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Abstract

This thesis focuses on solution techniques for non-convex optimization problems. The first

part of the dissertation presents a generalization of the completely positive reformulation of

quadratically constrained quadratic programs (QCQPs) to polynomial optimization prob-

lems. We show that by explicitly handling the linear constraints in the formulation of the

POP, one obtains a refinement of the condition introduced in [6] on QCQPs, where the re-

fined theorem only requires nonnegativity of polynomial constraints over the feasible set of

the linear constraints. The second part of the thesis is concerned with globally solving non-

convex quadratic programs (QPs) using integer programming techniques. More specifically,

we reformulate non-convex QP as a mixed-integer linear problem (MILP) by incorporating

the KKT condition of the QP to obtain a linear complementary problem, then use binary

variables and big-M constraints to model the complementary constraints. We show how to

impose bounds on the dual variables without eliminating all the (globally) optimal primal

solutions; using some fundamental results on the solution of perturbed linear systems. The

solution approach is implemented and labeled as quadprogIP, where computational results

are presented in comparison with quadprogBB, BARON and CPLEX. The third part of the

thesis involves the formulation and solution approach of a problem that arises from an on-

demand aviation transportation network. A multi-commodity network flows (MCNF) model

with side constraints is proposed to analyze and improve the efficiency of the on-demand

aviation network, where the electric vertical-takeoff-and-landing (eVTOLs) transportation

vehicles and passengers can be viewed as commodities, and routing them is equivalent to

finding the optimal flow of each commodity through the network. The side constraints cap-

ture the decisions involved in the limited battery capacity for each eVTOL. We propose

two heuristics that are efficient in generating integer feasible solutions that are feasible to

the exponential number of battery side constraints. The last part of the thesis discusses a

1



solution approach for copositive programs using linear semi-infinite optimization techniques.

A copositive program can be reformulated as a linear semi-infinite program, which can be

solved using the cutting plane approach, where each cutting plane is generated by solving a

standard quadratic subproblem. Numerical results on QP-reformulated copositive programs

are presented in comparison to the approximation hierarchy approach in [22] and [2].
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Introduction

In this thesis, we consider different problems in the general area of non-convex optimization.

In Chapter 1, we consider a very general class of nonlinear programs, namely polynomial

problems with linear constraints. In Chapter 2, we consider the class of general non-convex

quadratic programs. In Chapter 3, an application of mixed linear integer programing tech-

niques is studied. In particular, we study a variation of the well-known vehicle routing

problem. In Chapter 4, we consider a class of copositive programs obtained from non-

convex quadratic programs.

The materials presented in Chapter 1 have been published in

Wei Xia and Luis F Zuluaga. Completely positive reformulations of polynomial optimiza-

tion problems with linear constraints. Optimization Letters, pages 1–13, 2017,

and the materials presented in Chapter 2 is to appear in

Wei Xia, Juan Vera, and Luis F Zuluaga. Globally solving non-convex quadratic programs

via linear integer programming techniques. to appear in INFORMS Journel of Computing,

2015.

0.1 Completely Positive Reformulations of Polynomial Opti-

mization Problems with Linear Constraints

A polynomial optimization problem (POP) is an optimization problem in which both the

objective and constraints can be written in terms of polynomials on the decision variables.

A POP can be viewed as a generalization of a quadratically constrained quadratic program

(QCQP) to higher order polynomials. Nonconvex QCQPs are known to be NP hard (see,

e.g., [78]), and as a result, POPs are also NP hard in nature. The difficulties of solving

3



POPs are due to their potential nonconvexity in both the objective and the feasible set,

which makes obtaining global optimal solutions of POPs challenging. One existing approach

for solving POPs makes use of sum of squares approximations and positive semidefinite

moment matrices ([67, 68, 69, 70]). Alternatively, one line of research in this area looks at

completely positive (CP) relaxations or reformulations for quadratic POPs (i.e., QCQPs).

For example, in [24], it was shown that linearly constrained quadratic programs (LCQPs)

with binary variables can be reformulated as a completely positive program (CPP). [26]

extends this result to cases in which the feasible region belongs to a general convex set,

with some assumptions on the quadratic coefficient matrix of the objective function over

the recession cone of the feasible region. Other articles in the same line of work include

[4, 6, 16, 17, 39, 42]. For POPs involving polynomials of degree larger than 2, the completely

positive reformulation requires the use of completely positive tensors that are a natural

extension of the completely positive matrices (cf., [31, 39, 71, 84]). For example, consider

the work of [80], [5]. Recently, it has been shown that under appropriate assumptions, POPs

can be reformulated as conic problems over the cone of completely positive tensors; which

generalize the set of completely positive matrices. In Chapter 2, we show that by explicitly

handling the linear constraints in the formulation of the POP, one obtains a generalization

of the completely positive reformulation of quadratically constrained quadratic programs

recently introduced by [6].

0.2 Globally solving Non-Convex QPs via MILP techniques

Quadratic programming (QP) is a well-studied fundamental NP-hard optimization problem

which optimizes a quadratic objective over a set of linear constraints. In Chapter 3, we refor-

mulate QPs as a mixed-integer linear problem (MILP). This is done via the reformulation of

QP as a linear complementary problem, and the use of binary variables and big-M constrains.

To obtain such reformulation, we show how to impose bounds on the dual variables without

eliminating all the (globally) optimal primal solutions; using some fundamental results on

the solution of perturbed linear systems, to model the complementary constraints.

We also illustrate the performance of our solution approach by comparing our solver

with the current benchmark global QP solver quadprogBB, as well as with BARON, one of the

leading non-linear programming (NLP) solvers, on a large variety of QP test instances. In

4



practice, this approach is shown to typically outperform by orders of magnitude quadprogBB.

This approach also outperforms BARON, on standard quadratic programming (SQP) and

on randomly generated QP test instances considered in the related literature. Also, our

approach has a comparable performance to BARON on box constrained QPs and more general

QP instances from the literature. The MATLAB code, called quadprogIP, and the instances

used to perform these numerical experiments are publicly available at https://github.

com/xiawei918/quadprogIP.

0.3 Multi-Commodity Network Flow Problems with Resource

Constraints

A recent advance in the technology of electric Vertical Take-off and Landing aircrafts (eV-

TOLs) has made on-demand aviation transportation a practical solution to improve urban

mobility. eVTOLs, which are similar to helicopters, have several advantages that make

them the ideal vehicle for an on-demand aviation network. A basic on-demand aviation

transportation network (or eVTOL network) consists of the hubs, the eVTOLs, and the pas-

sengers. The development of such an on-demand aviation transportation network involves

strategic decisions which are vital for the success of the operation. The efficiency of the

network, in other words, the passenger throughput and time savings, are some of the most

important aspect to consider when operating the network, and the routing of the eVTOLs

in the network is the key to an efficient operation.

In chapter 3, we consider a multi-commodity network flows model (MCNF) model to

help determine optimal routes of eVTOLs on an on-demand aviation network. The eVTOLs

and passengers can be viewed as commodities in the network, and routing them is equivalent

to finding the optimal flow of each commodity through the network. However, the flow of

passengers between hubs is constrained by the availability of the eVTOLs, and the flow of

eVTOLs is constrained by the remaining battery level of the eVTOLs. The optimal flow of

both passengers and eVTOLs is the flow that transport most passengers to their respective

destination on time. A heuristic is proposed based on Dijkstra’s algorithm which generates

good quality initial solutions in short time, and the heuristic is also used to reconstruct bat-

tery feasible incumbent solutions from battery infeasible solutions that violated the battery

constraints. According to the experiments, the heuristic improves the efficiency of the solver
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by finding better incumbent solutions, thus improving the global upper bound. It may also

be used to find good quality solutions when an optimal solution is not required.

0.4 Solving Copositive Programs via Semi-infinite Program-

ming Approach

The theory of copositive programming and completely positive programming are closely

related to the field of combinatorial and quadratic optimization problems, as they provide

convex reformulations for problems that arise from these fields. It has been shown in [18]

that the problem of maximizing a quadratic form over the simplex can be reformulated as an

equivalent copositive program. Burer showed in [29] that any quadratic program with a mix

of binary and continuous variables has an equivalent copositive program reformulation. More

recent advancements on the topic of copositive programs and completely positive programs

can be found in [43],[30] and [17].

In this chapter, we will focus on general copositive program of the form (COP). It is

well known that copositive programs are NP-hard, despite the fact that they are convex

optimization problems. Many approximation hierarchy has been proposed for the cone of

copositive matrices and successfully used in the literature for solving copositive programs.

In this chapter, we propose a cutting-plane algorithm for solving copositive programs. More

specifically, we reformulate the copositive program as an equivalent linear semi-infinite pro-

gram, which is then solved using a cutting-plane algorithm. The cutting-plane algorithm

involves a pair of master problem and subproblem, where the master problem, which is an

LP, generates solutions feasible to the current set of cuts, and the subproblem, which is a

standard quadratic program, generates the most violated cut with respect to the current

solution. Our approach exploit the efficiency of the solver in [95] on SQPs to generate strong

inequalities which improves the tightness of the bounds obtained from the master problem.

The preliminary experiments are conducted on a set of copositive programs obtained from

reformulating the QPs.

6



Chapter 1

Completely Positive Reformulations

of Polynomial Optimization Problems

with Linear Constraints

1.1 Introduction

A polynomial optimization problem (POP) is an optimization problem that has both poly-

nomial objective and constraints. It can be viewed as a generalization of a quadratically

constrained quadratic program (QCQP) to higher order polynomials. Nonconvex QCQPs

are known to be NP hard (see, e.g., [78]), and as a result, POPs are also NP hard in nature.

The difficulties of solving POPs are due to their potential nonconvexity in both objective

and feasible set, which makes obtaining global optimal solutions of POPs challenging. One

existing approach for solving POPs makes use of sum of squares approximations and posi-

tive semidefinite moment matrices. For more details we refer the readers to [67, 68, 69, 70].

Alternatively, one line of research in this area looks at completely positive (CP) relaxations

or reformulations for quadratic POPs (i.e., QCQPs). For example, in [24], it was shown

that linearly constrained quadratic programs (LCQPs) with binary variables can be refor-

mulated as a completely positive program (CPP). [26] extends this result to cases in which

the feasible region belongs to a general convex set, with some assumptions on the quadratic

coefficient matrix of the objective function over the recession cone of the feasible region.

Other articles in the same line of work include [4, 6, 16, 17, 39, 42]. For POPs involv-

7



ing polynomials of degree larger than 2, the completely positive reformulation requires the

use of completely positive tensors that are a natural extension of the completely positive

matrices (cf., [31, 39, 71, 84]). For example, consider the work of [80], [5]. In this paper,

instead of studying the POPs and CPPs over general convex cones, we concentrate on Rn+,

in which the desired convex reformulations can be written in terms of the well studied CP

matrices and tensors. For more details on CP matrices and tensors, we refer our readers to

[16, 31, 39, 42, 71].

Here, we propose a convex reformulation result of POPs which considers the set of linear

constraints explicitly. This result can be viewed as a refinement of [80, Thm. 5], and is

shown to be a generalization of [6, Thm. 4]. Instead of assuming the polynomial constraints

to be nonnegative over Rn+, the refined theorem only requires nonegativity of polynomial

constraints over the feasible set of the linear constraints.

The rest of the paper is organized as follows: Section 2 introduces the notation. Section

3 gives a brief summary on CP relaxations of QCQPs. Section 4 presents the main result and

its relationship with related results for QCQPs and POPs in general. Section 5 concludes

with some final remarks.

1.2 Preliminaries

We first introduce the notation that is used throughout the article. Let R denote the set of

real numbers, and R+ denote the set of nonnegative real numbers. Let Sn denote the set of

symmetric matrices in Rn×n, and Snd denotes the set of symmetric tensors of dimension n

and order d. Let R[x] denote the set of n-variate polynomials with real coefficients. Similarly,

Rd[x] denotes the polynomials in R[x] of degree at most d. For any A ∈ Sn, diag(A) denotes

the vector of elements on the diagonal of the matrix A, and for any a, b ∈ Rn, let a◦b denote

the Hadamard product of vectors a and b . For any A,B ∈ Sn, let 〈A,B〉 denote the trace

of the product of matrices A and B, where trace(A) =
∑n

i=1Aii. A polynomial of degree d

is represented as

h(x) =
∑

α∈Zn
+:‖α‖1≤d

hαx
α,

8



where xα = xα1
1 xα2

2 . . . xαn
n . For any polynomial h(x), h̃(x) denotes the homogeneous term

of highest degree. Let deg(h) denote the degree of a polynomial h(x). Similar to [80], we

let Md : Rn → Snd be the map defined by

Md(x) = x⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
d

,

where ⊗ denotes the tensor product. In the case of d = 2, the tensor M2(x) is the rank-one

matrix M2(x) = xxT . Also, the cone of completely positive tensors is defined as

Cn,d = conv(Md(Rn+)),

where conv(·) denotes the convex hull. Notice that Cn,2 is the cone of completely positive

matrices (cf., [42])

Cn =
{ k∑
i=1

xix
T
i : xi ∈ Rn+ for i ∈ {1, . . . , k}, k ∈ N

}
.

For a given set U ⊆ Rn, let conic(U) = {
∑k

i=1 λkuk : λk ∈ R+, uk ∈ U, k > 0} be the conic

hull of U . Also, the tensor map for polynomials Cd : Rd[x]→ Sn+1
d is defined by

Cd

( ∑
α∈Zn

+:‖α‖1≤d

pαx
α
)
i1,...,id

=
α1! . . . αn!

‖α‖1!
pα

where α is the exponent such that xα1
1 · · ·xαn

n = xi1 · · ·xid . The tensor mapping Cd allows

one to express the value of a polynomial p ∈ R[x] at a ∈ Rn as the following inner product

p(a) = 〈Cd(p),Md(1, a)〉n,d.

Example 1.2.1. Let p(x1, x2) = 2x3
2 − x2

1x2 + 8x1x
2
2 + x1x2 − x1 − x2

2 + 3. For any a =

9



(a1, a2)T ∈ R2, p(a) = 〈C3(p),M3(1, a)〉, where

C(0,·,·) =


3 −1

3 0

−1
3 0 1

6

0 1
6 −1

3

 , M(0,·,·) =


1 a1 a2

a1 a2
1 a1a2

a2 a1a2 a2
2

 ,

C(1,·,·) =


−1

3 0 1
6

0 0 −1
3

1
6 −1

3
8
3

 , M(1,·,·) =


a1 a2

1 a1a2

a2
1 a3

1 a2
1a2

a1a2 a2
1a2 a1a

2
2

 ,

C(2,·,·) =


0 1

6 −1
3

1
6 −1

3
8
3

−1
3

8
3 2

 , M(2,·,·) =


a2 a1a2 a2

2

a1a2 a2
1a2 a1a

2
2

a2
2 a1a

2
2 a3

2

 .

Following [88], let the horizon cone of S ⊆ Rn be defined as

S∞ = {y ∈ Rn : there exists xk ∈ S, λk ∈ R+, k = 1, 2, . . . such that λk ↓ 0

and λkxk → y}.

In the case when S is empty, the horizon cone of S is the empty set. In other words,

{∅}∞ = ∅. More properties of the horizon cone can be found in [80, Prop. 3].

Example 1.2.2. Let

Q = {(x1, x2) ∈ R2 : x2 = x2
1}.

To obtain the horizon cone of Q, observe that the elements of Q are of the form {(a, a2) : a ∈

R}. For k ∈ Z+, b ∈ R+, let xk = (k, k2) and λk = b
k2
, then λkxk ↓ (0, b). Thus {0}×R+ ⊆

Q∞. Now let (a, b) ∈ Q∞, then (a, b) = limk→∞ λ
k(xk1, x

k
2) with λk ↓ 0, and (xk1, x

k
2) ∈

Q. Notice that b = limk→∞ λ
kxk2 = limk→∞ λ

k(xk1)2 ≥ 0, and a2 = limk→∞(λkxk1)2 =

limk→∞ λ
k(λkxk2) = limk→∞ λ

kb = 0. Thus {0} × R+ ⊇ Q∞ which shows that Q∞ =

{0} × R+.

We denote the set of feasible solutions of a set of linear constraints Ax = b with

A ∈ Rm×n, b ∈ Rm as L = {x ∈ Rn+ : Ax = b}. Note that in the case of linear con-

10



straints, the horizon cone of the feasible set is equivalent to the recession cone of the feasible

set (cf., [80, Prop. 3 (i)]). That is, L∞ = recc(L) = {d ∈ Rn+ : Ad = 0}.

1.3 Completely positive relaxations on QCQPs

It is known that under appropriate conditions, a QCQP can be reformulated as a completely

positive program (CPP), that is, a conic (linear) program over the cone of completely positive

matrices (see, e.g., [6, 16, 27]). Next, we summarize the theorems that provide insights on

the conditions that guarantee the equivalence of the QCQPs with their respective CPP

relaxations.

Theorem 1.3.1. ([24, Sec. 3.2]) Consider the following QCQP problem:

min
x∈Rn

+

q(x) =
1

2
xTHx+ fTx

s.t. Ax = b

h1(x) =
1

2
xTH1x+ fT1 x+ c1 = 0

(QCQP1)

and its CPP relaxation

min
x,X

1

2
〈H,X〉+ fTx

s.t. Ax = b

diag(AXAT ) = b ◦ b
1

2
〈H1, X〉+ fT1 x+ c1 = 01 xT

x X

 ∈ C1+n

(CPP1)

where H,H1 ∈ Sn, B ∈ Rm×n, b ∈ Rm,f, f1 ∈ Rn, and c1 ∈ R. If the following conditions

are satisfied, then (QCQP1) is equivalent to (CPP1).

1. x ∈ L⇒ h1(x) ≥ 0,

2. d ∈ L∞ ⇒ dj = 0 ∀j ∈ B̄,

11



where B̄ = {j ∈ {1, . . . , n} : (H)j 6= 0 or (f1)j 6= 0}, and (H)j denotes the jth column of

H.

In [27], it is shown that Theorem 1 applies to QCQP’s with no restrictions on the

quadratic constraints, but under the assumption that the set L = {x ∈ Rn+ : Ax = b} is

bounded.

Note that [6] showed in Lemma 1 that if fi(x) ≥ 0, ∀x ∈ S, i = 1, . . . ,m, we have

{x ∈ S : fi(x) ≤ 0, i = 1, . . . ,m} = {x ∈ S : f(x) ≤ 0},

where f(x) =
∑m

i=1 fi(x). Thus in case of multiple quadratic constraints that satisfy the

nonegativity condition, the quadratic constraints can be aggregated into a single quadratic

constraint to obtain an exact reformulation of the QCQP using Theorem 1.

In [26], Theorem 1 was extended to the case x ∈ K where K ⊆ Rn is a closed, convex

cone, defined by using a generalization of CP matrices. More specifically, using the matrices

CP (K) = {
∑

k x
k(xk)T : xk ∈ R+ × K}. The equivalence holds under the assumption

that dTH1d = 0 for all d in the recession cone of K ∩ L and the objective of the QCQP is

bounded below on K ∩ L. Alternatively, [27] extended the result in [24] to QCQPs without

requirements on the quadratic constraints, but with the assumption that K∩L is bounded.

In [6], the result of [27] is extended to any convex cone, despite its boundedness. One of

the main results in [6] is the theorem below. Although this theorem is stated over a general

closed convex cone K, our interest is focused on Rn+, thus we state the theorem over Rn+.

Theorem 1.3.2. ([6, Thm. 4]) Assume dTHd ≥ 0 for any d ∈ Rn+ such that Ad = 0,

aTH1d = 0, and 1
2x

TH1x+ fT1 x+ c1 ≥ 0 for all x ∈ L. The QCQP

min
x∈Rn

+

1

2
xTHx+ fTx

s.t. Ax = b

h1(x) =
1

2
xTAx+ fT1 x+ c1 = 0

(QCQP2)
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and the CPP relaxation

min
x,X

1

2
〈H1, X〉+ dTx

s.t. Ax = b

diag(AXAT ) = b ◦ b
1

2
〈H1, X〉+ fT1 x+ c1 = 01 xT

x X

 ∈ C∗1+n(Rn+)

(CPP2)

are equivalent.

Note that in [6], the quadratic constraints are inequality constraints with less than or

equal signs. We took the liberty to replace the inequalities with equalities since all quadratic

constraints are assumed to be nonnegative on L. Thus setting the constraints to be equal

or less than or equal to is equivalent.

1.4 Main Result

In this section, we extend the result of Bai from QCQPs to POPs. To achieve this, we refine

[80, Thm. 5] to POPs with explicit linear constraints. That is, consider the POP:

inf q(x)

s.t. li(x) = 0, i = 1, . . . ,ml

hj(x) = 0, j = 1, . . . ,mn

x ≥ 0

(POP)

and its CPP tensor relaxation:

inf 〈Cd(q), Y 〉

s.t. 〈Cd(hj), Y 〉 = 0, j = 1, . . . ,mn

〈Cd(ldi ), Y 〉 = 0, i = 1, . . . ,ml

〈Cd(1), Y 〉 = 1

Y ∈ Cn+1,d.

(CPP)

where li(x) is a linear polynomial of the form aTi x−bi = 0 for i = 1, . . . ,ml with ai ∈ Rn
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and bi ∈ R. Without loss of generality, we assume the degrees of q and hj for j = 1, . . . ,mn

are equal to d ∈ N and d = 2k, k ∈ N.

For polynomials that do not satisfy the assumption, one can convert it to a degree d

polynomial where

d = 2dmax{deg(q), deg(hi), i = 1, . . . ,mn}
2

e,

by multiplying each polynomial by a nonzero polynomial to raise its power to the appropriate

degree.

Next, we formally define when a POP and its completely positive reformulation are said

to be equivalent:

Definition 1.4.1. Problems (POP) and (CPP) are equivalent if the following holds:

a. The optimal values of (POP) and (CPP) are equivalent.

b. The optimal value of (POP) is attained if and only if the optimal value of (CPP) is

attained.

c. For any Y ∈ Cn+1,d, let χ(Y ) = (Y0,...,0, Y0,...,1, . . . , Y0,...,n), then if Y is optimal for

(CPP), then χ(Y ) is in the convex hull of the set of optimal solutions of (POP).

Next we provide a new theorem which extends Theorem 2 to POPs.

Theorem 1.4.2. Consider problem (POP) and (CPP). Let li(x) = aTi x − bi where i =

1, . . . ,ml are linear polynomials on x ∈ Rn. Let ht(x) where t = 1, . . . ,mn denote polyno-

mials on x ∈ Rn of degree d > 1, and L = {x ∈ Rn+ : aTi x − bi = 0, i = 1, . . . ,ml}. If the

conditions:

(i) ht(x) ≥ 0 for all x ∈ L, where t = 1, . . . ,mn,

(ii) q̃(x) ≥ 0 for all x ∈ {x ∈ Rn+ : l̃i(x) = 0, h̃t(x) = 0, where i = 1, . . . ,ml, t ∈ 1, . . . ,mn}

are satisfied, then (POP) and (CPP) are equivalent.

Before we prove the theorem, we restate two Lemmas for reference.

Lemma 1.4.3. ([80, Lem. 1]) If q ∈ R[x] is bounded below in S ⊆ Rn, then q̃(x) ≥ 0 for

all x ∈ S∞.

Lemma 1.4.4. ([80, Lem. 2]) For any d > 0 and n > 0, Cn+1,d = conic(Md({0, 1}×Rn+)).
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of Theorem 3. This proof borrows from the proof of [80, Thm. 5]. Define the following sets

FPOP = {x ∈ Rn+ : x is a feasible solution to (POP)}

OPOP = {x ∈ Rn+ : x is an optimal solution to (POP)}

FCPP = {Y ∈ Sn+1
d : Y is a feasible solution to (CPP)}

OCPP = {Y ∈ Sn+1
d : Y is an optimal solution to (CPP)}

Let ν∗ = inf{q(x) : x ∈ FPOP }. Since CPP is a relaxation of POP, clearly we have

ν∗ ≥ inf{〈Cd(q), Y 〉 : Y ∈ FCPP }.

In particular, the statement of the theorem holds when ν∗ = −∞. Now, assume q(x) is

bounded below in FPOP . By Lemma 1 we obtain

q̃(x) ≥ 0 for any x ∈ F∞POP .

By Lemma 2, for any Y ∈ Cn+1,d

Y =

n1∑
k=1

λkMd(1, uk) +

n0∑
j=1

µjMd(0, vj) (1.1)

for some n0, n1 ∈ N, λk, µj > 0, and uk, vj ∈ Rn+.

If Y ∈ FCPP ,

1 = 〈Cd(1), Y 〉 =

n1∑
i=1

λk (1.2)

also, for any i = 1, . . . ,ml

0 = 〈Cd(ldi ), Y 〉 =

n1∑
k=1

λkl
d
i (uk) +

n0∑
j=1

µj l̃
d
i (vj) (1.3)

and for any t = 1, . . . ,mn

0 = 〈Cd(ht), Y 〉 =

n1∑
k=1

λkht(uk) +

n0∑
j=1

µj h̃t(vj). (1.4)
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Since ldi (x) ≥ 0 for any x ∈ Rn+, i = 1, . . . ,ml, then by Lemma 1 we have l̃di (x) ≥ 0 for any

x ∈ Rn+, i = 1, . . . ,ml. This together with (1.3) implies that

uk ∈
ml⋂
i=1

{x ∈ Rn+ : ldi (x) = 0} = L (1.5)

and

vj ∈
ml⋂
i=1

{x ∈ Rn+ : l̃di (x) = 0} = L∞.

Since ht(x) ≥ 0 for all x ∈ L, t = 1, . . . ,mn. Then, by Lemma 1 we have h̃t(x) ≥ 0 for any

x ∈ L∞, t = 1, . . . ,mn. Thus from (1.4) we get

ht(uk) = 0 for any k = 1, . . . , n0, t = 1, . . . ,mn (1.6)

and

h̃t(vj) = 0 for any j = 1, . . . , n1, t = 1, . . . ,mn. (1.7)

Thus for any j = 1, . . . , n0 we have

vj ∈ {x ∈ Rn+ : l̃di (x) = 0 for i = 1, . . . ,ml, h̃t(x) = 0, t = 1, . . . ,mn}.

By condition (2) of Theorem 3

q̃(vj) ≥ 0 for j = 1, . . . , n0.

Therefore

〈Cd(q), Y 〉 =

n1∑
k=1

λkq(uk) +

n0∑
j=1

µj q̃(vj) ≥
n1∑
k=1

λkq(uk) ≥ ν∗, (1.8)

where the last inequality follows from (1.2), (1.5), and (1.6).

Thus part (a) of Definition 1 holds. To prove part (b), notice that for x∗ ∈ OPOP , we

have Md(x
∗) ∈ FCPP and 〈Cd(q),Md(x

∗)〉 = q(x∗) = v∗. If Y ∗ ∈ OCPP , by (1.8) we know
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that each uk in the decomposition (1.1) is in OPOP . To prove part (c), we have

χ(Y ∗) =

n1∑
k=1

λkχ(Md(1, uk)) +

n0∑
j=1

µjχ(Md(0, vj)) =

n1∑
i=1

λkvk ∈ OPOP

since
n1∑
i=1

λk = 1 from (1.2).

It can be seen that the two conditions of Theorem 3 are generalizations of the assumptions

of Theorem 2. The first assumption of Theorem 2, where the quadratic constraints have to

satisfy h1(x) = 1
2x

TH1x+ fT1 x+ c1 ≥ 0 for all x ∈ L is a special case of the first condition

of Theorem 3, which requires all polynomial constraints to be nonnegative over the feasible

region defined by the linear constraints. The other assumption of Theorem 2, dTHd ≥ 0 for

d ∈ Rn+ such that Ad = 0 and dTH1d = 0, is also a special case of the second condition of

Theorem 3; that is, q̃(d) ≥ 0 for all d ∈ {d ∈ Rn+ : l̃di (d) = 0 for i = 1, . . . ,ml, h̃t(d) = 0, t =

1, . . . ,mn}, since {d ∈ Rn+ : l̃di (d) = 0 for i = 1, . . . ,ml, h̃1(d) = 0} = {d ∈ Rn+ : (aTi d)d =

0, i = 1, . . . ,ml, d
TH1d = 0} = {d ∈ Rn+ : Ad = 0, dTH1d = 0}. Therefore, Theorem 3 is

a generalization for POPs of higher than quadratic degree. Note that under Theorem 2,

any QCQP can be converted to (QCQP2), which only contains linear constraints and one

nonnegative quadratic constraint (cf. [6]).

In Theorem 3, the polynomial constraints and the linear constraints that are raised to

an even power degree can also be aggregated into a single polynomial constraint. This

is equivalent to writing each constraint individually as done above. One difference from

Theorem 2 is how the linear constraints are reformulated. Raising the linear constraints to

the dth power as it is done in Theorem 3 is not the only way to handle the linear constraints.

One may carry the linear constraints to the relaxation by adding the redundant constraints

Ax = b. Note that in the case of d = 2, the reformulation of the linear constraints Ax = b

by Theorem 2

〈Cd((aTi x− bi)2k), Y 〉 = 0, i = 1, . . . ,ml, (1.9)
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and the reformulation of the linear constraints in Theorem 3

Ay = b,diag(AY AT ) = b ◦ b (1.10)

are equivalent. To see this, notice that (1.9) is equivalent to

〈Cd((aTi x)2k − 2(aTi x)kbki + (bi)
2k), Y 〉 = 0, i = 1, . . . ,ml,

which is equivalent to

〈C1(aTi x− bi), Y 〉 = 0 (1.11)

〈Cd((aTi x)2k − b2ki )), Y 〉 = 0 (1.12)

where a redundant linear constraint (1.11) is added so the equivalence holds. For k = 1

and letting Y =

1 xT

x X

, (1.11) and (1.12) are equivalent to (1.10). Both reformula-

tions are equivalent to the corresponding POP, but for consistency and simplicity, we adopt

reformulation (1.9).

Another way to handle the linear constraints is to multiply the linear constraint by any

strictly positive polynomials of degree d − 1, therefore obtaining a polynomial of degree d

that is equivalent to the linear constraint. The effect of these different way of reformulating

the linear constraints may vary. On the other hand, simply enforcing the linear constraint

by multiplying a positive polynomial of degree d − 1 might maintain sparsity. Notice that

if d > 2, one might choose different ways to represent the linear constraints. However, to

better compare Theorem 3 with both Theorem 2 and [80, Thm. 5], it is simpler to raise the

polynomials defining the linear constraints to the dth power.

Consider POPs of the form:

inf q(x)

s.t. hj(x) = 0, j = 1, . . . ,m

x ≥ 0

(POPNL)

and its CPP tensor relaxation:
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inf 〈Cd(q), Y 〉

s.t. 〈Cd(hj), Y 〉 = 0, j = 1, . . . ,m

〈Cd(1), Y 〉 = 1

Y ∈ Cn+1,d.

(CPPNL)

Above, we use “NL" for nonlinear to emphasize the fact that the potential linearity of

any of the hj(x), j = 1, . . . ,m is not explicitly used in the related results stated below.

Theorem 1.4.5. ([80, Thm. 4]) Let q, h1, · · · , hm ∈ Rd[x] in (POPNL) be such that for

i = 1, · · · ,m

(i) deg(hi) = d, hi(x) ≥ 0 for all x ∈ Si−1, and

(ii) {x ∈ S∞i−1 : h̃i(x) = 0} ⊆ S∞i

where S0 = Rn+ and Si = {x ∈ Si−1 : hi(x) = 0}, i = 1, · · · ,m. Then (POPNL) and

(CPPNL) are equivalent.

Theorem 1.4.6. ([80, Thm. 5]) Let q, h1, · · · , hm ∈ Rd[x] in (POP) be such that for

i = 1, · · · ,m

(i) deg(hi) = d, hi(x) ≥ 0 for all x ∈ Rn+, and

(ii) q̃(x) ≥ 0 for all x ∈ {x ∈ Rn+ : h̃i(x) = 0, i = 1, · · · ,m}

Then (POPNL) and (CPPNL) are equivalent.

Clearly, Theorem 3 is a refinement of [80, Thm. 5] since it does not require the non-linear

polynomials to be nonnegative over Rn+, but only over L.

Next we show that neither [80, Thm. 4] or Theorem 3 here is more general than the

other. For that purpose, an example which satisfies the conditions of [80, Thm. 4(i)] but

not the conditions of Theorem 3(i) can be easily constructed. In particular, consider the
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following problem

min x4
1

l1(x1, x2) = x1 − x2 = 0

h2(x1, x2) = (x2 + 1)2(x1 − 2)2 = 0

h3(x1, x2) = (x2
1 + 1)(x2

2 − 4) = 0

x1, x2 ∈ R2
+

We can see that for (x1, x2) = (1, 1), the constraint l1(1, 1) = 0 is satisfied, but after

reformulating l1(x1, x2) as h1(x1, x2) = (x1 − x2)4, we have that h3(1, 1) = −6 < 0, so

Theorem 3(i) is not satisfied. On the other hand, h2(x1, x2) ≥ 0 for any (x1, x2) ∈ R2, and

h3(x1, x2) = 0 ≥ 0 for {(x1, x2) ∈ R2
+ : h1(x1, x2) = 0, h2(x1, x2) = 0} = {(2, 2)}. Thus

Theorem 4(i) is satisfied. Also,

{(x1, x2) ∈ S∞0 : h̃1(x1, x2) = 0} = {x ∈ R2
+ : x1 = x2} = S∞1

{(x1, x2) ∈ S∞1 : h̃2(x1, x2) = 0} = {(0, 0)} = S∞2

{(x1, x2) ∈ S∞2 : h̃3(x1, x2) = 0} = {(0, 0)} = S∞3

Therefore Theorem 4(ii) is satisfied.

Similarly, one can easily construct an example that satisfies the conditions of Theorem

3 but not those of Theorem 4. In particular, consider the following problem

min x4
1

l1(x1, x2) = x1 − 1 = 0

h2(x1, x2) = (x2
1 − x2)2 = 0

(x1, x2) ∈ R2
+

(1.13)

Clearly, after reformulating l1(x1, x2) as h1(x1, x2) = (x1 − 1)4, problem (1.13) satisfies

deg(q) = deg(hi) for i = 1, 2. Also, h2(x1, x2) ≥ 0 for all (x1, x2) ∈ R2 since it is a sum of
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squares. Next, we have

{(x1, x2) ∈ R2
+ : l̃1(x1, x2) = 0} = {(0, x2) : x2 ≥ 0}

{(x1, x2) ∈ R2
+ : l̃1(x1, x2) = 0, h̃2(x1, x2) = 0} = {(0, x2) : x2 ≥ 0}

so that q̃(x1, x2) = x4
1 = 0 ≥ 0 for (x1, x2) ∈ {(x1, x2) ∈ R2

+ : l̃1(x1, x2) = 0, h̃2(x1, x2) = 0},

and the conditions of Theorem 3 are satisfied.

Also, if one checks Theorem 4(ii), we have

S1 = {(x1, x2) ∈ R2
+ : l1(x1, x2) = 0} = {(1, x2) : x2 ≥ 0}

S2 = {(x1, x2) ∈ R2
+ : l1(x1, x2) = h2(x1, x2) = 0} = {(1, 1)}

S∞1 = {(0, x2) : x2 ≥ 0}

and

{(x1, x2) ∈ S∞1 : h̃2(x1, x2) = 0} = {(0, x2) : x2 ≥ 0} 6⊆ S∞2

= {(1, 1)}∞ = {(0, 0)}

Thus the conditions of Theorem 4 are not satisfied. We conclude that Theorem 3 and The-

orem 4 are not equivalent.

1.5 Conclusion

In this paper, we extended [6, Theorem 4] on QCQPs to POPs with linear constraints. This

new theorem is a refinement of [80, Thm. 5]. The main difference introduced by the new

theorem is a weaker requirement on the nonnegativity of the nonlinear constraints than [80,

Thm. 5]. The relations among an alternative reformulation of POPs to CPs of [80, Thm.

4] and Theorem 3 are studied here by providing appropriate examples.

An interesting direction of future work is to find other CP reformulation results for

QCQPs that could be potentially generalized to apply for POPs. Also interesting is to

investigate whether a set of weaker conditions can be imposed on the POP while still being

able to obtain a CP reformulation of the POP.
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Chapter 2

Globally solving Non-Convex

Quadratic Programs via Linear

Integer Programming techniques

2.1 Introduction

Quadratic programmming (QP), is a fundamental optimization problem with a quadratic

objective and linear constraints. QP is NP-hard [see, e.g., 78, and the references therein],

however, when the objective is convex, QP can be globally solved (within a predetermined

precision ε > 0) in polynomial time via interior-point methods [see, e.g., 86]. Here, the focus

is on obtaining global solutions for non-convex QP. QP is arguably the most basic instance

of a (non-convex), non-linear program (NLP). At a fundamental level, the complexity of

globally solving QP lies in the fact that multiple of its local optimal solutions may not

necessarily be global optimal solutions [see, e.g. 12].

QPs commonly arise in applications in engineering, pure and social sciences, finance,

and economics [see, e.g., 62]. As a result, there has been extensive work on studying how

to obtain global solutions of QPs using both NLP techniques [see, 47, 54, for surveys in

this area], and convex optimization techniques [consider, e.g., 32, 64, 65, 76, among many

others].

In this paper, we reformulate QPs as a mixed-integer linear problem (MILP). This pro-

vides an advantageous way to obtain global solutions for QPs, as it allows the use of current
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state-of-the-art MILP solvers. Moreover, the numerical experiments of Section 2.3 show

that a basic implementation of this MILP based solution approach, which we refer to as

quadprogIP, typically outperforms by orders of magnitude quadprogBB, BARON, and CPLEX

on standard QPs. In most of the general QP instances, quadprogIP outperforms quadprogBB

and BARON, but it is outperformed by CPLEX. For box-constrained QPs, quadprogIP has a

comparable performance to quadprogBB and BARON in small- to medium-scale instances,

but it is outperformed by these solvers on large-scale instances, and by CPLEX in all box-

constrained QPs.

Unlike quadprogBB, the solution approach proposed here is able to solve QP instances

whose dual feasible set is unbounded. The MATLAB code and the instances used to perform

these numerical experiments are available at https://github.com/xiawei918/quadprogIP.

To obtain the proposed MILP-reformulation (see Sec. 2.2.1), the QP’s KKT conditions

are used to reformulate the QP as a linear complementarity problem (LCP). In this refor-

mulation, the complexity of the problem is captured by the complementarity constraints.

The KKT-branching approach [28], which consist on branching on this complementarity

constraints, is not useful on this reformulation of the problem, as the underlying linear

relaxations at the root node of the KKT-branching tree are (under mild assumptions) un-

bounded [28, Cor. 2.3]. Another alternative, namely, reformulating the complementarity

constraints using binary variables and big-M constraints, requires the knowledge of bounds

on the problem’s KKT multipliers, which in general are unbounded [cf., 63, Sec. 6.1 and

6.2]. To directly use MILP solvers for the solution of the QP, we overcome this requirement

by restricting our attention to a subset of optimal KKT points. We show (Theorem 1)

that it is possible to impose bounds on the dual variables without eliminating any of the

(globally) optimal primal solutions. Our results are based on fundamental results on the

approximate solution of systems of linear equations [e.g., 55, 72]. One advantage of the

proposed methodology is that unlike previous related work, the convergence of the MILP-

based approach to the QP’s global optimal solution in finite time follows in straightforward

fashion (see Sec. 2.3.1). Also, the methodology can be applied to QPs without the need for

assumptions on the relative interior of its feasible set (see Sec. 2.2.3 for details).

Before stating the results described above, we end this section with a short review of

both NLP and convex optimization techniques for the global solution of QP’s. Using NLP

techniques, [94] proposed an interior-point algorithm for NLPs (thus, applicable for QPs),

23

https://github.com/xiawei918/quadprogIP


which is an extension of the interior-point methods for linear and convex optimization prob-

lems [cf., 86]. [46] proposed an algorithm which globally solves certain classes of NLPs by

decomposing the problem based on an appropriate partition of its decision variables. The

work of [8] and [93] on the use of relaxation and linearization techniques [cf., 91], in com-

bination with spatial branching techniques [cf., 93], has lead to the development of the two

well-known global solvers Couenne [7] and BARON [89] for NLPs. Another solver that com-

bines these type of techniques, together with techniques to exploit the problems structure

is GloMIQO, developed by [73] for the solution of more general quadratically constrained

quadratic programs with integer variables. More recently, specialized solution approaches

have been developed for special classes of QP. In particular, [20] develop a special branch-

and-cut algorithm for box constrained QPs based on using cuts derived from the boolean

quadric polytope. Also, [19] develop new specialized cuts that are used within a spatial

branch and bound algorithm to solve standard QPs. For further review of numerical and

theoretical results on the solution of QPs using NLP techniques, we refer the reader to [54]

and [47].

Besides NLP techniques, convex optimization techniques [cf., 9, 86] have also been used

to address the solution of QPs. For example, [76] and later [64, 65], explored the use of

semidefinite programming (SDP) as well as second-order cone relaxations to approximately

or globally solve a QP.

More recently, [28] proposed a SDP-based branch and bound approach to globally solve

box-constrained QPs; they reformulate a QP by adding the QP’s corresponding Karush-

Kuhn-Tucker (KKT) conditions as redundant constraints. Let us refer to this quadratically

constrained quadratic program (QCQP) as QPKKT. To solve QPKKT, [28] construct a finite

KKT-branching tree by branching on the resulting problem’s complementarity constraints.

SDP relaxations of QPKKT are used to obtain lower bounds at each node of the KKT-

branching tree. On the other hand, to obtain upper bounds a (local) QP-solver based

on NLP techniques is used. [32] improved the solution methodology of [28] by obtaining

tighter lower bounds at each node of the KKT-branching tree. For that purpose, the double

non-negative (DNN) relaxation of the completely positive reformulation [24] of QPKKT at

each node of the KKT-branching tree is used. [32] provide a MATLAB implementation of their

approach called quadprogBB. In this implementation, the MATLAB (local) QP solver quadprog

is used to obtain the upper bounds while the algorithm proposed by [25] is used to obtain
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lower bounds, at each node of the KKT-branching tree. [32] show that this solution approach

typically outperforms the solver Couenne and the approach proposed by [28] on a test bed

of publicly available QP instances. This makes the solver quadprogBB a current benchmark

for the global solution of QP problems.

The rest of the paper is organized as follows. In Section 2, we formally introduce the QP

problem and present the theoretical results that serve as the foundation for the proposed

solution approach. In Section 3, we illustrate the effectiveness of this approach by presenting

relevant numerical results on test instances of the QP problem. To conclude, in Section 4,

we provide conclusions and directions for future work.

2.2 Solution Approach for non-convex QPs

We consider the following quadratic programming problem

QP : min 1
2x

ᵀHx+ fᵀx

s.t. Ax = b

x ≥ 0,

(2.1)

where f ∈ Rn, A ∈ Rm×n, b ∈ Rm, and H ∈ Rn×n is a symmetric matrix. Note that there

is no assumption on the matrix H being positive semidefinite; that is, QP is in general a

non-convex optimization problem [cf., 12].

Similar to [28] and [32], we assume that the feasible set of QP is nonempty and bounded.

However, in what follows, no further assumption is made about the feasible set of QP.

2.2.1 Mixed-integer linear programming reformulation

After introducing the Lagrange multipliers µ ∈ Rm for its equality constraints and λ ∈ Rn

for its non-negativity constraints, the KKT conditions for QP are given by

Hx+ f +Aᵀµ− λ = 0 (2.2a)

xᵀλ = 0 (2.2b)

Ax = b (2.2c)

x ≥ 0, λ ≥ 0. (2.2d)
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In what follows, we will refer to the set

ΛKKT = {(x, µ, λ) ∈ R2n+m : (x, µ, λ) satisfy (2.2a)− (2.2d)} (2.3)

as the KKT points of QP.

Note that because the feasible set of QP (2.1) is a polyhedron, the KKT conditions (2.2)

are first order necessary conditions for the optimal solutions of QP [see, e.g. 44, Thm. 3.3].

Thus, one can add these KKT conditions as redundant constraints in QP to obtain the

following equivalent formulation of QP,

min 1
2x

ᵀHx+ fᵀx

s.t. Hx+ f +Aᵀµ− λ = 0

xᵀλ = 0

Ax = b

x ≥ 0, λ ≥ 0.

(2.4)

As shown by [49, Thm. 2.4], one can use the KKT conditions (2.2a)–(2.2c) to linearize the

objective of (2.4). Namely, for any feasible solution x ∈ Rn of (2.4), we have

1

2
xᵀHx+ fᵀx =

1

2
(fᵀx− xᵀAᵀµ+ xᵀλ) =

1

2
(fᵀx− bᵀµ).

As a result, problem (2.4) is equivalent to the following problem with a linear (instead of

quadratic) objective.
1
2 min fᵀx− bᵀµ

s.t. Hx+ f +Aᵀµ− λ = 0

xᵀλ = 0

Ax = b

x ≥ 0, λ ≥ 0.

(2.5)

Notice that in (2.5), the complexity of QP is captured in the complementary constraints xᵀλ =

0. Next, we address the complementary constraints in (2.5) by using Big-M constraints.

For that purpose, in Section 2.2.2, we derive upper bounds U, V ∈ Rn on the decision vari-

ables x, λ ∈ Rn of (2.5) such that there are (globally) optimal KKT points (x, µ, λ) ∈ R2n+m

of QP satisfying x ≤ U , λ ≤ V . Using these upper bounds, one can show (see, Theorem 1)
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that a global optimal solution of QP can be obtained by solving the following MILP

IQP : 1
2 min fᵀx− bᵀµ

s.t. Hx+ f +Aᵀµ− λ = 0

Ax = b

0 ≤ xj ≤ zjUj j = 1, . . . ,m

0 ≤ λj ≤ (1− zj)Vj j = 1, . . . ,m

zj ∈ {0, 1} j = 1, . . . ,m.

(2.6)

Specifically, problem IQP is a MILP with the same optimal value as QP whose optimal

solutions are optimal solutions of QP.

2.2.2 Bounding the primal and dual variables

As mentioned earlier, the first step in obtaining problem IQP is to derive explicit upper

bounds U, V ∈ Rn such that there are optimal KKT points (x, µ, λ) ∈ R2n+m of QP satisfying

x ≤ U , λ ≤ V .

Similar to [32], using the assumption that the feasible set of QP is non-empty and

bounded, one can compute the upper bounds U ∈ Rn+ on the primal variables x ∈ Rn by

setting:

Uj := max{xj : Ax = b, x ≥ 0}, (2.7)

for every j = 1, . . . , n.

Using assumptions stronger than ours, [32] show that ΛKKT, the set of KKT points, is

bounded. As the following example illustrates, under our weaker assumptions, the set ΛKKT

could be unbounded.

Example 2.2.1. Consider the instance of QP defined by setting

H =


2 0 0

0 −1 0

0 0 1

 f =


2

4

3

 A =

2 1 1

1 1 1

 b =

1

1

 .

Note that in this case the feasible region of QP is {[0, 1−t, t]ᵀ : 0 ≤ t ≤ 1}, which is bounded

and non-empty. However, the set of KKT points ΛKKT (2.3) is unbounded. Specifically,
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notice that for any v ≥ 1 the following is a KKT point for QP :

x =


0

1

0

 µ =

[
v

−3− v

]
λ =


−1 + v

0

0

.
Thus, to handle the complementarity contraints in (2.5) using Big-M constraints, we

do not try to obtain a bound for the value of the entries of λ ∈ Rm for all KKT points.

Instead, in Theorem 1, we prove that there exist a bound that we can impose in the dual

variables, without discarding all (globally) optimal KKT points of QP. For this purpose, we

make use of fundamental results on the approximate solution of systems of linear equations

[e.g., 55, 72].

Let us first define a particular instance of the well-known Hoffman bound [60], closely

following the notation in [55].

Definition 2.2.2. Fix the norm ‖ · ‖α on Rn and the norm ‖ · ‖β on Rm. Given A ∈ Rm×n

and b ∈ Rm, let F := {x ∈ Rn+ : Ax = b}. Let HA,b ∈ R be the smallest constant satisfying:

For all y ∈ Rn such that Ay = b, there is x ∈ F such that ‖x− y‖α ≤ HA,b‖y−‖β. (2.8)

Above, for any y ∈ Rn, y− ∈ Rn is the vector difined by y−i = max{0,−yi}, i =

1, . . . , n. That is, Definition 2.2.2 corresponds to the Hoffman bound obtained when looking

at perturbations of only the non-negative constraints of the polyhedron F := {x ∈ Rn+ :

Ax = b}.

In what follows we will use the following notation to denote the dual norm associated to

a given norm.

Definition 2.2.3. Given a norm ‖ · ‖ on Rn, its associated dual norm on Rn, denoted ‖ · ‖∗

is defined as:

‖x‖∗ = sup{xᵀz : z ∈ Rn, ‖z‖ ≤ 1}.

In particular, for any x ∈ Rn, ‖x‖∗∞ = ‖x‖1.

Using Definition 2.2.2, we provide in Theorem 1 below, the desired bound to be used on

the dual variables of QP in the IQP formulation (2.6).

28



Theorem 2.2.4. Let A ∈ Rm×n and b ∈ Rm be such that the set F := {x ∈ Rn+ : Ax = b} is

non-empty and bounded. Let HA,b be defined by (2.8), and κ := max{‖Hx‖∗α : Ax = b, x ≥

0}. Then, for each globally optimal solution x∗ of QP, there exists (µ∗, λ∗) ∈ Rm×Rn+ such

that (x∗, µ∗, λ∗) is a KKT point of QP and eᵀλ∗ ≤ (κ+ ‖f‖∗α)HA,b‖e‖β.

Proof. Proof. Fix M > (κ+ ‖f‖∗α)HA,b‖e‖β and consider the following perturbed version

of QP:

min 1
2x

ᵀHx+ fᵀx+Mt

s.t. Ax = b

x ≥ −te

0 ≤ t ≤ δ,

(2.9)

where e is the vector of all ones, and δ > 0. Notice that the feasible set of (2.9) is a closed

subset of {x ∈ Rn : Ax = b, x ≥ −δe} × [0, δ] which is non-empty and bounded as F is

non-empty, bounded, and the recession cone of {x ∈ Rn : Ax = b, x ≥ −δe} is equal to the

recession cone of F . Thus, the optimal value of (2.9) exists and it is attained.

Let (x∗, t∗) be an optimal solution of (2.9). Then, there exists (µ∗, λ∗, ρ∗, ω∗) ∈ Rn+m+2

such that (x∗, t∗, µ∗, λ∗, ρ∗, ω∗) satisfies the KKT conditions associated with problem (2.9)

Hx∗ + f +Aᵀµ∗ − λ∗ = 0

M − eᵀλ∗ − ρ∗ + ω∗ = 0

(x∗ − t∗e)ᵀλ∗ = 0

t∗ρ∗ = 0

(δ − t∗)ω∗ = 0

Ax∗ = b

x∗ + t∗e ≥ 0

0 ≤ t∗ ≤ δ

λ∗, ρ∗, ω∗ ≥ 0,

(2.10)

where µ∗ ∈ Rm, λ∗ ∈ Rn, ρ∗ ∈ R, ω∗ ∈ R, are respectively the Lagrangian multipliers

of problem (2.9) associated with the linear constraints, lower bounds in the decision vari-

ables x ∈ Rn, and lower and upper bounds on the decision variable t ∈ R.

Now we claim that t∗ = 0. In that case, notice that the set of optimal solutions for (2.9)

is {(x∗, 0) ∈ Rn+1 : x∗ is optimal for QP}. Furthermore, the complementarity constraint
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(δ− t∗)ω∗ = 0 in (2.10) implies ω∗ = 0 and thus, from the equation M − eᵀλ∗− ρ∗+ω∗ = 0

in (2.10) and the fact that ρ∗ ≥ 0, it follows that (x∗, µ∗, λ∗) is a KKT point of QP with

eᵀλ∗ ≤M .

To show that t∗ = 0, note that from Definition 2.2.2, it follows that there exists x′ ∈ F

such that

‖x′ − x∗‖α ≤ HA,bt∗‖e‖β. (2.11)

In problem (2.9), (x′, 0) is a feasible solution and thus the objective value of (x′, 0) is no

smaller than the objective value of (x∗, t∗). That is,

1

2
x∗ᵀHx∗ + fᵀx∗ +Mt∗ ≤ 1

2
x′

ᵀ
Hx′ + fᵀx′.

Therefore,

Mt∗ ≤ 1

2
(x′

ᵀ
Hx′ − x∗ᵀHx∗) + fᵀ(x′ − x∗)

=
1

2
(x′ + x∗)ᵀH(x′ − x∗) + fᵀ(x′ − x∗)

≤ 1

2
‖H(x′ + x∗)‖∗α‖x′ − x∗‖α + ‖f‖∗α‖x′ − x∗‖α

≤
(

1

2
(‖Hx′‖∗α + ‖Hx∗‖∗α) + ‖f‖∗α

)
‖x′ − x∗‖α.

Thus, using (2.11) we have

Mt∗ ≤
(

1

2
(κ+ κδ) + ‖f‖∗α

)
HA,b‖e‖βt∗ (2.12)

where κδ := max{‖Hx‖∗α : Ax = b, x ≥ −δe, x ∈ Rn}.

Since κδ ↓ κ when δ ↓ 0, taking δ > 0 small enough we have that

M >

(
1

2
(κ+ κδ) + ‖f‖∗α

)
HA,b‖e‖β.

Thus, (2.12) implies that t∗ = 0.

To finish the proof, fix x∗, an optimal solution of QP and letM ′ = (κ+ ‖f‖∗α)HA,b‖e‖β .

Let S = {λ ∈ Rn+ : ∃ µ ∈ Rm such that (x∗, µ, λ) ∈ ΛKKT}. From ((2.3)) S is a polyhedron,

and we have proven that for all M > M ′ there exists λ′ ∈ S satisfying eᵀλ′ ≤M . We claim

that this implies there exists λ ∈ S satisfying eᵀλ ≤ M . For the sake of contradiction, let
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P = {λ ∈ Rn : eᵀλ ≤ M ′} and assume S ∩ P = ∅. Since both S, P ⊆ Rn are polyhedrons,

it follows from the Strong Separation Lemma that there exists c ∈ Rn, d ∈ R with c 6= 0,

such that: (i) cᵀλ < d for all λ ∈ P , and (ii) cᵀλ > d for all λ ∈ S. From (i) and P being

a half-space, it follows that c = se, d > sM ′ for some s > 0. Thus, ds > M ′, and therefore

there exists λ′ ∈ S such that eᵀλ′ ≤ d
s , or equivalently c

ᵀλ′ ≤ d, contradicting (ii).

Remark 2.2.5. From Theorem 1, the constraint eᵀλ ≤ (κ+‖f‖∗α)HA,b‖e‖β could be added

in the IQP formulation of QP (2.6). Adding this constraint however has not led to improved

solution times of IQP. Thus, this constraint is not used in the implementation of our proposed

solution approach for QP.

If one fixes the norm ‖ · ‖β in Definition 2.2.2 to be the 1-norm ‖ · ‖1, one can directly

impose bounds on each of the dual variables associated with the non-negativity constraints

in QP.

Proposition 1. Let A ∈ Rm×n and b ∈ Rm be such that the set F := {x ∈ Rn+ : Ax = b} is

non-empty and bounded. Let H̃A,b be defined by (2.8) with the norm ‖ · ‖β being the 1-norm

‖ · ‖1, and κ := max{‖Hx‖∗α : Ax = b, x ≥ 0}. Then, for all globally optimal solutions x∗

of QP, there exists (µ∗, λ∗) ∈ Rm × Rn+ such that (x∗, µ∗, λ∗) is a KKT point of QP and

λ∗i ≤ (κ+ ‖f‖∗α)H̃A,b.

Proof. Proof. The proof is analogous to that of Theorem 1, after considering (instead

of (2.9)), the perturbed version of QP given by min{1
2x

ᵀHx+ fᵀx+ M̃(eᵀy) : Ax = b, x ≥

−y, 0 ≤ y ≤ δe}.

However, as it will be shown in Section 2.2.3, the freedom to choose both the norms

‖ · ‖α and ‖ · ‖β in Definition 2.2.2, is important in obtaining the best possible bounds for

dual variables associated with the non-negativity constraints in QP.

2.2.3 Computation of the dual bounds

Theorem 1 provides the bounds needed for the reformulation of QP as IQP (2.6) in terms

of the Hoffman constant HA,b introduced in Definition 2.2.2. Next, we discuss how this

constant can be obtained in closed-form for important special classes of QP, as well as how

it can be computed for general classes of QP.
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Standard Quadratic Programming.

Consider the standard quadratic program (SQP):

SQP : min
x∈∆

1
2x

ᵀHx+ fᵀx (2.13)

where ∆ = {x ∈ Rn :
∑n

i=1 xi = 1, x ≥ 0}, is the standard simplex. The SQP problem is

fundamental in optimization and arises in many applications [see, e.g., 14]. Next, we show

that in this case, the Hoffman bound HA,b introduced in Definition 2.2.2 can be computed

in closed-form for suitable choices of the norm ‖ · ‖α on Rn and the norm ‖ · ‖β on Rm.

Proposition 2. Consider the norm ‖ · ‖α = ‖ · ‖1 on Rn and the norm ‖ · ‖β = ‖ · ‖1 on Rm.

Let A = eᵀ and b = 1. Then HA,b = 2.

Proof. Proof. Let y ∈ Rn such that eᵀy = 1 be given. Let I = {i ∈ {1, . . . , n} : yi ≥ 0} and

Ic = {1, . . . , n}\ I, and consider the case Ic 6= ∅ (otherwise, the statement follows by letting

x = y in Definition 2.2.2). Note that eᵀy = 1 implies I 6= ∅ and that
∑

i∈I yi = 1−
∑

i∈Ic yi =

1 + ‖y−‖1. Let x ∈ Rn be defined by setting xi = 0 for all i ∈ Ic, and xi = 1
1+‖y−‖1 yi for

all i ∈ I. Clearly, x ∈ ∆. Furthermore, for any i ∈ Ic, |xi−yi| = −yi. Also for any i ∈ I, we

have |xi − yi| = ‖y−‖1
1+‖y−‖1 yi. Thus, ‖x− y‖1 = −

∑
i∈Ic yi + ‖y−‖1

1+‖y−‖1
∑

i∈I yi = 2‖y−‖1. That

is, HA,b ≤ 2. To show HA,b ≥ 2, consider y = (n,−1, . . . ,−1). For any x ∈ ∆, it follows that

‖x−y‖1 = |x1−n|+
∑n

i=2 |xi+1| = 2n−1−x1 +
∑n

i=2 xi = 2(n−x1) ≥ 2(n−1) = 2‖y−‖1.

Thus, (2.13) can be reformulated as IQP by letting:

U = e and V ≥Me, (2.14)

with

M = 2n (‖H‖∞,∞ + ‖f‖∞) , (2.15)

where we have used that

κ = max{‖Hx‖∞ : eᵀx = 1, x ∈ Rn+} ≤ max
i,j∈{1,...,n}

|Hij | =: ‖H‖∞,∞.

Remark 2.2.6. It is worth mentioning that a proof similar to the one given in Proposition 2
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shows that if ‖·‖1 is replaced with ‖·‖∞ in Proposition 2, the corresponding Hoffman constant

would be equal to n−1. However, this leads to a weaker bound V than the one given in (2.14).

Quadratic Programming with Box Constraints.

Now, consider the box-constrained QP (BoxQP)

BoxQP : min 1
2x

ᵀHx+ fᵀx

s.t. l ≤ x ≤ u,
(2.16)

where l, u ∈ Rn are given bounds on the primal variables of BoxQP satisfying (w.l.o.g.)

l < u (component-wise). Problem BoxQP is equivalent to the following QP problem:

min 1
2x

ᵀHx+ (Hl + f)ᵀx

s.t. x+ s = u− l

x ≥ 0, s ≥ 0.

(2.17)

Next, we show that in this case, the Hoffman bound HA,b introduced in Definition 2.2.2

can be computed in closed-form for a suitable choice of the norm ‖ · ‖α on Rn and the norm

‖ · ‖β on Rm.

Proposition 3. Consider the norm ‖ · ‖α = ‖ · ‖∞ on Rn and the norm ‖ · ‖β = ‖ · ‖∞

on Rm. Let I denote the identity matrix in Rn×n, b ∈ Rn+, and A = [I, I]. Then HA,b = 1.

Proof. Proof. Let (y, z) ∈ R2n such that y + z = b be given. Define x = y+ − z− and

s = z+ − y−. We claim (x, s) ∈ F = {(x, s) ∈ R2n
+ : x + s = b}. To show this notice

first that x + s = y+ − z− + z+ − y− = y + z = b. Now let i ∈ {1, . . . , n}. If z−i = 0 then

xi = y+
i ≥ 0. Thus assume z−i > 0. Then z+

i = 0 and xi = bi−si = bi+y
−
i ≥ 0. Thus x ≥ 0.

Similarly s ≥ 0. To finish, notice that ‖(y, z) − (x, s)‖∞ = ‖(−y− + z−,−z− + y−)‖∞ =

‖(y−, z−)‖∞ = ‖(y, z)−‖∞. This shows that HA,b ≤ 1. To show HA,b ≥ 1, let y = −e and

z = b+ e. For any (x, s) ∈ F , it follows that ‖(x, s)− (y, z)‖∞ ≥ |x1 + 1| ≥ 1 = ‖(y, z)−‖∞.

Using Proposition 3, we obtain that (2.17) can be reformulated as IQP by letting:

U =

[
u− l

u− l

]
and V ≥Me, (2.18)
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with

M = min(n‖H‖∞,∞‖u− l‖1, ‖H‖1,1‖u− l‖∞) + ‖f +Hl‖1, (2.19)

where we have used that

κ = max{‖Hx‖1 : x+ s = u− l, x, s ∈ Rn+} ≤ min(n‖H‖∞,∞‖u− l‖1, ‖H‖1,1‖u− l‖∞),

where ‖H‖1,1 :=
∑

i 6=j∈{1,...,n} |Hij |.

General Quadratic Programming.

Note that to compute an appropriate M value in Theorem 1, it is enough to let M >

(κ + ‖f‖∗α)HA‖e‖β for some constant HA ≥ HA,b. As shown bellow, HA can be computed

in general using [55, Theorem 3.2].

Proposition 4. Fix the norm ‖ · ‖α on Rn and the norm ‖ · ‖β on Rm. Let A ∈ Rm×n and

b ∈ Rm be such that the set F := {x ∈ Rn+ : Ax = b} 6= ∅. Also, let

σ̄(A) =
{

(µ+, µ−, λ) ∈ Rm+n : ‖Aᵀ(µ+ − µ−)− λ‖∗α ≤ 1, µ+, µ− ∈ Rm+ , λ ∈ Rn+
}
,

and

HA = max{‖(µ+, µ−, λ)‖∗β : (µ+, µ−, λ) is an extreme point of σ̄(A)}. (2.20)

Then, HA ≥ HA,b.

Proof. Proof. First notice that for all y ∈ Rn,

min
x∈F
‖x− y‖α = min{‖x− y‖α : A′x ≤ b′, x ∈ Rn}

where

A′ =


A

−A

−I

 , b′ =

b

−b

0

 .
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Thus, it follows from [55, Theorem 3.2] that

min
x∈F
‖x− y‖α ≤ HA

∥∥∥∥∥∥∥∥∥


(Ay − b)+

(Ay − b)−

y−


∥∥∥∥∥∥∥∥∥
β

, (2.21)

after identifying HA = Kαβ(A′), σ̄α(A) = σα(A′) [see, 55, Theorem 3.2].

From (2.21), it follows that for any y ∈ Rn such that Ay = b, then

min
x∈F
‖x− y‖α ≤ HA

∥∥∥∥∥∥∥∥∥


0

0

y−


∥∥∥∥∥∥∥∥∥
β

= HA
∥∥y−∥∥

β
. (2.22)

Also, from (2.22), HA ≥ HA,b follows from Definition 2.2.2, as HA,b is the smallest constant

satisfying (2.22).

In order to use Proposition 4 to reformulate QP (2.1) as IQP (2.6), one can first, similar

to [32], normalize the primal variables of QP to be between 0 and 1. Namely, under the

boundedness assumption considered here, one has that QP is equivalent to:

min 1
2x

ᵀH̃x+ f̃ᵀx

s.t. Ãx = b

x ≥ 0,

where H̃ij := HijUiUj , f̃i := fiUi, and Ãki := AkiUi for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m},

and U ∈ Rn+ is given by (2.7). Now, using Proposition 4, and choosing the norm ‖·‖α = ‖·‖∞

on Rn and the norm ‖ · ‖β = ‖ · ‖∞ on Rm, we obtain that QP (2.1) can be reformulated as

IQP (2.6) by letting H = H̃, f = f̃ , A = Ã,

U = e, and V ≥Me,

with

M =
(
‖H̃‖1,1 + ‖f̃‖1

)
HA, (2.23)

where we have used that κ = max{‖H̃x‖1 : x ≤ e, x ∈ Rn+} ≤ ‖H̃‖1,1.
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In the case that one chooses the norm ‖ · ‖α = ‖ · ‖1 on Rn and the norm ‖ · ‖β = ‖ · ‖1

on Rm, then M = n(n‖H̃‖∞,∞ + ‖f̃‖∞)HA. However, empirical results on test instances

shows that this latter M is weaker than the bound obtained using (2.23).

Obtaining an efficient way to compute the constant HA in (2.20) is however still an open

question [see, e.g., 55, 81, 97]. For illustrative purposes, in Section 2.2.3, we show the results

of using an algorithm recently proposed in [81] to computeHA, and the corresponding bound

M in (2.23).

An alternative and efficient way to compute bounds on the dual variables of a general

instance of QP, is to use the bounds on the dual variables proposed by [32, Proposition 3.1]

which are valid for QP instances having a strictly non-negative feasible solution (i.e., a

feasible solution satisfying x > 0), and can be computed by solving a LP [cf., 32, eq. (19)].

Specifically, notice that after obtaining the primal bounds U ∈ Rn using (2.7), problem QP

is equivalent to

min 1
2x

ᵀHx+ fᵀx

s.t. Ax = b

0 ≤ x ≤ U.

(2.24)

Following the notation used thus far and letting ρ ∈ Rn be the dual variables associated

with the upper bound constraints on the variables x ∈ Rn in (2.24), it follows from the KKT

conditions of (2.24) that any of its optimal solutions must satisfy:

Hx+ f +Aᵀµ− λ+ ρ = 0 (2.25a)

xᵀλ = 0, (U − x)ᵀρ = 0 (2.25b)

Ax = b (2.25c)

x ≥ 0, λ ≥ 0, ρ ≥ 0.

Also, after multiplying (2.25a) by a feasible solution x ∈ Rn of (2.24) and using (2.25b),

(2.25c), it follows that any optimal solution of (2.24) also satisfies:

xᵀHx+ fᵀx+ bᵀµ+ Uᵀρ = 0.

Then, if QP has a feasible solution x ∈ Rn satisfying xi > 0, i = 1, . . . ,m, it follows from

[32, Proposition 3.1] that bounds on the dual variables V ∈ Rn required for the MILP
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reformulation IQP of QP can be computed by solving the following LP:

Vj = max


λj :

Hx+ f +Aᵀµ− λ+ ρ = 0

H •X + fᵀx+ bᵀµ+ Uᵀρ = 0

0 ≤ Xij ≤ UiUj , i, j = 1, . . . , n

0 ≤ x ≤ U, λ ≥ 0, ρ ≥ 0, X ∈ Sn


, (2.26)

where H • X indicates the trace of the matrix HX, the matrix X ∈ Sn represents the

linearization of the matrix xxᵀ ∈ Sn, and Sn is the set of n× n real symmetric matrices.

Remark 2.2.7. In [32], eq. (18) is used to refine the dual variable bounds after scaling

the problem so that its variables are between zero and one. However, this refinement of

the bounds is not necessary to obtain their result in Proposition 3.1. The refined version

of these bounds is however the one implemented in quadprogIP, the implementation of our

solution approach for general instances of QP.

Bound comparison

In light of the bounds on the dual variables discussed here and the dual bounds proposed

by [32, eq. (19)], it is natural to compare their values and computing times for different

instances of QP. Before doing so, however, it is important to emphasize that the dual bounds

proposed here can be imposed on QP, even if the dual feasible set of QP is unbounded.

Example 2.2.8 (Example 2.2.1 revisited). Recall the problem discussed in Example 2.2.1,

and consider the norm ‖ · ‖α = ‖ · ‖∞ on Rn and the norm ‖ · ‖β = ‖ · ‖∞ on Rm. It is

not difficult to see that in this case HA,b ≤ 1, and κ = 1. Since ‖f‖1 = 9, and ‖e‖∞ = 1,

it follows that M = (κ + ‖f‖1)HA,b ≤ 10. Thus, for this problem we can bound the dual

variables with the constraint

[λ1, λ2, λ3]ᵀ ≤ 11[1, 1, 1]ᵀ. (2.27)

In fact, notice that the following optimal solution of the problem

x∗ =


0

1

0

 µ∗ =

[
0

−3

]
λ∗ =


0

0

0

,
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satisfies the dual bounds (2.27). On the other hand, from Example 2.2.1, it follows that

max{λ1 : (x, µ, λ) ∈ ΛKKT} =∞.

Thus, dual bounds for this problem cannot be computed using [32, eq. (19)].

In Table 2.1, we compare the bounds obtained in Section 2.2.3 with the bounds obtained

using [32, eq. (19)] for a number of randomly selected SQP instances. From Table 2.1, it

is clear that the bounds obtained using Theorem 1, and specifically, eq. (2.15) are tighter

than the ones obtained using [32, eq. (19)] (and labeled “RLT bounds” in Table 2.1 for the

reformulation linearization techniques (RLT) used to derive them) on a random sample of

SPQ instances. In fact, this is the case for all the SQP instances considered in Section 2.3.

Thm. 1 bound RLT bound
SQP Instance Value Time (s) Value Time (s)

spar030-060-1.mat: 5,520 0.0000 10,628 0.4952
spar030-070-3.mat: 5,880 0.0000 16,448 0.4694
spar050-040-1.mat: 9,200 0.0000 18,925 1.4016
spar050-050-3.mat: 9,800 0.0000 29,719 1.8674
spar060-020-1.mat: 11,040 0.0000 13,255 1.8344
spar070-075-1.mat: 13,440 0.0000 90,316 17.0129
spar080-025-2.mat: 15,680 0.0001 31,792 13.8083
spar080-025-3.mat: 15,040 0.0001 38,115 13.8468
spar090-025-2.mat: 17,640 0.0001 44,646 22.8278
spar090-025-3.mat: 16,920 0.0001 49,459 23.3063
spar090-050-3.mat: 17,460 0.0001 95,726 37.7146
spar090-075-1.mat: 17,280 0.0001 148,416 49.4807
spar100-050-2.mat: 19,600 0.0001 115,192 67.8767
spar100-050-3.mat: 19,400 0.0001 119,634 67.6607

Table 2.1: Comparison of bounds on eᵀλ obtained using (2.15) ( “Thm. 1 bound” columns)
vs. using [32, eq. (19)] (“RLT bound” columns), together with corresponding computation
times for a random sample of SQP instances.

Similarly, in Table 2.2, we compare the bounds obtained in Section 2.2.3 with the bounds

obtained using [32, eq. (19)] for a number of randomly selected SQP instances. From

Table 2.2, it is clear that the bounds obtained using Theorem 1, and specifically, eq. (2.19)

are tighter than the ones obtained using [32, eq. (19)] on a random sample of BoxPQ

instances. In fact, this is the case for all the BoxQP instances considered in Section 2.3.

Both in Table 2.1 and Table 2.2 the time differences are a result of the bounds resulting

from Theorem 1 being computed from the closed-form formulas (2.15), (2.19), while the

38



RLP bounds are obtained by solving a linear program [32, eq. (19)].

Thm. 1 bound RLT bound
BoxQP Instance Value Time (s) Value Time (s)

spar020-100-3.mat: 9,708 0.0001 73,497 0.2955
spar030-060-1.mat: 13,097 0.0001 152,505 0.5289
spar030-070-1.mat: 14,887 0.0002 172,151 0.5001
spar030-070-2.mat: 15,909 0.0001 176,093 0.5362
spar030-070-3.mat: 16,827 0.0001 184,397 0.4815
spar030-080-1.mat: 18,259 0.0001 219,338 0.4578
spar030-080-2.mat: 18,532 0.0001 205,091 0.4539
spar030-080-3.mat: 18,585 0.0001 202,502 0.5233
spar040-060-3.mat: 25,889 0.0001 388,914 0.7893
spar040-080-1.mat: 31,929 0.0001 524,796 0.9596
spar040-090-2.mat: 37,109 0.0001 589,155 1.1884
spar070-025-1.mat: 30,162 0.0182 819,461 7.1339

Table 2.2: Comparison of bounds on eᵀλ obtained using (2.19) (“Thm. 1 bound” columns)
vs. using [32, eq. (19)] (“RLT bound” columns), together with corresponding computation
times for a random sample of BoxQP instances.

In Table 2.3, we compare the bounds obtained in Section 2.2.3 with the bounds obtained

using [32, eq. (19)] for a number of randomly selected general QP instances. From Table 2.3,

it is clear that the bounds obtained using Theorem 1, and specifically, eq. (2.23) are weaker

than the ones obtained using [32, eq. (19)] on a random sample of general QP instances. In

fact, this is the case for all the general QP instances considered in Section 2.3. In Table 2.3

the time differences are a result of the bounds resulting from Theorem 1 being computed

using an algorithm whose complexity is exponential on the size of the constraint matrix of

the problem [81], while the RLP bounds are obtained by solving a linear program [32, eq.

(19)].

From the results in Table 2.1, Table 2.2, and Table 2.3, it is clear that using the bound

of Theorem 1 can lead to tighter bounds on the QP dual variables λ ∈ Rn+ than the ones

obtained using [32, eq. (19)] when a tight bound on the Hoffman constant HA,b used in

Theorem 1 can be computed efficiently.

As illustrated in Example 2.2.8, the dual QP bounds obtained from Theorem 1 can be

used even if the dual feasible set of QP is unbounded. In such case, it is not possible to

use the quadprogBB solution methodology proposed by [32] to solve the problem, as the

methodology requires (through a condition on the primal QP problem) the dual feasible set

of QP to be bounded. To illustrate this (see Table 2.4), we modify some general QP test
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Thm. 1 bound RLT bound
General QP Instance Value Time (s) Value Time (s)

st_e26.mat 49,200 0.0575 8,828 0.0742
st_fp4.mat 830,297 1.6961 594 0.1380
st_fp5.mat 47,263,557 125.8385 792 0.2807
st_glmp_kky.mat 83,410 22.4100 339 0.1013
st_glmp_ss1.mat 33,757 6.5787 429 0.1067
st_m1.mat 556,912,094 0.0655 19,060,333 0.3594
st_pan2.mat 6,017 0.0544 1,494 0.0939
st_jcbpaf2.mat: - - 96,969 0.2757
st_ph10.mat 1,320 0.5757 27 0.0679
st_ph2.mat 69,951 0.0601 8,043 0.1132
st_qpc_m0.mat 372 0.0573 35 0.0501
qp20_10_2_1.mat 69,846 0.0671 2,500 0.5206
qp30_15_1_4.mat 44,451 0.0621 1,661 0.7943
qp30_15_2_4.mat 41,625 0.0602 1,122 0.9512
qp40_20_1_4.mat 85,008 0.0548 8,700 1.3852
qp40_20_4_1.mat 523,052 0.0606 16,371 3.3573
qp50_25_1_2.mat 149,684 0.0668 12,476 2.4781
qp50_25_1_4.mat 169,868 0.0676 17,623 2.1617

Table 2.3: Comparison of bounds on eᵀλ obtained using (2.23) (“Thm. 1 bound” columns)
vs. using [32, eq. (19)] (“RLT bound” columns), together with corresponding computation
times for a random sample of (general) QP instances. Dash “-” indicates that the time limit
of 1800 sec has been reached without computing the bound.

instances in a simple way to make their dual feasible set unbounded. The modification we

use is to pick the first variable x1 of the instance and add the constraint x1 = x∗1, where

x∗1 is the value of x1 in an optimal solution of the problem (i.e., this results in a problem

that likely violates the interior condition required by [see, 32, preceding Prop. 3.1]). As

shown in Table 2.4, these modified instances can be correctly solved using the approach

proposed here with the bounds (2.23), while quadprogBB of [32] is unable to solve them

due to the unboundedness of some of the dual variables of the modified version of the

problem. Specifically, Table 2.4 provides the name of the original instance (1st column), its

optimal value (2nd column), the constraint that is added to the problem to make its dual

feasible set unbounded while leaving its optimal value unchanged (3rd column), the value

of the M bound (2.23) computed as a bound for the dual variables while still retaining at

least an optimal solution (4th column), the optimal solution for the modified version of the

instance obtained with quadprogIP (5th column), and the number of the dual variable of

the modified version of the instance that quadprogBB detects to be unbounded which results

in quadprogBB not being able to solve the modified version of the problem.
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quadprogIP quadprogBB
Optimal Fixed M bound Modified instance detected

QP instance Value Variable (2.23) Optimal Value unbounded dual

qp20_10_1_1.mat -13.189 x1=0.4660 2.07E+04 -13.189 43-th
qp20_10_1_2.mat 11.6662 x1=1.0000 1.89E+04 11.6662 66-th
qp20_10_1_4.mat -18.3137 x1=0.0000 1.29E+04 -18.3137 45-th
qp20_10_2_1.mat -3.2442 x1=0.0000 6.98E+04 -3.2442 45-th
qp20_10_2_2.mat 8.5919 x1=0.0000 1.27E+04 8.5919 45-th
qp20_10_2_4.mat 6.5794 x1=0.0000 9.54E+03 6.5794 45-th
qp20_10_3_1.mat -30.179 x1=0.0000 7.10E+04 -30.179 45-th
qp20_10_3_2.mat -15.0508 x1=0.0000 4.70E+04 -15.0508 45-th
qp20_10_3_4.mat -12.665 x1=0.0000 1.49E+04 -12.665 45-th
qp30_15_1_1.mat 32.9577 x1=0.0000 1.96E+05 32.9577 67-th
qp30_15_1_3.mat 0.525 x1=0.0000 3.91E+04 0.525 67-th
qp30_15_1_4.mat 9.2296 x1=0.0000 4.45E+04 9.2296 67-th
qp30_15_2_3.mat -2.0693 x1=1.0000 3.18E+04 -2.0693 98-th
qp30_15_2_4.mat 1.2862 x1=0.0000 4.16E+04 1.2862 67-th
qp40_20_1_3.mat -2.7293 x1=0.0000 8.30E+04 -2.7293 89-th
qp50_25_1_4.mat 13.8442 x1=0.0000 1.70E+05 13.8442 111-th
qp50_25_2_4.mat -6.8577 x1=0.0000 2.80E+05 -6.8577 111-th
qp50_25_3_2.mat 35.9871 x1=0.0000 2.15E+05 35.9871 111-th

Table 2.4: Solution of QP test instances modified to have an unbounded dual feasible set
using quadprogIP.

2.3 Computational results

In this section, we provide a detailed description of the implementation of the solution

approach for QP problems described in the previous sections. Also, we illustrate the per-

formance of the solution approach by presenting the results of numerical experiments on a

diverse set of QP test problems.

2.3.1 Problem instances

To test the performance of the proposed solution approach for QP, we use the set of BoxQP

(2.16), Globallib (http://www.gamsworld.org/global/Globallib.htm), CUTEr [54], and

RandQP test problems used in [32, Section 4.2 and Table 1]. In addition to these test

problems, we consider the following QP test instances:

• SQP. Standard quadratic programming instances (2.13) are created by replacing the

constraints of each of the BoxQPs considered in [32, Section 4.2 and Table 1] by the

constraint that the decision variables belong to the standard simplex of appropriate

dimension.
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• SQP30, SQP50 (see, http://or.dei.unibo.it/library/msc). A set of 300 SQP

instances used for test purposes in [20].

• StableQP. These instances are particular SQPs resulting from the problem of comput-

ing the stability number of a graph [see, e.g., 74]. We use instances of this type arising

from a class of graphs that have been used for testing purposes in the literature [see,

e.g., 38, Section 4.2.2]. A more detailed description of these instances is presented in

Section 2.3.1.

• Scozzari/Tardella (see, http://or.dei.unibo.it/library/msc). A set of 14 SQP

instances used for test purposes in [20, 90].

• QPLIB2014 (see, http://www.lamsade.dauphine.fr/QPlib2014/doku.php). Nine

nonconvex quadratic instances are selected from this test set. Four of the instances

which are SQP instances are added to the SQP test set, and the other five instances

are BoxQP instances, which are added to the BoxQP test set.

Similar to [32], Table 2.5 provides a summary of the basic information of all the test

instances. In Table 2.5, n denotes the range of the number of decision variables required to

formulate the corresponding problem instance using mineq inequality constraints, and meq

equality constraints. Also, density denotes the corresponding density range for the matrix

defining the quadratic problem’s objective.

Type # Instances n mineq +meq density

StableQP 8 [5, 26] [0,1] [0.30, 0.60]
SQP 90 [20, 100] [0, 90] [0.19, 0.99]
BoxQP 90 [20, 100] [0, 0] [0.19, 0.99]
Globallib 83 [2, 100] [1,52] [0.01, 1]
CUTEr 6 [4, 12] [0, 13] [0.08, 1]
RandQP 64 [20, 50] [14, 35] [0.23, 1]
SQP30 150 [30, 30] [0,1] [1, 1]
SQP50 150 [50, 50] [0,1] [1, 1]
Scozzari/Tardella 14 [30, 1000] [0,1] [0.25, 1]

Table 2.5: Statistics of the test QP instances.
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StableQP instances

For any graph G, the inverse of α(G), the stability number of G, can be computed by solving

the following SQP [see, e.g., 74].

1

α(G)
= min

x∈∆
xᵀ(A+ I)x, (2.28)

where A ∈ Sn is the adjacency matrix of the undirected graph G(V,E) with number of

vertices ‖V ‖ = n, and set of edges E ∈ V × V . Also I is the identity matrix of appropriate

dimensions.

The StableQP instances are obtained by solving (2.28) for a class of graphs Gk, k = 1, . . .

introduced in [38] that have proven to be hard instances for approximation methods for α(G)

proposed in [15, 22, 38, 40].

2.3.2 Implementation details

The solution approach for QP proposed here is implemented as follows. First, explicit upper

and lower bounds for the instance’s decision variables are obtained. Then, the problem

instance is reformulated as QP by linearly shifting its decision variables, and adding slack

variables to the problem as necessary (e.g., (2.17)). The upper bounds on the added slack

variables are computed using (2.7) to obtain the primal variable upper bounds U ∈ Rn.

Upper bounds V ∈ Rn on the dual variable are calculated using the methods described in

Section 2.2.3 (see (2.14), (2.18) and (2.26)). Finally, CPLEX 12.5.1 (cf., http://www-eio.

upc.edu/lceio/manuals/CPLEX-11/html/) is used to solve IQP. The following parameter

settings are used for CPLEX MILP solver:

• Max_time: This is the user specified maximum running time of the algorithm and is

set to 104 seconds. Any problem taking longer than this value to be solved will be

deemed as “out of time”.

• Tol: The solver will stop when

|bestnode− bestinteger|
1−10 + |bestinteger|

≤ 10−6.

For the interested reader, the definition of the parameters bestnode and bestinteger can

be found in [34]. Here, it suffices to say that this criteria is consistent with quadprogBB
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stopping criteria [cf., 32], which is

Greatest upper bound− current lower bound
max{1, |Greatest upper bound|}

≤ 10−6.

• Other parameters of the CPLEX MILP solver such as TolXInteger, Max_iter, Branch-

Strategy, Nodeselect, are set to their default values.

We refer to the procedure described in this section to solve QP as quadprogIP, which is

coded using Matlab R2014a, and is publicly available at https://github.com/xiawei918/

quadprogIP.

2.3.3 Numerical performance

In order to test the performance of the quadprogIP methodology proposed in Section 2.3.2,

the QP test instances discussed in Section 2.3.1 are solved using quadprogIP, the quadprogBB

solver introduced by [32], the NLP solver BARON 17.8.9 of [89], and the CPLEX 12.7.0.0

QP solver. All tests are done using Matlab R2014b, together with CPLEX 12.7.0., on a

AMD Opteron 2.0 GHz machine with 32GB memory and 16 cores (each core is a 2.0 GHz.

64 bit architecture), from the COR@L laboratory (cf., http://coral.ise.lehigh.edu/).

Similar to [32], to compare the performance between quadprogIP and quadprogBB,

quadprogIP and BARON, and quadprogIP and CPLEX, we plot the solution time it takes

to solve a particular QP instance with two of the solvers as a square in a 2D plane, where

the y-axis denotes either quadprogBB’s, BARON’s, or CPLEX’s solution time and the x-axis

denotes quadprogIP ’s solution time. The dashed line in the plots indicates the y = x line

in the plane, that represents equal solution times. Thus, a square that is above the diagonal

line indicates an instance for which it takes the solver represented on y-axis more solution

time to solve than quadprogIP. Furthermore, the size of the square illustrates the size (num-

ber of decision variables) of the instance. That is, smaller squares represent “smaller” size

instances while bigger squares represent “bigger” size instances. In the figures below, only

instances in which at least one of the methodologies solves the problem within the maximum

time allowed are displayed.
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Results on SQP instances.

The results for the SQP test instances are shown in Figure 2.1. Note that a different scale

is used in the axes of Figures 2.1a, 2.1b, and 2.1c.
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Figure 2.1: Solution time in seconds of SQP instances. Size of squares illustrates size of the
instance. A square at the maximum value of an axis represents an instances for which the
solver in that axis reached maximum running time without solving it.

Figure 2.1a shows that quadprogIP clearly outperforms quadprogBB by solving all SQP

instances in a time that is one to two orders of magnitude faster than quadprogBB and

specially in the larger instances. Similarly, Figure 2.1b shows that quadprogIP clearly out-

performs BARON by solving all SQP instances in a time that is one to two orders of magnitude

faster than BARON, and specially in the larger instances. Although CPLEX solves two small-

scale instances faster than quadprogIP, again, in general quadprogIP outperforms CPLEX
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by orders of magnitude in terms of solution time (see, Figure 2.1c). As Figures 2.1a, 2.1b,

and 2.1c illustrate, the performance of quadprogIP against the other solvers improves as

the SQP instance becomes larger. The performance profile in Figure 2.1d summarizes the

clear advantages of solving the very important class of SQP instances with the proposed

quadprogIP solution approach.

Results on SQP30 and SQP50 instances.

As Figure 2.2 shows, the results on the SQP instances SQP30 and SQP50 from [20] is very

similar to the ones presented in Section 2.3.3. As with the set of SQP instances, only CPLEX

is able to solve a few instances faster than quadprogIP; however, in general quadprogIP

outperforms the other solvers by orders of magnitude in terms of solution time.

Results on StableQP instances.

In line with the performance of quadprogIP on SQP, SQP30, and SQP50 instances, it is

interesting to see in Table 2.6 that quadprogIP clearly outperforms quadprogBB, BARON,

and CPLEX in the StableQP instances (see, Section 2.3.1). In fact, while quadprogIP solves

each of the instances in less than a second, quadprogBB, and CPLEX are unable to solve the

instances beyond k ≥ 4 within the maximum allowed solution time of 104 seconds, while

BARON is unable to solve the instances beyond k ≥ 3 within the maximum allowed solution

time.

Solution Time (s.)
k quadprogIP quadprogBB �BARON �CPLEX

1 0.34 3.67 8.93 0.39
2 0.25 6.28 2573.77 8.75
3 0.34 12.56 - 685.70
4 0.43 - - -
5 0.49 - - -
6 0.51 - - -
7 0.46 - - -
8 0.49 - - -

Table 2.6: Solution time in seconds for StableQP instances. Dash “-” indicates that the
solver was unable to solve the instance within the maximum allowed time.
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(d) Performance profile for SQP30 and SQP50
instances.

Figure 2.2: Solution time in seconds of SQP30 and SQP50 instances. Size of squares illus-
trates size of the instance. A square at the maximum value of an axis represents an instances
for which the solver in that axis reached maximum running time without solving it.

Results on Scozzari/Tardella instances.

The Scozzari/Tardella from [90] are composed of much larger-scale instances of SQP than

the ones considered so far. Table 2.7, as with the previously discussed groups of standard

QP instances, clearly shows that quadprogIP is able to solve these instances faster than the

other solvers, and is able to solve more large-scale instances than the other solvers.

Results on BoxQP instances.

In Figure 2.3, we compare the performance of quadprogIP on the BoxQP instances against

the other three selected solvers. It is clear from Figure 2.3a that while quadprogIP outper-
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Solution Time (s.)
Scozzari/Tardella instance quadprogIP quadprogBB �BARON �CPLEX

Problem_30x30_0.75.mps.mat: 0.51 5.27 39.32 5.56
Problem_50x50_0.75.mps.mat: 11.78 48.29 - 2,162.13
Problem_100x100_0-1.mps.mat: 1.54 1,412.16 223.54 154.71
Problem_100x100_0.5.mps.mat: 6.71 319.82 - -
Problem_100x100_0.75.mps.mat: 36.76 1,519.61 - -
Problem_200x200_0-1.mps.mat: 36.86 - - 9,995.67
Problem_200x200_0.5.mps.mat: 175.15 - - -
Problem_500x500_0-1.mps.mat: 240.09 - - -
Problem_500x500_0.25.mps.mat: 2,092.48 - - -
Problem_1000x1000_0.25.mps.mat: - - - -
Problem_Q30.mps.mat: 0.54 4.27 - -
Problem_Q50.mps.bar.mat: 2.45 8,476.70 - -
Problem_Q100.mps.bar.mat: 4.71 - - -
Problem_Q150.mps.mat: 20.89 - - -

Table 2.7: Solution time in seconds for Scozzari/Tardella instances. Dash “-” indicates that
the solver was unable to solve the instance within the maximum allowed time.

forms quadprogBB in the smaller BoxQP instances (ranging between 20–60 decision vari-

ables), quadprogBB outperforms quadprogIP for larger BoxQP instances (ranging between

60–100 decision variables), where quadprogIP is typically unable to solve the instance within

the 104 maximum solution time.

Figure 2.3b shows the performance of quadprogIP and BARON on the BoxQP test set. It is

clear that BARON outperforms quadprogIP in most BoxQP instances. Although for instances

with less than 40 decision variables the solution time of quadprogIP is not significantly longer

than that of BARON. Figure 2.3c shows that CPLEX performs much better than quadprogIP

on all BoxQP instances. Figure 2.3d summarizes these results, where it is clear that CPLEX

and BARON are the best solvers for these BoxQP instances.

It is worth mentioning that the performance of quadprogIP on BoxQP instances can

be improved by adding appropriate valid constraints to the IQP (2.6) formulation of the

BoxQP. This valid constraints can be derived from [58, Prop. 1] [see also, 20, Lemma 4].

Specifically, notice that the IQP (2.6) corresponding to (2.17) can be written as:
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(d) Performance profile for BoxQP instances.

Figure 2.3: Solution time in seconds of BoxQP instances. Size of squares illustrates size of
the instance. A square at the maximum value of an axis represents an instances for which
the solver in that axis reached maximum running time without solving it.
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2 min (Hl + f)ᵀx− (u− l)ᵀµ
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0 ≤ λsi ≤ (1− zsi )Vi i = 1, . . . , n

zxi , z
s
i ∈ {0, 1} i = 1, . . . , n.

(2.29)
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Then, from [58, Prop. 1], it follows that the constraints

zxi + zsi = 1, for all i ∈ {1, . . . , n} such that Hii < 0, (2.30)

are valid constraints for the optimal solutions of (2.29) when Vi, i = 1, . . . , n is given

by (2.18).

When added to (2.29), the valid constraints (2.30) improve the solution time of the

approach proposed here to globally solve BoxQP problems. Although the quadprogIP code

does not include the strengthening constraints (2.30) for BoxQPs, the results illustrated on

Figure 2.4 show how adding the valid constraints (2.30) improves the solution time on a set of

spar BoxQP instances ranging on size between 20-40 variables with density between 30-100.

In particular, with the addition of these constraints, quadprogIP outperforms quadprogBB

on these instances.
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Figure 2.4: Performance profile for spar BoxQP instances anging on size between 20-40
variables with density between 30-100. Extra constraints refer to adding constraints (2.30)
in the quadprogIP solver.

Results on CUTEr, Globallib, and RandQP instances.

In Figures 2.5, we compare the performance of quadprogIP on the CUTEr, Globallib, and

RandQP instances against the other solvers. As Figure 2.5a illustrates, except for a few

instances, quadprogIP has shorter solution times than quadprogBB on the more general

CUTEr, Globallib, and RandQP instances of QP. Moreover, quadprogIP typically solves

these problems about 10 times faster than quadprogBB. For these CUTEr, Globallib, and

RandQP we find nine (9) instances that are successfully solved by quadprogIP but not by
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quadprogBB within the maximum allowed solution time of 104 seconds.

As for BARON, it can be seen from Figures 2.5b that quadprogIP is faster on most of

the CUTEr, Globallib, and RandQP instances, with quadprogIP being able to solve a fair

number of instances that BARON is not able to solve within the maximum allowed time of 104

seconds. On the other hand, CPLEX is able to solve most of the CUTEr, Globallib, and

RandQP instances faster than quadprogIP; however, still a number of instances are solved

faster than CPLEX, and most instances are solved by quadprogIP in a time no larger than 10

times the solution time of CPLEX. Figure 2.5d summarizes these results.
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Figure 2.5: Solution time in seconds of CUTEr, Globallib, and RandQP instances. Size of
squares illustrates size of the instance. A square at the maximum value of an axis represents
an instances for which the solver in that axis reached maximum running time without solving
it.
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2.4 Conclusion

In this paper, we present a new simple and effective approach for the global solution of (non-

convex) linearly constrained quadratic problems (QP) by combining the use of the problem’s

necessary KKT conditions together with state-of-the-art integer programming solvers. This

is done via a reformulation of the QP as a mixed-integer linear program (MILP). We show

that in general, this MILP reformulation can be obtained for QPs with a bounded pri-

mal feasible set via fundamental results related to the solution of perturbed linear systems

of equations [see, e.g., 55]. In practice, quadprogIP is shown to typically outperform by

orders of magnitude quadprogBB, BARON, and CPLEX on standard QPs. For general QPs,

quadprogIP outperforms quadprogBB, outperforms BARON in most instances, while CPLEX

performs the best on these instances. For box-constrained QPs, quadprogIP has a com-

parable performance to quadprogBB and BARON in small- to medium-scale instances, but is

outperformed by these solvers on large-scale instances, while CPLEX performs the best on

box-constrained QP instances. Also, unlike quadprogBB, the solution approach proposed

here is able to solve QP instances whose dual feasible set is unbounded. The performance

of this methodology on standard QP problems allows for the potential use of this solution

approach as a basis for the solution of copositive programs [cf., 42]. Which is an interesting

direction of future research work.

The proposed IP formulation of general QPs requires the computation of certain type

of Hoffman bound [see, e.g., 60] on the system of linear equations defining the problem’s

feasible set. Thus, obtaining general and effectively computable bounds of this type is an

interesting open question.

We finish by mentioning that a basic implementation of the proposed solution ap-

proach referred as quadprogIP is publicly available at https://github.com/xiawei918/

quadprogIP, together with pointers to the test instances used in the article for the numer-

ical experiments, and the raw data of all the solution times used to construct the figures

throughout the article in the PDF file raw data.pdf.
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Chapter 3

Multi-Commodity Network Flow

Problems with Resource Constraints

3.1 Introduction

Air transportation is a steadily growing market that has seen a 60% growth over the past

decade [1]. A recent advance in the technology of electric Vertical Take-off and Landing

aircrafts (eVTOLs) has made on-demand aviation transportation a practical solution to

improve urban mobility, as well as alleviate the pressure on ground transportation. eVTOLs,

which are similar to helicopters, have several advantages that make them the ideal vehicle

for an on-demand aviation network. Environment-wise, eVTOLs are quieter, that is, the

noise generated is no louder than ground traffic noise at peak. eVTOLs are also more

environmentally friendly as they are electrically powered. The maximum cruising speed of

eVTOLs is about 170 miles per hour, and a fully charged battery allows the eVTOL to travel

up to 120 miles [61], making eVTOLs a feasible and efficient transportation option for inner

and even inter-city transit.

A basic on-demand aviation transportation network (or eVTOL network) consists of the

hubs, the eVTOLs, and the passengers. The hubs provide parking decks for idling eVTOLs

to park and recharge, and operating eVTOLs to take-off and land. The hubs are also the

only locations where passengers can load or unload from the eVTOLs. The number and

locations of the hubs are predetermined optimally based on the traffic pattern of the city.

According to the solution of a facility location model, for a typical metropolitan area, 5 hubs
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placed optimally can serve about 30% to 50% of the traffic demand. eVTOLs are the primary

transportation vehicle for efficient transit between hubs. An eVTOL can accommodate up

to 3 passengers, not including the pilot. The passengers may utilize the eVTOL network by

traveling to a nearby hub by foot or any form of ground transportation, and take an eVTOL

to the hub that is closest to their destination, then get to their destination by foot or ground

transportation.

The development and operation of such an on-demand aviation transportation network

involves strategic decisions which are vital for the success of the operation. The feasibility

and efficiency of the network, in other words, the passenger throughput and time savings,

are some of the most important aspect to consider when operating the network, and the

routing of the eVTOLs in the network is the key to an efficient operation.

In this article, we consider a multi-commodity network flows model (MCNF) model to

help determine optimal routes of the eVTOLs on an on-demand aviation network. The

eVTOLs and passengers can be viewed as commodities in the network, and routing them is

equivalent to finding the optimal flow of each commodity through the network. However, the

flow of passengers between hubs is constrained by the availability of the eVTOLs, and the

flow of eVTOLs is constrained by the remaining battery level of the eVTOLs. The optimal

flow of both passengers and eVTOLs is the flow that transport most passengers to their

respective destination on time.

The organization of the article is as follows: Section 3.1 gives a general introduction of the

problem. Section 3.2 summarizes the literatures related to eVTOLs. Section 3.3 provides

a more detailed description and the assumptions of the problem. Section 3.4 proposes a

formal mathematical model for the problem. Section 3.5 discusses two heuristics that help

to generate initial feasible solutions and improve on incumbent feasible solutions, allowing

to speed up the solution time of the model. Finally, Section 3.6 summarizes the performance

of the heuristics over a set of instances of the problem.

3.2 Literature Review

Since eVTOLs are a relatively new technology that has become popular in recent years,

the lines of research on eVTOLs are limited. One line of research focuses on the design

aspect of the eVTOLs. [11] studied the electric multirotor design for eVTOLs. The work
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discussed the method of propulsion component selection for eVTOL propulsion system de-

sign, and presented a framework for both analysis of an existing propulsion system, as well

as optimization of a propulsion system given a set of requirements for the vehicle. Electric

propulsion is also discussed in [41], where a study is conducted on how the vertical flight

vehicle may be designed to reduce cost by considering electric propulsion. According to [41],

electric propulsion can simplify power transmission comparing to mechanical drive trains,

and thus potentially reduce the cost of maintenance. The work further examined this po-

tential from a reliability standpoint. On an optimal control aspect of eVTOLs, [82] focuse

on the formulation of the fixed final time multiphase optimal control problem, where the

energy consumption of the eVTOL is used as performance index. It is mainly concerned

with using a multiphase optimal control solution to ensure the eVTOL meets the required

time of arrival, and achieve the most energy efficient arrival trajectory at the same time. On

a different topic, [77] investigates the management and operation of a fleet of eVTOLs for on

demand aviation. It further discussed preliminary requirements for On-Demand Mobility air

operations control centers. Key functional requirements are put forward related to vehicle

safety, customer experience, and airspace integration. The most relevant work with respect

to our problem is [48], where a case study of utilizing eVTOLs for cargo delivery in the San

Francisco bay area is studied. In particular, the cargo delivery is carried out in two phases,

where the first phase involves using eVTOLs to transport the cargo to warehouses, and sec-

ond phase refers to the last-mile delivery by car. An optimization model is formulated to

determine the optimal location of warehouses such that the maximum amount of package

demand is satisfied. The detailed performance statistics of the eVTOL network is studied,

which includes sizing, mission performance, recharge time requirements and daily package

throughput.

3.3 Problem Description

The goal of using mathematical modeling techniques for the eVTOL on-demand transporta-

tion problem is to analyze the impact of different parameters on the dynamics of the eVTOL

network. To be more specific, how much passenger demand can be fulfilled by introducing

on demand eVTOL transportation, how many eVTOLs are needed, how should the flights

of eVTOLs be scheduled, and how long is the average waiting time for passengers are all
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questions of interest. In this article, we mainly focus on answering the question of network

throughput, which is to determine the maximum number of passengers the eVTOLs can

transport to their destination in a given city. This statistic is of high interest, because it

pertains to the eVTOL network’s operation performance, and its ability to alleviate the

burden on the ground traffic. More importantly, it helps decide if the operation will be

economically feasible.

Many factors could affect the performance of the eVTOL transportation network, so

practical assumptions are made in order for a compact but still realistic model to be for-

mulated. The time horizon of the problem is one day. We simplify the time component by

discretizing the timeline into equal sized time-bands, with a customized time-bandwidth.

We only consider the set of passengers who are traveling long distances, between 20 miles

to 120 miles in the city. We assume that all the passengers’ information is known at the

beginning of the day. The information includes the pick-up and drop-off time, and the pick-

up and drop-off location of the passenger. To be more specific, the latitude and longitude

of the passenger’s origin and destination. The drop off time is assumed to be the latest

time at which the passenger needs to get to his or her destination. It is assumed that all

passengers have to get to their destinations before their latest arrival time, either by eVTOL

or by ground transportation. If taking an eVTOL cannot get the passenger to his or her

destination on time, then the passenger is assumed to arrive at the destination at the latest

arrival time by ground transportation. The number and locations of hubs are assumed to be

given. In practice, the locations of the hubs may be determined by solving a facility location

model, in which the maximum number of passengers are covered. A passenger is said to

be covered when there is a hub that is within the defined radius of the passenger’s origin,

and similarly when another hub within a defined radius of the destination. The potential

location of the hubs can be obtained by clustering on all passengers’ origins and destinations,

and the exact locations are selected out of the potential locations based on the number of

hubs and the coverage of passenger demand. There is also a capacity for each hub, which

is the maximum number of eVTOLs it can hold at any given time. For simplicity, all hubs

are assumed to have the same capacity. eVTOLs also have capacity, where a maximum

of 3 passengers can be onboard besides the pilot. eVTOLs are electricity powered, and the

capacity of the battery is 140 kw. At the cruising speed of 150 mph, 71kwh power is required

[61]. Since the eVTOLs consume battery energy when operating, it is necessary to ensure
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the eVTOLs are not operating with insufficient battery levels. We assume that when an

eVTOL is parked on the ground, it is always recharging. The recharging amount is assumed

to be a linear function of time between 25% to 90%, and it takes 30 minutes to charge up

the battery to 80%. For simplicity, the recharging rate is assumed to be a linear function

with respect to time, and the slope is approximated to be 0.062 kw/s. Clearly, to ensure the

safety of passengers, the energy level of the eVTOLs has to be considered in determining

the routes of eVTOLs.

3.4 Model Formulation

We formulate the eVTOL on-demand transportation problem as a MCNF problem with

resource constraints, where the resource is the battery of the eVTOLs. A path of a passenger

or an eVTOL is determined by a series of movement through time, and to explicitly represent

the path, we construct a time-space network to illustrate the flow of passengers and eVTOLs

through time.

A time-space network consists of two axis, the y-axis denotes time, and the x-axis denotes

space. Since the time component is discretized, any location (origin, destination or hub) at

a given time is represented as a node. In the network, a node has two coordinates, where

the first coordinate indicates the location of the node, and the second coordinate indicates

the time of the node. An arc connecting two nodes indicates a flow in the network, from the

first node’s location at the first node’s time, to the second node’s location at the seconds

node’s time. In other words, the time spent traveling on the arc is the difference between

the second node’s time and the first node’s time. For instance, a time space network with

1 passenger (denoted passenger i), 2 hubs and 5 minutes discretized intervals is shown in

Figure 3.1.
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Figure 3.1: Time space network with 5 minutes intervals

Note the time-bandwidth is 5 minutes, starting from 00:00 of the day. From left to right,

each vertical line represent the timeline of a location, namely origin, Hub 1, Hub 2, and

destination. Each node in the network represents a location at a certain time point. For

example, node O1 in Figure 3.1 represents there is a passenger i at his origin at time 00:00,

in other words, there is a supply of 1 of passenger i at node O1. And D2 represents the

destination of passenger i, and the latest arrival time is 00:20, also there is a demand of

passenger i at D2. An arc connecting two nodes represents the flow of either an eVTOL or

a passenger from one location to another, from the time at the start node until the time

at the end node. There are two classes of arcs, one class is passenger arcs, and the other

class is eVTOL arcs. Each class of arcs may have different types of arcs. For a passenger,

there are 6 types of arcs. An arc that connects an origin to a hub is an origin-hub arc,

for example arc 1 in Figure 3.1, representing a passenger getting to a hub from his or her

origin. For each passenger, there may be multiple origin-hub arcs, depending on how many

hubs are within the predefined radius of the origin of the passenger. Similarly, an arc that

connects a hub to a destination is a hub-destination arc, such as arc 4 and 5. There may be

multiple hub-destination arcs coming from different hubs, meaning there are multiple hubs
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that are within the predefined radius of the destination of the passenger, these arcs are not

flight arcs, and the time associated with the arc is calculated as the ground transportation

time. There may also be multiple hub-destination arcs from the same hub, this may happen

if the passenger has the option to take eVTOL flights at different times that arrive at the

hub at different times. For example, in Figure 3.1, if the passenger takes arc 2, then he

will arrive at hub 2 at 00:10, and he can take arc 4 to get to his destination. It could also

happen that the passenger takes arc 3 due to eVTOL unavailability, then he will arrive at

hub 2 at 00:15, and he may only take arc 5 to his destination in order to not violate his

latest arrival time. Note that a passenger may arrive at his destination time earlier than

the latest arrival time, and the arc connecting the destination node to the latest arrival

node is the destination ground arc, which is arc 8 in Figure 3.1. The destination ground arc

makes it possible for an early arrived passenger to get to the latest arrival time destination

node, and satisfy the passenger demand. In order to travel between hubs, a passenger may

utilize the passenger flight arcs. There maybe multiple passenger flight arcs, this is possible

if there are multiple hubs that are close to the origin or the destination of the passenger, or

there are multiple flight times for the passenger to choose from at the hub. In Figure 3.1,

there are two passenger flight arcs, arc 2 at 00:05, and arc 3 at 00:10. This may happen

when the passenger has abundant time to take a later flight and still get to his destination

before the latest arrival time. A passenger waiting in the hub is represented as a passenger

ground arc, such as arc 6 in Figure 3.1. A passenger taking arc 6 means the passenger is

unable to take the flight at arc 2, and has to wait for 5 minutes and take the next flight.

This may happen if there is no available eVTOL at hub 1 at 00:05, or the eVTOLs available

do not have enough room to accommodate the passenger. Finally, there is a taxi arc that

connects the origin to the latest destination node, representing that the passenger cannot

get to destination on time by taking an eVTOL, and has chosen to take a taxi to get to the

destination at the latest arrival time. This is arc 9 in Figure 3.1.

For each eVTOL, there are also different types of arcs. For simplicity, we assume all

eVTOLs start and end at the same location. The starting location is represented by a

dummy node C1 for the beginning of the day, which we refer to as starting central node.

Similarly, node C2 represent the finishing location at the end of the day, which we refer to

as the ending central node. The dummy nodes are connected to all the hubs, and the arcs

are dummy arcs, they are assumed to cost zero battery power and zero time to travel for
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the eVTOLs. This allows the model to help decide on the initial hub for the eVTOLs to

start at, rather than us predefining the starting hub of each eVTOL and cause unnecessary

flights for the eVTOLs. Given the number of eVTOLs in the network, denote it Vn, we

can say there is a supply of Vn eVTOLs at node C1, and a demand of Vn eVTOLs at node

C2. There are two types of arcs for the eVTOLs to travel. One of them is the eVTOL

ground arcs. Taking the eVTOL ground arc meaning the eVTOL remains on the ground in

the corresponding hub for the arc’s time duration. This can be seen in Figure 3.1 in arcs

13,14, 6, 7,15,17. Note that the eVTOLs taking the ground arcs are being recharged for the

duration it remains on the ground, and the number of eVTOLs taking the same ground arc

is subject to the constraint of the capacity of the hub. The eVTOLs may travel between

hubs by taking the flight arcs, which in this case are arcs 2, 3, 6. Note that the flight arcs

may overlap with some passengers’ flight arcs, so that the eVTOLs traveling the arcs may

take the passengers traveling the same arc. The number of passengers allowed to travel the

flight arc is decided by the number of eVTOLs traveling the arc, as well as the capacity

of the eVTOLs. An eVTOL flight arc not overlapping with any passenger flight arc is a

repositioning arc. This arcs exists to allow the eVTOLs to reposition themselves after a

flight to better serve upcoming passengers. All eVTOLs start from C1, and flow through

the network by traveling ground arcs and flight arcs, subject to the battery level constraints

of the eVTOLs, and eventually returning to C2.

All the information required to define the network is assumed to be known in advance.

The duration of any flight arcs is calculated by the distance between the departure hubs and

arrival hub divided by the speed of the eVTOL. The duration of any arc connecting an origin

or a destination to a hub is calculated by the Haversine [45] distance between the origin or

destination, multiplied by a scalar to approximate the actual driving distance, then divided

by the trip average speed. The taxi arcs are created using the passenger pickup time and

drop off time.

Figure 3.1 only illustrates the structure of the time space network for a simple scenario

of 1 passenger, passenger i. To build the complete time space network, we need to generate

a similar network for each passenger. Note that, since the time component is discretize

into intervals of 5 minutes, the departure and arrival times will be mapped to the closest

discretized time point after the actual time. So if an eVTOL arrives at a hub at 12:01, it will

be rounded to 12:05, which is the nearest discretized time point in the future. We start by
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generating the timelines for all hubs. Next, to generate all nodes and arcs for a passenger,

we first generate the taxi arc using the data from the dataset, then we generate the origin to

hubs arcs, where the end node of the arcs will be rounded to the nearest future discretized

node. The eligible departure hubs are the hubs that are within 25 miles of the origin, and

arrival hubs are eligible if they are within 25 miles of the destination. Then we generate the

possible flight arcs for the passenger, which connect the hub nodes to the arrival hub nodes.

Note that if a flight arc does not get the passenger to the destination within the time savings

threshold, the flight arcs and the subsequent hub to destination arcs shall not be generated.

After that, we generate the arrival hub to destination arcs, by connecting the destination

node with the arrival hub node, where the time of the destination node can be computed

with the arrival hub node information. We assume that each passenger’s network takes the

form of a bipartite graph, since the passengers are assumed to always travel from a hub

that is close to the origin to a hub close to the destination, without making a connection

flight in any of the hubs in between. Finally, we generate the ground arcs by connecting the

consecutive nodes on the same location timelines. Last but not least, we need to generate

some arcs to allow the eVTOLs to reposition themselves to better serve the next potential

flight. These are generated right after every flight arc for a passenger, they start from

the end node of the flight arc, and connect to the other hubs nodes, where the duration

is the flight time it takes to go from the current hub to the other hub. Repositioning of

eVTOLs is necessary, but can be an expensive operation. Flying an eVTOL in the air

without transporting a passenger will only induce cost and not generate any revenue. Each

eVTOL flight arc contains information of the battery consumption of the flight. The battery

consumption is a linear function with respect to the flight time, and we assume the number

of passengers on board does not affect the rate of battery consumption. For eVTOL ground

arcs, the battery recharge amount information is also available, which similarly is a linear

function with respect to time. This concludes the network building phase.
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3.4.1 Parameters

V : the set of all eVTOLs

O: the set of all origins of passengers

D: the set of all destinations of passengers

H: the set of all hubs

P : the set of all passengers

U : The set of taxi arcs

T0: the beginning of the time horizon

T : the end of the time horizon

N : the set of all nodes, where each node is in the form of (h, t), where h ∈ H ∪O ∪D

and t = T0, . . . , T

APass: the set of passenger arcs

AE : the set of eVTOL arcs

FPass: the set of passenger flight arcs, where FPass ⊂ APass

FE : the set of eVTOL flight arcs, where FE ⊂ AE

Gi: the set of all ground arc for hub i ∈ H

Sni,t: the supply (+) or demand (-) or transit (0) of passenger n at hub i at time t

(i, t, j, t̄): arc that leaves hub i ∈ N at time t = T0, . . . , T and arrives at hub j ∈ H at time

t̄ = T0, . . . , T, t̄ > t

In(i, t): the set of incoming arcs of hub i ∈ N at time t = T0, . . . , T

Out(i, t): the set of outgoing arcs of hub i ∈ N at time t = T0, . . . , T

Cv: the seat capacity of a eVTOL

CHi : the parking capacity of hub i

B: the max battery level of an eVTOL

ĥ: the central hub at which all the eVTOLs start and end

3.4.2 Variables

xvi =


1 if eVTOL v ∈ V travels Arc i ∈ AE

0 otherwise
(3.1)
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ypi =


1 if passenger p ∈ P travels Arc i ∈ APass

0 otherwise
(3.2)

3.4.3 Model

min
∑
p∈P

∑
i∈U

ypi (3.3)

s.t. −
∑

j∈In(i,t)

ypj +
∑

k∈Out(i,t)

ypk = Spi,t ∀(i, t) ∈ N, ∀p ∈ P (3.4)

∑
i∈Out(ĥ,T0)

xvi = |V | ∀v ∈ V (3.5)

∑
i∈Out(h,t)

xvi −
∑

j∈In(h,t)

xvj = 0 ∀h ∈ H, t ∈ T, ∀v ∈ V (3.6)

∑
i∈In(ĥ,T )

xvi = |V | ∀v ∈ V (3.7)

∑
v∈V

xvi ≤ CHj ∀i ∈ Gj ,∀j ∈ H (3.8)

∑
p∈P

ypj ≤
∑
v∈V

Cvx
v
j ∀j ∈ FPass ∩ FE (3.9)

xvi ∈ {0, 1} ∀a ∈ AE (3.10)

ypi ∈ {0, 1} ∀a ∈ Apass (3.11)

1. (3.3): Minimize the number of passengers traveling by ground transportation; this

is equivalent to maximizing the number of passengers transported by eVTOLs, since

each passenger has to take either eVTOL or ground transportation.

2. (3.4): Passenger flow conservation constraints. The outflow and inflow of a passenger

p at any given node should be equal to supply or demand of the node.

3. (3.5): All eVTOLs start at the same initial hub at the beginning of the time horizon.

4. (3.6): eVTOLs flow conservation constraints. The outflow and inflow of a eVTOLs at

any given node should be equal.

5. (3.7): All eVTOLs finish at the same initial hub at the end of the time horizon.

6. (3.8): The number of eVTOLs parked at a hub cannot exceed the parking capacity of
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the hub.

7. (3.9): The passengers cannot fly between 2 hubs unless there is enough eVTOL capacity

to transport them.

8. (3.10): Decision variable of whether a eVTOL flies an arc has to be binary.

9. (3.11): Decision variable of wether a passenger travels an arc has to be binary.

3.4.4 Battery Constraints

Note that the mathematical model above does not incorporate the battery feasibility of

eVTOLs. This needs to be considered because the remaining battery level for an eVTOL at

any given point dictates if it can take the next flight or not. In this problem, we allow partial

recharge, which means we do not force the eVTOL to recharge up to full battery every time it

recharges. Instead, it may recharge up to any amount. This adds an extra layer of complexity

to modeling the battery information, as the battery level at any given time depends on all

the previous arcs that lead to the current node. Modeling the battery using a variable will

introduce exponential number of variables to represent the current hub and time, as well as

all the previous arcs, and also binary variables to indicate which previous arcs were selected.

To avoid this complexity, we model the battery information by adding battery infeasibility

constraints. To be more specific, for every possible subpath, in other words, every possible

series of arcs, if an eVTOL with full battery takes the path and end up with negative battery

level at any node on the subpath, we generate a constraint so the subpath is infeasible for

any eVTOL. It is easy to observe that the number of battery infeasibility constraints is

exponential, as there are exponential possible subpaths. To improve the performance of the

model, we generate the constraints as lazy constraints. Lazy constraints are constraints that

do not start in the model formulation, but are checked whenever an integer feasible solution

is discovered. If any lazy constraints are violated, they are added to the model, and the

model is solved again. This process continuous until a optimal solution which satisfies all

the lazy constraints is found. The advantage of the lazy constraints is that only a subset of

the constraints are added, so we can avoid adding exponential number of constraints into

the model.

The battery infeasibility constraints is generated whenever a infeasible subpath is found

in an integer feasible solution. For an integer feasible solution, it provides a path for each
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eVTOL in the network. A path is a set of consecutive arcs that start from the starting

central node and ends with the ending central node. A subpath is a subset of the arcs of

a path, where the arcs in the subset are connected through time. An infeasible subpath is

defined to be a set of arcs on the eVTOL’s path, where the arcs are between the last time

the battery of the eVTOL is full before the battery level is negative, to the first time the

battery level of the eVTOL is nonnegative again after the battery level is negative. This

ensures that all the flight arcs that led to the battery level being negative are included

in the infeasible subpath. A battery infeasible constraint is generated from the infeasible

subpath by considering the minimal set of flight arcs of the infeasible subpath such that,

if an eVTOL travels all the flight arcs, the battery level is negative, but if any flight arc is

removed from the subpath, the battery level is feasible for the subpath. This is similar to the

idea of a minimal cover cut, except instead of a cover we have a minimal battery infeasible

subpath. A battery infeasible constraint is generated for every battery infeasible subpath of

the solution, which means it is possible to have multiple battery infeasible constraints added

to the model every time a integer feasible solution is found, since there might be multiple

eVTOLs, and each path of eVTOL may have multiple infeasible subpaths. A typical battery

constraint for a minimal infeasible subpath of an eVTOL i is of the following form

∑
i∈MIS

xvi ≤ card(MIS)− 1 ∀i ∈MIS, (3.12)

where MIS is the set of flight arcs in the minimal infeasible subpath for eVTOL i.

3.5 Solution Methods

The problem is formulated as a mixed-integer-linear-program (MILP), and the battery con-

straints are added as lazy constraints. The problem is solved using Gurobi’s mix integer

program solver [56]. Two heuristics are proposed to improve the solution time of Gurobi.

3.5.1 Perturbed Dijkstra’s Algorithm Heuristic

The complexity of the model largely attributes to the battery constraints. The battery

constraints are exponential in number, and are added to the model as lazy constraints,

which means they are checked every time a feasible integer solution of the model is found. If
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the solution is feasible to all the lazy constraints, then it is indeed a feasible integer solution

of the full problem, otherwise the subset of lazy constraints that are violated are added

to the model, and the model is resolved. The lazy constraints makes finding an integer

feasible solution difficult, which increases the solution time of the model. We propose a

heuristic, based on Dijkstra’s Algorithm [92] for finding shortest paths in a network, which

finds a feasible integer solution that is also battery feasible, and can be used as a good initial

solution to the model.

The objective of the model is to find paths for eVTOLs and passengers such that as

many passengers are transported using eVTOLs as possible. It can be observed that, if the

eVTOL paths are fixed, the paths of the passengers can be found by solving a MILP. Finding

the routing of any eVTOL is to find a path that starts from the starting central node of

the network to the end central node of the network. Dijkstra’s Algorithm is an efficient

algorithm which determines the shortest path of any given pair of nodes in a network, where

the distance of the arc is represented by the weight of the arc. In other words, the path

should yield minimum total weight among all the paths connecting the pair of nodes. We

need to maximize the passenger transported, as well as maintain battery feasiblility, so we

propose a modified version of Dijkstra’s Algorithm which finds a path that maintains battery

feasibility, and aims to allow as many passengers covered as possible. The modified version

of Dijkstra’s Algorithm is described in Algorithm 1.

The modified version of Dijkstra’s Algorithm is similar to Dijkstra’s Algorithm. It uses

a dictionary to store the weight of the nodes that is visited, in this case, the weight is the

number of potential passengers that can travel through the arc, and traverse through the

network in a breadth first fashion. The main differenmodified version of Dijkstraeen the

modified version of Dijkstra’s Algorithm and Dijkstra’s Algorithm is that, instead of storing

only the weight information, modified version of Dijkstra’s Algorithm also stores the battery

information of each visited node. And instead of updating the node’s weight when a smaller

weight path is discovered, we update the node only when the new path to the node is battery

feasible, and has a larger weight than the stored weight of the node. This ensures that the

path found by the algorithm satisfies the battery constraints, and has the best weight in

the current iteration. However, since the modified version of Dijkstra’s Algorithm needs to

also consider battery information at each arc, it does not guarantee finding the best battery

feasible path. The following example demonstrate such a scenario.
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Algorithm 1: Perturbed Dijkstra’s algorithm(Graph, source, sink, source_battery)
Create vertex set Q sorted by time of vertex
for vertex v in Graph do
weight[v] ← INFINITY
battery[v] ← source_battery
prev[v] ← UNDEFINED
add v to Q

end for
weight[source] ← 0
while Q is not empty do
u ← vertex in Q with min time
remove u from Q
for each neighbor v of u do
neighbor_weight ← weight[u] + weight(u,v)
neighbor_battery ← min(battery[u] + battery(u,v), full_battery)
if neighbor_battery > 0 then
if v not visited then

weight[v] ← neighbor_weight
battery[v] ← neighbor_battery
prev[v] ← u

else if neighbor_weight = weight[v] then
if neighbor_battery ≥ battery[v] then
battery[v] ← neighbor_battery
prev[v] ← u

end if
else if neighbor_weight = weight[v] then
weight[v] ← neighbor_weight
battery[v] ← neighbor_battery
prev[v] ← u

end if
end if

end for
end while
return weight[], prev[]
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Figure 3.2: Example network where modified version of Dijkstra’s algorithm gives subopti-
mal solution

Consider Figrue 3.2. There are 3 hubs in the graph, and nodes 1,4,7,10 are hub 1 nodes,

2,5,8,11 are hub 2 nodes, and 3,6,9,12 are hub 3 nodes. Suppose an eVTOL starts at the

starting central node 0 with 100% battery, and needs to find a path that takes it to the

ending central node 13 without violating the battery constraints. On each flight arc, namely

(2,4), (4,8), (6,8), (8,10), (8,12), there is a pair of weights. The first weight is the number

of passengers the arc can transport, and the second weight is the percentage of battery it

will consume for the eVTOL to travel the arc. According to modified version of Dijkstra’s

algorithm, the algorithm will do a breath first search starting with node 0, and store at

each node the current best path leading to the node, while updating the information only

when the new path yields a better objective, which in this case is the number of passengers

transported. So at node 8, it will record a path which is (0,2,4,8), with objective 2 and

remaining battery at 60%. And when we search to 8 again from node 6, the new path

(0,3,6,8) has an objective of 1 and remaining battery level at 70%. So the node will not

update (0,3,6,8) as the best path to get to node 8. And this will lead to a solution of

(0,2,4,8,11,13) with objective 2, since at node 8 it does not have enough battery to travel

any other flight arc. However, clearly the optimal path is (0,3,6,8,12,13) with objective

4. This shows that the modified version of Dijkstra’s algorithm does not necessarily yield

the optimal solution, because the added battery constraints force the algorithm to balance
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transporting passengers and remaining battery feasibility, which makes it difficult to find

the optimal solution.

One contribution of the algorithm is to find a good quality initial solution for the model,

since it is difficult for the solver to find a initial solution that satisfies all the battery con-

straints.

The modified version of Dijkstra’s Algorithm can also be used to fix a battery infeasible

solution to become battery feasible, thus providing an incumbent solution to the solver, and

potentially improve the global upper bound in the branch and bound process.

3.5.2 Feasible solution repair heuristic

It can be observed that the incumbent solutions found during the branch and bound process

may be cut off by the battery constraints, which makes it difficult to find incumbent solutions

which in turn increases the solution time. Many of the feasible integer solutions only violate

few batterybattery constraints, meaning a small segment of the eVTOL route is infeasible.

We can modify the integer feasible solution by replacing the battery infeasible subpath with

a new subpath found by the modified version of Dijkstra’s Algorithm, such that the new

route is battery feasible, and thus yield an incumbent solution.

For a given integer feasible solution, we can identify the path for each eVTOL by looking

at the values of the variables. For each eVTOL path, there may exists some subpath which

is battery infeasible, we name such a subpath the battery infeasible subpath. The goal is to

replace the battery infeasible subpath with a new subpath, starting and ending at the same

nodes but being battery feasible, such that a integer feasible solution is constructed. To find

the replacing battery feasible subpath, the starting node and the ending node of the battery

infeasible subpath is determined. The starting node is defined to be the last node where the

battery is fully charged before the flight that resulted in battery infeasibility. The ending

node is defined to be the first node where the battery is full after the battery infeasibility.

The new subpath can be generated by specifying the starting node, the remaining battery

at the starting node, and the ending node for the modified version of Dijkstra’s Algorithm.

By replacing each battery infeasible subpath in the current integer feasible solution, we get

an incumbent solution that is battery feasible.

The feasible solution repair heuristic modifies a battery infeasible integer feasible solution

into a battery feasible integer solution, but the objective of the modified solution may not
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improve on the original integer feasible solution. In most cases, it results in a worse objective,

because the battery infeasibility is resolved by taking fewer flight arcs. But, the incumbent

solution it provides may still improve on the current global upper bound and leads to better

performance, which can be seen is often the case in practice.

3.6 Numerical Result

To test the overall performance of the heuristic, experiments are conducted on the model

with different sets of parameters. The passenger information used in the experiments are

the 2016 Yellow Taxi Trip Data https://data.cityofnewyork.us/dataset/2016-Yellow-

Taxi-Trip-Data/k67s-dv2t. The dataset includes trip records from all trips completed in

yellow taxis from in NYC from January to June in 2016, where the pick-up and drop-off

time, pick-up and drop-off location, and trip distance for each trip are provided. Figure

3.3 gives a visualization of a subset of the trips data with 2500 passengers, and figure 3.4

provides a potential locations of the 5 hubs in greater New York area. We consider that each

trip is consist of 1 passenger, and we select the trips for which the trip distance is between 20

miles to 120 miles. The reason is the target customers for the eVTOL transportation service

is for long distance traveling passengers, and 120 miles is the range of a typical eVTOL.

Due to the large number of parameters associated with the model, we primarily investigate

the performance of the heuristic under 2 parameters, namely, the number of eVTOLS, and

the number of passengers. All the other parameters will be constant. There are also some

implicit assumptions that further simplify the experiments:

1. All passenger may take no more than 1 flight, i.e. no passenger should be taking

connecting flights in the eVTOL network.

2. The time horizon is divided into equal-sized time bands of 5 minutes.

3. All eVTOLs start from the same hub at the beginning of the time horizon, and end at

the same hub at the end of the time horizon.
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Figure 3.3: Passengers pickup (blue) and dropoff (red) locations in Greater New York area
from NYC taxi trip dataset.
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Figure 3.4: Hub locations in Greater New York area generated from NYC taxi trip dataset.

We generated 3 sets of instances, each has 216, 268, and 398 passengers. Each set includes

5 instances, namely with 1,2,3,4,5 eVTOLs available for transportation in the network. We

use Gurobi’s MILP solver, and the heuristics proposed were implemented in Python and

used in conjunction with Gurobi’s solver. The battery feasibility constraints are imple-

mented as lazy cuts in Gurobi’s MIPSOL callbacks. The feasible solution repair heuristic

is implemented in Gurobi’s MIPNODE callbacks. The time limit is set to 900 seconds, and

the optimality gap tolerance is set to 3%. The tests are conducted on a Mac machine with

2.9GHz Intel Core i5 processor and 8GB memory.

We first look at the solution time it takes for the heuristic to generate an initial solution.

We compare the solution time and quality of the initial solution found by the modified

version of Dijkstra’s Algorithm heuristic versus Gurobi’s first incumbent feasible solution.
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Gurobi Gurobi with modified version
of Dijkstra algorithm heuristic

Passenger # eVTOL #

Initial
Solution
Gap CPU Time Initial Solution Gap CPU Time

773

1 1.17 6.92 2.02 0.02
2 1.32 386 13.7 0.03
3 - 1000 21.1 0.04
4 - 1000 24.00 0.05
5 - 1000 26.1 0.07

994

1 1.94 29.97 3.23 0.01
2 - 1000 13.2 0.03
3 - 1000 22.9 0.05
4 - 1000 20.9 0.07
5 0.00 61.36 14.7 0.15

1362

1 - 1000 3.91 0.02
2 - 900 14.70 0.05
3 - 900 23.70 0.07
4 - 900 22.00 0.10
5 0.17 282.07 17.00 0.11

Table 3.1: Comparison of initial solution gap and CPU time between GuRoBi and
Dijkstra’s Algorithm Heuristic ("-" indicates no initial solution is found)

3.6.1 Initial Solution Generation

Table 3.1 displays the information of initial solutions found by Gurobi and the modified

version of Dijkstra algorithm. The initial solution gap is the relative gap between the

objective of the initial solution and the current best lower bound, and the CPU time is the

time in seconds when the initial solution is found. We can observe that for smaller instances,

Gurobi is good at finding a good initial solution. In most cases, it finds the optimal solution

within the time limits. However, it does need some time to find the solution. On the other

hand, the modified version of Dijkstra’s algorithm finds initial solutions that have relatively

larger gap, but it takes very lettle time to get to an initial solution with good gap. This is

especially true for larger instances, where Gurobi fails to find an initial solution within the

time limit, but the heuristic is able to provide good quality initial solutions in less than a

second. This is useful when a good quality solution is needed in a short time. The solution

obtained by the modified version of Dijkstra’s algorithm can be used as a starting solution

for Gurobi’s Branch and Bound approach, which significantly improves the time to find a

initial integer feasible solution that is battery feasible.

Next, we compare the solution time with Gurobi and the solution time with Gurobi
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and the modified version of Dijkstra’s Algorithm heuristic. We set the time limit of the

experiments to be 1000 seconds, this is because in practice a solution is required in a short

period of time. The optimal relative tolerance is set to 2.5%.

3.6.2 Solution Time

Gurobi Gurobi with heuristic

eVTOL Gap (%) CPU Time (s) Gap (%) CPU Time (s)

1 2.45 5.00 2.11 0.62

2 6.86 1000.00 5.56 1000.00

3 8.14 1000.00 4.99 1000.00

4 4.47 1000.00 4.58 1000.00

5 2.85 436.26 2.84 301.02

Table 3.2: Instance with 773 passengers

Gurobi Gurobi with heuristic

eVTOL Gap (%) CPU Time (s) Gap (%) CPU Time (s)

1 2.30 5.45 2.98 3.19

2 6.97 1000.00 6.15 1000.00

3 26.40 1000.00 7.32 1000.00

4 42.88 1000.00 35.79 1000.00

5 1.94 29.97 0.66 38.62

Table 3.3: Instance with 994 passengers
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Gurobi Gurobi with heuristic

eVTOL Gap (%) CPU Time (s) Gap (%) CPU Time (s)

1 2.43 491.61 2.54 32.01

2 41.50 1000.00 8.27 1000.00

3 52.97 1000.00 11.61 1000.00

4 56.62 1000.00 6.46 1000.00

5 2.99 196.26 1.02 93.94

Table 3.4: Instance with 1362 passengers

Table 3.2 summarizes the solution information for the instances with 216 passengers. It can

be observed that all instances are solved to optimality within the time limit, with instances

of number of eVTOLs between 2 to 5 solved within 5 seconds for both approaches. For all

instances, the Gurobi with heuristic approach has a better solution time, suggesting using

the heuristic improves the efficiency of the solver.

Table 3.3 summarizes the solution information for the instances with 268 passengers.

Gurobi was able to solve 2 out of the 5 instances within the time limit, while Gurobi with

heuristic was able to solve 3 out of 5 instances. For the instances solved, Gurobi with

heuristic has better solution time. And the for instances that are not solved within the time

limit, Gurobi with heuristic has a gap that is at least as good as Gurobi’s.

Table 3.3 summarizes the solution information for the instances with 398 passengers.

Gurobi with heuristic was able to solve the instance with 5 eVTOLs, but Gurobi was not

able to solve any of the instances. For the instances that are not solved within time limit,

Gurobi with heuristic has a smaller gap when the time limit is reached, suggesting the

heuristic improves the global upper bound by finding better incumbent solutions.

3.7 Conclusion

We proposed a multi-commodity network flow model for maximizing the throughput for

an on-demand aviation transportation network, where the primary means of transportation

are eVTOLs. The model helps make strategic decisions for the network by routing passen-

gers and eVTOLs, while maximizing the number of passengers transported. The battery

limitations of the eVTOLs are considered in the model as resource constraints, and are im-
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plemented as lazy constraints in order to avoid adding exponentially many constraints to the

model. A heuristic is proposed based on Dijkstra’s algorithm which generates good quality

initial solutions in short time, and the heuristic is also used to reconstruct battery feasible

incumbent solutions from battery infeasible solutions that violated the battery constraints.

According to the experiments, the heuristic improves the efficiency of the solver by finding

better incumbent solutions, thus improving the global upper bound. It may also be used to

find good quality solutions when an optimal solution is not required.
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Chapter 4

Solving Copositive Programs via

Semi-infinite Programming approach

4.1 Introduction

A copositive program is a conic optimization problem over the cone of the copositive ma-

trices. Specifically, given b ∈ Rm, Ai ∈ Sn for i = 1, . . . ,m, C ∈ Sn, where Sn is the set of

symmetric matrices, a copositive program is the problem

dCOP = max bᵀy

s.t. S = C −
m∑
i=1

yiAi

S ∈ COPn, y ∈ Rm,

(COP)

where COPn is the copositive cone [10], which is defined as

COPn = {X ∈ Sn : uTXu ≥ 0 for all u ∈ Rn+}, (4.1)

where Sn denotes the set of symmetric matrices in Rn×n. The dual cone of a given cone

K ⊆ S is denoted as K∗, which is defined as

K∗ = {A ∈ S : 〈A,B〉 ≥ 0 for all B ∈ K}.
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Each copositive program has an associated dual problem, namely the completely positive

program, which is defined as

pCP = min 〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ CPn,

(CP)

where CPn is the dual cone of the cone of copositve matrices, namely the completely positive

cone [10], and it is defined as

CPn =

{
X ∈ Sn : X =

m∑
i=1

uiu
ᵀ
i , ui ∈ Rn+, i = 1, . . . ,m

}
. (4.2)

From the definition we can see that any completely positive matrix can be written as a

finite sum of rank 1 completely positive matrices, and this representation is called the rank

1 representation of a completely positive matrix [10]. Both COPn and CPn are closed, convex,

pointed, full dimensional, nonpolyhedral cones. A large body of work has been done on the

properties and characteristics of copositive matrices as well as completely positive matrices,

for a comprehensive survey, we refer our readers to [59], [37],[10].

The theory of copositive programming and completely positive programming are closely

related to the field of combinatorial and quadratic optimization problems, as they provide

convex reformulations for problems that arise from these fields. It has been shown in [18]

that the problem of maximizing a quadratic form over the simplex can be reformulated as

an equivalent copositive program. Burer showed in [29] that any quadratic program with a

mix of binary and continuous variables has an equivalent completely positive program re-

formulation. More recent advancements on the topic of copositive programs and completely

positive programs can be found in [43],[30] and [17].

In this paper, we will focus on a numerical solution method for general copositive pro-

gram. It is well known that copositive programs are NP-hard [75], despite the fact that they

are convex optimization problems. Many approximation hierarchy has been proposed for

the cone of copositive matrices and successfully used in the literature for solving copositive

programs. One line of approximation scheme is based on the definition of copositivity in

terms of quadratic forms. A matrix A ∈ Sn is copositive if and only if PA(x) ≥ 0 for all
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x ∈ Rn where

PA(x) =
n∑
i=1

n∑
j=1

aijx
2
ix

2
j .

Using the sufficient condition that PA(x) is nonnegative if it admits a sum of squares (SOS)

representation, where a form F (x) of degree 2m is a sum of squares form if and only if

there exists forms f1(x), . . . , fk(x) of degree m such that F (x) =
∑k

i=1 fi(x)2. Parrilo [79]

constructed the following hierarchy of cones for r ∈ N:

Krn =

{
A ∈ Sn : PA(x)

(
n∑
i=1

x2
i

)r
is an sos polynomial

}
.

Parrilo showed that the hierarchy of cones satisfies Sn+ + N = K0
n ⊂ K1

n ⊂ · · · ⊂ COPn,

and int(COPn) ⊆ ∪r∈NKrn, where Sn+ is the set of positive semidefinite matrices in Rn×n and

N is the set of element-wise nonegative matrices, so the hierarchy of cones approximate the

copositive cone from within. Since each Krn can be represented as a system of linear matrix

inequalities (LMIs), optimizing over Krn amounts to solving a semidefinite program.

A weaker sufficient condition for nonnegativity of the polynomial is used in [35] to con-

struct a hierarchy of approximation of the copositive cone. The hierarchy of approximations

is defined as

Crn =

{
A ∈ Sn : PA(x)

(
n∑
i=1

x2
i

)r
has nonnegative coefficients

}
.

It is shown in [35] that N = C0
n ⊂ C1

n ⊂ · · · ⊂ COPn, and int(COPn) ⊆ ∪r∈NCrn, and

optimizing over each of the polyhedral cone amounts to solving a Linear Program (LP).

Taking a different approach, Yıldırım [2] proposed another hierarchy of outer polyhedral

approximations to the copositive cone. The hierarchy of approximations are generated by

systematically sampling points from the standard simplex. For r ∈ N, a regular grid of

rational points on the standard simplex is defined as

∆(n, r) = {x ∈ ∆n : (r + 2)x ∈ Nn},
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and an outer approximation associated with r is defined as

Orn = {X ∈ Sn : dᵀXd ≥ 0 for all d ∈ δ(n, r)}, r = 0, 1, 2, . . . ,

where δ(n, r) = ∪rk=0∆(n, k). Yıldırım showed that O0
n ⊇ O1

n ⊇ · · · ⊇ COPn, and in the limit

the polyhedral cones Orn provides a hierarchy of outer approximations that converges to the

cone of copositive matrices.

Another line of research focuses on approximating the copositive cone using both inner

and outer approximations. Bundfuss and Dür proposed two hierarchies of cones that provides

an inner and outer approximations for the copositive cone respectively; which relies on the

concept of simplicial partitions. According to [22], a simplicial partition of a simplex ∆ is a

family P = {∆1, . . . ,∆m} of simplices satisfying

∆ =

m⋃
i=1

∆i and int ∆i ∩ int ∆j = ∅ for i 6= j.

Given a simplicial partition P of the standard simplex ∆S , the inner approximation is defined

as

IP = {A ∈ Sn : vTAv ≥ 0 for all v ∈ VP , uTAv ≥ 0 for all {u, v} ∈ EP},

and the outer approximation is defined as

OP = {A ∈ Sn : vTAv ≥ 0 for all v ∈ VP},

where VP is the set of all vertices of the simplicial partition P, and EP is the set of all edges

of P. Both approximations are polyhedral, so optimizing over a cone of either the inner

or outer approximation is equivalent to solving a LP. Bundfuss and Dür’s approximation

has the advantage that it does not approximate the copositive cone uniformly. Instead, the

approximations are guided by the objective function of the optimization problem such that

only the relevant part of the copositive cone is being approximated with high accuracy, thus

saving much computational effort.

More recently, an inner approximation scheme for completely positive cone is proposed

in [21] using the cone of nonnegative scaled diagonally dominant matrices (SDD). Using the
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projections of this cone, both uniform and problem-dependent approximation hierarchies can

be constructed. Optimizing over this approximation amounts to solving a second-order-cone

program, which offers a compromise between semidefinite programing and linear programing

based approaches.

In this work, we are concerned with the connection between linear semi-infinite pro-

graming (LSIP) theories and copositive programming. A linear semi-infinite program is an

optimization problem with linear objective function and linear constraints in which either

the number of unknowns or the number of constraints is infinite, but not both. LSIP can be

seen as an extension of linear programming, or as a particular branch of both semi-infinite

programming and infinite dimensional programming. LSIP has many direct applications, in-

cluding but not limited to pattern recognition, environmental policies and industrial process.

For a comprehensive survey on the applications of LISP, we refer our readers to [51]. One of

the main difference between LP and LSIP is that the strong duality result of LP is no longer

valid. A lot of work on the theory of linear semi-infinite systems (LSIS) have been developed

to provide fundamentals for the LSIP theory. The main topics of the LSIP theory are opti-

mality conditions, duality, the characterization of the extreme points and extreme directions

of the primal and dual feasible sets. Several classes of LSISs are essential to the geometry,

optimality and duality theory of LSIP. A linear semi-infinite system σ = {aᵀtx ≥ bt, t ∈ T},

where T is an infinite set, is Farkas-Minkowski (FM) [50] when every linear consequent re-

lation of σ is also the consequence of a finite subsystem of σ. A LSIS σ is locally polyhedral

(LOP) [3] if D(F, x) = A(x)0 for all x ∈ F , where F = {x : aᵀtx ≥ bt, t ∈ T}, A(x)0 is

the positive polar of the active cone at x, and D(F, x) is the cone of feasible direction at

x. Another class of LSIS, namely the locally Farkas Minkowski (LFFM) LSIS, is introduced

in [83], where σ is LFM if every linear consequent relation of σ determining a supporting

hyperplane to F is also the consequence of a finite subsystem of σ. All these special classes

of LSIS have nice properties and play an important role in the theory off LSIP. A detailed

study of these classes of LSIS and their properties can be found in [52], [51] and [53]. In

[85], a detailed survey on different numerical method for solving LSIP is provided.

In this chapter, we propose a cutting-plane algorithm for solving copositive programs.

More specifically, we reformulate the copositive program as an equivalent linear semi-infinite

program, which is then solved using a cutting-plane algorithm. The cutting-plane algorithm

involves a pair of master problem and subproblem, where the master problem, which is an
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LP, generates solutions feasible to the current set of cuts, and the subproblem, which is a

standard quadratic program, generates the most violated cut with respect to the current

solution. Our approach exploit the efficiency of the solver in [95] on SQPs to generate strong

inequalities which improves the tightness of the bounds obtained from the master problem.

The preliminary experiments are conducted on a set of copositive programs obtained from

reformulating the QPs.

4.2 Semi-infinite Solution Approach

We assume that (COP) has a strictly feasible solution, so that strong duality holds for (CP)

and (COP).

It can be observed that completely positive matrices may also be represented over the

standard simplex ∆S
n = {x ∈ Rn+ : ‖x‖1 = 1}, we provide the following lemma.

Lemma 4.2.1. A matrix X is completely positive if and only if X =
m∑
i=1

λiuiu
ᵀ
i where

ui ∈ ∆S, λi ≥ 0 for i = 1, . . . ,m, and m ∈ N is finite.

Proof. Take X ∈ CPn, then we have

X =
m∑
i=1

uiu
ᵀ
i =

m∑
i=1

‖ui‖21
(

u1

‖ui‖1

)(
u1

‖ui‖1

)T
=

m∑
i=1

λiviv
ᵀ
i ,

where λi = ‖ui‖21 ≥ 0 and vi = u1
‖ui‖1 ∈ ∆S since ui ≥ 0 for i = 1, . . . ,m.

Next we prove the other direction. Let X =
m∑
i=1

λiuiu
ᵀ
i where ui ∈ ∆S

n and λi ≥ 0 for

i = 1, . . . ,m. Let vi =
√
λiui ≥ 0, then

X =

m∑
i=1

λiuiu
ᵀ
i =

m∑
i=1

(
√
λiui)(

√
λiui)

ᵀ =

m∑
i=1

viv
ᵀ
i , vi ≥ 0.

Therefore X is completely positive.

Similarly, a condition for copositivity is proposed in [22], where a matrix A ∈ Sn is

copositive if and only if xTAx ≥ 0 for all x ∈ ∆S , where ∆S
n = {x ∈ Rn+ : ‖x‖1 = 1} is the

standard simplex of dimension n.
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Using this observation, one can rewrite (CP) as the following semi-infinite program

p∆ = min
∑

u∈∆n

λu 〈C, uuᵀ〉

s.t.
∑

u∈∆n

λu 〈Ai, uuᵀ〉 = bi, i = 1, . . . ,m

λu ≥ 0 u ∈ ∆n,

(pLP∆n)

and (COP) as the following semi-infinite program

d∆ = max bᵀy

s.t.

〈
C −

m∑
i=1

yiAi, uu
T

〉
≥ 0 ∀u ∈ ∆n

y ∈ Rm.

(dLP∆n)

The problem (dLP∆n) has finitely many variables and infinitely many constraints, whereas

the (Haar’s) dual [53] problem (pLP∆n) has finitely many constraints and infinitely many

variables. By definition, only a finite number of variables of (pLP∆n) can take on a non-zero

value. This follows from the fact that a completely positive matrix can be written as a finite

sum of rank 1 matrices according to Lemma 4.2.1.

Instead of all u ∈ ∆n, we consider a finite subset of u ∈ U ⊂ ∆n, which results in a LP

relaxation of the primal problem

pU = min
∑

u∈∆n

λu 〈C, uuᵀ〉

s.t.
∑
u∈U

λu 〈Ai, uuᵀ〉 = bi, i = 1, . . . ,m

λu ≥ 0 u ∈ U,

(pLPU )

and its corresponding dual LP problem is

dU = max bᵀy

s.t.

〈
C −

m∑
i=1

yiAi, uu
T

〉
≥ 0 ∀u ∈ U

y ∈ Rm.

(dLPU )

It can be observed that (dLPU ) is a relaxation of (dLP∆n), as it only contains a finite

subset of the constraints of (dLP∆n). Since (dLPU ) and (pLPU ) are both LPs, and they
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are dual of each other, by strong duality we have that pU = dU . So we have the following

lemma

Lemma 4.2.2. For any finite U ⊂ ∆n, it follows that

pU = dU ≥ d∆ = dCOP .

The strength of the relaxation (dLPU ) depends largely on the subset U . A well chosen

U may provide a a good approximation for the copositive cone COPn, yielding a tight

upper bound for the optimal objective value of (COP). In the next section, we propose an

algorithmic way of selecting u ∈ ∆n iteratively such that a good upper bound for (COP) is

obtained. Moreover, the subproblem solved during the algorithm can be used to produce a

lower bound and a performance guarantee for upper bound.

The theory of duality, and optimality conditions like Karush-Kuhn-Tucker (KKT) for

ordinary nonlinear programming (NLP) can be naturally extended to LSIP problems, under

some conditions. We provide such a condition below from [53].

Theorem 4.2.3 (Thm. 2 [53]). For a pair of problems

inf cᵀx

s.t. aᵀtx ≥ bt, ∀t ∈ T,
(PLSIP)

and

sup
∑
t∈T

λtbt

s.t.
∑
t∈T

λtat = c, λ ∈ R(T )
+ ,

(DLSIP)

where c ∈ Rn, a ∈ Rn,b ∈ R, T is an arbitrary set that allows only a finite number of

associated variables λt, t ∈ T , to be non-zero. The notation R(T )
+ denotes the positive cone

of the linear space of λ. Let σ = {aᵀtx ≥ bt, t ∈ T}, and denote F and F ∗ (Λ and Λ∗) be the

feasible set and optimal set of (PLSIP) (of (DLSIP), respectively).

If σ is locally Farkas-Minkowski (LFM) and x̄ ∈ F , then the following statements are

equivalent to each other:

1. x̄ ∈ F ∗;

2. there exists λ̄ ∈ Λ such that λ̄t(a
ᵀ
t x̄− bt) = 0 for all t ∈ T ; and
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3. there exists λ̄ ∈ R(T )
+ such that L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄) for all x ∈ Rn and for

all λ ∈ R(T )
+ , where L(x, λ) is the Lagrangian function associated with (PLSIP); i.e.,

L(x, λ) = cᵀx+
∑

t∈T λt(bt − a
ᵀ
tx).

The following two results characterize when a set σ = {aᵀtx ≥ bt, t ∈ T} is LFM.

Proposition 5 (Cor. 3.1.1 in [50] and Thm. 3.2 in [83]). Let {aᵀtx ≥ βt, t ∈ T} be a

consistent system. If cone([aᵀt βᵀt ]ᵀ, t ∈ T}) is closed, then it is a LFM system.

By Theorem 4.2.3 above, for the KKT conditions to hold, one needs to show the system

of infinitely linear constraints is FM. In the following lemma, we show that the problem

(dLP∆n) is a FM system, thus KKT conditions are valid for the pair of problems (pLP∆n)

and (dLP∆n).

Lemma 4.2.4. Let σ be a linear semi-infinite system where

σ =

{〈
C −

m∑
i=1

yiAi, uu
ᵀ

〉
≥ 0, u ∈ ∆n

}
,

and

Aσ = {[−uᵀA1u, . . . ,−uᵀAmu,−uᵀCu]ᵀ : u ∈ ∆n}.

Then σ is a Farkas-Minkowski system if 0 6∈ conv(Aσ).

Proof. We can rewrite the system as

σ = {aᵀuy ≥ βu, u ∈ ∆n} .

where

au = [−uᵀA1u, . . . ,−uᵀAmu]ᵀ and βu = −uᵀCu.

According to Theorem 5, if Kσ = cone(Aσ) is closed, then σ is a Farkas-Minkowski system.

We show that if 0 6∈ conv(Aσ), then Kσ is closed. Since ∆n is compact, and the quadratic

form QA(u) = uᵀAu is continuous on ∆n, then Aσ is compact, as the continuous image

of a compact set is compact (see, sec. 10.2, Thm 5 in [66]). By Proposition 1.3.2 in [13],

we have that conv(Aσ) is convex and compact. Then by Corollary 9.6.1 in [87], and the
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fact that 0 6∈ conv(Aσ), we have that Kσ = cone(Aσ) is closed, as the cone generated by a

compact set which does not contain the origin is closed. Therefore σ is a Farkas-Minkowski

system.

4.3 Valid Inequalities for COP

From Lemma 1 we know one can obtain an upper bound of (COP) by solving a relaxation

problem (dLPU ) where only a finite subset of the constraints induced by ∆ is included. The

feasible set of the set of constraints induced by U ⊂ ∆, denoted by OU , forms an outer

approximation of the cone COPn

OU = {A ∈ S : uTAu ≥ 0 for all u ∈ U ⊆ ∆} ⊇ {A ∈ S : uTAu ≥ 0 for all u ∈ ∆} = COP .

(4.3)

There are many well-studied outer approximations of the cone of copositive matrices, we list

two of them here. One class of outer approximations is the polyhedral outer approximation

proposed by [22]

OP = {A ∈ S : uTAu ≥ 0 for all u ∈ VP}, (4.4)

where P is a simplicial partition of the standard simplex, and VP is the set of all vertices

in P. A simple case is to choose P = ∆S , leading to O∆S = {A ∈ S : Aii ≥ 0 for all i}.

Another class of outer approximations of COPn is introduced in [2], which is defined as

Oδ(n,r) = {A ∈ S : uTAu ≥ 0 for all v ∈ δ(n, r)}, r = 0, 1, 2, . . . , (4.5)

where δ(n, r) =
r⋃

k=0

∆(n, k), and ∆(n, r) = {x ∈ ∆n : (r + 2)x ∈ Nn}. The initial, r = 0

outer approximation is then

Oδ(n,0) = {A ∈ Sn : Aii ≥ 0, i = 1, . . . , n;Aii +Ajj + 2Aij ≥ 0, 1 ≤ i < j ≤ n}. (4.6)

By replacing the copositivity constraint S ∈ COPn with a more relaxed constraint S ∈

OU , we obtain a linear program (dLPU ) which can be solved in polynomial time, and

provides an upper bound for (COP). Note that the outer approximation may be improved
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by iteratively updating U → U ∪ {u} for some u ∈ ∆\U , the more points we include from

the standard simplex, the better the outer approximation. We propose an efficient approach

to generate u ∈ ∆\U such that the outer approximation is iteratively refined.

Let yU ∈ Rm be the optimal solution of (dLPU ), the S(y) = C −
∑m

i=1 yiAi. Then we

solve the following standard quadratic program (SQP)

z(S(yU )) = min uᵀS(yU )u

s.t. eᵀu = 1

u ∈ Rn+.

(stQP(U))

Let u∗ denotes the optimal solution to (stQP(U)). Then one has two scenarios:

1. If z(S(yU )) = (u∗)TS(yU )u∗ ≥ 0, then S(yU ) ∈ COP, and yU is the optimal solution

to (COP),

2. If z(S(yU )) = (u∗)ᵀS(yU )u∗ < 0, then u∗ is a certificate that S(yU ) is not copositive.

If we are in scenario 2, one can generate a tightening inequality for (dLPU ) using the optimal

solution u∗; namely 〈
C −

m∑
i=1

yiAi, u
∗(u∗)T

〉
≥ 0. (4.7)

The valid inequality (4.8) is guaranteed to cut off the optimal solution yU of (dLPU ) as〈
C −

m∑
i=1

yiAi, u
∗(u∗)T

〉
= (u∗)ᵀSUu∗ < 0. (4.8)
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We repeat the process until condition 1 is satisfied. The full algorithm is described below
Algorithm 2: Approximation algorithm for (COP)

1: Set ε > 0 and the finite set U ⊂ ∆S
n ,

2: while True do

3: Solve (dLPU )

4: Let yU denote the optimal solution of (dLPU )

5: Set S(yU ) = C −
∑m

i=1 y
U
i Ai

6: Solve the (stQP(U))

7: if z(S(yU )) ≤ −ε then

8: Set U ← U ∪ {arg min{S(yU )}}

9: else

10: Break

11: end if

12: end while

13: return yU the ε-optimal solution of (COP).

There is some freedom in the selection of the initial set U , one may choose U = δ(n, r)

for some small r [2] or U = V∆S
n
[22], or any other outer approximation. Note that instead

of terminating the algorithm when z ≥ 0, we use the stopping criteria z ≥ −ε, where ε is a

user chosen tolerence. This is to avoid numerical difficulty as the matrix S(yU ) gets close

to copositivity. And as a result, the optimal solution S(yU ) we get is ε-copositive, where a

matrix S is ε-copositive matrix if uᵀSu ≥ −ε for all u ∈ ∆.

4.4 Lower Bound for COP

Algorithm 2 provides a solution to (COP) that is ε-copositive [23], but does not provide a

measure on how far away our current objective value of (dLPU ) is from the optimal solution

of (COP) at any given iteration. In this section, we show that a lower bound for the (COP)

problem can be obtained using the optimal objective of the SQP subproblem (stQP(U)).

The following proposition provides a way to compute a lower bound of (COP).

Proposition 6 (Lower and upper bounds). Assume X is an optimal solution to (CP). For

any finite U ⊂ ∆n let yU be the optimal solution to (dLPU ), S(yU ) = C −
∑m

i=1 y
U
i Ai, and
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z(S(yU )) < 0 be the optimal objective value of (stQP(U)). Then we have

dU + z(S(yU ))
〈
eeT , X

〉
≤ dCOP ≤ dU .

Proof. The second half of the inequality follows from Lemma 4.2.2.

Next we prove the first half of the inequality. Let x be the dual multipliers associated

with the constraints of (dLPU ) and λ be the dual multipliers associated with the constraints

of (dLP∆n). Let y∗ be the optimal solution of (dLPU ), x∗ be the optimal solution of the

dual of (dLPU ), and λ∗ be the optimal solution of the dual of (dLP∆n). Let L(y, x) be the

Lagrangian function of (dLPU ).

From Lemma 4.2.4 we know that CPn is finitely generated, and thus there are only

finitely many λ∗k that are nonzero, thus Theorem 4.2.3 holds for (dLP∆n), and we have

d∆ = min
x

max
y,λ

bᵀy +
∑
u∈U

xj

(
uᵀCu−

m∑
i=1

yiu
ᵀAiu

)
+

∑
u∈∆S

n\U

λk

(
uᵀCu−

m∑
i=1

yiu
ᵀAiu

)
(4.9)

= min
x

max
y

L(y, x) +
∑

u∈∆S
n\U

λ∗u

(
uᵀCu−

m∑
i=1

yiu
ᵀAiu

) (4.10)

≥ max
y

min
x

L(y, x) +
∑

u∈∆S
n\U

λ∗u

(
uᵀCu−

m∑
i=1

yiu
ᵀAiu

) (4.11)

= max
y

L(y, x∗) +
∑

u∈∆S
n\U

λ∗u

(
uᵀCu−

m∑
i=1

yiu
ᵀAiu

) (4.12)

≥ L(y∗, x∗) +
∑

u∈∆S
n\U

λ∗u

(
uᵀCu−

m∑
i=1

y∗i u
ᵀAiu

)
(4.13)

= dU +
∑

u∈∆S
n\U

λ∗uu
TS(y∗)u, (4.14)

where dU = L(y∗, x∗) by strong duality of LP, (4.10) follows from (4.9) by substituting

λ = λ∗, (4.11) follows from (4.10) by Lemma 36.1 from [87], and by LP duality, (4.12)

follows from (4.11) from the fact that there are only a finite number of λ∗u that is non-zero.

Now note that

z(S(y∗)) ≤ uTS(y∗)u for any u ∈ ∆S
n ,
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and since z(S(y∗)) < 0

d∆ ≥ dU + z(S(y∗))
∑

u∈∆S
n\U

λ∗u.

Note that the optimal solution X∗ to (CP) can be written as

X∗ =
∑
u∈∆n

λ∗uuu
T ,

so we have

〈eeT , X∗〉 =
∑
u∈∆n

λ∗u(eu)2 =
∑
u∈∆n

λ∗u ≥
∑

u∈∆S
n\U

λ∗u,

since λ∗u ≥ 0 for all u ∈ ∆S
n . Therefore

dU + zU
〈
eeT , X∗

〉
≤ d∆ = dCOP .

Note that in Proposition 6 we assume z(S(yU )) < 0, since if z(S(yU )) ≥ 0 then we have

found the optimal solution to (COP).

To compute the lower bound for (COP) proposed in Proposition 6, we need to find an

upper bound for the optimal solution X of (CP). We propose an upper bound of X for the

class of completely positive programs obtained by reformulating indefinite QPs.

Consider the (indefinite) QP:

z = min xᵀQx

s.t. aᵀi x = bi, i = 1, . . . ,m

x ≥ 0,

(QP)

where F = {x ∈ Rn+ : aᵀi x = bi, i = 1, . . . ,m} := {x ∈ Rn+ : Ax = b} 6= ∅, and F is bounded.

To show that the upper bound on the variables of (QP) gives an upper bound on the

variables of the corresponding completely positive programs, we first state the following

proposition.

Proposition 7 (Proposition 1.9 (Farkas lemma III) [98]). For n,m ∈ N, let A ∈ Rm×n,
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b ∈ Rm, c ∈ Rn and c0 ∈ R. Let F = {x : Ax ≤ b} be non-empty. Then c0 + cᵀx ≥ 0 for all

x ∈ F if and only if there exists u ≥ 0 such that

Aᵀu = −c, bᵀu ≤ c0.

We first show that a valid upper bound can be obtained for the sum of the variables of

(QP).

Proposition 8. Let A ∈ Rm×n, b ∈ Rm. If F = {x ∈ Rn+ : Ax = b} 6= ∅, and F is bounded.

Then, there exists u ∈ Rm such that eᵀx ≤ uᵀb is a valid inequality for F .

Proof. The feasible set of (QP) F = {x ∈ Rn : Ax = b, x ≥ 0} can be written as

F =

x ∈ Rn :


A

−A

−I

x ≤

b

−b

0


 .

Since F is nonempty, from Proposition (7), it follows that c0 + cᵀx ≥ 0 for all x ∈ S if and

only if there exists u+ ≥ 0, u− ≥ 0, λ ≥ 0 such that

[
Aᵀ −Aᵀ −I

]
u+

u−

λ

 = −c,
[
bᵀ −bᵀ 0

]
u+

u−

λ

 ≤ c0,

which means there exists u ∈ Rm, λ ∈ Rn+ such that

Aᵀu− λ = −c, bᵀu ≤ c0.

Since F is bounded, there exist c0 > 0 such eᵀx ≤ c0 for all x ∈ F , or equivalently

−eᵀx + c0 ≥ 0 for all x ∈ F . Then we have from Proposition 7 that there exists u′ ∈

Rm, λ′ ∈ Rn+ such that e = Aᵀu′ − λ′, bᵀu′ ≤ c0.
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Then, for any x ∈ F we have that

eTx = (u′)TAx− (λ′)Tx

= (u′)T b− (λ′)Tx

≤ (u′)T b,

where the last inequality follows from x ≥ 0, λ′ ≥ 0. Thus is a valid inequality for F .

According to [33], under the boundedness and non-empty condition on F , then z is

equivalent to:

z = min

〈0 fᵀ

f Q

 , X〉

s.t.

〈 0 1
2a

ᵀ
i

1
2ai 0

 , X〉 = bi, i = 1, . . . ,m

〈0 0

0 aia
ᵀ
i

 , X〉 = b2i , i = 1, . . . ,m

〈1 0

0 0

 , X〉 = 1

X ∈ Completely Positive ⊆ (X ≥ 0),

Also from [33], it follows that the optimal solution of the above problem X∗ satisfies

X∗ ∈ conv

 1

x∗

 1

x∗

ᵀ

: x∗ is an optimal solution of (QP)

 ,

thus

〈1 eᵀ

e eeᵀ

 , X∗〉 =

m∑
i=1

λi

〈
J,

 1

x∗

 1

x∗

ᵀ〉
≤

m∑
i=1

λi(1 + uᵀb)2 ≤ (1 + uᵀb)2,

where J is the matrix of all ones. Therefore an upper bound on the variables of the com-

pletely positive program (CP) can be obtained from the upper bound on the variables of

QP.
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4.5 Convergence

Algorithm 2 is a cutting-plane type algorithm for solving linear semi-infinite programs. A

conceptual frame work for a general cutting-plane algorithm is introduced in [51].
Algorithm 3: Conceptual cutting-plane algorithm for linear semi-infinite programs

Step 1 Solve the LP subproblem

(Pr) inf cᵀx

s.t. aᵀtx ≥ bt, t ∈ Tr

If (Pr) is inconsistent then stop.

Otherwise, calculate an optimal solution of (Pr), xr; then go to Step 2.

Step 2 Calculate sr = inft∈T g(t, xr).

If sr ≥ −ε then stop.

If sr < −ε then find a non-empty finite set Sr of εr-minimizers of the

slack function at xr, i.e. each t ∈ Sr must satisfy g(t, xr) ≤ sr + εr.

Then replace r by r + 1, take Tr+1 = Tr ∪ Sr and loop to Step 1.

It is easy to see that algorithm 2 follows the above framework, where the LP subproblem

in step 1 is (dLPU ), and the optimization problem in step 2, inft∈T g(t, xR); is the standard

quadratic program (stQP(U)) where U = Tr. And Sr = arg min(z(yU )).

According to Theorem 11.2 in [51], algorithm (2) converges, and terminates in finite step

if ε > 0.

Theorem 4.5.1 (Theorem 11.2 in [51]). Assume that (PLSIP) is consistent, that {at, t ∈ T}

is a bounded set and that g(·, xr) is bounded from below (or has minimizers, if εr = 0) at each

iteration of Algorithm 3 (this is true when (PLSIP) is continuous). Then, it generates either

a finite sequence or an infinite sequence having cluster points which are optimal solutions of

(PLSIP). Thus finite termination will occur if ε > 0.

In the case of Algorithm 2, {at, t ∈ T} = {[−uTA1u, . . . ,−uTAmuT ]ᵀ, u ∈ ∆n} is com-

pact thus bounded, and g(·, xr) = uTS(xr)u which is bounded below at each iteration r since

feasible set u ∈ ∆n+1 is compact. By Theorem 4.5.1, Algorithm 2 converges and achieve

finite termination. Note that this is a particular version of Algorithm 3 named Alternating

Algorithm [57] for LSIP continuous problems, obtained by selecting ε = ε1 = ε2 = · · · = 0,

and taking |Sr| = 1 in all iterations.
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4.6 Other classes of valid inequalities

In step 6 of Algorithm 2, for each iteration r, one has the freedom of adding ur ∈ ∆S
n+1 to

U such that ur satisfies (ur)ᵀS(yU )ur < −ε. We introduce two approaches to generate valid

ur’s at each iteration r such that (ur)ᵀS(yU )ur ≤ −ε, where ε > 0 is satisfied.

The first approach is inspired by Lemma 3 of [23]

Lemma 4.6.1 (Lemma 3 in [23]). Let A ∈ Sn and q(x) = xTAx. Assume we are given

u, v ∈,Rn with

α = uTAu ≥ 0, β = vTAv ≥ 0, γ = uTAv < 0.

Then the function f(λ) = q(λu+ (1− λ)v) attains its minimum at λ̄ = β−γ
α−2γ+β ∈ (0, 1).

Let Ur be the finite set U at iteration r. Using Lemma 4.6.1, at each iteration r of

Algorithm 3 one can check if there exists u, v ∈ Ur such that uTAv < 0, and if f(λ̄u+ (1−

λ̄)v) < 0, then we have found w = λ̄u+ (1− λ̄)v ∈ ∆n such that wTS(yU )w < 0. According

to Lemma 4 in [23], one may also check if γ
γ−α >

β
β−γ , if the inequality holds then we know

q(w) < 0 where w = λ̄u+ (1− λ̄)v ∈ ∆n.

Another approach to generate valid inequalities at each iteration of Algorithm 2 is to

utilize Theorem 1 in [36]

Theorem 4.6.2 (Theorem 1 in [36]). IfM ∈ Sn, the following two statements are equivalent:

1. M is copositive;

2. For all J ⊆ {1, . . . , n}, J 6= ∅, the following system has a solution:

MJJxJ ≥ 0, xJ ≥ 0, eᵀ|J |xJ = 1. (4.15)

By Farkas Lemma, for system (4.15) to have a solution, it is equivalent for the following

system to be infeasible

My < 0, y ≥ 0. (4.16)
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One may find a y by solving the following optimization problem

l∗ = min α

s.t. MJJy ≤ αe

eT y = 1

y ≥ 0,

(LP)

if l∗ < 0, then the optimal solution y∗ of (LP) yields yTMJJy < 0 as MJJy ≤ 0, y ≥ 0 and

eT y = 1. So we obtain a valid inequality MJJy
∗ ≥ 0.

4.7 Experiment Results

In this section, we present and discuss our computational results. We implemented our

algorithm in Matlab 2017a with quadprogIP from [95], where the underlying optimization

solver is CPLEX 12.8.0. The algorithm is tested on 2.9 GHz Intel Core i5 with 8 GB memory.

The optimal tolerance is ε = 10−6.

The test instances were obtained by reformulating the general QPs

min xTQx+ fTx

s.t. Ax = b

x ≥ 0

as the following copositive program

max

m∑
i=1

biµi +

m∑
i=1

b2i µ̄i + µ0

s.t.

0 fᵀ

2

f
2 Q

− m∑
i=1

µi

 0
aᵀi
2

ai
2 0

− m∑
i=1

µ̄i

0 0

0 aia
ᵀ
i

− µ0

1 0

0 0

 ∈ COPn+1 .

We selected a subset of non-convex QPs from the test sets CUTEr and globallib, and

compare our algorithm, named CopLSIP, with Yıldırım’s algorithm proposed in [2]. The

results are summarized in Table 4.1. It can be observed that CopLSIP outperforms Yıldırım’s

algorithm in every instances. CopLSIP is able to obtain the optimal solution within the time

limit of 1800 seconds, while Yıldırım’s algorithm fails to obtain the optimal solution for
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most of the instances. For the instances Yıldırım’s algorithm did not achieve optimality, the

algorithm yields weak bounds for most of the instances. It can be observed that CopLSIP

uses significantly more iterations comparing to Yıldırım’s algorithm, since each iteration

of CopLSIP consists of solving an LP and a SQP, which turns out to be computationally

cheaper comparing to the exponentially growing number of LPs Yıldırım’s algorithm solves

at each iteration. This explains why Yıldırım’s algorithm, even on small instances, is unable

to compute outer approximations where the r is large efficiently.

Table 4.1: Comparing CopLSIP with Yıldırım’s algorithms

CopLSIP Yıldırım

instance n Iter
outer
approx

Time
(s) r

outer
approx

Time
(s)

ex2_1_1 7 18 -9050.0000 2.06 9 -9050.0000 23.21
ex2_1_2 9 85 -461.7492 10.73 9 -93.6918 1800.00
ex2_1_4 12 385 -32.4495 52.51 5 55868.2816 1800.00
hs044 11 530 -29.9992 62.90 6 8644.4755 1800 .00
st_bpk1 11 641 -25.9994 78.88 6 6009.2559 1800.00
st_bpk2 11 641 -25.9994 88.86 6 6009.2559 1800 .00
st_bpv2 10 367 -15.9984 44.59 7 25360.3214 1800 .00
st_bsj2 9 683 2.0015 82.88 9 56.5437 1800.00
st_bsj4 11 302 -983175.0751 35.02 6 287994.6429 1800.00
st_e22 8 409 -169.9975 44.22 12 15279.3152 1800.00
st_e23 5 82 -2.1666 8.94 50 -2.1667 1360.90
st_e24 7 226 16.001 24.48 18 581.0979 1800.00
st_fp1 7 18 -9050.0000 2.62 9 -9050.0000 23.1
st_fp2 9 85 -461.7492 9.54 9 -93.6918 1800.00
st_pan1 8 297 -10.5671 33.64 12 88.5276 1800.00
st_ph1 12 455 -460.2063 59.43 5 23355.1765 1800.00
st_phex 8 489 -169.9975 42.92 12 15279.3152 1800.00
st_qpc_m0 5 68 -9.9999 7.30 6 -10 0.4
st_qpc_m1 11 499 -947.54 62.21 6 20192.0452 1800 .00
st_qpk1 7 327 -5.9999 40.74 7 -6 6.00

Next, we compare our basic algorithm with the the version of the algorithm that uses

either one of the two different valid inequality generation approaches to generate extra cuts.

The algorithm that uses cuts generated by solving an LP is named CopLSIP_LP, and

the algorithm that generates cuts by examining the convex combination of previous cuts is

named CopLSIP_comb. Note that CopLSIP_LP solves (LP) first to try to obtain a LP cut.

If no LP cut is found, then (stQP(U)) is solved. The subprincipal matrix MJJ in (LP) is

selected by J = {i ∈ N : ui > 0}, where u is the optimal solution of (stQP(U)). The results
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are presented in Table 4.7. It can be seen that both CopLSIP_LP and CopLSIP_comb

outperforms CopLSIP, since CopLSIP_comb generates extra inequalities at each iteration

to speed up the solution process, while CopLSIP_LP solves a LP in place of a SQP in many

iterations. It can be seen that CopLSIP_Hybrid takes the most number of iterations, since

CopLSIP_LP only solves a SQP when there is no valid inequality that can be generated

by solving (LP), and the valid inequalities generated by solving (LP) are not as strong as

the inequalities generated by solving SQPs. However, CopLSIP_LP has better performance,

since solving an LP is faster than solving a SQP. One note is that CopLSIP_Hybrid is prone

to numerical issues, so a efficient version of CopLSIP_Hybrid may need some fine tuning.

It is interesting to note that CopLSIP_comb uses fewer iterations to achieve optimality.

We also compare with another algorithm where both LP cut generation approach are

used, and name it CopLSIP_Hybrid. The results are shown in Table 4.7. The main differ-

ence of CopLSIP_Hybrid is that we use both cut generation approaches at each iteration.

We see good improvement comparing to CopLSIP, since we generate more cuts at each it-

eration. What’s more, we see improvements comparing to CopLSIP_comb, which suggests

the cuts obtained by solving (LP) can be beneficial for solving the problem.

4.8 Conclusion

In this chapter, we proposed a linear semi-infinite reformulation of copositive programs, and

a cutting-plane algorithm for solving copositive programs. We presented conditions for lin-

ear systems of infinitely many equalities to be Farkas-Minkowski, such that strong duality

holds between the primal and dual pair of linear semi-infinite reformulations of copositive

programs. The cutting-plane algorithm utilizes the efficiency of the non-convex quadratic

solver introduced in [95], and it is shown that the algorithm converges and terminates in

finite iteration under appropriate selection of parameters. A lower bound for the copositive

program at each iteration is provided in a closed form. Our computational results demon-

strated that our algorithm is effective in solving the QP reformulated copositive programs.

4.9 Future works

For future work, a question worth exploring is if the bounds of the dual variables of (QP) is

valid for the variables of (COP). In practice, when solving the master problem (dLPU ), one
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may encounter the issue of unbounded optimal objective. This may happen as the variables

of (dLPU ) are unrestricted and the particular outer approximation is not bounded. In

general, bounds on the variables for (dLPU ) are needed. We propose a way to find the

bounds on the variables of (dLPU ) where the original problem (COP) of (dLPU ) is the dual

of a (CP) that is obtained by reformulating a QP.

4.9.1 Bounding the dual variable

To compute the lower bound for (COP) proposed in Proposition 6, we need to find an upper

bound for the optimal solution X∗ of (CP). We propose an upper bound of X for the class

of completely positive programs obtained by reformulating indefinite QPs with bounded

feasible set.

Lemma 4.9.1. Assume the pair of problems (CP)-(COP) corresponds to the reformulations

of a bounded (QP) in [33] where the feasible set is {x ∈ Rn : Ax = b}. Assume (x∗, λ∗, µ∗)

is a KKT point for (QP) such that x∗ is optimal. Then

1. one can construct S, y optimal solution to (COP) from (x∗, λ∗, µ∗),

2. and bounds on λ∗ implies the optimal objective of dU is bounded if {e1, . . . , en} ⊆ U .

Proof. Consider the following QP:

p∗ = min xᵀQx+ fᵀx

s.t. aᵀi x = bi, i = 1, . . . ,m

(aᵀi x)2 = b2i , i = 1, . . . ,m

x ≥ 0,

(QP+)

which is equivalent to (QP). The lagrangian is

L(x, λ, µ) = xTQx+ fTx+
m∑
i=1

(bi − aTi x)µi +
m∑
i=1

(b2i − (aTi x)2)µ̄i −
n∑
i=1

λixi.
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Let d∗ denote the optimal objective value of the dual problem of the (QP+). We have

d∗ = max
µ,λ≥0

min
x≥0

L(x, λ, µ)

= max
µ,λ≥0

min
x≥0

xTQx+ fTx+

m∑
i=1

(bi − aTi x)µi +

m∑
i=1

(b2i − (aTi x)2)µ̄i −
n∑
i=1

λixi

= max
µ,λ≥0

m∑
i=1

biµi +

m∑
i=1

b2i µ̄i + µ0 (4.17)

s.t. µ0 ≤ xTQx+ fTx−
m∑
i=1

aTi xµi −
m∑
i=1

(aTi x)2µ̄i −
n∑
i=1

λixi ∀x ≥ 0. (4.18)

Note that constraint (4.18) can be written as

1

x

T 0 fᵀ

2

f
2 Q

1

x

− m∑
i=1

µi

1

x

T  0
aᵀi
2

ai
2 0

1

x


−

m∑
i=1

µ̄i

1

x

T 0 0

0 aia
ᵀ
i

1

x

− µ0

1

x

T 1 0

0 0

1

x

 ≥ 0,

where x ≥ 0, and this is equivalent to

0 fᵀ

2

f
2 Q

− m∑
i=1

µi

 0
aᵀi
2

ai
2 0

− m∑
i=1

µ̄i

0 0

0 aia
ᵀ
i

− µ0

1 0

0 0

 ∈ COPn . (4.19)

It can be observed that the problem with objective function (4.17) and constraint (4.20) is

equivalent to the dual of the (QP+), as well as (COP). Therefore the dual of the above QP

is equivalent to (COP), and thus one can construct the optimal solution to (COP) from the

optimal solution of the dual of the (QP+).

Consider another representation of (QP)

p∗ = min xᵀQx+ fᵀx

s.t. (aᵀi x− bi)2 = 0, i = 1, . . . ,m

x ≥ 0,

(QP++)

which is equivalent to (QP), which is equivalent to (QP) and (QP+). Even more, the

corresponding completely positive reformulation are equivalent, thus the dual of the cor-

responding completely positive reformulations, namely the copositive programs, are also
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equivalent. We show that a KKT point of (QP) is also a KKT point of (QP++), such that

a valid bound on the dual variables of (QP++) is also a valid bound on the dual variables

of (QP).

Next, we show that dU is bounded given {e1, . . . , en} ⊆ U . Let

S =

0 fᵀ

2

f
2 Q

− m∑
i=1

µi

 0
aᵀi
2

ai
2 0

− m∑
i=1

µ̄i

0 0

0 aia
ᵀ
i

− µ0

1 0

0 0

 . (4.20)

Then from the constraint eT1 Se1 ≥ 0 of the outer approximation induced by U we get µ0 ≤ 0.

Similarly, for each i ∈ {2, . . . , n} we get

eTi Sei =
m∑
j=1

µ̄ja
2
ji ≤ Qii,

writing all the constrains from i = 2, . . . , n in matrix form we get

(A2)T µ̄ ≤ diag(Q).

Since A has full row rank, then (A2)T has full column rank, so we canm linearly independent

rows of (A2)T whose indices are denoted as a set I, and denote the new matrix consist of

these linearly independent rows as B, such that

Bµ̄ = [(A2)T ]I µ̄ ≤ [diag(Q)]I . (4.21)

Since B has linearly independent rows and columns, B is invertible, so we can multiply on

both side of (4.21) and get

µ̄ ≤ B−1[diag(Q)]I and ‖µ̄‖∞ ≤ ‖B−1[diag(Q)]I‖∞.

Thus we have

(b2)T µ̄ ≤ (b2)TB−1[diag(Q)]I .

From [95] we know that there exists an optimal KKT point (x∗, µ∗, λ∗) such that eTλ∗ ≤
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M for some M > 0. The KKT condition yields the following valid equality for µ, λ:

Qx+ f −Aᵀµ− (A2)T µ̄− λ = 0. (4.22)

Since A has full row rank, we have

Aᵀµ = Qx+ f − (A2)T µ̄− λ

µ = (AAᵀ)−1A(Qx+ f − (A2)T µ̄− λ)

µ = (AAᵀ)−1AQx+ (AAᵀ)−1Af − (AAᵀ)−1A(A2)T µ̄− (AAᵀ)−1Aλ.

An upper bound of µ is

‖µ‖∞ ≤ ‖(AAᵀ)−1A‖∞‖Qx+ f − (A2)T µ̄− λ‖∞

≤ ‖(AAᵀ)−1A‖∞(‖Qx‖∞ + ‖f‖∞ + ‖(A2)T µ̄‖∞ + ‖λ‖∞)

≤ ‖(AAᵀ)−1A‖∞(‖Q‖∞‖UB‖∞ + ‖f‖∞ + ‖(A2)T ‖∞‖µ̄‖∞ + ‖λ‖∞).
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