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Abstract 

Forecasting the Number and Locations of Machine Installs Serviced by 

IBM in the U.S. 

 

Zheng Shi 

Lehigh University, 2013 

 

Supervisor: Prof. George R. Wilson 

 

  This thesis presents two strategies to forecast the number of machines installed (installed 

machine count) serviced by IBM at the National Level, the Sub Region Level, and the Zip 

code Level in the U.S. Based on the available data, the first effort is a Poisson forecast 

strategy. The Poisson forecast strategy combines a 96% significant Two-Sided Hypothesis 

Test on Poisson Population Mean (2-HTPPM) and an Optimal Reallocation Strategy (ORS). 

This thesis uses Integer-Nonlinear-Constrained (INLC) Optimization model to realize the 

ORS, and then implements a Dynamic Programming Algorithm (DPA) to solve the INLC 

Optimization model. The econometric forecast strategy is also developed which contains 

elements of Missing Data Treatment (MDT), Feature Selection (FS), and Two-Stage 

Econometric (TSE) Strategy. In the future, if there will be more available data, the 

econometric forecast strategy can be applied to improve the forecast accuracy at the Sub 

Region Level and the Zip code Level.  
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Introduction 

  This master thesis is an academic accomplishment based on the IBM forecast project 

initiated at the beginning of the year of 2011. The IBM forecast project aims to develop a 

strategy to forecast the number and locations of all types of machines installed in the U.S. 

and subject to maintenance agreements with IBM. Since April of 2011, the forecast project 

has being worked on, and by the time of this thesis published, the forecast strategy will have 

been accomplished and presented to IBM.    

  In this chapter, the background and research work on the forecast project will be introduced.    

 Background of the IBM Forecast Project  

  Founded in the year of 1911, through a century of successful operations, International 

Business Machine Corporation (IBM) has built an international business empire. In recent 

decades, IBM has been providing products to customers at every corner of the world, and has 

achieved an increasing market share in the world with respect to its business offerings. 

However, due to its increasing market share, IBM has an increasing expenditure in providing 

post-sale maintenance service to its worldwide customers. In order to save money for its 

shareholders, IBM must try every means to reduce that expenditure.   

  Ever since IBM aimed to reduce the expenditure of its post-sale maintenance service, it has 

been pursuing a globally efficient reconfiguration of post-sale maintenance service resources 

and materials (the resources and materials mainly consist of part inventories, labor force, and 

other related investments). IBM is working on an efficient reconfiguration strategy in the U.S, 

first, which then can be applied to the rest of the world. The final, realized reconfiguration 
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would allow IBM to efficiently control the level of part inventory, level of labor force, 

logistic network, and so on, such that IBM can reduce its overall service contract expenditure. 

To realize the efficient reconfiguration of the post-sale maintenance service in the U.S., there 

are two prerequisites that must be satisfied: (1) a proper maintenance service system to 

assign the resources and materials to each level of geography in the U.S.; (2) awareness of 

the post-sale maintenance service demand at each level of geography in the U.S.  

  The IBM post-sale maintenance service system is a system which can support the flow of 

resources and materials at various levels of geographic granularity. This system consists of 

service centers built upon a geographically hierarchical schema (shown in Fig.1). We take 

the U.S. system as an example to introduce the operating mechanism of the system. In the 

U.S., IBM defines the whole country as the top level, the National Level, and divides the 

whole country into Western Region and Eastern Region at the Region Level, under which 

there are 15 sub regions at the Sub Region Level. Then, there are 50 states at the State Level 

and the counties of these 50 states at the County Level. At the bottom of the schema, IBM 

defines the Zip code level containing all the active zip code areas in the U.S. (“active” zip 

code areas are those areas at which IBM sold products to customers). Following this schema, 

IBM has service centers at all levels and assigns the maintenance service resources and 

materials to the service centers at various levels of aggregation from the National Level down 

to the Zip code Level. Obviously, this system satisfies the first prerequisite. 

  So far as the post-sale maintenance service demand is concerned, the level of demand at a 

certain geographic level depends on the number of machine installs serviced by IBM at that 

level (IBM prefers the term of “machine” to “product”, so the term of “machine” will be used 

in the following of the thesis.). In other words, once IBM obtains the information of how 
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many machines are installed at a certain level, it would be able to forecast the maintenance 

service demand at that level. At present, among all levels of the system, IBM has the 

relatively best estimation of the number of machine installed at the National Level. However, 

the estimation becomes more and more inaccurate as geographic areas become smaller. This 

situation keeps IBM from correctly forecasting the maintenance service demand at each level 

of the system so that the second prerequisite is not satisfied. 

  Therefore, in order to realize the efficient reconfiguration in the U.S., the priority is to 

forecast the number of all types of machines installed at each level of the system in the U.S. 

Ultimately, this forecast strategy can be applied to the rest of the world to help IBM realize 

its globally efficient reconfiguration.   

National Level

Region Level

Sub Region Level

State Level

County Level

Zip code Level









 



  











 

Fig. 1: The Geographically Hierarchical Schema of the IBM Maintenance Service System 

 

  For simplicity, “installed machine count” will be used to represent “the number of machines 

installed” in the next section.   
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 Detailed Description of the IBM Forecast Project 

  The objective of the research work is to develop the strategy for IBM to forecast the 

installed machine count for all types of machines under service contracts at each Level of the 

post-sale maintenance service system in the U.S. At IBM’s request, it is necessary to forecast 

the installed machine count at the National Level, the Sub Region Level, and the Zip code 

Level. To realize the forecast strategy, there must have available data to conduct the research. 

Ever since the April of 2011, we have been working on data preparation together with IBM. 

Through one year’s effort, we finally had three data sets available for our research: 

 the Number of Observed Machine Failures (OFN)  

 Engineering Machine Failure Rate (EFR) 

 Estimate of Installed Machine Count (EIMC) 

  The above data sets are for all types of machines within a certain period of time at the Zip 

code Level in the U.S. The OFN is the number of the observed machine failures over the 

time period; the EFR is the failure rate per machine, and it is a constant for each type of 

machine over the U.S.; the EIMC is an estimation of the real installed machine count at the 

Zip code Level. This data is collected through IBM’s daily operations, such as responding to 

the machine failures, customer visits, and regular machine maintenance. We can aggregate 

OFN and EIMC to the Sub Region Level and the National Level to get the data at those 

levels. And IBM considers OFN and EFR are more reliable than EIMC. 

  To capture the relationships between these three data sets, we made an important 

assumption that the process of machine failures in each area at each level is a Poisson process, 

or the number of failures of each type of machine in each area at each level has a Poisson 
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distribution. In future work, this assumption can be verified by, for example, using data of 

the time between machine failures to test if the inter-arrival time of machine failures has an 

exponential distribution.  

  At this time, there are not enough data to prove the assumption; however, there is a 

justification to believe the above assumption is valid. Based on our knowledge of failures 

being rare events scattered among multiple customers, the machine failures are almost 

certainly mutually independent; hence, if sort the OFN based on the time line, we would find 

that OFN in different time intervals mutually independent and the OFN would only depend 

on the length of the time interval. We can reasonably conclude that the OFN has an 

independent and stationary increment, and we can assume the time between machine failures 

has an exponential distribution. According to the definition of the Poisson process (Ross, 

2010), it can be assumed that the OFN for each type of machine in each area at each level has 

a Poisson distribution.  

  Based on the above assumption and the available data, this thesis presents a Poisson 

forecast strategy, and we use this strategy to forecast the installed machine count at the 

National Level, the Sub Region Level, and the Zip code Level in the U.S. The Poisson 

forecast strategy contains two parts: Two-Sided Hypothesis Test on Poisson Population 

Mean (2-HTPPM) and Optimal Reallocation Strategy (ORS) which is implemented by 

Dynamic Programming Algorithm (DPA). 

  To improve the accuracy of the forecast results at the Sub Region Level and the Zip code 

Level, this thesis also presents an econometric forecast strategy, and this strategy would be 

implemented if there can be more available data in the future. The econometric strategy 

combines Missing Data Treatment (MDT), Feature Selection (FS), and Two-Stage 
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Econometric (TSE) Strategy to forecast the installed machine count at the Sub Region and 

the Zip code Levels. The thesis proposes a copula random number generator to generate 

random numbers to test the performance of the econometric forecast strategy. 
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Poisson Forecast Strategy 

  Based on the assumption that OFN has a Poisson distribution (see Introduction), the idea of 

the research work is to develop a forecast strategy such that the forecasted installed machine 

counts support the viewed occurrences of the machine failures. In this chapter, the Poisson 

forecast strategy is presented, and it contains two parts: the 96% significant Two-Sided 

Hypothesis Test on Poisson Population Mean (2-HTPPM) and the Optimal Reallocation 

Strategy (ORS).        

  At the National Level, the installed machine count is forecasted by building the 2-HTPPM 

to test if EIMC supports the OFN, and “fix” the EIMC if it fails the 2-HTPPM. By doing 2-

HTPPM, the forecast results at the National Level can be obtained, and we denote the 

forecast results as the Forecasted Installed Machine Count (FIMC) at the National Level.  

  At the Sub Region Level and the Zip code Level, the Optimal Reallocation Strategy (ORS) 

is implemented to reallocate the FIMC at the National Level to the Sub Region Level, and 

then reallocate the FIMC at the Sub Region Level to the Zip code Level. Here, we construct 

the ORS as an Integer-Nonlinear-Constrained (INLC) Optimization model, and then apply 

the Dynamic Programming Algorithm (DPA) to solve the INLC problem.  

  As an illustration, the Poisson forecast strategy is implemented to forecast the installed 

machine count of one particular type of machine at the three levels.  

 Two-Sided Hypothesis Test on Poisson Population Mean at the 

National Level 

  Hypothesis test theory defines the hypothesis test on a Poisson population mean as a way to 

determine if, given a certain significance level, the occurrence of events supports the claimed 
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Poisson population means (Johnson, 2005). Here, the two-sided hypothesis test can be stated 

as the following: 

0

1

:

:

:

( ) ( )
2 2

H Poisson population mean the claimed mean

H Poisson population mean the claimed mean

Significance Level

If P x the occurence of events and P x the occurence of events

the claimed



 

     

     

 

             

 ;

,

mean is valid

otherwise reject the claimed mean

   

   

 

  At the National Level, according to the above theory, MATLAB is implemented to build 

the 96% significant Hypothesis Test on Poisson Population Mean (2-HTPPM) to determine if 

the EIMC supports the OFN. Here, the occurrence of events is the OFR; since EFR is the 

failure rate per machine, the Poisson mean or the average failure rate should be the product 

of EFR and the installed machine count. Then the 2-HTPPM can be expressed as: 

0

1

:

:

( ) 0.02 ( ) 0.02

; ,

H Poisson population mean EFR Installed Machine Count

H Poisson population mean EFR Installed Machine Count

if P x OFN and P x OFN

the claimed mean is valid otherwise reject the cl

      

     

      

        aimed mean

 

  Instead of inserting the EIMC into the equation of EFR Installed Machine Count   , the 

Installed Machine Count is set as a variable for each type of machine. Then by assigning 

different values to the variables of the Installed Machine Count, the ranges of the variables 

which lead to ( ) 0.02P x OFN   and ( ) 0.02P x OFN  can be obtained. For each type of 

machine, the range can be seen as the 96% significant confidence interval of the Installed 

Machine Count making the 2-HTPPM a positive result.  
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  For each type of machine, if the EIMC falls into the 96% significant confidence interval, 

there is no evidence to reject it as an accurate estimation. Besides, in the previous chapter, we 

mentioned that IBM has a relatively accurate estimation of installed machine count at the 

National Level (see Introduction), and hence we must trust the EIMC that can fall into the 

confidence interval. However, if the EIMC does not fall into the confidence interval, we 

would have two situations: 

 the EIMC is greater than the upper bound of the confidence interval 

 the EIMC is less than the lower bound of the confidence interval 

Both situations suggest an inaccurate EIMC at the National Level. Since IBM has confidence 

in its estimation at the National Level, we would like to make the smallest effort to fix the 

inaccurate EIMC. The smallest effort means to make the installed machine count equal to the 

upper bound, if the first situation happens, and equal to the lower bound, if the second 

situation. Then, combine the accurate EIMC and the fixed EIMC as the forecast results at the 

National Level, leading to a revised result for the Forecasted Installed Machine Count (FIMC) 

at the National Level. 

 Optimal Reallocation Strategies at the Sub Region and the Zip code 

Levels 

  It is a fact that the installed machine count at a certain level (excluding the Zip code Level) 

must be the sum of the installed machine count of the geographic partition at the lower level. 

In the last section, we obtained the FIMC at the National Level (see Two-Sided 

Hypothesis Test on Poisson Population Mean at the National Level in this chapter), 

and hence we can use the Optimal Reallocation Strategy (ORS) to reallocate the FIMC at the 
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National Level to the Sub Region Level and the Zip code Level. Before starting the forecast 

operations based on the ORS, let us look at the two alternative plans to carry out the ORS at 

the Sub Region and the Zip code Levels.  

First plan:  

Step 1  

Reallocate FIMC at the National level over all sub regions, and make sure each of them can 

pass the 2-HTPPM after reallocation; denote reallocated installed machine count as FIMC 

at the Sub Region level. 

Step 2 

Reallocate FIMC at the Sub Region level over all zip code areas, and make sure each of 

them can pass the 2-HTPPM after reallocation; denote reallocated installed machine count 

as FIMC at the Zip code level. 

  For each type of machine, the first plan is to reallocate the FIMC at the National Level to all 

the machine’s active sub regions (“active” sub regions are sub regions in which the machine 

are installed) to get the FIMC at the Sub Region Level. And then, to reallocate the FIMC in 

each sub region to the corresponding active zip code areas to determine the FIMC at the Zip 

code Level. The FIMC at each level must pass the 2-HTPPM. 

Second plan:  

Step 1  

A: Do the 2-HTPPM for EIMC at the Sub Region Level, first, and denote the sub region as a 

“pass region” if the EIMC can pass 2-HTPPM and denote the installed machine count as 

Npass at the Sub Region level. 
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B: Reallocate passFIMC N  (where FIMC is from the National level) to those sub regions 

which fail the 2-HTPPM at Step 1, and make sure each of them can pass the 2-HTPPM after 

reallocation; combine Npass and the reallocated installed machine count of these sub regions 

as the FIMC at the Sub Region level. 

Step 2  

A: Do the 2-HTPPM for EIMC at the Zip code Level, first, and denote the zip code area as a 

“pass area” if the EIMC can pass 2-HTPPM and denote the installed machine count as Npass 

at the Zip code level. 

B: Reallocate passFIMC N  (where FIMC is from the Sub Region level) to those zip code 

areas which fail the 2-HTPPM at Step 1, and make sure each of them can pass the 2-HTPPM 

after reallocation; combine Npass and the reallocated installed machine count of these zip 

code areas as the FIMC at the Zip code level. 

  The second plan shares the same reallocation method logic with the first plan, but it requires 

a 2-HTPPM before reallocation at each level. In the second plan, the EIMC is kept in each 

sub region or zip code area unchanged if the EIMC can pass the 2-HTPPM, and then 

reallocate the ones which cannot pass the test.  

  While, to some extent, IBM has confidence in the accuracy of the data of EIMC as long as 

the data for the Zip code Level aggregates to the National Level, since aggregation to the 

National Level has a tendency to neutralize the errors of estimation, the data of EIMC at the 

Sub Region Level and the Zip code Level is assumed to be untrustworthy by IBM. Those 

EIMC which can pass the 2-HTPPM at these two levels cannot be treated as being as 

accurate as those at the National Level. Therefore, at this time, the first plan is chosen to 



 

14 

 

execute the ORS. In the future, if the evidence would be provided by IBM to show that some 

parts of the data of EMIC at the Sub Region and the Zip code Levels are reliable, we can 

choose the second plan and revise the ORS illustrated in this thesis.  

  In the following sections, the thesis takes the reallocation of installed machine count at the 

Sub Region level as an example to illustrate the ORS, and the same logic can be applied in 

the reallocation of installed machine count at the Zip code Level. 

  Integer-Nonlinear-Constrained Optimization Model 

  Having chosen the first plan to continue the ORS, we need to build a model to realize the 

strategy. In addition, the reallocated installed machine count (or FIMC) must have 

“Legitimacy”, which means (for each type of machine): 

 The reallocated installed machine count in sub regions (zip code areas) should be, in 

some sense, the “most likely numbers” installed in the sub regions (zip code areas). 

 The sum of the reallocated installed machine count in sub regions (zip code areas) 

should be equal to the FIMC at the National Level (Sub Region Level). 

 The reallocated installed machine count must pass the 2-HTPPM.   

For example, in order to execute ORS at the Sub Region Level, it is necessary to build an 

optimization model to both reallocate the FIMC at the National Level to the Sub Region 

Level and fulfill the requirement of “Legitimacy”. Let us first look at the data and variables 

we have for the reallocation model at the Sub Region Level:  (for one type of machine) 
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:

# of active sub regions at the Sub Region Level

# of observed machine failures in sub region  at the Sub Region Level over a specific period

of time

installed machine count to reallo

r

Data

R

n r

N

 

      

 

 cate  (  is also the FIMC at National Level)

failure rate per machine over a specifice period of time

:

reallocated installed machine count in sub region  

Poisson mean or average fai

r

r

N

Variable

N r

N





 

         

   

  lure rate in sub region over a specific period of timer     

 

  A question arises, and this question leads us to the objective function of the reallocation 

model. The question is “how can we make sure the machine is most likely installed in that 

sub region?” Given rn has a Poisson distribution in each sub region r with rN  as the 

Poisson population mean, the Poisson mass function (shown as Equation 1.1) can be used to 

measure “how likely” rn will occur when rN is allocated to the sub region r, providing a mean 

of rN  . 

                                                     
( )

( )
!

r rn N

r
r

r

N e
p x n

n

 


                                            (1.1) 

  Then, according to Equation 1.1, Equation 1.2 can be formed to measure “how likely” all 

the rN  allocated to all sub regions. And Equation 1.2 can be rewritten as Equation 1.3. 

                                               
( )

( )
!

r rn NR R
r

r r

r r r

N e
p x n

n

 


                                  (1.2) 

                                                 ( ) ( | )
R R

r r r r

r r

p x n p n N                                           (1.3) 
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  Maximizing Equation 1.3 can make sure all the reallocated installed machine counts are the 

most likely numbers to be located at the sub regions. Furthermore, we set up constraints so 

that we can fulfill the other requirements:  

1. To make sure the total number of reallocated installed machine count is equal to the FIMC 

at the National Level, a constraint shown as 1.4 is set up: (We name this constraint as 

“Conservation Constraint” for future use) 

                                                                    
R

r

r

N N                                                          (1.4) 

2. To guarantee the positive 2-HTPPM results, the following constraints shown as 1.5 are 

added: 

                                                                
( ) 0.02

( ) 0.02

r

r

p x n r

p x n r

  

  
                                          (1.5)     

3. In the forecast problem, since any single machine cannot be split into several parts of 

machine, an integrality constraint shown as 1.6 must be introduced: 

                                                                 is integerrN r                                                    (1.6) 

  Finally, the model may be written as: (for one type of machine) 

         

max ( | )

s.t.

( ) 0.02

( ) 0.02

is integer

R

r r

r

R

r

r

r

r

r

p n N

N N

p x n r

p x n r

N r

 

 

   

   

   




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  This model describes a problem which is an Integer-Nonlinear-Constrained (INLC) 

Optimization problem. It is well known that the difficulties in solving integer optimization 

problem and nonlinear-unconstrained optimization problem are greater than solving linear or 

continuous optimization. And our case is a hybrid constrained optimization problem 

combining integer and nonlinear optimization problems so that the difficulty is even much 

higher than each pure kind. Furthermore, the difficulty in dealing with INLC Optimization 

problem is growing as the size of the problem is increasing. Since there are around three 

thousands types of machines, of which each has tens of active sub regions and hundreds of 

active zip code areas need to be reallocated, the problem has a very big size leading to a high 

level of difficulty, and, hence, we cannot expect a high level of efficiency. Therefore, we 

need to find a good optimization tool to solve the reallocation problem by capturing the idea 

in the INLC Optimization model and reducing the difficulty. 

  Dynamic Programming Algorithm 

  Dynamic Programming Algorithm (DPA) in mathematical optimization is famous in 

making certain complex problems easier, and it allows the control of more details at each 

step during the optimizing process. Over the history of Operations Research, there have been 

many scholars that have developed lots of applications of DPA. In other words, DPA can be 

used to solve all kinds of optimization problems when the problems are decomposable into 

stages by variables or groups of variables (Denardo, 1982; Kleywegt and Shapiro, 2001; 

Winston and Venkataramanan, 2003). As an illustration, the “Knapsack Problem” or, 

generally, the resource allocation problem mentioned by E. V. Denardo exploits this type of 

decomposition. The production of various commodities can be modeled as having different 
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stages no matter, in reality, if they are simultaneously assigned resources, or if they are 

receiving resources one by one. Then this problem can be solved stage by stage (Denardo, 

1982). For any dynamic programming problems, there are several necessary elements: Stage 

and Stage Variable (SGV), State and State Variables (STV), Transition Function (TF), and 

Sub-Objective Function (SOF) (Denardo, 1982; Kleywegt and Shapiro, 2001; Winston and 

Venkataramanan, 2003).  

  Back to the original INLC Optimization model, the INLC Optimization model aims to 

reallocate the FIMC of one type of machine at the National Level into several sub regions at 

the Sub Region Level. Therefore, according to the literature, we can see the INLC 

Optimization problem as a nonlinear version of the “Knapsack problem”. Through 

implementing a DPA, we can use its backward recursion to put integer variables into the 

DPA and store the feasible solutions state by state and stage by stage, and this process also 

allows us to track the change of variables. To realize the objective function contained in the 

original INLC Optimization model, we can simply calculate the feasible values of the 

objective function and store them state by state and stage by stage. And for the constraints in 

INLC Optimization model, we can check if the variables or objective function values violate 

the constraints by direct computation at each state and stage. There are many programming 

environments which can realize a DPA (Benavides et al., 2007; Zietz, 2007; Sundström and 

Guzzella, 2009).  In this thesis, we use MATLAB to implement the DPA.   

  Before we develop the DPA, Stage and SGV, State and STV, SOF, and TF in the DPA need 

to be defined. Recall there are R regions and N installed machine count to reallocate (N is the 

FIMC at the National Level), and there are nr in both the INLC objective function and 2-

HTPPM constraints.  
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  We define each sub region as one Stage where 1, 2, 3, ...,r R     , and each 
rN is a SGV. Here, 

we define 0,rN N r   . At each Stage, we define each possible allocation of 

installed machine count as one State, and 
rN   is a STV where 0,1, 2, ...,r rN N      . Combining 

definition of SGV and STV, we can make sure that every possible reallocation throughout 

the whole DPA can be stored; then, we define the TF as ( )r rN N  which indicates that if we 

allocate 
rN to Stage r, then ( )r rN N  installed machine count will be allocated to the Stages 

from 1r  to R . Using backward recursion, the TF can be defined:  

Last Stage TF: 

  At last Stage, Stage R, we will have no future stages, and hence we have no reallocation 

possible after the last Stage. Then, we have r rN N  for last Stage, and the TF is 0.  

TFs from Second Last Stage to First Stage: 

  At each Stage , 1r where r R    , we will have 
rN of allocated installed machine count and 

leave ( )r rN N  for future stages. Therefore, the TFs from second last Stage to first Stage can 

be written as Equation 2.1: 

                                                   

( |1 )TF ( )

where 0,1, 2, ..., and

where 0,1, 2, ...,

r r R r r

r

r r

N N

N N

N N

  
   

      

     

                                            (2.1) 

The definitions of SGV, STV, and TF guarantee that the total number of installed machine 

count assigned to each Stage will be equal to N so that we can satisfy the Conservation 

Constraint (see Equation 1.4) in INLC Optimization model.  
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  We can now define SOF in our DPA. Recall we have objective function in INLC 

Optimization model as max ( | )
R

r r

r

p n N   . Then we can use DPA’s backward recursion to 

define SOF for each Stage.  

Last Stage SOF: 

  Assume that there are
RN available to the last Stage, and there will be no stages after the last 

Stage. Then we will have each SGV is also a STV, and the TF equals to 0. Therefore, the 

SOF at last Stage can be expressed as Equation 2.2: 

                                                       

SOF ( ) ( | )

where 0,1, 2, ..., and

where

R R R R

R

R R

N p n N

N N

N N

  

      

 

                                       (2.2) 

SOFs from Second Last Stage to First Stage: 

  Assume that there are rN available to the Stage ,r r R  , and then we will assign rN  to 

Stage r, where 0,1, 2, ...,r rN N      , and leave ( )r rN N  to the stages from 1tor R    , and thus 

the TF at Stage r is ( )r rN N  . Therefore, the SOF at Stage r can be expressed as Equation 

2.3 according to Equation 2.1: 

                             

1 1

1

SOF ( ) max{ ( | ) SOF ( )}

max{ ( | ) ( | ( ) )}

where and

where 0,1, 2,

r R r r r r r r
i

r r r r r
i

r

r

N p n N N N

p n N p n N N

N N

N



 

  



    

     

   

     

1

..., andrN

N N

 

 

                (2.3) 
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  After defining the SOFs for all stages, there is also a need to embed the 2-HTPPM 

constraints into the DPA’s backward recursion. If one possible allocation of the installed 

machine count at one Stage fails the 2-HTPPM, we would make the value of SOF of that 

possible allocation equal to negative infinity so that we can eliminate this possible allocation 

since we are maximizing SOF.  The complete DPA is shown as the following: (for one type 

of machine) 

Last Stage: 

SOF ( ) ( | )

s.t. if ( ) 0.02 or ( ) 0.02

then SOF ( ) -inf

where 

0,1, 2, ...,

R R R R

R R

r R R

R R R

R

N p n N

p x n p x n

N

N N N

N N





 

      

 

   

      

 

From Second Last Stage to Frist Stage: 

1 1

1

SOF max{ ( | ) SOF ( )}

s.t. if ( ) 0.02 or ( ) 0.02

then SOF ( ) inf

where 0,1, 2, ..., 1

0,1, 2, ..., 1

r R r r r r r r
i

r r

r R r

r r

r

N p n N N N

p x n p x n

N

N N r R

N N r R

  

 

     

      

  

        

         

 1N N 

   

At the first Stage, we can evaluate the feasible solution which maximizes the SOF of the first 

Stage, and this feasible solution is the optimal solution, and, hence, the reallocated installed 

machine count or FIMC.  
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  In future sections of this chapter, we will use the Poisson forecast strategy to forecast the 

installed machine count utilizing data for one particular type of machine.  

 Data 

  The data of OFN, EFR, and EIMC are collected from the IBM database, which is 

information at the Zip code Level within the past 6 years. The EFR is the monthly failure rate 

per machine, and it is a constant for each type of machine over the U.S.; to obtain the data of 

OFN and EIMC at the National and the Sub Region Levels, we can aggregate them to the 

National and the Sub Region Levels. In this thesis, we only forecast the installed machine 

count of one type of machine, so we choose the data of one type of machine, Machine A, 

from the IBM database.  

  Here, due to confidentiality, we cannot use the real names of the machine type, sub regions, 

and zip code areas, therefore we use “Machine A” to stand for machine’s real name, use 

Roman numerals to stand for the machine’s active sub regions, and use Arabic numerals to 

stand for the active zip code areas of each sub region. The following tables show the data for 

Machine A.  

Table 1: The Data for the National Level 

OFN EIMC No. of Sub Regions EFR (Per 6 Years) 

176 1217 15 0.19799992575 

 

Table 2: The Data for the Sub Region Level 

Sub Region OFN EIMC 
No. of Zip code 

Areas 

I  2 29 15 
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II  2 18 10 

III  7 54 15 

IV  7 68 22 

V  7 63 29 

VI  7 41 12 

VII  8 79 14 

VIII  10 59 15 

IX  12 272 15 

X  12 58 18 

XI  14 57 23 

XII  17 81 21 

XIII  21 60 15 

XIV  23 133 33 

XV  27 145 27 

TOTAL 176 1217 284 

 

  Concerning the data for the Zip code Level, we list the data of zip code areas under Sub 

Region III and IX in Table 3 and Table 4, as examples, and more data for the Zip code Level 

can be found in the tables of data and results in the Appendix (see Appendix: Data and 

FIMC at the Zip code Level). 

Table 3: The Data for the Zip code Level: the Data for the zip code areas under Sub Region 

III 

Zip code Area OFN EIMC 

1 0 6 

2 0 1 

3 1 1 

4 1 14 
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5 1 1 

6 0 1 

7 0 1 

8 1 1 

9 0 1 

10 1 2 

11 2 6 

12 0 1 

13 0 1 

14 0 1 

15 0 16 

TOTAL 7 54 

 

Table 4: The Data for the Zip code Level: the Data for the zip code areas under Sub Region 

IX 

Zip code Area OFN EIMC 

1 0 1 

2 2 2 

3 2 2 

4 0 1 

5 0 1 

6 1 1 

7 1 1 

8 0 1 

9 3 7 

10 0 16 

11 0 2 

12 1 1 
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13 0 3 

14 2 232 

15 0 1 

TOTAL 12 272 

 Results 

  At the National Level, by constructing the 2-HTPPM, the 96% significant confidence 

interval of Machine A’s installed machine count is obtained, which is 757, 1037 . Since the 

EIMC is 1217 which is greater than the upper bound of the confidence interval, we make the 

FIMC at the National Level equal to the upper bound, 1037. Results are shown in Table 5. 

Table 5: Results at the National Level 

OFN 
Confidence Interval Significance 

Level 
EIMC FIMC 

Lower Bound Upper Bound 

176 757 1037 96% 1217 1037 

 

  In Table 5, the FIMC is 180 less than the EIMC. And there are several reasons that can 

result in the difference: (1) the machines which were previously on the service contracts have 

been moved to another country or retired; (2) a data issue: the EIMC is obtained by 

aggregation of EIMC at the Zip code Level, so there might be a small errors of estimations at 

data entry (although the aggregation to the National Level tends to neutralize the errors), and 

the difference between EIMC and FIMC suggests the error; (3) the time periods of EIMC and 

OFN are not the same, but the FIMC only reflects the time period of OFN.   

  In the next step of the process, the ORS is implemented to reallocate 1037 Machine A to 15 

sub regions, and the results of FIMC at the Sub Region Level shown in Table 6.  
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Table 6: Results at the Sub Region Level 

Sub Region OFN EIMC 

Reallocated 

Installed Machine 

Count 

(or FIMC) 

I  2 29 10 

II  2 18 10 

III  7 54 36 

IV  7 68 36 

V  7 63 36 

VI  7 41 36 

VII  8 79 42 

VIII  10 59 52 

IX  12 272 63 

X  12 58 63 

XI  14 57 74 

XII  17 81 90 

XIII  21 60 111 

XIV  23 133 177 

XV  27 145 201 

TOTAL 176 1217 1037 

 

  In Table 6, some sub regions have big differences between EIMC and FIMC. For example, 

the data (EIMC) shows there should be 272 machines installed in Sub Region IX, however, 

the forecast result of installed machine count, 63, is way less than 272. The opposite example 

is that the EIMC suggests 60 machines installed in Sub Region XIII, however, the FIMC 

shows the installed machine count should be almost doubled. One explanation is that there 

were 272 (or 60) machines on the service contracts, but the customers in Sub Region IX (Sub 

Region XIII) moved out (in) some of the machines to (from) other sub regions or some of the 
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machines were just retired (recently purchased). Records were not updated in a timely 

fashion. The other explanation is that the ORS reallocates the FIMC at the National Level to 

the Sub Region Level based on OFN of each sub region. In order to make the allocated 

machine count “most likely” installed in all sub regions, the sub region which has a greater 

OFN is most likely allocated a larger installed machine count. Besides, the data of EIMC at 

the Sub Region Level is the aggregation of data for the Zip code Level. The level of 

aggregation is not high enough to neutralize the errors of estimations in the data at the Zip 

code Level. Therefore, there are big differences between EIMC and FIMC in some sub 

regions.  

  Also in Table 6, we can see that the sub regions which have the same OFN usually have the 

same FIMC (for example, Sub Region IX and Sub Region X have the same OFN and FIMC), 

and we will discuss this finding in the next section (see Discussion of the Poisson 

Forecast Strategy in this chapter).  

  After the FIMC at the Sub Region Level is obtained, we can do the ORS at the Zip code 

Level by reallocating the FIMC (at the Sub Region Level) to the active zip code areas. Here, 

we list the results for the zip code areas under Sub Region III and IX in Table 7 and Table 8, 

as examples, and more results can be found in the Appendix (see Appendix: Data and FIMC 

at the Zip code Level). 

Table 7: Results at the Zip code Level: Results for the zip code areas under Sub Region III 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 6 0 

2 0 1 0 
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3 1 1 5 

4 1 14 5 

5 1 1 5 

6 0 1 0 

7 0 1 0 

8 1 1 5 

9 0 1 0 

10 1 2 5 

11 2 6 11 

12 0 1 0 

13 0 1 0 

14 0 1 0 

15 0 16 0 

TOTAL 7 54 36 

 

Table 8: Results at the Zip code Level: Results for the zip code areas under Sub Region IX 

Zip code Area OFN EIMC 

Reallocated Installed 

Machine Count  

(or FIMC) 

1 0 1 0 

2 2 2 10 

3 2 2 11 

4 0 1 0 

5 0 1 0 

6 1 1 5 

7 1 1 5 

8 0 1 0 

9 3 7 16 

10 0 16 0 
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11 0 2 0 

12 1 1 5 

13 0 3 0 

14 2 232 11 

15 0 1 0 

TOTAL 12 272 63 

 

  In Table 7-8, we can find that some zip code areas have obvious differences between EIMC 

and FIMC. For examples, in Table 7, No.4 zip code area has 14 machines in the data of 

EIMC, but the FIMC is only 5 machines; No.15 zip code area has 16 machines in the data of 

EIMC, but its FIMC is 0; the EIMC for No.3 zip code area is 1, while the FIMC is 5; the 

EIMC for No. 11 zip code area is 6, while the FIMC is 11. First of all, the inaccurate data of 

EIMC at the Zip code Level should be the most important reason for the big differences 

between EIMC and FIMC in some zip code areas. The other reason is that the customers in 

these zip code areas moved out or in the machines to or from other zip code areas, or the 

machines were just retired or recently purchased with a lag in time in recording these 

changes. Besides, the ORS is based on OFN, and, hence, more OFN probably lead to more 

FIMC, or vice versa. 

  Furthermore, in Table 7-8, we find that the zip code areas which have the same OFN are 

most likely allocated the same FIMC. Also, we find that the zip code areas, at which there is 

no record of OFN, have no reallocated installed machine count (or FMIC). We will discuss 

these two findings in the next section.   
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 Discussion of the Poisson Forecast Strategy 

  Given the three available data sets: OFN, EIMC, and EFR, we are working with three 

assumptions throughout the research on the Poisson forecast strategy: 

 The first assumption: the OFN has a Poisson distribution for each type of machine at 

each level. 

 The second assumption: the data of OFN is considered reliable data. 

 The third assumption: the data of EIMC at the National Level is the relatively best 

estimation of the real installed machine count, while that at the Sub Region Level or 

the Zip code Level is not considered trustworthy. 

  Based on the first and the second assumptions, we embed the concept of Poisson 

distribution into the forecast strategy. At all levels, the idea of the Poisson forecast strategy is 

to make the FIMC best support the OFN. Based on the third assumption, we make the 

smallest effort (see Two-Sided Hypothesis Test on Poisson Population Mean at the 

National Level in this chapter) to obtain the FIMC at the National Level, while at the Sub 

Region Level and the Zip code Level, we use the Optimal Reallocation Strategy (ORS) to get 

the FIMC.  

  By looking at the forecast results, we can find some issues which are probably the problems. 

From Table 6-8 (see Results in this chapter), we find that if two sub regions (several zip 

code areas) have the same OFN, they would have the same FIMC. And from Table 7-8 (see 

Results in this chapter) and other tables of results (see Appendix: Data and FIMC at the 

Zip code Level), we see that if the OFN in a zip code area is equal to zero, the ORS would 

not assign installed machine count to that zip code area. In reality, although there is a 
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probability of the above situations occurring, two sub regions (several zip code areas) having 

the same OFN may not have the same number of machines installed, and the zip code areas 

having no machine failures may still have machines installed.  

  However, based on the idea that is to make the FIMC best support the OFN, the objective 

function of the INLC Optimization model is to maximize the total probability of the OFN 

happening in all sub regions or zip code areas. In the process of running the DPA, if one 

feasible solution can make the objective function have the optimal value, it must be treated as 

the optimal solution. And there is no evidence to show that we should add constraints in the 

model to avoid the problems discussed above. 

  In the next chapter, an econometric strategy will be introduced, and it can be used to 

forecast the installed machine count at the Sub Region Level and the Zip code Level, and this 

econometric forecast strategy would allow us to worry less about the issues mentioned above. 

However, the strategy would only be realized if and only if there would be more data 

available to us, and given the limited available data (OFN, EFR, and EIMC), the Poisson 

forecast strategy is the best strategy we can develop to forecast the installed machine count in 

the U.S. 
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Econometric Forecast Strategy 

  Recall, we used ORS to obtain the FIMC at the Sub Region and the Zip code Levels (see 

chapter, Poisson Forecast Strategy). Since the operational mechanism of ORS is to allocate 

the installed machine count based on the data or the parameter, OFN, this mechanism may 

induce the possible problems mentioned in Discussion of the Poisson Forecast Strategy. 

We would like to find a way to improve the performance of forecasting installed machine 

count at the Sub Region Level and the Zip code Level. According to the literature (Tessier 

and Armstrong, 1977; Fomby et al., 1984; Hendry and Clements, 1994), econometric 

analysis can reduce the forecast uncertainty resulted from model structure and parameter 

uncertainty, and, hence, improve forecasting at the Sub Region Level and the Zip code Level.  

  In this chapter, we present an econometric forecast strategy to forecast the installed machine 

count at the Sub Region Level and the Zip code Level such that we can improve the accuracy 

of forecast results at those levels. The econometric forecast strategy is constituted of three 

parts:  

 Missing Data Treatment (MDT) 

 Feature Selection (FS) 

 Two-Stage Econometric (TSE) Strategy 

  According to the literature (Gujarati, 2003; Lewis-Beck et al., 2003), the predictors or 

variables which will be used in the econometric forecast strategy can be categorized as 

endogenous predictors and exogenous predictors. The endogenous predictors are predictors 

whose values depend on the installed machine count, and in the forecast problem, the OFN is 

the only endogenous predictor. Exogenous predictors are predictors whose values are 
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independent of, but, to some extent, can help determine the installed machine count. The 

exogenous predictors in the forecast problem: 

 Predictors directly determining the installed machine count, such as the number of 

IBM customers. 

 Predictors indirectly determining the installed machine count  

 Economic situations, such as GDP per capita, business output value, etc. 

 Social situations, such as population, volume of IT human resources, etc. 

  We already have the data of OFN at the Sub Region Level and the Zip code Level. However, 

at this time, the econometric forecast strategy is only a recommendation since we do not have 

enough data of the exogenous predictors to apply it to forecast the installed machine count at 

the Sub Region Level and the Zip code Level.  

  To our knowledge, it is quite probable that the data of the exogenous predictors available in 

the future would have missing items (for example: IBM has the data of populations of 

2,000,000 urban areas over the world, but it does not know the populations of rural areas.). 

Therefore, we present the Missing Data Treatment (MDT), in this chapter, in case the future 

data of exogenous predictors would have missing items.  

  After having the complete data set of each exogenous predictor by utilizing MDT, we 

would need to decide which exogenous predictor should be built into the TSE Strategy, and, 

hence, we need to apply Feature Selection (FS) to make the decision. In this chapter, we will 

present three alternative approaches to do FS.   

  The TSE Strategy contains two stages. At the first stage, we build the Multiple Regression 

(MR) model to estimate the regression coefficients and constant. Here, we use the data of 

machines which have accurate EIMC at the National Level (Recall we used 2-HTPPM to 
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find the accurate EIMC at the National Level in the chapter, Poisson Forecast Strategy) as 

the sample data of the dependent variable to obtain estimates of the regression coefficients. 

At the second stage, we build the Constrained Least Square Regression (CLSR) models at the 

Sub Region Level and the Zip code Level to get the FIMC at those levels. Here, the 

constraint in the CLSR model is the Conservation Constraint (see chapter, Poisson Forecast 

Strategy), and this constraint allows us to make sure the sum of the FIMC of each type of 

machine at each level (except at the National Level) is the FIMC at the higher level.  

 Missing Data Treatment 

  Missing Data Treatments (MDT) plays an important role in dealing with the data of the 

predictors having missing items. According to research done by Roderick Little and Donald 

Rubin, and Paul Allison (Little and Rubin, 1987; Alllison, 2001), there are many kinds of 

treatments available; however, two modern approaches, Maximum Likelihood (ML) and 

Multiple Imputation (MI), perform better in avoiding biased results than any other method, 

and, hence, would be candidates in the future research. According to research experiences 

stated in the literature (Raghunathan, 2004; Howell, 2009), SPSS Statistic is good at dealing 

with ML, while SAS is good at dealing with MI. In the future research, we would like to 

combine these two approaches to take advantage of each approach. 

  Missing Data Mechanism  

  According to Roderick Little, Donald Rubin, and Paul Allison (Little and Rubin, 1987; 

Alllison, 2001), there is an important prerequisite to use either ML or MI: the missing data 

must be missing at random (MAR). The missing data which is MAR suggests that the 
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“missingness” does not depend on the value itself. For example, the data of the populations 

of rural areas are missing, but the “missingness” does not depend on the values of the 

populations in these areas. Recall, we would like to have the data of exogenous predictors, 

such as population, number of customers, and GDP per capita. Since it is common sense that 

the missing data of these exogenous predictors least likely depends on the value itself, we 

can reasonably expect the “missingness” of data of these exogenous predictors is MAR. (One 

opposite example illustrated by David C. Howell (Howell, 2009) is that “if we are studying 

mental health and people who have been diagnosed as depressed are less likely than others to 

report their mental status, the data are not missing at random.”). 

  Missing Data Strategy in Future Research 

  According to David C. Howell (Howell, 2009), there are many ways to use ML to process 

the missing data, but the most common and efficient approach is the Expectation-

Maximization Algorithm (EMA). The EMA includes iterative expectation steps and 

maximization steps. In the expectation steps, we can use the known data to estimate the 

parameters, such as mean, variance, covariance, and so on; then, we can build the regression 

equations to impute the missing data based on the estimated parameters, and since this step 

aims to make a good match of estimated parameters by imputing data into missing slots, it is 

named as maximization step. We will do the expectation step, where we use the imputed 

values with already known values as a complete data to estimate the parameters, and then we 

will do the maximization step again. The EMA is going to stop when the estimated 

parameters obtained from the two steps converge. 
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  The alternative approach to ML is MI, which is basically imputing the missing values based 

on the currently existing values. According to Roderick Little and Donald Rubin, Paul 

Allison, Trivellore E. Raghunathan, and Ting Hsiang Lin (Little and Rubin, 1987; Alllison, 

2001; Raghunathan, 2004; Lin, 2010), the most significant difference between MI and ML is 

that MI is not an iterative method but is generating multiple sets of complete data at the same 

time and combining all data sets to process the missing data.  

  In our future research, we can combine these two approaches to process the missing data: 

first, we will use the one iteration step of the EMA to generate multiple complete data sets. 

Here, we are going to use a sequence of regression equations to obtain the imputed data (we 

can bring auxiliary variables into the sequence), and randomly add errors to the imputed data; 

then, we can combine all of the sets to get the final estimated parameters. In a final step, we 

are going to use the final parameters to get the final complete data sets of the exogenous 

predictors. Based on our knowledge, both SPSS Statistics and SAS can finish the task. 

 Feature Selection 

  According to the literature (Derksen and Keselman, 1992; Bernstein et al., 1996; Harrell, 

2010), we have three candidates of approaches coming from two well-known categories: 

Feature Ranking and Subset Selection. Stepwise Regression (SR) and Hierarchical 

Regression (HR) are popular representatives of Feature Ranking; Best Subset Selection (BSS) 

is a widely used approach belonging to the Subset Selection.  

  Stepwise Regression (SR) is the most classic approach in the field of feature selection. It 

allows us to check the necessity of exogenous predictors one by one in the first stage model 

of a TSE Strategy. However, many scholars have expressed negative opinions in using SR, 
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not only because it may cause biased p-value and 2R , but also because the default model 

together with the design of the selection process can hurt the result of selection. In other 

words, the selection process is very likely damaged by the designer. Besides, if we only have 

limited exogenous predictors available in the first stage model of a TSE Strategy, and the 

results of the SR tells us to delete most of them, we would not be able to forecast the 

installed machine count.  

  Hierarchical Regression (HR) is often treated as an ideal substitute of SR. Basically, HR has 

two steps. In the first step, we can build the default model (including only significant 

exogenous predictors) of the first stage model of a TSE Strategy, where we can choose the 

exogenous predictors having strong correlation with the installed machine count to stay in the 

model. In the second step, we will check other predictors excluded in the first step to decide 

whether or not they should be kept in the model. Since we have a limited number of 

exogenous predictors, according to the logic of HR, we can exclude the predictor which is 

least significant in the model, and then retain others in the model. 

  Best Subset Selection (BSS) is an approach which allows us to divide the predictors into 

different sets, and use BSS to check their importance in the model. By selecting the “best 

set” of the exogenous predictors in the first stage model of a TSE Strategy, we can take into 

account the intercorrelation of exogenous predictors so that we can mostly avoid the bias 

resulting from “one by one checking”. However, the applicability of BSS depends on the 

number of exogenous predictors. If we only have the data of a very limited number of 

exogenous predictors, we may not be able to divide them into very many sets, and therefore, 

we may not be able to use this approach.  
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  In our future research, we can implement SAS, SPSS Statistics, and other stand-alone 

software to compare each of these three approaches, and choose the most appropriate 

approach to do the feature selection.  

 Two-Stage Econometric Strategy 

  In the future research, once we finish MDT and FS, we will enter into the most important 

step of the econometric forecast strategy, Two-Stage Econometric (TSE) Strategy. TSE 

Strategy has two stages: Multiple Regression (MR) model stage and Constrained Least 

Square Regression (CLSR) model stage. 

  Multiple Regression Model at the National Level 

  Recall, we used 2-HTPPM to obtain the accurate EIMC and the fixed EIMC at the National 

Level (see chapter, Poisson Forecast Strategy). At the first stage of a TSE Strategy, we can 

use the accurate EIMC at the National Level as the dependent variables to estimate the 

regression coefficients and constant in MR model. Below is the first stage model of a TSE 

Strategy:  (Suppose: there are I machines having the accurate EIMC at the National Level; 

after FS, we have 2 exogenous predictors that survive.) 

0 1 2i i i i iY A B OFN i              

  In the above model, iY is the machine i’s EIMC; , 1, 2, ...,i i I       is the forecast error; 0 is 

the constant in a MR model, while 1 2, , and      are coefficients for predictors; iiA and B  are 

exogenous predictors of machine i, while iOFN is the number of machine i’s failures at the 

National Level. Here, we plug the EIMC, OFN, and exogenous predictors of machines 



 

39 

 

having accurate EIMC at the National Level into a MR model. Then, we can implement a 

regression package to obtain estimates of the coefficients and the constant: 

 

0

1 2

ˆ : estimate of the constant 

ˆ : estimate of the coefficient of OFN

ˆ ˆand : estimates of the coefficients of the exogenous predictors





 





  

 

  Constrained Least Square Regression Models at the Sub Region Level and the Zip 

code Level  

  The idea of using Constrained Least Square Regression (CLSR) model to forecast the FIMC 

is quite straightforward: in our forecast problem, we must have the FIMC at each level 

(except at the National Level) satisfy the Conservation Constraint, and with more structural 

information in the future, we would need to have more constraints in the forecast problem. 

According to the literature (Hendry and Clements, 1994; Golub and Van Loan, 1996), CLSR 

model allows us to build constraints into the traditional least square regression model. ` 

  After finishing the first stage, we can have the following MR models with the estimates of 

regression coefficients and constant at the Sub Region Level and the Zip code Level: 

At the Sub Region Level: 

, 0 1 , 2 , ,
ˆˆ ˆ ˆ ,i s i s i s i sY A B OFN i s            

Here, ,i sY is the FIMC of machine i in sub region s; ,i sA and ,i sB are exogenous predictors of 

machine i in sub region s; ,i sOFN is the number of observed machine i’s failures in sub region 

s. 

At the Zip code Level: 
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, 0 1 , 2 , ,
ˆˆ ˆ ˆ ,i z i z i z i zY A B OFN i z            

Here, 
,i zY is the FIMC of machine i in zip code area z; 

,i zA and 
,i zB are exogenous predictors 

of machine i in zip code area z; ,i zOFN is the number of observed machine i’s failures in zip 

code area z. 

  Then we can build the CLSR models to forecast the installed machine count, and the 

forecast procedure is shown in Fig.2. 

 

Fig. 2: The Forecast Procedure for the Econometric Forecast Strategy 

   

  First, we will use the CLSR model to forecast the installed machine count at the Sub Region 

Level, and the CLSR model at the Sub Region Level is: (for each type of machine) 

2
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


 

MR at the National Level: obtain the estimates of coefficients and the constant  

CLSR at the Sub Region Level:  obtain the FIMC at the Sub Region Level 

CLSR at the Zip code Level:  obtain the FIMC at the Zip code Level 

 

Plug the estimates into the MR models at the Sub Region Level and the Zip code Level 

Plug the FIMC at the Sub Region Level into the constraint of CLSR model at the Zip code Level 
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  We can see from the above model that the Conservation Constraint (see chapter, Poisson 

Forecast Strategy) is built into the CLSR model as 
,

1

S

i s i

s

Y N


 , where iN is the FIMC of 

machine i at the National Level.  

  Then, according to the same logic, we can build the CLSR model at the Zip code Level to 

obtain the FIMC at the Zip code Level: (for each type of machine) 

2
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1

, ,
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ˆˆ ˆ ˆmin ( )
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   




 

In the CLSR model at the Zip code Level, ,i sN is the FIMC of machine i in the sub region s 

which contains the zip code areas from 1 to Z. 

 Discussion of the Econometric Forecast Strategy 

  The econometric forecast strategy is developed to improve the forecast accuracy at the Sub 

Region Level and the Zip code Level. However, the realization of implementing the strategy 

needs more available data which we do not have by the time of the thesis preparation, and, 

hence, we cannot know the performance of the econometric forecast strategy. 

  There is a reasonable method to test if the econometric forecast strategy can afford the 

accurate forecast at the Sub Region Level and the Zip code Level. And this method is to use 

random numbers instead of real data. The problem in generating random numbers is that we 

cannot know the distributions of the exogenous predictors, so the traditional random number 

generator may not be applicable in our case. After making a great effort in literature review, 

we find a good random number generator, the copula random number generator.  
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  According to the literature (Hu et al., 2007; Strelen and Nassaj, 2007; Yan, 2007; Danaher 

and Smith, 2011), the copula generator has been widely used in academic research in finance, 

marketing, and other business sectors. And the great advantage of copula generator is that it 

does not need the distributions of the predictors. The copula generator can use the 

intercorrelations between the predictors and the dependent variable to generate the random 

numbers of the predictors. In our research, we can assume certain intercorrelations between 

the exogenous predictors and the real installed machine count. And then, we can use a copula 

generator function in MATLAB to generate the random numbers of the exogenous predictors 

so that we can test the performance of the econometric forecast strategy.  
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Summary 

  In this thesis, we present two forecast strategies to forecast the installed machine count of 

all type of machines at the National Level, the Sub Region Level, and the Zip code Level in 

the U.S.  

  Based on the available data, we develop a Poisson forecast strategy. And this strategy can be 

divided into two parts: 

 96% significant Two-Sided Hypothesis Test on Poisson Population Mean (2-HTPPM) 

 Optimal Reallocation Strategy (ORS) 

  At the National Level, we use 2-HTPPM to test if the EIMC at the National Level is 

accurate. Then, we make the smallest effort to fix the inaccurate EIMC by checking whether 

the EIMC is greater than the upper bound or less than the lower bound of the 96% significant 

confidence interval of the installed machine count. Finally, we obtain the forecast result, the 

Forecasted Installed Machine Count (FIMC) at the National Level by combining the accurate 

EIMC and fixed ones. 

  At the Sub Region Level and the Zip code Level, we carry out an ORS. In this thesis, we 

take the ORS of one type of machine at the Sub Region Level as an example. First, we build 

an Integer-Nonlinear-Constrained (INLC) Optimization model to realize the ORS. However, 

the level of difficulty in solving the problem combining integer optimization and nonlinear 

optimization is too high to realize the ORS efficiently. Therefore, we use a Dynamic 

Programming Algorithm (DPA) to solve the INLC Optimization model. Then, we use the 

data of OFN, EFR, and EIMC of one type of machine to obtain the forecast results, FIMC, at 

the Sub Region Level and the Zip code Level. 
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  However, there are some data-related and structural problems which may cause inaccurate 

forecast results when applying a Poisson forecast strategy to forecast the installed machine 

count at the Sub Region Level and the Zip code Level. In the future research, in an attempt to 

avoid these problems, we present an econometric forecast strategy. However, this strategy 

can be realized if and only if we can have more available data in the future. The econometric 

forecast strategy has three parts: 

 Missing Data Treatment (MDT) 

 Feature Selection (FS) 

 Two-Stage Econometric (TSE) Strategy 

  Here, we define the data in the future research as endogenous predictors and exogenous 

predictors. The OFN is the only endogenous predictor in the forecast problem, while we still 

have exogenous predictors waiting for more available data. 

  To cope with the possible situation that the data sets might have missing items, we first 

present a Missing Data Treatment (MDT). In this section, we discuss the missing data 

mechanism of the data available in future. And we present a method to combine Maximum 

Likelihood (ML) and Multiple Imputation (MI) approaches, using sequential regression 

equations to process the possible missing data. 

  In Feature Selection (FS), we present three possible approaches. Stepwise Regression (SR) 

is the classic approach which is the most economical one to realize. However, it has some 

obvious disadvantages which may induce an error in choosing the significant exogenous 

predictors in our future research. Hierarchical Regression (HR) is widely known as the ideal 

substitute of SR. HR allows us to keep the best predictors in the model and check the 

significance of the exogenous predictors more effectively. Best Subset Selection (BBS) is the 
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best approach available. By using BBS, we can divide the exogenous predictors into several 

groups, and check the significance by groups. However, both HR and BBS are difficult to 

realize if there is not enough data available in the future, and the available software to solve 

HR and BBS is limited. In the future research, we can compare the three approaches, and use 

the one which can best fit the forecast problem. 

  In TSE Strategy, we first build a Multiple Regression (MR) model for each type of machine 

at the National Level, and plug the accurate EIMC, OFN, and exogenous predictors into the 

model to obtain the estimates of coefficients and constant. Then, in the second stage, we 

build Constrained Least Square Regression (CLSR) models and embed the Conservation 

Constraint (see chapter, Poisson Forecast Strategy) into the models. We first build a CLSR 

model at the Sub Region Level. After we obtain the FIMC at the Sub Region Level, we can 

build a CLSR model to get the FIMC at the Zip code Level. We propose a good method to 

test the performance of the econometric forecast strategy, generation of random numbers to 

substitute for real data. Due to the situation that we cannot know the distributions of the 

exogenous predictors, we propose a copula random number generator to accomplish the 

generation.  
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Conclusion 

  A significant contribution made through this thesis is to demonstrate how significance-

based confidence intervals can provide viable constraints to an allocation process of an entity 

whose amount and location are uncertain. A hierarchical approach is taken, disaggregating an 

entity for which there is higher certainty to finer grain geographic regions for which the 

amount and the geographic positioning of that entity have larger uncertainty. A suitable 

alternative to the methodology outlined in this thesis is not found in the applicable literature.   

  Adopting an approach quite different from traditional statistical forecast strategies, such as 

regression, this thesis presents a Poisson forecast strategy which is a combination of 

statistical theories and optimization methodologies. With limited data (observed machine 

failures, engineering machine failure rate, and estimation of the number and locations of 

machines installed), the Poisson forecast strategy can accomplish forecasting the number and 

locations of machines installed that most strongly support the occurrence of observed 

machine failures. At the National Level, a hypothesis test on Poisson population mean is 

applied to fix the estimation of the number and locations of machines installed into a 

confidence interval which can support the occurrence of observed machine failures. At the 

Sub Region and the Zip code Levels, a forecast is accomplished through finding optimal 

number and locations of machines installed which maximize the probability of occurrence of 

machine failures. The reallocation of machines is accomplished using a Dynamic 

Programming Algorithm, applied to decompose the problem into steps such that a difficult 

Integer-Nonlinear-Constrained Optimization problem can be solved very efficiently. 
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  This thesis also presents an econometric forecast strategy combining a Missing Data 

Treatment, a Feature Selection, and a Two-Stage Econometric Strategy to improve the 

accuracy of forecasting at the Sub Region and the Zip code Levels. However, to realize this 

econometric forecast strategy, there must be available data of exogenous predictors in future 

research. A treatment of missing data can be applied if the future data has missing items. 

Unlike traditional missing data techniques, a Missing Data Treatment combines a Multiple 

Imputation technique and a Maximum Likelihood technique and utilizes sequential 

regression equations to process missing items. This Missing Data Treatment can avoid a 

biased result as much as possible. A Feature Selection can be implemented to select 

significant predictors among all exogenous predictors whose data may be available in future 

research. A Feature Selection provides three alternative approaches, Stepwise Regression, 

Hierarchical Regression, and Best Subset Selection. Each approach has its merits and 

disadvantages, and the Feature Selection can choose the one which fits the research in future. 

A Two-Stage Econometric Strategy has two stages of models. The first stage model is a 

Multiple Regression model which uses data at the National Level to obtain estimates of 

regression coefficients and constant, and, by building the first stage model, a biased result 

caused by inaccurate estimates of parameters can be avoided as much as possible. The 

second stage model proposed is a Constrained Least Square Regression model. This model 

combines traditional Least Square Regression and a Conservation Constraint, and, hence, can 

make sure forecasted number and locations of machines installed would be optimal.  

  It is envisioned that this econometrics-based set of techniques would provide a “tuning” 

mechanism for the Poisson confidence interval constrained allocation model in this thesis. 
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Suitably chosen exogenous predictors would help stabilize the forecasting method that is 

otherwise at the mercy of inaccurate internal (exogenous) data. 
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Appendix: Data and FIMC at the Zip code Level 

Table 9: Data and FIMC for the zip code areas under Sub Region I 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 2 0 

2 1 1 5 

3 0 2 0 

4 0 1 0 

5 0 11 0 

6 1 1 5 

7 0 1 0 

8 0 1 0 

9 0 1 0 

10 0 1 0 

11 0 1 0 

12 0 1 0 

13 0 2 0 

14 0 2 0 

15 0 1 0 

TOTAL 2 29 10 

 

 

Table 10: Data and FIMC for the zip code areas under Sub Region II 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 1 0 
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2 0 6 0 

3 0 1 0 

4 0 3 0 

5 1 2 5 

6 0 1 0 

7 0 1 0 

8 1 1 5 

9 0 1 0 

10 0 1 0 

TOTAL 2 18 10 

 

 

Table 11: Data and FIMC for the zip code areas under Sub Region IV 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 1 1 5 

2 0 4 0 

3 0 1 0 

4 0 3 0 

5 0 26 0 

6 0 5 0 

7 0 1 0 

8 0 1 0 

9 0 1 0 

10 1 3 5 

11 0 1 0 

12 0 1 0 

13 0 1 0 

14 2 1 10 



 

54 

 

15 0 1 0 

16 2 2 11 

17 1 2 5 

18 0 1 0 

19 0 7 0 

20 0 2 0 

21 0 1 0 

22 0 2 0 

TOTAL 7 68 36 

 

 

Table 12: Data and FIMC for the zip code areas under Sub Region V 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 1 0 

2 1 1 5 

3 0 2 0 

4 0 1 0 

5 1 1 5 

6 0 2 0 

7 0 3 0 

8 0 1 0 

9 0 2 0 

10 0 2 0 

11 0 1 0 

12 2 14 11 

13 0 2 0 

14 0 10 0 

15 0 1 0 
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16 0 1 0 

17 0 1 0 

18 0 1 0 

19 0 3 0 

20 0 1 0 

21 0 1 0 

22 0 2 0 

23 1 2 5 

24 0 1 0 

25 0 2 0 

26 1 1 5 

27 0 1 0 

28 0 1 0 

29 1 1 5 

TOTAL 7 63 36 

 

 

Table 13: Data and FIMC for the zip code areas under Sub Region VI 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 1 0 

2 0 3 0 

3 0 1 0 

4 2 1 10 

5 2 1 10 

6 2 1 11 

7 0 2 0 

8 0 13 0 
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9 0 13 0 

10 0 1 0 

11 1 3 5 

12 0 1 0 

TOTAL 7 41 36 

 

 

Table 14: Data and FIMC for the zip code areas under Sub Region VII 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 1 0 

2 0 1 0 

3 1 1 5 

4 0 2 0 

5 1 7 6 

6 0 1 0 

7 0 1 0 

8 1 1 5 

9 1 32 5 

10 0 1 0 

11 2 28 11 

12 0 1 0 

13 1 1 5 

14 1 1 5 

TOTAL 8 79 42 
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Table 15: Data and FIMC for the zip code areas under Sub Region VIII 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 2 13 10 

2 0 4 0 

3 0 4 0 

4 0 2 0 

5 1 1 5 

6 1 3 5 

7 0 1 0 

8 0 3 0 

9 0 1 0 

10 0 1 0 

11 0 1 0 

12 0 1 0 

13 3 19 16 

14 3 4 16 

15 0 1 0 

TOTAL 10 59 52 

 

 

Table 16: Data and FIMC for the zip code areas under Sub Region X 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 1 1 5 

2 3 3 16 

3 0 1 0 

4 0 1 0 
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5 0 1 0 

6 0 1 0 

7 0 1 0 

8 1 1 5 

9 0 2 0 

10 1 6 5 

11 0 6 0 

12 0 5 0 

13 5 8 27 

14 1 7 5 

15 0 1 0 

16 0 1 0 

17 0 11 0 

18 0 1 0 

TOTAL 12 58 63 

 

 

Table 17: Data and FIMC for the zip code areas under Sub Region XI 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 1 1 5 

2 2 2 11 

3 1 1 5 

4 0 2 0 

5 0 2 0 

6 0 1 0 

7 1 1 5 

8 0 1 0 

9 1 1 5 
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10 1 1 5 

11 2 1 11 

12 1 1 5 

13 3 13 17 

14 0 2 0 

15 0 1 0 

16 0 1 0 

17 0 16 0 

18 0 2 0 

19 0 2 0 

20 1 2 5 

21 0 1 0 

22 0 1 0 

23 0 1 0 

TOTAL 14 57 74 

 

 

Table 18: Data and FIMC for the zip code areas under Sub Region XII 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 15 0 

2 8 31 44 

3 0 2 0 

4 0 4 0 

5 0 1 0 

6 0 2 0 

7 1 2 5 

8 0 1 0 

9 1 1 5 
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10 1 1 5 

11 0 1 0 

12 1 1 5 

13 0 5 0 

14 0 1 0 

15 0 4 0 

16 0 2 0 

17 1 1 5 

18 0 2 0 

19 2 1 10 

20 2 2 11 

21 0 1 0 

TOTAL 17 81 90 

 

 

Table 19: Data and FIMC for the zip code areas under Sub Region XIII 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 3 2 16 

2 0 12 0 

3 0 2 0 

4 0 3 0 

5 0 9 0 

6 2 2 10 

7 2 1 10 

8 9 12 49 

9 1 1 5 

10 0 2 0 

11 2 2 11 
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12 1 7 5 

13 1 1 5 

14 0 1 0 

15 0 3 0 

TOTAL 21 60 111 

 

 

Table 20: Data and FIMC for the zip code areas under Sub Region XIV 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 1 0 

2 0 1 0 

3 0 1 0 

4 2 5 16 

5 1 7 6 

6 0 2 0 

7 0 3 0 

8 0 7 0 

9 0 10 0 

10 1 2 6 

11 0 2 0 

12 1 1 6 

13 0 1 0 

14 6 16 67 

15 1 34 6 

16 1 2 6 

17 0 1 0 

18 0 1 0 

19 1 1 6 
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20 1 6 6 

21 0 1 0 

22 1 1 6 

23 0 1 0 

24 1 1 6 

25 0 2 0 

26 0 5 0 

27 1 1 6 

28 1 2 6 

29 2 2 16 

30 1 1 6 

31 0 1 0 

32 0 2 0 

33 1 9 6 

TOTAL 23 133 177 

 

Table 21: Data and FIMC for the zip code areas under Sub Region XV 

Zip code Area OFN EIMC 

Reallocated 

Installed Machine 

Count  

(or FIMC) 

1 0 2 0 

2 0 1 0 

3 0 1 0 

4 6 7 43 

5 1 2 6 

6 0 8 0 

7 6 26 67 

8 0 6 0 
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9 2 11 11 

10 0 1 0 

11 0 6 0 

12 0 1 0 

13 0 4 0 

14 0 1 0 

15 0 4 0 

16 0 2 0 

17 3 5 18 

18 0 4 0 

19 0 2 0 

20 0 1 0 

21 4 24 24 

22 0 14 0 

23 0 2 0 

24 5 3 32 

25 0 4 0 

26 0 1 0 

27 0 2 0 

TOTAL 27 145 201 
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