try not to

enroll sicker people (aka adverse selection), since they will be compensated for those

patients’ worse health status. Adverse selection can lead to three classes of ineffi-

ciencies: prices to participants do not reflect marginal costs, hence on a benefit-cost

basis individuals select the wrong health plans; desirable risk spreading is lost; and

health plans manipulate their offerings to deter the sick and attract the healthy [29].

Since insurers set premiums based on the riskiness of the people they enroll, adverse

selection would also lead to higher premiums and government spending [17]. Glaz-

er et. al. [50] develop a statistical methodology to improve upon adverse selection

outcome in design of risk adjustment formula in health insurance markets, where

enrollees sort between plans with fixed benefit offerings as a function of the plans’

premiums. McWilliams et. al. [61] show using a regression model that the implemen-

tation of the Hierarchical Condition Categories (HCC) model was associated with

7



reduced favorable selection in the Medicare Advantage program. However, they also

point out that inadequate risk adjustment would probably cause greater instability

in exchange markets than in Medicare Advantage, and lead to competition among

exchange plans to attract and retain healthy enrollees, as well as the withdrawal of

undercompensated plans. In contrast, Brown et. al. [19] demonstrate that the effect

of risk adjustment on government’s cost of providing health insurance is imperfect

since risk adjustment can potentially increase the scope for selecting individuals with

costs below their capitation payment due to the increase in the variance of medical

costs with the risk score.

The Health and Human Services (HHS) official federal risk adjustment models are

available in the HHS Notice of Benefit and Payment Parameters for 2014, which was

first released as a proposed rule at the end of 2012 [75]. The HHS risk adjustment

system uses fifteen weighted least squares regression models: platinum, gold, silver,

bronze, and catastrophic for adult, child, and infant, respectively, to compute risk

scores. The weight is the fraction of the year enrolled. Each HHS risk adjustment

model predicts annual plan liability for an enrollee based on the person’s age, gender,

and diagnoses. The risk score of each enrollee is equal to the sum of all the risk

weights associated with that patient, with the average risk score over the whole

population being scaled to 1.

The enrollment-weighted average risk score of all enrollees in a particular health

plan within a geographic rating area (the weights being again the fractions of the

year enrolled) are then used as input to the payment transfer formula to determine

an issuer’s payment or charge for a particular plan, which is a baseline payment

times the plan’s enrollment-weighted average risk score [5]. The HHS risk adjust-

ment model is a concurrent model, where diagnoses from a given period are used

to predict cost in the same period. In contrast, a prospective model uses data from

8



a prior period to predict costs in the current period or in the future. By design,

both acute and chronic illnesses are emphasized in the concurrent model. In the

prospective model, systematic factors, such as aging and chronic illnesses, outweigh

acute and one-time conditions [2]. Acute and one-time events are averaged at the

age/gender group level in the prospective model (Yi et. al. [91]). The concurrent

model is used by HHS because it is more robust to changes in enrollment than the

prospective model ( [91], [87]). This is particularly useful under the Affordable Care

Act since newly enrolled individuals may not have prior claims data. In addition,

prescription drugs are not included as a predictor in each HHS risk adjustment mod-

el. To evaluate model performance, R2 and predictive ratios are examined, where the

R2 statistic calculates the percentage of individual variation explained by a model,

and the predictive ratio is the ratio of the weighted-mean predicted plan liability

for the model sample population to the weighted-mean actual plan liability for the

model sample population [91].

Winkelman [88] uses the Mean Absolute Prediction Error (MAPE) as an alter-

native to measure predictive accuracy, where MAPE is calculated by dividing the

sum of absolute errors by the sample size. Glazer and McGuire [49] argue that, in

order to address adverse selection and asymmetric information in managed care, risk

adjustment should be viewed as a way to set prices for different individuals. They

argue for instance that the payment weight on a patient’s age “may be chosen for its

incentive properties and need not – indeed should not – be the same as the coefficient

on age from a regression explaining average costs.” Weiner et. al. [84] quantify the

impact of biased selection on health plans in the exchange and evaluates mitigation

attempts included in the Affordable Care Act of 2010.

Proper risk adjustment is thus very important for payers’ long-term financial vi-

ability and for the competitiveness of the health insurance market. Risk adjustment

9



has been used in the Medicare Advantage (MA) program, the Part D prescription

drug program, many state Medicaid programs, the Commonwealth Care program in

Massachusetts, and some employer-based plans [1]. Risk adjustment for commer-

cial insurance arrived in 2014 for the individual and small-group marketplaces. The

main difference between CMS-HCC model for Medicare and HHS-HCC model for

commercial insurance is that insurers get payments from CMS directly under Medi-

care, while payments are between insurers under commercial risk adjustment. The

HHS methodology was applied to all non-grandfathered plans in all states except

Massachusetts both inside and outside of the marketplaces. The risk weights can be

obtained by linear regression, probit regression, or logistic regression, depending on

the situation considered; however, estimates of regression coefficients are subject to

error. Because risk adjustment in this context involves real money transfers between

payers, it is important to develop quantitative methods to incorporate ambiguity

and uncertainty in the risk weights. The main contribution of this chapter is to

present a tractable methodology to create robust risk scores, which determine the

amount of money to transfer. While we propose another way to investigate and in-

corporate impact of uncertainty, out methodology serves as a supplement to current

implementation of HHS-HCC model and leads to fair payments when uncertainty

exists.

2.2 Calculation of Risk Adjustment in Healthcare

Risk adjustment is typically done by computing risk scores for each enrollee and

assigning to each health plan an amount of money equal to a baseline payment

weighted by the aggregate risk score for the population it covers [5]. This is because

risk scores are computed such that their average is 1. While a risk score attempts to

10



quantify how “costly” an enrollee will be to a plan in the future, a precise measure

requires to specify what information will be used in making that determination:

concurrent weights emphasize acute conditions, while prospective weights focus on

chronic ones [2]. An example of risk score calculation from the Health Affairs Issue

Brief is as follows:

Table 2.1: Example of risk score of a patient

Risk Factor Risk Weight
Male age 32 0.22
Diabetes w/ significant comorbidities 1.32
Asthma 0.96
Low-cost dermatology 0.30
Total 2.80

In this example, this particular individual has 4 risk factors including 1 demo-

graphic factor and 3 diagnosis factors. Different risk weights are assigned to the

factors. A higher risk weight means potential higher chance of incurring healthcare

cost. By summing up all risk weights, the risk score for this individual is 2.8. The risk

score means that this individual is expected to have healthcare costs 2.80 times high-

er than population average. To get the dollar amount of this individual’s healthcare

costs, we can simply multiply his total risk score by the population average cost. In

addition, the average risk score for a health plan can be calculated as the arithmetic

mean of risk scores of all enrollees in the plan.

2.3 Robustness in Risk Adjustment Models

An example to show the need for robustness is based on the Hospital Value-Based

Purchasing (VBP) program, established by the Centers for Medicare and Medicaid

Services (CMS) [74]. It aims at realigning hospitals’ financial incentives by reward-
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ing those that provide highest-quality care, with quality of care being quantified as

the weighted sum of three sets of measures: process measures (13 measures), patient

satisfaction measures (8 measures) and mortality rates for heart attacks, heart fail-

ures and pneumonia within 30 days of a patient’s leaving the hospital [65]. CMS

funds the VBP adjustment scheme by withholding 1% of each hospital’s Medicare

payments, and re-distributing this pool of money to the hospitals based on the ad-

justment factors. Hospitals with the lowest adjustment factors receive little to no

money back, and thus their 1% of Medicare payments will be lost to them and reas-

signed to better performing hospitals. Hospitals with the highest adjustment factors

receive payments exceeding their initial 1% contribution to the pool. 1% might be

ignored by bigger hospitals, but it can have a significant impact on smaller hospi-

tals or hospitals in precarious financial health. Moody’s estimates the preliminary

median operating margins for non-profit hospitals in FY 2013 to be at 2.2%, a de-

crease compared to FY 2012 [78]. The significance of the impact of 1% can also be

illustrated by the Hospital Readmissions Reduction Program, in which penalties are

collected from the hospitals through a percentage reduction in their base Medicare

inpatient claims payments, up to a cap. The cap was 1% in fiscal year 2013, when

the aggregate amount of penalties was about $280 million against 2217 hospitals.

CMS first issued proxy factors in August 2012 and the actual adjustment factors

for these 2,985 hospitals were published by CMS in December 2012, both of which are

provided in Table 16 of the FY 2013 Final Rule Tables [76]. The proxy adjustment

factors were calculated using historical baseline and performance periods, and would

not actually be used to adjust hospital payments. We investigate the variability

between proxy and actual scores as follows. We first compute the rank of each

hospital, based on the rank of its adjustment factor, with the hospital having the

highest (best) adjustment factor receiving rank 1. We then merge the records under
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both the proxy and actual systems to compare proxy and actual ranks, as shown in

table 2.7. Ranks matter since the program is based on relative performance.

Table 2.2: Proxy vs. Actual VBP Adjustment Factors and Ranks (FY2013)

Proxy Adj. Factor Actual Adj. Factor Proxy Rank Actual Rank
1.0072129779 0.9949792372 21 2887
1.0017818865 0.9920251756 799 2981
1.0035728881 0.9938951967 347 2938
1.0039407695 0.9946071725 282 2915
1.0042747671 0.9958366705 225 2811

The difference in rank is then computed as the proxy rank minus the actual rank,

such that a positive difference represents a gain in ranks following the publication

of the final (actual) factors. Figure 2.1 shows the differences in ranks from most

negative to most positive. Because the total number of hospitals is approximately

3,000, hospitals at the extreme left of the graph represent hospitals that had been

expected to perform at the top based on proxy numbers and found themselves at the

bottom when the actual numbers were published. Similarly, hospitals at the extreme

right represent hospitals that had been deemed at the bottom based on the proxy

factors and came out on top with the actual factors. The wide fluctuation between

the proxy factors and the actual ones has, to the best of our knowledge, not been

discussed in the press or elsewhere. The worst rank loss is a drop of 2,866 spots – from

rank 21 to rank 2,887 – by the Meadowview Regional Medical Center in Maysville,

KY. The highest gain in rank – from rank 2,659 to rank 144 – is an increase of 2,515 by

Loretto Hospital in Chicago, IL. 335 hospitals or 11.81% of the hospitals considered

lost 1,000 spots or more and 250 hospitals or 8.81% gained 1,000 or more. The same

pattern follows for fiscal year 2014 and fiscal year 2015. Although proxy adjustment

factors are not used for payment purpose, they could be used by hospitals in their

marketing strategies to negotiate with insurers or attract/maintain customers. The

large fluctuations would force them to change strategies after the actual adjustment
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factors are revealed. Some may argue there is possibility that it is due to changes in

provider quality. However, such large fluctuations over a large percentage of hospitals

within a few months’ time risk casting doubt on the meaningfulness of the factors

and slowing down efforts to move to value-based models, and suggests there is a need

to “robustify” factors.

Figure 2.1: Difference in Rank

2.4 Risk Adjustment without Uncertainty

Suppose in the current health insurance market, there are 3 insurers and 1000 pa-

tients, each insurer having 1/3 of the patients. We only consider 32 risk factors,

including 6 diagnosis factors and 26 demographic factors (age & gender), with risk

weights given by the Federal Register Volume 77 Issue 236 (Platinum Plan). The 6

diagnosis factors include chronic diseases such as Asthma, Diabetes, Heart Failure,

HIV and Mental Illness, and acute disease Acute Appendicitis. The 26 demograph-

ic factors cover individuals aging from 2 to 64. “Made-up” binary parameters for

diagnoses and demographics are randomly given to each enrollee.

The traditional risk adjustment process, if the weights of the risk factors are
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known exactly, is as follows:

1. Compute the risk score for each enrollee and scale it such that the average

population risk score is one,

2. Compute the average risk score for each insurer (weighted by the fraction of

the year each enrollee has been on the plan),

3. Determine the transfer payment as the difference between the insurer’s cost

(sum of patients’ risk score times nominal cost) and his revenue (number of

patients times capitated payment).

Applying this process to the data we generated, the risk scores of the three

insurers would be 0.9861, 1.0190 and 0.9949, respectively. By multiplying the risk

scores by the non-adjusted base payment of $500, the transfer payments for each

insurer would be -$2,321, $3,163 and -$849, respectively. The sum of all transfer

payments are always zero. In this particular example, both insurer 1 and insurer

3 give money, while insurer 2 receives “a lot” of money. However, the impacts on

insurer 1 and 3 are quite different since insurer 1 gives “a lot” of money, whereas

insurer 3 only gives “a little” money.

In this situation, we assume true values of coefficients are known, which is usually

not the case in the real world. Next section we will introduce the situation where

uncertainty is being taken into consideration.

2.5 Risk Adjustment with Uncertainty

Suppose risk weights are subject to relative uncertainty with mean 0 and standard

deviation 30%. They are truncated to zero if sign changes because risk weights
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cannot be negative. We perform 100,000 simulations in MATLAB to quantify the

uncertainty. Resulting transfer payments are interpreted as what insurers should

have given/received if they had known the true values of the risk weights. Figure 2.2

shows the distribution of transfer payments based on simulation results.

Figure 2.2: Distribution of transfer payments

The distribution of the dataset shows clearly that insurer 1 mostly gives, insurer 2

mostly receives, and insurer 3 is in the middle. Having an idea what the distribution

would be like, we look at some basic statistics of the insurers’ risk scores from the

simulation results.

Table 2.3: Basic Statistics of risk scores

Insurer 1 Insurer 2 Insurer 3
Expected 0.9870 1.0224 0.9907
St Deviation 0.0217 0.0216 0.0241
Minimum 0.8938 0.9466 0.8695
Maximum 1.1460 1.1577 1.0549

We notice that only insurer 2 has risk score higher than 1, meaning only insurer

2 receives money because it enrolls sicker individuals. The ranking statistics (small-
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est/middle/largest risk score) also indicates this conclusion since the probability that

insurer 2 will get money is 87.58%.

Table 2.4: Ranking Statistics of risk scores

Insurer 1 Insurer 2 Insurer 3
Smallest 56.71% 4.91% 38.38%
Middle 31.46% 26.35% 42.19%
Largest 11.83% 68.74% 19.43%
Prob Transfer>0 24.52% 87.58% 39.53%

In addition, we can have the 95% range forecasts for each insurer based on the

basic statistics:

Table 2.5: Lower bound and upper bound of risk scores

Insurer 1 Insurer 2 Insurer 3
Lower Bound 0.9445 0.9801 0.9435
Expected 0.9870 1.0224 0.9907
Upper Bound 1.0295 1.0647 1.0379

Using the expected risk scores, transfer payments in traditional model would be

-$2,171, $3,730 and -$1549. However, here the lower bounds and upper bounds of risk

scores are not scaled. We scale them to average 1, with loss of the 95% confidence

level. Table 2.7 shows the new lower bounds and upper bounds.

Table 2.6: Scaled lower bound and upper bound of risk scores

Insurer 1 Insurer 2 Insurer 3
“Lower Bound” 0.9879 1.0252 0.9869
“Upper Bound” 0.9861 1.0198 0.9941

Now we obtain scenarios for possible risk scores by creating range forecasts instead

of point forecasts for risk scores, with additional constraint that their average is 1:

17



Table 2.7: Scaled range forecasts of risk scores

Insurer 1 Insurer 2 Insurer 3
Range [0.9861,0.9879] [1.0198,1.0252] [0.9869,0.9941]

However, this method has some drawbacks. First, these forecasts are obtained

by simulation, while we do not know which distribution we should use to simulate

the coefficients. Second, scenarios and ranges are obtained by making distributional

assumptions (Gaussian distribution) that are hard to check. Third, given ranges,

we don’t yet know how to transfer money. Therefore, we present a methodology to

create robust risk scores to address these issues in the next section.

2.6 Robust Risk Scoring

When the weights for the risk factors are not known precisely but estimates (for

instance from a regression) and confidence intervals are available, we face the question

of how this uncertainty should be incorporated so that payers receive a “fair” transfer

payment. We will seek to minimize the worst-case regret. Here the worst-case regret

is the greatest difference in absolute value between the estimated and actual risk

scores computed over all payers and all possible weights for the risk factors within

a predefined uncertainty set. It measures the worst-case difference in absolute value

between the money transfer that should have taken place between payers if the true

weights had been known and the transfer that actually did, based on the actual

weights used to compute the risk scores. These weights are the decision variables of

the problem.

We will use the following notation:
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K: the number of payers in the market,

Sk: the set of enrollees of insurer k = 1, . . . , K,

J : the set of conditions incorporated in risk scoring,

njk: the number of enrollees of insurer k = 1, . . . , K who have condition j ∈ J ,

Nk: the number of enrollees of plan k,

cij: a binary parameter equal to 1 when individual i (i ∈ Sk, k = 1, . . . , K)

has condition j,

wj: the incremental risk weight for condition j ∈ J

(to be added to the risk score of individual i if cij = 1).

Insurer k’s risk score before scaling is obtained by taking the average, over all

enrollees, of the risk weights of the factors that affect the enrollee.

1

Nk

∑
i∈Sk

∑
j∈J

wjcij =
1

Nk

∑
j∈J

wjnjk.

For convenience, we assume that all enrollees have been with the payer the whole year.

Adapting the formulation to the case where some patients have joined the health plan

during the year involves replacing the average over enrollees by a weighted average

where the weights are the fractions of year for each patient. This leads to modified

definitions for njk and Nk. Specifically, if τik is the fraction of the year individual i

has spent with insurer k, njk becomes
∑
i∈Sk

τikcij and Nk becomes
∑
i∈Sk

τik. Once the

njk and Nk have been thus updated, the models presented below apply immediately.

Risk scores are then scaled so that their population average is 1. Insurer k’s

average risk score after scaling becomes:

RSk =

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl
·
∑

l∈K Nl

Nk

.
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We model the uncertain coefficients wj, j ∈ J , as belonging to a polyhedral set

W . The set W can for instance be a box consisting of confidence intervals for each

(independent) factor, or possibly include a budget-of-uncertainty constraint in the

spirit of Bertsimas and Sim [14] to bound from above the total number of parameters

that can take their worst-case value. The problem we aim to solve in the decision

variables v (the weights we want to give to each factor within the feasible set W ) is

then:

min
v∈W

max
k∈K

max
w∈W

∣∣∣∣∣
∑

j∈J vjnjk∑
l∈K
∑

j∈J vjnjl

∑
l∈K Nl

Nk

−
∑

j∈J wjnjk∑
l∈K
∑

j∈J wjnjl

∑
l∈K Nl

Nk

∣∣∣∣∣ (2.1)

Let assume w.l.o.g. that the polyhedral set W is represented as {w | l ≤ w ≤ u, Aw =

b}. Further, let N be the (njk) matrix, let e be the vector of all ones and let S be the

polyhedral set defined as: {(x, y) | ly ≤ x ≤ uy, Ax = b y, e′N ′x = 1}. In order to

derive a tractable reformulation to Problem (2.1), we will need the following lemma.

Lemma 2.1. For all k ∈ K, the fractional optimization problems:

(FP−k) : min
w∈W

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl
,

and

(FP+k) : max
w∈W

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl
.

can be solved efficiently by solving the linear programming problems:

(LP−k) : min
(x,y)∈S

∑
j∈J

njkxj,

and

(LP+k) : max
(x,y)∈S

∑
j∈J

njkxj,

respectively.
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Proof. The proof is in two steps.

(i) For any w ∈ W , let xj =
wj∑

l∈K
∑

j∈J wjnjl
for all j and y =

1∑
l∈K
∑

j∈J wjnjl
.

(Recall that y is always positive because the risk weights and the counts are always

positive). Then it is immediate that (x, y) is in the set S defined above and we have:∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl

∑
l∈K Nl

Nk

=

∑
l∈K Nl

Nk

·
∑
j∈J

njkxj.

(ii) For any (x, y) ∈ S, we must have y > 0 since y = 0 would lead to x = 0 (due to

ly ≤ x ≤ uy), which would be infeasible (due to e′N ′x = 1). Let then wj =
xj
y

for all

j. Then it is immediate that w is in the set W defined above and the two objectives

are equal again.

Therefore, Problem (FP−k) is equivalent to (LP−k) and Problem (FP+k) is equiv-

alent to (LP+k) for all k.

Let u−k be the optimal objective of the linear optimization problem (LP−k) and

u+k be the optimal objective of the linear optimization problem (LP+k) for all k. It

follows from Lemma 2.1 that we have for all k:

u−k = min
w∈W

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl
, (2.2)

and

u+k = max
w∈W

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl
. (2.3)

The key result of this section is the following theorem.

Theorem 2.1 (Robust risk scoring). Problem (2.1) is equivalent to the following
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linear programming problem:

min Z

s.t. Z ≥
∑

l∈K Nl

Nk

(∑
j∈J

njkxj − u−k

)
∀k

Z ≥
∑

l∈K Nl

Nk

(
u+k −

∑
j∈J

njkxj

)
∀k

(x, y) ∈ S.

Proof. We rewrite Problem (2.1) as:

min Z

s.t. Z ≥
∑

l∈K Nl

Nk

( ∑
j∈J vjnjk∑

l∈K
∑

j∈J vjnjl
−

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl

)
, ∀k,∀w ∈ W,

Z ≥
∑

l∈K Nl

Nk

(
−

∑
j∈J vjnjk∑

l∈K
∑

j∈J vjnjl
+

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl

)
, ∀k,∀w ∈ W,

v ∈ W,

or equivalently:

min Z

s.t. Z ≥
∑

l∈K Nl

Nk

( ∑
j∈J vjnjk∑

l∈K
∑

j∈J vjnjl
− min

w∈W

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl

)
, ∀k,

Z ≥
∑

l∈K Nl

Nk

(
−

∑
j∈J vjnjk∑

l∈K
∑

j∈J vjnjl
+ max

w∈W

∑
j∈J wjnjk∑

l∈K
∑

j∈J wjnjl

)
, ∀k,

v ∈ W.

We inject Eqs. (2.2) and (2.3) and use the transformation xj =
vj∑

l∈K
∑

j∈J vjnjl

and y =
1∑

l∈K
∑

j∈J vjnjl
. The rest of the proof is identical to the proof of Lemma

2.1, replacing w by v, and is omitted here.
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2.7 Numerical Experiments and Discussions

To test our approach, we generate a sample with 1,000,000 patients and 10 payers.

The base payment is $2,000. The risk factors and nominal weights are taken from

the Federal Register [75]. The standard error and confidence interval of each risk

weight should be available by CMS as they run the regression models. For illustrative

purposes, the confidence interval of each risk weight is symmetric, centered at the

nominal weight, and with a relative deviation from the mean selected randomly and

up to 30% (i.e., the upper bound is at most 1.3 times the nominal weight.) The

uncertainty set is a hypercube or “box” consisting of the range forecasts for each

weight. Table 2.8 shows the nominal and robust weights as well as the lower and

upper bounds of the weights used in the model. Table 2.9 compares nominal and

robust risk scores for each insurer.
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Table 2.8: Nominal Weights vs. Robust Weights

Risk Factor Nominal weight Deviation (%) Lower bound Upper bound Robust weight Change
Male,21-24 0.258 24.44 0.1949 0.3211 0.1949 -
Male,25-29 0.278 27.17 0.2025 0.3535 0.3533 -/- -
Male,30-34 0.338 3.81 0.3251 0.3509 0.3509 ++
Male,35-39 0.413 27.40 0.2998 0.5262 0.2998 - -
Male,40-44 0.487 18.97 0.3946 0.5794 0.3946 - -
Male,45-49 0.581 2.93 0.5640 0.5980 0.5641 -/- -
Male,50-54 0.737 8.35 0.6754 0.7986 0.7986 ++
Male,55-59 0.863 16.41 0.7214 1.0046 0.7214 - -
Male,60-64 1.028 28.73 0.7327 1.3233 1.1182 +
Female,21-24 0.433 28.95 0.3077 0.5583 0.5243 +
Female,25-29 0.548 4.73 0.5221 0.5739 0.5221 - -
Female,30-34 0.656 29.12 0.4650 0.8470 0.8470 ++
Female,35-39 0.76 28.72 0.5418 0.9782 0.9782 ++
Female,40-44 0.839 14.56 0.7168 0.9612 0.7168 - -
Female,45-49 0.878 24.01 0.6672 1.0888 0.6704 -/- -
Female,50-54 1.013 4.26 0.9699 1.0561 1.0561 ++
Female,55-59 1.054 12.65 0.9206 1.1874 1.1874 ++
Female,60-64 1.156 27.47 0.8384 1.4736 0.9859 -
Male, 2-4 0.283 23.77 0.2157 0.3503 0.3503 ++
Male, 5-9 0.196 28.78 0.1396 0.2524 0.2524 ++
Male, 10-14 0.246 19.67 0.1976 0.2944 0.2942 +/++
Male, 15-20 0.336 1.07 0.3324 0.3396 0.3396 ++
Female, 2-4 0.233 25.47 0.1736 0.2924 0.2151 -
Female, 5-9 0.165 28.02 0.1188 0.2112 0.1188 - -
Female, 10-14 0.223 20.36 0.1776 0.2684 0.2105 -
Female, 15-20 0.379 22.73 0.2928 0.4652 0.3604 -
Asthma 1.098 22.29 0.8532 1.3428 1.0851 -
Acute Appendicitis 0.3 11.77 0.2647 0.3353 0.2656 -/- -
Diabetes 1.331 19.66 1.0693 1.5927 1.0693 - -
Congestive Heart Failure 3.79 5.14 3.5954 3.9846 3.9846 ++
HIV 5.485 21.18 4.3232 6.6468 4.8978 -
Mental Illness 1.5 0.95 1.4857 1.5143 1.4857 - -

The codes for column “Change” are: (1) “-”: robust weight is smaller than

nominal weight; (2) “- -”: robust weight reaches the lower bound; (3) “-/- -”: robust

weight is very close to lower bound, due to numerical issues; (4) “+”: robust weight

is larger than nominal weight; (5) “++”: robust weight reaches the upper bound;

(6) “+/++”: robust weight is very close to lower bound, due to numerical issues.
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Table 2.9: Nominal risk scores vs. Robust risk scores

Insurer 1 Insurer 2 Insurer 3 Insurer 4 Insurer 5
Nominal Risk Score 0.9990379 0.9993510 1.0005282 1.0008137 0.9995409

Robust Risk Score 0.9990487 0.9992846 1.0004502 1.0007771 0.9995645
Change in Risk Score 0.0011% -0.0066% -0.0078% -0.0037% 0.0024%

Nominal money transfer -192413.36 -129803.99 105639.84 162732.18 -91822.65
Robust money transfer -190265.94 -143077.69 90036.45 155424.44 -87108.02

Change in money transfer -1.1160% 10.2260% -14.7704% -4.4907% -5.1345%
Insurer 6 Insurer 7 Insurer 8 Insurer 9 Insurer 10

Nominal Risk Score 1.0007512 1.0007304 1.0003757 1.0000186 0.9988525
Robust Risk Score 1.0007750 1.0006677 1.0004926 1.0000597 0.9988801

Change in Risk Score 0.0024% -0.0063% 0.0117% 0.0041% 0.0028%
Nominal money transfer 150238.92 146073.36 75135.25 3714.90 -229494.45

Robust money transfer 154993.01 133534.91 98516.48 11931.70 -223985.34
Change in money transfer 3.1644% -8.5837% 31.1189% 221.1848% -2.4005%

We can see from Table 2.9 that although the percentage changes in risk scores are

small, the changes in actual money transfers are significant. The reason is that the

relative change in risk score is calculated as
RS −RSN

RSN
, while the relative change in

actual money transfer is calculated as
(RS − 1)×N × C − (RSN − 1)×N × C

(RSN − 1)×N × C
, or

equivalently
RS −RSN
RSN − 1

: the numerator stays the same but the denominator is not

and this can create significant changes because the risk scores are close to 1 to begin

with. Note that RS, RSN , N , and C denote robust risk score, nominal risk score,

number of enrollees in the plan, and capitation payment per person, respectively.

In the example above, 4 out of 10 payers observe a relative change in actual money

transfer higher than 10%.

2.8 Conclusions

In this chapter, we have investigated how to mitigate the impact of parameter un-

certainty on risk scoring in healthcare. An example related to hospital ranking using

adjustment factors was provided to demonstrate the need for robustness. We pre-
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sented an approach to compute robust risk scores. Our methodology involves solving

a series of linear programming problems and thus is highly tractable. Future work

includes using budget uncertainty and addressing uncertainty related to the health

status of previously uninsured customers entering the system due to the Affordable

Care Act of 2010.
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Chapter 3

Plan Efficiency Evaluation in

Health Insurance Exchanges

3.1 Introduction

The establishment of the Health Insurance Marketplace through the Affordable Care

Act has opened an important channel for individuals to obtain health coverage [3].

It allows individuals to compare different health plans and shop health insurance

on a web-based portal. The exchanges are created and regulated by the federal or

state governments. While the wide range of plans available on exchanges during the

2015 open enrollment period suggests a robust health insurance market, the seminal

work by Iyengar and Lepper [55] suggests that extensive choice can be overwhelm-

ing for customers and lead to greater procrastination before making a choice and/or

dissatisfaction afterward. Specifically, Iyengar and Lepper [55] claim that although

psychological benefits of provision of choice do exist, people are more satisfied when

they are given a more limited number of options, which they can compare more
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easily in order to reach an informed decision. In the context of health insurance

exchanges, Day and Nadash [31] advise that states should align themselves on Mas-

sachusetts in offering only a reasonable but limited set of choices. Similarly, Saxena

and Holobinko [67] demonstrate that too much choice can inhibit consumers and re-

duce the satisfaction they derive from their decision. They also argue that consumers

are highly price sensitive when shopping on exchanges.

The objective of this chapter is to provide an analytical methodology to help

individuals narrow down plan choices by identifying plans that are dominated by

competitors’ offerings in terms of premium, metal level, maximum out of pocket

payment and plan type (such as HMO, POS, EPO or PPO). If a customer makes

her plan choice based on the features above, it is not in her best interest to select a

dominated plan, but a customer who analyzes alone the many plans available on the

exchanges may not realize it and thus may make a less-than-optimal decision for her-

self. Our approach also provides payers with a novel way to analyze their own plans

in the HIX landscape. The high-level goal of this methodology is to contribute to a

wider discussion on making plans offered on the exchanges as compelling as possible

for health exchange customers. We illustrate our methodology using a federal-run

exchange (Pennsylvania) and a state-run exchange (Massachusetts).

3.2 Methodology and Data Sources

The following factors should be considered when comparing marketplace plans: (a)

Plan metal level: Catastrophic (for individuals under the age of 30 with hardship

exemptions) Bronze, Silver, Gold, Platinum, in increasing order of actuarial value,

(b) Monthly premium, (c) Out-of-pocket costs - including deductible, copayments,

co-insurance - up to the out-of-pocket maximum, (d) Type of insurance plan and
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provider network: HMO, POS, EPO or PPO, because each type has different limita-

tions on usage of in-network versus out-of-network doctors and referrals for specialty

care, and (e) Benefits: although all marketplace plans have the same essential health

benefits, cover pre-existing conditions and offer free preventive services, some plans

offer additional benefits.

Intuitively, a plan that has less choice (is of a “worse” type, offering less choice)

and higher premium than another plan should have a better metal level or a lower

maximum out of pocket to justify the higher premium. If it does not, the plan is

said to be, in our terminology, “inefficient” or “dominated.” We do not compare

plans issued by the same payer because we assume that those plans are priced in a

consistent fashion, i.e., a single decision-maker prices plans rationally, with a more

desirable plan always priced higher.

Our objective is to identify “dominated” plans in this framework and quantify

their excess premium, i.e., the amount by which their premium should be decreased

to be made efficient in this framework or the amount that the payer must take great

care in justifying to convince potential enrollees’ of the plan’s value proposition. We

quantify the excess premium in two different ways: by re-running a regression with,

as explanatory variables, either plans by non-dominated payers that are assigned a

good letter grade, such as B or above (Method 1), or plans that are rarely dominated

by other plans, with the precise threshold percentage set by the analyst (Method 2).

Our methodology consists in the following four steps:

1. We identify inefficient plans using an algorithm that - for plans issued by different

payers - compares types (HMO, POS, EPO or PPO), premiums, metal levels and

maximum out of pockets.

2. We run a regression explaining plan premiums using plan features including pay-
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er’s name, and check whether payer’s name is a significant variable. If it is, we assign

a letter grade to each payer using Step 3. Otherwise, we go to Step 4.

3. (Method 1 only) (Step a) For each payer, we compute the percentage of non-

dominated plans offered on the exchange. We cluster payers of similar percentages

and assign each cluster a letter grade. (Step b) We rerun the regression of Step 1

with the payers graded B or higher only. We then compute the estimated premium

that a plan by a payer ranked strictly below B should have had in this model and

compare it to the premiums of a plan with the same attributes offered by a payer

ranked B or higher. The excess premium for a plan by a payer graded strictly below

B is the smallest difference between its plan’s premium and the premium of a similar

plan offered by a high-graded payer, when positive.

4. (Method 2 only) Re-run the regression using only plans that are rarely domi-

nated by other plans, with the threshold percentage being set by the analyst. Then,

compute what the premiums of dominated plans should have been based on their

features for them to be non-dominated. The decrease in premium that the payer

should consider - or the part of the premium that he should more clearly justify - is

the smallest difference between the premium that a non-dominated or efficient plan

should have given the plan features and the regression results.

The algorithm to select efficient plans is described as follows. When selecting

efficient plans, we take four factors into consideration: premium, level, type, and

out-of-pocket maximum. We assume throughout that plans from the same company

are priced appropriately based on their characteristics, i.e., there is no inefficient

plan within the pool offered by a given company. Hence, we only compare plans

from different payers. Our goal is to identify those plans that have higher premiums

with worse benefits. We label a plan P as “inefficient” when we can find another

plan Q such that P’s type (such as HMO or PPO) is the same or worse than Q’s, P’s
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premium is higher than Q’s, and either P’s metal level is worse than Q’s or its metal

level is the same but its out-of-pocket maximum is higher than or equal to Q’s. If

no such Plan Q can be found for a given plan P, Plan P is said to be “efficient”. We

perform those checks using the MATLAB computer programming software.

To investigate whether some payers are more efficient (offer more efficient plans)

than others, we rank payers according to the percentage of efficient plans in their

HIX portfolio. The higher the percentage is, the less likely it is that a payer’s plans

are dominated. Based on those percentages, we use a three-level grading scale: A,

B and C, to group payers, when appropriate (i.e., when payer’s name is a significant

variable). The ranks and grades for insurers in PA and MA are shown in Table 3.6

and Table 3.8, respectively.

For the purpose of plan evaluation, we use linear regression to determine the

weights of attributes of plans in the marketplace. The dependent variable is premi-

um. The independent variables include numeric variables: deductible, out-of-pocket

maximum; categorical (dummy) variables: company, metal level (bronze, etc.), type

(HMO, etc.). We also run individual regression models for each plan level - bronze,

silver, gold ad platinum - using stepwise variable selection.

3.3 Results

3.3.1 Data Visualization in the Pennsylvania HIX

Figure 3.1 shows the distribution of plans based on metal level, premium and de-

ductible.
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Figure 3.1: Plans in a (premium, deductible) plane according to metal level, PA HIX

We notice that the two plans pointed by arrows have very similar premiums (230

vs 229). However, they have quite different deductibles: the bronze plan is $3400,

and the silver plan is $1700. The bronze plan seems to be inefficient (dominated by

the other plan) because bronze plans are worse than silver plans in terms of cost

sharing, and the bronze plan even has a much higher deductible. It is not the end

of the story yet. We take a closer look at these two plans. The bronze plan is the

Highmark Health Savings Blue PPO 3400, and the silver plan is the Highmark Flex

Blue PPO 1700. They are both PPO plans from Highmark. The only difference

is that the bronze plan is HSA and the silver plan is FSA, where HSA has more

flexibility than FSA. The value of HSA contributes to the total value of the bronze

plan and possibly explains the same premium of these two plans. Another example

is as follows. In this case, although the second plan has zero deductible, its other

benefits such as doctor visits and ER visits are worse than the first plan. This might

lead to their similar premiums.
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Table 3.1: Plans from the same company - Example

Company Plan Level Type Premium Deductible OOP
max

Primary
doc

Specialist
doc

ER Generic
drugs

CBC Healthy
Benefits
PPO
2000.0

Silver PPO $354 $2,000 $6,350 $30 $50 $250 $20 co-
pay AD

CBC Healthy
Benefits
PPO
0.50

Silver PPO $355 $0 $6,350 $50 50% 50% 50%

Therefore, we assume that plans from the same company are priced appropriately

based on their characteristics, aka there must be a reason why two plans from the

same company have the same premium but quite different deductibles. However,

if we compare plans from different companies we would notice that some plans are

indeed inefficient. For example, we look at the following two plans:

Table 3.2: Plans from different companies - Example 1

Company Plan Level Type Premium Deductible OOP
max

Primary
doc

Specialist
doc

ER Generic
drugs

Assurant Health-
Bronze
Plan 002

Bronze PPO $290 $5,000 $6,350 $35 $35 $100
copay
BD/25%
coins AD

25%
coins

Geisinger Choice-
Marketplace
PPO
30/50/5000

Silver PPO $256 $5,000 $6,000 $30 $50 $250 $3 AD

Obviously, the Geisinger plan has better benefits with lower premium. In this

case, we could say that the Assurant plan is inefficient. Another example is as follows.

In this case, all three plans are silver plans. The Highmark plan has best benefits

thus has highest premium. However, the Keystone plan seems to be inefficient due

to its less flexibility (HMO vs. POS) and higher OOP max.
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Table 3.3: Plans from different companies - Example 2

Company Plan Level Type Premium Deductible OOP
max

Primary
doc

Specialist
doc

ER Generic
drugs

Geisinger Marketplace
POS
25/50/2500

Silver POS $256 $2,500 $5,500 $25 $50 $250 $3

Highmark Health Sav-
ings Blue P-
PO 2500

Silver PPO $287 $2,500 $3,500 10%
coins

10%
coins

10%
coins

10%
coins

Keystone Healthy Ben-
efits Value H-
MO 2500.0

Silver HMO $272 $2,500 $6,350 $20 $40 $300 $20 AD

3.3.2 Plan Efficiency Evaluation Results in the Pennsylvania

HIX

We run a regression model both with and without stepwise variable selection, to

remove non-significant variables. Our next step is to include all Company variables,

Level variables, and Deductible then rerun the regression model. Among all the inde-

pendent variables left in the model, all have p-values smaller than 0.05 (significant)

except the dummy variable referring to the Keystone payer and Deductible (shown

in Table 3.4). A summary of the regression models, including R-square values and

variables included, is presented in Table 3.5. The QQ plot is approximately a straight

line, and the residuals are Normal. We therefore argue that this linear model is valid.

Table 3.4: Regression results with stepwise selection - PA

Variable Label DF Parameter estimate Standard error t value Pr> |t|

Intercept Intercept 1 231.8229 11.78069 19.68 <.0001
Company new2 Geisinger 1 -15.2616 7.25866 -2.1 0.04
Company new3 Keystone 1 -4.52886 6.76242 -0.67 0.5058
Company new4 Aetna 1 28.78683 7.44184 3.87 0.0003
Company new5 Assurant 1 70.08725 8.50878 8.24 <.0001
Company new6 CBC 1 74.45939 6.92121 10.76 <.0001

Level new2 Silver 1 49.5767 8.38377 5.91 <.0001
Level new3 Gold 1 97.71053 10.35155 9.44 <.0001
Level new4 Platinum 1 163.9487 14.0219 11.69 <.0001
Deductible Deductible 1 -0.00323 0.00199 -1.63 0.1097
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Next, we look at the individual regression models for each metal level. Since there

are few plan observations at the bronze and platinum levels, we only investigate the

cases of the silver and gold plans. The regression results illustrate that the identity

of the payer is the most important attribute driving plan premiums. Results of all

regression models on the PA data (for the 18015 zip code and an adult in her late

thirties) are summarized in Table 3.5.

Table 3.5: Summary of regression models - PA

Model No. of observ. R-square Variables

All variables 66 0.9273 all
Stepwise selection 66 0.9263 all companies, all levels, deductible
Bronze only 12 0.8109 Assurant, CBC, OOP Max
Silver only 28 0.8501 Aetna, Assurant, CBC, Deductible
Gold only 21 0.7816 Geisinger, Assurant, CBC
Platinum only 5 1 Geisinger, HMO, Deductible

We apply the algorithm to identify efficient plans to PA data. Key results are

summarized in Table 3.6. We then rank the payers based on their efficiency ratios.

Here, Highmark and Geisinger have the highest percentage of absolutely efficient

plans and thus, according to our framework, should be recommended to individuals

seeking coverage on the health insurance exchanges.

Table 3.6: Summary of inefficient plans & ranks of companies - PA

Aetna Assurant CBC Geisinger Highmark Keystone

Company sum of dominated times 85 38 109 8 6 64
Number of plans in each company 10 6 11 11 16 12
Number of comparisons 560 360 605 605 800 648
Percent of dominated by others 15.18% 10.56% 18.02% 1.32% 0.75% 9.88%
Number of absolutely efficient plans 0 0 0 3 10 0
Percent of absolutely efficient plans 0.00% 0.00% 0.00% 27.27% 62.50% 0.00%
Rank 5 4 6 2 1 3
Grade C B C A A B

It is also interesting to look at the premiums from the perspective of PA general

acute care hospitals’ total margin. Figure 3.2 below is the average total margins over
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regions in PA for fiscal year 2013. Figure 3.3 is the coverage areas served by blue

plans in PA.

Figure 3.2: Hospital total margin - PA Figure 3.3: Coverage area - PA

source: http://pablueagent.com/coverage.php

Hospitals in region 5 and region 7 have the highest margins, while these two

regions are areas where CBC mostly cover. This observation might indicate one of

the reasons why CBC generally has higher premiums and more number of inefficient

plans: CBC pays more to hospitals than other insurers, thus they need to increase

premiums to keep in business, which might leads them to less competitive position

in the market. On the contrary, hospitals in areas covered by Highmark in general

have very low margins, which supports our conclusion from another perspective.

3.3.3 Plan Efficiency Evaluation Results in Massachusetts

HIX

We use data obtained for the 02142 zipcode for an adult in her late thirties. Only

one plan offered is PPO, and seven plans are EPO; however, these seven EPO plans

are all from United Health Care, and all United Health Care plans are EPO plans.

As a result, we exclude “Type” in the regression model since it is already captured
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in the “Company” (“Payer”) variable.

Compared to Pennsylvania plans, Massachusetts plans have far fewer deductible

levels (see [89] for the MA counterpart to Figure 3.1). We run a regression model

to identify the factors attributed to plan premiums. The R-square of this model is

0.8402, which is very good. All variables except the payer Tufts and Out-of-pocket

maximum are significant at the 5% level. The residual plots (not shown here) suggest

that this model fits quite well. Specifically, the QQ plot is almost a straight line, and

the residuals follow a Normal distribution. We also apply stepwise variable selection

to MA plans but all variables are selected by the program, leading back to the original

model.

We also apply regression models to plans at each metal level. More plans are

offered in the 02142 Massachusetts zip code than in the 18015 Pennsylvania zip

code, so the results are more convincing. Also note that the MA plans studied here

tend to have higher metal levels, where silver is the dominant metal level in PA and

gold is dominant in MA. The regression results shown in Table 3.7 indicate that

the payer is still the most important attribute in plan premiums. Therefore, it is

meaningful to compare plans from different companies and rank companies based on

plan efficiency.

Table 3.7: Summary of regression models - MA

Model No. of observ. R-squared Variables

Model with all variables 106 0.8402 all
Stepwise selection 106 0.8402 all
Bronze only 14 0.4675 MA BCBS, OOP Max
Silver only 20 0.6077 Fallon, Harvard, MA BCBS, United
Gold only 48 0.6803 Fallon, Harvard, MA BCBS, Tufts, United
Platinum only 24 0.7408 Fallon, Harvard, MA BCBS, Tufts, United

We apply the algorithm to all MA plans. Key results are summarized in Table 3.8.
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Companies in MA are ranked and given grades in the same fashion as companies in

PA. Based on this framework, plans provided by United HealthCare, Boston Medical

Center and Minuteman Health particularly deserve recommendation.

Table 3.8: Summary of inefficient plans & ranks of companies - MA

Ambetter BMC Fallon Harvard BCBS Minuteman NHP Tufts United

Company sum of dominated
times

71 9 602 231 243 14 39 90 2

Number of plans in each
company

9 7 27 13 10 9 9 13 7

Number of comparisons 855 679 2079 1183 940 855 855 1183 679
Percent of dominated by
others (%)

8.3 1.33 28.96 19.53 25.85 1.64 4.56 7.61 0.29

Number of absolutely effi-
cient plans

1 3 0 1 1 4 1 2 5

Percent of absolutely effi-
cient plans (%)

11.11 42.86 0 7.69 10 44.44 11.11 15.38 71.43

Rank 6 2 9 7 8 3 4 5 1
Grade B A C C C A B B A

3.4 Recommendations for Other States and Health

Policy Makers

To extend our methodology to other states besides MA and PA, analysts should

first identify any unique characteristics of plans in the state once they have obtained

the summary statistics of plan premium and benefits. For example, the types of

MA plans (HMO, PPO and EPO) are different from the PA plans (HMO, PPO and

POS), and it turns out that we can discard the Type variable in the MA regression

model. The second step is to utilize regression models to decide whether a payer

(name) is the most important indicator of inefficiency/efficiency. If it is, then we feel

justified in assigning grades to payers; otherwise, we have to implement a different

method (Method 2) to compute premiums.

Health payers with offerings less compelling (as quantified by this framework)

than their competitors may wish to discuss internally the assumptions that led their
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analysts to pricing the plan higher than what the regression model recommends,

potential ways to realize savings in order to decrease premiums, or a stronger posi-

tioning of their plan to justify the apparent inefficiency using a different quantitative

metric.

We now illustrate possible recommendations to health insurance companies using

the Capital Blue Cross (CBC) payer in Pennsylvania. CBC has a total of eleven

plans but zero absolutely efficient plan, and is thus given the grade of C. In order to

give suggestions to CBC regarding the size in premium reduction that would make

its plans more competitive in our model, we first conduct regression on plans from

payers graded A or B (Highmark, Geisinger, Keystone, and Assurant) since they are

the “aspirational peers” of payers ranked C. Then we apply the regression results to

CBC plans in order to get approximate premiums for plans with such characteristics

offered by A or B payers. Based on 45 plans from grade A and grade B companies,

the R-squared of the model is 0.8919 and the adjusted R-squared is 0.8602, both of

which are very high. Although the F statistic is significant, some of the variables are

not very significant at the individual level. As a result, we apply stepwise variable

selection on the model. After the stepwise variable selection, the Type variables and

Deductible are excluded from the model. We include the selected variables and run

the regression model again. The R-square drops down slightly to 0.8896 but the

adjusted R-square goes up to 0.8687.

Our next step is to apply the regression coefficients to CBC plans. Table 3.9

shows the estimated premiums of each CBC plan if they were plans from grade A

and B companies. (Those estimated premiums are all smaller than the actual ones.)

Well-priced plans are in bold. This gives CBC an estimate of the premium decreases

they should achieve in order to stay competitive in the market. Alternatively, this is

a measure of how much CBC feels they will attract sicker patients due to their name
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recognition.

Table 3.9: Estimated premiums - CBC Healthy Benefits (HB), PA, Method 1.

Plan Level Type Deduct. OOP Max Prem. Est Pre Highm Est Pre Geis. Est Pre Keyst. Est Pre Assurant

PPO 5500.50 Bronze PPO 5500 6350 277 220.86 202.67 220.73 289.44
PPO 3000.0 Gold PPO 3000 6350 398 321.54 303.35 321.42 390.12
PPO 1000.0 Gold PPO 1000 6350 402 321.54 303.35 321.42 390.12
PPO 500.0 Gold PPO 500 6350 410 321.54 303.35 321.42 390.12
PPO 0.0.10 Platinum PPO 0 6350 467 389.63 371.44 389.51 458.21

PPO 4500.50 Silver PPO 4500 6350 335 269.29 251.11 269.17 337.87
PPO 3500.0 Silver PPO 3500 6350 341 269.29 251.11 269.17 337.87
PPO 2500.0 Silver PPO 2500 6350 347 269.29 251.11 269.17 337.87
PPO 2000.0 Silver PPO 2000 6350 354 269.29 251.11 269.17 337.87
PPO 0.50 Silver PPO 0 6350 355 269.29 251.11 269.17 337.87
PPO 0.0 Silver PPO 0 6350 365 269.29 251.11 269.17 337.87

The estimated premiums give us ranges of premiums for efficient plans with same

benefits. Out of the eleven plans, two CBC plans’ premiums (highlighted in bold)

are within the ranges determined by efficient plans, solely because they have lower

premiums than Assurant’s corresponding plans. The reason could be that Assurant

is only slightly better than CBC (rank 4th vs. 6th) in spite of being ranked B instead

of C, so that occasionally CBC plans are more efficient than Assurant’s.

We calculated the estimated premiums for Aetna plans (grade C) in a similar

fashion (shown in Table 3.10). We notice that Aetna plans are always more expensive

than plans from Highmark, Geisinger and Keystone with the same benefits. However,

they are always cheaper than the corresponding Assurant plans as well. This is not

surprising because their ranks are even closer (rank 4th vs. 5th). As a result, it is

more likely that Aetna has more efficient than Assurant compared to CBC.

Table 3.10: Estimated premiums - Aetna

Plan Level Type Deduct. OOP Max Prem. P Highm. P Geis. P Keyst. P Assu.

Deduct. only HSA eligible HMP Bronze HMO 6300 6300 223 220.97 202.78 220.84 289.54
Deduct. only HSA eligible OAMC Bronze POS 6300 6300 232 220.97 202.78 220.84 289.54
$20 copay OAMC Bronze POS 5750 6600 247 220.33 202.15 220.21 288.91
$20 copay HMO Bronze HMO 5750 6600 237 220.33 202.15 220.21 288.91
$5 copay HMO Gold HMO 1400 5000 342 324.39 306.20 324.27 392.97
$5 copay OAMC Gold POS 1400 5000 354 324.39 306.20 324.27 392.97
$10 copay HMO Silver HMO 3750 6600 295 268.77 250.58 268.64 337.34
$10 copay OAMC Silver POS 3750 6600 306 268.77 250.58 268.64 337.34
$5 copay 2750 HMO Silver HMO 2750 6000 312 270.03 251.84 269.91 338.61
$5 copay 2750 OAMC Silver POS 2750 6000 323 270.03 251.84 269.91 338.61
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We also run Method 2, with a threshold percentage of plan being dominated by

at most 10% other plans. There are 44 such plans. The R-square is 0.9068. The

highest excess premium is $53 (for a monthly premium of $323), achieved for Aetna

Silver $5 copay 2750 OAMC. (2750 is the deductible for the plan and OAMC stands

for Open-Access Managed Choice.) In fact, the four plans with the highest excess

premium are Aetna plans. This may not mean that they are overpriced, but Aetna

should make sure that its plans’ value proposition is well understood. The most

underpriced plan is Capital Blue Cross Healthy Benefits PPO 5500.50, which has a

monthly premium of $277 although the model estimates the premium at $296, and

the second most underpriced plan is Keystone Healthy Benefits Value HMO 1000.0

(monthly premium $315, estimated premium $325). Those results are shown in Table

3.11.

Table 3.11: Estimated premiums - PA, Method 2

Plan Level Type Deductible OOP Max Prem. Est Prem. Decrease

Aetna Gold $5 copay HMO Gold HMO 1400 5000 342 325 17
Aetna Gold $5 copay OAMC Gold POS 1400 5000 354 325 29
Aetna Silver $10 copay HMO Silver HMO 3750 6600 295 270 25
Aetna Silver $10 copay OAMC Silver POS 3750 6600 306 270 36
Aetna Silver $5 copay 2750 HMO Silver HMO 2750 6000 312 270 42
Aetna Silver $5 copay 2750 OAMC Silver POS 2750 6000 323 270 53
Assurant Health - Bronze Plan 002 Bronze PPO 5000 6350 290 289 1
Assurant Health - Gold Plan 002 Gold PPO 0 6350 409 387 22
Assurant Health - Silver Plan 002 Silver PPO 2000 6350 340 331 9
Healthy Benefits (HB) PPO 5500.50 Bronze PPO 5500 6350 277 296 -19
Healthy Benefits (HB) PPO 3000.0 Gold PPO 3000 6350 398 394 4
Healthy Benefits (HB) PPO 1000.0 Gold PPO 1000 6350 402 394 8
Healthy Benefits (HB) PPO 500.0 Gold PPO 500 6350 410 394 16
Healthy Benefits (HB) PPO 4500.50 Silver PPO 4500 6350 335 339 -4
Healthy Benefits (HB) PPO 3500.0 Silver PPO 3500 6350 341 339 2
Healthy Benefits (HB) PPO 2500.0 Silver PPO 2500 6350 347 339 8
Healthy Benefits (HB) PPO 2000.0 Silver PPO 2000 6350 354 339 15
Healthy Benefits (HB) PPO 0.50 Silver PPO 0 6350 355 339 16
Healthy Benefits (HB) PPO 0.0 Silver PPO 0 6350 365 339 26
Keystone Healthy Benefits Value HMO 1000.0 Gold HMO 1000 6350 315 325 -10
Keystone Blue Cross Value HMO 500.0 Gold HMO 500 6350 322 325 -3
Keystone Healthy Benefits Value HMO 0.0 Silver HMO 0 6350 287 270 17

There is concern that some insurance companies might set their prices lower than

others on purpose to attract new customers in the exchanges, and raise their prices in

later years. Since the exchanges are new to both insurers and customers, prices can be
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adjusted over time to reflect learning from new information. Although it is possible

that some insurers appear to be more efficient, while some others being “inefficient”

due to short-term pricing strategy, our approach still provides a novel way to aid

customer’s choice of plan and to help insurers analyze their plans. More years of

data could be incorporated when the Health Insurance Marketplaces become more

mature, and the long-term efficiency of plans could be evaluated in our framework.

3.5 Conclusions

This chapter investigates the important drivers of plan premiums in the health ex-

changes, with examples drawn from the Pennsylvania and Massachusetts health in-

surance marketplaces. We propose a simple algorithm to identify plans that are

dominated by competitors’ offerings in terms of premium, metal level, maximum

out of pocket payment and plan type. We assign letter grades to payers, and use

linear regression results to quantify the amount by which the premium of a dominat-

ed plan should be reduced to make it competitive in our framework. This chapter

provides important quantitative tools to guide the discussions between payers and

policy-makers regarding HIX. Our approach also provides payers with a novel way

to analyze their own plans in the HIX landscape.
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Chapter 4

Analysis of Medicare Prescription

Drug Coverage Enrollment

4.1 Introduction

The Medicare Prescription Drug Improvement and Modernization Act of 2003 pro-

vides outpatient prescription drug coverage for Medicare beneficiaries through private

insurers. The coverage is available for Medicare beneficiaries in two ways: Medicare

Advantage prescription plans (MAPDs), and stand-alone prescription plans (PDP-

s). This chapter provides an overview of these two types of prescription drug plans

and identify factors associated with Medicare beneficiaries’ choices over MAPDs and

PDPs in all counties in the United States using beta regression.
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4.2 Background: PDPs vs. MA-PDs

Medicare is a national social insurance program administered by the U.S. federal gov-

ernment since 1966. It covers people aged 65 and over and people with permanent

disabilities. Currently about 54 million people are under coverage of Medicare. It

has four parts: (1)Part A: Hospital Insurance, which covers most medically necessary

hospital, skilled nursing facility, nursing home and hospice care; (2)Part B: Medical

Insurance, which covers most medically necessary doctors’ services, preventive care,

durable medical equipment, hospital outpatient services, laboratory tests, x-rays,

mental health care, and some home health and ambulance services; (3)Part C: Medi-

care Advantage plans, which allows private health insurance companies to provide

Medicare benefits since the passage of the Balanced Budget Act of 1997; (4)Part

D: Prescription Drug Plans, which provides outpatient prescription drug coverage.

Among these four parts, Part D was established by the Medicare Modernization Act

of 2003 (MMA) and went into effect in 2006.

Medicare beneficiaries have two ways for receiving prescription drug coverage

starting in 2006. One way is to enroll in the Medicare Advantage plans (mainly HMOs

and PPOs) then enroll in their Part D prescription drug plans (MAPD). Medicare

Advantage plans are provided by private insurance companies that have a contract

with Medicare. In 2014, 83% of Medicare Advantage plans offer prescription drug

coverage, and 50% provide some coverage in what is known as the “coverage gap”,

after a spending limit is exceeded but before the maximum out-of-pocket payment

is attained. All MAPD enrollees receive a 50% discount on brand-name drugs in the

gap, beginning in 2011. Since 2011, all Medicare Advantage plans have been required

to limit beneficiaries’ out-of-pocket spending to no more than $6,700. Medicare

Advantage beneficiaries need to enroll in both Part A and Part B. Many MA-PDs
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provide prescription drug coverage and other supplemental benefits available for no

additional premium. However, Medicare Advantage plan monthly premiums (if any)

are in addition to Medicare A (if required) and Medicare B premiums.

The other way to get prescription drug coverage is to enroll in Prescription Drug

Plans (PDP) provided by Medicare directly. In order to enroll into a Medicare Part

D PDP, enrollment in either Medicare Part A and/or Medicare Part B is required.

Medicare Part D premiums are in addition to Medicare Part A (if any) and/or

Part B premiums; however, original Medicare doesn’t have the cap on out-of-pocket

spending.

In 2014, 37 million out of 54 million Medicare beneficiaries enrolled in part D

plans. Among these part D plan enrollees, more than 37% of all Medicare beneficia-

ries enrolled in part D in late 2013 were in an MA-PD, with the remaining 63 percent

in a freestanding PDP. Another large group of Medicare beneficiaries get prescription

drug coverage under plans offered by former employers such as the Department of

Veterans Affairs. Enrollment in Medicare drug plans is voluntary, with the exception

of beneficiaries who are dually eligible for both Medicare and Medicaid and certain

other low-income beneficiaries who are automatically enrolled in a PDP if they do

not choose a plan on their own.

In terms of plan availability, MAPD plans and PDP plans are quite different.

The national average number of PDP plans in 2012 is 31, and the national average

number of MAPD plans is 60; however, the number of PDP plans in each state is

quite similar as almost every state has about 30 PDP plans; while the number of

MAPD plans in each state varies from 1 to 250.

Cline et.al [27] use multivariate probit models to describe factors associated with

Medicare beneficiaries’ choices in enrolling any part D plans, and their choices of
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an MAPD plan given enrollment in the part D program. Their data is collected

from surveys of 5000 community-dwelling adults in CMS Region 25, which includes

7 states: Iowa, Minnesota, North Dakota, South Dakota, Nebraska, Montana and

Wyoming. Only 32.4% of responses are actually used in the analysis. They find

that factors including rurality, plan price, perceived future need for medications, and

preferences are driving people’s choices of enrolling in a part D plan; while rurality,

state of residence, and number of diagnosed medical conditions are contributing to

people’s decision to enroll in a MAPD plan given enrollment in a part D plan. As

their data is collected from surveys and is detailed at member level, they are able to

conduct probit model since their response variables would be binary.

However, data at member level is not always available. Therefore, the objective

of this chapter is to identify factors associated with penetration rates of MAPD

plans and PDP plans based on publicly available census data and plan data. We

utilize a relatively new regression method, called beta regression, when describing

factors associated with people’s choice. This method is particularly suitable for our

penetration data sine it incorporates natural properties of variables whose value lies

in the open interval (0, 1) such as proportions or penetration rates instead of being

binary (0 or 1, yes or no) such as enrollment decision for each member.

4.3 Data Description

Our data combines three sources: penetration data, census data, and part D plan

data. All data are from year 2012. The dependent variables are penetration rates

of MAPD and PDP, which are retrieved from Kaiser Family Foundation’s “MA-PD

Plan Enrollment as a Percent of Total Medicare Population” table [42]. The reason

why we don’t use the Medicare Advantage/Part D Contract and Enrollment Data
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available on CMS’s website [37] is that CMS’s data has the total MA enrollment.

However, what we need is the PD enrollment data only, which should be lower

than total MA enrollment. We use the PDP penetration data from Kaiser Family

Foundation’s database to be consistent with our choice of MAPD penetration data.

When number of enrollees in one county is 10 or less, the penetration rate is reported

as zero due to the privacy laws of HIPAA. We exclude Alaska because Alaska is the

only state that has zero MAPD penetration rate, while its PDP penetration rate

is 39%. According to Kaiser Family Foundation, there were no private insurance

companies in Alaska offering Medicare Advantage plans in 2012. There were 69

beneficiaries who were enrolled in Medicare Advantage plans, which made up less

than 0.1% of all the Medicare beneficiaries in the state. Since PDP is absolutely

dominant in Alaska, comparison between MAPD and PDP penetration rates would

not be meaningful.

Initially, there are 36 independent variables including demographic variables, con-

dition variables, cost variables and plan variables. These data come from three

sources: the “State/County Table - All Beneficiaries” from CMS’s public use files [39],

the “State & County QuickFacts” from US Census Bureau [21], and “Plan & Pre-

mium Information for Medicare Plans Offering Part D” from CMS [38]. Most of the

variables are from the public use files as they represent Medicare beneficiaries’ data,

while a few variables come from the census due to significant large number of miss-

ing values or lack of data in the public use files. We have data for 3029 counties in

the United States. The correlations between independent variables and penetration

rates are provided in table 4.1.
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Table 4.1: Correlations of variables

MAPD rate PDP rate total rate

cnt mapd 0.57 -0.44 0.06
cnt pdp -0.06 0.08 0.05
Average Age -0.28 0.19 -0.07
Percent Female -0.06 0.19 0.19
Percent Male 0.06 -0.19 -0.19
Percent Non Hispanic White -0.04 0.08 0.07
Percent African American -0.04 0.10 0.09
Percent Hispanic 0.08 -0.05 0.04
Percent Other Unknown 0.06 -0.13 -0.10
Bachelor degree or higher perc 0.15 -0.32 -0.26
Homeownership rate -0.05 0.07 0.03
Per capita money income 0.09 -0.27 -0.26
Persons below poverty level per -0.06 0.20 0.20
Percent Eligible for Medicaid 0.07 0.17 0.31
Average HCC Score 0.21 -0.06 0.16
Percent of heart attack -0.06 0.09 0.06
Percent of atrial fibrillation -0.02 0.05 0.04
Percent of kidney disease 0.22 -0.11 0.11
Percent of obstructive pulmonary -0.12 0.18 0.10
Percent of depression 0.20 -0.05 0.16
Percent of diabetes 0.00 0.12 0.16
Percent of heart failure -0.19 0.26 0.14
Percent of ischemic heart -0.14 0.17 0.07
Percent of breast cancer 0.07 -0.14 -0.13
Percent of colorectal cancer -0.17 0.24 0.14
Percent of lung cancer -0.06 0.05 0.00
Percent of prostate cancer -0.01 -0.05 -0.09
Percent of asthma 0.15 -0.20 -0.11
Percent of hypertension -0.06 0.15 0.13
Percent of high cholesterol 0.10 -0.10 -0.01
Percent of arthritis -0.12 0.15 0.07
Percent of osteoporosis 0.07 -0.07 0.00
Percent of alzheimer 0.05 0.01 0.09
Percent of stroke 0.07 -0.09 -0.04
Part B Drugs Standardized Costs perc 0.09 -0.10 -0.04
Percent of Beneficiaries Using PB 0.14 -0.15 -0.04

All correlations with absolute value higher than 0.20 are highlighted in table 4.1.

The number of available MAPD plans is highly correlated with MAPD and PDP

penetration rates. The more MAPD plans in a county, the higher their MAPD pen-

etration rate and the lower their PDP penetration rate. Other variables that have

relatively high correlations with prescription drug plan penetration rates include
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average age of Medicare beneficiaries, percentage of population with Bachelor’s de-

gree or higher, per capita income, percentage of Medicare beneficiaries who are also

eligible for Medicaid, average HCC score, and a few other medical conditions. In-

terestingly, most independent variables have opposite correlations with the MAPD

penetration rate and with the PDP penetration rate. For example, the correlation

between average age and MAPD rate is -0.28, while the correlation between average

age and PDP rate is 0.19. This suggests that counties having Medicare population

with higher average age tend to see their Medicare members enroll in PDP plans

rather than MAPD plans. Also, counties with a higher percentage of people with

Bachelor’s degree or higher are more likely to enroll in MAPD plans than PDP plan-

s. Hence, these attributes have different impacts on these two types of prescription

drug plans.

4.4 Statistical Models on Enrollment Rate of PDP

and MA-PD Drug Plans

Our response variables - penetration rates - always lie between 0 and 1. Because

of the small range for the values taken by the penetration rates, this suggests that

the effect of explanatory variables tends to be non-linear, and the variance tends to

decrease when the mean gets closer to one of the boundaries. Linear regression and

logistic regression are not attractive for our purposes: linear regression might give us

predictions out of the restricted range and logistic regression requires the distribution

of response variable to be binomial, while our response variable here is not the results

of a set of Bernoulli trials. One possible solution is to transform the response variable

then model the transformed response variable on explanatory variables. However,

this approach has drawbacks. First, the coefficients cannot be easily interpreted in
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terms of the original response variable. Second, asymmetry often exists in rates or

proportions, so that inference based on the normality assumption can be misleading.

We introduce another regression model, called beta regression, which is more

suitable for our data. Beta regression assumes that the response variable follows a

continuous beta distribution and is related to other variables through a regression

structure. The estimation of coefficients are conducted by Maximum Likelihood Es-

timation (MLE). Beta distribution is a family of continuous probability distributions

defined on the interval [0, 1] parameterized by two positive shape parameters: mean

and precision. The density function of beta distribution is given by

π(y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)p−1, 0 < y < 1 (4.1)

where p > 0,q > 0 and Γ(.) is the gamma function. The mean and variance of y are

E(y) =
p

p+ q
(4.2)

and

V ar(y) =
pq

(p+ q)2(p+ q + 1)
(4.3)

respectively. Examples of beta distribution are shown in Figure 4.1.
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Figure 4.1: Examples of Beta Distribution by Varying Shape Parameters

This conventional parameterization with two shape parameters is not particularly

suitable for modeling mean of response variable on explanatory variables. Ferrari

and Cribari-Neto [36] propose an alternative parametrization by letting µ =
p

q
and

φ = p + q such that µ is the mean of response variable and φ is the precision

parameter. Then the density function of y becomes

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1 (4.4)

where 0 < µ < 1 and φ > 0.

Now we briefly describe beta regression and how it is different from linear regres-

sion of transformed response variable. Let y1, ..., yn be independent random response

variables, where each yt for t = 1, ...n follows the beta distribution’s density (4.4).

The mean of yt is µt and the precision is φ. The beta regression model is obtained

by assuming that µt, which is the mean of yt that can be written as

g(µt) =
k∑
i=1

xtiβi = ηt, (4.5)
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where β = (β1, ..., βk)
T is a vector of unknown regression coefficients, and xt1, ...xtk

are observations on k regressors (k < n). This indicates the difference between

beta regression and linear regression of transformed response variable. In linear

regression model would be g(yt) =
k∑
i=1

xtiβi, while in beta regression it is g(µt) that

has a regression structure. Therefore, the regression parameters are interpretable in

terms of the mean of response variable in beta regression, and the model is naturally

heteroscedastic and easily accommodates asymmetries.

In addition, g(.) is a strictly monotonic and twice differentiable link function that

maps (0,1) to R. Possible choices of link function g(µt) include:

• logit function: g(µ) = log
µ

1− µ
,

• probit function: g(µ) = Φ−1(µ), where Φ(.) is the cumulative distribution

function of a standard normal distributed variable,

• complementary log-log link: g(µ) = log{−log(1− µ)},

• log-log link: g(µ) = −log{−log(µ)}.

One commonly used link function, which is the default one used in “betareg”

package in R, is the logit function. In this case, the link function is presented as

g(µ) = log
µ

1− µ
= xTt β, (4.6)

which, after simple manipulation, can be written as

µt =
ex

T
t β

1 + ex
T
t β
, (4.7)

where xTt = (xt1, ..., xtk), t = 1, ..., n. Therefore, the mean of yt can be easily in-

terpreted by the regression parameters. If the value of ith independent variable is
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increased by c units, and all other independent variables remain unchanged. Let µ′

be the mean of y under new values of variables, then we have

ecβi =
µ′/(1− µ′)
µ/(1− µ)

. (4.8)

It means ecβi equals the ratio of odds under two sets of values. Beta regression uses

maximum likelihood estimation to obtain β and φ, and it does not have a closed-form

solution. Therefore, the parameter estimates are obtained by numerically maximizing

the log-likelihood function using a nonlinear optimization algorithm, such as Newton

method or quasi-Newton algorithm. To start the algorithm, β estimates from OLS

linear regression of transformed response variable can be used as initial values [36].

SAS can implement beta regression using procedures NLMIXED, NLIN or GLIM-

MIX. A macro called Beta Regression in SAS is available for implementation pur-

pose [79]. Beta regression can also be implemented in R using package “betareg” [28].

The implementation results using the “betareg” package in R are shown in the next

section.

4.5 Beta Regression Implementation Results in R

One limitation of beta regression is that it excludes values 0 and 1. However, due

to the privacy law of HIPAA, there are 171 penetration rates that are reported as

zero as the numbers of enrollees in those counties are ten or less. In order to proceed

utilizing beta regression, we removed these 171 points from our dataset. Another way

to address the zero rates without losing any data point is to transform the response
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variable y into open interval (0, 1) by taking

y′ =
y(N − 1) + 0.5

N
(4.9)

where N is the sample size, proposed by Smithson and Verkuilen [72]. The rationale

for this rescaling is presented in their paper as well. The regression models using

transformed response variable perform worse than the models without zero rates.

Therefore, in this chapter we only present the regression results based on the first

method, which removes observations with “zero” (or removed) penetration rates.

For MAPD plans, the beta regression is applied to all data points (as opposed to

splitting the data in a training and testing data set to create then test our model)

since our purpose in using analytics here is descriptive rather than predictive or

prescriptive in nature. Logit, probit, cloglog and loglog link functions are used. For

MAPD plans, the loglog link function performs the best with highest pseudo R2 and

smallest AIC (Akaike Information Criterion). Therefore, we choose the loglog link

function to proceed with the model build.

Table 4.2: Comparisons of results using different link functions

Link function Log-likelihood Pseudo R2 AIC

Logit 3510 0.4837 -7002.891
Probit 3528 0.5081 -7032.214
Cloglog 3486 0.4712 -6957.166
Loglog 3557 0.5257 -7076.105

We first include all potential independent variables in the beta regression model;

however, some of the variables such as the percentage of people with heart attack

are not statistically significant in the full model. We thus delete all non-significant

variables and fit the model again until all variables left in the model are significant

at the 0.05 significance level. The regression coefficients are illustrated in table 4.3.
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The significance codes are: 0.000001 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘ ’.

Table 4.3: Parameter estimates - MAPD

Parameter Estimate Std. error z value Pr(> |z|) Sig. code

(Intercept) 2.4790 0.3156 7.855 0.0000 ***
cnt mapd 0.0208 0.0007 29.439 0.0000 ***
Average Age -0.0508 0.0042 -12.04 0.0000 ***
Percent Female -0.8483 0.2964 -2.862 0.0042 **
Percent Non Hispanic White 0.1874 0.0388 4.831 0.0000 ***
Bachelor degree or higher perc -0.4411 0.0790 -5.581 0.0000 ***
Homeownership rate 0.4534 0.0778 5.83 0.0000 ***
Percent Eligible for Medicaid -0.2359 0.0961 -2.454 0.0141 *
Average HCC Score 1.5523 0.1310 11.85 0.0000 ***
Percent of kidney disease 0.9764 0.2592 3.767 0.0002 ***
Percent of obstructive pulmonary -2.2263 0.2395 -9.295 0.0000 ***
Percent of diabetes -1.3787 0.2214 -6.226 0.0000 ***
Percent of ischemic heart -1.4635 0.1359 -10.768 0.0000 ***
Percent of breast cancer -1.7833 0.9687 -1.841 0.0656 .
Percent of colorectal cancer -3.6122 1.2072 -2.992 0.0028 **
Percent of hypertension -1.1590 0.1552 -7.467 0.0000 ***
Percent of high cholesterol 0.5189 0.1105 4.696 0.0000 ***
Percent of alzheimer 0.9932 0.3452 2.877 0.0040 **
Part B Drugs Standardized Costs perc 0.8453 0.3578 2.362 0.0182 *
Percent of Beneficiaries Using PB 0.2277 0.0557 4.086 0.0000 ***
φ 26.8666 0.7452 36.05 0.0000 ***

Several diagnostic measures are provided to measure the goodness-of-fit of the

model and influential observations. The log-likelihood is 3999, and AIC is -7956.1.

The pseudo R2 of the model for MAPD plans is 0.527, where pseudo R2 is defined as

the square of the sample correlation coefficient between η̂ and g(y) and is thus very

similar to the R2 in OLS linear regression. All explanatory variables are significant

at the 0.05 significance level. The diagnostic plot in figure 4.2 also shows the model

fits quite well except for a few outliers. The parameter estimates and pseudo R2

exhibit little change when we fit the model without the outliers.

The model can be specified as

g(µt) = β0 +
19∑
k=1

βkxtk (4.10)
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where βk are the coefficients we get from the beta regression, and xtk are the 19 in-

dependent variables we select to include in the model. Coefficients estimates in table

4.3 quantify the relationship between each independent variable and the response

variable. For instance, there is a positive relationship between average HCC score

and MAPD plan penetration. The average HCC score indicates the average health

status of Medicare beneficiaries. A higher average HCC score means worse health

status of the county’s Medicare population. Take variable “cnt mapd” for example,

which is the number of MAPD plans available in the county. The coefficient estimate

of this variable in the beta regression can be interpreted as follows. Suppose that the

number of MAPD plans available increases by 1, then the log of the ratio between

chances of enrolling in a MAPD plan under the new setting relative to the old set-

ting, all other variables remaining the same, is 0.0208. φ is the precision parameter

estimated from beta regression which defines the shape the beta distribution of the

response variable.
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Figure 4.2: Diagnostic plots of MAPD plans

As in the model for MAPD plans, the loglog link function performs best for PDP

plan penetration rates and total penetration rates.
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Table 4.4: Summary of diagnostic statistics for MAPD, PDP, and Total

Model Link function Log-likelihood Pseudo R2 AIC

MAPD

loglog 3999 0.527 -7956.1
logit 3533 0.4837 -7002.89

probit 3548 0.5081 -7032.21
cloglog 3511 0.4712 -6957.17

PDP

loglog 3210 0.5795 -6369.2
logit 2891 0.5513 -5717.93

probit 2887 0.5527 -5710.76
cloglog 2899 0.5439 -5734.13

Total

loglog 3687 0.3683 -7330.4
logit 3334 0.356 -6603.09

probit 3333 0.356 -6602.03
cloglog 3330 0.3557 -6576.76

All models’ pseudo R2’s are reasonably high, especially the model for the PDP

plans, and the diagnostic plots also indicate that the models fit well. To address

the potential problem of overfitting, we also split the whole dataset into training

set and test set by the 70/30 rule. The model is built on the training set, and the

regression result is applied to the test set. The model based on training data has

very similar pseudo R2’s for all models. And the MSE’s (Mean Squared Error) of the

predictions on test data are about 0.01, which is acceptable low to justify that our

model is properly fitted. Table 4.5 summarizes the coefficients estimates of significant

variables for the three models. Note that N/A means the variable is not significant

in the model. Also, a few variables show coefficients as zero. However, the actual

coefficient estimate of these variables are very small numbers close to zero, but not

zero exactly. Details of regression results are in the appendix.
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Table 4.5: Summary of coefficients estimates for MAPD, PDP, and Total

PDP MAPD Total

Parameter Estimate Signi. Estimate Signi. Estimate Signi.
(Intercept) -5.9280 *** 2.4790 *** -2.9850 ***
cnt mapd -0.0118 *** 0.0208 *** 0.0037 ***
cnt pdp 0.0143 *** N/A N/A 0.0113 ***
Average Age 0.0575 *** -0.0508 *** 0.0206 ***
Percent Female 3.1290 *** -0.8483 ** 2.3480 ***
Percent Non Hispanic White 0.1679 *** 0.1874 *** 0.3108 ***
Bachelor degree or higher perc -0.4015 *** -0.4411 *** -0.8792 ***
Homeownership rate -0.3007 *** 0.4534 *** N/A N/A
Per capita money income 0.0000 *** N/A N/A 0.0000 .
Persons below poverty level per 0.8762 *** N/A N/A 0.5370 ***
Percent Eligible for Medicaid 1.5300 *** -0.2359 * 1.5880 ***
Average HCC Score -1.1170 *** 1.5523 *** 0.2831 **
Percent of atrial fibrillation 0.8717 . N/A N/A 1.5850 ***
Percent of depression N/A N/A N/A N/A 0.3751 *
Percent of heart failure N/A N/A N/A N/A -0.3908 *
Percent of kidney disease -0.6750 ** 0.9764 *** N/A N/A
Percent of obstructive pulmonary 1.1110 *** -2.2263 *** -1.1500 ***
Percent of diabetes 1.3410 *** -1.3787 *** N/A N/A
Percent of ischemic heart 0.8841 *** -1.4635 *** N/A N/A
Percent of breast cancer N/A N/A -1.7833 . N/A N/A
Percent of colorectal cancer 4.6670 *** -3.6122 ** 3.8520 ***
Percent of prostate cancer 1.7760 * N/A N/A N/A N/A
Percent of asthma -1.7180 *** N/A N/A -2.2520 ***
Percent of hypertension 1.0210 *** -1.1590 *** N/A N/A
Percent of high cholesterol -0.8609 *** 0.5189 *** -0.4981 ***
Percent of alzheimer -1.3240 *** 0.9932 ** N/A N/A
Percent of stroke -2.6300 *** N/A N/A -3.2040 ***
Part B Drugs Standardized Costs perc N/A N/A 0.8453 * 0.5984 .
Percent of Beneficiaries Using PB N/A N/A 0.2277 *** 0.1324 **

All models share most variables, with some exceptions where some variables are

significant in one model but might not be significant in others. For example, the

variable that indicates percentage of people who have asthma has negative impact

on PDP penetration but has no significant impact on MAPD penetration. This

means that counties where fewer people have asthma tend to enroll in PDP plans.

In contrast, the variable about the percentage of beneficiaries using Part B has a

positive relationship with MAPD plan penetration, but not PDP plan penetration.

This makes sense since it is required to enroll in both Part A and Part B in order to
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enroll in MAPD plans. Similar factors include number of PDP plans available, per

capita money income, percentage of people below poverty level, percentage of people

with atrial fibrillation/breast cancer/prostate cancer/stroke, and Part B drug stan-

dardized Medicare costs as a percentage of total standardized Medicare costs. Two

variables have the same positive/negative signs of their coefficient estimates: percent-

age of non-Hispanic white population, and percentage of bachelor degree or higher

population. This suggests that these two factors are affecting MAPD enrollments

and PDP enrollments in the same direction. Fourteen variables have opposite signs

in the coefficients for MAPD and PDP plan penetration. Nine factors that have

positive effects on PDP penetration rates but negative effects on MAPD penetra-

tion rates are: number of MAPD plans available, average age, percentage of female,

percentage of people eligible for Medicaid, and percentage of people with obstruc-

tive pulmonary/ diabetes/ ischemic heart/ colorectal cancer/ hypertension. While

five factors that are negatively related to PDP enrollments but positively related to

MAPD enrollments include homeownership rate, average HCC score, percentage of

people with kidney disease/high cholesterol/ Alzheimer.

4.6 Conclusions

This chapter identifies factors associated with the choice of the Medicare population

between MAPD plans and PDP plans when they receive prescription drug coverage.

The data in the analysis includes high-level census data, plan data and penetration

data. We use beta regression due to the properties of the response variable and

implement the methodology in R. We find that half of the variables have opposite

signs, which means they have impacts on MAPD and PDP plan penetration rates in

different directions. This conclusion can help policy-makers identify which types of
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prescription drug plans for the Medicare population should be emphasized in each

county based on the characteristics of their population from census data and plan

data of the counties.

4.7 Appendix

This appendix includes regression coefficients estimates as well as diagnostic plots

for PDP and total penetration models.

Table 4.6: Parameter estimates - PDP

Parameter Estimate Std. error z value Pr(> |z|) Sig. code

(Intercept) -6.1010 0.2965 -20.5770 0.0000 ***
cnt mapd -0.0120 0.0006 -21.3100 0.0000 ***
cnt pdp 0.0146 0.0024 6.1610 0.0000 ***
Average Age 0.0599 0.0039 15.3470 0.0000 ***
Percent Female 3.1450 0.2649 11.8710 0.0000 ***
Percent Non Hispanic White 0.1928 0.0357 5.3950 0.0000 ***
Bachelor degree or higher perc -0.4200 0.0986 -4.2610 0.0000 ***
Homeownership rate -0.3101 0.0755 -4.1080 0.0000 ***
Per capita money income 0.0000 0.0000 3.5540 0.0004 ***
Persons below poverty level per 0.8545 0.1420 6.0180 0.0000 ***
Percent Eligible for Medicaid 1.5290 0.0916 16.6960 0.0000 ***
Average HCC Score -1.0820 0.1203 -8.9920 0.0000 ***
Percent of kidney disease -0.6899 0.2363 -2.9200 0.0035 **
Percent of obstructive pulmonary 1.1040 0.2215 4.9840 0.0000 ***
Percent of diabetes 1.2640 0.2011 6.2880 0.0000 ***
Percent of ischemic heart 0.8847 0.1246 7.1000 0.0000 ***
Percent of colorectal cancer 5.0150 1.0940 4.5830 0.0000 ***
Percent of prostate cancer 2.1120 0.6920 3.0530 0.0023 **
Percent of asthma -1.8460 0.4575 -4.0350 0.0001 ***
Percent of hypertension 1.0150 0.1466 6.9250 0.0000 ***
Percent of high cholesterol -0.8301 0.1044 -7.9500 0.0000 ***
Percent of alzheimer -1.2590 0.3161 -3.9830 0.0001 ***
Percent of stroke -2.4560 0.6370 -3.8560 0.0001 ***
φ 45.362 1.223 37.09 0.0000 ***
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Figure 4.3: Diagnostic plots of PDP plans
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Table 4.7: Parameter estimates - Total

Parameter Estimate Std. error z value Pr(> |z|) Sig. code

(Intercept) -2.7131 0.2611 -10.3920 0.0000 ***
cnt mapd 0.0039 0.0006 6.9630 0.0000 ***
cnt pdp 0.0107 0.0023 4.7130 0.0000 ***
Average Age 0.0178 0.0036 4.9080 0.0000 ***
Percent Female 2.3613 0.2222 10.6260 0.0000 ***
Percent Non Hispanic White 0.3362 0.0341 9.8450 0.0000 ***
Bachelor degree or higher perc -0.7069 0.0567 -12.4630 0.0000 ***
Persons below poverty level per 0.3744 0.1006 3.7220 0.0002 ***
Percent Eligible for Medicaid 1.5960 0.0878 18.1850 0.0000 ***
Average HCC Score 0.2620 0.0882 2.9720 0.0030 **
Percent of atrial fibrillation 1.7105 0.4143 4.1290 0.0000 ***
Percent of obstructive pulmonary -1.2313 0.1863 -6.6100 0.0000 ***
Percent of colorectal cancer 3.6461 1.0294 3.5420 0.0004 ***
Percent of asthma -2.2510 0.4292 -5.2450 0.0000 ***
Percent of high cholesterol -0.4216 0.0685 -6.1510 0.0000 ***
Percent of stroke -3.4238 0.5715 -5.9910 0.0000 ***
Percent of Beneficiaries Using PB 0.1279 0.0459 2.7880 0.0053 **
φ 63.67 1.72 37.01 0.0000 ***
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Figure 4.4: Diagnostic plots of all Part D plans
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Chapter 5

Analysis of Medicare Services

Usage and Reimbursement Rate

5.1 Introduction

The Medicare program pays healthcare costs for the elderly, the permanently dis-

abled, and those with end-stage renal disease. In 2013, Medicare spending accounted

for 14% of the federal budget as shown in Figure 5.1. It also accounted for 20% of

total national health spending in 2012, 27% of spending on hospital care, and 23%

of spending on physician services. Medicare benefit payments totaled $583 billion in

2013. About 1/4 was for hospital inpatient services, 12% for physician services, and

11% for the Part D drug benefit. Another 1/4 of benefit spending was for Medicare

Advantage private health plans covering all Part A and B benefits. In 2014, 30% of

Medicare beneficiaries are enrolled in Medicare Advantage plans [44].

CMS (Center for Medicare and Medicaid Services) has recently made available
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extensive data files about providers’ utilization profiles, i.e., what they are charging

Medicare for, for each provider, all over the country, for services provided at a facility

or at an office. The objective of this chapter is to get statistical insights about the

health of the Medicare population from the public files. We are interested in answer-

ing the following questions particularly: Are there states with a disproportionate

incidence of a given HCPCS (Healthcare Common Procedure Coding System) code

compared to the size of Medicare population in that state? Are usage disparities

across states driven by differences in Medicare reimbursement amounts?

Figure 5.1: Medicare vs. Federal Budget & Medicare Benefit Payments, 2013

Source: Kaiser Family Foundation [44]

5.2 Data Description

As part of the Obama Administrations efforts to make the healthcare system more

transparent, affordable, and accountable, the Centers for Medicare & Medicaid Ser-

vices has prepared a public data set, the Medicare Provider Utilization and Payment

Data [41], with information on services and procedures provided to Medicare benefi-

ciaries by physicians and other healthcare professionals. The summary data contains
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aggregated information by state and HCPCS code. Any aggregated records which

are derived from 10 or fewer beneficiaries are excluded to protect the privacy of

Medicare beneficiaries. A total of 8305 HCPCS codes and 880644 physicians in 50

states, District of Columbia, Puerto Rico and Virgin Islands are included in the data.

The data includes physician services (Part B) only. Medicare Part B beneficiaries

represent about 90 percent of total Medicare population (Part A and Part B). Table

5.1 illustrates the main information provided in the data. We will analyze the data

to get insights on physician services usage and Medicare reimbursement rate. All

data analyses in this chapter are performed in SAS.

Table 5.1: Medicare Provider Utilization and Payment Data, 2012

Variable Name Description Example

nppes provider state desc The state where the provider is located. Pennsylvania
hcpcs code HCPCS code for the service provided. 67028
hcpcs description Description of the HCPCS code. Injection eye drug
place of service Either a facility (‘F’) or non-facility (‘O’). O
number of providers Number of providers within state. 147
line srvc cnt Number of services provided. 103114
unique bene doctor cnt Number of unique beneficiary/doctor interactions. 25393
bene day srvc cnt Number of distinct Medicare beneficiary/per day services. 102732
average medicare allowed amt Average of the Medicare allowed amount for the service. $119.847719
average submitted chrg amt Average of the charges submitted for the service. $604.2012631
average medicare payment amt Average amount that Medicare paid. $93.4530861

5.3 Correlation Analysis of Services Usage and

Medicare Population/ Reimbursement

We first create an additional column - total dollar amount - by multiplying the

Medicare average allowed amount by the line service count. Then we rank the data

in decreasing order by this column. The top ten HCPCS codes in total dollar amount

are shown in table 2. We notice that the most expensive codes in total dollar amount

are 99214 (office/outpatient visit, medium level of complexity, in an office setting),
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99213 (office/outpatient visit, low level of complexity, in an office setting), and 99232

(subsequent hospital care, in facility).

Table 5.2: Top 10 HCPCS Codes in Total Dollar Allowed Amount

State HCPCS HCPCS Desc Place # of Srvc Avg Allowed Amt Tot Allowed Amt

1 Overall 99214 Office/outpatient visit est O 76,237,819 $103.11 $7,861,014,700
2 Overall 99213 Office/outpatient visit est O 91,252,355 $69.59 $6,350,698,955
3 Overall 99232 Subsequent hospital care F 49,384,357 $69.87 $3,450,330,601
4 Overall 66984 Cataract surg w/iol 1 stage F 3,716,637 $611.76 $2,273,702,288
5 Overall 99223 Initial hospital care F 11,213,325 $195.75 $2,195,032,129
6 Overall 99233 Subsequent hospital care F 21,423,718 $100.73 $2,157,916,561
7 Overall A0427 ALS1-emergency F 4,980,848 $413.56 $2,059,889,581
8 Overall 99285 Emergency dept visit F 10,317,768 $167.62 $1,729,505,516
9 Overall A0428 bls F 6,587,015 $221.67 $1,460,121,921

10 Overall 92014 Eye exam & treatment O 11,217,016 $118.05 $1,324,162,376

We conduct correlation analyses on these three codes to investigate if the inci-

dence of codes per state more strongly correlated with Medicare population, or with

Medicare reimbursement in that state. Table 5.3 shows the Pearson correlation coef-

ficients for code 99214. Service usage and Medicare population are highly correlated

as their correlation is 0.96, with p-value <0.0001. Meanwhile, the correlation between

service usage and Medicare reimbursement is only 0.21, which indicates that services

usage is less correlated with reimbursement rate than population. Same conclusion

can be drawn from the scatter plots as it is close to a straight line in service usage

versus population plot but disperse in service usage versus reimbursement plot.

Table 5.3: Pearson Correlation Coefficients for 99214

Variable With Variable N Correlation 95% Confidence Interval p Value

line srvc cnt enrl partb 53 0.96305 [0.935392,0.978209] <.0001
line srvc cnt avg allowed amt 53 0.21008 [-0.065851,0.452958] 0.1316
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Figure 5.2: Scatter Plots of 99214

We can get similar conclusions for code 99213 and code 99232. Their Pearson

correlation coefficients are shown in table 5.4 and table 5.5, respectively.

Table 5.4: Pearson Correlation Coefficients for 99213

Variable With Variable N Correlation 95% Confidence Interval p Value

line srvc cnt enrl partb 53 0.97857 [0.962296,0.987399] <.0001
line srvc cnt avg allowed amt 53 0.22889 [-0.04633,0.468384] 0.0994

Table 5.5: Pearson Correlation Coefficients for 99232

Variable With Variable N Correlation 95% Confidence Interval p Value

line srvc cnt enrl partb 53 0.94172 [0.898962,0.965492] <.0001
line srvc cnt avg allowed amt 53 0.16224 [-0.11455,0.413069] 0.2471

5.4 Most Expensive/Common Services in Each S-

tate

In order to make recommendations to the policy makers which line items to pick

in each state to try to decrease the dollar amount associated by reducing incidence
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numbers (not reimbursement levels), we first identify the most expensive and most

common line items in each state. We take Pennsylvania as an example. The Medicare

population (part B) in Pennsylvania is 2,200,614 in 2012. Per capita is calculated as

total dollar amount divided by Medicare population in PA. The three most expensive

codes in PA are the same as in the United State as a whole, while the rest vary from

their country level counterparts.

Table 5.6: Ten most expensive HCPCS codes in PA

hcpcs code hcpcs description place of srvc total dollar per capita

99214 Office/outpatient visit est O $ 316,631,372 $ 143.88
99213 Office/outpatient visit est O $ 239,046,599 $ 108.63
99232 Subsequent hospital care F $ 188,314,151 $ 85.57
A0428 BLS F $ 97,205,563 $ 44.17
99223 Initial hospital care F $ 95,920,544 $ 43.59
J2778 Ranibizumab injection O $ 89,023,943 $ 40.45
99285 Emergency dept visit F $ 88,333,927 $ 40.14
66984 Cataract surg w/iol 1 stage F $ 85,919,141 $ 39.04
A0427 ALS1-emergency F $ 81,925,077 $ 37.23
99233 Subsequent hospital care F $ 69,563,073 $ 31.61

We do the same calculation for all states and count the frequency a HCPCS code

appearing in the top ten most expensive list of each state. The frequency counts are

shown in table 5.7. For example, code 99213 and 99214 appear in every single state’s

(including Puerto Rico and Virgin Islands) top ten most expensive list. However, for

some codes such as 83898 (Molecule nucleic ampli each) only happens to Utah, not

any other state.
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Table 5.7: Most expensive HCPCS codes over all states

hcpcs code hcpcs desc place of service cnt state

99213 Office/outpatient visit est O 53
99214 Office/outpatient visit est O 53
99232 Subsequent hospital care F 51
66984 Cataract surg w/iol 1 stage F 49
A0427 ALS1-emergency F 48
99223 Initial hospital care F 43
99285 Emergency dept visit F 40
99233 Subsequent hospital care F 38
92014 Eye exam & treatment O 28
97110 Therapeutic exercises O 18
A0425 Ground mileage F 16
A0428 BLS F 15
J2778 Ranibizumab injection O 13
A0429 BLS-emergency F 10

Table 5.8: Unique most expensive HCPCS codes

hcpcs code hcpcs desc place of service state name

83898 Molecule nucleic ampli each O Utah
83904 Molecule mutation identify O Utah
83909 Nucleic acid high resolute O Utah
83914 Mutation ident ola/sbce/aspe O Washington
90960 Esrd srv 4 visits p mo 20+ O Puerto Rico
97140 Manual therapy O Wyoming
99212 Office/outpatient visit est O Wyoming
99222 Initial hospital care F Michigan
A0430 Fixed wing air transport F Alaska
A0431 Rotary wing air transport F Alabama
A0435 Fixed wing air mileage F Alaska
G9152 Mapcp demo community O Vermont

For the most common HCPCS codes identification, we still take Pennsylvania as

an example, as shown in table 5.9. We rank the data in decreasing order by service

usage. We notice that despite being highest in total dollar amount, code 99214 is

not the highest in terms of service usage.
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Table 5.9: Ten most common HCPCS codes in PA

hcpcs code hcpcs description place of service line srvc cnt

P9603 One-way allow prorated miles O 6,465,047
A0425 Ground mileage F 5,989,114
J0881 Darbepoetin alfa, non-esrd O 3,585,133
99213 Office/outpatient visit est O 3,453,943
99214 Office/outpatient visit est O 3,084,848
99232 Subsequent hospital care F 2,711,119
36415 Routine venipuncture O 2,388,292
97110 Therapeutic exercises O 1,867,715
J1756 Iron sucrose injection O 1,476,971
Q9967 LOCM 300-399mg/ml iodine,1ml O 1,413,515

We identify the most common HCPCS codes over all states in the same fashion as

identifying most expensive ones. We notice that in table 5.10, code 99232 drops from

the third place on the “most expensive” list to the sixth place here, which indicates

that this code is significantly expensive.

Table 5.10: Most common HCPCS codes over all states

hcpcs code hcpcs description place of service cnt state

99213 Office/outpatient visit est O 53
99214 Office/outpatient visit est O 53
A0425 Ground mileage F 53
Q9967 LOCM 300-399mg/ml iodine,1ml O 48
36415 Routine venipuncture O 46
99232 Subsequent hospital care F 40
97110 Therapeutic exercises O 34
J0881 Darbepoetin alfa, non-esrd O 28
P9603 One-way allow prorated miles O 14
85025 Complete cbc w/auto diff wbc O 13
J0878 Daptomycin injection O 13
Q0138 Ferumoxytol, non-esrd O 12
80053 Comprehen metabolic panel O 11
97140 Manual therapy O 11

In the unique most common list (table 5.11), code 83898 (Molecule nucleic ampli
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each) appears again for Utah, which might be an indicator that Utah should focus

more on this code than other states.

Table 5.11: Unique most common HCPCS codes

hcpcs code hcpcs desc place of service state name

66984 Cataract surg w/iol 1 stage O Kentucky
81000 Urinalysis nonauto w/scope O Virgin Islands
83896 Molecular diagnostics O Virginia
83898 Molecule nucleic ampli each O Utah
83901 Molecule nucleic ampli addon O Washington
83904 Molecule mutation identify O Utah
83909 Nucleic acid high resolute O Utah
83914 Mutation ident ola/sbce/aspe O Washington
83925 Assay of opiates O Rhode Island
84443 Assay thyroid stim hormone O Puerto Rico
98940 Chiropractic manipulation O North Dakota
99212 Office/outpatient visit est O Alaska
99231 Subsequent hospital care F Louisiana
G0008 Admin influenza virus vac O Arizona
G9151 Mapcp demo state O Michigan
G9153 Mapcp demo physician O Michigan
J1170 Hydromorphone injection O Mississippi
J1745 Infliximab injection O Montana
J2323 Natalizumab injection O Utah
J3010 Fentanyl citrate injeciton O Mississippi
L8621 Repl zinc air battery O Colorado

Combining information about per capita and number of services, we would rec-

ommend targeting specific line times to decrease total dollar amount by reducing

incidence numbers. For instance, the recommendation for Pennsylvania would be fo-

cusing first on codes 99214, 99213 and 99232 since they have the highest total dollar

amounts and relatively intense service usage.
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Table 5.12: Recommendation for Pennsylvania

hcpcs hcpcs description place per capita line srvc cnt total dollar

P9603 One-way allow prorated miles O $ 0.90 6,465,047 $ 1,981,847
A0425 Ground mileage F $ 20.63 5,989,114 $ 45,392,499
J0881 Darbepoetin alfa, non-esrd O $ 5.33 3,585,133 $ 11,725,185
99213 Office/outpatient visit est O $ 108.63 3,453,943 $ 239,046,599
99214 Office/outpatient visit est O $ 143.88 3,084,848 $ 316,631,372
99232 Subsequent hospital care F $ 85.57 2,711,119 $ 188,314,151
36415 Routine venipuncture O $ 3.26 2,388,292 $ 7,164,785
97110 Therapeutic exercises O $ 23.98 1,867,715 $ 52,762,284
J1756 Iron sucrose injection O $ 0.20 1,476,971 $ 435,796
Q9967 LOCM 300-399mg/ml iodine,1ml O $ 0.09 1,413,515 $ 193,339

5.5 Services and States Most Related to Medicare

Reimbursement

There is concern that doctors and hospitals tend to upcode on purpose to get more

reimbursement from Medicare [70]. To investigate whether this concern is valid or

not, we analyze the correlation between service codes and Medicare reimbursement

over all states. For service codes, we analyze the top 1000 codes in total dollar

amount as it is cost efficient. Service usage is surprisingly not highly correlated with

reimbursement. Among 1000 codes, only 9 of them have correlation higher than

0.7 and 7 of them higher than 0.5 but lower than 0.7. Some of the most highly

correlated codes are shown in table 5.13. The concern is valid since it does exist that

some expensive codes are more often used than others. Medicare could pay more

attention to these codes to prevent upcoding.
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Table 5.13: Services most related to Medicare reimbursement

hcpcs code hcpcs description place of service correlation

89240 Pathology lab procedure O 1
0182T Hdr elect brachytherapy O 0.983123
84999 Clinical chemistry test O 0.870835
G0249 Provide INR test mater/equip O 0.836478
86849 Immunology procedure O 0.741178

We do a similar analysis on the codes at state level. The results show that service

usage doesn’t seem to be correlated to the Medicare allowed reimbursement on state

level as even the most significant correlation between number of services and allowed

amount is only -0.08. This means that no state particularly upcodes.

5.6 Simulation of Project Growth in Usage and

Spending

Our objective in this section is to project growth in service usage and spending in

ten years. We get the total number of Medicare beneficiaries by state from CM-

S’s Medicare Enrollment Reports [40] and Kaiser Family Foundation’s State Health

Facts [43] due to lack of partial data from CMS’s enrollment database. Then we

perform a simulation about the projected growth in line item counts (service usage)

based on growth in Medicare population for each state in ten years. We predict

Medicare spending in ten years as well assuming Medicare reimbursement rates grow

at inflation rate. The steps of the prediction process is as follows:

1. Perform time series analysis on Medicare population of each state from 1999 to

2012, and project Medicare population in ten years based on the growth rates

75



in each state. We choose ARIMA models because they are, in theory, the most

general class of models for forecasting a time series.

2. Analyze relationship between service usage and Medicare population using lin-

ear regression, and predict growth in service usage based on the linear model.

We could also use nonlinear regression, such as Support Vector Machine re-

gression or Neural Network regression.

3. Predict Medicare spending in ten years based on projected growth in service

usages and the assumption that reimbursement rates increasing at inflation

rate.

We plot the Medicare population for all states from 1985 to 2012. Almost all states’

Medicare population grow steadily over years, except the District of Columbia. The

figures below show the Medicare population growth trend for Pennsylvania and U.S.

as a whole.

Figure 5.3: US Medicare Population, 1985-2012
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Figure 5.4: PA Medicare Population, 1985-2012

We take PA as an example showing how time series analysis works on population

growth projection. In order to decide which time series model to apply on PA

population data, we first check autocorrelation of the series.
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Figure 5.5: Autocorrelation check PA

This series is obviously nonstationary as it has a strong upward trend. Its ACF

decays slowly and its PACF only has one spike at lag 1. This is an indicator that

AR(1) model might be adequate for the data. Thus, we difference the data once,

and the total number of observations drops from 28 to 27 since one data is lost in

the differencing process.
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Figure 5.6: Autocorrelation check PA(1)

The time series looks stationary now after differenced once. Thus, AR(1) is

adequate for our PA time series data. We apply AR(1) model on the data and

forecast the Medicare population in PA in ten years. The forecasts are shown in

table 5.14.

Table 5.14: Forecasts for Medicare population in PA

Year Forecast Std Error 95% Confidence Limits

2013 2381386 14596.31 [2352778, 2409994]
2014 2404455 23542.82 [2358312, 2450598]
2015 2425464 30570.45 [2365547, 2485381]
2016 2445926 36408.4 [2374567 , 2517285]
2017 2466243 41466.43 [2384970, 2547515]
2018 2486521 45979.6 [2396402, 2576639]
2019 2506789 50089.78 [2408614, 2604963]
2020 2527054 53887.86 [2421436 , 2632672]
2021 2547318 57435.46 [2434747 , 2659890]
2022 2567583 60776.36 [2448463, 2686702]
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We compare the actual Medicare population (blue) and predicted Medicare pop-

ulation (red). The model seems to fit well. According to the forecast, the Medicare

population in PA in ten years would be 2,567,583.

Figure 5.7: Actual vs. Predicted

We apply linear regression on service usage of code 99214 and Medicare popula-

tion in PA. The R-squared ratio is 0.9275, which is very good. Thus, the projected

service usage of code 99214 would be 4,272,833 in ten years. The current service

usage of code 99214 is 3,084,848. We can then get the projected spending on this

code by multiplying the projected service usage by reimbursement rate, assuming

reimbursement rate increases at inflation rate. The current average medicare reim-

bursement allowed amount for code 99214 in PA is $102.64. If the inflation rate is

2%, then the Medicare spending on this code in PA would be $534,606,556 in ten

years. We can apply the same methods and get projections for all codes and all

states.
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5.7 Conclusions

This chapter investigates trends in physician services usage and Medicare reimburse-

ment rate from CMS public files. We analyze the HCPCS (Healthcare Common

Procedure Coding System) codes and investigate the validity of the concern that

doctors tend to upcode on purpose for more reimbursement. Our findings indicate

that services usage is more correlated with population than reimbursement rate, and

no state particularly upcodes. In addition, we make recommendations to policy mak-

ers on which HCPCS codes to choose for the purpose of reducing Medicare spending.

For example, the recommendation for Pennsylvania would be focusing first on codes

99214 (office/outpatient visit, medium level of complexity, in an office setting), 99213

(office/outpatient visit, low level of complexity, in an office setting), and 99232 (sub-

sequent hospital care, in facility) since they have the highest total dollar amounts

and relatively intense service usage. We also utilize time series analysis to predict

Medicare spending in ten years.
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Chapter 6

Robust optimization in Healthcare

Systems Engineering - A survey

6.1 Overview of Healthcare Systems in the United

States

6.1.1 The Payment System

According to CMS’s data [6], U.S. health care spending increased 3.7 percent to

reach $2.8 trillion in 2012, an average of $8,915 per person, the fourth consecutive

year of slow growth. The share of the economy devoted to health spending decreased

from 17.3 percent in 2011 to 17.2 percent in 2012, as the Gross Domestic Product

increased nearly one percentage point faster than health care spending at 4.6 percent.

Figure 6.1 shows that from 1960 to 2012, the National Health Expenditures and Per

Capita Amount have been consistently growing at unsustainable rates over time.

82



The percentage of GDP devoted to health spending increased rapidly from 1960

to 2000, but has been growing slowly from 2000 to 2009. It even decreased by

0.1 percent every year since 2010. The chart in the lower right corner shows the

distribution of US health care expenditures. The x-axis is the percent of population

ranked by health care spending, and the y-axis is the percent of total health care

spending. For example, the top 1 percent of patients account for 21.8 percent of

total health care spending, and the top 50 percent of patients create 97.1 percent of

health expenditures in 2009.

Health care spending is total payments from all sources, including direct payments

from individuals and families, private insurance, Medicare, Medicaid, and miscella-

neous other sources, to hospitals, physicians, other providers (including dental care),

and pharmacies. Health insurance premiums are not included.

Figure 6.1: National Health Expenditures

Source: Centers for Medicare & Medicaid Services, National Health Expenditure Data

In current fee-for-service model, fee-for-service refers to the payment model where
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health care providers receive a fee for each service such as an office visit, test, pro-

cedure, or other health care service. Payments are issued retrospectively, after the

services are provided. Fee-for-service is the dominant physician payment method in

the United States and Laugesen believes that [59]this mechanism is the major driver

of high health care costs. Under this payment model, providers do not take risks since

they get reimbursement for the services they provide. Therefore, it provides incentive

for the provider to increase volume whether appropriate or not, without any risk. It

also encourages duplication, discourages care coordination, and promotes inefficiency

in the health care delivery system [69]. Similarly, when patients are shielded from

paying (cost-sharing) by health insurance coverage, they are incentivized to welcome

any medical service that might do some good. A variety of reform efforts have been

attempted, recommended, or initiated to reduce its influence such as moving toward-

s bundled payments and capitation. Despite all the criticism fee-for-service model

gets, Ginsburg [48] believes that the core method of payment to many physicians for

the services they provide is likely to remain fee-for-service, therefore it is critical to

address the current shortcomings in the Medicare physician fee schedule.

Another payment approach is called capitation or global capitation. Under global

capitation, provider is paid a set amount of money per patient per month, indepen-

dently of the costs actually incurred. It usually pays a single health care organization.

Global capitation is currently used by private HMOs, including in publicly financed

products like Medicare Advantage plans and Medicaid managed care plans. If a

patient insured through a globally capitated plan uses services that cost less than

the amount paid to the provider organization, the organization keeps the leftover

funds as profit. To ensure providers do not withhold needed care, globally capitated

providers often have to report on quality and utilization measures, which can be

linked to performance bonuses or publicly reported [10]. The amount of the global
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payment can be based on normative standards (e.g., the average risk-adjusted pay-

ment for the population in the community) or based on historical spending for the

population cared for by the capitated organization, trended forward. Global capita-

tion encourages providers to improve efficiency of care, reduce unnecessary care and

bring spending under control. In addition, unlike episode-based payments, capitation

provides incentives to keep patients healthy, not just to limit the costs of episodes

when they occur [4]. Physicians can also provide services to patients in various ways

such as phone consultations that can improve efficiency but are difficult to incor-

porate into fee-for-service models. However, providers have to bear full risk beyond

capitated payment.

Many of the payment plans used to pay health care providers in today’s envi-

ronment could be classified as bundled-services arrangements [26] or episode-based

payments. From the perspective of CMS and other private payers, the goal of bun-

dled payments is to improve care coordination and reduce the use of duplicative or

unnecessary services [63]. The payments are designed to achieve this goal by cre-

ating financial incentives for hospitals and affiliated providers to keep the costs of

surgical and acute care episodes below certain amount. Bundled payment introduces

an incentive for providers to select lower-price treatment regimens from among those

deemed equally appropriate - an incentive not present in the current fee-for-service

system. A bundled-services payment plan has two key features. First, payments to

the provider are not necessarily related to the list of specific services provided the pa-

tient and identified in the UB-92 or the CMS-1500. Instead payment is grouped into

a mutually exclusive set of services categories. For example, hospitals are paid by

some health care plans on a per-diem or per-case payment rate. Both are examples

of bundled services payment. Second, bundled-services arrangements have a fixed

fee specified per unit of service. For example, in the per diem arrangement, revenue
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from treating a patient would be equal to the length of stay times the negotiated per-

diem rate. Medicare has developed bundled-services payment plans for most health

care providers. Medicare pays hospitals for inpatient care on a bundled-services unit

basis referred to as PPS (Prospective Payment System). Medicare officially launched

PPS on October 1, 1983. All participating in the Medicare program are required to

participate in PPS, except those excluded by statute. PPS provides payment for all

hospital non-physician services provided to hospital inpatients. This payment also

covers services provided by outside suppliers, such as laboratory or radiology units.

The basis of PPS payment is the DRG system developed by Yale University. The

DRG system takes all possible diagnoses from the International Classification of Dis-

eases, 9th Revision, Clinical Modification (ICD-9-CM) system and classifies them

into 25 major diagnostic categories based on organ systems. These 25 categories

are further broken down into 559 distinct medically meaningful groupings or DRGs.

Medicare contends that the resources required to treat a given DRG entity should

be similar for all patients within a DRG category.

For hospitals that have higher costs across procedures might face substantial fi-

nancial burden with bundled payments. On the other hand, those hospitals that

have low costs of services would find bundled payment favorable to keep financially

viable. Miller et al. [63] use multiple linear regression to describe hospital-level vari-

ation in Medicare payments for inpatient surgery. Their findings of the existence of

wide variation in payments imply opportunities for substantial savings for CMS and

other payers. However, the potential savings will depend strongly on the procedures

and services selected for bundled payment programs. They also suggest the possible

mixed effects of bundled payments on providers. For example, hospitals that are

currently low cost for one or more of the services potentially covered by bundled

payments, the payments may equal or exceed current fee-for-service reimbursements.
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In this case, the financial incentive would be weak for these providers to focus on

continued improvements in care coordination and cost efficiency.

In implementation of bundled payment, policy makers need to set base payment

rates for episodes of care and update the rates over time to reflect changes in the

costs of delivering care and the components of care. However, Rosen et al. [66]

conduct analysis on 2003 and 2007 US commercial claims data showing that spending

growth to be highly skewed across episodes. 10 percent of episodes accounted for

82.5 percent of spending growth, and within-episode spending growth ranged from

-75 percent to 323 percent. Therefore, instead of updating the reimbursement rates

uniformly across episodes of care, new approaches need to be developed to address

variations in spending growth.

Consumer-directed health plans (CDHPs) , also known as high-deductible health

plans (HDHPs), are relatively new in origin and became viable alternatives with the

passage of the 2003 Medicare Prescription Drug, Improvement, and Modernization

Act. They combine two elements. The first element is a health plan, usually a PPO,

that has a high deductible (such as $5,000) and low premiums. The second element is

a special ”savings account” that is used to pay medical bills before the deductible has

been met. The health savings account, similar to an individual retirement account

(IRA), lets people put aside untaxed wages that they may use to cover their out-

of-pocket medical expenses. Some employers contribute to employees’ accounts as a

benefit. The primary objective of these plans is to increase the involvement of pa-

tients in selecting cost-effective health care services. In 2009, the median deductible

for individual coverage in a high deductible health plan was $1600, compared with

$400 for traditional deductible health plans [20]. For 2011, the Internal Revenue Ser-

vices (IRS) has set the minimum HDHP deductibles at $1200 for individual coverage

and $2400 for family coverage. Most of the large health plans provide CDHP options,
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but current enrollment in CDHPs still remains small. There is mixed effect of HDHPs

on the utilization of care among patients enrolled in these plans. Wharam [85] an-

alyze emergency department (ED) visits and hospitalizations over two years among

enrollees insured in high-deductible plans through small employers in Massachusetts.

They find that people of high socioeconomic status enrolled in high-deductible health

plans did cut their use of emergency department visits for lower-severity conditions

by 15-20%, with appropriate use of emergency care for serious conditions unchanged.

However, people of low socioeconomic status experienced 25-30 percent reductions in

high-severity ED visits over both years, while hospitalizations declined by 23 percent

in year 1 but rose again in year 2, suggesting that delayed care led to even more

serious illness requiring hospitalization. They suggest that policy makers and em-

ployers should consider proactive strategies to educate high-deductible plan members

about their benefit structures or identify members at higher risk of avoiding needed

care. They should also consider implementing means-based deductibles. Kozhiman-

nil et al. [56] found similar disparities according to gender, with men enrolled in

high-deductible plans more likely than women to forego needed care,which implies

that clinicians caring for patients with HDHPs should be aware of sex differences in

response to benefit design.

6.1.2 The Delivery System

In the healthcare delivery system, health services can be classified into three types:

primary care, secondary care, and tertiary care. Primary care is preventive and

wellness care, provided by physicians, or nurse practitioners. The goal of primary

care is to decrease the health risk of individuals and the community. Usually, the

physician or the nurse practitioner is the first person a patient would reach out to

regarding any health issue. Secondary care is provided by a hospital or specialist,
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referred by the primary care provider, that has more specialized knowledge, skill,

or equipment. Tertiary care refers to more specialized and advanced consultative

heath care, such as cancer management and plastic surgery, referred by primary care

provider or secondary care provider.

The healthcare delivery system in the United States has been highly complicated

and costly, and an Integrated Delivery System (IDS) has been attractive to all players

in the system. IDS is a fairly broad concept. One definition of IDS is that “It is

a network of health care providers and organizations which provides or arranges to

provide a coordinated continuum of services to a defined population and is willing to

be held clinically and fiscally accountable for the clinical outcomes and health status

of the population served” [83].It is believed that higher level of integration will yield

a more efficient healthcare delivery system. A variety of reform efforts under the

Patient Protection and Affordable Care Act have been attempted, recommended, or

initiated to reduce costs and improve quality of care. These include Partnership for

Patients, Bundled Payments for Care Improvement, Comprehensive Primary Care

Initiative, Accountable Care Organization Models, etc. Among them, Accountable

Care Organizations, or ACOs, are groups of doctors, hospitals, and other health

care providers, who come together voluntarily to give coordinated high quality care

to the Medicare patients they serve. ACOs can be considered as a higher-level

system based on IDSs. The goal of ACOs is to avoid unnecessary spending such as

repeated diagnostic tests. ACOs also take responsibility of keeping the patients out

of the hospital and emergency room and helping patients manage their conditions

by getting them to take their medications appropriately and coming back for needed

appointments. ACO is set up by providers, not an insurance company, so the doctors

and hospitals can work within their own framework as long as they are meeting the

33 quality measures and outcomes agreed to the contract with the insurer. Doctors
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and hospitals in ACOs are given a spending target for patient care with requirement

on health care quality standards. They can keep some of the savings if they spend

less than the budget, but will be penalized if they spend too much. There are 626

ACOs in the United States as of May 2014, both in public and private sectors.

Hwang et.al [54] review 25 related articles and manuscripts, and conclude an

association between increased integration in healthcare delivery and an increase in

the quality of care, in terms of clinical effectiveness, length of stay, medication errors,

and number of office visits. As of cost reduction, some studies show that IDSs are

associated with lower cost of care with level of service utilization being used as a

proxy measure for cost of care, while other studies show no significant relationship

between care integration/coordination and cost reduction.

6.2 Introduction to Robust Optimization

Traditional methods to address uncertainty in optimization are stochastic program-

ming and dynamic programming. Stochastic programming assumes the parameters

are uncertain but their distributions are known. A stochastic programming problem

minimizes (or maximizes) the expected objective value over all possible scenarios

caused by the uncertainties that follow certain distributions. Dynamic programming

deals with multi-stage decision making, in which the value function is maximized

such that the decision is optimal at all time periods (also called the optimal poli-

cy). However, stochastic programming and dynamic programming have two major

drawbacks. First, the probability distribution of uncertainty is hard to be estimated

accurately. Further, the size of the problem grows exponentially as the number of

scenarios (for SP) or the number of states/time periods (for DP) increases, which

makes problem solving very difficult or intractable.
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Robust optimization (RO) comes in as another approach to address data un-

certainty, in which uncertainty is not stochastic, but deterministic and set-based.

Instead of minimize/maximize expected objective value as in SP, RO considers the

worst-case scenario and minimize the maximum objective value or maximize the

minimum objective value over the uncertainty set. Therefore, the optimal solution

of RO is immune to data uncertainty since it guarantees that the optimal solution

is feasible and efficient for any realization of the uncertainty set. Another advantage

of RO is its tractability. Bertsimas et. al [13] state that “many well-known class-

es of optimization problems, including LP, QCQP, SOCP, SDP, and some discrete

problems as well, have an RO formulation that is tractable”.

A simple example of RO is as follows. Consider the linear programming problem:

max c′x

s.t. Ax ≤ b

x ≥ 0

(6.1)

Suppose A is the uncertain parameter and belongs to the uncertainty set U , then

the robust counterpart of Problem(6.1) is

max c′x

s.t. a′ix ≤ bi, ∀i,∀ai ∈ U

x ≥ 0

(6.2)

or equivalently

max c′x

s.t. max
ai∈U

a′ix ≤ bi, ∀i

x ≥ 0

(6.3)

where ai is the ith column of matrix A′. The uncertainty can be modeled in different
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ways. Soyster [73] considers the linear programming problem where the uncertain-

ty belongs to column-wise convex sets. This method is too conservative since the

optimal solution requires all uncertain parameters to be equal to their worst-case

values. A less conservative approach proposed by Ben-Tal and Nemirovski [11] con-

siders linear programming problem with ellipsoidal uncertainty sets, and the robust

counterpart problem is turned into tractable conic quadratic problem. One drawback

of this method is its nonlinear model structure with higher computational demand-

s. Bertsimas and Sim [15] define uncertainty set as a polyhedron, which consists

of range forecasts for each uncertain parameter. The robust counterpart of the lin-

ear problem is proved to be linear as well. In addition, they introduce a constraint

called “budget of uncertainty”, to control the conservatism at the will of decision

maker. Suppose the uncertain parameter aij belongs to a symmetric, bounded inter-

val [āij − âij] where āij is the point forecast of aij and âij is the deviation from the

nominal value. Define the scaled deviation yij as

yij =
aij − āij
âij

,∀i, j (6.4)

such that aij = āij + âijyij. The scaled deviation y belongs to the set:

Y =

{
y|

n∑
j=1

|yij| ≤ Γi,∀i, |yij| ≤ 1,∀i, j

}
, (6.5)

where Γ ∈ [0, n] is the budge of uncertainty, which determines the number of aij that

can be deviated from the nominal value āij. If Γ = 0, then all parameters are certain.

If Γ = n, then all parameters are uncertain. If 0 < Γ < n, then the decision maker

can control the level of conservatism while protect against parameter uncertainty to

some degree. By incorporating the budge of uncertainty constraint, Problem (6.1)
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becomes:

max c′x

s.t. āi
′x+ max

yi∈Y

n∑
j=1

âij
′xjyij ≤ bi, ∀i

x ≥ 0.

(6.6)

The robust problem (6.6) can be reformulated as a linear programming problem [16]:

max c′x

s.t. āi
′x− Γipi −

n∑
j=1

qij ≤ bi, ∀i

pi + qij ≤ âijzj, ∀i, j

−zj ≤ xj ≤ zj, ∀j

pi, qij ≥ 0, ∀i, j

x ≥ 0.

(6.7)

The reader is referred to Bertsimas et. al [13], Gabrel et. al [46] and references

therein for a comprehensive review on theories, applications and recent advances of

robust optimization.
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6.3 Applications of Robust Optimization in Health-

care Systems Engineering

6.3.1 Robust Regression and Prediction of Healthcare Costs

Robust Regression

Ordinary least squares (OLS) linear regression can be very sensitive to outliers due

to various assumptions of the model such as residuals having constant variance and

are normally iid (independent and identically distributed). Robust regression is an

alternative estimation method which down-weight or ignore unusual data such that

it can still provide useful information when some of the assumptions are violated.

When the weights given to each observations are close to one, the results of robust

regression would be the same as OLS estimates. There are different types of robust

regression models when it comes to how they give less weights to observations that

would otherwise influence regression line. Some commonly used estimators include

M-estimators, bounded-influence estimators, MM-estimators, and L1-regression esti-

mators. Robust regression can be implemented in SAS (”ROBUSTREG” procedure)

and R (”robust” package).

M-Estimation: “M”-Estimation gets its name since it is considered as a gen-

eralization of the Maximum Likelihood Estimation method. It is first introduced

by Peter J. Huber in 1964. M-estimation deals with outliers in the way that gives

less weights to observations with large residuals [45]. An objective function f and a

weight function w are involved in the estimation process. Consider a linear model

yi = xTi β + εi, i = 1, . . . , n, (6.8)
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then the residual would be

ei = yi − ŷi = yi − xTi β̂. (6.9)

In regression estimation, the estimates β̂ are obtained by minimizing the objective

function
n∑
i=1

f(ei) =
n∑
i=1

f(yi − xTi β̂). (6.10)

Intuitively, the minimization problem 6.10 can be solved by differentiating with re-

spect to β̂ and setting it to 0:

∂

∂b

n∑
i=1

f(yi − xTi β̂) = 0. (6.11)

If we define the weight function w as the derivative of f with respect to β̂, then

equation 6.11 becomes
n∑
i=1

wi(yi − xTi β̂)xTi = 0. (6.12)

Since weights w, coefficients β, and residuals e depend on each other, the minimiza-

tion problem 6.10 can be solved by an iterative method until the estimated coeffi-

cients converge. For the traditional OLS method, the objective function f(e) = e2

represents sum of squared residuals, and the weight function w(e) = 1 since it gives

equal weight to every observation. However, for M-estimation, one possible objective

function (Huber Method) and its corresponding weight function are:

f(e) =


1

2
e2, |e| ≤ c

c|e| − 1

2
c2 |e| > c

,w(e) =


1, |e| ≤ c

c/|e| |e| > c

(6.13)

Bounded-influence estimation: Although M-estimators are insensitive to out-
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liers and have relatively high efficiency, they are not robust to high leverage points

under certain circumstances. Therefore, bounded-influence (BI) estimators are used

to deal with high leverage points. One example is the least-trimmed squares (LTS) es-

timator, in which the estimates β̂ are obtained by minimizing the sum of the smallest

k of squared residuals. However, how to choose k can be tricky and they sometimes

provide unreasonable results. Therefore, one estimation method which combines M-

estimation and Bounded-Influence estimation is called MM-estimation, where the BI

estimator provide starting points for M-estimation. This method takes advantage of

M-estimation’s high efficiency and BI estimation’s high breakdown point.

L1 regression: It is the most commonly used method of robust regression. As

a special case of quantile regression, L1 regression minimizes the sum of absolute

residuals:

β̂ = arg min
1

n

n∑
i=1

|yi − xTi β|. (6.14)

Compared with OLS method, L1 gives much less weight to observations with large

residuals. Instead of estimating mean of response variable y at xTβ, L1 regression

estimates median of y at xTβ.

Note that here we only consider robustness to outliers, not other types of ro-

bustness such as model misspecification. Minimax robust designs for misspecified

regression models is proposed and illustrated by Heo et.al [53]and Shi et.al [71]. Ro-

bust regression could possibly be confused with Robust optimization in statistical

estimation [47] [24], which assumes the coefficient matrices A and b are uncertain

but bounded. For the purpose of healthcare costs prediction, we do not consider this

type of robustness either.
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Application: Prediction of Healthcare Costs

Healthcare costs have been growing at unsustainable rates these years. National

health spending grew 3.6% in 2013. Thus healthcare cost prediction plays an impor-

tant role in improving accountability in care. To take a closer look at the distribution

of health spending, the cut-off points representing the annual expenses per person in

each percentile are shown in the table below. For instance, almost half of all health

care spending (49.5%) was used to treat just 5% of the population, which included

individuals with health expenses at or above $17,402 per year. We plot health spend-

ing versus percent of population and find that it obeys power-law distribution. The

distribution of health spending is highly concentrated because the onset of disease is

unpredictable and can require intensive technology and time to treat.

Figure 6.2: Cut-Off Points of NHE Figure 6.3: Distribution of NHE

Researchers have been using statistical models to better predict healthcare costs.

Claims data and administrative data are two major utilized data sources. According

to Duncan [34], there are two major types of models for healthcare costs prediction.

One type is non-condition risk-based models. The other type is risk factor-based

models. The non-condition risk-based models are mostly used for pricing, under-

writing and candidates selection for care management programs. They use age/sex

only, prior cost only, or combination of these two predictors. For the age/sex only
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model, relative factor ratios are created and multiplied by baseline health costs to

predict future cost of an individual or a group of individuals. For the prior cost only

model, experience trend factor is multiplied by baseline PMPY (per member per

year) when calculating subsequent year predicted cost. For the combination model,

the expected cost is calculated as the weighted sum of prior cost and age/sex rating.

The combination model produces more accurate predictions than individual models.

The accuracy of all three models improves as the size of group increases. The pri-

or cost model is more accurate when groups have outlier members who have extra

claims. Since non-condition risk-based models use very limited information about

individual risk factors, their predictions are less accurate than models incorporating

additional individual risk factors. Risk factor-based models utilize factors such as

medical condition related factors and life style related factors, besides age and gen-

der. Common statistical methods that risk factor-based models are built on include

regression, classification trees, and clustering algorithm.

Most literature use regression models to analyze and predict healthcare costs. In

Gregori et. al’s review [51], different models are designed to match the characteristics

of healthcare costs. To address the high skewness of the distribution of healthcare

costs, three methods are widely used: (1) OLS on transformed response variable,

which may cause interpretation problems during back transformation; (2) Threshold

model, which estimates the probabilities that the costs are greater than the median

and the third quantile, thus does not give an estimate of the mean; (3) Generalized

Linear Model (GLM), which transform the expectation instead of response variable

itself, thus is a flexible approach. To address the mass at zero costs, the most popular

methods are: (1) Add a positive constant to the costs, which performs poorly as the

choice of the constant is tricky and it does not take into account the differences

between “true” positive costs and “fake” positive costs; (2) Tobit model, which
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introduces a new binary variable with value 1 when c > 0 and with value 0 when

c ≤ 0; (3) Mixed model, in which the conditional expectation is

E(ci|x) = p(ci > 0)E(ci|ci > 0). (6.15)

Classification and clustering algorithms are also being used to predict healthcare

cost buckets. Bertsimas et. al [12] utilize data mining techniques on claims data

from over 800,000 insured individuals over three years. They divide the learning

sample into five cost buckets and apply decision trees and clustering algorithms to

predict the median dollar amount of healthcare costs. The baseline method is to

simply use last 12 months of observation period as forecast of overall healthcare cost

in the next period. They validate their models using over 200,000 out-of-sample

members. The independent variables include diagnosis groups, procedure groups,

drug groups, cost variables, age and gender etc. The performance measures are the

hit ratio, the penalty error, and the absolute prediction error. They findings are:

(1) classification tree algorithm does a bit better on lowest-cost buckets for the hit

ratio and penalty error, but the clustering algorithm performs better on the higher-

cost buckets; (2) the pattern of past cost data is a strong predictor of future costs;

(3) medical information only contributes to accurate prediction of medical costs of

high-cost members. To improve the classification trees used by Bertsimas, random

forests can be utilized since random forests is ”unexcelled in accuracy among current

algorithms and runs efficiently on large data bases.” Random forests is an ensemble

model of classification trees. There are two sources of ”randomness” in the model:

(1)randomly sample N data points with replacement from original dataset as training

set for tree growing; (2)m variables out of M input variables are randomly selected

and are used to best split the node. Advantages of random forests include: (1)It

does not overfit; (2)There is no need for cross-validation or a separate test set to get
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an unbiased estimate of the test set error. It is estimated internally during the run.

Random forests is particularly suitable for imbalanced data as healthcare cost data.

No literature is found in healthcare costs prediction using random forests.

In addition to regression and classification/clustering methods, time series analy-

sis is utilized by Vliet [82], who uses healthcare expenditure and insurance coverage

data of about 35,000 members enrolled with the largest private health insurer in the

Netherlands to estimate an upper bound on the proportion of variance in annual

individual healthcare expenditures. The results show that at most 20 percent of the

variance is predictable. Vliet’s study considers four time series models: VC (Variance

Components) model, AR (AutoRegressive) model, ARVC (AutoRegressive-Variance

Components) model, and ARMA (AutoRegressive-Moving Averages) model.

Robust regression can be applied in prediction of healthcare costs due to the

heavy-tailed distribution of healthcare costs. Literature in this application is rela-

tively limited. Szpiro et.al [80] present a new Bayesian approach to model-robust

linear regression which leads to uncertainty estimates with the same robustness prop-

erties as the Huber-White sandwich estimator. They study the relationship between

average annual outpatient healthcare costs and age using data from Washington State

Basic Health Plan. Robust regression is proved to perform well with high accuracy

and low MAPE (Mean Absolute Percentage Error) [57] [62].
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6.3.2 Robust Markov Decision Processes and Disease Man-

agement

Robust Markov Decision Process

Markov Decision Processes (MDP) is a powerful tool for sequential decision making

under uncertainty. It is a higher-level decision tree model which addresses more com-

plicated problems and utilizes more advances modeling techniques. As an extension

of Markov chains, it differentiates with respect to multiple options in actions and

rewards. It has been applied in many medical treatment decision making problems,

such as epidemic control, drug infusion, kidney/liver transplantation, treatment of

ischemic heart disease, etc [68]. There are two ways to classify MDP. It may be

classified into discrete-time, where decisions are made at discrete time intervals or

continuous-time MDP, where decisions can be made at any time. It could also be

classified into finite-horizon or infinite-horizon MDP according to the time horizon

in which the decisions are made [9].

All MDPs have five basic components: (1) T : the set of points in time when

decisions are made (discrete interval vs. continuous interval); (2) S: the set of all

possible states the system could be at; (3) A: the set of possible actions that the

decision maker could take for each state; (4) pt(s
′|s, a): the transition probability

that action a in state s at time t will lead to state s′ at time t + 1; (5) rt(s, a):

the expected immediate reward by taking action a at state s. A discount factor

γ ∈ [0, 1] is often present in MDPS when future rewards are discounted over time.

For instance, γ =
1

1 + r
if the discount rate is r.

The problem of MDPs is to find an optimal policy π that maximizes a measure

of rewards, which is typically the expected discounted sum of rewards over a finite or
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infinite horizon. We introduce briefly the problems and algorithms of discrete-time

and continuous-time MDPs. The object function of discrete-time MDP is:

max
at∈A

∞∑
t=0

γtrt(s, a) (6.16)

where 0 ≤ γ < 1, and the maximum value is obtained when at = π(st). Discrete

MDPs can be solved by linear programming or dynamic programming. Two most

commonly used variants of dynamic programming are value iteration and policy

iteration. The value iteration method solves Bellman equations iteratively backwards

in time:

y∗T (sT ) = rT (sT ) ∀sT ∈ S, (6.17)

y∗t (st) = max
a∈A

{
rt(st, a) + γ

∑
i∈S

pt(i|st, a)y∗t+1(i)

}
, t = 1, · · · , T, st ∈ S (6.18)

where y∗T (sT ) denotes the terminal reward at time T when the state is sT , and y∗t (st)

represents the optimal value of total expected reward when the state at time t is s.

The optimal policy is comprised of optimal actions a∗st,t given by equation (6.19).

a∗st,t ∈ arg max
a∈As

{
rt(st, a) + γ

∑
i∈S

pt(i|st, a)y∗t+1(i)

}
, t = 1, · · · , T (6.19)

The policy iteration method is quite different since it initializes the process by

choosing an arbitrary policy π. The next step is policy evaluation, where the total

expected reward is calculated by solving a set of linear equations under the chosen

arbitrary policy. Followed by policy evaluation is policy improvement, where a bet-

ter policy is obtained and updated for each state s under the assumption that the

arbitrary policy is used for the next step onwards. This process is repeated until π

does not change any more or converges.
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The formulation of the linear programming problem for MDP, where y∗(s) for

every state s are variables, is [52]:

min
∑
s

y∗(s)

s.t. y∗(s)− rt(st, a)− γ
∑
i∈S

pt(i|st, a)y∗t+1(i) ≥ 0, ∀s, a.
(6.20)

The optimal solution of Problem (6.20) can be obtained by solving its dual program.

For continuous-time MDP, the objective function becomes:

max
a(t)∈A

E[

∫ ∞
0

γtr(s(t), a(t))dt]. (6.21)

Continuous-time MDPs can be solved in similar algorithms as discrete-time MDPs,

and are omitted here.

In practice, the transition probabilities and the reward parameters in the above

MDP models and algorithms are either estimated from historical data or learned

from experience. However, it is hard to get access to enough historical data or to

accurately estimate the parameters, which may lead to significant difference between

long-term performance of a strategy and the model’s prediction [32]. Therefore,

robust optimization comes in to incorporate the uncertainty in MDPs, thus called

robust MDPs. Current literature on robust MDPs can be classified in two ways:

classification based on type of objective function, and classification based on type

of uncertainty source. With respect to the objective function, one type of robust

MDPs maximizes the value function under worst case scenario, and the other type

minimizes the maximum regret. With respect to uncertainty source, some studies fo-

cus on uncertain transition matrix P , while other studies focus on uncertain reward

R. Wiesemann et.al [86] derive rectangular uncertainty sets for transition matri-

ces P with pre-specified probability 1 − β from historical data. They assume that
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the transition samples are not independent for each state-action pair, and consid-

er both rectangular and non-rectangular uncertainty sets. The optimal policy that

achieves maximum value under worst-case scenario with rectangular uncertainty set

is obtained by tractable second-order conic programs. However, the robust MDP

involving non-rectangular uncertainty set is intractable, and only approximate so-

lutions can be obtained by semidefinite programming. Nilim and El Ghaoui [64]

argue that polytope set is a poor representation of uncertain transition matrices and

lead to over conservative robust solutions. They propose to model uncertainty vi-

a Kullback-Leibler divergence bounds, and solve finite/infinite robust MDPs using

the “robust dynamic programming” algorithm. The complexity of their algorithm

is almost the same as the original Bellman recursion in dynamic programming, thus

leading to no extra computational costs. Xu and Mannor [90] consider the trade-off

between worst case performance and nominal performance over all models to ad-

dress the over-conservatism of robust MDP models. Their algorithm computes the

trade-off between robustness and performance by optimizing the weighted sum of the

robustness criterion and the performance criterion. The algorithm is also applied to

robust MDPs and it is tractable only for MDPs with uncertain reward parameters,

not for uncertain transition matrices. Ahmed et.al [8] formulate the regret minimiza-

tion problem over possible models of dependent transition and reward uncertainty,

and approximate it as a Mixed Integer Linear Program. The regret for a policy π

is defined as the difference between the value of optimal policy π∗ and the value of

policy π.

Application: Disease Management

Adherence of medication is a very important problem since nonadherence may lead to

serious complications and hospitalization. Since there are probabilities of adherence
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and decisions on how often/long a nurse makes a call are involved, Markov Decision

Process is an option to facilitate the decision making process. Mason et.al [60] use

several MDP models to determine the optimal time of intervention to improve med-

ication adherence, and the MDPs are solved by backwards recursion. They consider

the trade-off between maximum patient adherence and minimum cost of intervention.

They find out that it is cost effective to implement Electronic Health Records-based

active surveillance system for cardiovascular disease management program.

Consider the simple disease management problem where a nurse tracks the medi-

cation adherence of a patient recovering in acute care by weekly phone calls. Suppose

the recovery time for the acute illness is three weeks. At the beginning of the first

week, the nurse makes either a long call or a short call to the patient. After that, at

the end of each week (including the first week), the nurse calls the patient to check

if the patient adhered medication in the previous week or not. And the nurse makes

the decision, based on the result of previous week, on whether to make a long call or

a short call to maintain/improve adherence. We model this problem as a discrete-

time finite MDP, in which time horizon T is 3 weeks; S is either 1 (adherence) or 0

(nonadherence); A is the action the nurse could take which is either making a long

call or a short call; transition probability matrix P describes the probabilities of

adherence after long call and short call; and the reward R is the total cost including

cost of nurse intervention and the cost of hospitalization due to nonadherence. The

objective is to find the optimal policy such that the total cost is minimized:

y∗t (st) = min
a∈A

{
rt(st, a) + γ

∑
i∈S

pt(i|st, a)y∗t+1(i)

}
, t = 1, · · · , T, st ∈ S. (6.22)

The transition probabilities can be obtained by observing historical data. However,

the estimations are subject to error. Therefore, we could construct uncertainty set

for the transition matrix, for instance, a state-wise uncertainty set. Suppose the
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transition matrix P belongs to the uncertainty set U , then the objective function of

the robust MDP problem becomes:

min
π

max
P∈U

{
rt(st, a) + γ

∑
i∈S

pt(i|st, a)y∗t+1(i)

}
, t = 1, · · · , T, st ∈ S. (6.23)

The problem can be solved by the robust dynamic programming algorithm (See

Nilim and El Ghaoui [64] for details of the algorithm). For this particular problem,

robust dynamic programming algorithm would be sufficient due to the small size

of the problem. If the size of the problem increases as the number of time periods

goes to a large number, then robust dynamic programming algorithm might not

be as efficient as it is now due to the “curse of dimensionality”. Tamar, Mannor

and Xu [81] propose a robust approximate dynamic programming method based on

a projected fixed point equation to approximately solve large scale robust MDPs.

They demonstrate the effectiveness of their method through simulation of an option

pricing problem.

6.3.3 Robust Linear Programming and IMRT Fluence Map

Optimization

Application: IMRT Fluence Map Optimization

Intensity modulated radiation therapy (IMRT) is one of the advanced cancer treat-

ments that uses external radiation beams to irradiate tumors. The goal of the treat-

ment is to deliver a prescribed amount of radiation to precisely conform to the 3D

shape of the tumor, while sparing the surrounding critical organs and normal tissues.

There are three major optimization problems in IMRT: beam-angle optimization,

fluence map optimization and intensity delivery optimization. Among them, fluence
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map optimization aims to determine the optimal intensity profile of each beam given

a set of predefined radiation beams. The general linear formulations of the fluence

map optimization problem is described in Yih [92]. Let (x, y, z) denote a point in

the three-dimensional treatment volume including target (T),critical organs(O), and

normal tissues(S); (m̄, k) denotes the beamlet k of beam m̄, k = 1, ..., t; v(x,y,z,,m̄,k)

denotes the dose contribution from beamlet (m̄, k). The fluence map optimization

problem can be formulated as a linear programming problem with fluence values

wm̄,k as decision variables:

min f(V(x,y,z))

s.t.
∑
m̄∈M̄

t∑
k=1

wm̄,k · v(x,y,z,,m̄,k) ≤ V(x,y,z)

wm̄,k ≥ 0, ∀m̄ ∈ M̄, k = 1, ..., t

The objective function and constraints can be defined differently. An example of the

objective function is to minimize the sum of total deviation between the delivered

dose and prescribed dose at all points:

f(V(x,y,z)) = ρTf(VT ) + ρOf(VO) + ρSf(VS), (6.24)

where f(VT ),f(VO), and f(VS) are linear functions of decision variable wm̄,k, and

ρT ,ρO and ρS are weighting factors. An example of the constraints limits doses on

points within the tumor target in the interval [Tl, Tu]: Tl ≤ VT ≤ Tu. Another

important constraint is the dose volume constraint, which limits the RELATIVE

volume of a structure that receives more or less than a particular threshold [58].

Various types of uncertainties exist in the IMRT process such as periodic breath-

ing and cardiac motion within a treatment, as well as changes in intra-abdominal

pressure and weight changes over the course of treatment [25]. Common methods
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to address include adding safety margins to targets or using a motion probability

density function to represent dose distribution. Bortfeld et.al [18] proposes a robust

optimization framework to incorporate the uncertainty in breathing motion for lung

tumors. Their robust solution requires about 11% less dose to the healthy tissue

than the margin solution (worst-case scenario), while providing the same level of‘

protection against breathing uncertainty. The patient’s breathing motion is modeled

using a probability mass function(PMF). The breathing motion PMF for a patient

in a particular fraction specifies the proportion of time the patient spends in each

of a finite number of breathing motion states during that fraction. The uncertainty

set is then a set of breathing motion PMF’s that could be realized during treatment.

Let P be the set of all PMF’s on finite set X:

P = {p ∈ R|X||∀x ∈ X, p(x) ≥ 0;
∑
x∈X

p(x) = 1}. (6.25)

Then the PMF uncertainty set would be a bounded polyhedron defined by a lower

bound vector and an upper bound vector:

P = {p ∈ P|∀x ∈ X, p̄(x)− p−(x) ≤ p(x) ≤ p̄(x) + p+(x)}. (6.26)

They define the nominal problem incorporating motion as:

min
w

∑
v∈V

∑
b∈B

∑
x∈X

dv,x,bp(x)wb

s.t.
∑
b∈B

∑
x∈X

dv,x,bp(x)wb ≥ tv,∀v ∈ V

wb ≥ 0,∀b ∈ B,

(6.27)

where dv,x,b describes the dose delivered to voxel v, when the anatomy is in breathing

phase x per unit intensity of beamlet b. Therefore,
∑
x∈X

∑
b∈B

dv,x,bp(x)wb is the sum
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of the doses to voxel v delivered under each breathing motion state weighted by

the corresponding proportions of time spent in those states. By adding the PMF

uncertainty set, the robust counterpart of Problem (6.27) would be:

min
w

∑
v∈V

∑
b∈B

∑
x∈X

dv,x,bp(x)wb

s.t.
∑
b∈B

∑
x∈X

dv,x,bp̃(x)wb ≥ tv,∀v ∈ V ,∀p̃ ∈ P

wb ≥ 0,∀b ∈ B.

(6.28)

Problem (6.29) is equivalent to the tractable linear program:

min
w

∑
v∈V

∑
b∈B

∑
x∈X

dv,x,bp(x)wb

s.t.
∑
b∈B

∑
x∈X

dv,x,bp(x)wb −
∑
b

∑
x∈X

dv,x,bp
−(x)wb +

∑
x∈X

p−(x)yv −
∑
x∈X

zv,x ≥ tv,∀v ∈ V∑
b

dv,x,b(p
−(x) + p+(x))wb ≥ (p−(x) + p+(x))yv − zv,x, ∀v ∈ V ,∀x ∈ X

wb ≥ 0, zv,x ≥ 0, ∀b ∈ B,∀v ∈ V ,∀x ∈ X.
(6.29)

An adaptive robust optimization method is proposed by Chan et.al [23] to continu-

ously incorporate observed breathing motion PMF after treatment starts into current

uncertainty set and generate new uncertainty set.

6.3.4 Robust Mixed Integer Programming and Operating

Room Planning

Application: Operating Room Planning

Cost reduction has become more and more crucial for hospitals under the Affordable

Care Act. As one of the most expensive resources in the hospitals, operating rooms
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receive massive attention regarding their planning and scheduling to improve oper-

ation efficiency and optimize financial returns. We refer to [22] for a comprehensive

literature review of operating room planning and scheduling. Among all operating

room planning and scheduling problems, the Surgical Case Assignment Problem (S-

CAP) refers to the problem of assigning patients to a given set of operating room

(OR) blocks over the planning horizon. There are two major sources of uncertainties

existed in OR planning: emergency arrivals and surgery durations. We focus on OR

planning under uncertain surgery durations. Simulation, stochastic optimization,

and robust optimization can be utilized to address this type of uncertainty.

Addis et. al. [7] propose a robust mixed integer programming (MIP) model for

the SCAP with uncertain surgery duration, aiming to minimize a penalty function

associated with waiting time, urgency and tardiness of patients due to delay in serving

patients, without generating scenarios. The deterministic formulation of the problem

is:

min
∑
i∈I

∑
j∈J

∑
t∈Tj

([tui] + [(wi + t− li)+]ui)x
t
ij+∑

i∈I

([wi + |T |+ 1]ui + [(wi + |T |+ 1− li)+]ui)(1−
∑
j∈J

∑
t∈Tj

xtij)

s.t.
∑
j∈J

∑
t∈Tj

xtij ≤ 1 ∀i ∈ I

∑
i∈I

six
t
ij ≤ cj + otj ∀j ∈ J,∀t ∈ Tj

otj ≤ δvtj ∀j ∈ J,∀t ∈ Tj∑
j∈J

∑
t∈Ti

vtj ≤ ∆

xtij ∈ {0, 1} ∀j ∈ J,∀t ∈ Tj

(6.30)

where decision variable xtij is a binary variable that equals to 1 if patient i is assigned

to block j in time t ∈ Tj. To address the uncertain surgery duration si, an uncertainty
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set which consists of intervals [s̄i− ŝi, s̄i+ ŝi] is constructed by setting s̄i to the mean

of the distribution of si, and ŝi to the standard deviation of the distribution of si.

A budget of uncertainty constraint is also incorporated. The robust counterpart of

Problem (6.30) is formulated by replacing the constraint
∑
i∈I

six
t
ij ≤ cj + otj with the

following constraints:

∑
i∈I

s̄ix
t
ij + Γpjt +

∑
i∈I

qjti ≤ cj + otj, ∀j ∈ J,∀t ∈ Tj

pjt + qjti ≥ ŝix
t
ij, ∀i ∈ I,∀j ∈ J

pjt, qjti ≥ 0, ∀i ∈ I,∀j ∈ J,∀t ∈ Tj

(6.31)

where Γ is the budget of uncertainty parameter which is the maximum number of

patients with surgery duration reaching the upper bound of nominal duration. The

optimal solution of the robust problem is obtained by applying the approach in

Bertsimas and Sim [15]. Their experiments demonstrate a reduction in the number

of surgery cancelation compared to the deterministic model. Also, by properly tuning

the value of Γ, a reasonable trade-off between utilization rate and quality of service

can be achieved.

Denton et. al. [33] consider the situation of multiple ORs under certainty. Two

decisions are made by the models: how many ORs to open on a given day, and

allocation of surgeries to ORs. They first propose a two-stage stochastic linear pro-

gram with binary decisions in the first stage and simple recourse in the second stage.

Followed by the stochastic programming problem is its robust counterpart, in which

the objective is to minimize the maximum total fixed and variable costs associated

with an uncertainty set for surgery durations. The robust counterpart is reformu-

lated as a mixed integer (linear) program, and the numerical results show that it is

a fast and effective heuristic for computing near-optimal solutions to the stochastic

recourse problem. Since they also incorporate the budget of uncertainty constraint
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in the robust problem, a sensitivity analysis is performed with respect to the choice

of Γ, which is the maximum number of surgery blocks that reach their upper bounds.

Intuitively, as Γ increases, more ORs tend to be opened since more surgeries reach

their upper bounds in the worst case. It is illustrated by the experiments that for

the 15-surgery block instances, the solution quality reaches its peak when Γ is in the

range of 2-4.

6.3.5 Conclusions

Decision makers in the healthcare systems need to make informed decisions with

imperfect information on a daily basis. As an approach to address uncertainty, robust

optimization has been utilized in a variety of applications in healthcare systems

engineering. In this chapter, we provide an overview of the healthcare systems,

including payment systems and delivery systems in the United States. We survey

applications of robust optimization, particularly in prediction of healthcare costs,

disease management, IMRT fluence map optimization, and operating room planning,

among others. Further, we propose a robust Markov Decision Processes model for

the problem of disease management.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have addressed several problems of current healthcare fi-

nancing systems in the United States. In chapter 2, we proposed a highly tractable

approach to incorporate parameter uncertainty into calculation of risk scores and

money transfers in the commercial risk adjustment program. The worst-regret is

minimized to ensure more fair payments to health insurers under parameter esti-

mation errors. The problem is solved via linear programming and empirical results

show small changes in robust risk scores but large fluctuations in money transfers

between insurers. In chapter 3, we investigated major attributes of plan premiums,

and the regression results suggest that “company” is the most important attribute.

We proposed a simple algorithm to identify inefficient plans and assigned three grade

letters to health insurers in Pennsylvania and Massachusetts. We also have made

recommendations on how much the “dominated” should decrease their premiums

in order to be efficient in our framework. Both chapter 4 and chapter 5 analyze

issues related to Medicare, where chapter 4 identifies main factors driving Medicare

beneficiaries’ choices of prescription drug plans between MAPD and PDP. Since the

characteristics of these two groups of people are quite different, recommendation-
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s are made to help policy makers better promoting their Part D plans. Similarly,

chapter 5 analyzes the trends in Medicare services usage and reimbursement rate

for all states. The correlation analysis disagrees with the concern that physicians

tend to upcode on purpose. We turned our attention back to robust optimization

in chapter 6, where we surveyed applications of robust regression, robust Markov

Decision Processes, robust linear programming and robust mixed integer program-

ming in healthcare systems engineering. We also proposed a robust MDP model for

disease management problem where a nurse tracks medication adherence of a patient

recovering from acute care.

There remain some areas of interest to us for future work. First, a large number

of previously uninsured nonelderly people entered the system due to the Affordable

Care Act of 2010. Incorporating learning in the risk adjustment models is needed,

since more information will become available over time for the newly insured when

they submit claims. In addition, application of analytics is increasingly prevalent

in the healthcare industry. There is a demand of developing more analytical mod-

els particularly for problems in healthcare financing systems. With the aid of the

highly quantitative and analytical tools, policy makers can make more dynamic and

high-quality decisions that will most benefit the community they serve. In addi-

tion, because of the uncertain environment of healthcare systems, it is possible to

extend applications of robust optimization to other problems in healthcare systems

engineering, if suitable.
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