
Lehigh University
Lehigh Preserve

Theses and Dissertations

2016

Exploring the Power of Rescaling
Dan Li
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Li, Dan, "Exploring the Power of Rescaling" (2016). Theses and Dissertations. 2680.
http://preserve.lehigh.edu/etd/2680

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F2680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2680?utm_source=preserve.lehigh.edu%2Fetd%2F2680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Exploring the Power of Rescaling

by

Dan Li

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial Engineering

Lehigh University

January 2016

c© Copyright by Dan Li 2015

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

Date

Dissertation Advisor

Committee Members:

Tamás Terlaky, Committee Chair

Robert H. Storer

Brian D. Davison

Javier Peña

iii

Acknowledgements

First of all, I am deeply grateful to my Ph.D. advisor Dr. Tamás Terlaky. He is a

great teacher, researcher, and person. He has very broad knowledge of the subjects and

research insights. He is always full of passion and willing to impart what his knowledge

and wisdom to me unreservedly. He is always patient even when I ask very fundamental

questions and discuss details with him. Learning from him and watching the way he

approaches problems is an invaluable experience. His strict requirements inspire me all

along. He always supports me even in my most difficult time. It has been a privilege to

do research with him. I am grateful to my thesis committee members professor Robert

Storer, Brian Davison, Javier Peña, and Alexandre d’Aspremont, for taking the time to

provide insightful comments and constructive advice.

I would like to thank all the Lehigh ISE professors, especially Ted Ralphs, Larry

Snyder, Imre Pólik, George Wilson, and Jitamitra Desai. I have learned a great deal

from their wonderful lectures. Working as TA for Tamás Terlaky, Frank Curtis, Ted

Ralphs, Larry Snyder, and Stuart Paxton has been great experience for me to practice

not only teaching but also communicating skills. I am also thankful to Rita Frey, Kathy

Rambo, and Brianne Lisk who were always there to guide us smoothly through all

administration problems.

I am thankful to all my dear friends here who make me feel home at Lehigh. The

time I have spent together with them will always be a treasured memory for me. My

heart is full of gratitude for my parents, Kai Wang and Yunfei Li. I cannot thank enough

to their love and consistent support all these years. Finally, I thank my husband Fenglin

iv

Yan, who is always being there for me, and my son Eric Yan, a little angel who brings

all the sunshine to my life.

v

Contents

Acknowledgements iv

List of Tables x

List of Figures xi

List of Symbols xii

List of Algorithms xiii

Abstract 1

Publications 4

1 Introduction 5

1.1 Linear Optimization and Linear Feasibility Problem 5

1.1.1 Problem Equivalence . 5

1.1.2 Complexity Theory for Linear Optimization 8

1.1.3 Linear Optimization Algorithms 8

1.1.4 Condition Number for Linear Feasibility Problems 10

1.2 Elementary Algorithms . 11

1.2.1 Perceptron Algorithms . 12

1.2.2 The von Neumann Algorithm . 15

1.2.3 Rescaling Perceptron Algorithms 18

vi

1.2.4 Chubanov’s Method . 23

1.3 Motivation . 25

1.4 Structure of the Thesis . 26

2 The Duality Between the Perceptron and the von Neumann Algorithm 27

2.1 Introduction . 27

2.2 Duality Relationship . 28

2.2.1 Alternative Systems . 28

2.2.2 Calculation of Condition Number 29

2.2.3 Interpretation of Approximate Solutions 30

2.2.4 Approximate Farkas Lemma . 32

2.3 From Perceptron to von Neumann . 36

2.3.1 The Normalized Perceptron Algorithm 36

2.3.2 The Smooth Perceptron Algorithm 40

2.4 From von Neumann to Perceptron . 43

2.4.1 The Original von Neumann Algorithm 43

2.4.2 The Optimal Pair Adjustment Algorithm 45

2.5 Summary . 48

3 On Deterministic Rescaling Algorithms 50

3.1 Introduction . 50

3.2 A Deterministic Rescaling von Neumann Algorithm 51

3.2.1 A Deterministic Rescaling von Neumann Algorithm 52

3.2.2 The Precision of Solutions . 52

3.3 Construction of a von Neumann Example with a Decreasing Ball 55

3.4 Verification of the von Neumann Example 61

3.4.1 The Initial Condition Number . 61

3.4.2 The Condition Number After One Rescaling Step 63

3.4.3 Choosing the Rescaling Vector . 64

vii

3.5 A Perceptron Example with a Decreasing Ball Example 65

3.5.1 From the von Neumann Example to the Perceptron Example . . . 65

3.5.2 The Percetron Example . 66

3.5.3 Verification of the Perceptron Example 66

3.6 Computational Results . 68

3.7 Summary . 70

4 A Polynomial Column-wise Rescaling von Neumann Algorithm 71

4.1 Introduction . 71

4.2 The von Neumann Procedure . 73

4.2.1 Bounds for Feasible Solutions . 74

4.2.2 The von Neumann Procedure . 76

4.2.3 Complexity of the von Neumann Procedure 78

4.3 The Column-wise Rescaling von Neumann Algorithm 79

4.3.1 Rescaling . 79

4.3.2 Removing Columns . 80

4.3.3 The Column-wise Rescaling von Neumann Algorithm 81

4.4 Complexity . 81

4.5 Computational Results . 83

5 A Higher-order Rescaling Perceptron Algorithm 85

5.1 Introduction . 85

5.2 The Higher-Order Rescaling Perceptron Algorithm 86

5.3 Probability of Getting Good Recaling Vectors 89

5.4 Computational Result . 91

5.5 Summary . 93

6 Conclusions and Future Research 94

Bibliography 97

viii

A Reformulation of LO Problems as LFPs 102

B Colorful Feasibility Problem 105

B.1 Colorful Feasibility Problem . 105

B.2 The Bárány and Onn Algorithms . 106

Biography 110

ix

List of Tables

3.1 Comparison of the performance of Algorithm 3.1 and the original von

Neumann algorithm with vρ ∈ [0.0015, 0.0025]. 69

3.2 Comparison of the performance of Algorithm 3.1 and the original von

Neumann algorithm with different vρ. 70

4.1 Comparison of the performance of Algorithm 4.3 and SeDuMi. 83

4.2 Comparison of the performance of Algorithm 4.3 and Linprog. 84

x

List of Figures

1.1 Illustration of the impact of rescaling. 19

3.1 Illustration of the initial major points, p9, and p10. 56

3.2 Illustration of the perturbations of point p7. 60

3.3 Illustration of the initial convex hull. 61

3.4 Illustration of replacing p3 by p11. 63

5.1 Improving the running time by using the Higher-order Rescaling Percep-

tron Algorithm. 92

B.1 Illustration of the Bárány-Onn Algorithms. 109

xi

List of Symbols

∆n The unit simplex in Rn, page 11.

Sm−1 The unit shpere in Rm, page 21.

F The feasible cone (region) of the perceptron problem, page 20.

NA The null space of the matrix A, page 71.

RA The row space of the matrix A, page 71.

conv(A) The convex hull of the points ai, the column vectors of matrix A, page 6.

ρ The radius of the largest inscribed ball, page 10.

pρ ρ for the perceptron problem, page 10.

vρ ρ for the von Neumann problem, page 10.

e The vector of all ones, page 6.

I Identity matrix, page 17.

i, j, s Indices for vectors or matrices.

k Iteration counter. The notations with k as their superscript means the

corresponding value in the current iteration.

L The bit-length (size) of an LO instance with integer data, page 7.

xii

m,n Problem dimension.

PA, QA The orthogonal projection matrix of Rn onto NA and RA, respectively,

page 71.

x(y) argmin
x∈∆n

〈AT y, x〉, page 11.

xN , xR The orthogonal decomposition of vector x in the spaces NA and RA, re-

spectively, page 71.

Vol(S) The volume of a measurable set S, page 21.

General Notations

Lower-case Greek letters Scalars, such as ε, α, and θ.

Lower-case Roman letters Vectors unless otherwise specified, such as x, y, b, u, and v.

They are corresponding to normalized vectors if they are “over-lined”, such

as ȳ..

Notations with ′ The corresponding values after a rescaling step.

Upper-case Roman letters Matrices, for example A represents the coefficient matrix of

either the perceptron or the von Neumann problem.

xiii

List of Algorithms

1.1 The Classical Perceptron Algorithm . 13

1.2 The Modified Perceptron Algorithm . 14

1.3 The von Neumann Algorithm . 16

1.4 The Stochastic Rescaling Perceptron Algorithm 19

1.5 The Deterministic Rescaling Perceptron Algorithm 21

2.1 The Normalized Perceptron Algorithm . 37

2.2 The Normalized von Neumann Algorithm 38

2.3 The Smooth Perceptron Algorithm . 41

2.4 The Smooth von Neumann Algorithm . 42

2.5 The von Neumann Algorithm Interpreted in the Perceptron Space 43

2.6 The Optimal Pair Adjustment Algorithm 46

2.7 The Optimal Pair Adjustment Perceptron Algorithm 47

3.1 The Deterministic Rescaling von Neumann Algorithm 53

4.1 [ũ, u, uN , J̃ , d̃, CASE]=von Neumann Procedure(PA, u) 77

4.2 [A,CASE]=PreProcessing(A, J0) . 81

4.3 The Column-wise Rescaling von Neumann Algorithm 82

5.1 The Higher-order Rescaling Perceptron Algorithm 88

B.1 The First Bárány-Onn Algorithm . 107

B.2 The Second Bárány-Onn Algorithm . 108

xiv

Abstract

The goal of our research is a comprehensive exploration of the power of rescaling to im-

prove the efficiency of various algorithms for linear optimization and related problems.

Linear optimization and linear feasibility problems arguably yield the fundamental prob-

lems of optimization. Advances in solving these problems impact the core of optimiza-

tion theory, and consequently its practical applications. The development and analysis

of solution methods for linear optimization is one of the major topics in optimization

research. Although the polynomial time ellipsoid method has excellent theoretical prop-

erties, however it turned out to be inefficient in practice. Still today, in spite of the

dominance of interior point methods, various algorithms, such as perceptron algorithms,

rescaling perceptron algorithms, von Neumann algorithms, Chubanov’s method, and

linear optimization related problems, such as the colorful feasibility problem – whose

complexity status is still undecided – are studied.

Motivated by the successful application of a rescaling principle on the perceptron

algorithm, our research aims to explore the power of rescaling on other algorithms too,

and improve their computational complexity. We focus on algorithms for solving lin-

ear feasibility and related problems, whose complexity depend on a quantity ρ, which

is a condition number for measuring the distance to the feasibility or infeasibility of

the problem. These algorithms include the von Neumann algorithm and the perceptron

algorithm. First, we discuss the close duality relationship between the perceptron and

the von Neumann algorithms. This observation allows us to transit one algorithm as a

variant of the other, as well as we can transit their complexity results. The discovery of

1

this duality not only provides a profound insight into both of the algorithms, but also

results in new variants of the algorithms.

Based on this duality relationship, we propose a deterministic rescaling von Neu-

mann algorithm. It computationally outperforms the original von Neumann algorithm.

Though its complexity has not been proved yet, we construct a von Neumann example

which shows that the rescaling steps cannot keep the quantity ρ increasing monotonically.

Showing a monotonic increase of ρ is a common technique used to prove the complex-

ity of rescaling algorithms. Therefore, this von Neumann example actually shows that

another proof method needs to be discovered in order to obtain the complexity of this

deterministic rescaling von Neumann algorithm. Furthermore, this von Neumann ex-

ample serves as the foundation of a perceptron example, which verifies that ρ is not

always increasing after one rescaling step in the polynomial time deterministic rescaling

perceptron algorithm either.

After that, we adapt the idea of Chubanov’s method to our rescaling frame and

develop a polynomial-time column-wise rescaling von Neumann algorithm. Chubanov

recently proposed a simple polynomial-time algorithm for solving homogeneous linear

systems with positive variables. The Basic Procedure of Chubanov’s method can ei-

ther find a feasible solution, or identify an upper bound for at least one coordinate of

any feasible solution. The column-wise rescaling von Neumann algorithm combines the

Basic Procedure with column-wise rescaling to identify zero coordinates in all feasible

solutions and remove the corresponding columns from the coefficient matrix. This is the

first variant of the von Neumann algorithm with polynomial-time complexity. Further-

more, compared with the original von Neumann algorithm which returns an approximate

solution, this rescaling variant guarantees an exact solution for feasible problems.

Finally, we develop the methodology of higher order rescaling and propose a higher-

order perceptron algorithm. We implement the perceptron improvement phase by uti-

lizing parallel processors. Therefore, in a multi-core environment we may obtain several

rescaling vectors without extra wall-clock time. Once we use these rescaling vectors in

2

a single higher-order rescaling step, better rescaling rates may be expected and thus

computational efficiency is improved.

3

Publications

• Dan Li and Tamás Terlaky. The Duality Between the Perceptron and the von

Neumann Algorithms. In Modeling and Optimization: Theory and Applications,

volume 62, pp. 113 - 136. 2013.

• Dan Li, Cornelis Roos and Tamás Terlaky. A Polynomial Column-Whised Rescal-

ing von Neumann Algorithm. Submitted to Mathematical Programming.

• Dan Li and Tamás Terlaky. An Example with Decreasing Largest Inscribed Ball

for Deterministic Rescaled Algorithms. Submitted to INFORMS Journal on Com-

puting.

• Dan Li and Tamás Terlaky. A Higher-Order Rescaling Perceptron Algorithm.

Working paper.

4

Chapter 1

Introduction

This chapter reviews basic concepts of linear optimization and linear feasibility problems

in Section 1.1: problem equivalence, complexity theory, related algorithms, and condi-

tion numbers. Section 1.2 introduces the details of the algorithms which we focus on.

Our motivation is presented in Section 1.3 and the structure of the thesis is given in

Section 1.4.

1.1 Linear Optimization and Linear Feasibility Problem

It is well known that Linear Optimization (LO) and Linear Feasibility Problems (LFPs)

are the fundamental problems of optimization. We start with important concepts con-

sidered frequently during the study of these problems.

1.1.1 Problem Equivalence

LO is the problem of minimizing or maximizing a linear objective function subject to

a system of linear inequalities and equations. The goal of the LFP is to find a feasible

solution to a linear inequality system. Considering an LO problem with zero as its

objective function, then we have that every feasible solution is optimal. From this point

of view the LFP is a special case of LO. On the other hand, it is well known [4, 42] that

5

CHAPTER 1. INTRODUCTION

by the LO duality theorem, any LO problem can be transformed to an equivalent LFP.

Given an LO problem, it can be transformed to the following canonical form [42]:

max {cTx : Ax = b, x ≥ 0}, (1.1)

where matrix A ∈ Rm×n, vectors c, x ∈ Rn, and vector b ∈ Rm. Consider (1.1) as a

primal problem, then its dual problem is given by

min {bT y : AT y ≥ c}. (1.2)

There are two important duality theorems [4]. The weak duality theorem shows that for

problems in the forms of (1.1) and (1.2), bT y ≥ cTx holds, i.e., the objective function

value of the primal problem at any feasible solution is always less than or equal to the

objective function value of the dual problem at any feasible solution. If x∗ and y∗ are

optimal solutions for (1.1) and (1.2) respectively, then by the strong duality theorem we

have bT y∗ = cTx∗. Consider the following inequalities system:

Ax ≥ b, x ≥ 0,

−Ax ≥ −b, (1.3)

AT y ≥ c,

cTx− bT y ≥ 0.

Given any feasible solution (x, y) to the linear inequality system (1.3), the first two

inequalities guarantee that x and y are feasible to (1.1) and (1.2), respectively. By the

weak duality theorem, the third inequality can only be satisfied with equality, which

implies that x is an optimal solution to (1.1) and y is an optimal solution to (1.2). Thus,

any LO problem (1.1) can be solved by solving the corresponding LFP (1.3). In other

words, LO problems and LFPs are equivalent to one another and they are equivalently

solvable.

6

CHAPTER 1. INTRODUCTION

LFPs can be written in various forms. First we consider the form 1

AT y > 0, (1.4)

where A ∈ Rm×n with its column vectors a1, a2, . . . , an ∈ Rm and y ∈ Rm. We may

assume without loss of generality that ‖ai‖2 = 1 for all i = 1, 2, . . . , n and rank(A)=m.

This assumption is not changing the feasibility or infeasibility of problem (1.4). An LFP

can also have a non-zero right hand side constant c ∈ Rn in the form

AT y ≥ c. (1.5)

Since each equation is equivalent to two inequalities, any linear inequality and equation

system can be transformed to the form of problem (1.5). We also consider LFPs in the

form

Ax = 0

eTx = 1

x ≥ 0,

(1.6)

where x ∈ Rn and e ∈ Rn is the vector of all ones. For convenience of our discussion,

without loss of generality [2], we may assume that matrix A has the same properties as

matrix A in problem (1.4). Observe that problem (1.6) yields a standard form of LFPs

with a convexity constraint [14]. Let conv(A) represent the convex hull of the points

ai. If the origin 0 ∈ conv(A), then problem (1.6) is feasible and can be considered as

a weighted center problem [14], i.e., the problem of assigning nonnegative weights xi to

the points ai so that their weighted center of gravity is the origin 0.

1For convenience matrix A will be universally used as the coefficient matrix of the actually considered
LFP or LO problems. We will make clear when any relationship exists between the coefficient matrices.

7

CHAPTER 1. INTRODUCTION

1.1.2 Complexity Theory for Linear Optimization

The purpose of complexity theory is to give an upper bound for the number of arithmetic

operations needed to solve a given problem, and this way one can quantify how efficient

an algorithm is. The complexity estimates are worst case bounds, thus they do not

always indicate the actual behavior of the algorithms for particular problem instances.

However, complexity theory is a main instigator for algorithmic research [44].

In complexity theory, the word “problem” is used to represent the form of general

questions without concrete values. If all the parameters of a problem are set to certain

values, we define it an instance of the problem. That is, a problem is a collection of

instances [4, 44]. Given any LO instance, an LO algorithm is able to determine whether

the constraints for the instances are consistent, i.e., whether the instance is feasible, and

compute an optimal solution if it exists.

A measure of the difficulty of an LO instance, when given by integer data, is its

“bit-length”, which is usually denoted by L. It is also referred to as the size of the

instance. Given an LO instance, L is the number of bits that are necessary to represent

the instance in the binary number system, i.e., the size of the input data, or input length.

We assume that all the data of the given instances are integer. Consider a problem in

the form of (1.5), then the size of an instance is

L =

m∑
i=1

n∑
j=1

dlog2(|αij |+ 1)e+

n∑
i=1

dlog2(|γi|+ 1)e+ 1 +mn+ n,

where A = (αij)m×n and c = (γi)n. Let T (L) be the number of arithmetic operations of

an algorithm in the worst case over all instances of size L. An algorithm is polynomial-

time if T (L) is bounded by some function that is polynomial in m,n and L.

1.1.3 Linear Optimization Algorithms

Since the discovery of the simplex method [4, 44] in 1947, the development and analysis

of solution methods for Linear Optimization (LO) are in the center of optimization

8

CHAPTER 1. INTRODUCTION

research. Still today, the simplex method is one of the most powerful algorithms for

solving LO problems in computational practice. However, in 1972, Klee and Minty [33]

showed that the simplex method may take an exponential number of iterations, i.e., the

performance of the simplex method in the worst case is poor. Thus, the simplex method

is not a polynomial time algorithm.

The era of polynomial time algorithms for LO was launched in 1979 by Khachiyan

[31] who published the first polynomial time algorithm – the ellipsoid method – to solve

LO problems. Although the polynomial time ellipsoid method has excellent theoretical

properties, it turned out to be inefficient in computational practice [31, 32]. Regardless

of its weak performance in practice, Khachiyan’s algorithm inspired a flood of research in

LO and established the foundations of the polynomial-time solvability of LO problems.

In 1984, Karmarkar [30] introduced a new polynomial time algorithm which belongs

to the class of Interior Point Methods (IPMs). IPMs are considered to be the first family

of algorithms which are both theoretically and computationally efficient for solving LO

problems. Since Karmarkar’s remarkable work, the study of IPMs as polynomial time

algorithms have dominated the optimization literature, in particular LO, in the past

quarter century [4, 44, 42]. In spite of the dominance of IPMs, various algorithms, such

as variants of the perceptron algorithm (PA) [5, 6, 45] and the von Neumann algorithm

(vNA) [12, 14] were studied.

The PA [43] was originally invented in the field of machine learning. It is used to solve

data classification problems by learning a linear threshold function. It is designed to solve

LFPs in the form (1.4). In its original form, the PA is not a polynomial-time algorithm.

Two rescaling variants were proposed with the goal to speed up the PA. Dunagan and

Vempala [17] proposed a randomized rescaling PA. Its complexity is polynomial with

high probability. Recently, Peña and Soheili [37] proposed a deterministic rescaling PA.

It guarantees that the algorithm always stops in polynomial time, however, the total

complexity is not as good as the one of the stochastic version and that of IPMs. For these

two variants of rescaling PAs, the authors used different terminologies to describe the

9

CHAPTER 1. INTRODUCTION

rescaling process. In order to keep consistent terminology we choose to use “rescaling”,

regardless what the original term the authors used.

The vNA was first published by Dantzig [12, 14], and the vNA can be interpreted

as a special case of the Frank-Wolfe algorithm, which is an iterative method for solving

linearly constrained convex optimization problems [20, 3]. The complexity of finding an

approximate solution, in the worst case, could require exponentially many arithmetic

operations. Therefore, the vNA is not a polynomial-time algorithm. Although, several

variants of the vNA are proposed by Gonçalves, Storer, and Gondzio [28], none of them

is proved to have polynomial complexity.

Chubanov [9, 10, 11] has recently proposed a novel polynomial-time algorithm for

solving homogeneous linear systems with positive variables. It is a divide-and-conquer

algorithm which can be considered as a generalization of the classic relaxation method

[1, 36]. It projects the current solution not only onto the half-spaces corresponding to

original constraints, but also onto those corresponding to induced inequalities. The so-

called elementary procedure or Basic Procedure (BP) is the core of the method. The

BP generates induced inequalities if it neither finds a solution, nor provides an evidence

of infeasibility. One of the advantages of Chubanov’s method is its polynomial-time

complexity. For certain problems, it runs in strongly polynomial time.

More details about the various algorithms will be introduced in Section 1.2.

1.1.4 Condition Number for Linear Feasibility Problems

For solving LFPs, we focus on variants of the perceptron algorithm and variants of the

von Neumann algorithm. They consider LFPs in the standard forms (1.4) and (1.6),

respectively. Therefore, we also call problem (3.1) the perceptron problem and problem

(3.2) the von Neumann problem. Both of these algorithms aim to find a feasible solution

for an LFP. They either deliver a feasible solution, or provide an evidence of infeasibility.

A common feature of these algorithms is that their iteration complexity depends on a

condition number ρ [5, 19, 32]. Since LO problems and LFPs are equivalent to solve,

10

CHAPTER 1. INTRODUCTION

the concept of condition number for LO problems also applies to LFPs. A variety of

condition numbers for LFPs have been defined, e.g., by Renegar [39, 40], Epelman and

Freund [18], Epelman and Vera [22, 23], and Cheung and Cucker [8]. As one of the

condition numbers, ρ quantifies how far the given instance is from the boundary of

infeasibility and feasibility. Given an LFP, we define ρ in general terms as follows.

Definition 1.1.1. Given an LFP, if the problem is feasible, ρ is defined as the radius

of the largest inscribed ball contained in the feasible region. Otherwise, ρ measures the

distance to feasibility.

For different algorithms and problem forms, ρ may have slightly different definitions.

We will discuss them in details in Section 2.2.2. In order to distinguish ρ in different

algorithms, we use pρ to represent ρ in the perceptron algorithm and vρ for the von

Neumann algorithm. If the problem is feasible (infeasible), this quantity ρ indicates

how far the constraints can be shifted or rotated so that the problem becomes infeasible

(feasible). The larger ρ is, the harder to turn a feasible problem to infeasible, or vice

versa. Therefore, ρ can be seen as a measure of the robustness of feasibility or infeasibility.

In addition, as one of the condition measures of LFPs, the quantity ρ effects the

convergence of algorithms directly. Freund and Vera [23] tried to build a relationship

between the geometry of a convex feasible set and the computational complexity of an

algorithm applied to the problem. Quantity ρ may be considered as a measure of the

goodness of problem geometry. They showed that the problems with favorable geometry

have better computational complexity. The complexity results of the perceptron and von

Neumann algorithms confirm this fact: the larger ρ is, the better the algorithm behaves.

The details about the complexity of algorithms are also discussed in Section 1.2.

1.2 Elementary Algorithms

Among the algorithms for solving LFPs, there are several of them which have a common

feature: each iteration involves only simple computations. Here, simple computation

11

CHAPTER 1. INTRODUCTION

means that unlike conventional Newton-based algorithms, there are no more complicated

operations than matrix-vector multiplication in each iteration. This class of algorithms

is referred to as elementary algorithms. The PA and vNA are elementary algorithms.

1.2.1 Perceptron Algorithms

In this section, we introduce the Classical PA and a modified version with their com-

plexity results.

1.2.1.1 The Classical Perceptron Algorithm

The Classical PA used in machine learning [45] is designed to solve the following data

classification problem: Given a set of points in the m-dimensional space. Each point is

labeled as positive or negative. The problem is to find a separating hyperplane, which

separates all positive points from the negative ones. By some transformations [45] those

problems lead to LFPs in the form of (1.4) that consists of n constraints in dimension

m. The Classical PA assumes that problem (1.4) is feasible. It starts from the origin

and performs a classical perceptron update at each iteration. This update step tries to

find a violated constraint and moves the current iterate y by one unit perpendicularly

towards the violated constraint. The algorithm terminates once the iterate y is in the

feasible region and y is a feasible solution.

Let ∆n be the unit simplex, i.e., ∆n = {x : x ≥ 0, ‖x‖1 = 1}. For y ∈ Rm, define

x(y) = argmin
x∈∆n

〈AT y, x〉. Thus, we have Ax(y) = as if and only if aTs y = min
i=1,··· ,n

aTi y.

Observe that as and so x(y) are not necessarily unique. Now we are ready to describe

the Classical PA.

Remember that we have assumed that all ai vectors have unit length. The PA has

the following complexity result.

Theorem 1.2.1. [35] Assume that the LFP (1.4) is strictly feasible. Then after at most

1
pρ2

12

CHAPTER 1. INTRODUCTION

Algorithm 1.1 The Classical Perceptron Algorithm

1: Initialization: Let y0 be the all-zero vector. k = 0.
2: while True do
3: Ax(yk) = as.
4: if aTs y

k > 0 then
5: STOP, and return yk.
6: else

yk+1 = yk + as,

k = k + 1.

7: end if
8: end while

iterations, the PA terminates with a feasible solution.

Note that this theorem assumes that problem (1.4) is strictly feasible. According

to the general definition of the quantity ρ in Definition 1.1.1, pρ refers to the radius

of the largest inscribed ball contained in the feasible region and centered on the unit

sphere. In the worst case, radius pρ can be exponentially small in the input length L.

Thus, the iteration complexity of the Classical PA is not polynomial. In the dual view,

pρ is called the wiggle room for a feasible solution y∗ [5], which indicates the minimum

distance of any column ai of matrix A to the hyperplane aTi y
∗ = 0. It can be calculated

by pρ = mini
|aTi y∗|
‖ai‖‖y∗|| . Theorem 1.2.1 shows that if an LFP (1.4) has a non-zero wiggle

room, then the PA produces a feasible solution, and the smaller the ball inside the

feasible region is, the more iterations the PA needs. To improve the geometry of LFPs,

and improve the complexity of PAs, rescaling is applied.

1.2.1.2 A Modified Perceptron Algorithm

A modified version of the PA was presented by Blum, et al. [6]. This algorithm re-

turns a nearly feasible solution to problem (1.4). A nearly feasible solution means that

some constraints in problem (1.4) might be violated but none of them is violated much.

Formally, a nearly feasibility solution is defined as follows.

13

CHAPTER 1. INTRODUCTION

Definition 1.2.2. A vector y is a nearly feasible solution to problem (1.4) if aTi y ≥

−σ‖y‖ for all i = 1, . . . , n, where ai is the ith column of matrix A and σ is a small

positive number.

The Modified PA is stated in Algorithm 1.2. It always starts from a random unit

Algorithm 1.2 The Modified Perceptron Algorithm

1: Initialization: Choose any random unit vector y0 in Rm. Let k = 0.
2: while k ≤

⌈
lnm
σ2

⌉
do

3: Ax(yk) = aks .
4: if (aks)

T yk ≥ −σ‖yk‖ then
5: STOP and return yk.
6: else

yk+1 = yk − ((aks)
T yk)aks ,

k = k + 1.

7: if yk+1 = 0 then
8: Go back to Initialization and restart.
9: end if

10: end if
11: end while
12: if the algorithm does not stop at this point then
13: Go back to Initialization and restart the algorithm.
14: end if

vector, which brings a nondeterministic factor to its complexity result.

Theorem 1.2.3. [6] Assume that problem (1.4) is feasible. With high probability, after

at most

O

(
1

σ2
log(m)

)

iterations, the Modified PA returns a nearly feasible solution. “High probability” is de-

fined as the probability of at least 1− e−m.

14

CHAPTER 1. INTRODUCTION

1.2.2 The von Neumann Algorithm

The vNA was published by Dantzig [12, 14] in 1991. It is an algorithm for solving LFPs

in the form of (1.6). The vNA can also be interpreted as a special case of the Frank-Wolfe

algorithm [20, 3], which is an iterative method for solving linearly constrained convex

optimization problems. Unlike the perceptron algorithm, the vNA gives an approximate

solution in a finite number of iterations. Thus, before presenting the vNA, we need to

define what an ε-approximate solution (or ε-solution for short reference) of problem (1.6)

is.

Definition 1.2.4. Given 0 < ε < 1. An ε-solution of problem (1.6) is a solution x ≥ 0

satisfying eTx = 1 and ‖Ax‖ ≤ ε.

The vNA terminates once it obtains an ε-solution. Consequently, this algorithm can

be interpreted as an algorithm for solving an optimization problem with minimizing ‖Ax‖

as its objective function. This interpretation makes the vNA to fall in the framework of

the Frank-Wolfe algorithm [20]. Actually, when the Frank-Wolfe algorithm is applied to

the problem min{‖Ax‖ : eTx = 1, x ≥ 0} with exact line search for calculating the step

length at each iteration, the Frank-Wolfe algorithm exactly reduces to the vNA.

In Algorithm 1.3, vector b is also called the residual at the current iterate. We have

the following lemma to justify the statement in Step 7.

Lemma 1.2.5. For any vector b, let s = argmin
i=1,...,n

aTi b. If aTs b > 0, then problem (1.6) is

infeasible.

Proof. Let b ∈ Rm be an arbitrary vector. Since s = argmin
i=1,...,n

aTi b and aTs b > 0, we have

aTi b > 0 for all i = 1, . . . , n. Thus, all the points ai, i = 1, . . . , n lie in the open halfspace

C defined by C = {y|bT y < 0}. By the definition of the convex hull, it is obvious that

conv(A) ⊂ C. We also have 0 /∈ C because bT 0 = 0, therefore 0 /∈ conv(A). Thus,

problem (1.6) is infeasible and the separating hyperplane bTw = 0 is a certificate for

it.

15

CHAPTER 1. INTRODUCTION

Algorithm 1.3 The von Neumann Algorithm

1: Initialization:
Choose any x0 ≥ 0 with eTx0 = 1.
Let b0 = Ax0 and k = 0.

2: while ‖bk‖ ≥ ε do
3: We have an approximate solution xk, such that xk ≥ 0, eTxk = 1. Let µk = ‖bk‖.
4: Find the vector as which makes the largest angle with the vector bk:

s = argmin
i=1,...,n

aTi b
k.

5: Let νk = aTs b
k.

6: if νk > 0 then
7: STOP, problem (1.6) is infeasible.
8: end if
9: Let es be the unit vector corresponding to index s and let

λ =
1− νk

µ2
k − 2νk + 1

,

µ2
k+1 = λνk + (1− λ),

xk+1 = λxk + (1− λ)es,

bk+1 = Axk+1,

k = k + 1.

10: end while

16

CHAPTER 1. INTRODUCTION

Dantzig assumed that problem (1.6) is feasible and derived an upper bound for the

number of iterations of the vNA [14] as follows.

Theorem 1.2.6. [14] Let ε > 0 and assume that problem (1.6) is feasible. Then after

at most ⌈
1

ε2

⌉
iterations, the von Neumann Algorithm provides an ε-solution for problem (1.6).

Epelman and Freund [19] gave a different complexity analysis, and showed that when

problem (1.6) is strictly feasible or strictly infeasible, then the iteration complexity of

the vNA is linear in ln(1/ε) and 1/vρ2.

Theorem 1.2.7. [19] Let ε > 0 and assume that vρ > 0.

1) If problem (1.6) is strictly feasible, then after at most

⌈
2
vρ2

ln
1

ε

⌉

iterations, the vNA obtains an ε-solution of problem (1.6).

2) If problem (1.6) is strictly infeasible, then after at most

⌊
1
vρ2

⌋

iterations, the vNA returns a certificate of infeasibility.

When problem (1.6) is feasible, both the complexity bounds proved by Dantzig (The-

orem 1.2.6) and Epelman and Freund (Theorem 1.2.7) are valid for obtaining an ε-

approximate solution. Neither of them is dominant. When vρ is large, the complexity

bound proved by Epelman and Freund is better. Otherwise, the one by Dantzig is better.

Theoretically the vNA does not provide an exact solution, it only converges to a

solution. Dantizig [13] proposed a “bracketing” procedure to identify an exact solution

17

CHAPTER 1. INTRODUCTION

in finite number of iterations. By applying the vNA to m+ 1 perturbed problems, m+ 1

approximate solutions are generated. A weighted sum of these approximate solutions

yields an exact solution to the original unperturbed problem. This requires the solution

of an (m + 1) × (m + 1) system of linear equations. This procedure has the following

complexity.

Theorem 1.2.8. [13] Assume that problem (1.6) is strictly feasible. Then after at most

4(m+ 1)3

vρ2

iterations, Dantzig’s “bracketing” procedure returns an exact feasible solution.

1.2.3 Rescaling Perceptron Algorithms

There are two successful versions of rescaling PAs. Both of them lead to polynomial-

time complexity by applying a rescaling procedure. The major difference is whether the

polynomial complexity is deterministic.

1.2.3.1 The Stochastic Rescaling Perceptron Algorithm

Dunagan and Vempala [17] proposed a rescaling PA in 2004. In order to seperate it from

another one, we call it Stochastic Rescaling PA. It rescales the linear inequality system

(1.4) at each step. A step of the algorithm consists of three phases. The perceptron

phase employs the Classic PA with a restricted number of iterations. The perceptron

improvement phase uses a modified version of the algorithm proposed in Section 1.2.1.2

in order to obtain a nearly feasible solution, which is then used in the rescaling phase to

widen the cone of feasible solutions. The Rescaling PA is as follows.

Figure 1.1 illustrates a constraint system before and after rescaling. In the rescaling

phase, a nearly feasible solution y, found in the perceptron improvement phase, is used

to perform a linear transformation on problem (1.4); and consequently, increase pρ. An

important result for the rescaling phase is derived in [17].

18

CHAPTER 1. INTRODUCTION

Algorithm 1.4 The Stochastic Rescaling Perceptron Algorithm

1: Initialization: Let B ∈ Rm×m, B = I, and σ = 1
32m .

2: while True do
3: Phase 1. The Perceptron Phase
4: Run The PA for at most

⌈
1
σ2

⌉
iterations, then output y.

5: if AT y ≥ 0 then
6: STOP and return By as a feasible solution.
7: end if
8: Phase 2. The Perceptron Improvement Phase
9: Run The Modified PA, then output y.

10: if AT y ≥ 0 then
11: STOP and return By as a feasible solution.
12: end if
13: Phase 3. The Rescaling Phase
14: Let ȳ = y

‖y‖ . Set A = (I + ȳȳT)A and B = (I + ȳȳT)B.
15: end while
16: Output: A point y such that AT y ≥ 0 and y 6= 0.

Figure 1.1: Illustration of the impact of rescaling.

19

CHAPTER 1. INTRODUCTION

Lemma 1.2.9. [17] Let ρ, σ ≤ 1/32m. Let A′ be obtained from A by one iteration of

the algorithm (when the problem was not solved). Let pρ′ and pρ be the radii of A′ and

A, respectively. Then,

(a) pρ′ ≥ (1− 1
32m −

1
512m2)pρ.

(b) With probability at least 1
8 , pρ′ ≥ (1 + 1

3m)pρ.

Lemma 1.2.9 shows the fact that the rescaling phase increases pρ by at least a fixed

factor with probability at least 1/8. Thus, at each iteration, the Rescaling PA either

returns a feasible solution to problem (1.4), or with probability at least 1/8 inflates the

largest inscribed ball. The iteration complexity of the Rescaling PA is presented in the

following theorem.

Theorem 1.2.10. [17] Assume that problem (1.4) is strictly feasible. Then after at

most

O

(
m ln

(
1
pρ

))
iterations, with high probability, the Rescaling PA returns a feasible solution.

Now compare the complexity results in Theorem 1.2.1 and Theorem 1.2.10. The

iteration complexity of the Classical PA is O(1/pρ2), while the computational complexity

of the Rescaling PA is O(m ln(1/pρ)). As pρ may be as small as 2−L, see e.g. [24], the

iteration complexity of the Classical Perceptron Algorihm is O(2L), while with high

probability the complexity of the Rescaling PA is O(mL)).

1.2.3.2 The Deterministic Rescaling Perceptron Algorithm

Recently, Peña and Sohèili [38] proposed a Deterministic Rescaling PA, shown in Algo-

rithm 1.5. It consists of an outer loop with two main phases, the perceptron phase and

the rescaling phase. Same as the Stochastic Rescaling PA, the perceptron phase also

invokes the Classic PA. This phase either finds a feasible solution within a predefined

number of perceptron updates (iterations), or identifies one column of matrix A, called

20

CHAPTER 1. INTRODUCTION

aj as the rescaling vector. Therefore, this Deterministic Rescaling PA does not need

additional phase to find rescaling vectors. This is one of the major differences compared

to the Stochastic Rescaling PA.

Algorithm 1.5 The Deterministic Rescaling Perceptron Algorithm

1: Initialization: Let B = I, N = 6mn2.
2: while True do
3: Phase 1. Perceptron Phase
4: Let x0 = 0, y0 = 0.
5: for k = 0, 1, · · · , N − 1 do
6: if AT yk > 0 then
7: Stop and return Byk as a feasible solution.
8: else
9: Let j ∈ {1, · · · , n} be such that aTj y

k ≤ 0.

xk+1 = xk + ej ,

yk+1 = yk + aj .

10: end if
11: end for
12: Phase 2. Rescaling Phase
13: Let j = argmax

i=1,··· ,n
{eTi xN}.

14: Set B = B(I − 1
2aja

T
j) and A = (I − 1

2aja
T
j)A.

15: Normalize the columns of A.
16: end while

Lemma 1.2.11. [38] If the perceptron phase in the Deterministic Rescaling PA does not

find a solution to AT y > 0, then the vector aj in the first step of the rescaling phase

satisfies

{y : AT y ≥ 0} ⊆ {y : 0 ≤ aTj y ≤
1√
6m
‖y‖}. (1.7)

Geometrically, Lemma 1.2.11 states that if the perceptron phase does not solve the

problem, then it identifies a column aj of A which is nearly perpendicular to the feasible

cone F = {y : AT y ≥ 0}, which is contained in a narrow band.

21

CHAPTER 1. INTRODUCTION

The rescaling phase applies the linear transformation

A′ =

(
I − 1

2
aja

T
j

)
A (1.8)

on matrix A at each rescaling step, where aj is a rescaling vector obtained in the per-

ceptron phase. In order to monitor how the volumn of F changes after rescaling, the

volume of the intersection of F and the unit sphere is considered because these two

volumes changes coincidently and the latter is easier to be calculated. The next lemma

shows that the volume of this intersection will increase if utilizing such aj as the rescaling

vector.

Let Sm−1 = {y ∈ Rm : ‖y‖ = 1} denote the unit shpere. Given a measurable set

S ∈ Sm−1, let Vol(S) denote its volume in Sm−1.

Lemma 1.2.12. [38] Assume that F ⊆ {y : 0 ≤ aTj y ≤ 1√
6m
}, i.e., (1.7) holds. If A is

rescaled by (1.8), then

Vol(F ′ ∩ Sm−1) ≥ 1.5Vol(F ∩ Sm−1),

where F ′ = {y : (A′)T y ≥ 0} is the feasible cone after rescaling.

Lemma 1.2.13. [38] Assume F ⊆ Rm is a closed convex cone. Then

Vol(F ∩ Sm−1) ≥

(
pρ√

1 + pρ2

)m−1
1

2
√
π

Vol(Sm−1).

Lemma 1.2.12 implies that after each rescaling phase, the quantity Vol(F ∩ Sm−1)

increases by a factor of 1.5 or more. Lemma 1.2.13 states that the volume of the inital

Vol(F∩Sm−1) is bounded below by a factor of pρm−1. Furthermore, the set Vol(F∩Sm−1)

is always contained in a hemisphere. Therefore, this algorithm will terminates within

finite number of rescaling steps. It has the following complexity result.

22

CHAPTER 1. INTRODUCTION

Theorem 1.2.14. Assume that problem (1.4) is strictly feasible. Then after at most

O

(
m ln

(
1
pρ

))

iterations, the Rescaling PA finds a feasible solution.

Compared to the Stochastic Rescaling PA, the one by Peña and Sohèili has a weaker,

but deterministic polynomial complexity. Utilizing a monotonically increasing spherical

cap instead of pρ to prove the complexity makes another major difference between these

two versions of rescaling PAs.

1.2.4 Chubanov’s Method

Chubanov [9, 10, 11] has recently proposed a novel polynomial-time algorithm for solving

homogeneous linear systems with positive variables. It is a divide-and-conquer algorithm

which can be considered as a generalization of the relaxation method [1, 36]. We refer

to this algorithm as Chubanov’s Method. The general form of Chubanov’s problem is as

follows.

Ax = b, Âx ≤ b̂, (1.9)

where the coefficient matrix A is an m × n matrix, Â is an m̂ × n matrix, and all the

entries of A, Â and the right side vector b, b̂ are integers. We can assume that matrix A

is full rank, i.e., rank(A) = m. Otherwise, the problem can be easily transformed into

another one with the same structure and a full rank coefficient matrix without affecting

the set of feasible solutions.

Chubanov’s Method either finds a feasible solution or determine the problem (1.9)

has no integer solutions in polynomial time. Furthermore, if the inequalities take the

form 0 ≤ x ≤ 1, then the Chubanov’s Method runs in strongly polynomial time. The idea

of Chubanov’s Method is to use new induced inequalities, or sometimes called implicit

23

CHAPTER 1. INTRODUCTION

inequalities. Those valid induced inequalities are constructed by a procedure called

Elementary Procedure or Basic Procedure (BP) [41]. As the core of Chubanov’s method,

if the BP neither finds a feasible solution, nor identifies the infeasibility of the system,

then the BP identifies an upper bound for at least one coordinate of any possible feasible

solution by projecting the current solution onto induced inequlites. According to this

upper bound for the identified coordinates, the corresponding columns of the coefficient

matrix are multiplied by a scalar. Therefore, Chubanov’s method can be also considered

as a rescaling procedure.

For our purpose, we consider the Chubanov’s Method on the following problem form

Ax = 0, x > 0, (1.10)

where A is an m× n full rank matrix. Note that any solution of problem (1.10) can be

transferred to a feasible solution of the von Neumann problem (1.6) by the normalization

x := x
eT x

. However, only strictly positive solutions of problem (1.6) are also solutions

of problem (1.10). For problem (1.10), if the problem is not solved, then the BP will

generate an induced inequality: an upper bound for some coordinate xi if such a solution

x exists within 4n3 iterations, which makes the BP strongly polynomial. After applying

this new inequality, problem (1.10) is reduced to another one similar to itself but with

different A and then the BP is called again. The Chubanov’s Method has following

complexity result.

Theorem 1.2.15. [10] For problem (1.10), after at most O(nL) iterations, where L

denotes the bit-length size of A, Chubanov’s Method either finds a solution or identifies

its infeasibility.

Note that if problem (1.10) is modified to allow some of the coordinates of x be 0 as

follows, then problem

Ax = 0, 0 6= x ≥ 0. (1.11)

24

CHAPTER 1. INTRODUCTION

and the von Neumann problem (1.6) are equivalently solvable.

1.3 Motivation

Rescaling is a linear transformation on the linear system with the aim of improving

the condition of the problem, which is measured by the quantity pρ in our cases. In

other words, rescaling might enlarge the largest inscribed ball in the feasible region

if the problem is feasible or increase the distance to the feasibility if the problem is

infeasible. We observed that by successfully applying rescaling onto the PA, polynomial-

time complexity can be achieved.

Analogous to the PA, the vNA is another elementary algorithm whose performance

depends on the similar condition number vρ. As far as we are aware, there is no variant

of the vNA has been proved to have polynomial-time complexity. Therefore, our goal

is to explore the power of the rescaling methodology on designing rescaling vNA. The

duality relationship between the PA and vNA, and Chubanov’s method are two major

directions we explore. The duality relationship provides possibility to design new variants

of the vNA by transiting the existing variants of the PA. Also, the PA might benefit

from the results of the vNA. Chubanov’s method provides another way to apply linear

transformation onto the linear problem. Therefore, Chubanov’s method can be also

considered as containing a rescaling procedure.

The third direction of our exploration is higher-order rescaling. Recall that for the

stochastic rescaling PA, the procedure of generating the rescaling vector is independent

of either the other phases of the algorithm or any results of previous iterations. This

property makes the stochastic rescaling PA good for multi-core environment. Therefore,

we study the effect of higher-order rescaling on the computational efficiency.

25

CHAPTER 1. INTRODUCTION

1.4 Structure of the Thesis

The structure of this thesis is built in the following way as we explore the power of

rescaling from three different aspects. First, we start with Chapter 2 to explore the rela-

tionship between the perceptron and the von Neumann problems. The existing duality

relationship builds a dual connection between these two families of algorithms and pro-

vides the theory basis for transiting algorithms from one side to the other side. Chapter 3

is a further study on the duality relationship. A deterministic rescaling vNA is presented

by utilizing the duality on the Deterministic Rescaling PA. In addition, a percepton ex-

ample is obtained by constructing its corresponding dual von Neumann example. These

two examples show that the condition number ρ is not going to increasing monotonically

in the deterministic rescaling algorithms. Secondly, Chapter 4 combines rescaling and

Chubanov’s Method to derive a polynomial-time column-wise rescaling vNA, which is the

first variant of polynomial vNA. Finally, we explore effects of higher-order rescaling on

the PA in Chapter 5. The computational results show that the practical performance is

improved significantly under the multi-core environment by utilizing higher-order rescal-

ing. Conclusions and future research directions are presented in Chapter 6.

26

Chapter 2

The Duality Between the

Perceptron and the von Neumann

Algorithm

2.1 Introduction

The PA and the vNA were developed to solve LFPs. In this chapter, we investigate and

reveal the duality relationship between these two algorithms. The specific forms of LFPs

solved by the PA and the vNA are a pair of alternative systems by the Farkas Lemma.

Based on this observation, we interpret variants of the PA as variants of the vNA, and

vice-versa; as well as transit the complexity results from one family to the other. A

solution of one problem serves as an infeasibility certificate of its alternative system.

Further, an Approximate Farkas Lemma enables us to derive bounds for the distance to

feasibility or infeasibility from approximate solutions of the alternative systems. Based

on Farkas Lemma, Section 2.2 discusses the duality relationship in general including

the relationship between problems, condition numbers, and interpretation of solutions.

Section 2.3 and Section 2.4 show the procedures of transiting variants of algorithms into

their dual side.

27

CHAPTER 2. THE DUALITY RELATIONSHIP

2.2 Duality Relationship

In this section, we first employ the Farkas Lemma to analyze the duality relationship

between problem (1.4) and problem (1.6). This observation provides the foundation for

the duality between the PA and the vNA. Then we extend the definition of ρ to infeasible

problems and give ρ meaningful explanations for different problems. At last, we propose

to utilize an Approximate Farkas Lemma to interpret an approximate solution from its

dual perspective.

2.2.1 Alternative Systems

Recall that conv(A) represents the convex hull of the points ai. Assume that problem

(1.4) is feasible and y is a feasible solution. In this case, the hyperplane with normal

vector y separates conv(A) from the origin, which implies that problem (1.6) is infeasi-

ble. Conversely, if problem (1.6) is infeasible, then there exists at least one separating

hyperplane that can separate conv(A) from the origin. In other words, there exists a

vector y such that AT y > 0, which means that problem (1.4) is feasible. Therefore,

problem (1.4) and problem (1.6) are a pair of alternative systems. This conclusion can

also be verified by the Farkas Lemma [4, 42, 44]. According to the Farkas Lemma, the

alternative system of problem (1.6) is

AT y + eη ≥ 0

η < 0.
(2.1)

Problem (2.1) can equivalently be written as AT y > 0, which is the form of problem (1.4).

Thus, problems (1.4) and (1.6) are alternative systems to each other, i.e., exactly one

of them is solvable. Since the PA and vNA solve problems (1.4) and (1.6), respectively,

the duality relationship between these two problems leads to a duality between the two

algorithms.

28

CHAPTER 2. THE DUALITY RELATIONSHIP

2.2.2 Calculation of Condition Number

Definition 1.1.1 in Section 1.1.4 gives a general definition of the condition number ρ. In

this section, we discuss its special forms for the different problem forms in the different

algorithms. The Classical PA shown in Section 1.2.1.1 assumes that problem (1.4) is

strictly feasible. Thus, pρ is only defined for feasible problems in [17]. In order to make

the discussions about the duality relationship complete, we extend the definition of pρ to

infeasible cases.

Definition 2.2.1. Consider the LFP (1.4).

1. If problem (1.4) is feasible [17], then the condition number pρ is the radius of the

largest inscribed ball that fits in the feasible region, and the center of the ball is on

the unit sphere. It is calculated by

pρ = max
‖y‖=1

min
i
{aTi y}. (2.2)

2. If problem (1.4) is infeasible, then pρ is the distance to feasibility, i.e.,

pρ = min
‖y‖=1

max
i
{−aTi y}. (2.3)

Note that when problem (1.4) is feasible, then pρ > 0 if and only if problem (1.4)

is strictly feasible. On the other hand, the specific vρ for problem (1.6) in the vNA is

defined as follows.

Definition 2.2.2. [19] The condition number vρ is the distance from the origin to the

boundary ∂(conv(A)) of the feasible set conv(A), i.e.,

vρ = inf{‖b‖ : b ∈ ∂(conv(A))}. (2.4)

Definition 2.2.2 also defines condition number vρ with two different meanings depend-

ing on the feasibility or infeasibility of problem (1.6).

29

CHAPTER 2. THE DUALITY RELATIONSHIP

1. If problem (1.6) is feasible, then vρ is the radius of the largest inscribed ball in

conv(A) centered at the origin. It can be calculated [34] by

vρ = min
‖y‖=1

max
i
{−aTi y}. (2.5)

When problem (1.6) is feasible but not strictly feasible, i.e., the origin is on the

boundary of conv(A), then vρ = 0.

2. If problem (1.6) is infeasible, then vρ is the distance from the origin to conv(A),

i.e., vρ is the radius of the largest separating ball centered at the origin. It can be

calculated as

vρ = max
‖y‖=1

min
i
{aTi y}. (2.6)

Comparing (2.2), (2.3), (2.5), and (2.6), it is easy to see that when problem (1.6) is

infeasible (feasible), the condition number ρ is computed in the same way as the one when

problem (1.4) is feasible (infeasible). This observation originates from the alternative

systems relationship of these two problems.

2.2.3 Interpretation of Approximate Solutions

Instead of providing an exact feasible solution as the PA does, the vNA returns an ε-

solution when it terminates in a finite number of iterations. Analogously, the Modified

PA [6] – a variant of the PA – returns a σ-feasible solution when the perceptron problem

(1.4) is close to the boundary of feasibility and infeasibility. A σ-feasible solution is also

an approximate solution which we will discuss later. When ε or σ is a fixed number,

an ε-solution or a σ-feasible solution is not sufficient to draw a firm conclusion about

feasibility of the problem. In this section and also in the following section, our goal

is to give some interpretations of these approximate solutions from their alternative

perspective, and answer the following questions.

30

CHAPTER 2. THE DUALITY RELATIONSHIP

• How to derive meaningful information from these approximate solutions?

• What conclusion can be drawn about the feasibility status of the problems?

The duality relationship discussed in Section 2.2.1 is directly derived from the Farkas

Lemma. The two problems (1.4) and (1.6) are a pair of alternative systems and therefore,

exactly one of them is solvable. Recall that both the Classical PA and the vNA are non-

polynomial algorithms. When the problems are close to the boundary of feasibility

and infeasibility, both the these two algorithms are inefficient. It takes exponentially

many iterations for the algorithms to obtain a clear answer about solvability of the

problems. Therefore, we would like that some variants of the algorithms could provide

an approximate solution, or some indications of approximate feasibility or infeasibility.

Due to the alternative system relationship between problems (1.4) and (1.6), a proof

of infeasibility for one problem can be given by giving a solution to the other one. We

are interested in exploring approximate solutions to this pair of alternative systems and

their interpretations for their alternative systems.

We first discuss σ-feasible solutions [6]. Recall that in Definition 1.2.2, a vector y is

defined as a nearly feasible solution to problem (1.4) if AT y ≥ −σ‖y‖e. Thus, we also

call y a σ-feasible solution (or σ-solution for short reference). According to Definition

1.2.2, a σ-solution allows slight violations to the constraints in problem (1.4); and thus

it is an approximate solution. Recall the analysis of the meaning of condition number ρ

in Section 2.2.2. From Definition 2.2.2, we obtain the following theorem.

Theorem 2.2.3. The following two statements are equivalent.

(a) Perceptron problem (1.4) has a σ-solution.

(b) There is no ball in conv(A) centered at the origin with radius larger than σ.

This theorem is directly derived from (2.5). Theorem 2.2.3 shows that a σ-feasible

solution to perceptron problem (1.4) indicates that the corresponding von Neumann

problem (1.6) is either infeasible, or if it is feasible then it is close to infeasibility. As a

31

CHAPTER 2. THE DUALITY RELATIONSHIP

result, we define such a σ-solution as a σ-infeasibility certificate for the von Neumann

problem (1.6).

Definition 2.2.4. A vector y is a σ-infeasibility certificate for the von Neumann problem

(1.6) if AT y ≥ −σ‖y‖e.

By combining Theorem 2.2.3 and Definition 2.2.4 we derive the following corollary.

Corollary 2.2.5. A σ-infeasibility certificate indicates that the von Neumann problem

(1.6) is either infeasible or feasible with vρ ≤ σ.

2.2.4 Approximate Farkas Lemma

In the previous section, a σ-feasible solution to the preceptron problem (1.4) is inter-

preted as a σ-infeasibility certificate of the von Neumann problem (1.6). In this section,

we explore whether we can obtain an analogous result about an ε-solution. The major

tool we employ is the Approximate Farkas Lemma [48].

Approximate Farkas lemmas are derived by Todd and Ye [48] from the general gauge

duality results of Freund [21]. These lemmas are extensions of the Farkas Lemma [44] and

quantify how certain approximate feasible solutions to a system of inequalities indicate

the infeasibility of its alternative system. In order to adapt the Approximate Farkas

Lemma, we first transfer a strictly feasible problems (1.4) to an optimization problem.

Consider the following optimization problem

αỹ = min ‖ỹ‖

s.t. AT ỹ ≥ e,
(2.7)

where ỹ ∈ Rm, matrix A has the same definition as in problem (1.4), and αỹ denote the

optimal value. This optimization problem aims to find a feasible solution to inequal-

ity system AT ỹ ≥ e with the shortest length. Comparing problem (2.7) and problem

(1.4), any feasible solution to problem (2.7) is also a feasible solution to problem (1.4).

On the other hand, if y∗ is a strict feasible solution to problem (1.4), i.e., all coordi-

32

CHAPTER 2. THE DUALITY RELATIONSHIP

nates of AT y∗ > 0, then ỹ∗ = y∗

(y∗)TAx(y∗)
is a feasible solution to problem (2.7), where

(y∗)TAx(y∗) gives the smallest coordinate of AT y∗. Thus, feasibility of problem (2.7) is

equivalent to strictly feasibility of problem (1.4). When problem (1.4) is strictly feasible,

we can put a ball into the feasible region of AT y > 0. If the radius of the ball is fixed

to 1, then αỹ measures the minimal distance from the center of this unit ball to the

origin. Recall that pρ measures the radius of the maximal ball put in the feasible region

and centered on the unit sphere. Comparing αỹ with pρ, we can conclude that the closer

problem (1.4) is to infeasibility, the narrower the feasible region is, i.e., the smaller pρ is;

and the further the unit ball is from the origin, i.e., the larger αỹ is. Thus, αỹ is seen as

another measure of the robustness of problem (1.4). We obtain the following result by

geometrical relationship.

αỹ =
1
pρ
. (2.8)

By adapting the Approximate Farkas Lemma [48] to our problem, we obtain:

Lemma 2.2.6. (Approximate Farkas Lemma) Consider the optimization problems

(GP) : αỹ = min
{
‖ỹ‖ | AT ỹ ≥ e

}
, and

(GD) : βb = min
{
‖b‖ | Ax = b, eTx = 1, x ≥ 0

}
.

Then αỹβb = 1.

The special case 0 · +∞ is interpreted as 1. It is easy to see that problem (GD) is

the perturbed problem of problem (1.6). When problem (1.4) is strictly feasible, then

βb gives the minimal distance between the origin and conv(A), which is the radius vρ of

the largest separating ball defined by (2.6). βb also indicates the minimum corrections

needed to make problem (1.6) feasible. By Lemma 2.2.6 and (2.8), we have βb = 1
αỹ

=

pρ. Therefore, the Approximate Farkas Lemma verifies that pρ for feasible perceptron

problem (1.4) is equivalent to vρ for infeasible von Neumann problem (1.6). Thus, any

33

CHAPTER 2. THE DUALITY RELATIONSHIP

feasible solution to problem (GP) is an infeasibility certificate of problem (1.6), and gives

a lower bound for the distance to feasibility.

On the other side, if problem (1.6) is feasible, then any feasible solution is an optimal

solution to optimization problem (GD) with βb = 0. According to the Approximate

Farkas Lemma, αỹ = +∞. It implies that problem (GP) is infeasible, then Lemma 2.2.6

reduces to the exact Farkas Lemma. In this case, problem (1.4) is either infeasible or

feasible but not strictly feasible.

The following theorem utilizes the Approximate Farkas Lemma to interpret an ap-

proximate solution.

Theorem 2.2.7. The following three statements are equivalent.

(a) The von Neumann problem (1.6) has an ε-solution.

(b) A unit ball cannot be put closer than 1/ε to the origin in the feasible region of

problem (1.4).

(c) There is no ball in the feasible region of problem (1.4) centered on the unit sphere

and its radius is larger than ε.

Proof. Problem (1.6) has an ε-solution x′ such that β′b = ‖b′‖ = ‖Ax′‖ ≤ ε, if and only

if βb ≤ β′b ≤ ε. By Lemma 2.2.6, this holds if and only if 1
ε ≤

1
βb

= αỹ. The inequality

1
ε ≤ αỹ holds if and only if

@ỹ such that ‖ỹ‖ < 1

ε
and AT ỹ ≥ e. (2.9)

By scaling, (2.9) is equivalent to

@y such that ‖y‖ ≤ 1 and AT y > εe. (2.10)

Statement (2.9) is the statement (b). Recall the definition of pρ, (2.10) indicates that

pρ ≤ ε. Thus, statements (a), (b), and (c) are equivalent.

34

CHAPTER 2. THE DUALITY RELATIONSHIP

Theorem 2.2.7 shows that an ε-solution to the von Neumann problem (1.6) implies

that the corresponding perceptron problem (1.4) is either infeasible, or if it is feasible

then it is close to infeasibility. Therefore, we define such an ε-solution as an ε-infeasibility

certificate for problem (1.4).

Definition 2.2.8. A vector y is an ε-infeasibility certificate for the perceptron problem

(1.4) if there exist a vector x ∈ ∆n such that Ax = y and ‖y‖ ≤ ε.

We can derive following corollary from Theorem 2.2.7.

Corollary 2.2.9. An ε-infeasibility certificate indicates that the perceptron problem (1.4)

is either infeasible, or feasible with pρ ≤ ε.

Since ε is a small positive number, it means that the norm of any feasible solution

ỹ′ of problem (GP), if it exists, is at least as large as 1
ε . Thus, if problem (GP) is close

to infeasibility, its feasible solutions has to be large. For example, if problem (GP) is

feasible and the distance to infeasibility is as small as 10−10, then the magnitude of a

feasible solution ỹ′ has to be at least 1010.

We utilized the definition of the condition number ρ and the Approximate Farkas

Lemma to interpret approximate solutions so that we can draw more definitive conclu-

sions about the solutions or feasibility of the problems. In addition, when the respective

variants of the PA and vNA terminate at a certain point, then the Approximate Farkas

Lemma allows a more precise interpretation of the output and provides meaningful in-

formation about the solution.

Inspired by the alternative system relationship of problems (1.4) and (1.6), we inves-

tigate the duality of the PA and the vNA. In Section 2.3, different versions of the PA

are interpreted as variants of the vNA as they are applied to problem (1.6). In Section

2.4, we interpret variants of the vNA from the perspective of the PA. By exploring the

intriguing duality of these algorithms, we not only gain new insight into the intimate

relationship of these algorithms, but also derive several novel variants of these algorithms

with their corresponding complexity results.

35

CHAPTER 2. THE DUALITY RELATIONSHIP

2.3 From Perceptron to von Neumann

Since problem (1.4) and (1.6) are alternative systems to each other, the PA can be

operated on problem (1.6) with proper adjustments. The complexity results for the

feasible case of the PA are adaptable for the infeasible case of the vNA. Since the PA

has several variants, we discuss them in the following subsections.

In order to make our discussions more transparent, we rename the two spaces. The

PA solves problems in form (1.4) to get a solution y if the problem is feasible. Thus, we

call the space Rm in which the vector y lives the perceptron space. Similarly, because

the vNA solves problem (1.6), we call Rn the von Neumann space. Note that the vector

bk = Axk in the vNA, presented as Algorithm 1.3, is in the perceptron space. This reflects

the duality of the two problems and also indicates some close relationships between the

two algorithms. Matrix A can be seen as a linear operator between the perceptron and

the von Neumann spaces.

2.3.1 The Normalized Perceptron Algorithm

We first revisit, Algorithm 1.1, the Classical PA. It starts from y0 = 0 and at iteration k,

from the point yk it makes a unit step in the direction of a violated constraint aj . Let xk

be the corresponding vector that satisfies yk = Axk. We have x0 = 0 and xk+1 = xk+ej ,

where Aej = aj . According to this relationship, xk is a sequence of vectors in the von

Neumann space with xk ≥ 0 and ‖xk‖1 = k for all k ∈ N. On the other hand, observe

that the last two constraints in problem (1.6), eTx = 1, x ≥ 0 restrict vector x to be in

the unit simplex ∆n. The comparison of xk at iteration k in the Classical PA and x in

problem (1.6) leads to a normalized version of the PA [47]. Assume that problem (1.4)

is feasible. The Normalized PA is as follows.

Note that at the end of each iteration, iterate yk is inspected. The algorithm termi-

nates if yk is an ε-infeasibility certificate. This stopping criterion is derived from the von

Neumann side after we successfully explain an approximate solution. In the Normalized

36

CHAPTER 2. THE DUALITY RELATIONSHIP

Algorithm 2.1 The Normalized Perceptron Algorithm

1: Initialization: Let y0 = 0 and k = 0.
2: while True do
3: Find a column as, s ∈ {1, 2, · · · , n} such that aTs y

k ≤ 0.
4: if such an as does not exist then
5: STOP and return yk.
6: else

λk =
1

k + 1
,

yk+1 = (1− λk)yk + λkas,

k = k + 1.

7: if ‖yk‖ ≤ ε then
8: STOP and return yk as an ε-infeasibility certificate.
9: end if

10: end if
11: end while

PA, the k-th iterate yk is divided by k to satisfy yk = Axk for some xk ∈ ∆n. Thus,

xk is a vector x in the von Neumann space, as well as yk can be interpreted as the

corresponding bk vector in the vNA. If the Normalized PA starts from x0 = 0 and xk

can be updated to satisfy xk ∈ ∆n and yk = Axk, then we get a variant of the vNA. To

ease understanding, the derived Normalized vNA is described in full details as follows.

When applying to problem (1.6), the Normalized vNA has the following complexity

result.

Theorem 2.3.1. Let ε > 0.

1) If problem (1.6) is feasible, then after at most

⌈
1

ε2

⌉

iterations, the Normalized vNA provides an ε-solution.

2) If problem (1.6) is strictly infeasible, then after at most

⌈
1
vρ2

⌉
37

CHAPTER 2. THE DUALITY RELATIONSHIP

Algorithm 2.2 The Normalized von Neumann Algorithm

1: Initialization: Let x0 = 0, b0 = Ax0, and k = 0.
2: while ‖bk‖ ≥ ε do
3: Find an aj , j ∈ {1, 2, · · · , n} such that aTj b

k ≤ 0.
4: if such an aj does not exist then
5: STOP and return bk as an infeasibility certificate of problem (1.6).
6: else

λk =
1

k + 1
,

xk+1 = (1− λk)xk + λkaj ,

bk+1 = Axk+1,

k = k + 1.

7: end if
8: end while
9: Return xk as an ε−solution.

iterations, an infeasibility certificate is given.

Proof. When problem (1.6) is strictly infeasible, then its alternative problem (1.4) is

strictly feasible. Since yk, generated by the Normalized PA, is exactly the same as yk

in the Classical PA divided by k, the complexity result of the Classical PA stated in

Theorem 1.2.1 is also valid for Algorithm 2.1, the Normalized PA. Thus, the complexity

result for strictly infeasible problems is an immediate corollary of Theorem 1.2.1.

Now we prove the complexity when problem (1.6) is feasible. By using induction on

k, we prove that ‖bk‖ ≤ 1√
k
. For k = 1, since the algorithm starts with b0 = 0,

‖b1‖ = ‖(1− λ0)b0 + λ0Ax(b0)‖ = ‖Ax(b0)‖ = 1,

where the last equality results from ‖ai‖ = 1 for i = 1, . . . , n.

38

CHAPTER 2. THE DUALITY RELATIONSHIP

Now, suppose that we have ‖bk−1‖ ≤ 1√
k−1

. At the iteration k, we obtain

‖bk‖2 = ‖(1− λk−1)bk−1 + λk−1aj‖2

= (1− λk−1)2‖bk−1‖2 + λ2
k−1‖aj‖2 + 2λk−1(1− λk−1)(aTj b

k−1)

≤ 1

k2

[
(k − 1)2‖bk−1‖2 + 1

]
≤ 1

k

The first inequality must be true because aTj b
k−1 ≤ 0 when problem (1.6) is feasible. The

second inequality holds due to the inductive hypothesis ‖bk‖ ≤ 1/
√
k. Thus, to obtain

an ε-solution, after k iterations, it is sufficient to have

ε = ‖bk‖ ≤ 1/
√
k.

Therefore, the algorithm needs at most d1/ε2e iterations.

When problem is feasible, Theorem 2.3.1 shows that the complexity result of the

Normalized vNA is the same as Dantzig’s result (Theorem 1.2.6) for the vNA. However,

there are two major differences between the Normalized vNA and the original vNA. At

each iteration, the original vNA searches as which has the largest angle with bk, and

computes step-length λ based on the current iterate bk and as. The Normalized vNA,

which is transformed from the Classical PA, uses any aj which satisfies aTj b
k ≤ 0. Its

update step-length only depends on k. Thus, the cost per iteration of the vNA is 2n2

more than that of the Normalized vNA.

Recall that Theorem 1.2.1 provides the complexity result for feasible perceptron

problems. If problem (1.4) is strictly feasible, then the Classical PA returns a feasible

solution in at most 1/pρ2 iterations. However, there is no published result for infeasible

perceptron problems. Now, by transiting Theorem 2.3.1 back to the perceptron problems,

we obtain the following new result for the Classical PA.

39

CHAPTER 2. THE DUALITY RELATIONSHIP

Theorem 2.3.2. Let ε > 0. Assume that problem (1.4) is infeasible, then after at most

⌈
1

ε2

⌉

iterations, the Classical/Normalized PA provides an ε-infeasibility certificate, which in-

dicates that there is no ε-ball in the feasible region.

The complexity bound in Theorem 2.3.2 only depends on the value ε, the accuracy

of the infeasibility certificate, but does not depend on the geometry of the problem.

2.3.2 The Smooth Perceptron Algorithm

Soheili and Peña [47] proposed a smooth version of the PA and showed that it can be

seen as a smooth first-order algorithm. This deterministic variant retains the original

simplicity of the PA and its complexity is improved by almost a factor of 1/pρ compared

to the Classical PA. The improved complexity result is given in Theorem 2.3.3. We first

introduce the Smooth PA.

Given ϕ > 0, x(y) is smoothed by the entropy prox-function

xϕ(y) =
e
−AT y

ϕ∥∥∥∥e−AT y
ϕ

∥∥∥∥
1

, (2.11)

where the expression e
−AT y

ϕ denotes the n-dimensional vector

e
−AT y

ϕ =

[
e
−aT1 y

ϕ , e
−aT2 y

ϕ , . . . , e
−aTn y

ϕ

]T
.

The Smooth PA is as follows.

Compared to the complexity of the Classical PA stated in Theorem 1.2.1, Theorem

2.3.3 shows that the Smooth PA has a complexity result with 1
pρ
√

log(n)
improvement.

40

CHAPTER 2. THE DUALITY RELATIONSHIP

Algorithm 2.3 The Smooth Perceptron Algorithm

1: Initialization: Let y0 = Ae
n , ϕ0 = 1, and x0 = xϕ0(y0). k = 0.

2: while True do
3: Let as = Ax(yk).
4: if aTs y

k > 0 then
5: STOP and return yk.
6: else

λk =
2

k + 3
,

yk+1 = (1− λk)(yk + λkAx
k) + λ2

kAxϕk
(yk),

ϕk+1 = (1− λk)ϕk,
xk+1 = (1− λk)xk + λkxϕk+1

(yk+1),

k = k + 1.

7: end if
8: end while

Theorem 2.3.3. [47] Assume that problem (1.4) is strictly feasible. Then after at most

2
√

log(n)
pρ

− 1

iterations, the Smooth PA returns a feasible solution.

Analogous to the Normalized PA, the Smooth PA can also be applied to problem

(1.6) when it is infeasible. Iterate yk in the perceptron space plays the role of vector bk

in the vNA. Since bk is updated so that Axk = bk, we derive the corresponding vector

xk.

Compare Algorithm 2.3 and 2.4. Iterate yk in Algorithm 2.3 is the same as vector bk

in Algorithm 2.4, and its corresponding xk satisfying yk = Axk is the vector x in problem

(1.6). It is easy to see that xk ∈ ∆n for all iterations. Therefore, the complexity result

of Theorem 2.3.3 applies to Algorithm 2.4 as well when problem (1.6) is infeasible. We

derive the following corollary from Theorem 2.3.3.

41

CHAPTER 2. THE DUALITY RELATIONSHIP

Algorithm 2.4 The Smooth von Neumann Algorithm

1: Initialization: Let x0 = e
n , b0 = Ax0 = Ae

n , ϕ0 = 1, and x̃0 = xϕ0(y0). k = 0.
2: while True do
3: Let as = Ax(bk).
4: if aTs b

k > 0 then STOP and return bk as an infeasibility certificate.
5: else

λk =
2

k + 3
,

bk+1 = (1− λk)(bk + λkAx̃
k) + λ2

kAxϕk
(bk),

ϕk+1 = (1− λk)ϕk,
x̃k+1 = (1− λk)x̃k + λkxϕk+1

(bk+1),

xk+1 = (1− λk)(xk + λkx̃
k) + λ2

kxϕk
(bk),

k = k + 1.

6: end if
7: end while

Corollary 2.3.4. Assume that problem (1.6) is strictly infeasible. Then after at most

2
√

log(n)
vρ

− 1

iterations, the Smooth vNA returns a certificate of infeasibility bk such that AT bk > 0.

Recall that the Smooth PA has an improved complexity result compared to the

Normalized PA when problem (1.4) is feasible. Thus, if problem (1.6) is infeasible, then

after interpreted in the von Neumann space, the Smooth vNA also enjoys an almost 1/vρ

complexity improvement compared to the one presented in Corollary 2.3.1.

Independently of our work, Soheili and Peña [46] proposed a version of smooth vNA

called Iterated Smooth Perceptron-von Neumann (ISPVN) Algorithm. It is also based on

the duality relationship between problems (1.4) and (1.6). Instead of using the entropy

prox-function as the Smooth PA, it employs the Euclidean prox-function to smooth x(y).

The merit of the ISPVN Algorithm is that when problem (1.4) is infeasible with pρ > 0,

the ISPVN Algorithm solves its alternative system (1.6). Thus, the ISPVN Algorithm

could handle both problems (1.4) and (1.6) simultaneously. It either finds a feasible

42

CHAPTER 2. THE DUALITY RELATIONSHIP

solution to problem (1.4) in O
(√

n
pρ log

(
1
pρ

))
iterations, or finds an ε-solution to the cor-

responding problem (1.6) in O
(√

n
vρ log

(
1
ε

))
iterations. Both of the iteration complexity

of the ISPVN Algorithm are better than these of the PA and the vNA. However, in the

case when problem (1.6) is infeasible, the Smooth vNA stated in Algorithm 2.4 has a

better complexity bound.

2.4 From von Neumann to Perceptron

After interpreting variants of the perceptron algorithm from its dual perspective in Sec-

tion 2.3, in this section we show how to interpret the vNA as a variant of the perceptron

algorithm and how to apply it to problem (1.4).

2.4.1 The Original von Neumann Algorithm

The vNA was reviewed in Section 1.2.2. Note that in the vNA, iterates xk are always in

the unit simplex. The vector bk = Axk in the vNA can play the role of vector y in the

perceptron space.

Algorithm 2.5 The von Neumann Algorithm Interpreted in the Perceptron Space

1: Initialization
Choose any x0 ∈ ∆n. Let y0 = Ax0 and k = 0.

2: while ‖yk‖2 ≥ ε do
3: Let ϕk = ‖yk‖2 and νk = (Ax(yk))T yk, where x(yk) = argmin

x∈∆n

{(yk)TAx}.

4: if νk > 0 then STOP and return yk as a solution.
5: else

λ =
1− νk

ϕ2
k − 2νk + 1

,

ϕ2
k+1 = λνk + (1− λ),

yk+1 = λyk + (1− λ)Ax(yk),

k = k + 1.

6: end if
7: end while

According to Theorem 1.2.7, there are two possible outcomes of the vNA. If prob-

43

CHAPTER 2. THE DUALITY RELATIONSHIP

lem (1.6) is strictly infeasible, the vNA provides an infeasibility certificate. Then the

alternative case in the perceptron space is that problem (1.4) is strictly feasible. Thus,

applying the vNA to problem (1.4) will provide a feasible solution yk. On the other

hand, if problem (1.6) is strictly feasible, then the vNA will return an ε-solution with

‖bk‖ < ε, and m+ 1 applications of the vNA allows to get an exact solution [13], which

is interpreted as an exact infeasibility certificate for problem (1.4). However, if problem

(1.6) is neither strictly feasible with an ε-ball in the feasible set, nor strictly infeasible

with at least ε distance to feasibility, then an ε-solution interpreted in the perceptron

space implies an ε-infeasibility certificate of problem (1.4). An ε-solution/ε-infeasibility

certificate could have two possible meanings.

1. If problem (1.6) is feasible, then problem (1.4) is infeasible.

2. If problem (1.6) is infeasible, then an ε-solution implies that the distance to the

infeasibility of problem (1.6) is less than ε, i.e., vρ < ε; and the radius of the

largest inscribed ball in the feasible region of problem (1.4) is pρ < ε. This means

that though problem (1.4) is feasible, it is almost infeasible. The distance to the

infeasibility is less then ε.

Thus, problem (1.4) is either infeasible or ε-close to infeasibility. From Theorem 1.2.7

the following complexity result can be derived for Algorithm 2.5.

Theorem 2.4.1. Let ε > 0.

1) If problem (1.4) is strictly feasible, then after at most

⌊
1

ρ2
p

⌋

iterations the vNA finds a feasible solution to problem (1.4).

2) If problem (1.4) is strictly infeasible, then after at most

⌈
2

ρ2
p

ln
1

ε

⌉

44

CHAPTER 2. THE DUALITY RELATIONSHIP

iterations the vNA provides an ε-infeasibility certificate.

2.4.2 The Optimal Pair Adjustment Algorithm

Gonçalves et al. [27] introduced three variants of the vNA named as Weight-Reduction,

Optimal Pair Adjustment (OPA), and Projection Algorithms. Among these three vari-

ants, the OPA Algorithm has the best performance in computational experiments. The

basic idea of the OPA Algorithm is to move the residual bk in Algorithm 1.3 closer to

the origin 0 as much as possible at each update step. It gives the maximum possible

freedom to two weights: the one in column as+ which has the largest angle with bk and

the one in column as− which has the smallest angle with bk. At each iteration, it finds

the optimal value for these two coordinates and adjusts the remaining ones. The OPA

Algorithm is as follows.

The OPA Algorithm has a better performance than the original vNA in practice [27],

and Gonçalves proves that in theory it is at least as good as the original vNA.

Theorem 2.4.2. [27] The decrease in ‖bk‖ obtained by an iteration of the OPA Algo-

rithm is at least as large as that obtained by one iteration of the vNA.

Therefore, the OPA and the vNAs share the same theoretical complexity as given in

Theorem 1.2.7.

In the dual space, the residual bk is the normalized iterate yk in the perceptron

algorithm. The column which has the largest angle with bk corresponds the “most

infeasible” constraint for yk. Since a feasible solution to the von Neumann problem is an

infeasibility certificate for the corresponding perceptron problem, the faster the residual

bk moves closer to 0, the sooner infeasibility of the perceptron problem is detected.

Therefore, the OPA Algorithm outperforms the vNA when problem (1.4) is infeasible.

In this section, we describe the equivalent OPA PA.

The subproblem in line 9 can be solved by enumerating all possibilities that satisfy

the KKT conditions [27]. Analogous to Algorithm 2.5, if problem (1.4) is feasible and

45

CHAPTER 2. THE DUALITY RELATIONSHIP

Algorithm 2.6 The Optimal Pair Adjustment Algorithm

1: Initialization: Choose any x0 ∈ ∆n. Let b0 = Ax0. Given a small positive number
ε.

2: while ‖bk‖ ≥ ε do
3: Find the vectors as+ and as− which make the largest and smallest angles with

the current iterate yk:

s+ = argmin
i=1,...,n

{aTi bk},

s− = argmin
i=1,...,n

{aTi bk|xi > 0},

νk = aTs+b
k.

4: if νk > 0 then
5: STOP, and return bk as a feasible solution to problem (1.6).
6: end if
7: Solve the subproblem

min ‖b̃‖2

s.t. λ0(1− xks+ − x
k
s−) + λ1 + λ2 = 1,

λi ≥ 0, for i = 1, 2,

where b̃ = λ0(bk − xks+as+ − x
k
s−as−) + λ1as+ + λ2as− .

8: Update

bk+1 = λ0(bk − xks+as+ − x
k
s−as−) + λ1as+ + λ2as− ,

xk+1
i =

λ0x

k
i i 6= s+, s−,

λ1, i = s+,
λ2, i = s−.

k = k + 1.

9: end while

46

CHAPTER 2. THE DUALITY RELATIONSHIP

Algorithm 2.7 The Optimal Pair Adjustment Perceptron Algorithm

1: Initialization
2: Choose any x0 ∈ ∆n. Let y0 = Ax0 and u0 = ‖y0‖. ι = 1.
3: Given a small positive number ε.
4: while uk ≥ ε do
5: Find the vectors as+ and as− which make the largest and smallest angles with

the current iterate yk:

s+ = argmin
i=1,...,n

{aTi yk},

s− = argmin
i=1,...,n

{aTi yk|xi > 0},

νk = aTs+y
k.

6: if νk > 0 then
7: STOP, and return yk as a feasible solution to problem (1.4).
8: end if
9: Solve the subproblem

min ‖ỹ‖2

s.t. λ0(1− xks+ − x
k
s−) + λ1 + λ2 = 1,

λi ≥ 0, for i = 1, 2,

where ỹ = λ0(y
k

ι − x
k
s+as+ − x

k
s−as−) + λ1as+ + λ2as− .

10: Update
11: if λ0 = 0 then
12:

ι = 1,

yk+1 = λ1as+ + λ2as− .

13: else

ι =
ι

λ0

yk+1 = yk + (ιλ1 − xks+)as+ + (ιλ2 − xks−)as− .

14: end if

uk+1 =
1

ι
‖yk+1‖,

xk+1
i =

λ0x

k
i i 6= s+, s−,

λ1, i = s+,
λ2, i = s−.

k = k + 1.

15: end while

47

CHAPTER 2. THE DUALITY RELATIONSHIP

Algorithm 2.7 terminates with uk < ε, then there is no ε-ball contained in the feasible

cone centered on the unit sphere. In this case, problem (1.4) is close to infeasibility and

yk is an ε-infeasibility certificate. After interpreted as a variant of the PA, the OPA PA

has the complexity result as stated in Theorem 2.4.1.

2.5 Summary

The perceptron and the vNAs are used to solve LFPs in different forms. In this chap-

ter, we reveal the duality relationship between these algorithms. This observation is

based on the fact that the forms of the LFPs these algorithms deal with are a pair of

Farkas alternative systems. This relationship enables us to interpret variants of the pr-

ceptron algorithm as variants of the vNA, and vice versa. The dual interpretation of

the algorithms allows us to transit the complexity results to the new algorithms too.

The interpretation of an approximate solution is crucial during the algorithms transit.

By utilizing the Approximate Farkas Lemma to make the solution meaningful for the

alternative system and the transit complete. A major difference of these two algorithm

families is that the PA assumes that the problem is feasible while the vNA solves both

feasible and infeasible problems. Therefore, in this paper, we show that the infeasibility

of perceptron problems are detected by the interpreted vNA (Algorithm 2.5) and the

OPA PA (Algorithm 2.7); and the Normalized vNA (Algorithm 2.2) – interpreted from

the Normalized PA is applicable for both strictly infeasible and feasible von Neumann

problems. Furthermore, when problem (1.4) is infeasible, we derive a complexity result

for the Classical PA from the perspective of the von Neumann space.

There is another variant of the PA – the Modified PA [6]. It starts from a random

vector y. In order to interpret it from the von Neumann perspective, finding the corre-

sponding vector x is a critical step. In addition, the Modified PA returns a σ-feasible

solution – which is also an approximate solution – when the perceptron problem is fea-

sible with small quantity pρ – smaller than a given threshold. Therefore, it is worth to

48

CHAPTER 2. THE DUALITY RELATIONSHIP

design a modified version of the vNA which can return an infeasibility certificate when

the problem is almost infeasible. Its interpreted variant will benefit detecting infeasibility

of perceptron problems when pρ is small.

49

Chapter 3

On Deterministic Rescaling

Algorithms

3.1 Introduction

In this chapter, we further explore the application of the duality relationship between

the perceptron and the von Neumann problems, also the duality between these two

algorithms. We propose a Deterministic Rescaling von Neumann Algorithm which is a

direct transformation of the Deterministic Rescaling Percepton Algorithm. Though the

complexity of this new variant of the von Neumann algorithm is not proved yet, we show

by constructing a von Neumann example that vρ does not increase monotonically after

each rescaling step. Therefore, proving its complexity cannot be based on monotonic

expansion of vρ. Computational results show that the performance of the rescaling

algorithm is improved compared to the original von Neumann Algorithm when solving

ill-conditioned von Neumann problems.

Furthermore, due to the duality, the von Neumann example serves as the foundation

of a perceptron example. Analogously, this perceptron example shows that with the

Deterministic Rescaling Perceptron Algorithm by Peña and Sohèili, pρ may decrease

after one rescaling step.

50

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

Recall that the standard forms of the perceptron problem and the von Neumann

problems are given by (1.4) and (1.6) respectively in Section 1.1. In general, being a pair

of dual problems, their coefficient matrices are denoted by the same letter A. Without

loss of generality [2], we can assume that matrix A in (1.4) has the same properties as

A in (1.6). However, in this chapter, since we construct two respective examples based

on the duality, superscripts are used for the purpose of clarification. The forms of these

two problems are rewritten as follows. The perceptron problem is

pAT y ≥ 0, y 6= 0, (3.1)

where pA ∈ Rm×n with its column vectors pa1,
pa2, . . . ,

pan ∈ Rm and y ∈ Rm. Without

loss of generality, we may assume that ‖pai‖2 = 1 for all i = 1, 2, . . . , n. The von

Neumann problem is

vAx = 0

eTx = 1

x ≥ 0,

(3.2)

where vA ∈ Rm×n, x ∈ Rn, and e ∈ Rn is the vector of all ones.

Recall that we use notation following several rules: (1) the superscript on the left

indicates which problem the notation is used for, e.g., p for the perceptron problem and

v for the von Neumann problem; (2) prime denotes the corresponding notation after

rescaling; (3) the superscript on the right is either the iteration counter or an arithmetic

operation depending on the context; (4) positive number subscript is the index of vectors,

points, or coordinates.

3.2 A Deterministic Rescaling von Neumann Algorithm

Chapter 2 discusses the duality relationship between the perceptron and the von Neu-

mann algorithms; and consequently interpreted variants of the perceptron algorithm as

51

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

variants of the von Neumann algorithm and vice versa. This relationship leads us to

formalize an analogous Deterministic Rescaling von Neumann Algorithm according to

the Deterministic Rescaling Perceptron Algorithm [38] introduced in Section 1.2.3.2.

3.2.1 A Deterministic Rescaling von Neumann Algorithm

We propose the following rescaled variant of the von Neumann algorithm.

Polynomial complexity of this algorithm still needs to be proved. In order to get

closer to this result, we ask the following questions: can the complexity be proved based

on the increase of vρ as was done in the proof of the Stochastic Rescaling Perceptron

Algorithm by Dunagan and Vempala [17]? Or else, analogous to the Deterministic

Rescaling Perceptron Algorithm, is it possible to identify some increasing cap? Towards

answering these questions, we construct an example of the von Neumann problem in the

next section. This example not only shows that vρ is not going to increase monotonically

after each rescaling, but also helps us to generate an analogous perceptron example as

presented in Section 2.

3.2.2 The Precision of Solutions

Before introducing the example of the von Neumann problem, we first discuss how rescal-

ing steps change the precision of a solution.

Lemma 3.2.1. Run Algorithm 3.1 on a von Neumann problem (3.2). Assume that

starting from this original von Neumann problem, the algorithm has done t times rescal-

ing steps (rescaling phase) and the current iterate in the von Neumann phase is bk. If

‖bk‖ ≤ ε
2t , then x∗ calculated by (3.3) is an ε-solution to the original von Neumann

problem, i.e., ‖vAx∗‖ ≤ ε.

Proof. For one single rescaling step, matrix vA is rescaled by formula (3.4) and then

each column is normalized back to the unit sphere. Let B = I − 1
2
vaj

vaTj and D =

diag
(

1
‖va′1‖

, 1
‖va′2‖

, · · · , 1
‖va′n‖

)
. We have vA′ = BvAD, where vA′ is the matrix after rescal-

ing. Assume that after rescaling ‖vA′x‖ = ‖b‖ ≤ ε and x is on the unit simplex. Observe

52

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

Algorithm 3.1 The Deterministic Rescaling von Neumann Algorithm

1: Initialization: Let N = 6nm2, D = I, and let t = 0.
2: while True do
3: Phase 1. von Neumann Phase [12, 14]
4: (Run the von Neumann algorithm for N iterations)
5: Choose any x0 ∈ ∆n. Let b0 = vAx0 and k = 0.
6: for k = 0, 1, · · · , N − 1 do
7: if ‖bk‖ ≤ ε

2t then STOP, and return

x∗ =
Dxk∑n

i=1(φixki)
(3.3)

as an ε-solution, where xki is the i-th coordinate of xk and φi is the i-th diagonal
entry of D.

8: else
9: Find vas which makes the largest angle with the vector bk, i.e., vas =

vAx(bk). Let νk = vaTs b
k.

10: if νk > 0 then STOP, problem (3.2) is infeasible.
11: else
12: Let es be the unit vector corresponding to index s. Update

λ =
1− νk

‖bk‖2 − 2νk + 1
,

xk+1 = λxk + (1− λ)es,

bk+1 = vAxk+1,

k = k + 1.

13: end if
14: end if
15: end for
16: Phase 2. Rescaling Phase
17: Let j = argmax

i=1,··· ,n
{eTi xN}.

18: Utilize vaj as the rescaling vector, do the linear transformation

vA =

(
I − 1

2
vaj

vaTj

)
vA. (3.4)

19: Let

D = Ddiag

(
1

‖va1‖
,

1

‖va2‖
, · · · , 1

‖van‖

)
,

where diag(φ1, φ2, · · · , φn) means an n × n diagonal matrix whose diagonal entries
are φ1, φ2, · · · , φn.

20: Normalize each column of vA back to the unit sphere and let t = t+ 1.
21: end while

53

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

that matrix B is invertible and its inverse can be computed according to the Sherman-

Morrison formula [26]

B−1 = (I − 1

2
vaj

vaTj)−1 = I + vaj
vaTj .

Since vA′x = BvADx = b, we have

‖vADx‖ = ‖B−1b‖ = ‖(I + vaj
vaTj)b‖ ≤ ‖b‖+ ‖(vajvaTj)b‖ ≤ 2‖b‖ ≤ 2ε. (3.5)

It means that x is a solution of ‖vADx‖ ≤ 2ε. In order to recover a solution for the

original problem, we need to bound ‖vAx∗‖ above. Notice that x∗ is also on the unit

simplex and

‖vAx∗‖ =

∥∥∥∥∥
n∑
i=1

vaix
∗
i

∥∥∥∥∥ =

∥∥∥∥∑n
i=1

vaiφixi∑n
i=1(φixi)

∥∥∥∥ =
‖
∑n

i=1
vaiφixi‖∑n

i=1(φixi)
. (3.6)

Since we also have the fact that

1

φi
= ‖va′i‖ =

∥∥∥∥vai − 1

2
(vaTi

vaj)
vaj

∥∥∥∥ =

√
1− 3

4
‖vaTi vaj‖ ≤ 1, (3.7)

which shows that rescaling always shrinks the length of column vectors of vA. Combining

(3.3), (3.6), and (3.7), we have after one rescaling step

‖vAx∗‖ =
‖vADx‖∑n
i=1(φixi)

≤ ‖vADx‖ ≤ 2ε.

Therefore, ε needs to be reduced by a factor 1
2 after each rescaling phase in order to

keep the final solution x∗ as an ε-solution to the original problem. If the total number

of calling the rescaling phase is t, then in the worst case we need to reduce ε to ε
2t . The

lemma is proved.

54

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

3.3 Construction of a von Neumann Example with a De-

creasing Ball

For an example that vρ is not increasing monotonically, the constraint matrix vA has to

satisfy the following properties.

Property 1. Among all column vectors vai, there is at least one vaj such that after

applying (3.4), vρ′ < vρ.

Property 2. After running the von Neumann algorithm, vaj has the largest weight

in the returned linear combination, i.e., the largest coordinate of x is corresponding to

vaj.

In order to obtain these two properties, an LFP example is generated according to

the following idea. First, create an initial convex hull with a known vρ0, where vρ0 is a

small positive number. Second, identify vectors vaj from the columns of vA which shrink

vρ after rescaling. If no such column vector exist, then add new columns to vA. As a

result, matrix A satisfies Property 1. At last, if vaj obtained in the previous step does not

satisfy Property 2, then add new perturbed points around vai which have larger weight

after running the von Neumann algorithm but would increase vρ with rescaling. The

function of these new perturbed points is to introduce perturbation by creating more

small facets around the corner of those vai and evenly share (distribute) the large weight

when running the von Neumann algorithm, and consequently make Property 2 holds for

vaj .

We construct an example vA ∈ R3 with 13 column vectors. Each column vector

represents a point on the unit sphere. Let ξ = 0.01, which gives the initial vρ0. Let

ζ =
√

1− 2ξ2 to simplify expressions. First, we construct a symmetric convex hull

55

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

defined by eight points (columns) as follows:

[p1, p2, p3, p4, p5, p6, p7, p8] =

ζ ζ ζ ζ −ζ −ζ −ζ −ζ

ξ ξ −ξ −ξ ξ ξ −ξ −ξ

ξ −ξ ξ −ξ ξ −ξ ξ −ξ

 .

These points are symmetrically distributed on four hyperplanes. The distances between

the origin and these four hyperplanes are all equal to ξ = 0.01. Figure 3.1 shows the

positions of these initial points. For better illustration, the distances in Figure 3.1 are

not drawn to scale. The unit sphere is presented for scale, while the four sub-circles are

pushed much further away from the origin. The real distance is much smaller. We call

these eight points major points.

Figure 3.1: Illustration of the initial major points, p9, and p10.

56

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

In order to obtain a rescaling vector vaj , we add two points

[p9, p10] =

0 0√

1−
(

2ξ
3

)2
−ξ

2ξ
3 −

√
1− ξ2

 .

Figure 3.1 also illustrates these two points. Computational experiment shows that with

points p9 and p10, vρ will decrease after rescaling by p9. However, after running the von

Neumann algorithm, p9 does not take the largest weight. Therefore, we need more points

(columns) of matrix A.

The goal of adding new points is to decrease large weights on other points so that

after running the von Neumann algorithm p9 has the largest weight. A point with larger

weight indicates that the point has been used more for updating the iterate. Thus, after

identifying those major points with large weight, we consider to add perturbed points

near them. The perturbed points will diffuse the update process so that instead of the

major points the perturbed points are used to update at some iterations. As a result, the

perturbed points share weight with the major points. To prevent that the new perturbed

points are dominated, which means the new perturbed points take all the weights from

the major points, the perturbation should be small enough compared to the distance

between the major points, which is O(10−2). We set the magnitude of perturbation to

δ = 10−6.

We present two methods to perturb a major point. The first method is to move the

point along certain small circle on the unit sphere. We perturb point p7 by this method

to obtain p12 and p13 as follows.

p12 =

−
√

1− 2ξ2 − 17
16δ

2 − 5
2ξδ

−ξ − δ

ξ + δ
4

 ,

57

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

p13 =

−
√

1− 2ξ2 − 17
16δ

2 − 3
2ξδ

−ξ − δ

ξ − δ
4

 .

Observe that the second coordinates of p12 and p13 are more negative than the one of

p7, which means the direction of perturbation is pointing away from the initial convex

hull. This is also the rule when we for the rest of perturbations. The second method to

generate perturbed point is to move point along a given direction d with a step length

δ = 10−6, then normalize it back to the unit sphere. Points p3, p4, and p12 are perturbed

by the second method to generate p11, p14, and p15 respectively.

p11 = p3 + δd3 =

x1

−ξ

ξ

+ δ

0

−4

1

 ,

p14 = p4 + δd4 =

x1

−ξ

−ξ

+ δ

−10−4

0

−0.01

 ,

p15 = p12 + δd12 =

−
√

1− 2ξ2 − 17
16δ

2 − 3
2ξδ

−ξ − δ

ξ − δ
4

+ δ

−10−4

0

−0.01

 .

After normalization and rearrangement, the new perturbed points can be expressed as

58

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

follows.

p11 =
(
1 + 10ξδ + 17δ2

)− 1
2

ζ

−ξ − 4δ

ξ + δ

 ,

p14 =
(
1− 2× 10−4δζ + (10−4 + 10−8)δ2 + 2× 10−2ξδ

)− 1
2

ζ − 10−4δ

−ξ

−ξ − 10−2δ

 ,

p15 =

(
1 +

(
10−8 − 49

1.6× 105

)
δ − 2× 10−2ξδ − 2× 10−4δ

√
1− 2ξ2 − 17

16
δ2 − 5

2
ξδ

)− 1
2

×

−
√

1− 2ξ2 − 17
16δ

2 − 5
2ξδ + 10−4δ

−ξ − δ

ξ + 6
25δ

 .

Figure 3.2 illustrates the perturbation of point p7. After removing p3 and p6, we

obtain our example (Eg.vN): problem (vNPb) with

vA = [va1,
va2, · · · , va13] = [p1, p2, p4, p5, p7, p8, · · · , p15].

The reason that we remove points p3 and p6 is that p9 will have the largest weight

without them. We have the following two claims on this example (Eg.vN) and they will

be verified in Section 3.4.

Claim 1. For the von Neumann problem (Eg.vN), the radius of the largest inscribed ball

vρ will decrease if the problem is rescaled by (3.4) using va7 as the rescaling vector.

Claim 2. The von Neumann phase of the Deterministic Rescaling von Neumann Algo-

rithm will identify va7 as the rescaling vector when applying the algorithm on (Eg.vN).

59

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

(a) Relative positions.

-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999-0.9999

-0.01

-0.01

-0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

p13

p12

p15

p7

(b) Drawn to scale.

Figure 3.2: Illustration of the perturbations of point p7.

60

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

3.4 Verification of the von Neumann Example

In this section, we will verify Claim 1 in Section 3.4.1 – 3.4.2, and Claim 2 in Section

3.4.3 both theoretically and numerically.

3.4.1 The Initial Condition Number

To estimate vρ, we start from an initial convex hull comprised by the following ten

columns pi, where i = 1, 2, · · · , 10. Figure 3.3 shows this initial convex hull. By con-

struction, p1, p2, · · · , p8 compose a cube with an edge length of 0.02. It is easy to check

that the radius of the largest inscribed ball in this initial convex hull is vρ0 = 0.01. Then

Figure 3.3: Illustration of the initial convex hull.

for the radius vρ, we have the following conclusions.

Lemma 3.4.1. (a) The quantity vρ0 is a lower bound of the largest inscribed ball in

conv([va1,
va2, · · · , va9]). Then (b) it also provides a lower bound for vρ, i.e., vρ0 ≤ vρ.

Proof. The lemma can be proved by the procedure of construction, which is based on

the initial convex hull shown in Figure 3.3.

61

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

(a) Due to the special positions of p9 and p10, removing p6 only causes small changes

of some inessential facets which compared with 0.01 have relatively larger distance to the

origin. Thus, removing p6 from the convex hull does not effect vρ. However, removing p3

will generate a new facet defined by p4, p7, and p9. This facet is closer to the origin than

0.01. Thus, we continue our constrcution with replacing p3 by p11 instead of removing

p3 directly.

Recall that in the previous section, p11 is generated by perturbing p3 along the

direction of [0;−4; 1] with a step size 10−6. Point p11 is very close to p3 compared to

the distance among the facets and the origin. In the original convex hull, the facets

containing p3 as vertex are (p3, p1, p4), (p3, p4, p7), (p3, p7, p9), and (p3, p1, p9). Replacing

p3 by p11 rotate facets (p3, p4, p7), (p3, p7, p9), and (p3, p1, p9) towards outside of the

original convex hull and generates new facets with p8 and p10. Since (p3, p4, p7) is the

facet which defines vρ in the original convex hull, the rotation relaxes this constraint and

makes vρ larger than 0.01. The replacement also brings the facet (p3, p1, p4) closer to

the origin. However, the original distance from this facet to the origin is almost one and

the change is in the magnitude of 10−6. Thus, it does not have effect on vρ. Figure 3.4

illustrates this replacement without drawing to scale.

Therefore, after removing p6 and replacing p3 by p11, we obtain a convex set com-

prised by nine columns conv([va1,
va2, · · · , va9]) = conv([p1, p2, p4, p5, p7, p8, p9, p10, p11])

and vρ0 is a lower bound for the radius of the largest inscribed ball.

(b) Since ‖vai‖ = 1 for all i, conv([va1,
va2, · · · , va9]) is in the interior of the unit ball

except nine vertexes va1,
va2, · · · , va9. All the new points p12, · · · , p15 are on the unit

sphere and different from va1,
va2, · · · , va8. Introducing them to matrix vA will expand

the convex hull, i.e., conv([va1,
va2, · · · , va9])⊂conv(vA). Therefore, vρ ≥ vρ0 = 0.01.

To confirm this conclusion, we have calculated vρ in MATLAB using IEEE double

precision arithmetic. The unit roundoff error is O(1016). Numerical calculation returns

vρ = 0.010002475, which confirms that initially vρ is larger than 0.01.

62

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

Figure 3.4: Illustration of replacing p3 by p11.

3.4.2 The Condition Number After One Rescaling Step

Numerical experiment shows that rescaling by using va7 will decrease the size of the

inscribed ball, i.e., vaj = va7 = p9 in (3.4). The hyperplane defined by va8,
va9,

va10

restricts the ball. The distance from the origin to this hyperplane is 0.009964594, which

gives an upper bound for vρ′, i.e., vρ′ ≤ 0.009964594.

We verify this number by multiple methods. First we solve the problem

vρ′ = min
‖y‖=1

max
i
{−yT (va′)i} (3.8)

by the fminmax function in MATLAB. The solution returned is also vρ′ = 0.009964594.

By the reasons stated in Section 3.5.2 for the function fminmax, we numerically enu-

merate all the facets of the convex hull and calculate the minimal distance from the

origin to those facets and use both of LU and QR factorizations to solve linear equation

systems in the process of calculating the hyperplanes. All the calculations are done in

double precision arithmetic. The returned results are within the same order of O(10−15)

precision. The difference between vρ and vρ′ is on the order of O(10−5), which is much

63

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

larger than the roundoff errors. Thus we claim that vρ > vρ′. Therefore, utilizing va7

to rescale this von Neumann problem (Eg.vN) will shrink the inscribed ball. Claim 1 is

verified.

3.4.3 Choosing the Rescaling Vector

In the desired rescaling von Neumann algorithm, we run the von Neumann algorithm to

identify the rescaling vector, which need to be va7 in this example. The rescaling vector

should be the corresponding column vector of the largest coordinate of x when the von

Neumann algorithm stops after 6mn2 iterations [38]. Let xi be the i-th coordinate of x, so

x = [x1, x2, · · · , x13]. In our example, the von Neumann algorithm initiated with x0 = e7,

where e7 is the unit vector corresponding to index 7. After 3042 iterations, the numerical

experiment shows that va7 and va8 have the same largest weight x7 = x8 = xmax.

Now we verify x7 and x8 are theoretically equal. Since we start from x0
7 = 1, x0

8 = 0.

The superscript denotes the iteration counter. At the first iteration, va8 is utilized to

update x. Thus, x1
7 = x1

8 = 0.5. After that, neither of va7 and va8 are used again to

update. Throughout the following 3041 iterations, vaT7 (pAxk) is always positive, and the

minimal difference between vaT7 (pAxk) and vaTs (pAxk) are in the order of O(10−5) versus

the numerical error is O(10−15) for double digit accuracy. Thus, we recognize that there

is enough separation between va7 and vas, and va7 is not overlooked. Consequently, x7

and x8 have exactly the same updates starting from the second iteration [28]

xk7 = xk8 = λkxk−1
7 = · · · = 1

2

k∏
i=2

λi.

Therefore, x7 and x8 remain equal, thus we can choose va7 as the rescaling vector. The

computational experiment also shows that va7 is chosen when the von Neumann phase

terminates. Claim 2 is confirmed.

64

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

3.5 A Perceptron Example with a Decreasing Ball Exam-

ple

In this section, we explain how we derived the example for the Deterministic Rescaling

Perceptron Algorithm which is stated in Section 1.2.3.2, followed by the example and its

verification.

3.5.1 From the von Neumann Example to the Perceptron Example

Since constructing a von Neumann example in dimension three can be visualized, we start

from the von Neumann example in spite the fact that the complexity of the Deterministic

Rescaling von Neumann Algorithm has not been proved yet. After obtaining an example

for the von Neumann algorithm for which the inscribed ball decreases, we adopt the

following steps.

1. Identify all the facets of conv(vA) and calculate their normal vectors.

2. Lift these normal vectors to a one dimension higher space. Since we already know

that conv(vA) only contains a small ball inside, lifting will lead to a narrow feasible

cone.

3. Run the perceptron algorithm and remove the redundant constraints that are not

used during updates.

4. Identify a constraint which can shrink pρ when rescaling is done by its normal

vector paj .

5. Analogous to constructing the von Neumann example, adding perturbed con-

straints to balance the weight among all vectors so that paj is used the most

frequently during the preceptron updates.

With the above five steps, we obtain the example presented in Section 3.5.2.

65

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

3.5.2 The Percetron Example

The example is as follows:

(Eg.p) pAT y ≥ 0, y 6= 0,

where pA ∈ R4×9 and

pAT =

−0.000003029342674 −2.019699173751262 −0.000004999001640 0.020000000000000

−0.019798999974999 0.019997999899990 −0.019997999899990 0.020000000000000

0.001431631766736 0.019997999899990 0 0.020000000000000

−0.000003028146773 −1.973134679085590 0.183149852715338 0.020000000000000

0.019737351052173 0.000000950063128 0.020002002579065 0.020000000000000

−0.052561097586474 1.592477159015729 −0.091573429520343 0.024000000000000

−0.052561703455009 1.188537324265476 −0.091574429320671 0.028000000000000

−0.052560491717939 1.996416993765981 −0.091572429720015 0.020000000000000

0.050728859951203 1.996416993765981 −0.091572429720015 0.020000000000000

.

Each column vector pai of pA defines a hyperplane in R4 and there are nine hyperplanes

in total. We have the following claims.

Claim 3. For the perceptron problem (Eg.p), the radius of the largest inscribed ball pρ

will decrease if the problem is rescaled by (1.8) using pa1 as the rescaling vector.

Claim 4. The perceptron phase of the rescaling perceptron algorithm [38] will identify

column pa1 as the rescaling vector when applying the algorithm on problem (Eg.p).

3.5.3 Verification of the Perceptron Example

In order to verify these two claims, we also implement the example and the algorithm in

MATLAB using IEEE double precision arithmetic. Recall that the unit roundoff error

is O(10−16).

We have the following observations. The initial pρ = 0.00999988. After running the

rescaling perceptron algorithm [38], the perceptron phase does not solve pAT y ≥ 0, y 6= 0.

It identifies column pa1 as the rescaling vector, which is nearly perpendicular to the

66

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

feasible cone. In the rescaling phase, pa1 is used to rescale the matrix pA. The radius of

the largest inscribed ball after rescaling becomes pρ′ = 0.00961856, which yields a factor

of O(10−4) decrease.

Verify Claim 3: the correctness of pρ and pρ′ are checked first by solving

pρ = max
‖y‖=1,pAT y≥0

min
i
{paTi y} (3.9)

in MATLAB using the fminmax function. The fminmax function uses a Sequential

Quadratic Programming method [7] and might only return a local optimal solution. To

dismiss this situation, we also verify the results by the following steps.

Step 1. Identify the hyperplanes that touch/support the current ball (pρ or pρ′).

Step 2. Project the normal vectors of the hyperplanes found in Step 1 to a three dimensional

subspace. Denote these three-dimension vectors as lai.

Step 3. Employ Dantzig’s method [12] to solve the von Neumann problem

lAx = 0,

eTx = 1,

x ≥ 0,

where lA is composed by the vectors lai as its columns. If an exact solution is found,

then this von Neumann problem is feasible, which proves that there is no direction in

which the ball would grow. Dantzig’s method yields to run the von Neumann algorithm

multiple times and solve a linear equation system to obtain an exact solution to the von

Neumann problem. The von Neumann algorithm is presented as the von Neumann phase

of Algorithm 3.1 in Section 3.2. The most complex arithmetical operations in the process

of verification involve vector normalization, matrix-vector multiplication, and solving

linear equation systems. At each iteration of the von Neumann algorithm, the column

67

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

vectors las which has the largest angle with the current iterate lAxk is chosen for update,

where k is the iteration counter. The inner product values of laTi (lAxk) are compared

for all i. The minimal difference between laTs (lAxk) and all the other laTi (lAxk) values

is O(10−5) versus the numerical error is O(10−16) in the double precision arithmetic.

Thus, we recognize that the vectors las are chosen correctly due to sufficient separation

between the vectors. Regarding solving the linear equation systems, since the systems for

our example are 4× 4 dimensional, we use decomposition methods to solve them. Both

LU and QR factorizations are applied to test our results. Though LU factorization is

commonly used and needs less computation, however, QR factorization is more reliable in

numerical computations. The accuracy of QR factorization is sufficient for most purposes

[49]. The results of our experiment show that the values of pρ and pρ′ are consistent while

using different methods and factorizations. Therefore, executing Steps 1-3, we verify that

pρ = 0.00999988 and pρ′ = 0.00961856 are the radii of the largest inscribed balls before

and after rescaling, respectively. Rescaling using pa1 makes the ball shrink. which verifies

Claim 3.

Verify Claim 4: we have already noticed that the perceptron phase of the rescaled

algorithm is actually the same as the perceptron algorithm. The minimal difference

between paT1 (pAxk) and all the other paTi (pAxk) is in the order of O(10−5), which is much

larger than the numerical error O(10−16). Therefore, the vector pa1 is chosen correctly as

the rescaling vector after running the rescaling perceptron algorithm. Claim 4 is verified.

3.6 Computational Results

The description of the Deterministic Rescaling von Neumann Algorithm is given in Sec-

tion 3.2. As we stated, the theoretical complexity result of this algorithm is not proved

yet. Regardless, we present some computation results in this section to show that the per-

formance of the von Neumann algorithm is notably improved after applying the rescaling

phase.

68

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

To generate ill-conditioned von Neumann problems which have small vρ, we adapt the

tube generator [16, 29]. It places n− 1 points on the spherical cap concentrated around

[0 0 . . . 0 1]T or [0 0 . . . 0 − 1]T . The n-th point is generated as a positive combination

of the antipodes of the first n − 1 points, so that it is on the opposite spherical cap.

This generator guarantees that the von Neumann problem is feasible. At the mean time,

since all the n points lie in the tube around the last coordinate axis, we can control vρ

by adjusting the width of the tube. The performance of the Deterministic Rescaling von

Neumann Algorithm is compared with the original von Neumann algorithm. For each

size of A, we randomly generated 20 von Neumann problems using tube generator. In

Table 3.1, vρ is controlled in the interval [0.0015, 0.0025] by selecting proper width of the

tube. When the dimensions of problems increase, the total number of updates remains

at the same magnitude and the running time increases because the cost of each update

step increases. The number of updates for finding a rescaling vector also depends on the

dimension. Therefore, the number of rescaling step gets decreased. Table 3.2 shows for

each size of problems, how the number of rescaling step increases while vρ is decreasing.

The results in Table 3.1 and Table 3.2 are obtained by using Matlab R2014a on a

Table 3.1: Comparison of the performance of Algorithm 3.1 and the original von Neu-
mann algorithm with vρ ∈ [0.0015, 0.0025].

Size Original Deterministic rescaling
m× n Sec. No.update Sec. No.update No.res Speedup

5× 10
Min 15.1439 6.0E+5 0.1852 9.0E+3 5 70.01
Avg 20.7475 7.7E+5 0.2128 9.9E+3 6.05 93.00
Max 26.9956 1.0E+6 0.2541 1.5E+4 7 144.97

10× 20
Min 10.4675 2.4E+5 1.3518 4.8E+4 3 5.57
Avg 16.6360 5.2E+5 1.4768 5.4E+4 3.8 10.91
Max 25.3937 8.1E+5 1.9368 7.2E+4 5 15.93

20× 40
Min 13.8834 2.3E+5 9.8932 1.9E+5 2 1.58
Avg 30.6556 6.2E+5 13.2555 2.7E+5 2.1 2.45
Max 58.6731 1.2E+6 15.1924 3.4E+5 3 3.79

40× 80
Min 62.3095 3.7E+5 61.3109 3.7E+5 0 1.00
Avg 114.9813 8.2E+5 98.7332 7.7E+5 1 1.12
Max 142.4147 1.1E+6 101.8646 8.2E+5 1 1.43

69

CHAPTER 3. ON DETERMINISTIC RESCALING ALGORITHMS

Table 3.2: Comparison of the performance of Algorithm 3.1 and the original von Neu-
mann algorithm with different vρ.

Size vρ (×10−3)
Original Deterministic rescaling

m× n Sec. No.update Sec. No.update No.res. Speedup

10× 20

[1.5, 3] 9.6168 3.1E+5 1.3234 4.8E+4 3.29 7.03
[3, 6] 3.4683 1.1E+5 0.9868 3.6E+4 2.37 3.31
[6, 12] 1.5130 4.8E+4 0.7997 2.9E+4 1.8 1.88
> 12 0.7252 2.4E+4 0.5231 2.0E+4 1 1.39

20× 40

[0.5, 1] 124.0785 3.7E+6 12.3569 4.3E+5 3.88 9.55
[1, 2] 33.9353 1.0E+6 8.9600 3.1E+5 2.6 3.62
[2, 4] 10.1445 2.8E+5 6.4094 2.0E+5 1.41 1.54
> 4 7.2659 2.0E+5 6.3480 2.0E+5 1.5 1.1

Windows 7 desktop (Intel(R) Xeon(R) CPU, 2.5GHz) with 4Gb RAM.

3.7 Summary

Peña and Sohèili presented a Deterministic Rescaling Perceptron Algorithm. We con-

struct an example showing that even though the algorithm eventually expands the fea-

sible cone, pρ may decrease after one rescaling step. By the duality relationship between

the perceptron and the von Neumann algorithms, we apply the Peña-Sohèili rescaling

method to the von Neumann algorithm. Driven by the desire of proving its complex-

ity, we explore how vρ will change after rescaling. We construct an example in R3 to

show that there is no guarantee of monotonic increasing of vρ. Therefore, the complexity

cannot be proved by increasing vρ and another method need to be discovered. Computa-

tional results shows that the Deterministic Rescaling von Neumann Algorithm can solve

the test problems faster then the original von Neumann algorithm.

70

Chapter 4

A Polynomial Column-wise

Rescaling von Neumann

Algorithm

4.1 Introduction

Recall that in Chubanov’s Method, once the BP identifies an upper bound for at least one

coordinate of any possible feasible solution, the corresponding columns of the coefficient

matrix are multiplied by a scalar. Therefore, Chubanov’s Method can be considered

as s rescaling procedure. Utilizing this idea, in this chapter we propose a deterministic

Column-wise Rescaling vNA and prove its polynomial-time complexity. We rename the

BP as von Neumann Procedure (vNP) because it uses von Neumann-like update steps.

The outline of this chapter is as follows. In the following of this section we introduce some

notation and important lemmas that serve as the foundation of Chubanov’s Method. In

Section 4.3, we present the details of the column-wise rescaling von Neumann algorithm.

In Section 4.2.1, we introduce different ways to compute upper bounds for some coordi-

nates of any feasible x, if problem (1.10) has feasible solutions. These bounds are utilized

to construct a rescaling matrix. The complexity analysis is presented in Section 4.4, and

71

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

computational results are given in Section 4.5.

Before presenting the details of the Column-wise Rescaling von Neumann Algo-

rithm, we first introduce important notations and lemmas which are the foundation

of Chubanov’s Method. Let NA denote the null space of the matrix A and RA its row

space, i.e.,

NA := {x ∈ Rn : Ax = 0}, RA := {AT y : y ∈ Rm}.

We define matrices PA and QA as the orthogonal projection matrices of Rn onto NA and

RA, respectively, as follows:

PA := I −AT (AAT)−1A, QA := AT (AAT)−1A = I − PA.

Our assumption that matrix A is full rank guarantees that AAT is invertible. So PA and

QA are well defined. Let xN and xR denote the orthogonal decomposition of vector x in

the spaces NA and RA, respectively, i.e.,

xN := PAx, xR := QAx.

Obviously we have

APA = 0, PAQA = 0, x = xN + xR.

According to the properties of the orthogonal decomposition [25], PAx = 0 holds if

and only if x ∈ RA, i.e., x = AT y holds for some y. In other words, problem (1.4) is

equivalently solvable to the following problem

PAx = 0, x > 0. (4.1)

Since problem (4.1) is homogeneous and x is strictly positive, without loss of generality,

72

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

we may assume that eTx = 1. The concept of the orthogonal decomposition plays a

crucial role in Chubanov’s Method. The following lemma summarize the relationship

between the orthogonal components and the solutions of problems.

Lemma 4.1.1. For a vector x ∈ Rn, if we have 0 6= PAx ≥ 0, then xN is a solution to

problem (1.11) and problem (1.6) is also solvable; if PAx = 0 for some x > 0, i.e., x is

a solution to problem (4.1), then problem (1.4) is solvable, i.e., x = AT y holds for some

y.

Proof. The first statement immediately follows from the definitions of NA and PA. For

the second statement, if x is a solution to problem (4.1), then we have x = xR + xN =

xR ∈ RA, which implies x = AT y > 0 has a solution, i.e., problem (1.4) is feasible. By

Farkas Lemma, problem (1.6) has no solution.

Lemma 4.1.1 shows that the value of PAx for some x can be used to solve problem

(1.6) when 0 6= PAx ≥ 0 or identify the feasibility when PAx = 0. Therefore, as we show

in the next section, Lemmas 4.1.1 serves as stopping criteria for the vNP in Chubanov’s

Method.

4.2 The von Neumann Procedure

Recall that Chubanov’s problem (1.10) is homogeneous, we may assume without loss of

generality that 0 < x ≤ e, where e denotes the all-one vector. Thus, we may equivalently

consider the problem

Ax = 0, x ∈ (0, 1]n, (4.2)

whose solution set is in the unit cube. The major difference between (1.6) and (4.2) is

that every solution of (4.2) has to be strictly positive, while solutions of (1.6) still may

have zero coordinates.

73

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

4.2.1 Bounds for Feasible Solutions

The core of Chubanov’s Method is the vNP. The vNP is a von Neumann-like algorithm

and works on problem (4.1). For the purpose of clarification, vector u ∈ Rn is used to

denote the variable in problem (4.1) in the rest of this paper. Vector x is only used in

the problems whose coefficient matrix is A, such as problems (1.6), (1.11), and (4.2).

With the new notation, problem (4.1) can be rewritten as follows.

PAu = 0, eTu = 1, u > 0. (4.3)

Recall that uN = PAu and uR = QAu. Due to the fact that PA and QA are orthogonal

projection matrices, with the assumption that problem (1.6) or (4.2) is feasible, an upper

bound of every feasible solution x may be obtained from a given vector u. Let vector

d > 0 denote this upper bound for x and its i-th coordinate di represent the upper bound

for xi, i.e., xi ≤ di holds for every feasible solution x and every coordinate i. We will

show later that vector d is crucial for rescaling. First we have the following observation.

Lemma 4.2.1. Let vector d be an upper bound for every feasible solution x of problem

(4.2). If max(d) < 1, then problem (4.2) is infeasible.

Proof. Observe that problem (4.2) is homogenous. Assume that it is feasible and x′ is

a feasible solution, then x = x
max(x) is another feasible solution which has at least one

coordinate equal to 1. In other words, we have xj = 1 for some j. According to the

definition of vector d, xi ≤ di holds for every feasible solution x and every coordinate i.

Therefore, if problem (4.2) is feasible, then dj has to be at least 1 for some j.

Lemma 4.2.1 is utilized as an evidence of infeasibility in Algorithm 4.3 in Section 4.3.

There are several ways to compute such an upper bound for x. Chubanov’s original

method uses the bound [9, 11]

xi ≤ di =

√
n‖uN ‖
ui

, (4.4)

74

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

where the subscript i is the index for coordinates. This inequality provides a useful

bound only if the right hand side expression is smaller than 1, because we have made

the assumption is that x is in the unit cube for problem (4.2). To determine if there is

a bound (4.4) not greater than 1
2 for some i, we can simply test the inequality

2
√
n‖uN ‖ ≤ max

i
(ui). (4.5)

We have the following result.

Lemma 4.2.2. [9, 11] Let u satisfy 0 6= u ≥ 0 and (4.5), and let j be such that

uj = maxi(ui). Let x be a solution for (4.2). Then xj is bounded above by dj = 1
2 .

It will be convenient to call u small if it satisfies (4.5), and large otherwise. Note

that uN 6= 0 if u is large, and u is small if (4.1) is feasible. For future use we also state

the following result.

Lemma 4.2.3. [41] If u satisfies 2
√
n‖uN ‖ ≤ eTu, then u is small.

Lemma 4.2.2 shows that any small vector u induces a bound xj ≤ 1
2 for some j for

problem (4.2). Recently more study shows that some large vectors u may also provide

useful bounds for x. Roos [41] proposed a modified vNP using the following bound.

Lemma 4.2.4. [41] Let x be a solution for (4.2). Then xi is bounded by

xi ≤ di = min

{
1, eT

[
uR

−uRi

]+
}
, for i = 1, · · · , n, (4.6)

where [a]+ is derived from a by replacing its negative entries by zero, i.e., [a]+j =

max{0, aj}

By using the duality theorem of LO, Chubanov [11] also derived another bound in

Lemma 4.2.5.

75

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

Lemma 4.2.5. [41] Let x be a solution for (4.2). Then xi is bounded by

xi ≤ di = min

{
1, eT

[
ei −

uR

ui

]+
}
, for i = 1, · · · , n, (4.7)

where ei is the i-th unit vector.

Among these three bounds (4.4), (4.7), and (4.6), Roos [41] concludes that for each

nonzero u ≥ 0 and for each i, one has

min

{
1, eT

[
uR

−uRi

]+
}
≤ min

{
1, eT

[
ei −

uR

ui

]+
}
≤ min

{
1,

√
n‖uN ‖
ui

}
. (4.8)

Bound (4.6) is the tightest upper bound for x. In the vNP, we only need to compute the

smallest bound among all coordinates, so we define

dmin := min
i
di = dj ,

where j is as follows: for the bounds (4.7) and (4.6), j is the index such that uRj =

maxi(u
R
i) if eTuR > 0 and uRj = mini(u

R
i) if eTuR < 0; for the bound (4.4), j is the

index such that uj = maxi(ui). Note that j might not be unique.

4.2.2 The von Neumann Procedure

By iteratively updating vector u and the value of PAu, the vNP aims to find a vector

u which either satisfies one of the two conditions in Lemma 4.1.1, or if such an u is not

found, then uN 6= 0 and there is at least one nonpositive coordinate of uN . Let S denote

a nonempty set of indices such that

∑
s∈S

uNs ≤ 0.

76

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

Let ps denote the s-th column of PA, i.e., ps = PAes. We define

eS :=
1

|S|
∑
s∈S

es, pS := PAeS =
1

|S|
∑
s∈S

ps.

The vNP is shown in Algorithm 4.1. Recall that vector u in problem (4.3) is analogous

Algorithm 4.1 [ũ, u, uN , J̃ , d̃, CASE]=von Neumann Procedure(PA, u)

1: Initialize: ũ = 0, uN = PAu, J̃ = ∅, dmin = 1, CASE = 0, 1
2 < θ < 1 (e.g. θ = 0.8).

2: while dmin >
1
2 and CASE = 0 do

3: if 0 6= uN ≥ 0 then
4: CASE = 1 . Problem (1.6) is feasible.
5: Return
6: else
7: if uN = 0 then
8: CASE = 2 . Problem (1.6) is infeasible.
9: Return

10: else
11: ũ = u
12: Find an index set S such that

∑
s∈S u

N
s ≤ 0

13: λ =
pTS (pS−uN)

‖uN−pS‖2
14: u = λu+ (1− λ)eS
15: uN = λuN + (1− λ)pS
16: end if
17: end if
18: Compute dmin by using (4.6)
19: end while
20: if CASE = 0 then
21: Compute di for all i by using (4.6)
22: d̃ = {di : di ≤ θ} . Upper bound(s).
23: J̃ = {i : di ≤ θ} . Corresponding coordinate index (indices).
24: end if

to vector x in problem (1.6). To solve problem (4.3), Algorithm 4.1 starts with u as a

point from the unit simplex. Vector uN = PAu is analogous to vector b in Algorithm 1.3.

Line 12-15 in Algorithm 4.1 is the update step. It moves uN along a direction, which is

a combination of one or more columns of PA, with step size λ. The updating maintains

at every iteration the conditions that u is from the unit simplex and the corresponding

uN is a convex combination of columns of PA, i.e., u ∈ ∆n and uN ∈ conv(PA). Since

77

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

this update step is analogous to the von Neumann update step in the vNA, we name

this procedure as the vNP. As you will learn later in Section 4.3 that the vNP is the core

subroutine of this proposed rescaling algorithm, therefore, we classify it as a variant of

the vNA.

The vNP updates vector u until one of the following three cases occurs:

CASE = 1: We have uN = PAu as a solution of problem (4.2);

CASE = 2: We have uN = 0 that means that problem (4.2) is infeasible. Conse-

quently u is a certificate of infeasibility;

CASE = 0: We have an index set J̃ and the corresponding bounds d̃ such that

xJ̃ < d̃ for all feasible solutions x of problem (4.2), and min(d̃) ≤ 1
2 . In other

words, we have at least one coordinate j of x such that xj ≤ 1
2 in every possible

solution of (4.2).

As we will show in Section 4.3, d̃ is going to be used as the rescaling factor. In the case

of rescaling, the vNP terminates when dmin ≤ 1
2 , i.e. the minimum value in d̃ is less

than 1
2 . We also require that the maximum value of d̃ should not exceed a threshold

θ ∈ (1
2 , 1). Therefore, the vNP only records those di ≤ θ into d̃ and their corresponding

indices into J̃ .

4.2.3 Complexity of the von Neumann Procedure

Roos has proved that the vNP in Algorithm 4.1 has strong polynomial-time complexity.

Theorem 4.2.6. [41] After at most 4n2 iterations, the vNP either (a) provides a solution

to problem (4.2), or (b) provides an evidence of infeasibility, or (c) identifies at least one

coordinate of x which is smaller than or equal to 1
2 in every feasible solution of (4.2).

Each vNP iteration needs O(n) arithmetic operations. Therefore, the vNP has O(n3)

time complexity. Note that this is a strongly polynomial-time complexity.

78

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

4.3 The Column-wise Rescaling von Neumann Algorithm

In Section 4.2, we introduced the vNP to calculate an upper bound d for every feasible

solution x for problem (4.2). In this section, we start with the idea of utilizing this

upper bound as a rescaling vector. Then the Column-wise Rescaling vNA is discussed

in details.

4.3.1 Rescaling

Since x ≤ d ≤ e holds for every feasible solution x of problem (4.2), then x′i = xi
di
≤ 1.

This means that x′ is a feasible solution to the following problem:

ADx = 0, x ∈ (0, 1]n, (4.9)

where D = diag(d), i.e., D is the diagonal matrix whose i-th diagonal entry is di. Observe

that problems (4.2) and (4.9) are the same, if we replace A by AD. Since D is a diagonal

matrix, AD is a rescaled version of A, where the i-th column of A is scaled by the factor

di. This rescaling preserves the problem’s form because e remains the upper bound for

the variables.

When the vNP stops with an upper bound d, then the columns of A are rescaled

by their corresponding di bound, respectively. The condition dmin ≤ 1
2 ensures that at

least one column is divided by at least a factor of 1
2 . This fact is used when proving

the complexity result. Note that in Algorithm 4.1, the vNP only records the bounds

which are less than a threshold θ, e.g., 0.8. After rescaling the vNP is called again to

solve the rescaled problem, which has the same form but a different coefficient matrix.

By repeating this vNP-rescaling procedure, a sequence of vectors d is constructed. The

coordinate wise multiplication of these d vectors is denoted by d̂ in Algorithm 4.3, as the

final upper bound for every feasible solutions of problem (4.2).

It is well known that if problem (4.2) has rational data, there exists a positive number

τ such that it is a uniform lower bound for all the positive coordinates in any basic

79

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

solutions. As discussed e.g. in [42], we have τ−1 = O(2L), where L denotes the binary

input length of matrix A [31]. After calling the vNP-rescaling procedure at most O(nL)

times, the upper bound for at least one coordinate of x will become smaller than τ ,

which is not possible if the problem has positive solution. Therefore, we can conclude

that then problem (4.2) is infeasible.

4.3.2 Removing Columns

Compare the von Neuman problem (1.11) and problem (4.2). Every solution of (4.2) is

restricted to be strictly positive. However, solutions of (1.11) may have zero coordinates.

This difference leads to different conclusions in the case of xi < τ for some i. As we

stated in the previous section, when solving problem (4.2), we can conclude that if xi < τ ,

then problem (4.2) is infeasible. When solving problem (1.11), in such a case xi has to

be zero if the problem is feasible. We call such i a “must-be-zero” coordinate. Once a

“must-be-zero” coordinate is identified, xi is fixed to 0, and the corresponding column

is removed from A without changing the feasibility of the problem.

Recall that in order to guarantee that PA is well defined, we may assume that matrix

A has full row rank. Removing columns from A may destroy this assumption. Therefore,

a preprocessing step is needed before running the vNP-rescaling procedure again on the

new problem. The preprocessing procedure eliminates any redundant rows to bring A

back to a full rank matrix and reduces problem (4.2) to a similar problem with A replaced

by a reduced matrix of A. The preprocessing procedure is stated as Algorithm 4.2. There

are three possible outcomes of the preprocessing procedure:

CASE = 0: A is full rank and not a square matrix;

CASE = 2: A is full rank and square, then problem (1.11) is infeasible;

CASE = 3: rank(A) = 0, then problem (1.11) is feasible.

If the preprocessing procedure returns CASE = 3, then the non-zero coordinates of a

feasible solution x can be any positive numbers. If CASE = 0, no action is needed.

80

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

Algorithm 4.2 [A,CASE]=PreProcessing(A, J0)

if J0 6= ∅ then
A = AJ0 . Remain column(s) J0, remove others.
if rank(A)=0 then

Return CASE = 3 . xJ0 (Line 35 in Algorithm 4.3) can be any positive
numbers.

end if
if A is not full rank then

Remove redundant row(s) of A to make it of full row rank
end if

end if
Return A,CASE = 0

4.3.3 The Column-wise Rescaling von Neumann Algorithm

The Column-wise Rescaling vNA is stated as Algorithm 4.3. For convenience, the while

loop in lines 9-32 is called inner loop, the while loop in lines 2-37 is called outer loop.

The inner loop is the vNP-rescaling procedure for the actual matrix A. Once it identifies

“must-be-zero” coordinates, the algorithm removes the corresponding columns from A,

calls the preprocessing procedure, updates matrix A and PA, and starts the vNP-rescaling

procedure again.

4.4 Complexity

The following complexity result for the Column-wise Rescaling vNA shows that this is

a polynomial time variant of the von Neumann algorithm.

Theorem 4.4.1. After at most O(n5 log2 τ
−1) = O(n5L) arithmetic operations, the

Column-wise Rescaling vNA, as stated in Algorithm 4.3, either finds a solution to the

von Neumann problem (1.11), or provides an evidence of its infeasibility.

Proof. The number of inner-loop iterations is O(n log2 τ
−1) for a given A. For each inner-

loop iteration, the complexity of the vNP is O(n3) arithmetic operations. For each time

calling the vNP, O(n3) arithmetic operations are needed for computing PA. Therefore,

the complexity of executing the inner loop is O(n4 log2 τ
−1). The complexity of the

81

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

Algorithm 4.3 The Column-wise Rescaling von Neumann Algorithm

1: Initialize: CASE = 0, J = ∅, and J0 = {1, 2, · · · , n}.
2: while CASE = 0 do
3: [A,CASE]=PreProcessing(A, J0) . Check if A is full rank
4: if A is square then
5: CASE=2 . System (1.11) is infeasible
6: Break
7: end if
8: Set d̂ = e, y = e

n , x = 0 with corresponding dimension
9: while CASE = 0 do

10: PA = I −AT (AAT)−1A
11: [ỹ, y, uN , J̃ , d̃, CASE]=von Neumann Procedure(PA, y)
12: if CASE=0 then
13: D̃ = diag(d̃)
14: d̂J̃ = D̃d̂J̃ . d records the rescaling factors

15: AJ̃ = D̃AJ̃ . Rescale matrix A

16: if max(d̂) < 1 then
17: CASE = 2 . System (1.11) is infeasible
18: Break
19: end if
20: if exists some coordinate set J such that d̂J < τ then
21: xJ = 0
22: J0 = J0 \ J
23: Break
24: else
25: if ỹ 6= 0 then
26: y = ỹ
27: end if
28: yJ = yJ/2
29: y = y/eT y
30: end if
31: end if
32: end while
33: if CASE = 1 then . x is a solution of (1.1).
34: D = diag(d̂)
35: xJ0 = DuN

36: end if
37: end while

82

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

Table 4.1: Comparison of the performance of Algorithm 4.3 and SeDuMi.

Size(m× n)
MA SeDuMi Speedup

Sec. ‖Ax‖ Sec. ‖Ax‖ Max Min % Avg

5× 10 0.0025 3.0e-13 0.0316 2.0e-9 58.6 0.2 99 16.9

25× 50 0.0085 3.6e-12 0.1077 6.3e-9 89.1 0.9 98 10.8

125× 250 0.1102 8.5e-11 0.7439 2.7e-8 27.4 0.6 99 6.0

250× 500 0.2386 3.5e-10 3.8000 1.6e-7 41.1 3.0 100 10.6

500× 1000 1.0553 8.3e-10 27.7594 4.4e-7 62.5 9.0 100 23.9

625× 1250 2.4499 2.2e-10 61.6622 3.0e-8 81.2 15.0 100 32.4

1000× 2000 7.6571 8.4e-10 555.3555 1.8e-7 114.5 25.1 100 50.6

preprocessing procedure is O(n3). The total number of executions of the outer loop is

O(n). Therefore, the total complexity of Algorithm 4.3 is O(n5 log2 τ
−1) = O(n5L).

4.5 Computational Results

The performance of the Column-wise Rescaling vNA is compared to those of SeDuMi

and Linprog. The bound used in the implementation is bound (4.6). For each size of A,

we randomly generated 100 von Neumann problems with a dense matrix. The elements

of A are randomly chosen in the intervals [-100,100].

Table 4.1 shows that for those randomly generated problems, the rescaling von Neu-

mann algorithm outperforms SeDuMi. The running time shown has a significant reduc-

tion. The speedup columns compare the running time of SeDuMi versus the Column-wise

Rescaling vNA for each problem, and shows the maximal, minimal, and average speedup

ratios, as well as the percentage of problems which are solved faster by using this rescal-

ing von Neumann algorithm. With averagely less than a tenth of the running time, the

rescaling von Neumann algorithm returns solutions with higher accuracy then the ones

obtained by SeDuMi. Table 4.2 compares the performance of the rescaling von Neumann

algorithm and Linprog. For small problems, Linprog runs faster than the rescaling von

Neumann algorithm. However, when the size is getting larger than 250 × 500, Linprog

has a limited ability to solve all the problems. The numbers in the “Solved %” columns

show how many problems out of 100 are solved successfully by each algorithm.

83

CHAPTER 4. A RESCALING VON NEUMANN ALGORITHM

Table 4.2: Comparison of the performance of Algorithm 4.3 and Linprog.

Size(m× n)
MA Linprog

Sec. ‖Ax‖ Solved % Sec. ‖Ax‖ Solved %

5× 10 0.0025 3.0e-13 100 0.0033 5.3e-11 100

25× 50 0.0085 3.6e-12 100 0.0046 6.7e-11 100

125× 250 0.1102 8.5e-11 100 0.0456 9.1e-10 100

250× 500 0.2386 3.5e-10 100 0.3476 6.7e-9 48

500× 1000 1.0553 8.3e-10 100 1.0407 9.4e-9 19

625× 1250 2.4499 2.2e-10 100 – – 0

1000× 2000 7.6571 8.4e-10 100 – – 0

The results in Table 4.1 and Table 4.2 are obtained by using Matlab R2014a on a

Windows 7 desktop (Intel(R) Xeon(R) CPU, 3.07GHz) with 4Gb RAM. For the compu-

tation of the projection matrix PA, we used the factorize function developed by Davis

[15].

84

Chapter 5

A Higher-order Rescaling

Perceptron Algorithm

5.1 Introduction

This chapter develops the methodology of a higher-order rescaling algorithm. We realize

the perceptron improvement phase by utilizing parallel processors. In a multi-core en-

vironment, we can get several rescaling vectors without extra wall-clock time. Then we

use them in a single higher order rescaling step. By this, a better rescaling rate may be

achieved, and thus the complexity and computational efficiency is improved. Computa-

tional experiments shows that the practical efficiency of the rescaling algorithm improved

by at least 40 percent compared to the one-order rescaling perceptron algorithm.

As we have introduced in Section 1.2.3.1, Dunagan and Vempala proposed a Stochas-

tic Rescaling PA [17] to improve the complexity of the perceptron algorithm. By repeated

rescaling of the linear system, radius pρ increases so that with high probability (at least

1−e−m), the rescaling perceptron algorithm finds a feasible solution. Thus, the Stochas-

tic Rescaling PA is a polynomial time algorithm with high probability.

A good characteristic of this algorithm is that the perceptron improvement phase

always starts from a random vector to generate rescaling vectors at each cycle. Thus,

85

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

each improvement cycle is independent of any results from the previous cycles. This

provides an opportunity for us to take advantage of parallel computing. Therefore, we

propose a Higher-order Rescaling PA. We realize the perceptron improvement phase by

utilizing parallel processors. In a multi-core environment we may obtain several rescaling

vectors without extra wall-clock time. Then we use them in a single higher order rescaling

phase. Numerical experiments show that the Higher-order Rescaling PA has notably

improved efficiency in practice. Before introducing the Higher-order Rescaling PA, we

first introduce several new notations which will be used frequently in this section.

• z: a unit vector such that

z = arg max
{:y∈F ,‖y‖=1}

min
i
aTi y.

• σ1, σ2: in the Stochastic Perceptron PA (Algorithm 1.4), the perceptron phase

and the perceptron improvement phase share the same parameter σ in the upper

bounds of total number of iterations. In addition, σ is also the parameter used to

define the nearly feasible solution. In this chapter, these two phases might have σ

with different values. Therefore, σ1 and σ2 replace the original σ in the perceptron

phase and the perceptron improvement phase respectively, and σ2 also replaces the

parameter σ in the condition of the nearly feasible solution.

• Pr(Ω): the probability of event Ω.

• ȳ: recall that in Algorithm 1.4, ȳ is defined as the unit vector along y, i.e., y
‖y‖ . For

the convenience of our discussion, in this chapter, we define that vector “over-lined”

is the corresponding unit vector.

5.2 The Higher-Order Rescaling Perceptron Algorithm

In this section we present the Higher-order Rescaling PA and analyze its theoretical

properties.

86

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

In the rescaling phase of the Stochastic Rescaling PA (Algorithm 1.4), only one nearly

feasible solution is used to make the linear transformation. Recall that at each iteration,

the system is rescaled (Line 14) by A =
(
I + ȳȳT

)
A, where y is a nearly feasible solution

obtained in the perceptron improvement phase. After rescaling, with probability at least

1
8 , the largest inscribed ball is enlarged. Since ȳȳT is of rank-one, the Stochastic Rescaling

PA is an order one rescaling algorithm. We propose a Higher-order Rescaling PA that

uses more than one nearly feasible solutions and makes higher-order updates at each

rescaling phase. The goal of the higher-order update is to utilize, for virtually no cost,

in a multi-processor computing environment, to obtain a higher rescaling rate.

Similar to the Stochastic Rescaling PA, each outer loop of the Higher-order Rescal-

ing PA consists of three phases, and both the perceptron phase and the perceptron

improvement phase have an inner loop.

In the Stochastic Rescaling PA, the search for a nearly feasible solution in phase

2 always starts from a random vector, which is independent of any interim result and

other status of the problem. Thus, the perceptron improvement phase can be run on the

κ0 processors in parallel without any communication between each other, and we may

get several nearly feasible solutions at the same time. In such a computational model,

no matter how many processors are used, the wall-clock time will not be increased. So

the generation of multiple rescaling vectors simultaneously can be considered as a single

step. Then defined by

A′ = (I + ȳ1ȳ
T
1 + · · ·+ ȳκȳ

T
κ)A, (5.1)

a higher-order rescaling transformation is applied in the rescaling phase, where A′ denotes

the matrix after rescaling. We call (5.1) a κ-order rescaling/transformation.

87

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

Algorithm 5.1 The Higher-order Rescaling Perceptron Algorithm

1: Initialization
Assume that there are κ0 parallel processors available.
Let B ∈ Rm×m, B = I, σ1 = 1

32m , and σ2 = 1
32κ0m

.
2: while True do
3: Phase 1. The Perceptron Phase
4: Designate one processor as the main processor.
5: On the main processor:

6: run the Classical PA for at most
⌈

1
σ2
1

⌉
iterations;

7: obtain vector y.
8: if AT y ≥ 0 then
9: STOP and return By as a feasible solution.

10: end if
11:

12: Phase 2. The Perceptron improvement Phase
13: On each processors:
14: run lines 9 of Algorithm 1.4 with σ = σ2;
15: obtain κ0 vectors.
16: if there is any non-zero vector that satisfies AT y ≥ 0 then
17: STOP and return By as a feasible solution.
18: end if
19:

20: Phase 3. The Higher-Order Rescaling Phase
21: Assume that y1, y2, · · · , yκ are κ nearly feasible solutions among the total κ0

vectors.
22: Set

A = (I + ȳ1ȳ
T
1 + · · ·+ ȳκȳ

T
κ)A,

B = (I + ȳ1ȳ
T
1 + · · ·+ ȳκȳ

T
κ)B.

23:

24: end while
25: Output: A point y such that AT y ≥ 0 and y 6= 0.

88

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

5.3 Probability of Getting Good Recaling Vectors

Recall that in the perceptron improvement phase, the generation of nearly feasible so-

lutions starts from random vectors, which causes the rescaling algorithms to have a

stochastic property. Thus we discuss the probability of getting a good vector in the

improvement phase.

Definition 5.3.1. Let z be a unit vector such that pρ = max
z∈F

min
i
aTi z, i.e., z is the unit

vector pointing to the center of the largest inscribed ball. A vector y is called a good

vector if

zT y ≥ ω√
m
,

where ω is a predetermined parameter. Further, y is a good nearly feasible solution if y

is both a good vector and a nearly feasible solution.

Lemma 5.3.2. Let Φ(·) be the cumulative distribution function of the standard normal

distribution. On a single processor, with probability at least 1 − Φ(ω), after at most

ln(m/ω2)
σ2
2

iterations, the perceptron improvement phase returns a good nearly feasible so-

lution.

Proof. The proof is similar to the one in [17]. Let u be any unit vector. We first show

that for a random unit vector y, the probability of uT y ≥ ω√
m

is at least 1 − Φ(ω). We

generate a random unit vector as follows: pick each coordinate independently from a

standard normal distribution and normalize the vector to unit length. Let Y1, · · · , Ym

be these coordinates. Since u can be any unit vector, we may assume without loss of

89

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

generality that u = e1. Then the desired probability is

Pr = Pr

(
uT y ≥ ω√

m

)

= Pr

 Y1√∑m
i=1 Y

2
i

≥ ω√
m

=

1

2
Pr

(
Y 2

1∑m
i=1 Y

2
i

≥ ω2

m

)
=

1

2
Pr

(
Y 2

1 ≥
ω2(m− 1)

m− ω2
·
∑m

i=2 Y
2
i

m− 1

)
.

Each Y 2
i has a χ-squared distribution. The probability is a monotonic decreasing function

of m. If ω is a constant which is independent of m, then the limit as m increases is

Pr =
1

2
Pr(Y 2

1 ≥ ω2) = Pr(Y1 ≥ ω) = 1− Φ(ω),

where Y1 is standard normally distributed. Thus, the probability can be obtained by

the cumulative distribution function of the standard normal distribution. Since z is a

special case of u, the result holds for z.

Then we prove that the perceptron improvement phase will terminate if the starting

random vector y is a good vector. Let y1 be the vector after one update step, i.e.,

y1 = y − (aTs y)as, where aTs ȳ < −σ2. Consider the norm of y1

‖y1‖2 = (y − (aTs y)as)(y − (aTs y)as)

= ‖y‖2 − (aTs y)2

≤ ‖y‖2(1− σ2
2).

Thus
∥∥y1
∥∥ will decrease at least by a factor (1− σ2

2)
1
2 . At the same time, zT y1 does not

90

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

decrease because aTs ȳ < −σ2 and aTs z ≥ 0,

zT y1 = (y − (aTs y)as)
T z

= yT z − (aTs y)(aTs z)

≥ yT z.

Thus, ȳT z is increasing monotonously. Since the initial value of ȳT z = yT z ≥ ω√
m

because of y being a good vector, after ln(m/ω2)
σ2
2

iterations, we would have ȳT z > 1 which

cannot happen. Therefore, a good nearly feasible solution will return in at most ln(m/ω2)
σ2
2

iterations with probability at least 1− Φ(ω).

5.4 Computational Result

We have implemented the Higher-order Rescaling PA and made some limited compu-

tational experiments using MATLAB with Intelr CoreTM Duo CPU T6570 2.1GHz,

4GB RAM [34]. The algorithm was applied to two types of problem sets. Problem set

I contains simpler problems whose feasible regions are narrow only in one dimension.

The problems in set II are more difficult since their feasible regions are narrow along

(n−1) dimensions. In Figure 5.1, we show the ratios of the total running time comparing

higher-order rescaling variants and the one-order rescaling, with the original parameter

setting ω = 1 and σ2 = 1
32m . Figures 5.1(a) and 5.1(b) show for both types of test prob-

lems with different sizes that the running time is reduced significantly. For Figure 5.1,

we have also tested the effect of different parameter settings on the total running time.

The Higher-order Rescaling PA runs on problem set II with parameter options ω = 2,

ω = lnκ + 1, and σ2 = 1
32m
√
m

. Figure 5.1(c) shows the results on the problems with

size m = 40 and n = 160. With varied parameter settings, we found in Figure 5.1(c)

that none of the settings is dominant. The effect of higher-order rescaling is robust, and

increasing the rescaling order makes more improvement than changing the parameters.

91

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

κ−order rescaling

Total running time of different problem sizes (nxm)

120x30
160x40
200x50
320x80
400x100

(a) Problem set I with original parameter setting

1 2 4 8 16 32
0.2

0.4

0.6

0.8

1

κ−order rescaling

Total running time of different problem sizes (nxm)

120x30
160x40
200x50
320x80
400x100

(b) Problem set II with original parameter setting

1 2 4 8 16 32

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ−order rescaling

Total running time with different parameter settings. (160x40)

Original setting
ω=2
Change σ

2

ω=log(κ)+1
ω=log(κ)+1 & change σ

2

(c) Set II, different parameter settings

Figure 5.1: Improving the running time by using the Higher-order Rescaling Perceptron
Algorithm.

92

CHAPTER 5. HIGHER-ORDER RESCALING PERCEPTRON ALGORITHM

5.5 Summary

In this paper we propose a Higher-order Rescaling PA. The power of rescaling is enhanced

by utilizing parallel computing in a multi-core environment. Realizing the perceptron

improvement phase by parallel processors, we can obtain multiple nearly feasible solu-

tions. By using them in one higher-order rescaling step, we get better rescaling rates

when all the other parameters are properly adapted. In addition, the practical running

time of solving LFPs is improved as well.

93

Chapter 6

Conclusions and Future Research

In this final chapter, we review the results of the thesis and highlight future research

problems.

The PA and the vNA are two algorithms to solve LFPs. One of the important prop-

erties they share is that their computational complexity depends on the geometry of the

problems. The idea of Rescaling is to improve the geometry by applying linear a trans-

formation periodically, thereby improve the complexity of algorithms. In Chapter 2,

we first explore the duality relationship between the perceptron and the von Neumann

algorithms, which is the fundation of our research work. By the duality relationship,

variants of the perceptron and the von Neumann algorithms together with their com-

plexity result could be transit to the dual side. However, since all variants of perceptron

algorithms assume that perceptron problem is feasible, after being transited to the dual

(von Neumann) side, there is no immediate result for feasible von Neumann problems.

Future research problem 1 is to transit all variants of PAs to vNAs to solve both feasible

and infeasible problems.

In Chapter 3, we further apply the duality relationship on the Deterministic Rescal-

ing PA to obtain the corresponding Deterministic Rescaling vNA. Computational ex-

periments show a notable improvment of this rescaling vNA. However, the theoretical

complexity is not proved yet. The example we created tells us that proving monotonic

94

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

increasing of ρ is not going to work and another method need to be discovered for the

purpose of proving the complexity. Future research problem 2 is to give a complete proof

of the complexity of the Deterministic Rescaling vNA. We expect that this rescaling vNA

is polynomial-time algorithm.

In Chapter 4, we combine Chubanov’s Method with the rescaling idea to obtain a

column-wise rescaling vNA. We have proved that it is a polynomial-time algorithm1. In

Chapter 5, we take advantage of a good characteristic of the Stochastic Rescaling PA: the

perceptron improvement phase always starts with a random vector. The independence

of this phase enables us to run the perceptron improvment phase on parallel proce-

sors and obtain multiple rescaling vectors without extra wall-clock time. With multiple

rescaling vectors on-hand, we proposed a Higher-order Rescaling PA. Computational

experiments shows that the practical efficiency of this higher-order rescaling algorithm

has a significant improvment compared to the original one-order Stochastic Rescaling

PA (Algorithm 1.4). Future research problem 3 is to complete the proof of the complexity

of the Higher-order Rescaling PA. We expect that it is a polynomial-time algorithm with

high probability.

The largest theoretical impact of our research may be expected from developing

rescaling algorithms for the Colorful Feasibility Problem (CFP) [2], that is a combina-

torial generalization of problem (1.6). The Bárány and Onn Algorithms proposed by

Bárány and Onn [2] are currently the best algorithms used for solving the CFP. How-

ever, they are not polynomial time algorithms. It is still an open problem whether the

CFP is solvable in polynomial time. Due to the specialization-generalization relationship

between the CFP and the LFP, as well as the undecided polynomial-solvability of the

CFP, Bárány and Onn [2] marked the CFP “an outstanding problem on the border line

between tractable and intractable computational problems”.

Exploring the relationships between the vNA (Section 1.2.2) and the Bárány and

Onn Algorithms (Section B.2) leads to the recognition of numerous common features:

1As far as we know, it is the first variant of vNA with polynomial complexity.

95

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

1. they aim to find the representation of a point as a convex combination of certain

points;

2. all the given points can be normalized, thus all the iterates are in the unit ball;

3. both of them are first-order line-search algorithms;

4. the solution they return are ε-solutions;

5. their complexity depends on the quantity ρ which measures the distance to feasi-

bility or infeasibility;

6. they are based on the analogous algorithmic logic and update procedure.

Thus, the polynomial-time Rescaling vNA proposed in Chapter 4 would highly increase

the possibility of designing a polynomial-time rescaling Bárány and Onn algorithm used

to solve the CFP and getting closer to answer the question that whether the CFP is

polynomial solvable. Future research problem 4 is to develop rescaling Bárány and Onn

algorithms for CFP.

96

Bibliography

[1] Shmuel Agmon. The relaxation method for linear inequlities. Canadian Journal of

Mathematics, 1954.

[2] Imre Bárány and Shmuel Onn. Colourful linear programming and its relatives.

Mathematics of Operations Research, 22(3), 1997.

[3] Amir Beck and Marc Teboulle. A conditional gradient method with linear rate of

convergence for solving convex linear systems. Mathematical Methods of Operations

Research, 59:235–247, 2004.

[4] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.

Athena Scientific, 1997.

[5] Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algorithm

for linear programming. In Proceedings of the 13th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 905–914, 2002.

[6] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-time

algorithm for learning noisy linear threshold functions. Algorithmica, 22(1), 1998.

[7] Robert K. Brayton, Stephen W. Director, Gary D. Hachtel, and Luis M. Vidigal.

A new algorithm for statistical circuit design based on quasi-newton methods and

function splitting. IEEE Trans. Circuits and Systems, 26:784–794, 1979.

97

BIBLIOGRAPHY

[8] Dennis Cheung and Felipe Cucker. A new condition number for linear programming.

Mathematical Programming, 91:163–174, 2001.

[9] Sergei Chubanov. A polynomial relaxation type algorithm for linear programming.

http://www.optimization-online.org/DB_FILE/2011/02/2915.pdf, 2012.

[10] Sergei Chubanov. A strongly polynomial algorithm for linear systems having a

binary solution. Mathematical Programming, pages 533–570, 2012.

[11] Sergei Chubanov. A polynomial projection algorithm for linear feasibility problems.

Mathematical Programming, pages 1–27, 2014.

[12] George B. Dantzig. Converting a converging algorithm into a polynomially bounded

algorithm. Technical Report SOL 91-5, Stanford University, 1991.

[13] George B. Dantzig. Bracketing to speed convergence illustrated on the von Neu-

mann algorithm for finding a feasible solution to a linear program with a convexity

constraint. Technical Report SOL 92-6, Stanford University, 1992.

[14] George B. Dantzig. An ε-precise feasible solution to a linear program with a con-

vexity constraint in 1/ε2 iterations independent of problem size. Technical Report

SOL 92-5, Stanford University, 1992.

[15] Tim Davis. http://www.mathworks.com/matlabcentral/fileexchange/24119-don-t-

let-that-inv-go-past-your-eyes–to-solve-that-system–factorize-.

[16] Antoine Deza, Sui Huang, Tamon Stephen, and Tamás Terlaky. The colourful

feasibility problem. Discrete Applied Mathematics, 156:2166–2177, 2008.

[17] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm

for solving linear programs. Mathematical Programming, 114:101–114, 2008.

[18] Marina A. Epelman and Robert M. Freund. Condition number complexity of an

elementary algorithm for computing a reliable solution of a conic linear system.

Mathematical Programming, 88:451–485, 2000.

98

BIBLIOGRAPHY

[19] Marina A. Epelman and Robert M. Freund. Condition number complexity of an el-

ementary algorithm for resolving a conic linear system. Mathematical Programming,

88(3):451–485, 2000.

[20] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval

Research Logistics Quarterly, 3:95–110, 1956.

[21] Robert M. Freund. Dual gauge programs, with applications to quadratic program-

ming and the minimum-norm problem. Mathematical Programming, 38:47–67, 1987.

[22] Robert M. Freund and Jorge R. Vera. Some characterizations and properties of

the “distance to ill-posedness” and the condition measure of a conic linear system.

Mathematical Programming, 86(2):225–260, 1999.

[23] Robert M. Freund and Jorge R. Vera. Equivalence of convex problem geometry and

computational complexity in the separation oracle model. Mathematics of Opera-

tions Research, 34:869–879, 2009.

[24] Peter Gács and László Lovász. Khachian’s algorithm for linear programming. Math-

ematical Programming Study, 14:61–68, 1981.

[25] Philip E. Gill, Walter Murray, and Margaret H. Wright. Numerical Linear Algebra

and Optimization, Volume 1. Addison-Wesley Publishing Company, 1991.

[26] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins

University Press, Baltimore and London, third edition, 1996.

[27] João P. M. Gonçalves. A family of linear programming algorithms based on the von

Neumann algorithm. PhD thesis, Department of Industrial and Systems Engineer-

ing, Lehigh University, Bethlehem, PA, 2004.

[28] João P. M. Gonçalves, Robert.H. Storer, and Jacek Gondzio. A family of linear

programming algorithms based on an algorithm by von Neumann. Optimization

Methods and Software, 24(3):461–478, 2009.

99

BIBLIOGRAPHY

[29] Sui Huang. Colourful feasibility: algorithms, bounds and implications. Master’s

thesis, Department of Computing and Software, McMaster University, Hamilton,

Ontario, Canada, 2007.

[30] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4(4):373–395, 1984.

[31] Leonid G. Khachiyan. A polynomial algorithm for linear programming. Soviet

Mathematics Doklady, 20:191–194, 1979.

[32] Emil Klafszky and Tamás Terlaky. On the ellipsoid method. Radovi Mathematicki,

8:269–280, 1992.

[33] Victor Klee and George L. Minty. How good is the simplex algorithm? In O. Shisha,

editor, Inequalities III, pages 159–179, New York, 1972. Academic Press.

[34] Dan Li. On rescaling algorithms for linear optimization, 2011. Ph.D. Proposal, re-

vised. Department of Industrial and Systems Engineering, Lehigh University, Beth-

lehem, PA, United States.

[35] Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction To Compu-

tational Geometry. MIT Press, 1969.

[36] Theodore S. Motzkin and Isaac J. Schoenberg. The relaxation method for linear

inequalities. Canadian Journal of Mathematics, 6:393–404, 1954.

[37] Javier Peña and Negar Sohèili. A deterministic rescaling perceptron algorithm. 2015.

Accepted by Mathematical Programming. Appears online at http://dx.doi.org/

10.1007/s10107-015-0860-y.

[38] Javier Peña and Negar Sohèili. A deterministic rescaling perceptron algorithm.

Mathematical Programming, January 2015.

100

BIBLIOGRAPHY

[39] James Renegar. Linear programming, complexity theory and elementary functional

analysis. Technical Report 1090, School of Operations Research and Industrial

Engineering College of Engineering, Cornell University, 1994.

[40] James Renegar. Some perturbation theory for linear programming. Mathematical

Programming, 65:73–91, 1994.

[41] Cornelis Roos. An improved version of chubanov’s method for solving a homo-

geneous feasibility problem. http://www.optimization-online.org/DB_HTML/

2015/01/4750.html.

[42] Cornelis Roos, Tamás Terlaky, and Jean-Philippe Vial. Interior Point Methods for

Linear Optimization. Springer, 2006.

[43] Frank Rosenblatt. The perceptron–a perceiving and recognizing automaton. Tech-

nical Report 85-460-1, Cornell Aeronautical Laboratory, 1957.

[44] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &

Sons, 1998.

[45] John Shawe-Taylor and Nello Cristianini. Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge University Press, 2000.

[46] Negar Sohèili and Javier Peña. A primal-dual smooth perceptron-von Neumann

algorithm. Working paper, Carnegie Mellon University, 2012.

[47] Negar Sohèili and Javier Peña. A smooth perceptron algorithm. SIAM Journal on

Optimization, 22(2):728–737, 2012.

[48] Michael J. Todd and Yinyu Ye. Approximate Farkas Lemmas and stopping rules

for iterative infeasible-point algorithms for linear programming. Mathematical Pro-

gramming, 81:1–21, 1998.

[49] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM, 1997.

101

Appendix A

Reformulation of LO Problems as

LFPs

1 In this section, we present how to reformulate a standard LO problem to a LFP that

can be solved using the Higher-order Rescaling PA. In order to have positive ρ for any

LO problem, we use the embedding model to ensure that the interior-point condition is

satisfied [42]. Given an LO problem in the form of

(P) min {cTx : Ax ≥ b, x ≥ 0}, (A.1)

where matrix A is of size m× n, the vectors c, x ∈ Rn, and b ∈ Rm. The dual problem

of (P) is given by

(D) max {bT y : AT y ≤ c, y ≥ 0}, (A.2)

1In appendix, we may use the same notation appeared in the text for different meanings. Please see
the specified details.

102

APPENDIX A. REFORMULATION OF LO PROBLEMS AS LFPS

where y ∈ Rm is the dual vector variable. Define the matrix M̄ and M , the vector r and

u by

M̄ =

0 A −b

−AT 0 c

bT −cT 0

 , M =

 M r

−rT 0

 ,

r =

em −Aen + b

en +AT em − c

1− bT em + cT en

 , z =

y

x

κ

ϑ

, (A.3)

where κ and ϑ are two scalars. Letting n̄ = m + n + 2 and q be the vector of length n̄

given by q = [0Tn̄−1 n̄]T , we consider the system

Mu ≥ −q, u ≥ 0. (A.4)

Theorem I.5 in [42] yields the following results. Problems (P) and (D) have optimal

solutions with zero duality gap if and only if system (A.4) has a solution with ϑ = 0

and κ > 0. To reduce system (A.4) to a homogeneous linear system in the form of (1.4),

define the matrix M̂ and the vector û by

M̂ =

M̄ r 0

−rT 0 −n̄

0 −1 ε

 , û =

ū

ϑ

β

 , (A.5)

where ū = [yT xT κ]T and ε is a very small positive number, such as e−10. A number is

consider to be 0 if its value is not larger than ε. Letting M = [M̂T In̄+1]T , problems (P)

and (D) have optimal solutions if and only if system Mû ≥ 0, û 6= 0 has a solution with

κ, β > 0.

We have made some preliminary computational experiments on LFPs which are re-

103

APPENDIX A. REFORMULATION OF LO PROBLEMS AS LFPS

duced from LO problems. These problems have small dimension not exceeding 10. The

results show that by using the the Higher-order Rescaling PA to solve LO problems, we

obtain analogous speedup to the one we get in Section 5.4. In spite of the fact that the

Higher-order Rescaling PA improves the practical efficiency of the Stochastic Rescaling

PA, its running time is not as good as the one of state of the art commercial solvers.

104

Appendix B

Colorful Feasibility Problem

B.1 Colorful Feasibility Problem

The Colorful Feasibility Problem (CFP) was presented by Bárány and Onn in 1997

[2, 16]. The CFP is a combinatorial generalization of the LFP [2] in the following form:

Given d + 1 colorful sets S1,S2, . . . ,Sd+1, each containing d + 1 points, referred to as

colored sets, and a point q ∈ Rd. The CFP is to find a colorful set V = {v1, v2, . . . , vd+1}

containing d+1 points vi ∈ Si such that q ∈ conv(V), where conv(V) denotes the convex

hull of the point set V.

The core of a CFP is defined as
⋂d+1
i=1 conv(Si). If a point q is in the core, then

a Colourful Feasiblility Problem is called a Colorful Core Feasibility Problem (CCFP).

Without loss of generality, the following assumptions can be made [29].

(a) Point q is the origin, i.e., q = 0.

(b) Point q /∈ Si for all i.

(c) Si ∩ Sj = ∅ for all i 6= j.

(d) ‖s‖ = 1 for all s ∈ Si and all i.

For any point q, the problem can be preprocessed by translating the point q to be the

origin in Rd. If q is a point in one of the point sets, then the solution of CFP is trivial.

105

APPENDIX B. COLORFUL FEASIBILITY PROBLEM

Assumption (c) can be guaranteed by removing duplicates. We normalize all the points

of Si’s so that they lie on the unit sphere in Rd. With q = 0, the normalization will not

change the feasibility or infeasibility of the problem. Based on these assumptions, we

define CFP and CCFP formally.

Definition B.1.1. [29] Colorful Feasibility Problem.

Given d+ 1 sets S1, . . . ,Sd+1 in dimension d such that each size of the set is d+ 1,

i.e., |Si| = d+ 1 for all i, decide if there is a set of points V = {v1, . . . , vd+1} such that

vi ∈ Si for each i ∈ {1, · · · , d+ 1} and 0 ∈ conv(V).

Definition B.1.2. [29] Colorful Core Feasibility Problem.

Colourful Core Feasiblility Problem with point 0 in the core of the Colorful Feasibility

Problem, i.e., 0 ∈
⋂d+1
i=1 conv(Si).

Observe that the monochrome version of a CFP, setting S = S1 = · · · = Sd+1, is

reduced to decide whether the point q is in the convex hull of the point set S, and if

it is, find one convex combination. This is a classical LFP [4]. Furthermore, with the

assumptions made in [29], the monochrome version of a CFP defined in Definition B.1.1

is a problem (3.2) with m = d and n = d+ 1, which can be solved using vNAs.

B.2 The Bárány and Onn Algorithms

The Bárány and Onn Algorithms (BOAs) proposed by Bárány and Onn [2] are currently

the best algorithms used for solving the CFP. In this section, we introduce the BOAs

and their complexity result.

Let bρ denote the specialized quantity ρ in the Bárány-Onn algorithms: the radius

of the largest ball contained in the core and centered at the origin 0, i.e., the minimal

distance between 0 and the boundary of the core. The first BOA has the following

complexity result [2].

Theorem B.2.1. [2] Let ε > 0. After at most O(1
bρ2

ln 1
ε) iterations if bρ > 0, or O(1

ε2
)

106

APPENDIX B. COLORFUL FEASIBILITY PROBLEM

Algorithm B.1 The First Bárány-Onn Algorithm

1: initialization
2: Pick any arbitrary colorful set V1 = {v1, . . . , vd+1} such that vi ∈ Si for all i.
3: Let w1 = argminv∈conv(V1)‖v‖, and k = 1.

4: while ‖xk‖ ≤ ε do
5: Find a color i such that wk ∈ conv(Vk\{vi}).
6: Set vi = argminv∈Si(v

Twk), and update Vk+1.
7: Let wk+1 = argminv∈conv(Vk+1)‖v‖, and k = k + 1.
8: end while
9: output

10: A set Vk+1 = {v1, . . . , vd+1} such that conv(V) is ε-close to 0;
11: And a point wk+1 which is within distance ε from the origin.

iterations if bρ = 0, the Bárány-Onn Algorithm gets conv(V) ε-close to 0, i.e., finds a

vector w such that w ∈ conv(V) and ‖w‖ ≤ ε.

Theorem B.2.1 shows that the quantity bρ plays an essential role in the complexity

of the Bárány-Onn algorithm. The algorithm runs in polynomial time in the 1/bρ. Since

conv(V) is warranted to be closer to 0 after each iteration, the first BOA does not visit

the same set V twice which is an advantage of it. However, computing the nearest

point wk+1 at each iteration is the complexity bottleneck of the algorithm. It involves a

convex quadratic optimization problem which can be solved only approximately. Solving

to an ε-precision solution needs a number of arithmetic operations polynomial in d and

ln 1
ε . Thus, the arithmetic operations complexity of Algorithm B.1 for getting conv(V)

ε-close to 0 is O(d
3.5

bρ2
ln 1

ε ln 1
ε) if bρ > 0 or O(d

3.5

ε2
ln 1

ε) if bρ = 0 [29]. Motivated by this

disadvantage, Bárány and Onn proposed an alternative algorithm for the CFP which

only involves linear algebra.

Algorithm B.2 avoids computing the point with minimum norm in conv(V). Thus,

it only needs O(d4) arithmetic operations at each iteration. The iteration complexity

result for Algorithm B.2 is the same as for Algorithm B.1. Comparing these two BOAs,

thought Algorithm B.2 is faster at each iteration than Algorithm B.1, it may revisit the

same set V more than once, which is called oscillations in [29].

Figure B.1 illustrates the two BOAs. Both of the iteration complexity is not poly-

107

APPENDIX B. COLORFUL FEASIBILITY PROBLEM

Algorithm B.2 The Second Bárány-Onn Algorithm

1: initialization
2: Pick any arbitrary colorful set V1 = {v1, . . . , vd+1} such that vi ∈ Si for all i.
3: Let w1 = v1, and k = 1.
4: while ‖wk‖ ≤ ε do
5: Find a color i such that wk ∈ conv(Vk\{vi}).
6: Set vi = argminv∈Si(v

Twk), and update Vk+1.
7: Let wk+1 be the projection point of 0 onto the line segment [wk, vi], i.e., wk+1 =

proj[wk,vi](0).

8: Compute βmin such that βmin = min{β : βwk ∈ conv(Vk+1)}.
9: Let wk+1 = βminw

k and k = k + 1.
10: end while
11: output
12: A set Vk+1 = {v1, . . . , vd+1} such that conv(V) is ε-close to 0;
13: And a point xk+1 which is within distance ε from the origin.

nomial as bρ can be exponentially small in the input length L of the system [24]. Recall

that when S = S1 = · · · = Sd+1, the CFP reduces to a LFP; and in this case, the BOAs

specializes to the vNA. Furthermore, observe that the iteration bounds in Theorem B.2.1

are analogous to the bounds known for the vNA (see Theorem 1.2.7).

108

APPENDIX B. COLORFUL FEASIBILITY PROBLEM

(a) First Bárány-Onn Algorithm

(b) Second Bárány-Onn Algorithm

Figure B.1: Illustration of the Bárány-Onn Algorithms.

109

Biography

Dan Li was born in Beijing, China in 1983. She received her B.S. and M.S. degrees in

Control Science and Engineering in 2005 and 2007, from Department of Automation in

Tsinghua University in China. Her master’s thesis was on air traffic management system

and conflict detection. She joined Lehigh University to pursue her doctoral degree. Her

research focuses on designing algorithms for linear optimization and their complexity.

She also has experience in different industry areas such as government planning and

management, pharmaceuticals, airlines, and information technology. She is a Rossin

Doctoral Fellow and has held the Gotshall fellowship for one semester at Lehigh. She is a

member of Institute for Operations Research and the Management Sciences (INFORMS)

and has served as the president of Lehigh INFORMS Student Chapter for one year.

110

	Lehigh University
	Lehigh Preserve
	2016

	Exploring the Power of Rescaling
	Dan Li
	Recommended Citation

	tmp.1498661647.pdf.SoF_4

