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Abstract 

 

With the development of economy, estimation has gradually received attention. 

Economic performance is essential to a company, that's why data analyst is very popular. 

Since Dongfeng Motor Corporation is one of the magnate company in Chinese vehicle 

market, estimation the data of Dongfeng could be very meaningful. There are many 

methods used to estimate economic performance, in this thesis we mainly focus on 

Hidden Markov Model (HMM). 

 

First of all, the thesis introduces the basic concept of Markov Process and Hidden 

Markov model, including three classes of problems, evaluation, decoding, learning 

problems. Also, the thesis introduces the corresponding solution algorithms, which are 

Forward-Backward algorithm, Viterbi algorithm, Baum-Welch algorithm. 

 

Secondly, the thesis introduces a special case of HMM, named Poisson Hidden 

Markov Model (PHMM), including a very clear explanation of PHMM and parameter 

estimation. 

 

Thirdly, the thesis gives an example of economic performance estimation of 

Dongfeng Motor Corporation. Several data sets can be used to do the estimation and 

different models should be used with the different kinds of data. The example uses sales 

volume data to make estimation with continuous-time hidden Markov model. 

 

Finally, the thesis gives future work directions. The estimation of different data 

would be introduced in the last part. Potential applications of the Poisson Hidden 

Markov Models to estimate economic performance are proposed. 

 

 

 

 

Keywords: Hidden Markov Model, Poisson Hidden Markov Model, Estimation 
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1 Markov Model Theory

1.1 Markov Process

Firstly we set stochastic process {X(t),t∈ T}.If Xt means the state at time
t and the process is Markov process, the specific performance we could find is
that Xt + 1 has no concern with Xt−1, Xt−2, X0. It only has relationship with
Xt. Then we have Xt+1 = f (Xt).

That is, the future state has no relationship with the past state. Markov
chain belongs to Markov process, the time and the state of Markov chain are
discrete, it can be expressed as :

P (Xt+1 = qt+1|Xt = qt, Xt−1 = qt−1, · · · , X1 = q1) = P (Xt=1 = qt+1)

Among which, q1, q2, · · · , qm∈ {θ1, θ2, · · · , θn} are the value of states.

Usually, initial probability vector Π and state transition matrix A are used to
describe Markov chain. The initial probability vector Π = {π1, π2, · · · , πn},πi =
P (q1 = θi), 1 < i, j < N . If state i at time t has k times transitions to state j,
the probability is

Pij(t, t+ k) = P (Xt+k = θj |Xt = θi), 1 < i, j < N, k ≥ 1

If {X(t),t∈ T} is homogeneous Markov chain, the transition probability is not
depend on t, and it only has relationship with i, j and k. So, Pi,j(t, t + k) =
Pij(k) = P (Xt+k = θj |Xt = θi) is the transition probability of k times.

Set aij = Pij(t, t+ 1), we have one-step transition matrix:

A =


a11 a12 · · · a1N
a21 a22 · · · a2N
· · · · · · · · · · · ·
aN1 aN2 · · · aNN


P =

∑N
j=1 aij = 1, k times transition matrix can be acquired by Ak.

1.2 Hidden Markov Model Theory

By using the example of stock market, we could understand the principle of
Hidden Markov model and then introduce the theory of discrete-time Hidden
Markov model. The stock market has three states, respectively are bull market,
steady market and bear market. According to the variation of stock’s price,
there will be three observed results, which are rise, invariant and depreciate as
shown in the table.
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Table 1.1

In Markov model, the states of Markov chain are one to one correspondence
with the observation data, which means, if the given observation data is rise-
invariant-rise, the corresponding observation state is bull market-steady market-
bull market.

Figure 1.1

Hidden Markov( HMM) model gives a better description of the changing stock
market. At a certain state, the observation of stock price change alternately, if
the market is bull market, it has more rise states than the depreciate states. So,
the Hidden Markov model doesn’t exclude situation of invariant and depreciate,
which is a big different with Markov model.

2



Figure 1.2

In HMM, each hidden state could have three observation states. For example,
the stock price of bull market could have probability a1 with rise, probability
a2 with invariant and probability a3 with depreciate, in which a1 + a2 + a3 = 1.
For the same reason, the depreciate state could also have three observation pos-
sibility.

The observation state and hidden state have probabilistic relationship. Es-
tablish the HMM for this process, the model not only have Markov process
hidden in the base course and changing with time, but also have a observation
set, which is related with hidden state and observable.

So, if we have given state( bull market, steady market, bear market), we could
formulate observation probability distribution matrix:


rise invariant depreciate

bullmarket a1 a2 a3
steadymarket b1 b2 b3
bearmarket c1 c2 c3


The essential difference between the two models is when the observation state
is rise-invariant-depreciate, we still don’t know the corresponding status switch,
during this time, the status switch is called hidden state. However, we could
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elicit the most likely hidden state that generate the observation state from the
given probability distribution.

1.3 Hidden Markov Model Structure

HMM models is described as follows: Firstly, the state of HMM are hidden
states and it is not observable; Also, the observation state and hidden state
are not one-to-one correspondence, the hidden state could only obtained by
the probability distribution matrix; Last but not least, the HMM is a double-
stochastic process, which are the Markov process and dominance random func-
tion set. The Markov process describes the transfer process between states, the
dominance random function set is a output probability function of observation
value, which describe a relationship between hidden state and observation state.

Traditional HMM divided in to discrete-time Markov model and continuous-
time Markov model. When the observation distribution is discrete, HMM be-
longs to discrete-time Markov model, when the observation distribution is con-
tinuous, HMM belongs to continuous-time hidden Markov model.

1.3.1 Hidden Markov Model Hypotheses

HMM must satisfy three hypotheses:

1. The first order Markov hypothesis. The future state Xt+1 only has re-
lationship with current state Xt, it has no relationship with past state Xt−1,
Xt−2, · · · , X0.

2. Immobility hypothesis. Transition status are not related with time, which
means P (Xi+1|Xi) = P (Xj+1|xj).

3. Independent observation value hypothesis. The output of the observed
value only related with current state.

1.3.2 The fundamental form of Hidden Markov Model

HMM is a double stochastic process, which means it is a combination of
Markov process and dominant function set. For discrete-time Hidden Markov
Model, let Q be the implicit state process, namely the unobservable discrete-
time Markov chain, it is finite state, single step and homogeneous, so Q =
(qt), (t ∈ N), qt is the hidden state at time t, O is a observable stochastic pro-
cess, so O = (ot), (t ∈ N). Similarly, we could let Qt = (q1, q2, · · · , qt) becomes
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sequence of hidden states and Ot = (o1, o2, · · · , ot) becomes sequence of obser-
vation states.

HMM can be described by quintet µ = (S, V,A,B,Π), or µ = (A,B,Π).

S is a set of n states, S = (s1, s2, · · · , sn).

V is a set that contains m observation states, V = (v1, v2, · · · , vm).

A is a transition probability matrix, A = {aij} , aij = P (qt = j|qt−1 =
i), 1 ≤ i, j ≤ N . aij is transition probability from state i to state j, satisfied:

aij ≥ 0;
∑N
j=1 aij = 1,∀i, j.

B is observation probability matrix, B = {bi(k)} ;
∑M
k=1 bi(k) = 1,∀i =

1, 2, · · · , N .

Π is probability distribution of original state, Π = {π1, π2, · · · , πn} , πi =
P (q1 = si). It is the probability of choosing a state at the beginning.

1.3.3 The difference between Markov model and HMM

The difference of parameter setting of Markov model and HMM is shown in
the table as follows.

Table 1.2

1.3.4 Continuous-time hidden Markov model

For the continuous-time hidden Markov model, the biggest difference with
discrete-time hidden Markov model is that the parameter B is not the same.
The parameter B of discrete-time hidden Markov model is a transition probabil-
ity matrix but in the continuous-time hidden Markov model, B is a observation
probability density function.
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We could simulate the sample path of continuous-time Markov model first to
understand the different between these models. Let Pt become the transition
probability, we assume P0 = I, so Pt is the standard transition matrix. Let
G becomes the generator of bivariate Markov chain, thus the generator G has
non-positive main diagonal elements, non-negative off-diagonal elements, and
each of its rows sums to zero. Under this situation, we could get:

Pt = eGt

Each jump of the process corresponds to a state transition, and the process
remains in each state for a random duration of time. When the chain enters a
state z, and ∆τ denotes the sojourn time of the chain in that state, then ∆τ is
exponentially distributed

P (∆τ > t|Z(0) = z) = e−λ(z)t

First step is to create 4 states in this task to simulate. The first step is to
create 4 ∗ 4 matrix I.

Then we could generate G with a reasonable rate. The diagonal of G is non-
positive and each line of G sums to zero.

Figure 1.3

Set up an axis in Matlab, horizontal axis(x) is “Time(t)” and vertical axis(y)
is “State”. Firstly, set the maximum value of x as 100. Then we set up the
beginning of y at state 1 and simulate the sample path. Here is the plot 1.

6



Figure 1.4

Also, we could see the final Pt after many times iteration.

Figure 1.5

From the table we know that the empirical estimates converge to the true
probabilities. For the more obvious graph, we need to add more value to x in
order to get better outcome. Changing the maximum value of x to 1000

7



Figure 1.6

From the outcome we know that the state jumps most frequently and mainly
remains in state 3, some times it may jumps to state 1 and 2 but shortly jump
back to state 3. Also, the state barely jumps to state 4, which corresponds to
the probability distribution matrix Pt. Then we could expand the maximum
value of x to 10000 and see it more clearly.

Figure 1.7

So, if we add the transition probability between observation states and hidden
states, we could generate the sample path of HMM. Also, the arrival of obser-
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vations could not be the same as the number of hidden states due to different
situations. Sometimes fewer hidden states could generate more observation state
and sometimes more hidden state could only lead to few observation states.

Figure 1.8

Figure 1.9

1.4 Summary

This chapter introduces the basic theory of hidden Markov model with some
examples. It is a basic theory of hidden Markov model, it is also a basic theory
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of next chapter, which introduces the algorithms of hidden Markov model.
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2 Three classical problems of HMM

2.1 Evaluation

Given the observation sequence O = (ot) and HMM model parameter µ =
(A,B,Π), if we know the parameter of HMM, we could get the probability
P (O|µ) of sequence O = (ot). Evaluation could verify the matching degree
of observation sequence and HMM model and it can obtain the best matched
model from models that have been trained.

Given the parameter µ = (A,B,Π), for the hidden stateQT = (q1, q2, · · · , qT ),
the probability of generated observation state OT = (o1, o2, · · · , oT ) is:

P (O|Q,µ) =

T∏
t=1

P (ot|qt, qt+1, µ) = bq1(o1)bq1q2(o2) · · · bqT−1qT (oT )

The Transition probability of hidden states is P (Q|µ) = πq1aq1q2aq2q3 · · · aqT−1qT .

Observation states O and hidden states Q satisfy P (O,S|µ) = P (O|Q,µ) ·
P (Q|µ).

Therefore:

P (O|µ) =
∑
q

P (O|Q,µ) · P (Q|µ) =
∑

q1···qT+1

πq1

T∏
t=1

aqtqt+1
bqtqt+1

(ot).

From this equation we could get all the possible observation states of the given
hidden states. Although this equation could get the probability of observation
states, the computational efficiency is very general when the length of observa-
tion time window increases. Usually, we use Forward-Backward algorithm to
solve this problem.

2.2 Decoding

Given the observation statesOT = (o1, o2, · · · , oT ) and parameter µ = (A,B,Π),
decoding try to estimate hidden relationship between µ = (A,B,Π) and ob-
servation states QT = (q1, q2, · · · , qT ). So given µ = (A,B,Π) and QT =
(q1, q2, · · · , qT ), the probability of hidden state i at time t is:

γi(t) = P (qt = i|O,µ) =
P (qt = i, O|µ)

P (O|µ)
.

11



We use forward probability αi(i) and backward probability βi(i) to express
this probability:

γi(t) =
αi(t)βi(t)∑N
j=1 αi(t)βi(t)

.

Therefore, the best states sequence Q′ is:

Q′ = arg max
1≤i≤N

γi(t), 1 ≤ t ≤ T + 1, 1 ≤ i ≤ N.

Usually we use Viterbi algorithm to solve coding problems.

2.3 Learning

Learning is one of the main problems for Hidden Markov models, the mainly
function of learning problem is adjust the parameter of HMM given the obser-
vation states Qt = (o1, o2, · · · , oT ) and initial model µ = (A,B,Π) and make
the generated model “learn” the observation states, and then generate the max-
imum observation probability P (O|µ). The optimization of related parameters
gives the best explanation of the generation of given observation states.

Learning problem could expressed as: arg max(O|µ). Usually we use Baum-
Welch algorithm to solve learning problems as described in the subsequent sec-
tion.

2.4 Algorithms of HMM

2.4.1 Forward-backward algorithm

Given the observation statesOT = (o1, o2, · · · , oT ) and parameter µ = (A,B,Π),
the Forward-backward algorithm is used to calculate the output probability
P (O|µ) of HMM.

Forward-backward algorithm defines the forward variable and backward vari-
able:

Given the HMM, the forward variable αt(i) is the probability of observation
states sequence and hidden state si at time t:

12



αt(i) = P (o1, o2, · · · , ot, qt = si|µ); i = 1, 2, · · · , N ; t = 1, 2, · · · , T.

Calculate P (OT |µ) by forward recursion algorithm:

(1) Initialization:

α1(i) = P (o1, q1 = si|µ) = πibi(o1).

(2) Recursion formula:

αt+1(j) = {
N∑
i=1

[αt(i)aij ]}bj(ot + 1); j = 1, 2, · · · , N ; t = 1, 2, · · · , (T − 1).

(3) End:

P (OT |µ) =

N∑
i=1

αT (i).

Analogously, given parameter µ = (A,B,Π) and hidden state si, backward
variable βi is the contingent probability of having time T + 1 to final time T if
observation is OT = (ot+1, 0t+2, · · · , oT ), that is:

βt(i) = P (ot+1, ot+2, · · · , oT )|qt = si, µ).

Calculate P (OT |µ) by backward recursion algorithm:

(1) Initialization:
βT (i) = 1, i = 1, 2, · · · , N.

(2) Recursion formula:

βt(i) =

N∑
j=1

[aijbj(0t+1)]βt+1(j); t = (T − 1), (T − 2), · · · , 1; i = 1, 2, · · · , N.

(3) End:

P (OT |µ) =

N∑
j=1

β1(i) · πi · bi(o1).

13



2.4.2 Viterbi algorithm

Given the observation sequence OT and parameter µ = (A,B,Π), based on
the dynamic programming algorithm, Viterbi algorithm is used to solve the
problem of state sequence QT . Viterbi algorithm could get state transition
path and outcome probability of the path. It is the best algorithm for solving
decoding problems and the complexity of Viterbi algorithm is O(M2T ), M is
the number of states, T is the length of observation sequence.

Given the parameter µ = (A,B,Π), all the hidden Markov state sequence
with state si at time t and the highest possibility of (ot+1, ot+2, · · · , oT ). Viterbi
algorithm could find best hidden states. Denote variable δt(i):

δt(i) = max
{q1,q2,··· ,qt−1}

P (q1, q2, · · · , qt−1, qt = si, o1, o2, · · · , Ot|µ);

i = 1, 2, · · · , N ; t = 1, 2, · · · , T.

The calculation is as follows:

(1) Initialization:

δ1(i) = πibi(o1);ψ1(i) = 0; i = 1, 2, · · · , N.

(2) Recursion formula:

δt(j) = [ max
{1≤i≤N}

(δt−1(i)aij)]bi(ot); j = 1, 2, · · · , N ; t = 1, 2, · · · , T.

ψt(j) = arg max
{1≤i≤N}

[δt−1(i)aij ]; j = 1, 2, · · · , N ; t = 1, 2, · · · , T.

(3) End:
P ∗ = max

{1≤i≤N}
[δ)T (i)]; q∗T = arg max

{1≤i≤N}
[δT (i)].

(4) Deduce the best states sequence:

q∗t = ψt+1(q∗t+1); t = (T − 1), (T − 2), · · · , 1.

14



2.4.3 Baum-Welch algorithm

Learning problem also called parameter evaluation problem, the calculation
process is more complex than the first two problems. Baum-Welch algorithm
is widely used in learning problem. The theory of this algorithm is that given
the observation states OT = (o1, o2, · · · , oT ), calculate the corresponding given
parameter µ = (A,B,Π) that makes the max value of P (O|µ). Baum-Welch al-
gorithm is an iteration based on the EM algorithm, at the beginning the values
are the empirical estimates of parameters, the algorithm iterate parameter and
finally obtain the best parameter of the models. The Baum-Welch algorithm
can be described as follows:

(1) Initialization:
πi = γ1(i) means the expected value of si when t = 1, µ = (A0, B0,Π);

(2) Recursion formula:
Given the parameter and observation states, the conditional probability that
HMM is si at time t and then become sj at time t+ 1 is ςt(i, j) :

ςt(i, j) =
P (qt = si, qt+1 = sj , O|µ

P (O|µ)
=

αt(i)aijbj(ot+1)βt+1(j)
N∑
i=1

N∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

.

The probability of being si at time t is: γt(i) =
N∑
j=1

ςt(i, j).

The expected number of transitions from si:
T−1∑
t=1

γt(i).

The expected number of transitions from si to sj :
T−1∑
t=1

ςt(i, j).

The formulation can be described as follows:

ãij =

T−1∑
t−1

ςt(i, j)

T−1∑
t−1

γt(i)

, b̃j =

T∑
t=1,ot=v

γt(j)

T∑
t=1

γt(j)

.

Terminal condition:

| logP (O|µ)− logP (O|µ0)| < ε.

Where ε is a pre-set tolerance threshold.
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3 Poisson Hidden Markov Model

3.1 Poisson Hidden Markov Model Hypotheses

Poisson hidden Markov models( PHMM) are special hidden Markov models.
It is discrete-time stochastic process {(Xt;Yt)}. They also have unobservable
finite state Markov chain {Xt} and observation sequence {Yt}, which are ran-
dom variables and depending on {Xt}t∈N . The PHMM have all the character
that HMM have. Furthermore, {Yt} is different from HMM. It is a sequence of
conditionally independent random variables. So, we could assume that,Yt given
a state of Xt is a Poisson random variable for every t. That’s why we call them
Poisson hidden Markov models, in this situation, Xt determines the Poisson
parameter that used to generate Yt.

For the Poisson hidden Markov models, we could have following assump-
tions. First of all, the hidden states Xt is a discrete Markov chain, which is
homogeneous, irreducible, periodic and it has a finite state space. For SX =
{1, 2, · · · ,m}, we could have the transition probability from state i at time t−1
to state j at time t as:

γij = P (Xt = j|Xt−1 = i) = P (X2 = j|X1 = i)

.

Also, we could get transition probability matrix Γ = [γij ]. For any i ∈ SX ,
the matrix is (m×m) and

∑
i∈SX

δi = 1. The most important parameter of Pois-

son hidden Markov model is the observation sequence {Yt}. In Poisson hidden
Markov models, any observed variable Yt conditioned on Xt is Poisson process
for any t, which means, when Xt is in state i, the conditional distribution of
Yt is a Poisson random variable and the parameter of PHMM can be denoted
as λi. The biggest difference between Poisson Markov models and classic one is
the emission probability matrix between hidden states and observation states.
That is, given any y ∈ N , the state-dependent probabilities are given by:

πy,i = P (Yt = y|Xt = i) = e−λi
λyi
y!
.

Since
∑
y∈N πyi = 1 for every i ∈ SX is true, hidden states Xt and obser-

vation states Yt are strongly stationary, for every t, Yt has the same marginal
distribution:

P (Yt = y) =
∑
i∈SX

P (Yt = y,Xt = i) =
∑
i∈SX

P (Yt = y|Xy = i)P (Xt = i) =
∑
i∈SX

δiπyi.
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This is a finite mixture of Poisson distributions, and we could easily get the
expected value of Yt for every t, that is:

E(Yt) =
∑
i∈SX

δiλi.

Usually we do not know the underlying chain and the Poisson rate λ, we need
to estimate the related parameters to build the models. That’s why usually peo-
ple need to build their own model when they try to estimate data with Poisson
hidden Markov models.

3.2 Parameter Estimation of Poisson Hidden Markov Model

In order to estimate the parameters of Poisson Markov model, we first need
to create initial distribution, denote δ = (δ1, δ2, · · · , δm), also we need transition
probabilities γij and state dependent probabilities πyi.

Also, we need to find the estimators of these parameters. In particular, we
need maximum likelihood estimators of the m2 −m transition probabilities γij
with i 6= j. Because the row of Γ sum to one, the diagonal elements could
obtained by γii = 1 −

∑
j∈SX ,j 6=i

γij . So we could estimate off-diagonal elements

and maximum likelihood estimator of the m Poisson parameters λi entering the
state-dependent probabilities πyi. The estimated matrix Γ could help us get the
estimator of the initial distribution δ by equality δ′ = δ′Γ.

Denote φ as the unknown parameters to be estimated by the maximum like-
lihood method, we have:

φ = (γ12, γ13, · · · , γmm−1, λ1, λ2, · · · , λm).

Let Φ be the parameter space.

Since we don’t know the unobservable states Xt = (x1, x2, · · · , xT ), the vec-
tor y of the observation states Y = (y1, y2, · · · , yt) is incomplete. So under
this situation, if i denotes the times, the vector of complete data should be
(i1, y1, i2, y2, · · · , iT , yT ).

Denote the likelihood function of complete data of joint probability of T
unobservable states and observable states as LcT (φ). Because of the Markov
characteristic, we could get:

LcT = P (Y1 = y1, · · · , Yt = yt, X1 = i1, · · · , Xt = it) = δi1πy1i1

T∏
t=2

γit−1itπytit .
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If we sum over i1, i2, · · · , it both sides, we could obtain the likelihood function
of incomplete data:

LT (φ) = P (Y1 = y1, Y2 = y2, · · · , YT = yT ) =
∑
i1∈SX

∑
i2∈SX

· · ·
∑

iT∈SX

δi1πy1i1

T∏
t=2

γit−1itπytit .

Where :

πytit = e−λit
λytit
yt!

.

Since the function is very complex, it is hard to estimate φ. However, we
have EM algorithm for the Poisson Hidden Markov Model. It is based on the
iteration of two steps: the first step, E step, which means the Expectation, and
the second step, M step, means the Maximization.

Denote:
Q(φ, φ′) = Eφ′(lnL

c
T (φ)|y).

Suppose we have kth iteration:

φ(K) = (γ
(k)
12 , γ

(k)
13 , · · · , γ

(k)
mm−1, λ

(k)
1 , · · · , λ(k)m ).

At the (k + 1)th iteration:
E step, compute:

Q(φ;φ(k)) = Eφ(k)(lnLcT (φ)|y).

M step, find φ(k+1) that maximize Q(φ;φ(k)):

Q(φ(k+1);φ(k)) ≥ Q(φ;φ(k)).

We should repeat EM steps until the sequence of log-likelihood values{lnLT (φ(k))}
converges, which means lnLT (φ(k+1)) − lnLT (φ(k)) is less than or equal to a
very small arbitrary value.

The estimation is very complex, in order to implement the algorithm, the EM
algorithm could be simplified by using forward and backward algorithm, so the
forward probability could be shown as:

αt(i) = P (Y1 = y1, · · · , Yt = yt, Xt = i).
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Usually we could estimate the parameters by:

α1(i) = δiπy1i, i = 1, 2, · · · ,m.

αt(j) = (
∑
i∈SX

αt−1(i)γij)πytj , t = 2, · · · , T, j = 1, 2, · · · ,m.

Also, we could have backward probability:

βt(i) = P (Yt+1 = yt+1, · · · , YT = yT |Xt = i).

The probabilities of βt(i) could be obtained recursively as follows:

βT (i) = 1, i = 1, 2, · · · ,m.

βt(i) =
∑
j∈SX

πyt+1jβt+1(j)γij , t = T − 1, · · · , 1, i = 1, 2, · · · ,m.

The maximum likelihood estimator of γij at (k + 1)th iteration of EM algo-
rithm can be shown as:

γ
(k+1)
ij =

T−1∑
t=1

α
(k)
t (i)γ

(k)
ij π

(k)
yt+1β

(k)
t+1(j)

T−1∑
t=1

α
(k)
t (i)β

(k)
t (i)

.

Also, we could get the estimator of λi for any different states i and j:

λ
(k+1)
i =

T∑
t=1

α
(k)
t (i)β

(k)
t (i)yt

T∑
t=1

α
(k)
t β

(k)
t (i)

.

The EM algorithm considers m number of states as known and fixed. How-
ever, in the application, we usually don’t know the exact value of m, the es-
timation of m is difficult. Fortunately, we could use log-likelihood to estimate
m. Two algorithm are used to measure m, the Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC). We use following versions of
AIC and BIC as model selection criteria for Poisson hidden Markov model, that
is, AIC(m) = −2l(m) + 2m2 and BIC(m) = −2l(m) +m2 log T , l(m) denotes
the maximized log-likelihood for a model with m components; T was defined
above. In the algorithms, we select number of components to be the number
that minimizes AIC(m) and BIC(m).
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4 Estimating the Economic Performance of
Dongfeng Motor Corporation

Here we have the Data from Dongfeng Motor Corporation, according to their
sales from 2009-2017, we found a very interesting fact:

Table 4.1

We cut out the data from 2016 September to 2017 August, because the data
is very representative. We hypothesis that the sales volume exhibits seasonality:

Figure 4.1
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We found that, the sales of every 3 months is relatively stable, but is different
with others. In the previous introduction of continuous-time hidden Markov
model, we assume that the transition rate matrix G is not influenced by other
factors. However, in the real situation, some factors may influence the changing
rate of G. We made a market study and found that in the second half of the
year the cars manufacture introduces new models, which would make the sales
in a very considerable state. Also, at the end of the year, there are many sales
promotion and makes the sales reaching the summit, then the infrastructure
boom slows down and goes into underestimate. However, this explanation is
only hypothetical.

According to the table, we made a assumption that the sales of Dongfeng
Motor Corporation has some rules to follow, it is medium-good-medium-bad in
each fiscal year. The sales of each season may affect the transition rate G. In
this situation, we change the model in to a regulating process, if the sales is
good, we will increase the value of G, on the contrary, if the sales is bad, we will
decrease the value of G.

Suppose the sales volume situation is medium-good-medium-bad, respec-
tively. We made a simulation of the states in the continuous-time Markov model.
Firstly we made G increasing and decreasing prominently. If sales volume is in
good regime, G would expand 1.8 times, if sales volume is in bad regime, G
would reduce to 0.2 times. The graph is shown below:

Figure 4.2
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In the graph the 0 − 100 means medium, 100 − 200 means good, 200 − 300
means medium and 300 − 400 means bad, respectively. The graph shows that
the state is very unstable in good stage and its too stable in bad stage. We found
that it is not very conform to the real model. Then we change the changing
rate of G. If the sales is in good stage, G would expand 1.05 times, if the sales
is in bad stage, G would reduce to 0.95 times.

Figure 4.3

From the graph we can see that the difference between the good stage and bad
stage is not very prominent, but we still can found the difference between them.
Since the observation sequence has 4 states, which are high, little high, little
low, low, we basically divided hidden states into two parts, good and bad. Using
the new adjusted continuous-time hidden Markov model, we made a simulation
of the economic performance of Dongfeng Motor Corporation on the monthly
sales part:
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Figure 4.4

The model and parameter are very basic, we could have more detailed esti-
mation by using some complex factors and considering other situations.
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5 Future Work

Here is the brief introduction of our future work on the estimation. Since we
got many kinds of data, different models can be used in the estimation.

Here is the data of market share of Dongfeng Motor Corporation.

Table 5.1

From the data we know that both Donfeng and Chinese market grow every
year. But the market share of Dongfeng Motor Corporation fluctuates. Under
this situation, we could use Hidden Markov model to estimate the market share
of Dongfeng.
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Figure 5.1

Although the variance is not large, for the economic performance, the gap is
significant. Also, we should set a very sensitive boundary between each hidden
stage to make estimation.

What is more, we could use the stock market of Dongfeng Motor Corporation
to estimate its economic performance.

1.Sample selection:
Choosing the observation sequence of the model, including the opening price,
closing price, top price and minimum price, showing as:
observation sequence = [openning price, closing price, top price, minimum price]

2.Confirming the number of hidden states:
Choosing 2, 3, 4, 5 as the number of hidden states and using Odd-Even-Half-
Sampling method to do the simulation test, finding the exact number of hidden
states. Divide the observation in to two part, one for odd numbers and another
for even numbers. For the odd numbers, randomly generate 15 initial distribu-
tion, transition probability matrix and mix normal distribution, implementing
EM algorithm for training parameters estimation for 100 times iteration.

3.Parameters estimation: Implementing hmmtrain model in Matlab to es-
timate the initial probability distribution, transition probability matrix and
approximate probability density function for mixed normal distribution. After

25



iterations the training parameters could be obtained.

4.Forecasting: After all the preparation work finished, the logarithmic likeli-
hood value of historical data is obtained by implementing the functionmhmmlogprob
in Matlab to find the closest likelihood value to the same day, and forecast the
stock price by single day and multi day weighted forecasting, respectively.
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Appendix 
 

 
%  The  first  code  is  used  to  generate  the  most  probable  path  between 

%  states  given  the  observation  sequences,  transition  probability  between 

%  states  and  observations  and  transition  probability  between  states. 
 
 
 
 
 

%Firstly,  we  set  up  the  transition  probabilities  between  states  and 

%  emission  probabilities  between  observations  and  states.  Here  we  have 

%  2  states  and  the  initial  probability  of  them  are  both  0.5. 
 
 
 
 
 

trans  =  [0.5,0.5; 

0.4,0.6]; 

emis  =  [1/5  1/5  1/5  1/5  1/5; 

1/8  1/8  1/8  1/8  1/2]; 
 
 

start=  [0.5,  0.5]; 
 
 

[seq,states]  =  hmmgenerate(10,trans,emis); 
 
 

%   Now   we   have   obervation   sequences,   transition   probability   between states  

and 

%  observations,  transition  probablity  between  states.The  task  is  using 

Verterbi 

%  algorithm  to  compute  probable  path  between  states. 

%     1.   The   probability   of   most   probable   path   ending   in   state   X   with 

observation 

%    Y  is:  P_l(i,x)=p_l(i)*max_k(p_k(j,x-1)*p_kl) 

%    Where: 

%              p_l(i)  =  probablity  to  observe  element  i  in  state  l. 

% p_k(j,x-1)  =  probability  of  the  most  probable  path  ending  at position  x-

1  in  state  k  with  element  j. 

%              p_kl  =  probability  of  the  transition  from  stake  l  to  state  k. 

%    So  we  can  compute  recursively  the  probability  of  the  most  probable path 

%    (from  the  first  to  the  last  element  of  our  sequence). 
 
 

 
%  step  1  do  log  2  to  trans  and  emission  matrix trans  

=  log2(trans);
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emis  =  log2(emis); 
 
 

 
P51  =  -1  +  emis(1,5); 

P52  =  -1  +  emis(2,5); 
 

 

path  =  zeros(2,10); esstate  

=  zeros(10,1); path(1,1)  =  

P51; path(2,1)  =  P52; 

if  path(1,1)>path(2,1) 

esstate(1)  =  1; 

else 

esstate(1)  =  2; 

end 
 
 

for  i  =  2:10 

path(1,i)                 =                 path(esstate(i-1),i-1)+trans(esstate(i- 

1),1)+emis(1,seq(i)); 

path(2,i)                 =                 path(esstate(i-1),i-1)+trans(esstate(i- 

1),2)+emis(2,seq(i)); 

if  path(1,i)>path(2,i) 

esstate(i)  =  1; 

else 

esstate(i)  =  2;
 
 

end 

end
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%  The  second  code  is  used  to  simulate  the  continuous-time  Hidden  Markov 

Model  with  the  change  of  transition  rate  matrix  G. 
 
 

 
%  Firstly  we  generate  the  transition  probability  matrix,  transition  rate matrix. 

 

 
 
 
 

rng(0); Z  

=  4; 

X  =  4; 

Pt  =  zeros(X,Z); 

P_0  =  eye(X,Z); 

G  =  zeros(X,Z); 

lambda  =  ones(1,4); 

lambda  =  lambda/5; 

detel_tao  =  0; 

for  i  =  1:Z 

sm  =  -1*rand(); 

temp  =  -sm; 

for  j  =  1:Z 

if  j  ==  i 

G(i,j)  =  sm; 

else 

if  i  ==  Z  &&  j  ==  Z-1 

continue; 

end 

if  j  ==  Z 

G(i,j)  =  temp; 

else 

G(i,j)  =  temp*(-sm); 

temp  =  temp  -  G(i,j);
 

 
 
 

end 

 
 

end 

end

if  i  ==  Z 

G(i,Z-1)  =  temp;
 
 

end 

end

tmax  =  10000; 

dt  =  0.1; 

x=  dt:dt:tmax; 

m  =  1/dt;
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y  =  ones(1,tmax*m); 

i  =  1; 

flag  =  0; 

P_a  =  zeros(Z,Z); 

%  Initial  the  variable  to  compute  the  hidden  states emis  =  

[1/4  1/4  1/4  1/4  ; 

1/3  1/8  7/24  1/4]; 
 
 

trans1  =  log2(Pt); 

emis  =  log2(emis); 
 
 

P1  =  -1  +  emis(1,1); 

P2  =  -1  +  emis(2,1); 
 

 

path  =  zeros(2,tmax*m); 

esstate  =  zeros(tmax*m,1); 
 
 

path(1,1)  =  P1; 

path(2,1)  =  P2; 

if  path(1,1)>path(2,1) 

esstate(1)  =  1; 

else 

esstate(1)  =  2; 

end 
 
 

 
%  According  to  the  different  situation,  we  change  the  transition  rate matrix  G. 

 

 

while  i  <=  tmax*m 

Pt  =  expm(G*i*dt); 

Pt 

period111  =  floor(mod(i,4000)/1000); 

switch  period111 

case  0 

G  =  G; 

case  1 

G  =  G  *  1.05; 

case  2 

G  =  G; 

case  3 

G  =  G  *  0.95;
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end 

period111 
 

 

%  Generate  delta_tao. 
 
 

delta_tao  =  round(m*exprnd(1/-G(y(i),y(i)))); 
 
 
 
 
 

trans1  =  log2(Pt); 

for  j  =  1:Z 

sm  =  0; 

for  k  =  1:Z 

sm  =  sm  +  Pt(j,k); 

P_a(j,k)  =  sm;
 
 

end 

end

trans  =  P_a; 

for  j  =  i:i  +  delta_tao y(j)  

=  y(i); 

esstate(j)  =  esstate(i); 

if  j>=tmax*m 

flag  =  1; 

break;
 

 

end 

end

if  flag  ==  1 

break; 

end 

i  =  i  +  delta_tao; 

check  =  rand(); 

for  j  =  1:Z 

if  check  <=  trans(y(i),j) 

y(i+1)  =  j; 

break;
 
 

end 

end

 

 

%compute  the  hidden  states  by  trans  and  emission  matrix 
 
 

if  i>=2 

path(1,i)                        =                        path(esstate(i-delta_tao),i- 

delta_tao)+trans1(esstate(i-delta_tao),1)+emis(1,y(i)); 

path(2,i)                        =                        path(esstate(i-delta_tao),i-
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delta_tao)+trans1(esstate(i-delta_tao),2)+emis(2,y(i)); 

if  path(1,i)>path(2,i) 

esstate(i)  =  1; 

else 

esstate(i)  =  2;
 
 

end 

end

 
 
 
 
 
 
 

 
end 

i=i+1; 

path(1,i)  =  path(1,i-1); path(2,i)  

=  path(2,i-1); esstate(i)  =  

esstate(i-1);

 
 

 

plot(x,y); hold  on; 

plot(x,esstate+5); 

ylim([0  8]); 
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